Hazelcast Documentation

version 3.5

Jun 17, 2015

In-Memory Data Grid - Hazelcast | Documentation: version 3.5
Publication date Jun 17, 2015
Copyright (© 2015 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Contents

Preface

What’s New in Hazelcast 3.5

2.1 Release Notes L e
2.1.1 New Features e
2.1.2 Enhancements L e
2.1.3 FixXes. . . . o e e e

2.2 Upgrading Hazelcast o o e
2.2.1 Upgrading from 2.X e
2.2.2 Upgrading from 3.Xo e

2.3 Document Revision History

Getting Started

3.1 Imstallation L e e
3.1.1 Hazelcast L e
3.1.2 Hazelcast Enterprise
3.2 Starting the Instance and Client
3.2.1 Deploying On Amazon EC2
3.3 Configuring Hazelcast e
Overview
4.1 Hazelcast Overview e e
4.1.1 Hazelcast issimple L
4.1.2 Hazelcast is Peer-to-Peer
4.1.3 Hazelcast isscalable e
4.1.4 Hazelcast is fast oL
4.1.5 Hazelcast isredundant Lo L e
4.1.6 Sharding in Hazelcast
4.1.7 Hazelcast Topology e
4.2 Why Hazelcast? e
4.3 Data Partitioning
4.3.1 How the Data is Partitioned

15

17
17
17
18
19
20
20
22
22

25
25
25
25
27
28
28

4.3.2 Partition Table
4.3.3 Repartitioning

Hazelcast Clusters
5.1 Hazelcast Cluster Discovery
Multicast Auto-Discovery
5.1.2 Discovery by TCP
5.1.3 EC2 Cloud Auto-discovery
5.2 Creating Cluster Groups

Distributed Data Structures

Map Overview
6.1.2 Map Backups

6.1.3 Map Eviction

In Memory Format
6.1.5 Map Persistence
6.1.6 Near Cache
6.1.7 Map Locks
6.1.8 Entry Statistics
6.1.9 Map Listener
6.1.10 Interceptors

6.1.11 OOM Prevention

Queue Overview
Sample Queue Code
Bounded Queue
Queue Persistence

Configuring Queue

Sample MultiMap Code

Configuring MultiMap

Sample Set Code

Event Registration and Configuration for Set

Sample List Code

Event Registration and Configuration for List

CONTENTS

CONTENTS

6.6 RingBuffer.
6.7 TOpIC. o e
6.7.1 Sample Topic Code e
6.7.2 Statistics e
6.7.3 Internals. L e
6.7.4 Configuring Topic
6.8 Lock
6.8.1 ICondition L
6.9 TAtomicLong
6.10 ISemaphore
6.11 TAtomicReference
6.12 ICountDownLatch e
6.13 IdGenerator e e
6.14 Replicated Map e
6.14.1 For Consideration
6.14.2 Breakage of the Map-Contract
6.14.3 Technical Design
6.14.4 Replicated Map Configuration
6.14.5 EntryListener on Replicated Map L L

7 Distributed Events

7.1 Event Listeners for Hazelcast Nodes
7.1.1 Membership Listenero
7.1.2 Distributed Object Listener
7.1.3 Migration Listener Lo
7.1.4 Partition Lost Listener
7.1.5 Lifecycle Listener oL
7.1.6 Ttem Listener
7.1.7 Message Listener Lo
7.1.8 Client Listener e

7.2 Event Listeners for Hazelcast Clients

7.3 Global Event Configuration

8 Distributed Computing

8.1 Executor Service e
8.1.1 Executor Overview L e
8.1.2 Execution e e
8.1.3 Execution Cancellation e
8.1.4 Execution Callback
8.1.5 Execution Member Selection L

76
T
7
78
78
79
80
81
82
84
85
86
87
88
89
89
89
90
91

93
93
93
94
95
95
96
96
97
97
97
98

6 CONTENTS

8.2 Entry Processor L e e 106
8.2.1 Entry Processor Overview e 106
8.2.2 Sample Entry Processor Code 108
8.2.3 Abstract Entry Processor 109

9 Distributed Query 111

9.1 Query Overview e e 111
9.1.1 How It Works e 111
9.1.2 Employee Map Query Exampleo 111
9.1.3 Criteria APL e 112
9.1.4 Distributed SQL Query 114
9.1.5 Paging Predicate (Order & Limit) 115
9.1.6 Indexing 115
9.1.7 Query Thread Configuration 116

9.2 MapReduce L e 116
9.2.1 MapReduce Essentialso 117
9.2.2 Introduction to MapReduce APT 119
9.2.3 Hazelcast MapReduce Architecture L L 126

0.3 Aggregators 128
9.3.1 Aggregations Basics L e 128
9.3.2 Introduction to Aggregations APT 129
9.3.3 Aggregations Examples L L 134
9.3.4 Implementing Aggregations Lo e 137

9.4 Continuous QUETY L e 137

9.5 Continuous Query Cache e 139
9.5.1 Features of Continuous Query Cache o oL 140

10 User Defined Services 141

10.1 Sample Case L e e 141
10.1.1 Creating Class o o i i 141
10.1.2 Enabling Class o e 142
10.1.3 Adding Properties L 143
10.1.4 Starting Service e e e e e 143
10.1.5 Placing a Remote Call - Proxy 143
10.1.6 Creating Containers i i e e 148
10.1.7 Partition Migration 152
10.1.8 Creating Backups. e e e 157

10.2 WaitNotifyService oL 159

CONTENTS 7

11 Transactions 161
11.1 Transaction Interface L 161
11.2 XA Transactions 0 e 162
11.3 J2EE Integration L e e e e 163

11.3.1 Sample Code for J2EE Integration oo 164
11.3.2 Resource Adapter Configuration 164
11.3.3 Sample Glassfish v3 Web Application Configuration 164
11.3.4 Sample JBoss AS 5 Web Application Configuration 164
11.3.5 Sample JBoss AS 7 / EAP 6 Web Application Configuration 165

12 Hazelcast JCache 169
12.1 JCache Overview o e 169
12.2 Setup and Configuration 169

12.2.1 Application Setup L 169
12.2.2 Quick Example Lo e 171
12.2.3 JCache Configuration 172
12.3 JCache Providers 174
12.3.1 Provider Configuration L 174
12.3.2 JCache Client Provider e 175
12.3.3 JCache Server Provider e 175
12.4 Introduction to the JCache API 175
12.4.1 JCache API Walk-through 175
12.4.2 Roundup of Basics 177
12.4.3 Factory and FactoryBuilder L 178
12.4.4 CacheLoader e 178
12.4.5 CacheWriter o e 179
12.4.6 JCache EntryProcessor 180
12.4.7 CacheEntryListener 181
12.4.8 ExpirePolicy e 183
12.5 Hazelcast JCache Extension - ICache 183
12.5.1 Scopes and Namespaces o . e e e 183
12.5.2 Retrieving an ICache Instance L 186
12.5.3 ICache Configuration 187
12.5.4 Async Operations e e 188
12.5.5 Custom ExpiryPolicy e 189
12.5.6 JCache Eviction 190
12.5.7 JCache Near Cache e 193
12.5.8 Additional Methods e 196
12.5.9 BackupAwareEntryProcessor 197

12.6 JCache Specification Compliance L 198

8 CONTENTS
13 Integrated Clustering 201
13.1 Hibernate Second Level Cache 201
13.1.1 Sample Code for Hibernate 201

13.1.2 Supported Hibernate Versions e 201

13.1.3 Hibernate Configuration e 201

13.1.4 Hazelcast Configuration for Hibernate 202

13.1.5 RegionFactory Options e 203

13.1.6 Hazelcast Modes for Hibernate Usage 204

13.1.7 Hibernate Concurrency Strategies o 204

13.1.8 Advanced Settings 205

13.2 Web Session Replication 205
13.2.1 Filter Based Web Session Replication o . 206

13.2.2 Spring Security Support L. 208

13.2.3 Tomcat Based Web Session Replication 210

13.2.4 Jetty Based Web Session Replication 214

13.3 Spring Integration L 219
13.3.1 Supported Versions e e 219

13.3.2 Spring Configuration L e 219

13.3.3 Spring Managed Context with @SpringAware 222

13.3.4 Spring Cache e 225

13.3.5 Hibernate 2nd Level Cache Config 226

13.3.6 Best Practices L 226

14 Storage 229
14.1 High-Density Memory Store 0 e 229
14.1.1 Configuring Hi-Density Memory Store o 229

14.2 Elastic Memory (High-Density Memory First Generation) 230
14.3 Sizing Practiceso 231
15 Hazelcast Java Client 233
15.1 Java Client Overview o e e 233
15.1.1 Java Client Dependencies e 233

15.1.2 Getting Started with Client APT 234

15.1.3 Java Client Operation modes 234

15.1.4 Failure Handling e 235

15.1.5 Supported Distributed Data Structures 235

15.1.6 Client Services v v i 236

15.1.7 Client Listeners 237

15.1.8 Client Transactions« . o vttt e e e 237

15.2 Java Client Configuration e 237

CONTENTS 9

15.2.1 Client Network Configuration 238
15.2.2 Client Load Balancer Configuration 244
15.2.3 Client Near Cache Configuration 244
15.2.4 Client Group Configuration o e 245
15.2.5 Client Security Configuration L 245
15.2.6 Client Serialization Configuration oo 245
15.2.7 Client Listener Configuration 245
15.2.8 ExecutorPoolSize 245
15.2.9 ClassLoader e 246

15.3 Client System Properties. 246
15.4 Sample Codes for Client e 246
16 Other Client Implementations 247
16.1 CH+ Client o oo 247
16.1.1 How to Setup 247
16.1.2 Platform Specific Installation Guides Lo 248
16.1.3 Code Examples oL e 248

16.2 NET Client o e e e e e e e e 252
16.2.1 Client Configuration o 255
16.2.2 Client Startup o o o e e e e 255

16.3 REST Client 0 o 255
16.4 Memcache Client 258
16.4.1 Unsupported Operations 0 e 259

17 Serialization 261
17.1 Serialization Overview L e e 261
17.2 Serialization Interfaces L 261
17.3 Comparison Table o . e 262
17.4 Serializable & Externalizable L 262
17.5 DataSerializable 263
17.5.1 IdentifiedDataSerializable 265

17.6 Portableo 266
17.6.1 Versions L e 268
17.6.2 Null Portable Serialization o 269
17.6.3 DistributedObject Serialization L o 269

17.7 Custom Serialization L 269
17.7.1 StreamSerializer L e 269
17.7.2 ByteArraySerializer L 272

17.8 HazelcastInstanceAware Interface 272

10 CONTENTS
18 Management 275
18.1 Statistics API per Node e 275
18.1.1 Map Statistics e 275
18.1.2 Multimap Statistics e 278
18.1.3 Queue Statistics L 281
18.1.4 Topic Statistics o . L e 282
18.1.5 Executor Statistics L 283

18.2 JMX API per Node e 283
18.3 Monitoring with JMX oL 289
18.4 Cluster Utilities o o o e 290
18.4.1 Cluster Interface e 290
18.4.2 Member Attributes e 290
18.4.3 Cluster-Member Safety Check 291
18.4.4 Cluster Quorum L e e 292

18.5 Management Center e e 295
18.5.1 Imtroduction L e 295
18.5.2 Tool OVerview oo e e e e e e 296
18.5.3 Home Page e 297
18.5.4 Caches o o L e 301
18.5.5 Maps e e 301
18.5.6 QUEUES e 305
18.5.7 Topics . . . o e e 306
18.5.8 MultiMaps L e 307
18.5.9 Executors L e 307
18.5.10Members e 308
18.5. 11 Scripting . . .« . . e e e 310
18.5.12C0ns0le e 311
18513 Alerts . . o o 312
18.5.14 Administration 315
18.5.15Time Travel o L o 316
18.5.16 Documentationo 317
18.5.17Suggested Heap Size e 317

18.6 Clustered JMX o L e 317
18.6.1 Clustered JMX Configuration 318
18.6.2 API Documentation e 318
18.6.3 New Relic Integration 323
18.6.4 AppDynamics Integration 324

18.7 Clustered REST e 324

18.7.1 Enmabling Clustered REST 324

CONTENTS

18.7.2 Clustered REST APTRoot e e
18.7.3 Clusters Resource e
18.7.4 Cluster Resource e
18.7.5 Members Resource L e
18.7.6 Member Resource
18.7.7 Clients Resource e
18.7.8 Maps Resource L e
18.7.9 MultiMaps Resource L
18.7.10Queues Resource L e
18.7.11Topics Resource oL e

18.7.12 Executors Resource s

19 Security

19.1
19.2
19.3
19.4
19.5
19.6
19.7

19.8
19.9

Enabling Security for Hazelcast Enterprise
Socket Interceptor L
Security Interceptor L e
Encryption e
SSL
Credentials L
ClusterLoginModule e
19.7.1 Emterprise Integrationo
Cluster Member Security« . . e
Native Client Security o
19.9.1 Authentication L e
19.9.2 Authorization e

19.9.3 Permissions e

20 Performance

20.1

20.2

20.3

204

20.5

Data Affinity
Back Pressure
Threading Model e
20.3.1 I/O Threading o it
20.3.2 Event Threading e
20.3.3 IExecutor Threading
20.3.4 Operation Threading e
SlowOperationDetector L e
20.4.1 Logging of Slow Operations
20.4.2 Purging of Slow Operation Logs
Hazelcast Performance on AWS e
20.5.1 Selecting EC2 Instance Type o
20.5.2 Dealing with Network Latency
20.5.3 Selecting Virtualization L

11

324
324
325
325
326
329
329
330
331
332
333

335
335
335
336
337
338
339
340
341
341
342
342
343
345

12 CONTENTS

21 Hazelcast Simulator 359
21.1 Simulator Overview L 359
21.2 Key Concepts o o v o e e 359
21.3 Installing Simulator L 360

21.3.1 Firewall settings o . e 360
21.3.2 Setup of local machine (Coordinator) 360
21.3.3 Setup of remote machines (Agents, Workers) Lo L oL 361
21.3.4 Setup of public/private key pair 361
21.4 Setting Up For Amazon EC2 e 362
21.5 Setting Up For Google Compute Engine L 362
21.6 Setting Up Machines Manually L 363
21.7 Executing a Simulator Test oL 364
21.7.1 An Example Simulator Test L 364
21.7.2 Editing the simulator.properties File Lo 366
21.7.3 Editing the test.properties file L 366
21.7.4 Running the Test e 366
21.7.5 Using Maven Archetypes e 370
21.8 Provisioner e 370
21.8.1 Accessing the Provisioned Machine oo oL 371
21.9 Coordinator e 371
21.9.1 Controlling Hazelcast Declarative Configuration 372
21.9.2 Controlling Test Duration o 372
21.9.3 Controlling Client And Workers. 372
21.10Communicator e e e e 372
21101 Example L L e 373
21.10.2Message Types e 373
21.10.3Message Addressing e 373
21.11Simulator.Properties File Description 374
21.12Performance and Benchmarking oL 375

22 WAN 377

22.1 WAN Replication 377
22.1.1 Configuring WAN Replication 377
22.1.2 WAN Replication Additional Information 378

22.2 Emterprise WAN Replication 379
22.2.1 Replication implementations L L L 379
22.2.2 WAN Replication Batch Size 379
22.2.3 WAN Replication Batch Frequency L 380
22.2.4 WAN Replication Operation Timeout 380
22.2.5 WAN Replication Queue Capacity o e 380

22.2.6 Enterprise WAN Replication Additional Information 381

CONTENTS 13

23 Hazelcast Configuration 383
23.1 Configuration Overview L 383
23.2 Using Wildcard e e e e 385
23.3 Using Variables oL 386
23.4 Composing Declarative Configuration 386
23.5 Network Configurationo 388

23.5.1 Public Address e 389
23.5.2 Port . . .o 389
23.5.3 Outbound Ports e 390
23.5.4 Reuse Address e 390
23.5.5 Join e e 391
23.5.6 Interfaces L 393
23.5.7 SSL . . . e 394
23.5.8 Socket Interceptor L 394
23.5.9 Symmetric Encryption 394
23.5.10IPv6 Supporto e 394
23.6 Group Configuration L 395
23.7 Map Configuration L e 395
23.7.1 Map Storeo e 397
23.7.2 Near Cache e 397
23.7.3 Indexeso e 398
23.7.4 Entry Listeners L 398
23.8 MultiMap Configuration L 398
23.9 Queue Configuration Lo 398
23.10Topic Configuration e 399
23.11List Configuration L e 400
23.12Set Configuration L e 401
23.13Semaphore Configuration L L 402
23.14Executor Service Configuration L L e 402
23.15Serialization Configuration oL 403
23.16MapReduce Jobtracker Configuration L L 404
23.17Services Configuration L e 405
23.18Management Center Configuration L e 405
23.19WAN Replication Configuration L 406
23.20Enterprise WAN Replication Configuration, 407
23.20.1IMap and ICache WAN Configuration 408
23.21Partition Group Configuration L 409
23.22Listener Configurations Lo 411
23.23Logging Configuration L e 415

23.24System Properties oL 416

CONTENTS

24 Network Partitioning - Split Brain Syndrome 421
24.1 Understanding Partition Recreation Lo Lo 421
24.2 Understanding Backup Partition Creation L L 421
24.3 Understanding The Update Overwrite Scenario 421
24.4 What Happens When The Network Failure Is Fixed 422
24.5 How Hazelcast Split Brain Merge Happens 422
24.6 Specifying Merge Policieso 423

25 License Questions 425
25.1 Embedded Dependencieso 425
25.2 Runtime Dependencies L L 425

26 Common Exception Types 427

27 Frequently Asked Questions 429
27.1 Why 271 as the default partition count? 429
27.2 Is Hazelcast thread safe? 429
27.3 What happens when a node goes down? Lo L 429
27.4 How do I test the connectivity? 430
27.5 How do I choose keys properly? e 430
27.6 How do I reflect value modifications? 430
27.7 How do I test my Hazelcast cluster? 430
27.8 Does Hazelcast support hundreds of nodes? 432
27.9 Does Hazelcast support thousands of clients? 432
27.10What is the difference between old LiteMember and new Smart Client? 432
27.11How do you give support? e e e 432
27.12Does Hazelcast persist? L o 432
27.13Can I use Hazelcast in a single server? L L 432
27.14How can I monitor Hazelcast? 433
27.15How can I see debug level logs? L 433
27.16What is the difference between client-server and embedded topologies? 433
27.17How do I know it is safe to kill the second node? L. 434
27.18When do I need Native Memory solutions? 434
27.191s there any disadvantage of using near-cache? 434
27.20Is Hazelcast secure? 434
27.21How can I set socket options? L 434
27.221 periodically see client disconnections during idle time? o oL 434
27.23How to get rid of “java.lang.OutOfMemoryError: unable to create new native thread”? 435
27.24Does repartitioning wait for Entry Processor? oL L 435
27.25Why do Hazelcast instances on different machines not see each other? 435
27.26What Does “Replica: 1 has no owner” Mean? 436

28 Glossary 437

Chapter 1

Preface

Welcome to the Hazelcast Reference Manual. This manual includes concepts, instructions and samples to guide you
on how to use Hazelcast and build Hazelcast applications.

As the reader of this manual, you must be familiar with the Java programming language and you should have
installed your preferred IDE.

1.0.0.0.1 Product Naming Throughout this manual:

e Hazelcast refers to the open source edition of Hazelcast in-memory data grid middleware. It is also the
name of the company providing the Hazelcast product.
e Hazelcast Enterprise refers to the commercial edition of Hazelcast.

1.0.0.0.2 Licensing Hazelcast is free provided under the Apache 2 license. Hazelcast Enterprise is commercially
licensed by Hazelcast, Inc.

For more detailed information on licensing, please see the License Questions appendix.

1.0.0.0.3 Trademarks Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this
manual are held by their respective owners.

1.0.0.0.4 Customer Support Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow.

For information on support for Hazelcast Enterprise, please see hazelcast.com/pricing.

1.0.0.0.5 Contributing to Hazelcast You can contribute to the Hazelcast code, report a bug or request an
enhancement. Please see the following resources.

e Developing with Git: Document that explains the branch mechanism of Hazelcast and how to request changes.

e Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and send back to
Hazelcast.

e Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests are managed.

1.0.0.0.6 Typographical Conventions Below table shows the conventions used in this manual.

Convention Description
bold font - Indicates part of a sentence that require the reader’s specific attention. - Also indicates
italic font - When italicized words are enclosed with “<” and “>”, indicates a variable in commanc

15

https://github.com/hazelcast/hazelcast/issues
https://groups.google.com/forum/#!forum/hazelcast
http://www.stackoverflow.com
http://hazelcast.com/pricing/
https://hazelcast.atlassian.net/wiki/display/COM/Developing+with+Git
https://hazelcast.atlassian.net/wiki/display/COM/Hazelcast+Contributor+Agreement
https://github.com/hazelcast/hazelcast

16 CHAPTER 1. PREFACE

Convention Description

monospace - Indicates files, folders, class and library names, code snippets, and inline code words in

RELATED INFORMATION - Indicates a resource that is relevant to the topic, usually with a link or cross-reference.

! NOTE Indicates information that is of special interest or importance, e.g. an additional action 1

element & attribute Mostly used in the context of declarative configuration, i.e. configuration performed by t

Chapter 2

What’s New in Hazelcast 3.5

2.1 Release Notes

2.1.1 New Features

This section provides the new features introduced with Hazelcast 3.5 release.

e Async Back Pressure: The Back Pressure introduced with Hazelcast 3.4 now supports async operations.
For more information, please see the Back Pressure section.

e Client Configuration Import: Hazelcast now supports replacing variables with system properties in the
declarative configuration of Hazelcast client. Moreover, now you can compose the Hazelcast client declarative
configuration out of smaller configuration snippets. For more information, please see the Composing Declarative
Configuration section.

e Cluster Quorum: This feature enables you to define the minimum number of machines required in a cluster
for the cluster to remain in an operational state. For more information, please see the Cluster Quorum section.

e Hazelcast Client Protocol: Starting with 3.5, the new clients that use the new Hazelcast Binary Client
Protocol are introduced. Please see the important note at the last paragraph of the Hazelcast Java Client
chapter’s introduction.

e Listener for Lost Partitions: This feature notifies you for possible data loss occurrences. Please see the
Partition Lost Listener section and MapPartitionLostListener section.

e Increased Visibility of Slow Operations: With the introduction of the SlowOperationDetector fea-
ture, slow operations are logged and can be seen on the Hazelcast Management Center. Please see the
SlowOperationDetector section and Management Center:Members section.

e Enterprise WAN Replication: Hazelcast Enterprise implementation of the WAN Replication. Please see
the Enterprise WAN Replication section.

e Sub-Listener Interfaces for Map Listener: This feature enables you to listen to map-wide or entry-
based events. With this new feature, the listener formerly known as EntryListener has been changed to
MapListener and MapListener has sub-interfaces to catch map/entry related events. Please see the Map
Listener section for more information.

e Scalable Map Loader: With this feature, you can load your keys incrementally if the number of your keys
is large. Please see the Incremental Key Loading section.

e Near Cache for JCache: Now you can use a near cache with Hazelcast’s JCache implementation. Please
see JCache Near Cache for details.

e Fail Fast on Invalid Configuration: With this feature, Hazelcast throws a meaningful exception if there is
an error in the declarative or programmatic configuration. Please see the note at the end of the Configuration
Overview section.

e Continuous Query Caching: (Enterprise only, since 3.5) Provides an always up to date view of an IMap
according to the given predicate. Please see the Continuous Query Cache section.

e Management of Unbounded Return Values: Introduces a QueryResultSizeLimiter. Please see the
OOM Prevention section.

e Dynamic Selector Rebalancing

17

18

CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

2.1.2 Enhancements

This section lists the enhancements performed for Hazelcast 3.5 release.

Eventing System Improvements: RingBuffer and Reliable Topic structures are introduced.

XA Transactions Improvements: With this improvement, you can now obtain a Hazelcast XA Resource
instance through HazelcastInstance. For more information, please see XA Transactions.

Query: Predicates are now evaluated using a single thread to prevent a parallel slowdown. This has
been proven to be beneficent for most of the use cases. You can revert to the old behavior by setting the
hazelcast.query.predicate.parallel.evaluation System property to true.

The following are the other improvements performed to solve the enhancement issues opened by the Hazelcast
customers/team.

While configuring JCache, duration of the ExpiryPolicy can be set programmatically but not declaratively
[#5347].

Since near cache is not supported as embedded but only at client, at the moment, there is no need for
NearCacheConfig in CacheConfig [#5215].

Support for parametrized test is needed [#5182].

SlowOperationDetector should have an option to not to log the stacktraces to the log file. There is no need
to have the stacktraces written to the normal log file if the Hazelcast Management Center or the performance
monitor is being used [#5043].

e The batch launcher should include the JCache API [#4902].
e There are no Spring tags available for Native Memory configuration [#4772].

In the class BasicInvocationFuture, there is no need to create an additional AtomicInteger object. It
should be replaced with AtomicIntegerFieldUpdater [#4408].

There is no need to use the class IsStillExecuting0Operation to check if an operation is running locally.
One can directly access to the scheduler [#4407].

Configuring NearCache in a Client/Server system only talks about the programmatic configuration of
NearCache on the clients. The declarative configuration (XML) of the same is not mentioned [#4376].
XML schema and XML configuration validation is not compliant for AWS configuration [#4310].

The JavaDoc for the methods KeyValueSource.hasNext/element/key and Iterator.hasNext/next should
emphasize the differences between each other, i.e. the state changing behavior should be clarified [#4218].
While migration is in progress, the nodes will have different partition state versions. If the query is running
at that time, it can get results from the nodes at different stages of the migration. By adding partition state
version to the query results, it can be checked whether the migration was happening and the query can be
re-run [#4206].

XML Config Schema does not allow to set a SecurityInterceptor Implementation [#4118].

Currently, certain types of remote executed calls are stored into the executingCalls map. The key (and
value) is a RemoteCallKey object. The functionality provided is the ability to ask on the remote side if
an operation is still executing. For a partition-aware operation, this is not needed. When an operation is
scheduled by a partition specific operation thread, the operation can be stored in a volatile field in that thread
[#4079].

The class TcpIpJoinerOverAWS fails at AWS’ recently launched eu-central-1 region. The reason for the fail is
that the region requires v4 signatures [#3963].

APIT change in EntryListener breaks the compatibility with the Camel Hazelcast component [#3859].

The hazelcast-spring-<wversion>.xsd should include the User Defined Services (SPI) elements and attributes
[#3565].

XA Transactions run on multiple threads [#3385].

Hazelcast client fails to connect when you provide variables from the system properties [#3270].

Entry listeners are not called when the entries are modified by WAN replication [#2981].

Map wildcard matching is confusing. There should be a pluggable wildcard configuration resolver [#2431].
The method loadAllKeys () in map is not scalable [#2266].

Back pressure feature should be added [#1781].

https://github.com/hazelcast/hazelcast/issues/5347
https://github.com/hazelcast/hazelcast/issues/5215
https://github.com/hazelcast/hazelcast/issues/5182
https://github.com/hazelcast/hazelcast/issues/5043
https://github.com/hazelcast/hazelcast/issues/4902
https://github.com/hazelcast/hazelcast/issues/4772
https://github.com/hazelcast/hazelcast/issues/4408
https://github.com/hazelcast/hazelcast/issues/4407
https://github.com/hazelcast/hazelcast/issues/4376
https://github.com/hazelcast/hazelcast/issues/4310
https://github.com/hazelcast/hazelcast/issues/4218
https://github.com/hazelcast/hazelcast/issues/4206
https://github.com/hazelcast/hazelcast/issues/4118
https://github.com/hazelcast/hazelcast/issues/4079
https://github.com/hazelcast/hazelcast/issues/3963
https://github.com/hazelcast/hazelcast/issues/3859
https://github.com/hazelcast/hazelcast/issues/3565
https://github.com/hazelcast/hazelcast/issues/3385
https://github.com/hazelcast/hazelcast/issues/3270
https://github.com/hazelcast/hazelcast/issues/2981
https://github.com/hazelcast/hazelcast/issues/2431
https://github.com/hazelcast/hazelcast/issues/2266
https://github.com/hazelcast/hazelcast/issues/1781

2.1. RELEASE NOTES 19

2.1.3 Fixes

3.5 Fixes

This section lists issues solved for Hazelcast 3.5 release.

Operation timeout mechanism is not working [#5468].

MapLoader exception is not logged: Exception should be logged and propagated back to the client that
triggered the loading of the map [#5430].

Replicated Map documentation page does not mention that it is in the beta stage [#5424].

The method XAResource.rollback() should not need the transaction to be in the prepared state when
called from another member/client [#5401].

The method XAResource.end () should not need to check threadId [#5400].

e The method IList: :remove() should publish the event REMOVED [#5386].
e TllegalStateException with wrong partition is thrown when the method IMap: : getOperation() is invoked

[#5341].

WrongTarget warnings appear in the log since the operations are not sent to the replicas when a map has no
backups [#5324].

When the method finalizeCombine() is used, Hazelcast throws NullPointerException [#5283].
WanBatchReplication causes OutOfMemoryException when the default value for WAN Replication Batch
Size (50) is used [#5280].

When testing Hazelcast, it does not start as an OSGI bundle. After the OSGI package was refactored, the
dynamic class loading of the Script engine was missed [#5274].

XA Example from Section 11.3.5 in the Reference Manual broken after the latest XA Improvements are
committed [#5273].

XA Transaction throws TransactionException instead of an XAException on timeout [#5260].

The test for unbounded return values runs forever with the new client implementation [#5230].

The new client method getAsync () fails with a NegativeArraySizeException [#5229].

The method putTransient actuated the MapStore unexpectedly in an environment with multiple instances
[#5225].

Changes made by the interceptor do not appear in the backup [#5211].

The method removeAttribute will prevent any updates by the method setAttribute in the deferred write
mode [#5186].

Backward compatibility of eviction configuration for cache is broken since CacheEvictionConfig class was
renamed to EvictionConfig for general usage [#5180].

e Value passed into ICompletableFuture.onResponse () is not deserialized [#5158].

Map Eviction section in the Reference Manual needs more clarification [#5120].

When host names are not registered in DNS or in /etc/hosts and the members are configured manually
with TP addresses and while one node is running, a second node joins to the cluster 5 minutes after it started
[#5072].

The method OperationService.asyncInvokeOnPartition() sometimes fails [#5069].

The SlowOperationDT0.operation shows only the class name, not the package. This can lead to ambiguity
and the actual class cannot be tracked [#5041].

There is no documentation comment for the MessageListener interface of ITopic [#5019].

The method InvocationFuture.isDone returns true as soon as there is a response including WAIT_RESPONSE.
However, WAIT_RESPONSE is an intermediate response, not a final one [#5002].

The method InvocationFuture.andThen does not deal with the null response correctly [#5001].

e CacheCreationTest fails due to the multiple TestHazelcastInstanceFactory creations in the same test

[#4987].

When Spring dependency is upgraded to 4.1.x, an exception related to the putIfAbsent method is thrown
[#4981].

HazelcastCacheManager should offer a way to access the underlying cache manager [#4978].

Hazelcast Client code allows to use the value 0 for the connectionAttemptLimit property which internally
results in int.maxValue. However, the XSD of the Hazelcast Spring configuration requires it to be at least 1
[#4967].

Updates from Entry Processor does not take write-coalescing into account [#4967].

https://github.com/hazelcast/hazelcast/issues/5468
https://github.com/hazelcast/hazelcast/issues/5430
https://github.com/hazelcast/hazelcast/issues/5424
https://github.com/hazelcast/hazelcast/issues/5401
https://github.com/hazelcast/hazelcast/issues/5400
https://github.com/hazelcast/hazelcast/issues/5386
https://github.com/hazelcast/hazelcast/issues/5341
https://github.com/hazelcast/hazelcast/issues/5324
https://github.com/hazelcast/hazelcast/issues/5283
https://github.com/hazelcast/hazelcast/issues/5280
https://github.com/hazelcast/hazelcast/issues/5274
https://github.com/hazelcast/hazelcast/issues/5273
https://github.com/hazelcast/hazelcast/issues/5260
https://github.com/hazelcast/hazelcast/issues/5230
https://github.com/hazelcast/hazelcast/issues/5229
https://github.com/hazelcast/hazelcast/issues/5225
https://github.com/hazelcast/hazelcast/issues/5211
https://github.com/hazelcast/hazelcast/issues/5186
https://github.com/hazelcast/hazelcast/issues/5180
https://github.com/hazelcast/hazelcast/issues/5158
https://github.com/hazelcast/hazelcast/issues/5120
https://github.com/hazelcast/hazelcast/issues/5072
https://github.com/hazelcast/hazelcast/issues/5069
https://github.com/hazelcast/hazelcast/issues/5041
https://github.com/hazelcast/hazelcast/issues/5019
https://github.com/hazelcast/hazelcast/issues/5002
https://github.com/hazelcast/hazelcast/issues/5001
https://github.com/hazelcast/hazelcast/issues/4987
https://github.com/hazelcast/hazelcast/issues/4981
https://github.com/hazelcast/hazelcast/issues/4978
https://github.com/hazelcast/hazelcast/issues/4967
https://github.com/hazelcast/hazelcast/issues/4957

20 CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

CachingProvider does not honor custom URI [#4943].

Test for the method getLocalExecutorStats() fails spuriously [#4911].

Missing documentation of network configuration for JCache [#4905].

Slow operation detector throws a NullPointerException [#4855].

Consider use of System.nanoTime in sleepAtLeast test code [#4835].

When upgraded to 3.5-SNAPSHOT for testing, Hazelcast project gives a warning that mentions a missing

configuration for hazelcastmq.txn-topic [#4790].

ClassNotFoundException when using WAR classes with JCache APT [#4775].

e When Hazelcast is installed using Maven in Windows environment, the test Xm1ConfigImportVariableReplacementTest
fails [#4758].

e When a request cannot be executed due to a problem (connection error, etc.), if the operation redo is enabled,

request is retried. Retried operations are offloaded to an executor, but after offloading, the user thread still

tries to retry the request. This causes anomalies like operations being executed twice or operation responses

being handled incorrectly [#4693].

Client destroys all connections when a reconnection happens [#4692].

The size() method for a replicated map should return 0 when the entry is removed [#4666].

NullPointerException on the CachePutBackupOperation class [#4660].

When removing keys from a MultiMap with a listener, the method entryRemoved() is called. In order to get

the removed value, one must call the event.getValue() instead of event.get0ldValue() [#4644)].

Unnecessary deserialization at the server side when using Cache.get () [#4632].

e Operation timeout exception during IMap.loadAllKeys() [#4618].

e There have been Hazelcast AWS exceptions after the version of AWS signer had changed (from v2 to v4)
[#4571].

e In the declarative configuration; when a variable is used to specify the value of an element or attribute,

Hazelcast ignores the strings that come before the variable [#4533].

LocalRegionCache cleanup is working wrongly [#4445].

Repeatable-read does not work in a transaction [#4414].

Hazelcast instance name with Hibernate still creates multiple instances [#4374].

In Hazelcast 3.3.4, FinalizeJoinOperation times out if the method MapStore.loadAllKeys () takes more

than 5 seconds [#4348].

e JCache sync listener completion latch problems: Status of ICompletableFuture while waiting for completion
latch in the cache must be checked [#4335].

e Classloader issue with javax.cache.api and Hazelcast 3.3.1 [#3792].

e Failed backup operation on transaction commit causes “”’Nested transactions are not allowed!" warning
[#3577].

e Hazelcast Client should not ignore the fact that the XML is for server and should not use default XML feature
to connect to localhost [#3256].

e Owner connection read() forever [#3401].

2.2 Upgrading Hazelcast

2.2.1 Upgrading from 2.x

In this section, we list the changes what users should take into account before upgrading to latest Hazelcast from
2.X.

e Removal of deprecated static methods: The static methods of Hazelcast class reaching Hazelcast data
components have been removed. The functionality of these methods can be reached from HazelcastInstance
interface. Namely you should replace following:

Map<Integer, String> customers = Hazelcast.getMap("customers");

with

https://github.com/hazelcast/hazelcast/issues/4943
https://github.com/hazelcast/hazelcast/issues/4911
https://github.com/hazelcast/hazelcast/issues/4905
https://github.com/hazelcast/hazelcast/issues/4855
https://github.com/hazelcast/hazelcast/issues/4835
https://github.com/hazelcast/hazelcast/issues/4790
https://github.com/hazelcast/hazelcast/issues/4775
https://github.com/hazelcast/hazelcast/issues/4758
https://github.com/hazelcast/hazelcast/issues/4693
https://github.com/hazelcast/hazelcast/issues/4692
https://github.com/hazelcast/hazelcast/issues/4666
https://github.com/hazelcast/hazelcast/issues/4660
https://github.com/hazelcast/hazelcast/issues/4644
https://github.com/hazelcast/hazelcast/issues/4632
https://github.com/hazelcast/hazelcast/issues/4618
https://github.com/hazelcast/hazelcast/issues/4571
https://github.com/hazelcast/hazelcast/issues/4533
https://github.com/hazelcast/hazelcast/issues/4445
https://github.com/hazelcast/hazelcast/issues/4414
https://github.com/hazelcast/hazelcast/issues/4374
https://github.com/hazelcast/hazelcast/issues/4348
https://github.com/hazelcast/hazelcast/issues/4335
https://github.com/hazelcast/hazelcast/issues/3792
https://github.com/hazelcast/hazelcast/issues/3577
https://github.com/hazelcast/hazelcast/issues/3256
https://github.com/hazelcast/hazelcast/issues/3401

2.2. UPGRADING HAZELCAST 21

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

// or if you already started an instance named "instancel"

// HazelcastInstance hazelcastInstance = Hazelcast.getHazelcastInstanceByName("instancel");
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

e Removal of lite members: With 3.0 there will be no member type as lite member. As 3.0 clients are smart
client that they know in which node the data is located, you can replace your lite members with native clients.

e Renaming “instance” to “distributed object”: Before 3.0 there was a confusion for the term “instance”.
It was used for both the cluster members and the distributed objects (map, queue, topic, etc. instances).
Starting 3.0, the term instance will be only used for Hazelcast instances, namely cluster members. We will
use the term “distributed object” for map, queue, etc. instances. So you should replace the related methods
with the new renamed ones. As 3.0 clients are smart client that they know in which node the data is located,
you can replace your lite members with native clients.

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hazelcastInstance.getMap("test");
Collection<Instance> instances = hazelcastInstance.getInstances();
for (Instance instance : instances) {
if (instance.getInstanceType() == Instance.InstanceType.MAP) {
System.out.println("There is a map with name: " + instance.getId());
}
}
}

with

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hz.getMap("test");
Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : objects) {
if (distributedObject instanceof IMap) {
System.out.println("There is a map with name: " + distributedObject.getName());
3
}
}

e Package structure change: PartitionService has been moved to package com.hazelcast.core from
com.hazelcast.partition.

e Listener API change: Before 3.0, removeListener methods was taking the Listener object as parameter.
But, it causes confusion as same listener object may be used as parameter for different listener registrations.
So we have changed the listener API. addListener methods return you an unique ID and you can remove
listener by using this ID. So you should do following replacement if needed:

IMap map = hazelcastInstance.getMap("map");
map.addEntryListener(listener, true);
map.removeEntryListener(listener);

with

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

22 CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

e IMap changes:
tryRemove (K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is
successful.

tryLockAndGet (K key, long time, TimeUnit timeunit) is removed.
putAndUnlock(K key, V value) is removed.
lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.

getMapEntry (K key) is renamed as getEntryView(K key). The returned object’s type, MapEntry class is
renamed as EntryView.

e There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented
merge () method causes the existing entry to be removed.

e IQueue changes: There is no change on IQueue API but there are changes on how IQueue is configured.
With Hazelcast 3.0 there will not be backing map configuration for queue. Settings like backup count will be
directly configured on queue config. For queue configuration details, please see the Queue section.

e Transaction API change: In Hazelcast 3.0, transaction API is completely different. Please see the
Transactions chapter.

e ExecutorService API change: Classes MultiTask and DistributedTask have been removed. All the
functionality is supported by the newly presented interface IExecutorService. Please see the Executor Service
section.

e LifeCycleService API: The lifecycle has been simplified. pause(), resume(), restart() methods have
been removed.

e AtomicNumber: AtomicNumber class has been renamed to IAtomicLong.

e ICountDownLatch: await() operation has been removed. We expect users to use await () method with
timeout parameters.

e ISemaphore API: The ISemaphore has been substantially changed. attach(), detach() methods have
been removed.

e In 2.x releases, the default value for max-size eviction policy was cluster__wide__map__size. In 3.x releases,
default is PER__ NODE. After upgrading, the max-size should be set according to this new default, if it is
not changed. Otherwise, it is likely that OutOfMemory exception may be thrown.

2.2.2 Upgrading from 3.x

In this section, we list the changes what users should take into account before upgrading to latest Hazelcast from
3.x versions.

e Introducing the spring-aware element: Before the release 3.5, Hazelcast uses SpringManagedContext
to scan SpringAware annotations by default. This may cause some performance overhead for the users who
do not use SpringAware. This behavior has been changed with the release of Hazelcast 3.5. SpringAware
annotations are disabled by default. By introducing the spring-aware element, now it is possible to enable
it by adding the <hz:spring-aware /> tag to the configuration. Please see the Spring Integration section.

2.3 Document Revision History

Chapter Section Description

Chapter 1 - Preface Added information on how to co:

Chapter 2 - What’s New in Hazelcast 3.5 Upgrading from 3.x Added as a new section.

2.3. DOCUMENT REVISION HISTORY

23

Chapter

Section

Description

Chapter 3 - Getting Started
Chapter 4 - Overview

Chapter 5 - Hazelcast Clusters
Chapter 6 - Distributed Data Structures

Chapter 7 - Distributed Events

Chapter 8 - Distributed Computing
Chapter 9 - Distributed Query

Chapter 11 - Transactions
Chapter 12 - Hazelcast JCache
Chapter 13 - Integrated Clustering

Chapter 14 - Storage

Chapter 15 - Hazelcast Java Client

Chapter 16 - Other Client Implementations
Chapter 18 - Management

Chapter 19 - Security

Chapter 20 - Performance

Chapter 21 - Hazelcast Simulator
Chapter 22 - WAN

Chapter 23 - Hazelcast Configuration

Chapter 25 - License Questions
Chapter 26 - Common Exception Types
Chapter 27 - FAQ

Chapter 28 - Glossary

Deploying On Amazon EC2

Data Partitioning
Creating Cluster Groups
Map

Replicated Map
RingBuffer

Partition Lost Listener
Execution Member Selector
Paging Predicate

Continuous Query Cache

JCache Near Cache

Tomcat Based Web Session Replication

Sizing Practices

JMX API per Node
Management Center

ClusterLoginModule

Hazelcast Performance on AWS
Back Pressure

SlowOperationDetector

WAN Replication Queue Capacity
Enterprise WAN Replication

Configuration Overview
Using Variables
System Properties

Enterprise WAN Replication Configuration

Added as a new section to provic
Separated from Getting Started :
Added as a new section explainir
Added as a new section explainir
The content of the section, previ
Replicated Map Configuration ac
Added as a new section.

The whole chapter improved by
Added as a new section.

Added as a new section explainir
Added a note related to random
Added as a new section.

Added a note related to REPEATA
Added as a new section explainir
Added introduction paragraphs.
Updated the Overview paragrapl
Added as a new section.
Separated from the formerly kno
Added an important note related
C++, .NET, Memcache and RE!
Two new bean definitions added
Added more information on the f
The Enterprise Integration sectic
Added a paragraph about I/0 b:
Added as a new section that pro
Added as a new section.

Added as a new section explainir
Added as a new chapter providin
The previous heading title (WAD
Added as a new section.
Improved by adding missing conf
Added a note related to the inva
Added as a new section explainir
Updated by adding the new syst
Added as a new section describir
Added as a new chapter describi
Added as a new chapter.

Added new questions/answers.

Added new glossary items.

24

CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

Chapter 3

Getting Started

3.1 Installation

3.1.1 Hazelcast

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need to add
additional repositories to your pom.xml or add hazelcast-<version>. jar file into your classpath (Maven does that
for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.4</version>
</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast yourself. You only need to:

e Download hazelcast-<version>.zip from www.hazelcast.org.
e Unzip hazelcast-<version>.zip file.

e Add hazelcast-<wersion>. jar file into your classpath.

3.1.2 Hazelcast Enterprise

There are two Maven repositories defined for Hazelcast Enterprise:

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/snapshot/</url>
</repository>
<repository>
<id>Hazelcast Private Release Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/release/</url>
</repository>

Hazelcast Enterprise customers may also define dependencies, a sample of which is shown below.

25

http://www.hazelcast.org/download/

26 CHAPTER 3.

<dependency>
<groupIld>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat6</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupIld>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat7</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupIld>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>${project.version}</version>
</dependency>

3.1.2.1 Setting the License Key
To use Hazelcast Enterprise, you need to set the license key in configuration.
e Declarative Configuration
<hazelcast>
;iicense—key>HAZELCAST_ENTERPRISE_LICENSE_KEY</1icense-key>
</£;%elcast>
e Client Declarative Configuration
<hazelcast-client>
;iicense—key>HAZELCAST_ENTERPRISE_LICENSE_KEY</1icense-key>
</£A£elcast—client>
e Programmatic Configuration

Config config = new Config();
config.setLicenseKey("HAZELCAST_ENTERPRISE_LICENSE_KEY");

e Spring XML Configuration
<hz:config>
;ﬂé:license—key>HAZELCAST_ENTERPRISE_LICENSE_KEY</hz:license—key>
</£2;config>
e JVM System Property

-Dhazelcast.enterprise.license.key=HAZELCAST_ENTERPRISE_LICENSE_KEY

GETTING STARTED

3.2. STARTING THE INSTANCE AND CLIENT 27

3.2 Starting the Instance and Client

Having installed Hazelcast, you can get started.

In this short tutorial, we:

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two nodes (JVMs).
3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client API.

Let’s begin.
e The following code starts the first instance (node), and creates and uses the customers map and queue.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap("customers");
customers.put(1, "Joe");
customers.put(2, "Ali");
customers.put(3, "Avi");

System.out.println("Customer with key 1: " + customers.get(l));
System.out.println("Map Size:" + customers.size());

Queue<String> queueCustomers = hazelcastInstance.getQueue("customers");
queueCustomers.offer("Tom");
queueCustomers.offer("Mary");
queueCustomers.offer("Jane");

System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

e Run this GettingStarted class a second time to get the second node started. The nodes form a cluster. You
should see something like the following.

Members [2] {
Member [127.0.0.1:5701]
Member [127.0.0.1:5702] this
}

e Now, add the hazelcast-client-<wersion>.jar library to your classpath. This is required to use a
Hazelcast client.

e The following code starts a Hazelcast Client, connects to our two node cluster, and prints the size of the
customers map.

28 CHAPTER 3. GETTING STARTED

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {
public static void main(String[] args) {
ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap map = client.getMap("customers");
System.out.println("Map Size:" + map.size());

e When you run it, you see the client properly connecting to the cluster and printing the map size as 3.

Hazelcast also offers a tool, Mlanagement Center, that enables you to monitor your cluster. To use it, deploy
the mancenter-<wersion> .war included in the ZIP file to your web server. You can use it to monitor your maps,
queues, and other distributed data structures and nodes. Please see the Management Center section for usage
explanations.

By default, Hazelcast uses Multicast to discover other nodes that can form a cluster. If you are working with
other Hazelcast developers on the same network, you may find yourself joining their clusters under the default
settings. Hazelcast provides a way to segregate clusters within the same network when using Multicast. Please see
the Creating Cluster Groups for more information. Alternatively, if you do not wish to use the default Multicast
mechanism, you can provide a fixed list of IP addresses that are allowed to join. Please see the Join Configuration
section for more information.

RELATED INFORMATION

You can also check the video tutorials here.

3.2.1 Deploying On Amazon EC2

You can deploy your Hazelcast project onto Amazon EC2 environment using Third Party tools such as Vagrant
and Chef.

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step by step instructions in the
hazelcast-integration folder of the hazelcast-code-samples package. Please refer to this sample project for
more information.

3.3 Configuring Hazelcast
When Hazelcast starts up, it checks for the configuration as follows:

e First, it looks for the hazelcast.config system property. If it is set, its value is used as the path. This
is useful if you want to be able to change your Hazelcast configuration: you can do this because it is not
embedded within the application. You can set the config option with the following command:

- Dhazelcast.config=<path to the hazelcast.zml>.

The path can be a normal one or a classpath reference with the prefix CLASSPATH.

e If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml file in the
working directory.

e If not, then it checks whether hazelcast.xml exists on the classpath.

http://hazelcast.org/getting-started/
https://www.vagrantup.com
https://www.chef.io/chef/
http://hazelcast.org/download/

3.3. CONFIGURING HAZELCAST 29

e If none of the above works, Hazelcast loads the default configuration, i.e. hazelcast-default.xml that
comes with hazelcast. jar.

When you download and unzip hazelcast-<version>.zip you will see a hazelcast.xml in the /bin folder. This
is the configuration XML file for Hazelcast. Part of this configuration XML is shown below.

— - —

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schemasconfig hazelcast-config-3.2.xsd"
xmlns="http: S/ www.hazelcast.com/schema/config"
¥mlns:xsi="http:/ /www.w3.org/2001/¥MLSchema-instance">

<group>
=name=dev</name=
<password>dev-pass</password>
</group=
=management-center enabled="true"=http://localhost:BRBBR/ mancenter</management-center>
<properties=

=property name="hazelcast.socket.bind.any"=true</property=
</properties>
=networks>
<port auto-increment="true" port-count="100">5781l</port>
<outbound-ports>
-
Allowed port range when connecting to other nodes.
B or % means use system provided port.
-
<ports=B</ports>
<foutbound-ports=
<join>
=multicast enabled="true"=>

For most users, default configuration should be fine. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties (Declarative Configuration). Please refer to the System Properties section
for details.

Besides declarative configuration, you can configure your cluster programmatically (Programmatic Configuration).
Just instantiate a Config object and add/remove/modify properties.

You can also use wildcards while configuring Hazelcast. Please refer to the Using Wildcard section for details.

RELATED INFORMATION

Please refer to the Hazelcast Configuration chapter for more information.

30

CHAPTER 3. GETTING STARTED

Chapter 4

Overview

4.1 Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable distributed In-Memory
computing, widely recognized as the fastest and most scalable approach to application performance. Hazelcast
does this in open source. More importantly, Hazelcast makes distributed computing simple by offering distributed
implementations of many developer friendly interfaces from Java such as Map, Queue, ExecutorService, Lock,
and JCache. For example, the Map interface provides an In-Memory Key Value store which confers many of the
advantages of NoSQL in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access the CPUs in your
cluster for maximum processing speed. Hazelcast is designed to be lightweight and easy to use. Since Hazelcast is
delivered as a compact library (JAR) and since it has no external dependencies other than Java, it easily plugs into
your software solution and provides distributed data structures and distributed computing utilities.

Hazelcast is highly scalable and available (100% operational, never failing). Distributed applications can use
Hazelcast for distributed caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is
implemented in Java and has clients for Java, C/C++, .NET and REST. Hazelcast also speaks memcache protocol.
It plugs into Hibernate and can easily be used with any existing database system.

If you are looking for In-Memory speed, elastic scalability, and the developer friendliness of NoSQL, Hazelcast is a
great choice.

4.1.1 Hazelcast is simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar Java util
package, exposing the same interfaces. Just add hazelcast. jar to your classpath, and you can quickly enjoy
JVMs clustering and you can start building scalable applications.

4.1.2 Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no single point of
failure. All nodes store equal amounts of data and do equal amounts of processing. You can embed Hazelcast in
your existing application or use it in client and server mode where your application is a client to Hazelcast nodes.
4.1.3 Hazelcast is scalable

Hazelcast is designed to scale up to hundreds and thousands of nodes. Simply add new nodes and they will
automatically discover the cluster and will linearly increase both memory and processing capacity. The nodes

maintain a TCP connection between each other and all communication is performed through this layer.

31

32 CHAPTER 4. OVERVIEW

4.1.4 Hazelcast is fast

Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.

4.1.5 Hazelcast is redundant

Hazelcast keeps the backup of each data entry on multiple nodes. On a node failure, the data is restored from the
backup and the cluster will continue to operate without downtime.

4.1.6 Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we serialize, hash
and mode it with the number of partitions to find the partition the key belongs to. The partitions themselves
are distributed equally among the members of the cluster. Hazelcast also creates the backups of partitions and
distributes them among nodes for redundancy.

RELATED INFORMATION

Please refer to the Data Partitioning section for more information on how Hazelcast partitions your data.

4.1.7 Hazelcast Topology

If you have an application whose main focal point is asynchronous or high performance computing and lots of task
executions, then embedded deployment is very useful. In this type, nodes include both the application and data.
See the below illustration.

Node

TCP/AIP
. TCP/IP

a
*

a
]
B
L] '
1
]

MNode
'''''' y MNode
TCRAP

You can have a cluster of server nodes that can be independently created and scaled. Your clients communicate
with these server nodes to reach to the data on them. Hazelcast provides native clients (Java, NET and C++),
Memcache clients and REST clients. See the below illustration.

4.2 Why Hazelcast?

A Glance at Traditional Data Persistence

4.2. WHY HAZELCAST? 33

rorocet P
yative EIIP.""";E—”J o c-lr il

*t:uf____——f Client

- Node
TCPAP
: ' TCP/IP

: ;- r Memchache Protocol Memcache

. Client

Mode
Treeaemet MNode
RESTp
TCP/IP ———"Frotocq,
— REST
Client

Data is at the core of software systems. In conventional architectures, a relational database persists and provides
access to data. Applications are talking directly with a database which has its backup as another machine. To
increase performance, tuning or a faster machine is required. This can cost a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using technologies like
external key-value stores or second level caching. This helps to offload the database. However, when the database
is saturated or the applications perform mostly “put” operations (writes), this approach is of no use because it
insulates the database only from the “get” loads (reads). Even if the applications are read-intensive, there can be
consistency problems: when data changes, what happens to the cache, and how are the changes handled? This is
when concepts like time-to-live (TTL) or write-through come in.

However, in the case of TTL, if the access is less frequent then the TTL, the result will always be a cache miss. On
the other hand, in the case of write-through caches; if there are more than one of these caches in a cluster, then we
again have consistency issues. This can be avoided by having the nodes communicating with each other so that
entry invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. And, there are several cache
servers and in-memory database solutions in this field. However, those are stand-alone single instances with a
distribution mechanism to an extent provided by other technologies. This brings us back to square one: we would
experience saturation or capacity issues if the product is a single instance or if consistency is not provided by the
distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast shares data
around the cluster for flexibility and performance. It is an in-memory data grid for clustering and highly scalable
data distribution.

One of the main features of Hazelcast is not having a master node. Each node in the cluster is configured to be the
same in terms of functionality. The oldest node (the first node created in the node cluster) manages the cluster
members, i.e. automatically performs the data assignment to nodes. If the oldest node dies, the second oldest node
will manage the cluster members.

Another main feature is the data being held entirely in-memory. This is fast. In the case of a failure, such as a
node crash, no data will be lost since Hazelcast distributes copies of data across all the nodes of cluster.

As shown in the feature list in the Hazelcast Overview, Hazelcast supports a number of distributed data structures
and distributed computing utilities. This provides powerful ways of accessing distributed clustered memory and
accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

34 CHAPTER 4. OVERVIEW

It is open source.

It is a small JAR file. You do not need to install software.

It is a library, it does not impose an architecture on Hazelcast users.

It provides out of the box distributed data structures (i.e. Map, Queue, MultiMap, Topic, Lock, Executor,

etc.).

e There is no “master”, so no single point of failure in Hazelcast cluster; each node in the cluster is configured
to be functionally the same.

e When the size of your memory and compute requirement increases, new nodes can be dynamically joined to
the cluster to scale elastically.

e Data is resilient to node failure. Data backups are distributed across the cluster. This is a big benefit when a

node in the cluster crashes: data will not be lost.

e Nodes are always aware of each other: they communicate, unlike traditional key-value caching solutions.
e You can build your own custom distributed data structures using the Service Programming Interface (SPI) if
you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

e analytic applications requiring big data processing by partitioning the data,
e to retain frequently accessed data in the grid,

e a cache, particularly an open source JCache provider with elastic distributed scalability,

e a primary data store for applications with utmost performance, scalability and low-latency requirements,
e an In-Memory NoSQL Key Value Store,

e publish/subscribe communication at highest speed and scalability between applications,

e applications that need to scale elastically in distributed and cloud environments,

e a highly available distributed cache for applications,

e an alternative to Coherence, Gemfire and Terracotta.

4.3 Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions are memory
segments, where each of those segments can contain hundreds or thousands of data entries, depending on the
memory capacity of your system.

By default, Hazelcast offers 271 partitions. When you start a node, that nose owns those 271 partitions. The
following illustration shows the partitions in a single node Hazelcast cluster.

When you start a second node on that cluster (creating a 2-node Hazelcast cluster), the partitions are distributed
as shown in the following illustration.

In the illustration, the partitions with black text are primary partitions, and the partitions with blue text are
replica partitions (backups). The first node has 135 primary partitions (black), and each of these partitions are
backed up in the second node (blue). At the same time, the first node also has the replica partitions of the second
node’s primary partitions.

As you add more nodes, Hazelcast one-by-one moves some of the primary and replica partitions to the new nodes,
making all nodes equal and redundant. Only the minimum amount of partitions will be moved to scale out Hazelcast.
The following is an illustration of the partition distributions in a 4-node Hazelcast cluster.

Hazelcast distributes the partitions equally among the members of the cluster. Hazelcast creates the backups of
partitions and distributes them among nodes for redundancy.

4.3.1 How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key (for example,
for a map) or an object name (for example, for a topic or list):

4.3. DATA PARTITIONING

P1

P2

P_269

P_2Z70

P 271

Mode

P

P_136

P_135 P27
P I

P 136 P

P_137 P2

P 271 P 135

35

36 CHAPTER 4. OVERVIEW

P_1 P_B9 P_137 P_205
P2 P70 P_138 P26
P &3 P_136 P_204 P_Z71
P_137 P_205% P P_&%
P 138 P_20& P_Z P_T0
P_204 P_2M P_&H P_136

e the key or name is serialized (converted into a byte array),
e this byte array is hashed, and
e the result of the hash is mod by the number of partitions.

The result of this modulo - MOD(hash result, partition count) - gives the partition in which the data will be stored.

4.3.2 Partition Table

When you start a node, a partition table is created within it. This table stores the information for which partitions
belong to which nodes. The purpose of this table is to make all nodes in the cluster aware of this information,
making sure that each node knows where the data is.

The oldest node in the cluster (the one that started first) periodically sends the partition table to all nodes. In this
way, each node in the cluster is informed about any changes to the partition ownership. The ownerships may be
changed when, for example, a new node joins the cluster, or when a node leaves the cluster.

nodes.

NOTE: If the oldest node goes down, the next oldest node sends the partition table information to the other

You can configure the frequency (how often) that the node sends the partition table the information by using
the hazelcast.partition.table.send.interval system property. The property is set to every 15 seconds by
default.

4.3.3 Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the repartitioning in the
following cases:

e When a node joins to the cluster.
e When a node leaves the cluster.

In these cases, the partition table in the oldest node is updated with the new partition ownerships.

4.4. USE CASES 37

4.4

Use Cases

Some example usages are listed below. Hazelcast can be used: - To share server configuration/information to see
how a cluster performs,

4.5

To cluster highly changing data with event notifications (e.g. user based events) and to queue and distribute
background tasks,

As a simple Memcache with near cache,
As a cloud-wide scheduler of certain processes that need to be performed on some nodes,

To share information (user information, queues, maps, etc.) on the fly with multiple nodes in different
installations under OSGI environments,

To share thousands of keys in a cluster where there is a web service interface on an application server and
some validation,

As a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones,
As a front layer for a Cassandra back-end,

To distribute user object states across the cluster, to pass messages between objects and to share system data
structures (static initialization state, mirrored objects, object identity generators),

As a multi-tenancy cache where each tenant has its own map,
To share datasets (e.g. table-like data structure) to be used by applications,

To distribute the load and collect status from Amazon EC2 servers where front-end is developed using, for
example, Spring framework,

As a real time streamer for performance detection,

As storage for session data in web applications (enables horizontal scalability of the web application).

Resources

Hazelcast source code can be found at Github/Hazelcast.
Hazelcast API can be found at Hazelcast.org/docs/Javadoc.
Code samples can be downloaded from Hazelcast.org/download.
More use cases and resources can be found at Hazelcast.com.
Questions and discussions can be posted at Hazelcast mail group.

https://github.com/hazelcast/hazelcast
http://www.hazelcast.org/docs/latest/javadoc/
http://hazelcast.org/download/
http://www.hazelcast.com
https://groups.google.com/forum/#!forum/hazelcast

38

CHAPTER 4. OVERVIEW

Chapter 5

Hazelcast Clusters

This chapter describes Hazelcast clusters and the ways cluster members use to form a Hazelcast cluster.

5.1 Hazelcast Cluster Discovery

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members (also called nodes)
automatically join together to form a cluster. This automatic joining takes place with various discovery mechanisms
that the cluster members use to find each other. Hazelcast uses the following discovery mechanisms.

e Multicast Auto-discovery
e Discovery by TCP
e EC2 Cloud Auto-discovery

Fach discovery mechanism is explained in the following sections.

. NOTE: After a cluster is formed, communication between cluster members is always via TCP/IP, regardless
of the discovery mechanism used.

5.1.1 Multicast Auto-Discovery

With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other using multicast
communication. The cluster members do not need to know the concrete addresses of the other members, they just
multicast to all the other members for listening. It depends on your environment if multicast is possible or allowed.

The following is an example declarative configuration.

<network>
<join>

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>

</trusted-interfaces>

</multicast>

<tcp-ip enabled="false">

</tcp-ip>

39

40 CHAPTER 5. HAZELCAST CLUSTERS

<aws enabled="false">
</aws>
</join>
<network>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the time
in seconds that a node should wait for a valid multicast response from another node running in the network
before declaring itself as the leader node (the first node joined to the cluster) and creating its own cluster. This
only applies to the startup of nodes where no leader has been assigned yet. If you specify a high value to
multicast-timeout-seconds, such as 60 seconds, it means that until a leader is selected, each node will wait 60
seconds before moving on. Be careful when providing a high value. Also be careful to not set the value too low, or
the nodes might give up too early and create their own cluster.

RELATED INFORMATION

Please refer to the multicast element section for the full description of multicast discovery configuration.

5.1.2 Discovery by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure Hazelcast to be a
full TCP/IP cluster. When you configure Hazelcast for discovery by TCP/IP, you must list all or a subset of the
nodes’ hostnames and/or IP addresses. You do not have to list all the cluster members, but at least one of the
listed members has to be active in the cluster when a new member joins.

The following is an example declarative configuration. You should set the enabled attribute of the tcp-ip element
to true.

<hazelcast>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">
<member>machinel</member>
<member>machine2</member>
<member>machine3:5799</member>
<member>192.168.1.0-7</member>

<member>192.168.1.21</member>
</tcp-ip>

</join>
</network>
</hazelcast>

As shown above, you can provide IP addresses or hostnames for member elements. You can also give a range of IP
addresses, such as 192.168.1.0-7.

Instead of providing members line by line as shown above, you also have the option to use the members element
and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>
If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702, and so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can change this behavior
using the system property hazelcast.socket.bind.any. If you set this property to false, Hazelcast uses the

5.2. CREATING CLUSTER GROUPS 41

interfaces specified in the interfaces element (please refer to the Interfaces Configuration section). If no interfaces
are provided, then it will try to resolve one interface to bind from the member elements.

RELATED INFORMATION

Please refer to the tep-ip element section for the full description of discovery by TCP/IP configuration.

5.1.3 EC2 Cloud Auto-discovery

Hazelcast supports EC2 Auto Discovery. It is useful when you do not want or cannot provide the list of possible IP
addresses. To configure your cluster to use EC2 Auto Discovery, disable join over multicast and TCP/IP, enable
AWS, and provide your credentials (access and secret keys).

You need to add the hazelcast-cloud.jar dependency to your project. Note that it is also bundled inside hazelcast-
all.jar. The Hazelcast cloud module does not depend on any other third party modules.

The following is an example declarative configuration.

<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>

<aws enabled="true">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>

</join>

RELATED INFORMATION

Please refer to the aws element section for the full description of EC2 auto-discovery configuration.

5.1.3.1 Debugging

When needed, Hazelcast can log the events for the instances that exist in a region. To see what has happened or to
trace the activities while forming the cluster, change the log level in your logging mechanism to FINEST or DEBUG.
After this change, you can also see in the generated log whether the instances are accepted or rejected, and the
reason the instances were rejected. Note that changing the log level in this way may affect the performance of the
cluster. Please see the Logging Configuration section for information on logging mechanisms.

RELATED INFORMATION

You can download the white paper “Hazelcast on AWS: Best Practices for Deployment”* from Hazelcast.com.*
5.2 Creating Cluster Groups
You can create cluster groups. To do this, use the group configuration element.

By specifying a group name and group password, you can separate your clusters in a simple way. Example groupings
can be by development, production, test, app, etc. The following is an example declarative configuration.

http://hazelcast.com/resources/hazelcast-on-aws-best-practices-for-deployment/

42 CHAPTER 5. HAZELCAST CLUSTERS

<hazelcast>
<group>
<name>appl</name>
<password>appl-pass</password>
</group>

</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host multiple Hazelcast
instances. Each Hazelcast instance can only participate in one group. Each Hazelcast instance only joins to its own
group, it does not mess with other groups. The following code example creates three separate Hazelcast instances:
h1 belongs to the appl cluster, while h2 and h3 belong to the app2 cluster.

Config configAppl = new Config();
configAppl.getGroupConfig() .setName("appl").setPassword("appl-pass");

Config configApp2 = new Config();
configApp2.getGroupConfig() .setName("app2").setPassword("app2-pass");

HazelcastInstance hl = Hazelcast.newHazelcastInstance(configAppl);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(confighApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

Chapter 6

Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java interfaces. Below is the
Java interface list with links to each section in this manual.

e Standard utility collections:

— Map: The distributed implementation of java.util.Map lets you read from and write to a Hazelcast
map with methods like get and put.

— Queue: The distributed queue is an implementation of java.util.concurrent.BlockingQueue. You
can add an item in one machine and remove it from another one.

— RingBuffer: The distributed RingBuffer is implemented for reliable eventing system.

— Set: The distributed and concurrent implementation of java.util.Set. It does not allow duplicate
elements and does not preserve their order.

— List: Very similar to Hazelcast List, except that it allows duplicate elements and preserves their order.

— MultiMap: This is a specialized Hazelcast map. It is distributed, where multiple values under a single
key can be stored.

— ReplicatedMap: This does not partition data, i.e. it does not spread data to different cluster members.
Instead, it replicates the data to all nodes.

e Topic: Distributed mechanism for publishing messages that are delivered to multiple subscribers; this is also
known as a publish/subscribe (pub/sub) messaging model. Please see the Topic section for more information.

e Concurrency utilities:

— Lock: Distributed implementation of java.util.concurrent.locks.Lock. When you lock using
Hazelcast Lock, the critical section that it guards is guaranteed to be executed by only one thread in the
entire cluster.

— Semaphore: Distributed implementation of java.util.concurrent.Semaphore. When performing
concurrent activities, semaphores offer permits to control the thread counts.

— AtomicLong: Distributed implementation of java.util.concurrent.atomic.AtomicLong. Most of
AtomicLong’s operations are available. However, these operations involve remote calls and hence their
performances differ from AtomicLong, due to being distributed.

— AtomicReference: When you need to deal with a reference in a distributed environment, you can use Hazel-
cast AtomicReference. This is the distributed version of java.util.concurrent.atomic.AtomicReference.

— IdGenerator: You use Hazelcast IdGenerator to generate cluster-wide unique identifiers. ID generation
occurs almost at the speed of AtomicLong.incrementAndGet ().

— CountdownLatch: Distributed implementation of java.util.concurrent.CountDownLatch. Hazelcast
CountDownLatch is a gate keeper for concurrent activities, enabling the threads to wait for other threads
to complete their operations.

Common Features of all Hazelcast Data Structures:

43

44 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e If a member goes down, its backup replica (which holds the same data) will dynamically redistribute the data,
including the ownership and locks on them, to the remaining live nodes. As a result, no data will be lost.

e There is no single cluster master that can cause single point of failure. Every node in the cluster has equal
rights and responsibilities. No single node is superior. There is no dependency on an external ‘server’ or
‘master’.

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and
how you can listen for instance events, such as an instance being created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.x*;

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
b
3

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

6.1 Map

6.1.1 Map Overview

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence java.util.Map.
It is the distributed implementation of Java map. You can perfrom operations like reading and writing from/to a
Hazelcast map with the well known get and put methods.

6.1.1.1 How Distributed Map Works

Hazelcast will partition your map entries and almost evenly distribute onto all Hazelcast members. Each member
carries approximately “(1/n * total-data) 4+ backups”, n being the number of nodes in the cluster. For example, if
you have a node with 1000 objects to be stored in the cluster, and then you start a second node, each node will
both store 500 objects and back up the 500 objects in the other node.

Let’s create a Hazelcast instance (node) and fill a map named Capitals with key-value pairs using the following
code.

6.1. MAP 45

public class FillMapMember {
public static void main(String[] args) {

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
capitalcities.put("1", "Tokyo");
capitalcities.put("2", "Paris");
capitalcities.put("3", "Washington");
capitalcities.put("4", "Ankara");
capitalcities.put("5", "Brussels");
capitalcities.put("6", "Amsterdam");
capitalcities.put("7", "New Delhi");
capitalcities.put("8", "London");
capitalcities.put("9", "Berlin");
capitalcities.put("10", "Oslo");
capitalcities.put("11", "Moscouw");

capitalcities.put("120", "Stockholm")
}
}

When you run this code, a node is created with a map whose entries are distributed across the node’s partitions.
See the below illustration. For now, this is a single node cluster.

("3", “Washington”)
Lk “Tﬂky’ﬂ”]

(47, “Ankara”)

("12", "Prague”)

("19", "Rome”)

("2”, “Paris"”)
("5, “Brussels”)

("6, "Amsterdam”™)

. NOTE: Please note that some of the partitions will not contain any data entries since we only have 120

46 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

objects and the partition count is 271 by default. This count is configurable and can be changed using the system
property hazelcast.partition. count. Please see the System Properties section.

Now, let’s create a second node by running the above code again. This will create a cluster with 2 nodes. This is
also where backups of entries are created; remember the backup partitions mentioned in the Hazelcast Overview
section. The following illustration shows two nodes and how the data and its backup is distributed.

("3, “Washington”) (6", "Amsterdam”)
I i 1.|'.|' . \.\.Tukyﬂ i]

(2", “Paris")
("5, “Brussels”)

("4”, “Ankara”)

{”12”, ”Pragu&“} {ulg#' “Ruma”}

(19", “Rome"”) ("3”, “Washington”)
{‘”1“, “Tﬂk?ﬂ.ﬂl'}

("2", “Paris"”) nygw w o
(5", “Brussels”) ("1 v Pragﬂe)

(“e”, "Amsterdam”) ("4", “Ankara”)

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in the cluster.
Eventually, it will carry almost “(1/n * total-data) + backups” of the data, reducing the load on other nodes.

HazelcastInstance: :getMap returns an instance of com.hazelcast.core.IMap which extends the java.util.concurrent.Cc
interface. Methods like ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value)
can be used on the distributed map, as shown in the example below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
Customer customer = customers.get(id);
if (customer == null) {
customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

6.1. MAP 47

return customer;

}

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return (customers.replace(customer.getId(), customer) != null);

}

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return customers.remove(customer.getId(), customer);

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread in the
local or remote JVM. But, they will eventually return with success. ConcurrentMap operations never throw a
java.util.ConcurrentModificationException.

Also see:

e Data Affinity section.
e Map Configuration with wildcards.
e Map Configuration section for a full description of Hazelcast Distributed Map configuration.

6.1.2 Map Backups

Hazelcast distributes map entries onto multiple JVMs (cluster members). Each JVM holds some portion of the
data.

Distributed maps have 1 backup by default. If a member goes down, you do not lose data. Backup operations are
synchronous, so when a map.put(key, value) returns, it is guaranteed that the entry is replicated to one other
node. For the reads, it is also guaranteed that map.get (key) returns the latest value of the entry. Consistency is
strictly enforced.

6.1.2.1 Sync Backup

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to have. That way,
data on a JVM will be copied onto other JVM(s). You select the number of backup copies using the backup-count

property.

<hazelcast>
<map name='"default">
<backup-count>1</backup-count>
</map>
</hazelcast>

When this count is 1, a map entry will have its backup on one other node in the cluster. If you set it to 2, then a
map entry will have its backup on two other nodes. You can set it to 0 if you do not want your entries to be backed
up, e.g. if performance is more important than backing up. The maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations are synchronous
and configured with backup-count. In this case, backup operations block operations until backups are successfully
copied to backup nodes (or deleted from backup nodes in case of remove) and acknowledgements are received.
Therefore, backups are updated before a put operation is completed. Sync backup operations have a blocking cost
which may lead to latency issues.

48 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

6.1.2.2 Async Backup

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do not require
acknowledgements; the backup operations are performed at some point in time. Async backup is configured using
the async-backup-count property. An example is shown below.

<hazelcast>
<map name='"default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</map>
</hazelcast>

6.1.2.3 Read Backup Data

NOTE: Backups increase memory usage since they are also kept in memory.

NOTE: A map can have both sync and aysnc backups at the same time.

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each member will
carry both owned entries and backup copies of other members. So for the map.get (key) call, it is possible that
the calling member has a backup copy of that key. By default, map.get (key) will always read the value from the
actual owner of the key for consistency. It is possible to enable backup reads (read local backup entries) by setting
the value of the read-backup-data property to true. Its default value is false for strong consistency. Enabling
backup reads can improve performance.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>
</map>
</hazelcast>

This feature is available when there is at least 1 sync or async backup.

6.1.3 Map Eviction

Unless you delete the map entries manually or use an eviction policy, they will remain in the map. Hazelcast
supports policy based eviction for distributed maps. Currently supported policies are LRU (Least Recently Used)
and LFU (Least Frequently Used).

Map eviction works based on the size of a partition. For example, once you specify a size using the PER_NODE
attribute for max-size (please see Configuring Map Eviction), Hazelcast internally calculates the maximum size for
every partition. Eviction process starts according to this calculated per-partition maximum size when you try to
put an entry. Below section gives an example scenario.

6.1.3.1 Example Map Eviction Scenario
Assume that you have the following figures:

e Partition count: 200
e Entry count for each partition: 100

6.1. MAP 49

e max-size (PER_NODE): 20000
e eviction-percentage (please see Configuring Map Eviction): 10%

The total number of entries here is 20000 (partition count * entry count for each partition). This means you are at
the eviction threshold since you set the max-size to 20000. When you try to put an entry:

1. Entry goes to the relevant partition.
2. Partition checks whether the eviction threshold is reached (max-size).
3. If reached, approximately 10 (100 * 10%) entries are evicted from that particular partition.

As a result of this eviction process, when you check the size of your map, it is ~19990 (20000 - ~10). After this
eviction, subsequent put operations will not trigger the next eviction until the map size is again close to the
max-size.

l NOTE: Above scenario is just an example to describe how the eviction process works. Hazelcast finds the
most optimum number of entries to be evicted according to your cluster size and selected policy.

6.1.3.2 Configuring Map Eviction

The following is an example declarative configuration for map eviction.

<hazelcast>
<map name="default">

<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
<eviction-percentage>25</eviction-percentage>
</map>
</hazelcast>

Let’s describe each element.

e time-to-live: Maximum time in seconds for each entry to stay in the map. If it is not 0, entries that
are older than this time and not updated for this time are evicted automatically. Valid values are integers
between 0 and Integer.MAX VALUE. Default value is 0, which means infinite. If it is not 0, entries are evicted
regardless of the set eviction-policy.

e max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. Entries that are idle
for more than this time are evicted automatically. An entry is idle if no get, put or containsKey is called.
Valid values are integers between 0 and Integer .MAX VALUE. Default value is 0, which means infinite.

e eviction-policy: Valid values are described below.

— NONE: Default policy. If set, no items will be evicted and the property max-size will be ignored. You
still can combine it with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

e max-size: Maximum size of the map. When maximum size is reached, the map is evicted based on the
policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0. If you
want max-size to work, set the eviction-policy property to a value other than NONE. Its attributes are
described below.

— PER_NODE: Maximum number of map entries in each JVM. This is the default policy.
<max-size policy="PER_NODE">5000</max-size>

50 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

— PER_PARTITION: Maximum number of map entries within each partition. Storage size depends on the
partition count in a JVM. This attribute should not be used often. Avoid using this attribute with a
small cluster: if the cluster is small it will be hosting more partitions, and therefore map entries, than
that of a larger cluster. Thus, for a small cluster, eviction of the entries will decrease performance (the
number of entries is large).

<max-size policy="PER_PARTITION">27100</max-size>

— USED_HEAP_SIZE: Maximum used heap size in megabytes for each JVM.
<max-size policy="USED_HEAP_SIZE">4096</max-size>
— USED_HEAP_PERCENTAGE: Maximum used heap size percentage for each JVM. If, for example, JVM is

configured to have 1000 MB and this value is 10, then the map entries will be evicted when used heap
size exceeds 100 MB.

<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>
— FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.
<max-size policy="FREE_HEAP_SIZE">512</max-size>
— FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example, JVM is

configured to have 1000 MB and this value is 10, then the map entries will be evicted when free heap
size is below 100 MB.

<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

e eviction-percentage: When max-size is reached, the specified percentage of the map will be evicted.
For example, if set to 25, 25% of the entries will be evicted. Setting this property to a smaller value will
cause eviction of a smaller number of map entries. Therefore, if map entries are inserted frequently, smaller
percentage values may lead to overheads. Valid values are integers between 0 and 100. The default value is 25.

6.1.3.3 Sample Eviction Configuration

<map name='"documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>
</map>

In the above sample, documents map starts to evict its entries from a member when the map size exceeds 10000 in
that member. Then, the entries least recently used will be evicted. The entries not used for more than 60 seconds
will be evicted as well.

6.1.3.4 Evicting Specific Entries
The eviction policies and configurations explained above apply to all the entries of a map. The entries that meet
the specified eviction conditions are evicted.

But you may want to evict some specific map entries. In this case, you can use the ttl and timeunit parameters
of the method map.put (). A sample code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key “1” will be evicted 50 seconds after it is put into myMap.

6.1.3.5 Evicting All Entries

The method evictAll() evicts all keys from the map except the locked ones. If a MapStore is defined for the map,
deleteAll is not called by evictAll. If you want to call the method deleteAll, use clear ().

A sample is given below.

6.1. MAP o1

public class EvictAll {

public static void main(String[] args) {
final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance nodel = Hazelcast.newHazelcastInstance();
HazelcastInstance node2 Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = nodel.getMap(EvictAll.class.getCanonicalName());
for (int i = 0; i < numberOfEntriesToAdd; i++) {

map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {
map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf ("# After calling evictAll...\n");
System.out.printf ("# Expected map size\t: %d\n", numberOfKeysToLock) ;
System.out.printf ("# Actual map size\t: ’%d\n", map.size());

l NOTE: Only EVICT _ALL event is fired for any registered listeners.

6.1.4 In Memory Format

IMap has an in-memory-format configuration option. By default, Hazelcast stores data into memory in binary
(serialized) format. But sometimes, it can be efficient to store the entries in their object form, especially in cases of
local processing like entry processor and queries. By setting in-memory-format in map’s configuration, you can
decide how the data will be stored in memory. You have the following format options.

e BINARY (default): This is the default option. The data will be stored in serialized binary format. You can use
this option if you mostly perform regular map operations, such as put and get.

e OBJECT: The data will be stored in deserialized form. This configuration is good for maps where entry
processing and queries form the majority of all operations and the objects are complex ones, making the
serialization cost respectively high. By storing objects, entry processing will not contain the deserialization
cost.

Regular operations like get rely on the object instance. When the 0BJECT format is used and a get is performed,
the map does not return the stored instance, but creates a clone. Therefore, this whole get operation includes
a serialization first on the node owning the instance, and then a deserialization on the node calling the instance.
When the BINARY format is used, only a deserialization is required; this is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, map would create a
clone of the instance, and there would first a serialization and then deserialization. When BINARY is used, only a
deserialization is needed.

l NOTE: If a value is stored in OBJECT format, a change on a returned value does not affect the stored
instance. In this case, the returned instance is not the actual one but a clone. Therefore, changes made on an object

52 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

after it is returned will not reflect on the actual stored data. Similarly, when a value is written to a map and the
value is stored in OBJECT format, it will be a copy of the put value. Therefore, changes made on the object after it
is stored will not reflect on the stored data.

6.1.5 Map Persistence

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a
relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory,
MapLoader’s load or loadAll methods will load that entry from the data store. This loaded entry is placed into
the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

. NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast Nodes. Persistence
to local file system is not supported.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
private final Connection con;

public PersonMapStore() {
try {
con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
con.createStatement () .executeUpdate (
"create table if not exists person (id bigint, name varchar(45))");
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {
con.createStatement () .executeUpdate (
format("delete from person where id = 7s", key));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void store(Long key, Person value) {
try {
con.createStatement () . executeUpdate (
format("insert into person values(%s,’%s’)", key, value.name));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet())
store(entry.getKey(), entry.getValue());
}

public synchronized void deleteAll(Collection<Long> keys) {

6.1. MAP 93

for (Long key : keys) delete(key);
}

public synchronized Person load(Long key) {
try {
ResultSet resultSet = con.createStatement().executeQuery(
format("select name from person where id =Ys", key));
try {
if ('resultSet.next()) return null;
String name = resultSet.getString(1);
return new Person(name);
} finally {
resultSet.close();
}
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) result.put(key, load(key));
return result;

3

public Iterable<Long> loadAllKeys() {
return null;

}

RELATED INFORMATION

NOTE: Loading process is performed on a thread different than the partition threads using EzxecutorSeruvice.

For more MapStore/MapLoader code samples please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes which are explained in below
subsections.

6.1.5.1 Read-Through

If an entry does not exist in the memory when an application asks for it, Hazelcast asks your loader implementation
to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to
Hazelcast, and Hazelcast puts it into the memory. This is read-through persistence mode.

6.1.5.2 Write-Through
MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means
the entries will be put to the data store synchronously.

In this mode, when the map.put (key,value) call returns:

e MapStore.store(key,value) is successfully called so the entry is persisted.
e In-Memory entry is updated.
e In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

https://github.com/hazelcast/hazelcast-code-samples/tree/master/distributed-map/mapstore/src/main/java

54 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

The same behavior goes for a map.remove (key) call. The only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in
the form of RuntimeException.

6.1.5.3 Write-Behind

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than
0. This means the modified entries will be put to the data store asynchronously after a configured delay.

l NOTE: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies only the
last update on it. But, you can set MapStoreConfig#setiWriteCoalescing to FALSE and you can store all updates
performed on a key to the data store.

l NOTE: When you set MapStoreConfig#setiWriteCoalescing to FALSE, after you reached per-node mazx-
imum write-behind-queue capacity, subsequent put operations will fail with ReachedMazSizeExzception. This
exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per node mazximum
capacity with GroupProperty#MAP_WRITE_BEHIND_QUEUE_CAPACITY.

In this mode, when the map.put (key,value) call returns:

In-Memory entry is updated.

In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store (key,value)
call.

For fault tolerance dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove (key), the only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a
log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll (map)
and MapStore.deleteAll(collection) to do all writes in a single call.

l NOTE: If a map entry is marked as dirty, i.e. it is waiting to be persisted to the MapStore in a write-behind
scenario, the eviction process forces the entry to be stored. By this way, you will have control on the number of
entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

l NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queue/MultiMap/List/Set
operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock
sttuations.

Here is a sample configuration:

<hazelcast>
<map name="default">

<map-store enabled="true">
<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>

6.1. MAP 95

</map-store>
</map>
</hazelcast>

RELATED INFORMATION
Please refer to the Map Store section for the full Map Store configuration description.

6.1.5.4 MapStoreFactory And MapLoaderLifecycleSupport Interfaces

A configuration can be applied to more than one map using wildcards (see Using Wildcard), meaning that the
configuration is shared among the maps. But MapStore does not know which entries to store when there is one
configuration applied to multiple maps. To overcome this, Hazelcast provides the MapStoreFactory interface.

Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is
used. Sample code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig() ;
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
@0verride
public MapLoader<Object, Object> newMapStore(String mapName, Properties properties) {
return null;
3
IO

If the configuration implements the MapLoaderLifecycleSupport interface, then the user can initialize the
MapLoader implementation with the given map name, configuration properties, and the Hazelcast instance. See the
following example code.

public interface MapLoaderLifecycleSupport {

Jk*

Initializes this MapLoader implementation. Hazelcast will call
this method when the map is first used on the
HazelcastInstance. Implementation can

initialize required resources for the implementing

mapLoader such as reading a config file and/or creating

¥ ¥ ¥ %X *x %

database connection.
*/

void init(HazelcastInstance hazelcastInstance, Properties properties, String mapName) ;

Jk*
* Hazelcast will call this method before shutting down.
* Thts method can be overridden to cleanup the resources
* held by this map loader tmplementation, such as closing the
* database connections etc.
*/

void destroy();

}

6.1.5.5 Initialization On Startup

You can use the MapLoader.loadAllKeys API to pre-populate the in-memory map when the map is
first touched/used. If MapLoader.loadAllKeys returns NULL then nothing will be loaded. Your

56 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

MapLoader.loadAl1lKeys implementation can return all or some of the keys. For example, you may se-
lect and return only the hot keys. MapLoader.loadAllKeys is the fastest way of pre-populating the map since
Hazelcast will optimize the loading process by having each node loading its owned portion of the entries.

The InitialLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If
InitialloadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, the whole data
is loaded while the map is created and everything becomes ready to use. Also, if you add indices to your map with
the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig
behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any node, initialization will start depending on the value of
InitialloadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start
but data is loaded each time a partition loading completes.

Hazelcast will call MapLoader.loadAllKeys () to get all your keys on one of the nodes.

That node will distribute keys to all other nodes in batches.

Each node will load values of all its owned keys by calling MapLoader.loadAll (keys).

Each node puts its owned entries into the map by calling IMap.putTransient (key,value).

CU N

! NOTE: If the load mode is LAZY and when the clear () method is called (which triggers MapStore.deletedll()),
Hazelcast will remove ONLY the loaded entries from your map and datastore. Since the whole data is not loaded
for this case (LAZY mode), please note that there may be still entries in your datastore.

! NOTE: The return type of loadAllKeys () is changed from Set to Iterable with the release of Hazelcast
3.5. MapLoader implementations from previous releases are also supported and do not need to be adapted.

#4#4#4# Incremental Key Loading

If the number of keys to load is large, it is more efficient to load them incrementally than loading them all at once.
To support incremental loading, MapLoader.loadAl1lKeys () returns an Iterable which can be lazily populated
with results of a database query. Hazelcast iterates over the iterable and, while doing so, sends out the keys to
their respective owner nodes. The Iterator obtained from MapLoader.loadAllKeys() may also implement the
Closeable interface in which case it is closed once the iteration is over. This is intended for releasing resources
such as closing a JDBC result set.

6.1.5.6 Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load operations.
The method has two signatures (i.e. the same method can take two different parameter lists). One signature loads
the given keys and the other loads all keys. Please see the sample code below.

public class LoadAll {

public static void main(String[] args) {
final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName() ;
final Config config = createNewConfig(mapName) ;
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName) ;

populateMap (map, numberOfEntriesToAdd);
System.out.printf ("# Map store has 7%d elements\n", numberOfEntriesToAdd) ;

map.evictAll();
System.out.printf ("# After evictAll map size\t: %d\n", map.size());

https://github.com/hazelcast/hazelcast/blob/5f4f6a876e572f91431ad22f01ad5af9f5837f72/hazelcast/src/main/java/com/hazelcast/config/MapStoreConfig.java
https://github.com/hazelcast/hazelcast/blob/da5cceee74e471e33f65f43f31d891c9741e31e3/hazelcast/src/main/java/com/hazelcast/config/MapIndexConfig.java

6.1. MAP o7

map.loadAll(true);
System.out.printf ("# After loadAll map size\t: %d\n", map.size());

6.1.5.7 Post Processing Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can
get an ID or version auto generated by your database and then you need to modify your object stored in the
distributed map but not to break the sync between database and data grid. You can do that by implementing the
PostProcessingMapStore interface to put the modified object into the distributed map. That will cause an extra
step of Serialization, so use it only when needed. (This explanation is only valid when using the write-through
map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
@0verride
public void store(Integer key, Employee employee) {
Employeeld id = saveEmployee();
employee.setId(id.getId());
X
b

6.1.6 Near Cache

Map entries in Hazelcast are partitioned across the cluster. Imagine that you are reading the key k so many times
and k is owned by another member in your cluster. Each map.get (k) will be a remote operation, meaning lots of
network trips. If you have a map that is read-mostly, then you should consider creating a near cache for the map so
that reads can be much faster and consume less network traffic. All these benefits do not come free. When using
near cache, you should consider the following issues:

e JVM will have to hold extra cached data so it will increase the memory consumption.
e If invalidation is turned on and entries are updated frequently, then invalidations will be costly.
e Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. Here is a near cache configuration for a map:

<hazelcast>
<map name='"my-read-mostly-map">

<near-cache>

<I--
Mazimum size of the near cache. When maxz size ©s reached,
cache is evicted based on the policy defined.
Any integer between O and Integer.MAX_VALUE. O means
Integer.MAX_VALUE. Default s O.

-=>

<max-size>5000</max-size>

<l--
Mazimum number of seconds for each entry to stay in the near cache. Entries thatl are
older than <time-to-live-seconds> will get automatically evicted from the near cache.
Any integer between O and Integer.MAX_VALUE. O means infintite. Default is 0.

o8 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

-—>
<time-to-live-seconds>0</time-to-live-seconds>

<I--
Mazimum number of seconds each entry can stay in the near cache as untouched (not-read).
Entries that are not read (touched) more than <maz-idle-seconds> wvalue will get rTemoved
from the near cache.
Any integer between O and Integer.MAX_VALUE. O means
Integer.MAX_VALUE. Default %s O.

-—>

<max-idle-seconds>60</max-idle-seconds>

<I--

Valid values are:

NONE (no exztra eviction, <time-to-live-seconds> may still apply),

LRU (Least Recently Used),

LFU (Least Frequently Used).

NONE is the default.

Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
-—>
<eviction-policy>LRU</eviction-policy>

<I--
Should the cached entries get evicted if the entries are changed (updated or removed).
true of false. Default is true.

-—>

<invalidate-on-change>true</invalidate-on-change>

<I--
You may want also local entries to be cached.
This ts useful when in memory format for mear cache is different than the map’s one.
By default it is disabled.

-—=>

<cache-local-entries>false</cache-local-entries>

</near-cache>
</map>
</hazelcast>

. NOTE: Programmatically, near cache configuration is done by using the class NearCacheConfig. And this
class is used both in the nodes and clients. In a client/server system, you must enable the near cache separately
on the client, without needing to configure it on the server. For information on how to create a near cache on a
client (native Java client), please see the Client Near Cache Configuration section. Please note that near cache
configuration is specific to the node or client itself, a map in a node may not have near cache configured while the
same map in a client may have.

. NOTE: If you are using near cache, you should take into account that your hits to the keys in near cache
are not reflected as hits to the original keys on the remote nodes; this has an impact on IMap’s mazimum idle
seconds or time-to-live seconds expiration. Therefore, even there is a hit on a key in near cache, your original key
on the remote node may expire.

. NOTE: Near cache works only when you access data via map.get (k) methods. Data returned using a
predicate is not stored in the near cache

https://github.com/hazelcast/hazelcast/blob/607aa5484958af706ee18a1eb15d89afd12ee7af/hazelcast/src/main/java/com/hazelcast/config/NearCacheConfig.java

6.1. MAP 99

6.1.7 Map Locks

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When these requirements
increase or you want to have more control on the concurrency, consider the following Hazelcast features and
solutions.

Let’s work on a sample case as shown below.

public class RacyUpdateMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 100 == 0) System.out.println("At: " + k);
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

3

If the above code is run by more than one cluster member simultaneously, there will be likely a race condition. You
can solve this with Hazelcast.

6.1.7.1 Pessimistic Locking

One way to solve the race issue is the lock mechanism provided by Hazelcast distributed map, i.e. the map.lock
and map.unlock methods. You simply lock the entry until you are finished with it. See the below sample code.

public class PessimisticUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
map.lock(key);
try {
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
} finally {
map.unlock(key);
}

}
System.out.println("Finished! Result = " + map.get(key).amount);

60 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

}

static class Value implements Serializable {
public int amount;

}

The IMap lock will automatically be collected by the garbage collector when the lock is released and no other
waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

Another way to solve the race issue can be acquiring a predictable Lock object from Hazelcast. This way, every
value in the map can be given a lock or you can create a stripe of locks.

6.1.7.2 Optimistic Locking

The Hazelcast way of optimistic locking is to use the map.replace method. See the below sample code.

public class OptimisticMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 10 == 0) System.out.println("At: " + k);
for (; ;) {
Value oldValue = map.get(key);
Value newValue = new Value(oldValue);
Thread.sleep(10);
newValue.amount++;
if (map.replace(key, oldValue, newValue))
break;
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value(Value that) {
this.amount = that.amount;

}

public boolean equals(Object o) {
if (o == this) return true;
if ('(o instanceof Value)) return false;
Value that = (Value) o;
return that.amount == this.amount;

6.1. MAP 61

NOTE: Above sample code is intentionally broken.

6.1.7.3 Pessimistic vs. Optimistic Locking

Depending on the locking requirements, one locking strategy can be picked.
Optimistic locking is better for mostly read only systems. It has a performance boost over pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than optimistic locking
from the perspective of data consistency. In Hazelcast, use IExecutorService to submit a task to a key owner,
or to a member or members. This is the recommended way to perform task executions that use pessimistic or
optimistic locking techniques. IExecutorService will have less network hops and less data over wire, and tasks
will be executed very near to the data. Please refer to the Data Affinity section.

6.1.7.4 ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple threads. Even if
one thread sees the same value for a particular key in consecutive reads, it does not mean nothing has changed
between the reads. Another thread may come and change the value, do work, and change the value back, but the
first thread can think that nothing has changed.

To prevent these kind of problems, one solution is to use a version number and to check it before any write to be sure
that nothing has changed between consecutive reads. Although all the other fields will be equal, the version field
will prevent objects from being seen as equal. This is the optimistic locking strategy, and it is used in environments
which do not expect intensive concurrent changes on a specific key.

In Hazelcast, you can apply optimistic locking strategy with the map replace method. This method compares
values in object or data forms depending on the in-memory format configuration. If the values are equal, it replaces
the old value with the new one. If you want to use your defined equals method, in-memory format should be
Object. Otherwise, Hazelcast serializes objects to binary forms and compares them.

6.1.8 Entry Statistics

Hazelcast keeps extra information about each map entry, such as creation time, last update time, last access time,
number of hits, and version. This information is exposed to the developer via a IMap.getEntryView(key) call.
Here is an example:

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory " + entry.getCost());

(
System.out.println ("creationTime : " + entry.getCreationTime());
System.out.println ("expirationTime : " + entry.getExpirationTime());
System.out.println ("number of hits " + entry.getHits());
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime());
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key : " + entry.getKey());
System.out.println ("value : " + entry.getValue());

6.1.9 Map Listener

You can listen to map-wide or entry-based events by implementing a MapListener sub-interface. A map-wide event
is fired as a result of a map-wide operation: for example, IMap#clear or IMap#evictAll. An entry-based event is
fired after the operations that affect a specific entry: for example, IMap#remove or IMap#evict.

62 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Let’s take a look at the following code sample. To catch an event, you should explicitly implement a corresponding
sub-interface of a MapListener, such as EntryAddedListener or MapClearedListener.

. NOTE: EntryListener interface still can be implemented, we kept that as is due to backward compatibility
reasons. However, if you need to listen to a different event which is not available in the EntryListener interface,
you should also implement a relevant MapListener sub-interface.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

static class MyEntryListener implements EntryAddedListener<String, String>,

EntryRemovedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryEvictedListener<String, String> ,
MapEvictedListener,
MapClearedListener {

Q@0verride

public void entryAdded(EntryEvent<String, String> event) {

System.out.println("Entry Added:" + event);
}

Q@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

3

Q@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

X

Q@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

3

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

3

@0verride
public void mapCleared(MapEvent event) {
System.out.println("Map Cleared:" + event);

}

Now, let’s perform some modifications on the map entries using the following example code.

6.1. MAP 63

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
String key = "" + System.nanoTime();
String value = "1";
map.put(key, value);
map.put(key, "2");
map.delete(key);

If you execute the Listen class and then the Modify class, you get the following output produced by the Listen
class.

entryAdded:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=null, value=1, event=ADDED, by Member [192.168.1.100]:5702

entryUpdated:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=1, value=2, event=UPDATED, by Member [192.168.1.100]:5702

entryRemoved:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=2, value=2, event=REMOVED, by Member [192.168.1.100]:5702

public class MyEntryListener implements EntryListener{
private Executor executor = Executors.newFixedThreadPool(5);

@0verride
public void entryAdded(EntryEvent event) {
executor.execute (new DoSomethingWithEvent (event)) ;

}

A map listener runs on the event threads that are also used by the other listeners: for example, the collection
listeners and pub/sub message listeners. This means that the entry listeners can access other partitions. Consider
this when you run long tasks, since listening to those tasks may cause the other map/event listeners to starve.

6.1.9.1 MapPartitionLostListener

You can listen to MapPartitionLostEvent instances by registering an implementation of MapPartitionLostListener,
which is also a sub-interface of MapListener.

Let‘s consider the following example code:

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("map") .setBackupCount(1); // might lose data if any node crashes

HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance(config) ;

IMap<Object, Object> map = instancel.getMap('"map");
map.put (0, 0);

map.addPartitionlLostListener (new MapPartitionLostListener() {
@0verride

64 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

public void partitionLost(MapPartitionLostEvent event) {
System.out.println(event);
}
b;
}

Within this example code, a MapPartitionLostListener implementation is registered to a map that is configured
with 1 backup. For this particular map and any of the partitions in the system, if the partition owner node
and its first backup node crash simultaneously, the given MapPartitionLostListener receives a corresponding
MapPartitionLostEvent. If only a single node crashes in the cluster, there will be no MapPartitionLostEvent
fired for this map since backups for the partitions owned by the crashed node are kept on other nodes.

Please refer to the Partition Lost Listener section for more information about partition lost detection and partition
lost events.

6.1.10 Interceptors

You can add intercept operations and then execute your own business logic synchronously blocking the operations.
You can change the returned value from a get operation, change the value to be put or cancel operations by
throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behavior of operation, change the values, or totally cancel
it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can result in duplicate
effects. This can easily happen when the interceptor is added to the map at node initialization, so that each node
adds the same interceptor. When adding the interceptor in this way, be sure that the hashCode() method is
implemented to return the same value for every instance of the interceptor. It is not strictly necessary, but it is a
good idea to also implement equals() as this will ensure that the map interceptor can be removed reliably.

IMap API has two methods for adding and removing an interceptor to the map,addInterceptor and
removelnterceptor:

Jk*
* Adds an interceptor for this map. Added interceptor will intercept operations
and execute user defined methods and will cancel operations i1f user defined method throw exception.

*
*
*
*# @param interceptor map interceptor
*

Q@return <d of registered interceptor

*/
String addInterceptor(MapInterceptor interceptor);

VAL
* Removes the given interceptor for this map. So it will not intercept operations anymore.
*
*

* @param id registration id of map interceptor
*/

void removelnterceptor(String id);
Here is the MapInterceptor interface:

public interface MapInterceptor extends Serializable {

/K

* Intercept the get operation before it returns a wvalue.

6.1. MAP

* Return another object to change the return value of get(..)
* Returning null will cause the get(..) operation to return the original value,
* namely return null if you do not want to change anything.
*
*
* @param value the original value to be returned as the result of get(..) operation
* Q@return the new value that will be returned by get(..) operation
*/
Object interceptGet(Object value);
VLS
* Called after get(..) operation is completed.
*
*

* @param value the value returned as the result of get(..) operation
*/
void afterGet(Object value);

J**

Intercept put operation before modifying map data.

Return the object to be put into the map.

Returning null will cause the put(..) operation to operate as ezpected,
namely no interception. Throwing an exception will cancel the put operation.

*
*
*
*
*
*
* @param oldValue the walue currently in map
* @param newValue the new walue to be put
* @return new value after intercept operation

*/
Object interceptPut(Object oldValue, Object newValue);

VLS
* Called after put(..) operation is completed.
*

*
* @param value the value returned as the result of put(..) operation
*/

void afterPut(Object value);

Intercept remove operation before removing the data.
Return the object to be returned as the result of remove operation.
Throwing an exception will cancel the remove operation.

@param removedValue the exzisting wvalue to be removed
Q@return the value to be returned as the result of remove operation
*/

Object interceptRemove(Object removedValue);

VLT
* Called after remove(..) operation is completed.
*
*
* @param value the value returned as the result of remove(..) operation
*/
void afterRemove(Object value);

3

66

Example Usage:

public class InterceptorTest {

QTest
public void testMapInterceptor() throws InterruptedException {
HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance();
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance();
IMap<Object, Object> map = hazelcastInstancel.getMap("testMapInterceptor");

}

SimpleInterceptor interceptor =

map.
map . put (
map.put(2
map.put(3
map.put(4,
map.put(5
map.put(6
map.put(7

try {

map.remove(1);

} catch (Exception ignore) {

}
try {

map.remove(2);

} catch (Exception ignore) {

}
assertEquals(

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map.

map

map.
.get(3

map

map.
.get(5

map

map.
map.

size(), 6)

.get(1

get(2
get(4

get(6
get(7

null);
"ISTANBUL:");
"TOKYO:");
"LONDON:");
"PARIS:");
"CAIRO:");
"HONG KONG:");

map.removelInterceptor(interceptor);
map.put(8, "Moscow");

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map

map.
.get(2

map

map.
map.
map.
map.
.get(7

map

.get(8

get(1

get(3
get(4
get(5
get(6

"Moscow");
null);
"ISTANBUL");
"TOKYQ");
"LONDON") ;
"PARIS");
"CAIRO");
"HONG KONG");

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

new SimpleInterceptor();
addInterceptor(interceptor);
"New York");
, "Istanbul");
, "Tokyo");
"London");
, "Paris");
, "Cairo");
, "Hong Kong");

static class SimpleInterceptor implements MapInterceptor, Serializable {

@0verride

public Object interceptGet(Object value) {

if (value == null)
return null;

return value + ":

"n.
’

6.1. MAP 67

@0verride
public void afterGet(Object value) {
}

@0verride
public Object interceptPut(Object oldValue, Object newValue) {
return newValue.toString() .toUpperCase();

}

@0verride
public void afterPut(Object value) {
}

@0verride
public Object interceptRemove(Object removedValue) {
if (removedValue.equals("ISTANBUL"))
throw new RuntimeException("you can not remove this");
return removedValue;

}

@0verride
public void afterRemove(Object value) {
// do something
}
}
}

6.1.11 OOM Prevention

It is very easy to trigger an OOME with query based map methods, especially with large clusters or heap sizes. For
example, on a 5 node cluster with 10 GB of data and 25 GB heap size per node, a single call of IMap.entrySet()
fetches 50 GB of data and crashes the calling instance.

A call of IMap.values() may return too much data for a single node. This can also happen with a real query and
an unlucky choice of predicates, especially when the parameters are chosen by a user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is not a limit like
SELECT * FROM map LIMIT 100, which can be achieved by a Paging Predicate. It is meant to be a last line of
defense to prevent your nodes from retrieving more data than they can handle.

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

6.1.11.1 QueryResultSizeLimiter

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each QueryOperation
runs on all partitions of a node, so it collects result entries as long as the node limit is not exceeded. If that happens,
a QueryResultSizeExceededException is thrown and propagated to the calling instance.

This feature depends on an equal distribution of the data on the cluster nodes to calculate the result size limit
per node. Therefore, there is a minimum value defined in QueryResultSizeLimiter .MINIMUM_MAX_RESULT_LIMIT.
Configured values below the minimum will be increased to the minimum.

6.1.11.1.1 Local Pre-check In addition to the distributed result size check in the QueryOperations, there is
a local pre-check on the calling instance. If you call the method from a client, the pre-check is executed on the
member which invokes the QueryOperations.

68 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Since the local pre-check can increase the latency of a QueryOperation you can configure how many local partitions
should be considered for the pre-check or deactivate the feature completely.

6.1.11.1.2 Scope of Feature Besides the designated query operations, there are other operations which use
predicates internally. Those method calls will throw the QueryResultSizeExceededException as well. Please see
the following matrix to see the methods that are covered by the query result size limit.

Method MapProxyImpl|ClientMapProxyImpl | TransactionalMapProxy |ClientTxnMapProxy
values() e X X X
keySet () X X

entrySet()

values(predicate)

keySet (predicate)

X
X
v
v
v

entrySet(predicate)

localKeySet ()

SIS IS SIS |SN S

localKeySet (predicate)

Interfaces: | IMap || TransactionalMap

6.1.11.1.3 Configuration The query result size limit is configured via the following system properties.

e hazelcast.query.result.size.limit
e hazelcast.query.max.local.partition.limit.for.precheck

Please refer to the System Properties section for explanations of these properties.

6.2 Queue

6.2.1 Queue Overview

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being distributed,
it enables all cluster members to interact with it. Using Hazelcast distributed queue, you can add an item in one
machine and remove it from another one.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put(new MyTask());

MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {
//process task
}

6.2. QUEUE 69

FIFO ordering will apply to all queue operations across the cluster. User objects (such as MyTask in the example
above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items will be copied locally
and iteration will occur locally.

6.2.2 Sample Queue Code

The following sample code illustrates a producer and consumer connected by a distributed queue.

Let’s put one integer on the queue every second, 100 integers total.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ProducerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
for (int k = 1; k < 100; k++) {
queue.put(k);
System.out.println("Producing: " + k);
Thread.sleep(1000);
¥
queue.put(-1);
System.out.println("Producer Finished!");
}
}

Producer puts a -1 on the queue to show that the put’s are finished. Now, let’s create a Consumer class that take
a message from this queue, as shown below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ConsumerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
while (true) {
int item = queue.take();
System.out.println("Consumed: " + item);
if (item == -1) {
queue.put(-1);
break;
}
Thread.sleep(5000);
}
System.out.println("Consumer Finished!");
}
}

As seen in the above sample code, Consumer waits 5 seconds before it consumes the next message. It stops once it
receives -1. Also note that Consumer puts -1 back on the queue before the loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be consumed from the
same queue.

70 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

From the above sample code, you can see that an item is produced every second, and consumed every 5 seconds.
Therefore, the consumer keeps growing. To balance the produce/consume operation, let’s start another consumer.
By this way, consumption is distributed to these two consumers, as seen in the sample outputs below.

The second consumer is started. After a while, here is the first consumer output:

Consumed 13
Consumed 15
Consumer 17

Here is the second consumer output:

Consumed 14
Consumed 16
Consumer 18

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the queue bottlenecks.
In this case, be aware that the order of the messages being sent to different queues is not guaranteed. Since in most
cases strict ordering is not important, a list of queues is a good solution.

! NOTE: The items are taken from the queue in the same order they were put on the queue. However, if
there is more than one consumer, this order is not guaranteed.

6.2.3 Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more items can be put
into the queue until some items are taken out.

A Hazelcast distributed queue can be turned into a bounded queue by setting the capacity limit using the max-size
property.

Queue capacity can be set using the max-size property in the configuration, as shown below. max-size specifies
the maximum size of the queue. Once the queue size reaches this value, put operations will be blocked until the
queue size goes below max-size, that happens when a consumer removes items from the queue.

Let’s set 10 as the maximum size of our sample queue in the Sample Queue Code.

<hazelcast>

<queue name="queue'">
<max-size>10</max-size>
</queue>

</hazelcast>

When the producer is started, 10 items are put into the queue and then the queue will not allow more put operations.
When the consumer is started, it will remove items from the queue. This means that the producer can put more
items into the queue until there are 10 items in the queue again, at which point put operation again become blocked.

But in this sample code, the producer is 5 times faster than the consumer. It will effectively always be waiting for
the consumer to remove items before it can put more on the queue. For this sample code, if maximum throughput
was the goal, it would be a good option to start multiple consumers to prevent the queue from filling up.

6.2. QUEUE 71

6.2.4 Queue Persistence

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore using the interface
QueueStore. If queue store is enabled, each item added to the queue will also be stored at the configured queue
store. When the number of items in the queue exceeds the memory limit, the subsequent items are persisted in the
queue store, they are not stored in the queue memory.

QueueStore interface enables you to store, load, and delete items with methods like store, storeAll, load and
delete. The following example class includes all of the QueueStore methods.

public class TheQueueStore implements QueueStore<Item> {
@0verride
public void delete(Long key) {
System.out.println("delete");
}

©@0verride
public void store(Long key, Item value) {
System.out.println("store");

}

O@0verride

public void storeAll(Map<Long, Item> map) {
System.out.println("store all");

}

@0verride

public void deleteAll(Collection<Long> keys) {
System.out.println("deleteAll");

}

@0verride

public Item load(Long key) {
System.out.println("load");
return null;

©@0verride

public Map<Long, Item> loadAll(Collection<Long> keys) {
System.out.println("loadAll");
return null;

@0verride

public Set<Long> loadAllKeys() {
System.out.println("loadAllKeys") ;
return null;

}
Item must be serializable. Following is an example queue store configuration.

<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class—name>
<properties>
<property name="binary">false</property>
<property name="memory-limit">1000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

72 CHAPTER 6. DISTRIBUTED DATA STRUCTURES
Let’s explain the properties.

e Binary: By default, Hazelcast stores the queue items in serialized form in memory. Before it inserts the
queue items into datastore, it deserializes them. But if you will not reach the queue store from an external
application, you might prefer that the items be inserted in binary form. You can get rid of the de-serialization
step; this would be a performance optimization. The binary feature is disabled by default.

e Memory Limit: This is the number of items after which Hazelcast will store items only to datastore. For
example, if the memory limit is 1000, then the 1001st item will be put only to datastore. This feature is
useful when you want to avoid out-of-memory conditions. The default number for memory-1imit is 1000. If
you want to always use memory, you can set it to Integer .MAX_VALUE.

e Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load is the size
of these bulks. By default, bulk-1load is 250.

6.2.5 Configuring Queue

An example declarative configuration is shown below.

<hazelcast>

<queue name="tasks">
<max-size>10</max-size>
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<empty-queue-ttl>10</empty-queue-ttl>
</queue>
</hazelcast>

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a cluster member
with a queue goes down, another member having the backups will continue. Therefore, no items are lost. You can
define the count of synchronous backups using the backup-count element in the declarative configuration. A queue
can also have asynchronous backups, you can define the count using the async-backup-count element.

The max-size element defines the maximum size of the queue. You can use the empty-queue-ttl element when
you want to purge unused or empty queues after a period of time. If you define a value (time in seconds) for this
element, then your queue will be destroyed if it stays empty or unused for the time you give.

RELATED INFORMATION

Please refer to the Queue Configuration section for a full description of Hazelcast Distributed Queue configuration.

6.3 MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just like any other
distributed data structure implementation in Hazelcast, MultiMap is distributed and thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method signatures. It
supports most features of Hazelcast Map except for indexing, predicates and MapLoader/MapStore. Yet, like
Hazelcast Map, entries are almost evenly distributed onto all cluster members. When a new member joins the
cluster, the same ownership logic used in the distributed map applies.

6.3.1 Sample MultiMap Code

Let’s write code that puts data into a MultiMap.

6.4. SET 73

public class PutMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String , String > map = hazelcastInstance.getMultiMap("map");

map.put(ngh, mqn) ;
map.put(nan’ non) ;
mapput("b”, n3n);
System.out.println("PutMember:Done");

Now let’s print the entries in this MultiMap.

public class PrintMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String, String > map = hazelcastInstance.getMultiMap("map");
for (String key : map.keySet()){
Collection <String > values = map.get(key);
System.out.println("%s -> %s\n",key, values);
3
}
}

After you run the first code sample, run the PrintMember sample. You will see the key a has two values, as shown
below.

b -> [3]
a —> [2, 1]

6.3.2 Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. You configure the collection
type with the valueCollectionType parameter. If you choose Set, duplicate and null values are not allowed in
your collection and ordering is irrelevant. If you choose List, ordering is relevant and your collection can include
duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you enable
statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

l NOTE: Currently, eviction is not supported for the MultiMap data structure.
RELATED INFORMATION

Please refer to the MultiMap Configuration section for a full description of Hazelcast Distributed MultiMap
configuration.

6.4 Set

Hazelcast Set is a distributed and concurrent implementation of java.util.Set.

e Hazelcast Set does not allow duplicate elements.

e Hazelcast Set does not preserve the order of elements.

e Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set will live on one single
partition in that node.

74 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives on a single
partition, storing large amount of data on a single set may cause memory pressure. Therefore, you should
use multiple sets to store large amount of data; this way all the sets will be spread across the cluster, hence
sharing the load.

e A backup of Hazelcast Set is stored on a partition of another node in the cluster so that data is not lost in
the event of a primary node failure.

e All items are copied to the local node and iteration occurs locally.

e The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as opposed to
java.util.HashSet.

6.4.1 Sample Set Code

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Set<Price> set = hazelcastInstance.getSet("IBM-Quote-History");
set.add(new Price(10, timel));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, timed));
VI
Iterator<Price> iterator = set.iterator();
while (iterator.hasNext()) {

Price price = iterator.next();

//analyze
}

6.4.2 Event Registration and Configuration for Set

Hazelcast Set uses ItemListener to listen to events which occur when items are added and removed.

import java.util.Queue;

import java.util.Map;

import java.util.Set;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ItemListener;
import com.hazelcast.core.EntryListener;
import com.hazelcast.core.EntryEvent;

public class Sample implements ItemListener {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISet<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sample, true);

Price price = new Price(10, timel)
set.add(price);
set.remove(price);

3

public void itemAdded(Object item) {

6.5. LIST 75

System.out.println("Item added = " + item);
}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);
}
}

RELATED INFORMATION

To learn more about the configuration of listeners please refer to the Listener Configurations section.
RELATED INFORMATION

Please refer to the Set Configuration section for a full description of Hazelcast Distributed Set configuration.

6.5 List

Hazelcast List is similar to Hazelcast Set, but Hazelcast List also allows duplicate elements.

Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

Hazelcast List is a non-partitioned data structure where values and each backup are represented by their own
single partition.

Hazelcast List cannot be scaled beyond the capacity of a single machine.

All items are copied to local and iteration occurs locally.

6.5.1 Sample List Code

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

List<Price> list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

VI
Iterator<Price> iterator = list.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();
//analyze
}

6.5.2 Event Registration and Configuration for List

Hazelcast List uses ItemListener to listen to events which occur when items are added and removed.

import java.util.Queue;
import java.util.Map;

76

import
import
import
import
import

public

java.util.Set;
com.hazelcast.core.Hazelcast;
com.hazelcast.core.ItemListener;
com.hazelcast.core.EntryListener;
com.hazelcast.core.EntryEvent;

class Sample implements ItemListener{

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IList<Price> list = hazelcastInstance.getList("default");
list.addItemListener(sample, true);

Price price = new Price(10, timel)
list.add(price);
list.remove(price);

3

public void itemAdded(Object item) {
System.out.println("Item added = " + item);

}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);

}
}

RELATED INFORMATION

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

To learn more about the configuration of listeners please refer to the Listener Configurations section.

RELATED INFORMATION

Please refer to the List Configuration section for a full description of Hazelcast Distributed List configuration.

6.6

RingBuffer

The RingBuffer is a data structure where the data is stored in a ring-like structure. You can think of it as a circular
array with a certain capacity. In this circular array, the oldest item gets overwritten in case a new item is written
when the maximum capacity is reached. For now, the RingBuffer is not a partitioned data structure; its data is
stored in a single partition and the replicas are stored in another partition.

Each element in a RingBuffer can be accessed using a sequence ID. This ID is between the head and tail (inclusive)
of the RingBuffer. Head is the side where items are discarded and tail is the side where items are added to.

The RingBuffer can sometimes be a better alternative than an IQueue. Unlike IQueue, the RingBuffer does not
remove the items, it only reads the items using a certain position. There are many advantages using this approach:

e The same item can be read multiple times by the same thread; useful for realizing read at least once or read
at most once semantics.

e The same item can be read by multiple threads. Normally you could use a IQueue per thread for the same
semantic, but this is way less efficient.

e Reads are extremely cheap since there is no change in the RingBuffer, there is no change and therefor no
replication required.
e reads can be batched to speed up performance. Using read (and write) batching can dramatically improve
performance of the RingBuffer.

6.7. TOPIC 7
The following are the methods included in the RingBuffer interface.

public interface Ringbuffer<E> extends DistributedObject {
long capacity(Q);
long size();
long tailSequence();
long headSequence();
long remainingCapacity();
long add(E item);
ICompletableFuture<Long> addAsync(E item, OverflowPolicy overflowPolicy);
E readOne(long sequence) throws InterruptedException;
ICompletableFuture<Long> addAllAsync(Collection<? extends E> collection,
OverflowPolicy overflowPolicy);
ICompletableFuture<ReadResultSet<E>> readManyAsync(long startSequence,
int minCount, int maxCount,
IFunction<E, Boolean> filter);

The RingBuffer can be configured with a time to live in seconds. Using this setting, you can control how long the
items remain in the RingBuffer before getting deleted. By default the time to live is set to 0, meaning that unless
the item is overwritten, it will remain in the RingBuffer indefinitely. If a time to live is set and an item is added,
then depending on the OverwritePolicy, either the oldest item is overwritten, or the call is rejected.

The RingBuffer can also be configured with an InMemoryFormat which controls the format of stored items. By
default BINARY is used; meaning that the object is stored in a serialized form. But also the OBJECT InMemoryFormat
can be selected. This is useful when filtering is applied or when the OBJECT InMemoryFormat can lead to a smaller
memory footprint than a BINARY.

The RingBuffer supports filtered reads. For example, when one thread only wants to see certain messages, one
can filter the items after they are received from the RingBuffer. The problem is that this approach can be very
inefficient since a lot of useless data needs to be sent over the line. When a filter is used, then the filtering happens
at the source, which makes it a lot more efficient.

The RingBuffer provides asynchronous methods for the more powerful methods like batched reading with filtering
or batch writing. To make these methods synchronous, just call get () on the returned future.

For more details about RingBuffer configuration check the RingbufferConfig class in H.

RELATED INFORMATION

Please refer to the RingBuffer Configuration section for more information on configuring the RingBuffer.

6.7 Topic

Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple subscribers.
This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and subscribing operations are
cluster wide. When a member subscribes to a topic, it is actually registering for messages published by any member
in the cluster, including the new members that joined after you add the listener.

l NOTE: Publish operation is async. It does not wait for operations to run in remote nodes, it works as fire
and forget.

6.7.1 Sample Topic Code

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessagelListener;

public class Sample implements MessageListener<MyEvent> {

78 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessagelListener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);
}
s
}
}

/7

private final Executor messageExecutor = Executors.newSingleThreadExecutor();

}

6.7.2 Statistics

Topic has two statistic variables that you can query. These values are incremental and local to the member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic("myTopicName");

myTopic.getLocalTopicStats() .getPublishOperationCount();
myTopic.getLocalTopicStats() .getReceiveOperationCount () ;

getPublishOperationCount and getReceiveOperationCount returns the total number of published and received
messages since the start of this node, respectively. Please note that these values are not backed up, so if the node
goes down, these values will be lost.

You can disable this feature with topic configuration. Please see the Topic Configuration section.

NOTE: These statistics values can be also viewed in Management Center. Please see the Topics section.

6.7.3 Internals

Each node has a list of all registrations in the cluster. When a new node is registered for a topic, it sends a
registration message to all members in the cluster. Also, when a new node joins the cluster, it will receive all
registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter globalOrderEnabled.
e If globalOrderEnabled is disabled:
Messages are ordered, i.e. listeners (subscribers) process the messages in the order that the messages are published.

If cluster member M publishes messages m1, m2, m3, ..., mn to a topic T, then Hazelcast makes sure that all of
the subscribers of topic T will receive and process m1, m2, m3, ..., mn in the given order.

6.7. TOPIC 79

Here is how it works. Let’s say that we have three nodes (nodel, node2 and node3) and that nodel and node2 are
registered to a topic named news. Note that all three nodes know that node! and node2 are registered to news.

In this example, nodel publishes two messages: al and a2, and node3 publishes two messages: c1 and c2. When
nodel and noded publish a message, they will check their local list for registered nodes, and they will discover that
nodel and mode2 are in their lists, then they will fire messages to those nodes. One possible order of the messages
received can be the following.

nodel -> c1, b1, a2, c2
node2 -> cl1, c2, al, a2

e If globalOrderEnabled is enabled:

When enabled, globalOrderEnabled guarantees that all nodes listening to the same topic will get its messages in
the same order.

Here is how it works. Let’s say that we have three nodes (nodel, node2 and node3) and that node! and node2 are
registered to a topic named news. Note that all three nodes know that node! and node2 are registered to news.

In this example, nodel publishes two messages: al and a2, and node3 publishes two messages: c1 and c2. When a
node publishes messages over the topic news, it first calculates which partition the news ID corresponds to. Then
it sends an operation to the owner of the partition for that node to publish messages. Let’s assume that news
corresponds to a partition that node2 owns. nodel and node3 first sends all messages to node2. Assume that the
messages are published in the following order:

nodel -> al, cl, a2, c2

node2 then publishes these messages by looking at registrations in its local list. It sends these messages to nodel
and node2 (it makes a local dispatch for itself).

nodel -> al, cl, a2, c2
node2 -> al, c1, a2, c2
This way, we guarantee that all nodes will see the events in the same order.

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the received message.
For all events in Hazelcast, the order that events are generated and the order they are published to the user are
guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property hazelcast.event.thread.count
(default is 5). For a specific event source (for a particular topic name), hash of that source’s name % 5 gives the ID
of the responsible thread. Note that there can be another event source (entry listener of a map, item listener of a
collection, etc.) corresponding to the same thread. In order not to make other messages to block, heavy processing
should not be done in this thread. If there is time consuming work that needs to be done, the work should be
handed over to another thread. Please see the Sample Topic Code section.

6.7.4 Configuring Topic

Declarative Configuration:

<hazelcast>

<topic name="yourTopicName">
<global-ordering-enabled>true</global-ordering-enabled>
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>MessagelListenerImpl</message-listener>
</message-listeners>
</topic>

</hazelcast>

80 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Programmatic Configuration:

TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled(true);
topicConfig.setStatisticsEnabled(true);
topicConfig.setName("yourTopicName");
Messagelistener<String> implementation = new MessagelListener<String>() {

@0verride

public void onMessage(Message<String> message) {

// process the message

}
I
topicConfig.addMessageListenerConfig(new ListenerConfig(implementation));
HazelcastInstance instance = Hazelcast.newHazelcastInstance()

Default values are:

e global-ordering is false, meaning that by default, there is no guarantee of global order.

e statistics is true, meaning that by default, statistics are calculated.
Topic related but not topic specific configuration parameters:

- ‘hazelcast.event.queue.capacity‘: default value is 1,000,000
- ‘hazelcast.event.queue.timeout.millis‘: default value is 250
- ‘hazelcast.event.thread.count‘: default value is 5

RELATED INFORMATION
For description of these parameters, please see the Global Fvent Configuration section.
RELATED INFORMATION

Please refer to the Topic Configuration section for a full description of Hazelcast Distributed Topic configuration.

6.8 Lock

ILock is the distributed implementation of java.util.concurrent.locks.Lock. Meaning if you lock using an
ILock, the critical section that it guards is guaranteed to be executed by only one thread in the entire cluster. Even
though locks are great for synchronization, they can lead to problems if not used properly. Also note that Hazelcast
Lock does not support fairness.

A few warnings when using locks:

e Always use locks with try-catch blocks. It will ensure that locks will be released if an exception is thrown
from the code in a critical section. Also note that the lock method is outside the try-catch block, because we
do not want to unlock if the lock operation itself fails.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLock");
lock.lock();
try {
// do something here
} finally {
lock.unlock();
}

6.8. LOCK 81

e If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever. To avoid

this, use tryLock with a timeout value. You can set a high value (normally it should not take that long) for
tryLock. You can check the return value of tryLock as follows:

if (lock.tryLock (10, TimeUnit.SECONDS)) {
try {

}

3

// do some stuff here..
finally {
lock.unlock();

} else {
// warning

}

e You can also avoid indefinitely waiting threads by using lock with lease time: the lock will be released in the

given lease time. Lock can be safely unlocked before the lease time expires. Note that the unlock operation
can throw an IllegalMonitorStateException if lock is released because the lease time expires. If that is
the case, critical section guarantee is broken.

Please see the below example.

lock.lock(5, TimeUnit.SECONDS)

try {
// do some stuff here..
} finally {
try {
lock.unlock();
} catch (IllegalMonitorStateException ex){
// WARNING Critical section guarantee can be broken
}

}

Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will keep your
locks safe and available. Moreover, when a member leaves the cluster, all the locks acquired by that dead
member will be removed so that those locks are immediately available for live members.

Locks are re-entrant: the same thread can lock multiple times on the same lock. Note that for other threads
to be able to require this lock, the owner of the lock must call unlock as many times as the owner called lock.

In the split-brain scenario, the cluster behaves as if it were two different clusters. Since two separate clusters
are not aware of each other, two nodes from different clusters can acquire the same lock. For more information
on places where split brain syndrome can be handled, please see split brain syndrome.

Locks are not automatically removed. If a lock is not used anymore, Hazelcast will not automatically garbage
collect the lock. This can lead to an OutOfMemoryError. If you create locks on the fly, make sure they are
destroyed.

Hazelcast IMap also provides locking support on the entry level with the method IMap.lock(key). Although
the same infrastructure is used, IMap.lock(key) is not an ILock and it is not possible to expose it directly.

6.8.1 ICondition

ICondition is the distributed implementation of the notify, notifyAll and wait operations on the Java object.

You can use it to synchronize threads across the cluster. More specifically, you use ICondition when a thread’s
work depends on another thread’s output. A good example can be producer/consumer methodology.

Please see the below code snippets for a sample producer/consumer implementation.

Producer thread:

82 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!shouldProduce()) {
condition.await(); // frees the lock and waits for signal
// when it wakes up it re-acquires the lock
// if available or waits for it to become
// available
}
produce() ;
condition.signalAll();
} finally {
lock.unlock();
}

Consumer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!canConsume()) {
condition.await(); // frees the lock and waits for signal
// when it wakes up it re-acquires the lock if
// available or waits for it to become
// available
}
consume () ;
condition.signalAll();
} finally {
lock.unlock();
}

6.9 IAtomicLong

Hazelcast TAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. It
offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and incrementAndGet. Since
TAtomicLong is a distributed implementation, these operations involve remote calls and hence their performances
differ from AtomicLong.

The following sample code creates an instance, increments it by a million, and prints the count.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
TAtomicLong counter = hazelcastInstance.getAtomicLong("counter");
for (int k = 0; k < 1000 * 1000; k++) {
if (k % 500000 == 0) {
System.out.println("At: " + k);
}

counter.incrementAndGet () ;

6.9. IATOMICLONG 83

}
System.out.printf("Count is %s\n", counter.get());
}
}

When you start other instances with the code above, you will see the count as member count times a million.

You can send functions to an IAtomicLong. Function is a Hazelcast owned, single method interface. The following
sample Function implementation doubles the original value.

private static class Add2Function implements Function <Long, Long> {
@0verride
public Long apply(Long input) {
return input + 2;
b
b

You can use the following methods to execute functions on IAtomicLong.

e apply: It applies the function to the value in TAtomicLong without changing the actual value and returning
the result.

e alter: It alters the value stored in the IAtomicLong by applying the function. It will not send back a result.

e alterAndGet: It alters the value stored in the IAtomicLong by applying the function, storing the result in
the TAtomicLong and returning the result.

e getAndAlter: It alters the value stored in the IAtomicLong by applying the function and returning the
original value.

The following sample code includes these methods.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
TAtomicLong atomicLong = hazelcastInstance.getAtomicLong("counter");

atomicLong.set(1);

long result = atomicLong.apply(new Add2Function());
System.out.println("apply.result: " + result);
System.out.println("apply.value: " + atomicLong.get());

atomicLong.set(1);
atomicLong.alter(new Add2Function());
System.out.println("alter.value: " + atomicLong.get());

atomicLong.set(1);

result = atomiclLong.alterAndGet(new Add2Function());
System.out.println("alterAndGet.result: " + result);
System.out.println("alterAndGet.value: " + atomicLong.get());

atomicLong.set(1);

result = atomicLong.getAndAlter(new Add2Function());
System.out.println("getAndAlter.result: " + result);
System.out.println("getAndAlter.value: " + atomicLong.get());

The reason for using a function instead of a simple code line like atomicLong.set(atomicLong.get() + 2)); is
that the TAtomicLong read and write operations are not atomic. Since IAtomicLong is a distributed implementation,

84 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

those operations can be remote ones, which may lead to race problems. By using functions, the data is not pulled
into the code, but the code is sent to the data. This makes it more scalable.

l NOTE: [AtomicLong has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

6.10 ISemaphore

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore. Semaphores offer
permits to control the thread counts in the case of performing concurrent activities. To execute a concurrent
activity, a thread grants a permit or waits until a permit becomes available. When the execution is completed, the
permit is released.

l NOTE: Semaphore with a single permit may be considered as a lock. But unlike the locks, when semaphores
are used, any thread can release the permit and semaphores can have multiple permits.

When a permit is acquired on ISemaphore:

NOTE: Hazelcast Semaphore does not support fairness.

e if there are permits, the number of permits in the semaphore is decreased by one and the calling thread
performs its activity. If there is contention, the longest waiting thread will acquire the permit before all other
threads.

e if no permits are available, the calling thread blocks until a permit becomes available. When a timeout
happens during this block, the thread is interrupted. In the case where the semaphore is destroyed, an
InstanceDestroyedException is thrown.

The following sample code uses an IAtomicLong resource 1000 times, increments the resource when a thread starts
to use it, and decrements it when the thread completes.

public class SemaphoreMember {
public static void main(String[] args) throws Exception{
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getSemaphore("semaphore");
TAtomicLong resource = hazelcastInstance.getAtomicLong("resource");
for (int k = 0 ; k < 1000 ; k++) {

System.out.println("At iteration: " + k + ", Active Threads: " + resource.get());
semaphore.acquire() ;
try {

resource.incrementAndGet () ;
Thread.sleep(1000);
resource.decrementAndGet () ;
} finally {
semaphore.release();
¥
}
System.out.println("Finished");
}
}

Let’s limit the concurrent access to this resource by allowing at most 3 threads. You can configure it declaratively
by setting the initial-permits property, as shown below.

6.11. TATOMICREFERENCE 85

<semaphore name="semaphore'">
<initial-permits>3</initial-permits>
</semaphore>

l NOTE: If there is a shortage of permits while the semaphore is being created, value of this property can be
set to a negative number.

If you execute the above SemaphoreMember class 5 times, the output will be similar to the following;:
At iteration: O, Active Threads: 1
At iteration: 1, Active Threads: 2
At iteration: 2, Active Threads: 3
At iteration: 3, Active Threads: 3
At iteration: 4, Active Threads: 3

As can be seen, the maximum count of concurrent threads is equal or smaller than 3. If you remove the semaphore
acquire/release statements in SemaphoreMember, you will see that there is no limitation on the number of concurrent
usages.

Hazelcast also provides backup support for ISemaphore. When a member goes down, another member can
take over the semaphore with the permit information (permits are automatically released when a member goes
down). To enable this, configure synchronous or asynchronous backup with the properties backup-count and
async-backup-count(by default, synchronous backup is already enabled).

A sample configuration is shown below.

<semaphore name="semaphore'">
<initial-permits>3</initial-permits>
<backup-count>1</backup-count>
</semaphore>

l NOTE: If high performance is more important (than not losing the permit information), you can disable the
backups by setting backup-count to 0.

RELATED INFORMATION

Please refer to the Semaphore Configuration section for a full description of Hazelcast Distributed Semaphore
configuration.

6.11 TAtomicReference

The IAtomicLong is very useful if you need to deal with a long, but in some cases you need to deal with a
reference. That is why Hazelcast also supports the IAtomicReference which is the distributed version of the
java.util.concurrent.atomic.AtomicReference.

Here is an TAtomicReference example.

public class Member {
public static void main(String[] args) {
Config config = new Config();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config) ;

TIAtomicReference<String> ref = hz.getAtomicReference("reference");
ref.set("foo");

86 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

System.out.println(ref.get());
System.exit (0);

When you execute the above example, you will see the following output.
foo

Just like TAtomicLong, TAtomicReference has methods that accept a ‘function’ as an argument, such as alter,
alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

e From a performance point of view, it is better to send the function to the data then the data to the function.
Often the function is a lot smaller than the data and therefore cheaper to send over the line. Also the function
only needs to be transferred once to the target machine, and the data needs to be transferred twice.

e You do not need to deal with concurrency control. If you would perform a load, transform, store, you could
run into a data race since another thread might have updated the value you are about to overwrite.

There are some issues you need to know, described below.

e TAtomicReference works based on the byte-content and not on the object-reference. If you use the
compareAndSet method, do not change to original value because its serialized content will then be dif-
ferent. It is also important to know that if you rely on Java serialization, sometimes (especially with
hashmaps) the same object can result in different binary content.

e TAtomicReference will always have 1 synchronous backup.

e All methods returning an object will return a private copy. You can modify the private copy, but the rest of
the world will be shielded from your changes. If you want these changes to be visible to the rest of the world,
you need to write the change back to the TAtomicReference; but be careful with introducing a data-race.

e The ‘in memory format’ of an IAtomicReference is binary. The receiving side does not need to have the
class definition available, unless it needs to be deserialized on the other side (e.g. because a method like ‘alter’
is executed). This deserialization is done for every call that needs to have the object instead of the binary
content, so be careful with expensive object graphs that need to be deserialized.

e If you have an object with many fields or an object graph, and you only need to calculate some information
or need a subset of fields, you can use the apply method. With the apply method, the whole object does not
need to be sent over the line, only the information that is relevant.

6.12 ICountDownLatch

Hazelcast ICountDownLatch is the distributed implementation of java.util.concurrent.CountDownLatch. As
you may know, CountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads
to wait for other threads to complete their operations.

The following code samples describe the mechanism of ICountDownLatch. Assume that there is a leader process
and there are follower processes that will wait until the leader completes. Here is the leader:

public class Leader {
public static void main(String[] args) throws Exception {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Starting");
latch.trySetCount(1);
Thread.sleep(30000);
latch.countDown() ;
System.out.println("Leader finished");
latch.destroy();

6.13. IDGENERATOR 87

Since only a single step is needed to be completed as a sample, the above code initializes the latch with 1. Then,
the code sleeps for a while to simulate a process and starts the countdown. Finally, it clears up the latch. Let’s
write a follower:

public class Follower {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Waiting");
boolean success = latch.await(10, TimeUnit.SECONDS);
System.out.println("Complete: " + success);

The follower class above first retrieves ICountDownLatch and then calls the await method to enable the thread
to listen for the latch. The method await has a timeout value as a parameter. This is useful when countDown
method fails. To see ICountDownLatch in action, start the leader first and then start one or more followers. You
will see that the followers will wait until the leader completes.

In a distributed environment, the counting down cluster member may go down. In this case, all listeners are notified
immediately and automatically by Hazelcast. The state of the current process just before the failure should be
verified and ‘how to continue now’ should be decided (e.g. restart all process operations, continue with the first
failed process operation, throw an exception, etc.).

Although the ICountDownLatch is a very useful synchronization aid, you will probably not use it on a daily basis.
Unlike Java’s implementation, Hazelcast’s ICountDownLatch count can be re-set after a countdown has finished
but not during an active count.

l NOTE: ICountDownLatch has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable. Also, the count cannot be re-set during an active count, it should be re-set after the countdown is
finished.

6.13 IdGenerator

Hazelcast IdGenerator is used to generate cluster-wide unique identifiers. Generated identifiers are long type
primitive values between 0 and Long.MAX_VALUE.

ID generation occurs almost at the speed of AtomicLong.incrementAndGet (). A group of 1 million identifiers is
allocated for each cluster member. In the background, this allocation takes place with an TAtomicLong incremented
by 1 million. Once a cluster member generates IDs (allocation is done), IdGenerator increments a local counter. If
a cluster member uses all IDs in the group, it will get another 1 million IDs. By this way, only one time of network
traffic is needed, meaning that 999,999 identifiers are generated in memory instead of over the network. This is fast.

Let’s write a sample identifier generator.

public class IdGeneratorExample {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IdGenerator idGen = hazelcastInstance.getIdGenerator("newId");
while (true) {
Long id = idGen.newIdQ);
System.err.println("Id: " + id);
Thread.sleep(1000);
}
}
}

Let’s run the above code two times. The output will be similar to the following.

88 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Members [1] {
Member [127.0.0.1]:5701 this

}

Id: 1
Id: 2
Id: 3

Members [2] {
Member [127.0.0.1]1:5701
Member [127.0.0.1]:5702 this

}

Id: 1000001
Id: 1000002
Id: 1000003

You can see that the generated IDs are unique and counting upwards. If you see duplicated identifiers, it means
your instances could not form a cluster.

l NOTE: Generated IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs
start from 0 again or you can initialize to a value using the init () method of IdGenerator.

l NOTE: IdGenerator has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

6.14 Replicated Map

A replicated map is a weakly consistent, distributed key-value data structure provided by Hazelcast.

All other data structures are partitioned in design. A replicated map does not partition data (it does not spread
data to different cluster members); instead, it replicates the data to all nodes.

This leads to higher memory consumption. However, a replicated map has faster read and write access since the
data are available on all nodes and writes take place on local nodes, eventually being replicated to all other nodes.

Weak consistency compared to eventually consistency means that replication is done on a best efforts basis. Lost
or missing updates are neither tracked nor resent. This kind of data structure is suitable for immutable objects,
catalogue data, or idempotent calculable data (like HTML pages).

Replicated map nearly fully implements the java.util.Map interface, but it lacks the methods from
java.util.concurrent.ConcurrentMap since there are no atomic guarantees to writes or reads.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;
import java.util.Collection;

import java.util.Map;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<String, Customer> customers = hazelcastInstance.getReplicatedMap('"customers");
customers.put("1", new Customer("Joe", "Smith"));

customers.put("2", new Customer("Ali", "Selam"));

customers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = customers.values();
for (Customer customer : colCustomers) {
// process customer

}

6.14. REPLICATED MAP 89

HazelcastInstance: :getReplicatedMap returns com.hazelcast.core.ReplicatedMap which, as stated above,
extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry listeners or
retrieving values in an expected order.

! NOTE: Replicated Map is in the beta stage.

6.14.1 For Consideration

A replicated map does not support ordered writes! In case of a conflict caused by two nodes simultaneously
written to the same key, a vector clock algorithm resolves and decides on one of the values.

Due to the weakly consistent nature and the previously mentioned behaviors of replicated map, there is a chance of
reading stale data at any time. There is no read guarantee like there is for repeatable reads.

6.14.2 Breakage of the Map-Contract

Replicated Map offers a distributed java.util.Map::clear implementation, but due to the asynchronous nature
and the weakly consistency of this implementation, there is no point in time where you can say the map is empty.
Every node applies that to its local dataset in “a near point in time”. If you need a definite point in time to empty
the map, you may want to consider using a lock around the clear operation.

You can simulate the clear method by locking your user codebase and executing a remote operation
that uses DistributedObject::destroy to destroy the node’s own proxy and storage of the Replicated
Map. A new proxy instance and storage will be created on the next retrieval of the Replicated Map using
HazelcastInstance: :getReplicatedMap. You will have to reallocate the Replicated Map in your code.
Afterwards, just release the lock when finished.

6.14.3 Technical Design

There are several technical design decisions for configurable behavior.
Initial provisioning

If a new member joins, there are two ways you can handle the initial provisioning that is executed to replicate all
existing values to the new member.

First, you can have an async fill up, which does not block reads while the fill up operation is underway. That way,
you have immediate access on the new member, but it will take time until all values are eventually accessible. Not
yet replicated values are returned as non-existing (null). Write operations to already existing keys during this async
phase can be lost, since the vector clock for an entry might not be initialized by another member yet, and it might
be seen as an old update by other members.

Second, you can perform a synchronous initial fill up, which blocks every read or write access to the map until the
fill up operation is finished. Use this way with caution since it might block your application from operating.

Replication delay

By default, the replication of values is delayed by 100 milliseconds when no current waiting replication is found. This
collects multiple updates and minimizes the operations overhead on replication. A hard limit of 1000 replications is
built into the system to prevent OutOfMemory situations where you put lots of data into the replicated map in a
very short time. The delay is configurable. A value of “0” means immediate replication. You can configure the
trade off between replication overhead and the time for the value to be replicated.

Concurrency Level

The concurrency level configuration defines the number of mutexes and segments inside the replicated map storage.
A mutex/segment is chosen by calculating the hashCode of the key and using the module by the concurrency level.
If multiple keys fall into the same mutex, they will wait for other mutex holders on the same mutex to finish their
operation.

90 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

For a high amount of values, or for high contention on the mutexes, this value can be changed.

6.14.4 Replicated Map Configuration

Replicated Map can be configured using the following two ways (as with most other features in Hazelcast):

e Programmatic: the typical Hazelcast way, using the Config API seen above.
e Declarative: using hazelcast.xml.

6.14.4.1 Replicated Map Declarative Configuration

You can declare your Replicated Map configuration in the Hazelcast configuration file hazelcast.xml. You can
use the configuration to tune the behavior of the internal replication algorithm, such as the replication delay which
batches up the replication for better network utilization. See the following example declarative configuration.

<replicatedmap name="default">
<in-memory-format>BINARY</in-memory-format>
<concurrency-level>32</concurrency-level>
<replication-delay-millis>100</replication-delay-millis>
<async-fillup>true</async-fillup>
<statistics-enabled>true</statistics-enabled>
<entry-listeners>
<entry-listener include-value="true">
com.hazelcast.examples.EntryListener
</entry-listener>
</entry-listeners>
</replicatedmap>

e in-memory-format: Defines the internal storage format. Please see the In-Memory Format section. The
default value is BINARY.

e concurrency-level: Number of parallel mutexes to minimize the contention on the keys. The default value
is 32, which is a good number for lots of applications. If higher contention is seen on writes to values inside
the replicated map, this value can be adjusted according to the needs.

e replication-delay-millis: Defines the period in milliseconds after a put is executed that the put value is
replicated to other nodes. During this time, multiple puts can be operated and the values are cached up to be
sent all at once. This increases the latency for eventual consistency, but it lowers the I/O operations. The
default value is 100ms before a replication is operated. If replication-delay-millis is set to 0, no delay is
used (not cached) and all values are replicated one by one.

e async-fillup: Defines if the replicated map is available for reads before the initial replication is completed.
The default value is true. If set to false (i.e. synchronous initial fill up), no exception will be thrown when
the replicated map is not yet ready, but the call will block until it is finished.

e statistics-enabled: If set to true, the statistics such as cache hits and misses are collected. The default
value is false.

e entry-listener: The value of this element is the full canonical classname of the EntryListener implemen-
tation.

— entry-listener#include-value: This attribute defines if the event will include the value or not.
Sometimes the key is enough to react on an event. In those situations, setting this value to false will
save a deserialization cycle. The default value is true.

— entry-listener#local: This attribute is not used for Replicated Map since listeners are always local.

6.14.4.2 Replicated Map Programmatic Configuration

You can use the Config API for programmatic configuration, as you can for all other data structures in Hazelcast.
You must create the configuration upfront, when you instantiate the HazelcastInstance.

6.14. REPLICATED MAP 91

A basic example on how to configure the Replicated Map using the programmatic approach is shown in the following
snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
config.getReplicatedMapConfig("default");

replicatedMapConfig.setInMemoryFormat(InMemoryFormat.BINARY);
replicatedMapConfig.setConcurrencylLevel(32);

All properties that can be configured using the declarative configuration are also available using programmatic
configuration by transforming the tag names into getter or setter names.

6.14.4.3 In-Memory Format on Replicated Map

Currently, two in-memory-format values are usable with the Replicated Map.

e OBJECT (default): The data will be stored in deserialized form. This configuration is the default choice since
the data replication is mostly used for high speed access. Please be aware that changing the values without a
Map: :put is not reflected on the other nodes but is visible on the changing nodes for later value accesses.

e BINARY: The data is stored in serialized binary format and has to be deserialized on every request. This
option offers higher encapsulation since changes to values are always discarded as long as the newly changed
object is not explicitly Map: :put into the map again.

6.14.5 EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a Replicated Map serves the same purpose as it would on other
data structures in Hazelcast. You can use it to react on add, update, and remove operations. Replicated maps do
not yet support eviction.

The fundamental difference in Replicated Map behavior, compared to the other data structures, is that an
EntryListener only reflects changes on local data. Since replication is asynchronous, all listener events are fired only
when an operation is finished on a local node. Events can fire at different times on different nodes.

import com.hazelcast.core.EntryEvent;

import com.hazelcast.core.EntryListener;
import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.ReplicatedMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ReplicatedMap<String, Customer> customers =
hazelcastInstance.getReplicatedMap("customers");

customers.addEntryListener(new EntryListener<String, Customer>() {
@0verride
public void entryAdded(EntryEvent<String, Customer> event) {
log("Entry added: " + event);
}

@0verride

public void entryUpdated(EntryEvent<String, Customer> event) {
log("Entry updated: " + event);

}

92 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Q@0verride

public void entryRemoved(EntryEvent<String, Customer> event) {
log("Entry removed: " + event);

b

@0verride

public void entryEvicted(EntryEvent<String, Customer> event) {
// Currently not supported, will never fire

}
B;
customers.put("1", new Customer("Joe", "Smith")); // add event
customers.put("1", new Customer("Ali", "Selam")); // update event

customers.remove("1"); // remove event

Chapter 7

Distributed Events

You can register for Hazelcast entry events so you will be notified when those events occur. Event Listeners
are cluster-wide: when a listener is registered in one member of cluster, it is actually registered for events that
originated at any member in the cluster. When a new member joins, events originated at the new member will also
be delivered.

An Event is created only if you registered an event listener. If no listener is registered, then no event will be created.
If you provided a predicate when you registered the event listener, pass the predicate before sending the event to
the listener (node/client).

As a rule of thumb, your event listener should not implement heavy processes in its event methods which block
the thread for a long time. If needed, you can use ExecutorService to transfer long running processes to another
thread and thus offload the current listener thread.

7.1 Event Listeners for Hazelcast Nodes
Hazelcast offers the following event listeners:

Membership Listener for cluster membership events.

Distributed Object Listener for distributed object creation and destroy events.

Migration Listener for partition migration start and complete events.

Partition Lost Listener for partition lost events.

Lifecycle Listener for HazelcastInstance lifecycle events.

Entry Listener for IMap and MultiMap entry events (please refer to the Map Listener section).

Item Listener for IQueue, ISet and IList item events (please refer to the Event Registration and Configu-
ration parts of the sections Set and List).

Message Listener for ITopic message events.

e Client Listener for client connection events.

7.1.1 Membership Listener

The Membership Listener allows to get notified for the following events.

e A new member is added to the cluster.

e An existing member leaves the cluster.

e An attribute of a member is changed. Please refer to the Member Attributes section to learn about member
attributes.

The following is an example Membership Listener class.

93

94 CHAPTER 7. DISTRIBUTED EVENTS

public class ClusterMembershipListener
implements MembershipListener {

public void memberAdded(MembershipEvent membershipEvent) {
System.err.println("Added: " + membershipEvent);
}

public void memberRemoved(MembershipEvent membershipEvent) {
System.err.println("Removed: " + membershipEvent) ;

}

public void memberAttributeChanged(MemberAttributeEvent memberAttributeEvent) {
System.err.println("Member attribute changed: " + memberAttributeEvent) ;

}

When a respective event is fired, the membership listener outputs the addresses of the members that joined and
left, and also which attribute changed on which member.

7.1.2 Distributed Object Listener

The Distributed Object Listener notifies when a distributed object is created or destroyed throughout the cluster.

The following is an example Distributed Object Listener class.

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
}
}

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

When a respective event is fired, the distributed object listener outputs the event type, and the name, service (for
example, if a Map service provides the distributed object, than it is a Map object), and ID of the object.

7.1. EVENT LISTENERS FOR HAZELCAST NODES 95

7.1.3 Migration Listener

The Migration Listener notifies for the following events:
e A partition migration is started.
e A partition migration is completed.
e A partition migration is failed.

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {

@0verride

public void migrationStarted(MigrationEvent migrationEvent) {
System.err.println("Started: " + migrationEvent) ;

}

@0verride

public void migrationCompleted(MigrationEvent migrationEvent) {
System.err.println("Completed: " + migrationEvent);

}

@0verride

public void migrationFailed(MigrationEvent migrationEvent) {
System.err.println("Failed: " + migrationEvent);

}

When a respective event is fired, the migration listener outputs the partition ID, status of the migration, the old
member and the new member. The following is an example output.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

7.1.4 Partition Lost Listener

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one of your nodes
become owner and some of the other nodes become replica nodes based on your configuration. Nevertheless, data
loss may occur if a few nodes crash simultaneously.

Let‘s consider the following example with three nodes: N1, N2, N3 for a given partition-0. N1 is owner of partition-0,
N2 and N3 are the first and second replicas respectively. If N1 and N2 crash simultaneously, partition-0 loses its
data that is configured with less than 2 backups. For instance, if we configure a map with 1 backup, that map loses
its data in partition-0 since both owner and first replica of partition-0 have crashed. However, if we configure our
map with 2 backups, it does not lose any data since a copy of partition-0’s data for the given map also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how many replicas are
lost for a partition. It listens to PartitionLostEvent instances. Partition lost events are dispatched per partition.

Partition loss detection is done after a node crash is detected by the other nodes and the crashed node is removed
from the cluster. Please note that false-positive PartitionLostEvent instances may be fired on partial network
split errors.

The following is an example of Partition Lost Listener.

public class ConsoleloggingPartitionLostListener implements PartitionLostListener {
@0verride
public void partitionLost(PartitionLostEvent event) {
System.out.println(event);

3

96 CHAPTER 7. DISTRIBUTED EVENTS

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID, the replica
index that is lost and the node that has detected the partition loss. The following is an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49] :5701}

7.1.5 Lifecycle Listener

The Lifecycle Listener notifies for the following events:

A member is starting.

A member started.

A member is shutting down.

A member’s shutdown has completed.

A member is merging with the cluster.

A member’s merge operation has completed.

A Hazelcast Client connected to the cluster.

A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

public class NodeLifecycleListener implements LifecycleListener {
@0verride
public void stateChanged(LifecycleEvent event) {
System.err.println(event);

}

This listener is local to an individual node. It notifies the application that uses Hazelcast about the events mentioned
above for a particular node.

7.1.6 Item Listener

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces. It notifies when an item is added or
removed.

The following is an example Item Listener class.

public class Sample implements ItemListener {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISet<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sample, true);

Price price = new Price(10, timel)
set.add(price);
set.remove(price);

}

public void itemAdded(Object item) {
System.out.println("Item added = " + item);
}

7.2. EVENT LISTENERS FOR HAZELCAST CLIENTS 97

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);

}
}

7.1.7 Message Listener

The Message Listener is used by the ITopic interface. It notifies when a message is received for the registered topic.

The following is an example Message Listener class.

public class Sample implements MessagelListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessagelistener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);
}
s
}
3

7.1.8 Client Listener

The Client Listener is used by the Hazelcast nodes. It notifies the nodes when a client is connected to or disconnected
from the cluster.

l NOTE: You can also add event listeners to a Hazelcast client. Please refer to Client Listenerconfig for the
related information.

7.2 Event Listeners for Hazelcast Clients

You can add event listeners to a Hazelcast Java client. You can configure the following listeners to listen to the
events on the client side. Please see the respective sections under the Event Listeners for Hazelcast Nodes section
for example code.

e Lifecycle Listener: Notifies when the client is starting, started, shutting down and shutdown.

e Membership Listener: Notifies when a node joins to/leaves the cluster to which the client is connected, or
when an attribute is changed in a node.

e DistributedObject Listener: Notifies when a distributed object is created or destroyed throughout the
cluster to which the client is connected.

98 CHAPTER 7. DISTRIBUTED EVENTS

RELATED INFORMATION
Please refer to the Client Listenerconfig section for more information.
RELATED INFORMATION

Please refer to the Listener Configurations section for a configuration wrap-up of event listeners.

7.3 Global Event Configuration

e hazelcast.event.queue.capacity: default value is 1000000
e hazelcast.event.queue.timeout.millis: default value is 250
e hazelcast.event.thread.count: default value is 5

A striped executor in each node controls and dispatches the received events. This striped executor also guarantees
the event order. For all events in Hazelcast, the order in which events are generated and the order in which they
are published are guaranteed for given keys. For map and multimap, the order is preserved for the operations on
the same key of the entry. For list, set, topic and queue, the order is preserved for events on that instance of the
distributed data structure.

You achieve the order guarantee by making only one thread responsible for a particular set of events (entry events
of a key in a map, item events of a collection, etc.) in StripedExecutor.

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be put into
the event queue for the period specified in hazelcast.event.queue.timeout.millis, these events will be dropped
with a warning message, such as “EventQueue overloaded”.

If event listeners perform a computation that takes a long time, the event queue can reach its maximum capacity
and lose events. For map and multimap, you can configure hazelcast.event.thread.count to a higher value so
that fewer collisions occur for keys, and therefore worker threads will not block each other in StripedExecutor.
For list, set, topic and queue, you should offload heavy work to another thread. To preserve order guarantee, you
should implement similar logic with StripedExecutor in the offloaded thread pool.

RELATED INFORMATION

Please refer to the Listener Configurations section on how to configure each listener.

Chapter 8

Distributed Computing

From Wikipedia: Distributed computing refers to the use of distributed systems to solve computational problems.
In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers.

8.1 Executor Service

One of the coolest features of Java 1.5 is the Executor framework, which allows you to asynchronously execute your
tasks (logical units of work), such as database query, complex calculation, and image rendering.

8.1.1 Executor Overview

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a single JVM.
In distributed systems, this implementation is not desired since you may want a task submitted in one JVM
and processed in another one. Hazelcast offers IExecutorService for you to use in distributed environments: it
implements java.util.concurrent.ExecutorService to serve the applications requiring computational and data
processing power.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If your task
execution takes longer than expected, you can cancel the task execution. Tasks should be Serializable since they
will be distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

e Callable: If you need to return a value and submit to Executor, implement the task as java.util.concurrent.Callable.
e Runnable: If you do not need to return a value, implement the task as java.util.concurrent.Runnable.

8.1.1.1 Callable

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a value), you
implement Callable and Serializable.

Below is an example of a Callable.

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.HazelcastInstanceAware;
import com.hazelcast.core.IMap;

import java.io.Serializable;
import java.util.concurrent.Callable;

public class SumTask

99

100 CHAPTER 8. DISTRIBUTED COMPUTING

implements Callable<Integer>, Serializable, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public Integer call() throws Exception {
IMap<String, Integer> map = hazelcastInstance.getMap("map");
int result = 0O;
for (String key : map.localKeySet()) {
System.out.println("Calculating for key: " + key);
result += map.get(key);
}
System.out.println("Local Result: " + result);
return result;
3
}

Another example is the Echo callable below. In its call() method, it returns the local member and the input
passed in. Remember that instance.getCluster() .getLocalMember () returns the local member and toString()
returns the member’s address (IP + port) in String form, just to see which member actually executed the code for
our example. Of course, the call() method can do and return anything you like.

“‘Java import java.util.concurrent.Callable; import java.io.Serializable;

public class Echo implements Callable, Serializable { String input = null;

public Echo() {
}

public Echo(String input) {
this.input = input;

}

public String call() {
Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
return instance.getCluster().getLocalMember().toString() + ":" + input;

} “ éjava

To execute a task with the executor framework:

Obtain an ExecutorService instance (generally via Executors).

Submit a task which returns a Future.

After executing the task, you do not have to wait for the execution to complete, you can process other things.
When ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Echo("myinput"));
//while it is ezecuting, do some useful stuff

//when ready, get the result of your exzecution

String result = future.get();

8.1. EXECUTOR SERVICE 101

Please note that the Echo callable in the above code sample also implements a Serializable interface, since it may
be sent to another JVM to be processed.

. NOTE: When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the task should
implement HazelcastInstancedware interface. Please see the HazelcastinstanceAware Interface section for more
information.

8.1.1.2 Runnable

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not return a
value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

public class EchoTask implements Runnable, Serializable {
private final String msg;

public EchoTask(String msg) {
this.msg = msg;

}

@0verride
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
¥
System.out.println("echo:" + msg);
}
}

To execute the task: * Retrieve the Executor from HazelcastInstance. * Submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class MasterMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executor = hazelcastInstance.getExecutorService("exec");
for (int k = 1; k <= 1000; k++) {
Thread.sleep(1000);
System.out.println("Producing echo task: " + k);
executor.execute(new EchoTask(String.valueOf(k)));
}
System.out.println("EchoTaskMain finished!");
}
}

8.1.1.3 Executor Thread Configuration

By default, Executor is configured to have 8 threads in the pool. You can change that with the pool-size property
in the declarative configuration (hazelcast.xml). An example is shown below (using the above Executor).

<executor-service name="exec">
<pool-size>1</pool-size>
</executor-service>

102 CHAPTER 8. DISTRIBUTED COMPUTING

RELATED INFORMATION

Please refer to the Fxecutor Service Configuration section for a full description of Hazelcast Distributed Executor
Service configuration.

8.1.1.4 Scaling

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the JVM. You can do this by increasing the pool-size
property mentioned in the Executor Thread Configuration section (i.e., increasing the thread count). However,
please be aware of your JVM’s capacity. If you think it cannot handle such an additional load caused by increasing
the thread count, you may want to consider improving the JVM’s resources (CPU, memory, etc.). As an example,
set the pool-size to 5 and run the above MasterMember. You will see that EchoTask is run as soon as it is
produced.

To scale out, more JVMs should be added instead of increasing only one JVM’s capacity. In reality, you may want
to expand your cluster by adding more physical or virtual machines. For example, in the EchoTask example in the
Runnable section, you can create another Hazelcast instance. That instance will automatically get involved in the
executions started in MasterMember and start processing.

8.1.2 Execution

The distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It
allows you to execute your code in the cluster. In this section, the code examples are based on the Echo class above
(please note that the Echo class is Serializable). The code examples show how Hazelcast can execute your code
(Runnable, Callable):

on a specific cluster member you choose,
on the member owning the key you choose,
on the member Hazelcast will pick, and

on all or subset of the cluster members.

import com.hazelcast.core.Member;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;

import java.util.Set;

public void echoOnTheMember (String input, Member member) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToMember(task, member);
String echoResult = future.get();
¥

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToKeyOwner(task, key);

8.1. EXECUTOR SERVICE 103

String echoResult = future.get();
}

public void echoOnSomewhere(String input) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submit(new Echo(input));
String echoResult = future.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Map<Member, Future<String>> futures = executorService
.submitToMembers(new Echo(input), members);

for (Future<String> future : futures.values()) {
String echoResult = future.get();

/o
}
}
l NOTE: You can obtain the set of cluster members via HazelcastInstance#getCluster().getMembers ()
call.

8.1.3 Execution Cancellation

A task in the code you execute in a cluster might take longer than expected. If you cannot stop/cancel that task, it
will keep eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API. This framework encourages
us to code and design for cancellations, a highly ignored part of software development.

8.1.3.1 Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the calculate method,
we check if the current thread is interrupted so that the code can respond to cancellations once the execution is
started.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = O;

public Fibonacci() {
}

public Fibonacci(int input) {
this.input = input;

}

public Long call() {
return calculate(input);

}

104 CHAPTER 8. DISTRIBUTED COMPUTING

private long calculate(int n) {
if (Thread.currentThread().isInterrupted()) {
return O;
}
if (n<=1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}
}

8.1.3.2 Example Method to Execute and Cancel the Task

The £ib() method below submits the Fibonacci calculation task above for number ‘n’ and waits a maximum
of 3 seconds for the result. If the execution does not completed in 3 seconds, future.get() will throw a
TimeoutException and upon catching it, we cancel the execution, saving some CPU cycles.

long fib(int n) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();
Future future = es.submit(new Fibonacci(n));
try {
return future.get(3, TimeUnit.SECONDS) ;
} catch (TimeoutException e) {
future.cancel(true);
¥

return -1;

£ib(20) will probably take less than 3 seconds. However, £ib(50) will take much longer. (This is not an example
for writing better Fibonacci calculation code, but for showing how to cancel a running execution that takes
too long.) The method future.cancel(false) can only cancel execution before it is running (executing), but
future.cancel (true) can interrupt running executions if your code is able to handle the interruption. If you
are willing to cancel an already running task, then your task should be designed to handle interruptions. If
the calculate (int n) method did not have the (Thread.currentThread() .isInterrupted()) line, then you
would not be able to cancel the execution after it is started.

8.1.4 Execution Callback

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the execution is
done.

8.1.4.1 Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that will be executed.
Note that it is Callable and Serializable.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

public Fibonacci() {
}

8.1. EXECUTOR SERVICE 105

public Fibonacci(int input) {
this.input = input;

3

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (n <= 1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}
}

8.1.4.2 Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the result asyn-
chronously. ExecutionCallback has the methods onResponse and onFailure. In this example code, onResponse
is called upon a valid response and prints the calculation result, whereas onFailure is called upon a failure and
prints the stacktrace.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Future;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();

Callable<Long> task = new Fibonacci(10);

es.submit(task, new ExecutionCallback<Long> () {

@0verride
public void onResponse(Long response) {
System.out.println("Fibonacci calculation result = " + response);
X
Q@0verride

public void onFailure(Throwable t) {
t.printStackTrace();
}
+

8.1.5 Execution Member Selection

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or Callable is
executed. Usually, you will execute these in the cluster based on the location of a key, set of keys or just allow
Hazelcast to select a member.

If want more control over where your code runs, you can use the MemberSelector interface. For example, you
may want certain tasks to run only on certain members, or you may wish to implement some form of custom
load balancing regime. The MemberSelector is an interface that you can implement and then provide to the
IExecutorService when you submit or execute.

106 CHAPTER 8. DISTRIBUTED COMPUTING

The select (Member) method is called for every available member in the cluster and it is up to the implementation
to decide if the member is going to be used or not.

In a simple example shown below, we select the cluster members based on the presence of an attribute.

public class MyMemberSelector implements MemberSelector {
public boolean select(Member member) {
return Boolean.TRUE.equals (member.getAttribute("my.special.executor"));

}

8.2 Entry Processor

Hazelcast supports entry processing. An entry processor is a function that executes your code on a map entry in an
atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually, you perform a loop
of keys: executing IMap.get (key), mutating the value, and finally putting the entry back in the map using
IMap.put (key,value). If you perform this process from a client or from a member where the keys do not exist,
you effectively perform 2 network hops for each update: the first to retrieve the data and the second to update the
mutated value.

If you are doing the above, you should consider using entry processors. An entry processor executes a read and
updates upon the member where the data resides. This eliminates the costly network hops described previously.

8.2.1 Entry Processor Overview

An entry processor enables fast in-memory operations on your map without you having to worry about locks or
concurrency issues. It can be applied to a single map entry or to all map entries. It supports choosing target entries
using predicates. You do not need any explicit lock on entry: Hazelcast locks the entry, runs the EntryProcessor,
and then unlocks the entry.

Hazelcast sends the entry processor to each cluster member and these members apply it to map entries. Therefore,
if you add more members, your processing is completed faster.

If entry processing is the major operation for a map and if the map consists of complex objects, you should use
OBJECT as the in-memory-format to minimize serialization cost. By default, the entry value is stored as a byte
array (BINARY format). When it is stored as an object (O0BJECT format), then the entry processor is applied directly
on the object. In that case, no serialization or deserialization is performed. But if there is a defined event listener,
a new entry value will be serialized when passing to the event publisher service.

NOTE: When in-memory-format is OBJECT, old value of the updated entry will be null.

8.2.1.1 Entry Processing with IMap

The methods below are in the IMap interface for entry processing.

executeOnKey processes an entry mapped by a key.

executeOnKeys processes entries mapped by a collection of keys.

submitToKey processes an entry mapped by a key while listening to event status.
executeOnEntries processes all entries in a map.

executeOnEntries can also process all entries in a map with a defined predicate.

Kk
* Applies the user defined EntryProcessor to the entry mapped by the key.
* Returns the object which is the result of the process() method of EntryProcessor.

8.2. ENTRY PROCESSOR 107

*/

Object executeOnKey(K key, EntryProcessor entryProcessor);

Kk

* Applies the user defined EntryProcessor to the entries mapped by the collection of keys.
* Returns the results mapped by each key in the collection.

*/

Map<K, Object> executeOnKeys(Set<K> keys, EntryProcessor entryProcessor);

Jk*
* Applies the user defined EntryProcessor to the entry mapped by the key with
* specified EzecutionCallback to listen to event status and return immediately.
*/

void submitToKey(K key, EntryProcessor entryProcessor, ExecutionCallback callback);

VAL
* Applies the user defined EntryProcessor to all entries in the map.
* Returns the results mapped by each key in the map.
*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor);

Jk*

* Applies the user defined EntryProcessor to the entries in the map which satisfies
provided predicate.

* Returns the results mapped by each key in the map.

*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor, Predicate predicate);

8.2.1.2 Entry Processing with EntryProcessor

And, here is the EntryProcessor interface:

public interface EntryProcessor<K, V> extends Serializable {
Object process(Map.Entry<K, V> entry);

EntryBackupProcessor<K, V> getBackupProcessor();

}

. NOTE: If you want to execute a task on a single key, you can also use executeOnKeyOunmer provided by
Ezecutor Service. But, in this case, you need to perform a lock and serialization.

When using executeOnEntries method, if the number of entries is high and you do need the results, then returning
null in process() method is a good practice. By this way, results of the processing is not stored in the map and
hence out of memory errors are eliminated.

8.2.1.3 Processing Backup Entries

If your code modifies the data, then you should also provide a processor for backup entries. This is required to
prevent the primary map entries from having different values than the backups; it causes the entry processor to be
applied both on the primary and backup entries.

public interface EntryBackupProcessor<K, V> extends Serializable {
void processBackup(Map.Entry<K, V> entry);
}

108 CHAPTER 8. DISTRIBUTED COMPUTING

l NOTE: You should explicitly call setValue method of Map.Entry when modifying data in Entry Processor.
Otherwise, Entry Processor will be accepted as read-only.

I NOTE: An EntryProcessor instance is not thread safe. If you are storing partition specific state between
invocations be sure to register this in a thread-local. A EntryProcessor instance can be used by multiple partition
threads.

l NOTE: EntryProcessors run via Operation Threads that are dedicated to specific partitions. Therefore with
long running EntryProcessor executions other partition operations cannot be processed, such as a ‘map.put(key)’
With this is in mind it is good practice to make your EntryProcessor executions as quick as possible

8.2.2 Sample Entry Processor Code

The EntryProcessorTest class has the following methods.

e testMapEntryProcessor puts one map entry and calls executeOnKey to process that map entry.
e testMapEntryProcessor puts all the entries in a map and calls executeOnEntries to process all the entries.

The static class IncrementingEntryProcessor creates an entry processor to process the map entries in the
EntryProcessorTest class.

public class EntryProcessorTest {

Q@Test
public void testMapEntryProcessor() throws InterruptedException {
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.0BJECT) ;

HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel.getMap("mapEntryProcessor");
map.put(1, 1);

EntryProcessor entryProcessor = new IncrementingEntryProcessor();
map.executeOnKey(1, entryProcessor);

assertEquals(map.get(1), (Object) 2);
hazelcastInstancel.getLifecycleService().shutdown();
hazelcastInstance2.getLifecycleService().shutdown();

Q@Test
public void testMapEntryProcessorAllKeys() throws InterruptedException {
StaticNodeFactory factory = new StaticNodeFactory(2);
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.0BJECT) ;

HazelcastInstance hazelcastInstancel = factory.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = factory.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel

.getMap("mapEntryProcessorAllKeys");

int size = 100;

for (int 1 = 0; i < size; i++) {
map.put(i, i);

}

8.2. ENTRY PROCESSOR 109

EntryProcessor entryProcessor = new IncrementingEntryProcessor();
Map<Integer, Object> res = map.executeOnEntries(entryProcessor);
for (int 1 = 0; i < size; i++) {

assertEquals(map.get(i), (Object) (1 + 1));
}
for (int i = 0; i < size; i++) {

assertEquals(map.get(i) + 1, res.get(i));
3
hazelcastInstancel.getLifecycleService().shutdown() ;
hazelcastInstance2.getLifecycleService() .shutdown();

static class IncrementingEntryProcessor
implements EntryProcessor, EntryBackupProcessor, Serializable {

public Object process(Map.Entry entry) {
Integer value = (Integer) entry.getValue();
entry.setValue(value + 1);
return value + 1;

}

public EntryBackupProcessor getBackupProcessor() {
return IncrementingEntryProcessor.this;

3

public void processBackup(Map.Entry entry) {
entry.setValue((Integer) entry.getValue() + 1);
}
}
}

8.2.3 Abstract Entry Processor

You can use the AbstractEntryProcessor when the same processing will be performed both on the primary and
backup map entries (i.e. the same logic applies to them). If you use EntryProcessor, you need to apply the same
logic to the backup entries separately. The AbstractEntryProcessor class makes this primary/backup processing
easier.

Please see the example code below.

public abstract class AbstractEntryProcessor <K, V>
implements EntryProcessor <K, V> {

private final EntryBackupProcessor <K,V> entryBackupProcessor;
public AbstractEntryProcessor() {

this(true);
3

public AbstractEntryProcessor(boolean applyOnBackup) {
if (applyOnBackup) {
entryBackupProcessor = new EntryBackupProcessorImpl();
} else {
entryBackupProcessor = null;
X
b

@0verride
public abstract Object process(Map.Entry<K, V> entry);

110 CHAPTER 8. DISTRIBUTED COMPUTING

@0verride
public final EntryBackupProcessor <K, V> getBackupProcessor() {
return entryBackupProcessor;

}

private class EntryBackupProcessorImpl implements EntryBackupProcessor <K,V>{
@0verride
public void processBackup(Map.Entry<K, V> entry) {

process(entry) ;

}

}

}

In the above example, the method getBackupProcessor returns an EntryBackupProcessor instance. This means
the same processing will be applied to both the primary and backup entries. If you want to apply the processing
only upon the primary entries, then make the getBackupProcessor method return null.

Chapter 9

Distributed Query

Distributed queries access data from multiple data sources stored on either the same or different computers.

9.1 Query Overview

Hazelcast partitions your data and spreads it across cluster of servers. You can iterate over the map entries and
look for certain entries (specified by predicates) you are interested in. However, this is not very efficient because
you will have to bring the entire entry set and iterate locally. Instead, Hazelcast allows you to run distributed
queries on your distributed map.

9.1.1 How It Works

1. The requested predicate is sent to each member in the cluster.

2. Each member looks at its own local entries and filters them according to the predicate. At this stage, key/value
pairs of the entries are deserialized and then passed to the predicate.

3. The predicate requester merges all the results coming from each member into a single set.

If you add new members to the cluster, the partition count for each member is reduced and hence the time spent by
each member on iterating its entries is reduced. Therefore, the above querying approach is highly scalable. Another
reason it is highly scalable is the pool of partition threads that evaluates the entries concurrently in each member.
The network traffic is also reduced since only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:

e Criteria API
e Distributed SQL Query
9.1.2 Employee Map Query Example

Assume that you have an “employee” map containing values of Employee objects, as coded below.

import java.io.Serializable;

public class Employee implements Serializable {
private String name;

private int age;

private boolean active;

private double salary;

111

112 CHAPTER 9. DISTRIBUTED QUERY

public Employee(String name, int age, boolean live, double price) {
this.name = name;
this.age = age;
this.active = live;
this.salary = price;

}

public Employee() {
}

public String getName() {
return name;

}

public int getAge() {
return age;

}

public double getSalary() {
return salary;

}

public boolean isActive() {
return active;

}

}

Now, let’s look for the employees who are active and have an age less than 30 using the aforementioned APIs
(Criteria API and Distributed SQL Query). The following subsections describe each query mechanism for this
example.

. NOTE: When using Portable objects, if one field of an object exists on one node but does not exist on another
one, Hazelcast does not throw an unknown field exception. Instead, Hazelcast treats that predicate, which tries to
perform a query on an unknown field, as an always false predicate.

9.1.3 Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence Query Language
(JPQL). Below is the code for the above example query.

import com.hazelcast.core.IMap;

import com.hazelcast.query.Predicate;

import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;
import com.hazelcast.config.Config;

IMap<String, Employee> map = hazelcastInstance.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = map.values(predicate);

In the above example code, predicate verifies whether the entry is active and its age value is less than 30. This
predicate is applied to the employee map using the map.values(predicate) method. This method sends the

9.1. QUERY OVERVIEW 113

predicate to all cluster members and merges the results coming from them. Since the predicate is communicated
between the members, it needs to be serializable.

map.

NOTE: Predicates can also be applied to keySet, entrySet and localKeySet of Hazelcast distributed

9.1.3.1 Predicates Class

The Predicates class offered by Hazelcast includes many operators for your query requirements. Some of them are
explained below.

equal: checks if the result of an expression is equal to a given value.

notEqual: checks if the result of an expression is not equal to a given value.

instanceOf: checks if the result of an expression has a certain type.

like: checks if the result of an expression matches some string pattern. % (percentage sign) is placeholder
for many characters, (underscore) is placeholder for only one character.

greaterThan: checks if the result of an expression is greater than a certain value.
greaterEqual: checks if the result of an expression is greater than or equal to a certain value.
lessThan: checks if the result of an expression is less than a certain value.

lessEqual: checks if the result of an expression is less than or equal to a certain value.
between: checks if the result of an expression is between 2 values (this is inclusive).

in: checks if the result of an expression is an element of a certain collection.

isNot: checks if the result of an expression is false.

regex: checks if the result of an expression matches some regular expression.

RELATED INFORMATION

Please see the Predicates class for all predicates provided.

9.1.3.2 Joining Predicates with AND, OR, NOT

Predicates can be joined using the and, or and not operators, as shown in the below examples.

public Set<Person> getWithNameAndAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age'", age);
Predicate predicate = Predicates.and(namePredicate, agePredicate);
return personMap.values(predicate);

public Set<Person> getWithNameOrAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age", age);
Predicate predicate = Predicates.or(namePredicate, agePredicate);
return personMap.values(predicate);

public Set<Person> getNotWithName(String name) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate predicate = Predicates.not(namePredicate);
return personMap.values(predicate);

}

https://github.com/hazelcast/hazelcast/blob/2709bc81cd499a3160827de24422cdb6cf98fe36/hazelcast/src/main/java/com/hazelcast/query/Predicates.java

114 CHAPTER 9. DISTRIBUTED QUERY

9.1.3.3 PredicateBuilder

You can simplify predicate usage with the PredicateBuilder class, which offers simpler predicate building. Please
see the below example code which selects all people with a certain name and age.

public Set<Person> getWithNameAndAgeSimplified(String name, int age) {
EntryObject e = new PredicateBuilder().getEntryObject();
Predicate agePredicate = e.get("age").equal(age);
Predicate predicate = e.get("name").equal(name).and(agePredicate);
return personMap.values(predicate);

9.1.4 Distributed SQL Query

com.hazelcast.query.SqlPredicate takes the regular SQL where clause. Here is an example:

IMap<Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(new SqlPredicate("active AND age < 30"));

9.1.4.1 Supported SQL Syntax

AND/OR: <expression> AND <expression> AND <expression>...

e active AND age>30
e active=false OR age = 45 OR name = ’Joe’
e active AND (age > 20 OR salary < 60000)

Equality: =, !'=, <, <=, >, >=

e <expression> = value
e age <= 30

e name = "Joe"

e salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <valuel> AND <value2>

e age BETWEEN 20 AND 33 (same as age >= 20 AND age <= 33)
e age NOT BETWEEN 30 AND 40 (same as age < 30 OR age > 40)

LIKE: <attribute> [NOT] LIKE ’expression’

The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for only one character.

name LIKE ’Jo%’ (true for ‘Joe’, ‘Josh’, ‘Joseph’ etc.)

name LIKE ’Jo_’ (true for ‘Joe’; false for ‘Josh’)

name NOT LIKE ’Jo_’ (true for ‘Josh’; false for ‘Joe’)

name LIKE ’J_s%’ (true for ‘Josh’, ‘Joseph’; false ‘John’, ‘Joe’)

IN: <attribute> [NOT] IN (vall, val2,...)

e age IN (20, 30, 40)

e age NOT IN (60, 70)

e active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))
e age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

9.1. QUERY OVERVIEW 115

9.1.5 Paging Predicate (Order & Limit)

Hazelcast provides paging for defined predicates. With its PagingPredicate class, you can get a collection of keys,
values, or entries page by page by filtering them with predicates and giving the size of the pages. Also, you can sort
the entries by specifying comparators.

In the example code below, the greaterEqual predicate gets values from the “students” map. This predicate has a
filter to retrieve the objects with a “age” greater than or equal to 18. Then a PagingPredicate is constructed in
which the page size is 5, so there will be 5 objects in each page.

The first time the values are called creates the first page. You can get the subsequent pages by using the nextPage ()
method of PagingPredicate and querying the map again with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap("students");
Predicate greaterEqual = Predicates.greaterEqual("age", 18);
PagingPredicate pagingPredicate = new PagingPredicate(greaterEqual, 5);
// Retrieve the first page

Collection<Student> values = map.values(pagingPredicate);

// Set up next page
pagingPredicate.nextPage();

// Retrieve mext page

values = map.values(pagingPredicate);

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or values page by page,
this collection must be an instance of Comparable (i.e. it must implement java.lang.Comparable). Otherwise,
the java.lang.IllegalArgument exception is thrown.

Paging Predicate is not supported in Transactional Context.

l NOTE: Currently, random page accessing is not supported.
RELATED INFORMATION

Please refer to the Javadoc for all predicates.

9.1.6 Indexing

Hazelcast distributed queries will run on each member in parallel and only results will return the conn. When a
query runs on a member, Hazelcast will iterate through the entire owned entries and find the matching ones. This
can be made faster by indexing the mostly queried fields, just like you would do for your database. Indexing will
add overhead for each write operation but queries will be a lot faster. If you query your map a lot, make sure to
add indexes for the most frequently queried fields. For example, if your active and age < 30 query, make sure
you add index for active and age fields. Here is how to do it.

IMap map = hazelcastInstance.getMap("employees");

// ordered, since we have ranged queries for this field
map.addIndex("age", true);

// not ordered, because boolean field cannot have range
map.addIndex("active", false);

IMap.addIndex(fieldName, ordered) is used for adding index. For each indexed field, if you have ranged queries
such as age>30, age BETWEEN 40 AND 60, then you should set the ordered parameter to true. Otherwise, set it
to false.

Also, you can define IMap indexes in configuration. An example is shown below.

http://hazelcast.org/docs/latest/javadoc/com/hazelcast/query/Predicates.html

116 CHAPTER 9. DISTRIBUTED QUERY

<map name="default">

<indexes>
<index ordered="false">name</index>
<index ordered="true'">age</index>
</indexes>
</map>

You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addMapIndexConfig(new MapIndexConfig("name", false));
mapConfig.addMapIndexConfig(new MapIndexConfig("age", true));

The following is the Spring declarative configuration for the same sample.

<hz:map name="default">
<hz:indexes>
<hz:index attribute="name"/>
<hz:index attribute="age" ordered="true'"/>
</hz:indexes>
</hz:map>

9.1.7 Query Thread Configuration

NOTE: Non-primitive types to be indexed should implement Comparable.

You can change the size of the thread pool dedicated to query operations using the pool-size property. Below is
an example of that declarative configuration.

<executor-service name="hz:query">
<pool-size>100</pool-size>
</executor-service>

Below is an example of the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query") .setPoolSize(100);

9.2 MapReduce

You have likely heard about MapReduce ever since Google released its research white paper on this concept. With
Hadoop as the most common and well known implementation, MapReduce gained a broad audience and made it
into all kinds of business applications dominated by data warehouses.

MapReduce is a software framework for processing large amounts of data in a distributed way. Therefore, the
processing is normally spread over several machines. The basic idea behind MapReduce is to map your source data
into a collection of key-value pairs and reducing those pairs, grouped by key, in a second step towards the final
result.

The main idea can be summarized with the following steps.
1. Read the source data.

2. Map the data to one or multiple key-value pairs.
3. Reduce all pairs with the same key.

http://research.google.com/archive/mapreduce.html

9.2. MAPREDUCE 117

Use Cases

The best known examples for MapReduce algorithms are text processing tools, such as counting the word frequency
in large texts or websites. Apart from that, there are more interesting examples of use cases listed below.

Log Analysis

Data Querying

Aggregation and summing
Distributed Sort

ETL (Extract Transform Load)
Credit and Risk management
Fraud detection

and more. ..

9.2.1 MapReduce Essentials

This section will give a deeper insight on the MapReduce pattern and helps you understand the semantics behind
the different MapReduce phases and how they are implemented in Hazelcast.

In addition to this, the following sections compare Hadoop and Hazelcast MapReduce implementations to help
adopters with Hadoop backgrounds to quickly get familiar with Hazelcast MapReduce.

9.2.1.1 MapReduce Workflow Example

The flowchart below demonstrates the basic workflow of the word count example (distributed occurrences analysis)
mentioned in the MapReduce section. From left to right, it iterates over all the entries of a data structure (in
this case an IMap). In the mapping phase, it splits the sentence into single words and emits a key-value pair per
word: the word is the key, 1 is the value. In the next phase, values are collected (grouped) and transported to their
corresponding reducers, where they are eventually reduced to a single key-value pair, the value being the number
of occurrences of the word. At the last step, the different reducer results are grouped up to the final result and
returned to the requester.

In pseudo code, the corresponding map and reduce function would look like the following. A Hazelcast code example
will be shown in the next section.

map(key:String, document:String):Void ->
for each w:word in document:
emit(w, 1)

reduce(word:String, counts:List[Int]):Int ->
return sum(counts)

9.2.1.2 MapReduce Phases

As seen in the workflow example, a MapReduce process consists of multiple phases. The original MapReduce
pattern describes two phases (map, reduce) and one optional phase (combine). In Hazelcast, these phases are
either only existing virtually to explain the data flow or are executed in parallel during the real operation while the
general idea is still persisting.

(KxV)*-> (Lx W)*
[(k1,v1), ..., (kn, vn)] -> [(11, w1), ..., (Im, wm)]
Mapping Phase

The mapping phase iterates all key-value pairs of any kind of legal input source. The mapper then analyzes the
input pairs and emits zero or more new key-value pairs.

KxV->(Lx W)*

118 CHAPTER 9. DISTRIBUTED QUERY

IMap<String, String> Mapping Grouping f Shuffling Reducing Final Result
& Saturn: 1
saturn: 1 - g \I
is: 17 s 1
a: 1 & 4 15 1
planet: 1 |° is: 1 \
4
S

saturn: 1

is: 3
Saturn

ac 3

[4 a:
A E 1 H
Saturn Is a planet l," y a 1 \‘
1 saturn:
',j: | is:

1
planet: 3 :
earth: 1 o : — a: 3
Earth is: 1 I planet: 1 .--""-f & planet: 3
— 1 —* planet: 1 earth: 1
Earth is a planet lanet: 1 " 4 planet: 1 | luta: 1
planet earth: 1 pluto:
not: 1
anymore: 1
Pt 4 earth: 1
pluto: 1
Fluto is mot a planet anymore /
pluto: 1 - pluto: ! not: 1
is: 1
not: 1
a 1T —# not: 1
planet: 1 . anymore: 1
anymore: 1 /

* anymore: 1

(k, v) -> [(11, w1), ..., (In, wn)]
Combine Phase

In the combine phase, multiple key-value pairs with the same key are collected and combined to an intermediate
result before being send to the reducers. Combine phase is also optional in Hazelcast, but is highly
recommended to lower the traffic.

In terms of the word count example, this can be explained using the sentences “Saturn is a planet but the Earth
is a planet, too”. As shown above, we would send two key-value pairs (planet, 1). The registered combiner now
collects those two pairs and combines them into an intermediate result of (planet, 2). Instead of two key-value pairs
sent through the wire, there is now only one for the key “planet”.

The pseudo code for a combiner is similar to the reducer.

combine(word:String, counts:List[Int]):Void ->
emit(word, sum(counts))

Grouping / Shuffling Phase

The grouping or shuffling phase only exists virtually in Hazelcast since it is not a real phase; emitted key-value
pairs with the same key are always transferred to the same reducer in the same job. They are grouped together,
which is equivalent to the shuffling phase.

Reducing Phase

In the reducing phase, the collected intermediate key-value pairs are reduced by their keys to build the final by-key
result. This value can be a sum of all the emitted values of the same key, an average value, or something completely
different, depending on the use case.

Here is a reduced representation of this phase.
L x W* > X*

(L, [w1, ..., wn]) -> [x1, ..., xn]

9.2. MAPREDUCE 119

Producing the Final Result

This is not a real MapReduce phase, but it is the final step in Hazelcast after all reducers are notified that reducing
has finished. The original job initiator then requests all reduced results and builds the final result.

9.2.1.3 Additional MapReduce Resources

The Internet is full of useful resources to find deeper information on MapReduce. Below is a short collection of
more introduction material. In addition, there are books written about all kinds of MapReduce patterns and how
to write a MapReduce function for your use case. To name them all is out of scope of this documentation.

e http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hei.stanford.edu/courses/cs448g/a2/files/map_ reduce_tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635

9.2.2 Introduction to MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the different API
classes, we will build the word count example that was discussed earlier and create it step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to build
and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is retrieved from
com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the name of the required
JobTracker configuration. The configuration for JobTrackers will be discussed later, for now we focus on the API
itself. In addition, the complete submission part of the API is built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar as possible to
their counterparts on Hadoop. That means while most users will recognize a lot of similar sounding classes, the
way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g. we create a specialized JobTracker
configuration (at the end). Special JobTracker configuration is not required, because for all other Hazelcast features
you can use “default” as the configuration name. However, special configurations offer better options to predict
behavior of the framework execution.

The full example is available here as a ready to run Maven project.

9.2.2.1 JobTracker

JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a single
MapReduce configuration. The same Job can be submitted multiple times, no matter if it is executed in parallel or
after the previous execution is finished.

I NOTE: After retrieving the JobTracker, be aware that it should only be used with data structures derived
from the same HazelcastInstance. Otherwise, you can get unexpected behavior.

To retrieve a JobTracker from Hazelcast, we will start by using the “default” configuration for convenience reasons
to show the basic way.

import com.hazelcast.mapreduce.*;
JobTracker jobTracker = hazelcastInstance.getJobTracker("default");
JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After building the

cluster connection, you use the created HazelcastInstance to request the configured (or default) JobTracker from
Hazelcast.

http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635
http://github.com/noctarius/hz-map-reduce

120 CHAPTER 9. DISTRIBUTED QUERY

The next step will be to create a new Job and configure it to execute our first MapReduce request against cluster
data.

9.2.2.2 Job

As mentioned in the JobTracker section, a Job is created using the retrieved JobTracker instance. A Job defines
exactly one configuration of a MapReduce task. Mapper, combiner and reducers will be defined per job but since
the Job instance is only a configuration, it is possible to be submitted multiple times, no matter if executions
happening in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker’s name and a jobld generated
on submit-time. The way for retrieving the jobld will be shown in one of the later sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a deeper
look at the KeyValueSource class in the next section, for now it is enough to know that it is used to wrap any kind
of data or data structure into a well defined set of key-value pairs.

Below example code is a direct follow up of the example of the JobTracker section and reuses the already created
HazelcastInstance and JobTracker instances.

We start by retrieving an instance of our data map and create the Job instance afterwards. Implementations used
to configure the Job will be discussed while walking further through the API documentation, they are not yet
discussed.

l NOTE: Since the Job class is highly dependent upon generics to support type safety, the generics change
over time and may not be assignment compatible to old variable types. To make use of the full potential of the fluent
API, we recommend you use fluent method chaining as shown in this example to prevent the need for too many
variables.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map) ;
Job<String, String> job = jobTracker.newJob(source);

ICompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner (new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit () ;

// Attach a callback listener
future.andThen(buildCallback());

// Wait and retrieve the result
Map<String, Long> result = future.get();

As seen above, we create the Job instance and define a mapper, combiner, reducer and eventually submit the
request to the cluster. The submit method returns an ICompletableFuture that can be used to attach our callbacks
or just to wait for the result to be processed in a blocking fashion.

There are more options available for job configurations such as defining a general chunk size or on what keys the
operation will operate. For more information, please refer to the Javadoc matching your Hazelcast version.

9.2.2.3 KeyValueSource

KeyValueSource is able to either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-value
pair input sources, or build your own custom key-value input source. The latter option makes it possible to feed
Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web page contents or data files.
People familiar with Hadoop will recognize similarities with the Input class.

9.2. MAPREDUCE 121

You can imagine a KeyValueSource as a bigger java.util.Iterator implementation. Whereas most methods are
required to be implemented, the getAl1Keys method is optional to implement. If implementation is able to gather
all keys upfront, it should be implemented and isAl1KeysSupported must return true. That way, Job configured
KeyPredicates are able to evaluate keys upfront before sending them to the cluster. Otherwise, they are serialized
and transferred as well, to be evaluated at execution time.

As shown in the example above, the abstract KeyValueSource class provides a number of static methods to easily
wrap Hazelcast data structures into KeyValueSource implementations already provided by Hazelcast. The data
structures’ generics are inherited into the resulting KeyValueSource instance. For data structures like IList or ISet,
the key type is always String. While mapping, the key is the data structure’s name whereas the value type and
value itself are inherited from the IList or ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap("my-map");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);

// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap("my-multimap");
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap(multiMap);

// KeyValueSource from com.hazelcast.core.IList
IList<String> list = hazelcastInstance.getList("my-list");
KeyValueSource<String, String> source = KeyValueSource.fromList(list);

// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet("my-set");
KeyValueSource<String, String> source = KeyValueSource.fromSet(set);

Partitionld Aware

The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource imple-
mentation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for all internal data
structures). If this interface is implemented, the same KeyValueSource instance is reused multiple times for all
partitions on the cluster node. As a consequence, the close and open methods are also executed multiple times
but once per partitionld.

9.2.2.4 Mapper

Using the Mapper interface, you will implement the mapping logic. Mappers can transform, split, calculate, aggregate
data from data sources. In Hazelcast, it is also possible to integrate data from more than the KeyValueSource
data source by implementing com.hazelcast.core.HazelcastInstanceAware and requesting additional maps,
multimaps, list, sets.

The mappers map function is called once per available entry in the data structure. If you work on distributed data
structures that operate in a partition based fashion, then multiple mappers work in parallel on the different cluster
nodes, on the nodes’ assigned partitions. Mappers then prepare and maybe transform the input key-value pair and
emit zero or more key-value pairs for reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it by splitting
the text into the available words. After that, as discussed in the pseudo code, we emit every single word with a
key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
private static final Long ONE = Long.valueOf(1L);

@0verride

122 CHAPTER 9. DISTRIBUTED QUERY

public void map(String key, String document, Context<String, Long> context) {
StringTokenizer tokenizer = new StringTokenizer(document.toLowerCase());
while (tokenizer.hasMoreTokens()) {
context.emit(tokenizer.nextToken(), ONE);
}
}
}

The code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are more tokens, and
emits a pair per word. Note that we’re not yet collecting multiple occurrences of the same word, we just fire every
word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the Mapper
implementation lifecycle aware. That means it will be notified when mapping of a partition or set of data begins
and when the last entry was mapped.

Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit additional values.

9.2.2.5 Combiner / CombinerFactory

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster nodes when
transmitting mapped values from mappers to the reducers. It does this by aggregating multiple values for the same
emitted key. This is a fully optional operation, but using it is highly recommended.

Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to the key for which
the combiner initially was created. Since combiners are created per emitted key, the Combiner implementation itself
is not defined in the jobs configuration; instead, a CombinerFactory is created that is able to create the expected
Combiner instance.

Because Hazelcast MapReduce is executing mapping and reducing phase in parallel, the Combiner implementation
must be able to deal with chunked data. Therefore, you must reset its internal state whenever you call finalizeChunk.
Calling that method creates a chunk of intermediate data to be grouped (shuffled) and sent to the reducers.

Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.

For our word count example, we are going to have a simple CombinerFactory and Combiner implementation similar
to the following example.

public class WordCountCombinerFactory
implements CombinerFactory<String, Long, Long> {

@0verride
public Combiner<Long, Long> newCombiner(String key) {
return new WordCountCombiner();

}

private class WordCountCombiner extends Combiner<Long, Long> {
private long sum = O;

@0verride
public void combine(Long value) {
sum++;

}

@0verride
public Long finalizeChunk() {
return sum;

3

9.2. MAPREDUCE 123

@0verride
public void reset() {
sum = O;
}
}
}

The Combiner must be able to return its current value as a chunk and reset the internal state by setting sum back
to 0. Since combiners are always called from a single thread, no synchronization or volatility of the variables is
necessary.

9.2.2.6 Reducer / ReducerFactory

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or any other work
that is expected from the algorithm.

Since values arrive in chunks, the reduce method is called multiple times for every emitted value of the creation
key. This also can happen multiple times per chunk if no Combiner implementation was configured for a job
configuration.

In difference of the combiners, a reducers finalizeReduce method is only called once per reducer (which means
once per key). Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation will look similar to the following code example.

public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

@0verride
public Reducer<Long, Long> newReducer(String key) {
return new WordCountReducer();

}

private class WordCountReducer extends Reducer<Long, Long> {
private volatile long sum = O;

@0verride
public void reduce(Long value) {
sum += value.longValue();

3

@0verride
public Long finalizeReduce() {
return sum;
}
}
}

Different from combiners, reducers tend to switch threads if running out of data to prevent blocking threads from
the JobTracker configuration. They are rescheduled at a later point when new data to be processed arrives but
unlikely to be executed on the same thread as before. As of Hazelcast version 3.3.3 the guarantee for memory
visibility on the new thread is ensured by the framework. This means the previous requirement for making fields
volatile is dropped.

9.2.2.7 Collator

A Collator is an optional operation that is executed on the job emitting node and is able to modify the finally
reduced result before returned to the user’s codebase. Only special use cases are likely to use collators.

124 CHAPTER 9. DISTRIBUTED QUERY

For an imaginary use case, we might want to know how many words were all over in the documents we analyzed.
For this case, a Collator implementation can be given to the submit method of the Job instance.

A collator would look like the following snippet:

public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

@0verride
public Long collate(Iterable<Map.Entry<String, Long>> values) {
long sum = 0;

for (Map.Entry<String, Long> entry : values) {
sum += entry.getValue().longValue();
by
return sum;
b
b

The definition of the input type is a bit strange, but because Combiner and Reducer implementations are optional,
the input type heavily depends on the state of the data. As stated above, collators are non-typical use cases and
the generics of the framework always help in finding the correct signature.

9.2.2.8 KeyPredicate

A XeyPredicate can be used to pre-select whether or not a key should be selected for mapping in the mapping
phase. If the KeyValueSource implementation is able to know all keys prior to execution, the keys are filtered
before the operations are divided among the different cluster nodes.

A KeyPredicate can also be used to select only a special range of data (e.g. a time-frame) or similar use cases.

A basic KeyPredicate implementation that only maps keys containing the word “hazelcast” might look like the
following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

@0verride
public boolean evaluate(String s) {
return s != null && s.toLowerCase().contains("hazelcast");
}
}

9.2.2.9 TrackableJob and Job Monitoring

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker using the
unique jobld (per JobTracker). It can be used to get runtime statistics of the job. The information available is
limited to the number of processed (mapped) records and the processing state of the different partitions or nodes
(if KeyValueSource is not Partitionld Aware).

To retrieve the jobld after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture instead
of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

The example code below gives a quick introduction on how to retrieve the instance and the runtime data. For more
information, please have a look at the Javadoc corresponding your running Hazelcast version.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);
Job<String, String> job = jobTracker.newJob(source);

9.2. MAPREDUCE 125

JobCompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner(new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit () ;

String jobId = future.getJobId();
TrackableJob trackableJob = jobTracker.getTrackableJob(jobId) ;

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log("ProcessedRecords: " + processedRecords);

JobPartitionState[] partitionStates = stats.getPartitionStates();
for (JobPartitionState partitionState : partitionStates) {
log("PartitionOwner: " + partitionState.getOwner ()
+ ", Processing state: " + partitionState.getState().name());

. NOTE: Caching of the JobProcessInformation does not work on Java native clients since current values are
retrieved while retrieving the instance to minimize traffic between executing node and client.

9.2.2.10 JobTracker Configuration

The JobTracker configuration is used to setup behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is meant as a shared
resource for all jobs created by the same JobTracker. The configuration gives full control over the expected load
behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. We will discuss the configuration properties one
by one:

<jobtracker name="default">

<max-thread-size>0</max-thread-size>

<!-- Queue size O means number of partitions * 2 —-->

<queue-size>0</queue-size>

<retry-count>0</retry-count>

<chunk-size>1000</chunk-size>

<communicate-stats>true</communicate-stats>

<topology-changed-strategy>CANCEL_RUNNING_OPERATION</topology-changed-strategy>
</jobtracker>

e max-thread-size: Configures the maximum thread pool size of the JobTracker.

e queue-size: Defines the maximum number of tasks that are able to wait to be processed. A value of 0 means
an unbounded queue. Very low numbers can prevent successful execution since job might not be correctly
scheduled or intermediate chunks might be lost.

e retry-count: Currently not used. Reserved for later use where the framework will automatically try to
restart / retry operations from an available save point.

e chunk-size: Defines the number of emitted values before a chunk is sent to the reducers. If your emitted
values are big or you want to better balance your work, you might want to change this to a lower or higher
value. A value of 0 means immediate transmission, but remember that low values mean higher traffic costs.
A very high value might cause an OutOfMemoryError to occur if the emitted values do not fit into heap
memory before being sent to the reducers. To prevent this, you might want to use a combiner to pre-reduce
values on mapping nodes.

126 CHAPTER 9. DISTRIBUTED QUERY

e communicate-stats: Defines if statistics (for example, statistics about processed entries) are transmitted to
the job emitter. This can show progress to a user inside of an UI system, but it produces additional traffic. If
not needed, you might want to deactivate this.

e topology-changed-strategy: Defines how the MapReduce framework will react on topology changes while
executing a job. Currently, only CANCEL_RUNNING__OPERATION is fully supported, which throws an
exception to the job emitter (will throw a com.hazelcast.mapreduce.TopologyChangedException).

RELATED INFORMATION

Please refer to the MapReduce Jobtracker Configuration section for a full description of Hazelcast MapReduce
JobTracker configuration (includes an example programmatic configuration).

9.2.3 Hazelcast MapReduce Architecture

This section explains some of the internals of the MapReduce framework. This is more advanced information. If
you’re not interested in how it works internally, you might want to skip this section.

9.2.3.1 Node Interoperation Example

To understand the following technical internals, we first have a short look at what happens in terms of an example
workflow.

As a simple example, think of an IMap<String, Integer> and emitted keys having the same types. Imagine you
have a three node cluster and you initiate the MapReduce job on the first node. After you requested the JobTracker
from your running / connected Hazelcast, we submit the task and retrieve the ICompletableFuture which gives us a
chance to wait for the result to be calculated or to add a callback (and being more reactive).

The example expects that the chunk size is 0 or 1, so an emitted value is directly sent to the reducers. Internally,
the job is prepared, started, and executed on all nodes as shown below. The first node acts as the job owner (job
emitter).

Nodel starts MapReduce job
Nodel emits key=Foo, value=1
Nodel does PartitionService::getKeyOwner (Foo) => results in Node3

Node2 emits key=Foo, value=14
Node2 asks jobOwner (Nodel) for keyOwner of Foo => results in Node3

Nodel sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer,
if not creates one for key=Foo

Node3 processes chunk for key=Foo

Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Node3 processes chunk for key=Foo

Nodel send LastChunk information to Node3 because processing local values finished

Node2 emits key=Foo, value=27

Node2 has cached keyOwner of Foo => results in Node3

Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

9.2. MAPREDUCE 127

Node3 processes chunk for key=Foo
Node2 send LastChunk information to Node3 because processing local values finished
Node3 finishes reducing for key=Foo

Nodel registers its local partitions are processed
Node2 registers its local partitions are processed

Nodel sees all partitions processed and requests reducing from all nodes

Nodel merges all reduced results together in a final structure and returns it

The flow is quite complex but extremely powerful since everything is executed in parallel. Reducers do not wait
until all values are emitted, but they immediately begin to reduce (when first chunk for an emitted key arrives).

9.2.3.2 Internal Architecture

Beginning with the package level, there is one basic package: com.hazelcast.mapreduce. This includes the
external API and the impl package which itself contains the internal implementation.

e The impl package contains all the default KeyValueSource implementations and abstract base and support
classes for the exposed API.

e The client package contains all classes that are needed on client and server (node) side when a client offers a
MapReduce job.

e The notification package contains all “notification” or event classes that notify other members about progress
on operations.

e The operation package contains all operations that are used by the workers or job owner to coordinate work
and sync partition or reducer processing.

e The task package contains all classes that execute the actual MapReduce operation. It features the supervisor,
mapping phase implementation and mapping and reducing tasks.

9.2.3.3 MapReduce Job Walk-Through

And now to the technical walk-through: a MapReduce Job is always retrieved from a named JobTracker, which is
implemented in NodeJobTracker (extends AbstractJobTracker) and is configured using the configuration DSL.
All of the internal implementation is completely ICompletableFuture-driven and mostly non-blocking in design.

On submit, the Job creates a unique UUID which afterwards acts as a jobld and is combined with the JobTracker’s
name to be uniquely identifiable inside the cluster. Then, the preparation is sent around the cluster and every
member prepares its execution by creating a JobSupervisor, MapCombineTask, and ReducerTask. The job-emitting
JobSupervisor gains special capabilities to synchronize and control JobSupervisors on other nodes for the same job.

If preparation is finished on all nodes, the job itself is started by executing a StartProcessingJobOperation on every
node. This initiates a MappingPhase implementation (defaults to KeyValueSourceMappingPhase) and starts the
actual mapping on the nodes.

The mapping process is currently a single threaded operation per node, but will be extended to run in parallel on
multiple partitions (configurable per Job) in future versions. The Mapper is now called on every available value on
the partition and eventually emits values. For every emitted value, either a configured CombinerFactory is called to
create a Combiner or a cached one is used (or the default CollectingCombinerFactory is used to create Combiners).
When the chunk limit is reached on a node, a IntermediateChunkNotification is prepared by collecting emitted
keys to their corresponding nodes. This is either done by asking the job owner to assign members or by an already
cached assignment. In later versions, a PartitionStrategy might also be configurable.

The IntermediateChunkNotification is then sent to the reducers (containing only values for this node) and is offered
to the ReducerTask. On every offer, the ReducerTask checks if it is already running and if not, it submits itself to
the configured ExecutorService (from the JobTracker configuration).

128 CHAPTER 9. DISTRIBUTED QUERY

If reducer queue runs out of work, the ReducerTask is removed from the ExecutorService to not block threads but
eventually will be resubmitted on next chunk of work.

On every phase, the partition state is changed to keep track of the currently running operations. A JobPartitionState
can be in one of the following states with self-explanatory titles: [WAITING, MAPPING, REDUCING, PROCESSED,
CANCELLED]. If you have a deeper interest of these states, look at the Javadoc.

e Node asks for new partition to process: WAITING => MAPPING
e Node emits first chunk to a reducer: MAPPING => REDUCING
e All nodes signal that they finished mapping phase and reducing is finished, too: REDUCING => PROCESSED

Eventually (or hopefully), all JobPartitionStates reach the state of PROCESSED. Then, the job emitter’s JobSu-
pervisor asks all nodes for their reduced results and executes a potentially offered Collator. With this Collator, the
overall result is calculated before it removes itself from the JobTracker, doing some final cleanup and returning the
result to the requester (using the internal TrackableJobFuture).

If a job is cancelled while execution, all partitions are immediately set to the CANCELLED state and a CancelJob-
SupervisorOperation is executed on all nodes to kill the running processes.

While the operation is running in addition to the default operations, some more operations like ProcessStatsUpda-
teOperation (updates processed records statistics) or NotifyRemoteExceptionOperation (notifies the nodes that the
sending node encountered an unrecoverable situation and the Job needs to be cancelled - e.g. NullPointerException
inside of a Mapper) are executed against the job owner to keep track of the process.

9.3 Aggregators

Based on the Hazelcast MapReduce framework, Aggregators are ready-to-use data aggregations. These are typical
operations like sum up values, finding minimum or maximum values, calculating averages, and other operations
that you would expect in the relational database world.

Aggregation operations are implemented, as mentioned above, on top of the MapReduce framework and all
operations can be achieved using pure MapReduce calls. However, using the Aggregation feature is more convenient
for a big set of standard operations.

9.3.1 Aggregations Basics

This section will quickly guide you through the basics of the Aggregations framework and some of its available
classes. We also will implement a first base example.

Aggregations are available on both types of map interfaces, com.hazelcast.core.IMap and com.hazelcast
.core.MultiMap, using the aggregate methods. Two overloaded methods are available that customize resource man-
agement of the underlying MapReduce framework by supplying a custom configured com.hazelcast.mapreduce. JobTracker
instance. To find out how to configure the MapReduce framework, please see the JobTracker Configuration section.

We will later see another way to configure the automatically used MapReduce framework if no special JobTracker

is supplied.

To make Aggregations more convenient to use and future proof, the API is heavily optimized for Java 8 and future
versions. The APT is still fully compatible with any Java version Hazelcast supports (Java 6 and Java 7). The
biggest difference is how you work with the Java generics: on Java 6 and 7, the process to resolve generics is not as
strong as on Java 8 and upcoming Java versions. In addition, the whole Aggregations API has full Java 8 Project
Lambda (or Closure, JSR 335) support.

For illustration of the differences in Java 6 and 7 in comparison to Java 8, we will have a quick look at code
examples for both. After that, we will focus on using Java 8 syntax to keep examples short and easy to understand,
and we will see some hints as to what the code looks like in Java 6 or 7.

The first example will produce the sum of some int values stored in a Hazelcast IMap. This example does not use
much of the functionality of the Aggregations framework, but it will show the main difference.

https://jcp.org/en/jsr/detail?id=335

9.3. AGGREGATORS 129

IMap<String, Integer> personAgeMapping = hazelcastInstance.getMap("person-age");
for (int 1 = 0; i < 1000; i++) {

String lastName = RandomUtil.randomLastName();

int age = RandomUtil.randomAgeBetween(20, 80);

personAgeMapping.put(lastName, Integer.valueOf(age));
}

With our demo data prepared, we can see how to produce the sums in different Java versions.

9.3.1.1 Aggregations and Java 6 or Java 7

Since Java 6 and 7 are not as strong on resolving generics as Java 8, you need to be a bit more verbose with the
code you write. You might also consider using raw types, but breaking the type safety to ease this process.

For a short introduction on what the following code example means, look at the source code comments. We will
later dig deeper into the different options.

// No filter applied, select all entries

Supplier<String, Integer, Integer> supplier = Supplier.all();

// Choose the sum aggregation

Aggregation<String, Integer, Integer> aggregation = Aggregations.integerSum();
// Ezecute the aggregation

int sum = personAgeMapping.aggregate(supplier, aggregation);

9.3.1.2 Aggregations and Java 8

With Java 8, the Aggregations API looks simpler because Java 8 can resolve the generic parameters for us. That
means the above lines of Java 6/7 example code will end up in just one easy line on Java 8.

int sum = personAgeMapping.aggregate(Supplier.all(), Aggregations.integerSum());

9.3.1.3 Quick look at the MapReduce Framework

As mentioned before, the Aggregations implementation is based on the Hazelcast MapReduce framework and
therefore you might find overlaps in their APIs. One overload of the aggregate method can be supplied with a
JobTracker which is part of the MapReduce framework.

If you implement your own aggregations, you will use a mixture of the Aggregations and the MapReduce API. If
you will implement your own aggregation, e.g. to make the life of colleagues easier, please read the Implementing
Aggregations section.

For the full MapReduce documentation please see the MapReduce section.

9.3.2 Introduction to Aggregations API

We now look into the possible options of what can be achieved using the Aggregations API. To work on some
deeper examples, let’s quickly have a look at the available classes and interfaces and discuss their usage.

9.3.2.1 Supplier

The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the aggrega-
tion operation. This class already provides a few different static methods to achieve the most common cases.
Supplier.all() accepts all incoming values and does not apply any data extraction or transformation upon them
before supplying them to the aggregation function itself.

For filtering data sets, you have two different options by default. You can either supply a com.hazelcast.query.Predicate
if you want to filter on values and / or keys, or you can supply a com.hazelcast.mapreduce.KeyPredicate if you
can decide directly on the data key without the need to deserialize the value.

130 CHAPTER 9. DISTRIBUTED QUERY

9.3.2.1.1 Basic Filtering As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let’s have
a look on how we can do basic filtering using those two options.

First, we have a look at a KeyPredicate and only accept people whose last name is “Jones”.

Supplier<...> supplier = Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName)

)

class JonesKeyPredicate implements KeyPredicate<String> {
public boolean evaluate(String key) {
return "Jones".equalsIgnoreCase(key);
}
}

Using the standard Hazelcast Predicate interface, you can also filter based on the value of a data entry. In the
following example, you can only select values which are divisible by 4 without a remainder.

Supplier<...> supplier = Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0
)s

class DivisiblePredicate implements Predicate<String, Integer> {
public boolean apply(Map.Entry<String, Integer> entry) {
return entry.getValue() % 4 == 0;
}
}

9.3.2.1.2 Extracting and Transforming Data As well as filtering, Supplier can also extract or transform
data before providing it to the aggregation operation itself. The following example shows how to transform an
input value to a string.

Supplier<String, Integer, String> supplier = Supplier.all(
value -> Integer.toString(value)

)

You can see a Java 6 / 7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see that the generic
information of the resulting Supplier has changed as well. This indicates that we now have an aggregation working
on string values.

9.3.2.1.3 Chaining Multiple Filtering Rules Another feature of Supplier is its ability to chain multiple
filtering rules. Let’s combine all of the above examples into one rule set:

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0,
Supplier.all(value -> Integer.toString(value))

9.3. AGGREGATORS 131

9.3.2.1.4 Implementing Based on Special Requirements Last but not least, you might prefer to (or need
to) implement your Supplier based on special requirements. This is a very basic task. The Supplier abstract
class has just one method.

! NOTE: Due to a limitation of the Java Lambda API, you cannot implement abstract classes using Lambdas.
Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
public String apply(Map.Entry<String, Integer> entry) {
Integer value = entry.getValue();
if (value == null) {
return null;
}
return value % 4 == 0 7 String.valueOf(value) : null;
}
}

Suppliers are expected to return null from the apply method whenever the input value should not be mapped to
the aggregation process. This can be used, as in the example above, to implement filter rules directly. Implementing
filters using the KeyPredicate and Predicate interfaces might be more convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other Suppliers.
int sum = personAgeMapping.aggregate(new MyCustomSupplier(), Aggregations.count());

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
new MyCustomSupplier()
)
int sum = personAgeMapping.aggregate(supplier, Aggregations.count());

9.3.2.2 Aggregation and Aggregations

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation itself. It
contains a set of MapReduce API implementations like Mapper, Combiner, Reducer, and Collator. These
implementations are normally unique to the chosen Aggregation. This interface can also be implemented with
your aggregation operations based on MapReduce calls. For more information, refer to Implementing Aggregations
section.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of aggrega-
tions. This class contains type safe aggregations of the following types:

Average (Integer, Long, Double, Biglnteger, BigDecimal)

Sum (Integer, Long, Double, BigInteger, BigDecimal)

Min (Integer, Long, Double, Biglnteger, BigDecimal, Comparable)
Max (Integer, Long, Double, Biglnteger, BigDecimal, Comparable)
DistinctValues

Count

Those aggregations are similar to their counterparts on relational databases and can be equated to SQL statements
as set out below.

132 CHAPTER 9. DISTRIBUTED QUERY

9.3.2.2.1 Average Calculates an average value based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerAvg());

SELECT AVG(person.age) FROM person;

9.3.2.2.2 Sum Calculates a sum based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerSum());

SELECT SUM(person.age) FROM person;

9.3.2.2.3 Minimum (Min) Finds the minimal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMin());

SELECT MIN(person.age) FROM person;

9.3.2.2.4 Maximum (Max) Finds the maximal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMax());

SELECT MAX(person.age) FROM person;

9.3.2.2.5 Distinct Values Returns a collection of distinct values over the selected values

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.distinctValues());

SELECT DISTINCT person.age FROM person;

9.3.2.2.6 Count Returns the element count over all selected values
map.aggregate(Supplier.all(), Aggregations.count());

SELECT COUNT(*) FROM person;

9.3.2.3 PropertyExtractor

We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had a look
at the example on how to use a Supplier to transform a value to another type. It can also be used to extract
attributes from values.

9.3. AGGREGATORS 133

class Person {
private String firstName;
private String lastName;
private int age;

// getters and setters
}

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();

class AgeExtractor implements PropertyExtractor<Person, Integer> {
public Integer extract(Person value) {
return value.getAge();
X
}

In this example, we extract the value from the person’s age attribute. The value type changes from Person to
Integer which is reflected in the generics information to stay type safe.

PropertyExtractors are meant to be used for any kind of transformation of data. You might even want to have
multiple transformation steps chained one after another.

9.3.2.4 Aggregation Configuration

As stated before, the easiest way to configure the resources used by the underlying MapReduce framework is to supply
a JobTracker to the aggregation call itself by passing it to either IMap: :aggregate or MultiMap: :aggregate.

There is another way to implicitly configure the underlying used JobTracker. If no specific JobTracker was passed
for the aggregation call, internally one will be created using the following naming specifications:

For IMap aggregation calls the naming specification is created as:

e hz::aggregation-map- and the concatenated name of the map.

For MultiMap it is very similar:

e hz::aggregation-multimap- and the concatenated name of the MultiMap.

Knowing that (the specification of the name), we can configure the JobTracker as expected (as described in
the Jobtracker section) using the naming spec we just learned. For more information on configuration of the
JobTracker, please see the JobTracker Configuration section.

To finish this section, let’s have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap("mymap");

// The internal JobTracker name resolves to ’hz::aggregation-map-mymap’
map.aggregate(...);

MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap("mymultimap");

// The internal JobTracker name resolves to ’hz::aggregation-multimap-mymultimap’
multimap.aggregate(...);

134 CHAPTER 9. DISTRIBUTED QUERY

9.3.3 Aggregations Examples

For the final example, imagine you are working for an international company and you have an employee database
stored in Hazelcast IMap with all employees worldwide and a MultiMap for assigning employees to their certain
locations or offices. In addition, there is another IMap which holds the salary per employee.

Let’s have a look at our data model:

class Employee implements Serializable {
private String firstName;
private String lastName;
private String companyName;
private String address;
private String city;
private String county;
private String state;
private int zip;
private String phonel;
private String phone2;
private String email;
private String web;

// getters and setters
}

class SalaryMonth implements Serializable {
private Month month;
private int salary;

// getters and setters
}

class SalaryYear implements Serializable {
private String email;
private int year;
private List<SalaryMonth> months;

// getters and setters

public int getAnnualSalary() {
int sum = O;
for (SalaryMonth salaryMonth : getMonths()) {

sum += salaryMonth.getSalary();

3
return sum;

}

}

The two IMaps and the MultiMap are keyed by the string of email. They are defined as follows:

IMap<String, Employee> employees = hz.getMap("employees");
IMap<String, SalaryYear> salaries = hz.getMap("salaries");
MultiMap<String, String> officeAssignment = hz.getMultiMap("office-employee");

So far, we know all the important information to work out some example aggregations. We will look into some
deeper implementation details and how we can work around some current limitations that will be eliminated in
future versions of the API.

Let’s start with a very basic example. We want to know the average salary of all of our employees. To do this, we
need a PropertyExtractor and the average aggregation for type Integer.

9.3. AGGREGATORS 135

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.all(extractor),
Aggregations.integerAvg());

That’s it. Internally, we created a MapReduce task based on the predefined aggregation and fired it up immediately.
Currently, all aggregation calls are blocking operations, so it is not yet possible to execute the aggregation in a
reactive way (using com.hazelcast.core.ICompletableFuture) but this will be part of an upcoming version.

9.3.3.1 Map Join Example

The following example is a little more complex. We only want to have our US based employees selected into the
average salary calculation, so we need to execute some kind of a join operation between the employees and salaries
maps.

class USEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
Employee employee = employees.get(email);
return "US".equals(employee.getCountry());
}
}

Using the HazelcastInstanceAware interface, we get the current instance of Hazelcast injected into our filter and
we can perform data joins on other data structures of the cluster. We now only select employees that work as part
of our US offices into the aggregation.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(
new USEmployeeFilter(), extractor
), Aggregations.integerAvg());

9.3.3.2 Grouping Example

For our next example, we will do some grouping based on the different worldwide offices. Currently, a group
aggregator is not yet available, so we need a small workaround to achieve this goal. (In later versions of the
Aggregations API this will not be required because it will be available out of the box in a much more convenient
way.)

Again, let’s start with our filter. This time, we want to filter based on an office name and we need to do some data
joins to achieve this kind of filtering.

A short tip: to minimize the data transmission on the aggregation we can use Data Affinity rules to influence the
partitioning of data. Be aware that this is an expert feature of Hazelcast.

class OfficeEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;
private String office;

136 CHAPTER 9. DISTRIBUTED QUERY

// Deserialization Constructor
public OfficeEmployeeFilter() {
}

public OfficeEmployeeFilter(String office) {
this.office = office;

3

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
MultiMap<String, String> officeAssignment = hazelcastInstance
.getMultiMap("office-employee");

return officeAssignment.containsEntry(office, email);
b
3

Now we can execute our aggregations. As mentioned before, we currently need to do the grouping on our own by
executing multiple aggregations in a row.

Map<String, Integer> avgSalariesPerOffice = new HashMap<String, Integer>();

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
MultiMap<String, String> officeAssignment =
hazelcastInstance.getMultiMap("office-employee");

PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();

for (String office : officeAssignment.keySet()) {
OfficeEmployeeFilter filter = new OfficeEmployeeFilter(office);
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(filter, extractor),
Aggregations.integerAvg());

avgSalariesPerOffice.put(office, avgSalary);

}

9.3.3.3 Simple Count Example

After the previous example, we want to end this section by executing one final and easy aggregation. We want to
know how many employees we currently have on a worldwide basis. Before reading the next lines of example code,
you can try to do it on your own to see if you understood how to execute aggregations.

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.size();

Ok, after that quick joke, we look at the real two code lines:

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.aggregate(Supplier.all(), Aggregations.count());

We now have an overview of how to use aggregations in real life situations. If you want to do your colleagues a favor,
you might want to write your own additional set of aggregations. If so, then read the next section, Implementing
Aggregations.

9.4. CONTINUOUS QUERY 137

9.3.4 Implementing Aggregations

This section explains how to implement your own aggregations in your own application. It is meant to be an
advanced section, so if you do not intend to implement your own aggregation, you might want to stop reading here
and come back later when you need to know how to implement your own aggregation.

The main interface for making your own aggregation is com.hazelcast.mapreduce.aggregation.Aggregation.
It consists of four methods.

interface Aggregation<Key, Supplied, Result> {
Mapper getMapper(Supplier<Key, 7, Supplied> supplier);
CombinerFactory getCombinerFactory();
ReducerFactory getReducerFactory() ;
Collator<Map.Entry, Result> getCollator();

An Aggregation implementation is just defining a MapReduce task with a small difference: the Mapper is always
expected to work on a Supplier that filters and / or transforms the mapped input value to some output value.

getMapper and getReducerFactory are expected to return non-null values. getCombinerFactory and getCollator
are optional operations and do not need to be implemented. If you can decide to implement them depending on the
use case you want to achieve.

For more information on how you implement mappers, combiners, reducers, and collators, refer to the MapReduce
section.

For best speed and traffic usage, as mentioned in the MapReduce section, you should add a Combiner to your
aggregation whenever it is possible to do some kind of pre-reduction step.

Your implementation also should use DataSerializable or IdentifiedDataSerializable for best compatibility
and speed / stream-size reasons.

9.4 Continuous Query

Continuous query enables you to listen to the modifications performed on specific map entries. It is an entry listener
with predicates. Please see the Map Listener section for information on how to add entry listeners to a map.

As an example, let’s listen to the changes made on an employee with the surname “Smith”. First, let’s create the
Employee class.

import java.io.Serializable;
public class Employee implements Serializable {
private final String surname;

public Employee(String surname) {
this.surname = surname;

}

@0verride
public String toString() {
return "Employee{" +
"surname=’" + surname + ’\’’ +

)}J;

Then, let’s create the continuous query by adding the entry listener with the surname predicate.

138 CHAPTER 9. DISTRIBUTED QUERY

import com.hazelcast.core.*;
import com.hazelcast.query.SqlPredicate;

public class ContinuousQuery {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap('"map");
map.addEntryListener (new MyEntryListener(),
new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntryListener
implements EntryListener<String, String> {
@0verride
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);
by

@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

3

@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

¥

@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

3

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

And now, let’s play with the employee “smith” and see how that employee will be listened to.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Employee> map = hz.getMap('map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));
System.out.println("done");

9.5. CONTINUOUS QUERY CACHE 139

System.exit (0);

When you first run the class ContinuousQuery and then run Modify, you will see output similar to the listing
below.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,0ldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

9.5 Continuous Query Cache

Enterprise Only

. NOTE: This feature is supported for Hazelcast Enterprise 3.5 or higher.

This feature is used to cache the result of a continuous query. After construction of a continuous query cache, all
changes on underlying IMap is immediately reflected to this cache as a stream of events. Therefore, this cache will
be an always up to date view of the IMap.

This feature is beneficial when you need to query the distributed IMap data in a very frequent and fast way. By
using continuous query cache, the result of the query will be always ready and local to the application.

You can access this continuous query cache from the server and client side respectively as shown below.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig('"map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig) ;

Config config = new Config();
config.addMapConfig(mapConfig) ;

HazelcastInstance node = Hazelcast.newHazelcastInstance(config) ;
IEnterpriseMap<Integer, String> map = (IEnterpriseMap) node.getMap("map-name");

QueryCache<Integer, String> cache = map.getQueryCache("cache-name");

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new 0ddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig) ;
IEnterpriseMap<Integer, Integer> clientMap = (IEnterpriseMap) client.getMap("map-name");

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

140 CHAPTER 9. DISTRIBUTED QUERY

9.5.1 Features of Continuous Query Cache

1. Enable/disable initial query run on the existing IMap data during construction of continuous query cache
according to the supplied predicate via QueryCacheConfig#setPopulate.

2. Indexable and queryable.

3. Evictable. Note that continuous query cache has a default maximum capacity of 10000. If you need a not
evictable one, you should configure the eviction via QueryCacheConfig#setEvictionConfig.

4. Listenable via QueryCache#addEntryListener.

5. Events on IMap are guaranteed to be reflected to this cache in the happening order. Any loss of event can be
listened via EventLostListener and it can be recoverable with QueryCache#tryRecover method. If your
buffer size on the node side is big enough, you can recover from a possible event loss scenario. At the moment,
setting the size of QueryCacheConfig#setBufferSize is the only option for recovery because the events
which feed continuous query cache have no backups. Below snippet can be used for recovery case.

(((java

QueryCache queryCache = map.getQueryCache("cache-name", new SqlPredicate("this > 20"), true);
queryCache.addEntryListener (new EventLostListener() {
@0verride
public void eventLost(EventLostEvent event) {
queryCache.tryRecover();
}
}, false);

[N N1

6. Event batching and coalescing.
7. Declarative and programmatic configuration

8. It can be populated with only keys of entries and subsequent values can be retrieved directly via
QueryCachettget from the underlying IMap. This will help to decrease initial population time if the values
are very big in size.

Chapter 10

User Defined Services

In the case of special/custom needs, Hazelcast’s SPI (Service Provider Interface) module allows users to develop
their own distributed data structures and services.

10.1 Sample Case

Throughout this section, we create a distributed counter that will be the guide to reveal the Hazelcast SPI usage.

Here is our counter.

public interface Counter{
int inc(int amount);

}

This counter will have the following features: - It will be stored in Hazelcast. - Different cluster members can call
it. - It will be scalable, meaning that the capacity for the number of counters scales with the number of cluster
members. - It will be highly available, meaning that if a member hosting this counter goes down, a backup will be
available on a different member.

All these features will be realized with the steps below. In each step, a new functionality to this counter will be
added.

Create the class.

Enable the class.

Add properties.

Place a remote call.

Create the containers.
Enable partition migration.
Create the backups.

No Otk N

10.1.1 Creating Class

To have the counter as a functioning distributed object, we need a class. This class (named CounterService in the
following sample) will be the gateway between Hazelcast internals and the counter, allowing us to add features
to the counter. In the following sample, the class CounterService is created. Its lifecycle will be managed by
Hazelcast.

CounterService should implement the interface com.hazelcast.spi.ManagedService as shown below.

141

142 CHAPTER 10. USER DEFINED SERVICES

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;

import java.util.Properties;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

public class CounterService implements ManagedService {
private NodeEngine nodeEngine;

Q@0verride

public void init(NodeEngine nodeEngine, Properties properties) {
System.out.println("CounterService.init");
this.nodeEngine = nodeEngine;

}

@0verride
public void shutdown(boolean terminate) {
System.out.println("CounterService.shutdown");

}

@0verride
public void reset() {
}

As can be seen from the code, CounterService implements the following methods.

e init: This is called when CounterService is initialized. NodeEngine enables access to Hazelcast internals
such as HazelcastInstance and PartitionService. Also, the object Properties will provide us with the
ability to create our own properties.

e shutdown: This is called when CounterService is shutdown. It cleans up the resources.

e reset: This is called when cluster members are faced with the Split-Brain issue. This occurs when disconnected
members that have created their own cluster are merged back into the main cluster. Services can also implement
the SplitBrainHandleService to indicate that they can take part in the merge process. For CounterService
we are going to implement as a no-op.

10.1.2 Enabling Class

Now, we need to enable the class CounterService. The declarative way of doing this is shown below.

<network>
<join><multicast enabled="true"/> </join>
</network>
<services>
<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>
</service>
</services>

CounterService is declared within the services configuration element.

e Setting the enabled attribute as true enables the service.

10.1. SAMPLE CASE 143

e The name attribute defines the name of the service. It should be a unique name (CounterService in our
case) since it will be looked up when a remote call is made. Note that the value of this attribute will be sent
at each request, and that a longer name value means more data (de)serialization. A good practice is to give
an understandable name with the shortest possible length.

e class-name is the class name of the service (CounterService in our case). The class should have a no-arg
constructor. Otherwise, the object cannot be initialized.

Note that multicast is enabled as the join mechanism. In the later sections for the CounterService example, we
will see why.

RELATED INFORMATION

Please refer to the Services Configuration section for a full description of Hazelcast SPI configuration.

10.1.3 Adding Properties

The init method for CounterService takes the Properties object as an argument. This means we can add
properties to the service that are passed to the method init. You can add properties declaratively as shown below.

<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>
<properties>
<someproperty>10</someproperty>
</properties>
</service>

If you want to parse a more complex XML, you can use the interface com.hazelcast.spi.ServiceConfigurationParser.
It gives you access to the XML DOM tree.

10.1.4 Starting Service

Now, let’s start a HazelcastInstance as shown below, which will start the CounterService.

import com.hazelcast.core.Hazelcast;

public class Member {
public static void main(String[] args) {
Hazelcast.newHazelcastInstance();

}

Once it is started, the CounterService#init method prints the following output.
CounterService.init

Once the HazelcastInstance is shutdown (for example with Ctrl+C), the CounterService#shutdown method prints
the following output.

CounterService.shutdown

10.1.5 Placing a Remote Call - Proxy

In the previous sections for the CounterService example, we started CounterService as part of a HazelcastInstance
startup.

Now, let’s connect the Counter interface to CounterService and perform a remote call to the cluster member
hosting the counter data. Then, we will return a dummy result.

144 CHAPTER 10. USER DEFINED SERVICES

Remote calls are performed via a proxy in Hazelcast. Proxies expose the methods at the client side. Once a method
is called, proxy creates an operation object, sends this object to the cluster member responsible from executing that
operation, and then sends the result.

10.1.5.1 Making Counter a Distributed Object

First, we need to make the Counter interface a distributed object by extending the DistributedObject interface,
as shown below.

import com.hazelcast.core.DistributedObject;

public interface Counter extends DistributedObject {
int inc(int amount);

}

10.1.5.2 Implementing ManagedService and RemoteService

Now, we need to make the CounterService class implement not only the ManagedService interface, but also the
interface com.hazelcast.spi.RemoteService. This way, a client will be able to get a handle of a counter proxy.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;

import com.hazelcast.spi.RemoteService;

import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public static final String NAME = "CounterService";

private NodeEngine nodeEngine;

@0verride
public DistributedObject createDistributedObject(String objectName) {
return new CounterProxy(objectName, nodeEngine, this);

}

@0verride
public void destroyDistributedObject(String objectName) {
// for the time being a no-op, but in the later exzamples this will be implemented

}

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;

}

@0verride
public void shutdown(boolean terminate) {

}

@0verride
public void reset() {
}

10.1. SAMPLE CASE 145

The CounterProxy returned by the method createDistributedObject is a local representation to (potentially)
remote managed data and logic.

. NOTE: Note that caching and removing the proxy instance are done outside of this service.

10.1.5.3 Implementing CounterProxy

Now, it is time to implement the CounterProxy as shown below.

import com.hazelcast.spi.AbstractDistributedObject;
import com.hazelcast.spi.InvocationBuilder;

import com.hazelcast.spi.NodeEngine;

import com.hazelcast.util.ExceptionUtil;

import java.util.concurrent.Future;

public class CounterProxy extends AbstractDistributedObject<CounterService> implements Counter {
private final String name;

public CounterProxy(String name, NodeEngine nodeEngine, CounterService counterService) {
super (nodeEngine, counterService);
this.name = name;

@0verride
public String getServiceName() {
return CounterService.NAME;

}

@0verride
public String getName() {
return name;

}

@0verride
public int inc(int amount) {
NodeEngine nodeEngine = getNodeEngine();
IncOperation operation = new IncOperation(name, amount);
int partitionId = nodeEngine.getPartitionService().getPartitionId(name);
InvocationBuilder builder = nodeEngine.getOperationService()
.createInvocationBuilder (CounterService.NAME, operation, partitionId);
try {
final Future<Integer> future = builder.invoke();
return future.get();
} catch (Exception e) {
throw ExceptionUtil.rethrow(e);

3

CounterProxy is a local representation of remote data/functionality. It does not include the counter state. Therefore,
the method inc should be invoked on the cluster member hosting the real counter. You can invoke it using Hazelcast
SPI; then it will send the operations to the correct member and return the results.

Let’s dig deeper into the method inc.

e First, we create IncOperation with a given name and amount.

146 CHAPTER 10. USER DEFINED SERVICES

e Then, we get the partition ID based on the name; by this way, all operations for a given name will result in
the same partition ID.

e Then, we create an InvocationBuilder where the connection between operation and partition is made.

e Finally, we invoke the InvocationBuilder and wait for its result. This waiting is performed with a
future.get (). In our case, timeout is not important. However, it is a good practice to use a timeout for a
real system since operations should complete in a certain amount of time.

10.1.5.4 Dealing with Exceptions

Hazelcast’s ExceptionUtil is a good solution when it comes to dealing with execution exceptions. When the
execution of the operation fails with an exception, an ExecutionException is thrown and handled with the method
ExceptionUtil.rethrow(Throwable).

If it is an InterruptedException, we have two options: Either propagating the exception or just using the
ExceptionUtil.rethrow for all exceptions. Please see below sample.

try {
final Future<Integer> future = invocation.invoke();
return future.get();
} catch(InterruptedException e){
throw e;
} catch(Exception e){
throw ExceptionUtil.rethrow(e);
X

10.1.5.5 Implementing the PartitionAwareOperation Interface

Now, let’s write the IncOperation. It implements PartitionAwareOperation interface, meaning that it will be
executed on the partition that hosts the counter.

import com.hazelcast.nio.ObjectDatalnput;

import com.hazelcast.nio.ObjectDataOutput;

import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

// Important to have a mo-arg constructor for deserialization
public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

@0verride

public void run() throws Exception {
System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
returnValue = O;

@0verride

10.1. SAMPLE CASE 147

public boolean returnsResponse() {
return true;

3

@0verride
public Object getResponse() {
return returnValue;

3

@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writelInt (amount);

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal (in);
objectId = in.readUTFQ);
amount = in.readInt();

The method run does the actual execution. Since IncOperation will return a response, the method
returnsResponse returns true. If your method is asynchronous and does not need to return a response, it is
better to return false since it will be faster. The actual response is stored in the field returnValue; you can
retrieve it with the method getResponse.

There are two more methods in the above code: writeInternal and readInternal. Since IncOperation needs to
be serialized, these two methods should be overwritten, and hence, objectId and amount will be serialized and
available when those operations are executed.

For the deserialization, note that the operation must have a no-arg constructor.

10.1.5.6 Running the Code

Now, let’s run our code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.UUID;

public class Member {
public static void main(String[] args) {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)

counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");

148 CHAPTER 10. USER DEFINED SERVICES

System.exit (0);

Once run, you will see the output as below.

Executing Ocounter.inc() on: Address[192.168.1.103]:5702
0

Executing lcounter.inc() on: Address[192.168.1.103]:5702
0

Executing 2counter.inc() on: Address[192.168.1.103]:5701
0

Executing 3counter.inc() on: Address[192.168.1.103]:5701
0

Finished

Note that counters are stored in different cluster members. Also note that increment is not active for now since the
value remains as 0.

Until now, we have performed the basics to get this up and running. In the next section, we will make a real
counter, cache the proxy instances and deal with proxy instance destruction.

10.1.6 Creating Containers

Let’s create a Container for every partition in the system. This container will contain all counters and proxies.

import java.util.HashMap;
import java.util.Map;

class Container {
private final Map<String, Integer> values = new HashMap();

int inc(String id, int amount) {
Integer counter = values.get(id);
if (counter == null) {
counter = 0;
}
counter += amount;
values.put(id, counter);
return counter;

}

public void init(String objectName) {
values.put(objectName,0) ;

3

public void destroy(String objectName) {
values.remove (objectName) ;

3

10.1. SAMPLE CASE 149

Hazelcast guarantees that a single thread will be active in a single partition. Therefore, when accessing a container,
concurrency control will not be an issue.

The code in our example uses a Container instance per partition approach. With this approach, there will not be
any mutable shared state between partitions. This approach also makes operations on partitions simpler since you
do not need to filter out data that does not belong to a certain partition.

10.1.6.1 Integrating the Container in the CounterService

Let’s integrate the Container in the CounterService, as shown below.

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;
import com.hazelcast.spi.RemoteService;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;
containers = new Container [nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)
containers[k] = new Container();

}

@0verride
public void shutdown(boolean terminate) {

3

Q@0verride
public CounterProxy createDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.init (objectName) ;
return new CounterProxy(objectName, nodeEngine, this);

O@0verride

public void destroyDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.destroy(objectName) ;

}

Q@0verride
public void reset() {
}

public static class Container {
final Map<String, Integer> values = new HashMap<String, Integer>();

150 CHAPTER 10. USER DEFINED SERVICES

private void init(String objectName) {
values.put (objectName, 0);

3

private void destroy(String objectName){
values.remove (objectName) ;

}

We create a container for every partition with the method init. Then we create the proxy with the
method createDistributedObject. And finally, we need to remove the value of the object with the method
destroyDistributedObject, otherwise we may get an OutOfMemory exception.

10.1.6.2 Connecting the IncOperation.run Method to the Container

As the last step in creating a Container, we connect the method IncOperation.run to the Container, as shown
below.

import com.hazelcast.nio.ObjectDatalnput;

import com.hazelcast.nio.ObjectDataOutput;

import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;
import java.util.Map;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

}

@0verride
public void run() throws Exception {
System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
CounterService service = getService();
CounterService.Container container = service.containers[getPartitionId()];
Map<String, Integer> valuesMap = container.values;

Integer counter = valuesMap.get(objectId);
counter += amount;

valuesMap.put(objectId, counter);
returnValue = counter;

}

@0verride
public boolean returnsResponse() {
return true;

3

10.1. SAMPLE CASE 151

@0verride
public Object getResponse() {
return returnValue;

}

Q@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writelInt (amount) ;

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal(in);
objectId = in.readUTFQ);
amount = in.readInt();

partitionId has a range between 0 and partitionCount and can be used as an index for the container array.
Therefore, you can use partitionId to retrieve the container, and once the container has been retrieved, you can
access the value.

10.1.6.3 Running the Sample Code

Let’s run the following sample code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)
counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

System.out.println("Round 1");

for (Counter counter: counters)
System.out.println(counter.inc(1));

System.out.println("Round 2");

for (Counter counter: counters)

System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit (0);

The output will be as follows. It indicates that we have now a basic distributed counter up and running.

Round 1

152

Executing
1
Executing
1
Executing
1
Executing
1

Round 2
Executing
2
Executing
2
Executing
2
Executing
2
Finished

Ocounter

1counter

2counter.

3counter.

Ocounter.

lcounter.

2counter.

3counter

.inc()

.inc()

inc()

inc()

inc()

inc()

inc()

.inc()

on:

on:

on:

on:

on:

on:

on:

on:

Address[192.

Address[192.

Address[192.

Address([192.

Address[192.

Address[192.

Address[192.

Address[192.

10.1.7 Partition Migration

168.

168.

168.

168.

168.

168.

168.

168.

.103]

.103]

.103]

.103]

.103]

.103]

.103]

.103]:

CHAPTER 10. USER DEFINED SERVICES

5702

:5702

:5701

:5701

:5702

:5702

:5701

:5701

In the previous section, we created a real distributed counter. Now, we need to make sure that the content of the
partition containers is migrated to different cluster members when a member joins or leaves the cluster. To make
this happen, first we need to add three new methods (applyMigrationData, toMigrationData and clear) to the
Container, as shown below.

import java.util.HashMap;

import java.util.Map;

class Container {

private final Map<String, Integer> values

int inc(String id, int amount) {
Integer counter
if (counter == null) {

}

counter

:O;

values.get (id);

counter += amount;
values.put(id, counter);
return counter;

}

void clear() {
values.clear();

3

void applyMigrationData(Map<String, Integer>

values.putAll(migrationData) ;

¥

Map<String, Integer> toMigrationData() {
return new HashMap(values);

}

public void init(String objectName) {

values.put (objectName,0) ;

}

new

HashMap () ;

migrationData) {

10.1. SAMPLE CASE 153

public void destroy(String objectName) {
values.remove (objectName) ;

}

e toMigrationData: This method is called when Hazelcast wants to start the partition migration from the
member owning the partition. The result of the toMigrationData method is the partition data in a form
that can be serialized to another member.

e applyMigrationData: This method is called when migrationData (created by the method toMigrationData)
will be applied to the member that will be the new partition owner.

e clear: This method is called when the partition migration is successfully completed and the old partition
owner gets rid of all data in the partition. This method is also called when the partition migration operation
fails and the to-be-the-new partition owner needs to roll back its changes.

10.1.7.1 Transferring migrationData

After you add these three methods to the Container, you need to create a CounterMigrationOperation class that
transfers migrationData from one member to another and calls the method applyMigrationData on the correct
partition of the new partition owner. A sample is shown below.

import com.hazelcast.nio.ObjectDatalnput;
import com.hazelcast.nio.ObjectDataOutput;
import com.hazelcast.spi.AbstractOperation;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class CounterMigrationOperation extends AbstractOperation {
Map<String, Integer> migrationData;

public CounterMigrationOperation() {

}

public CounterMigrationOperation(Map<String, Integer> migrationData) {
this.migrationData = migrationData;

3

@0verride

public void run() throws Exception {
CounterService service = getService();
Container container = service.containers[getPartitionId()];
container.applyMigrationData(migrationData) ;

@0verride
protected void writeInternal(ObjectDataOutput out) throws IOException {
out.writeInt(migrationData.size());
for (Map.Entry<String, Integer> entry : migrationData.entrySet()) {
out.writeUTF (entry.getKey());
out.writeInt(entry.getValue());

@0verride

154 CHAPTER 10. USER DEFINED SERVICES

protected void readInternal (ObjectDataInput in) throws IOException {
int size = in.readInt();
migrationData = new HashMap<String, Integer>();
for (int 1 = 0; i < size; i++)
migrationData.put(in.readUTF(), in.readInt());

10.1.7.2 Letting Hazelcast Know CounterService Can Do Partition Migrations

NOTE: During a partition migration, no other operations are executed on the related partition.

We need to make our CounterService class implement the MigrationAwareService interface. This will let
Hazelcast know that the CounterService can perform partition migration. See the below code.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.partition.MigrationEndpoint;
import com.hazelcast.spi.x*;

import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService, MigrationAwareService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;
containers = new Container[nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)
containers[k] = new Container();

}

@0verride
public void shutdown(boolean terminate) {

3

Q@0verride
public DistributedObject createDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.init(objectName) ;
return new CounterProxy(objectName, nodeEngine,this);

@0verride

public void destroyDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.destroy(objectName) ;

@0verride
public void beforeMigration(PartitionMigrationEvent e) {

10.1. SAMPLE CASE 155

//no-op

@0verride

public void clearPartitionReplica(int partitionId) {
Container container = containers[partitionId];
container.clear();

@0verride
public Operation prepareReplicationOperation(PartitionReplicationEvent e) {
if (e.getReplicalndex() > 1) {
return null;
¥
Container container = containers([e.getPartitionId()];
Map<String, Integer> data = container.toMigrationData();
return data.isEmpty() ? null : new CounterMigrationOperation(data);

@0verride
public void commitMigration(PartitionMigrationEvent e) {
if (e.getMigrationEndpoint() == MigrationEndpoint.SOURCE) {
Container ¢ = containers[e.getPartitionId()];

c.clear();
}
//todo
}
@0verride

public void rollbackMigration(PartitionMigrationEvent e) {
if (e.getMigrationEndpoint() == MigrationEndpoint.DESTINATION) {
Container ¢ = containers[e.getPartitionId()];
c.clear();

}

@0verride
public void reset() {
3

With the MigrationAwareService interface, some additional methods are exposed. For example, the method
prepareMigrationOperation returns all the data of the partition that is going to be moved.

The method commitMigration commits the data, meaning in this case, it clears the partition container of the old
owner.

10.1.7.3 Running the Sample Code

We can run the following code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) throws Exception {
HazelcastInstance[] instances = new HazelcastInstance[3];

156 CHAPTER 10. USER DEFINED SERVICES

for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)
counters[k] = instances[0].getDistributedObject(CounterService.NAME, k + "counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

Thread.sleep(10000);
System.out.println("Creating new members");

for (int k = 0; k < 3; k++) {
Hazelcast.newHazelcastInstance();

}
Thread.sleep(10000);

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit (0);

}

And we get the following output.

Executing Ocounter.inc() on: Address[192.168.1.103]:5702
Executing backup Ocounter.inc() on: Address[192.168.1.103]:5703
1

Executing lcounter.inc() on: Address[192.168.1.103]:5703
Executing backup lcounter.inc() on: Address[192.168.1.103]:5701
1

Executing 2counter.inc() on: Address[192.168.1.103]:5701
Executing backup 2counter.inc() on: Address[192.168.1.103]:5703
1

Executing 3counter.inc() on: Address[192.168.1.103]:5701
Executing backup 3counter.inc() on: Address[192.168.1.103]:5703
1

Creating new members

Executing Ocounter.inc() on: Address[192.168.1.103]:5705
Executing backup Ocounter.inc() on: Address[192.168.1.103]:5703
2

Executing lcounter.inc() on: Address[192.168.1.103]:5703
Executing backup lcounter.inc() on: Address[192.168.1.103]:5704
2

Executing 2counter.inc() on: Address[192.168.1.103]:5705
Executing backup 2counter.inc() on: Address[192.168.1.103]:5704
2

Executing 3counter.inc() on: Address[192.168.1.103]:5704
Executing backup 3counter.inc() on: Address[192.168.1.103]:5705
2

Finished

You can see that the counters have moved. Ocounter moved from 192.168.1.103:5702 to 192.168.1.103:5705 and
it is incremented correctly. Our counters can now move around in the cluster. You will see the counters will be

10.1. SAMPLE CASE 157

redistributed once you add or remove a cluster member.

10.1.8 Creating Backups

Finally, we make sure that the data of counter is available on another node when a member goes down. We need to
have the IncOperation class implement the BackupAwareOperation interface contained in the SPI package. See
the following code.

class IncOperation extends AbstractOperation
implements PartitionAwareOperation, BackupAwareOperation {

@0verride
public int getAsyncBackupCount() {
return 0O;

3

@0verride
public int getSyncBackupCount() {
return 1;

3

@0verride
public boolean shouldBackup() {
return true;

3

@0verride
public Operation getBackupOperation() {
return new IncBackupOperation(objectId, amount);

3

The methods getAsyncBackupCount and getSyncBackupCount specify the count for asynchronous and synchronous
backups. Our sample has one synchronous backup and no asynchronous backups. In the above code, counts of the
backups are hard-coded, but they can also be passed to IncOperation as parameters.

The method shouldBackup specifies whether our Operation needs a backup or not. For our sample, it returns
true, meaning the Operation will always have a backup even if there are no changes. Of course, in real systems, we
want to have backups if there is a change. For IncOperation for example, having a backup when amount is null
would be a good practice.

The method getBackupOperation returns the operation (IncBackupOperation) that actually performs the backup
creation; the backup itself is an operation and will run on the same infrastructure.

If a backup should be made and getSyncBackupCount returns 3, then three IncBackupOperation instances are
created and sent to the three machines containing the backup partition. If fewer machines are available, then
backups need to be created. Hazelcast will just send a smaller number of operations.

10.1.8.1 Performing the Backup with IncBackupOperation

Now, let’s have a look at the IncBackupOperation.

public class IncBackupOperation
extends AbstractOperation implements BackupOperation {
private String objectId;
private int amount;

158 CHAPTER 10. USER DEFINED SERVICES

public IncBackupOperation() {
}

public IncBackupOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writeInt (amount);

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal (in) ;
objectId = in.readUTF(Q);
amount = in.readInt();

@0verride
public void run() throws Exception {
CounterService service = getService();
System.out.println("Executing backup " + objectId + ".inc() on: "
+ getNodeEngine() .getThisAddress());
Container ¢ = service.containers[getPartitionId()];
c.inc(objectId, amount);

. NOTE: Hazelcast will also make sure that a new IncOperation for that particular key will not be executed
before the (synchronous) backup operation has completed.

10.1.8.2 Running the Sample Code

Let’s see the backup functionality in action with the following code.

public class Member {
public static void main(String[] args) throws Exception {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter counter = instances[0].getDistributedObject(CounterService.NAME, "counter");
counter.inc(1);

System.out.println("Finished") ;
System.exit (0);

Once it is run, the following output will be seen.

Executing counter0.inc() on: Address[192.168.1.103]:5702

10.2. WAITNOTIFYSERVICE 159

Executing backup counter0.inc() on: Address[192.168.1.103]:5701
Finished

As it can be seen, both IncOperation and IncBackupOperation are executed. Notice that these operations have
been executed on different cluster members to guarantee high availability.

10.2 WaitNotifyService

WaitNotifyService is an interface offered by SPI for the objects (e.g. Lock, Semaphore) to be used when a thread
needs to wait for a lock to be released.

WaitNotifyService keeps a list of waiters. For each notify operation:

e it looks for a waiter,

e it asks the waiter whether it wants to keep waiting,

e if the waiter responds no, the service executes its registered operation (operation itself knows where to send a
response),

e it rinses and repeats until a waiter wants to keep waiting.

Each waiter can sit on a wait-notify queue for, at most, its operation’s call timeout. For example, by default, each
waiter can wait here for at most 1 minute. There is a continuous task that scans expired/timed-out waiters and
invalidates them with CallTimeoutException. Each waiter on the remote side should retry and keep waiting if it
still wants to wait. This is a liveness check for remote waiters.

This way, it is possible to distinguish an unresponsive node and a long (~infinite) wait. On the caller side, if the
waiting thread does not get a response for either a call timeout or for more than 2 times the call-timeout, it will
exit with OperationTimeoutException.

Note that this behavior breaks the fairness. Hazelcast does not support fairness for any of the data structures with
blocking operations (i.e. lock and semaphore).

160 CHAPTER 10. USER DEFINED SERVICES

Chapter 11

Transactions

You can use Hazelcast in transactional context.

11.1 Transaction Interface

You create a TransactionContext to begin, commit, and rollback a transaction. You can obtain transaction-aware
instances of queues, maps, sets, lists, multimaps via TransactionContext, work with them, and commit/rollback
in one shot.

Hazelcast supports two types of transactions: LOCAL (One Phase) and TWO_PHASE. With the type, you have
influence over how much guarantee you get when a member crashes while a transaction is committing. The default
behavior is TWO_ PHASE.

e LOCAL: Unlike the name suggests, LOCAL is a two phase commit. First, all cohorts are asked to prepare;
if everyone agrees, then all cohorts are asked to commit. A problem can happen during the commit phase: if
one or more members crash, then the system could be left in an inconsistent state.

e TWO_PHASE: The TWO_PHASE commit is more than the classic two phase commit (if you want a
regular two phase commit, use local). Before TWO_PHASE commits, it copies the commit-log to other
members, so in case of member failure, another member can complete the commit.

import java.util.Queue;

import java.util.Map;

import java.util.Set;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

TransactionOptions options = new TransactionOptions()
.setTransactionType(TransactionType.LOCAL);

TransactionContext context = hazelcastInstance.newTransactionContext(options)
context.beginTransaction() ;

TransactionalQueue queue = context.getQueue("myqueue");
TransactionalMap map = context.getMap("mymap");
TransactionalSet set = context.getSet("myset");

try {
Object obj = queue.poll();
//process obj

161

162 CHAPTER 11. TRANSACTIONS

map.put("1", "valuel");
set.add("value");
//do other things..
context.commitTransaction();

} catch (Throwable t) {
context.rollbackTransaction();

In a transaction, operations will not be executed immediately. = Their changes will be local to the
TransactionContext until committed. However, they will ensure the changes via locks.

For the above example, when map.put is executed, no data will be put to the map but the key will get locked for
changes. While committing, operations will be executed, the value will be put to the map, and the key will be
unlocked.

Isolation level in Hazelcast Transactions is READ_COMMITTED. If you are in a transaction, you can read the data in
your transaction and the data that is already committed. If you are not in a transaction, you can only read the
committed data.

l NOTE: The REPEATABLE _READ isolation level can also be exercised using the method getForUpdate ()
of TransactionalMap.

Implementation is different for queue/set/list and map/multimap. For queue operations (offer, poll), offered and/or
polled objects are copied to the owner member in order to safely commit/rollback. For map/multimap, Hazelcast first
acquires the locks for the write operations (put, remove) and holds the differences (what is added /removed /updated)
locally for each transaction. When the transaction is set to commit, Hazelcast will release the locks and apply the
differences. When rolling back, Hazelcast will release the locks and discard the differences.

MapStore and QueueStore does not participate in transactions. Hazelcast will suppress exceptions thrown by store
in a transaction. Please refer to the XA Transactions section for further information.

11.2 XA Transactions

XA describes the interface between the global transaction manager and the local resource manager. XA allows
multiple resources (such as databases, application servers, message queues, transactional caches, etc.) to be accessed
within the same transaction, thereby preserving the ACID properties across applications. XA uses a two-phase
commit to ensure that all resources either commit or rollback any particular transaction consistently (all do the
same).

By implementing the XAResource interface, Hazelcast provides XA transactions. You can obtain the
HazelcastXAResource instance via HazelcastInstance. Below is example code that uses Atomikos for
transaction management.

UserTransactionManager tm = new UserTransactionManager();
tm.setTransactionTimeout (60);
tm.begin();

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = hazelcastInstance.getXAResource();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);
// other resources (database, app server etc...) can be enlisted

try {
TransactionContext context = xaResource.getTransactionContext();
TransactionalMap map = context.getMap('m");
map.put("key", "value");

11.3. J2EE INTEGRATION 163

// other resource operations

transaction.delistResource(xaResource, XAResource.TMSUCCESS);
tm.commit () ;

} catch (Exception e) {
tm.rollback();

11.3 J2EE Integration

Hazelcast can be integrated into J2EE containers via the Hazelcast Resource Adapter (hazelcast-jca-rar-version.rar).
After proper configuration, Hazelcast can participate in standard J2EE transactions.

<J@page import="javax.resource.ResourceException" %>
<J@page import="javax.transaction.*" %>

<J@page import="javax.naming.*" %>

<%@page import="javax.resource.cci.x" >

<,@page import="java.util.*" %>

<J@page import="com.hazelcast.core.*" %>

<J@page import="com.hazelcast.jca.*" %>

<%

UserTransaction txn = null;

HazelcastConnection conn = null;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

try {
Context context = new InitialContext();
txn = (UserTransaction) context.lookup("java:comp/UserTransaction");
txn.begin() ;

HazelcastConnectionFactory cf = (HazelcastConnectionFactory)
context.lookup ("java:comp/env/HazelcastCF");

conn = cf.getConnection();

TransactionalMap<String, String> txMap = conn.getTransactionalMap("default");
txMap.put("key", "value");

txn.commit () ;

} catch (Throwable e) {
if (txn != null) {
try {
txn.rollback();
} catch (Exception ix) {
ix.printStackTrace();

+;
}
e.printStackTrace();
} finally {
if (conn != null) {
try {

conn.close();
} catch (Exception ignored) {};
}

164 CHAPTER 11. TRANSACTIONS

}
%>

11.3.1 Sample Code for J2EE Integration

Please see our sample application for J2EE Integration.

11.3.2 Resource Adapter Configuration

Deploying and configuring the Hazelcast resource adapter is no different than configuring any other resource
adapter since the Hazelcast resource adapter is a standard JCA one. However, resource adapter installation and
configuration is container specific, so please consult your J2EE vendor documentation for details. The most common
steps are:

1. Add the hazelcast-version.jar and hazelcast-jca-version. jar to the container’s classpath. Usually there
is a lib directory that is loaded automatically by the container on startup.

2. Deploy hazelcast-jca-rar-version.rar. Usually there is some kind of a deploy directory. The name of the
directory varies by container.

3. Make container specific configurations when/after deploying hazelcast-jca-rar-version.rar. Besides
container specific configurations, set the JNDI name for the Hazelcast resource.

4. Configure your application to use the Hazelcast resource. Update web.xml and/or ejb-jar.xml to let the
container know that your application will use the Hazelcast resource and define the resource reference.

5. Make the container specific application configuration to specify the JNDI name used for the resource in the
application.

11.3.3 Sample Glassfish v3 Web Application Configuration

1. Place the hazelcast-wversion. jar and hazelcast-jca-version. jar into the GLASSFISH_HOME/glassfish/
domains/domainl/lib/ext/ folder.

2. Place the hazelcast-jca-rar-wversion.rar into GLASSFISH_HOME/glassfish/domains/domainl/autodeploy/
folder.

3. Add the following lines to the web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast. jca.ConnectionFactoryImpl</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Notice that we did not have to put sun-ra.xml into the RAR file since it already comes with the
hazelcast-ra-version.rar file.

If the Hazelcast resource is used from EJBs, you should configure ejb-jar.xml for resource reference and JNDI
definitions, just like for the web.xml file.

11.3.4 Sample JBoss AS 5 Web Application Configuration

e Place the hazelcast-version.jar and hazelcast-jca-version.jar into the JBOSS_HOME/server/deploy/
default/1ib folder.

e Place the hazelcast-jca-rar-version.rar into the JBOSS_HOME/server/deploy/default/deploy folder.

e Create a hazelcast-ds.xmnl file containing the following content in the JBOSS_HOME/server/deploy/default/deploy
folder. Make sure to set the rar-name element to hazelcast-ra-wversion.rar.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/jca-ra

11.3. J2EE INTEGRATION 165

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE connection-factories
PUBLIC "-//JBoss//DID JBOSS JCA Config 1.5//EN"
"http://wuw. jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>
<tx-connection-factory>
<local-transaction/>
<track-connection-by-tx>true</track-connection-by-tx>
<jndi-name>HazelcastCF</jndi-name>
<rar-name>hazelcast-jca-rar-<version>.rar</rar-name>
<connection-definition>
javax.resource.cci.ConnectionFactory
</connection-definition>
</tx-connection-factory>
</connection-factories>

e Add the following lines to the web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast. jca.ConnectionFactoryImpl</res-type>
<res—auth>Container</res-auth>

</resource-ref>

e Add the following lines to the jboss-web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<jndi-name>java:HazelcastCF</jndi-name>
</resource-ref>

If the Hazelcast resource is used from EJBs, you should configure e jb-jar.xml and jboss.xml for resource reference
and JNDI definitions.

11.3.5 Sample JBoss AS 7 / EAP 6 Web Application Configuration

Deployment on JBoss AS 7 or JBoss EAP 6 is a fairly straightforward process. The steps you perform are shown
below. The only non-trivial step is the creation of a new JBoss module with Hazelcast libraries.

e Create the folder <jboss_home>/modules/system/layers/base/com/hazelcast/main.

e Place the hazelcast-<wersion>. jar and hazelcast-jca-<wersion>. jar into the folder you created in the
previous step.

e (Create the file module.xml and place it in the same folder. This file should have the following content.

<module xmlns="urn:jboss:module:1.0" name="com.hazelcast">
<resources>

<resource-root path="."/>

<resource-root path="hazelcast-<version>.jar"/>

<resource-root path="hazelcast-jca-<version>.jar"/>
</resources>
<dependencies>

<module name="sun.jdk"/>

<module name="javax.api"/>

<module name="javax.resource.api"/>

166

<module name="javax.validation.api'/>
<module name="org.jboss.ironjacamar.api"/>

</dependencies>
</module>

CHAPTER 11.

TRANSACTIONS

At this point, you have a new JBoss module with Hazelcast in it. You can now start JBoss and deploy the
hazelcast-jca-rar-<wersion>.rar file via JBoss CLI or Administration Console.

Once the Hazelcast Resource Adapter is deployed, you can start using it. The easiest way is to let a container
inject ConnectionFactory into your beans.

package com.hazelcast.examples.rar;

import
import

import
import
import
import
import

Qjavax.

public

com.hazelcast.core.TransactionalMap;
com.hazelcast.jca.HazelcastConnection;

javax.annotation.Resource;
javax.resource.ResourceException;
javax.resource.cci.ConnectionFactory;
java.util.logging.Level;
java.util.logging.Logger;

ejb.Stateless
class ExampleBean implements ExampleInterface {

private final static Logger log = Logger.getLogger (ExampleBean.class.getName());

@Resource (mappedName = "java:/HazelcastCF")
protected ConnectionFactory connectionFactory;

public void insert(String key, String value) {

}

HazelcastConnection hzConn = null;
try {
hzConn = getConnection();

TransactionalMap<String,String> txmap = hzConn.getTransactionalMap("txmap") ;

txmap.put (key, value);
} finally {
closeConnection(hzConn) ;

}

private HazelcastConnection getConnection() {

}

private void closeConnection(HazelcastConnection hzConn) {

try {

return (HazelcastConnection) connectionFactory.getConnection();

} catch (ResourceException e) {

throw new RuntimeException("Error while getting Hazelcast connection", e);

3

if (hzConn !'= null) {
try {
hzConn.close();
} catch (ResourceException e) {

log.log(Level .WARNING, "Error while closing Hazelcast connection.", e);

}

11.3. J2EE INTEGRATION 167

11.3.5.1 Known Issues

e There is a regression in JBoss EAP 6.1.0 causing failure during Hazelcast Resource Adapter deployment. The
issue is fixed in JBoss EAP 6.1.1. See this for additional details.

https://bugzilla.redhat.com/show_bug.cgi?id=976294

168 CHAPTER 11. TRANSACTIONS

Chapter 12

Hazelcast JCache

This chapter describes the basics of JCache: the standardized Java caching layer API. The JCache caching API is
specified by the Java Community Process (JCP) as Java Specification Request (JSR) 107.

Caching keeps data in memory that either are slow to calculate/process or originate from another underlying
backend system whereas caching is used to prevent additional request round trips for frequently used data. In both
cases, caching could be used to gain performance or decrease application latencies.

12.1 JCache Overview

Starting with Hazelcast release 3.3.1, a specification compliant JCache implementation is offered. To show our
commitment to this important specification the Java world was waiting for over a decade, we do not just provide
a simple wrapper around our existing APIs but implemented a caching structure from ground up to optimize
the behavior to the needs of JCache. As mentioned before, the Hazelcast JCache implementation is 100% TCK
(Technology Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost all operations to
give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup Hazelcast to be
your JCache provider. It also shows examples of basic JCache usage as well as the additionally offered features
that are not part of JSR-107. To gain a full understanding of the JCache functionality and provided guarantees of
different operations, read the specification document (which is also the main documentation for functionality) at
the specification page of JSR-107:

https://www.jep.org/en/jsr/detail?7id=107

12.2 Setup and Configuration

This sub-chapter shows what is necessary to provide the JCache API and the Hazelcast JCache implementation for
your application. In addition, it demonstrates the different configuration options as well as a description of the
configuration properties.

12.2.1 Application Setup

To provide your application with this JCache functionality, your application needs the JCache API inside its
classpath. This API is the bridge between the specified JCache standard and the implementation provided by
Hazelcast.

The way to integrate the JCache API JAR into the application classpath depends on the build system used. For
Maven, Gradle, SBT, Ivy and many other build systems, all using Maven based dependency repositories, perform
the integration by adding the Maven coordinates to the build descriptor.

169

https://www.jcp.org/en/jsr/detail?id=107

170 CHAPTER 12. HAZELCAST JCACHE

As already mentioned, next to the default Hazelcast coordinates that might be already part of the application, you
have to add JCache coordinates.

For Maven users, the coordinates look like the following code:

<dependency>
<groupId>javax.cache</groupId>
<artifactId>cache-api</artifactId>
<version>1.0.0</version>
</dependency>

With other build systems, you might need to describe the coordinates in a different way.

12.2.1.1 Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all. jar or hazelcast. jar
to the classpath (if not already available) by either one of the following Maven snippets.

If you use hazelcast-all. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-all</artifactId>
<version>3.4</version>

</dependency>

If you use hazelcast. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.4</version>
</dependency>

The users of other build systems have to adjust the way of defining the dependency to their needs.

12.2.1.2 Connecting Clients to Remote Server

When the users want to use Hazelcast clients to connect to a remote cluster, the hazelcast-client. jar dependency
is also required on the client side applications. This JAR is already included in hazelcast-all.jar. Or, you can
add it to the classpath using the following Maven snippet:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.4</version>
</dependency>

For other build systems, e.g. ANT, the users have to download these dependencies from either the JSR-107
specification and Hazelcast community website (http://www.hazelcast.org) or from the Maven repository search
page (http://search.maven.org).

http://www.hazelcast.org
http://search.maven.org

12.2. SETUP AND CONFIGURATION 171

12.2.2 Quick Example

Before moving on to configuration, let’s have a look at a basic introductory example. The following code shows how
to use the Hazelcast JCache integration inside an application in an easy but typesafe way.

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast server or cltient provider
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache
CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
.setTypes(String.class, String.class);

// Create and get the cache

Cache<String, String> cache = cacheManager.createCache("example", config);
// Alternatively to request an already existing cache

// Cache<String, String> cache = cacheManager

/7 .getCache(name, String.class, String.class);

// Put a walue into the cache
cache.put("world", "Hello Wo