
Hazelcast Documentation

version 3.6.7

Dec 08, 2016

2

In-Memory Data Grid - Hazelcast | Documentation: version 3.6.7

Publication date Dec 08, 2016

Copyright c© 2016 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Contents

1 Preface 19

1.1 Hazelcast Editions . 19

1.2 Hazelcast Architecture . 19

1.3 Hazelcast Plugins . 19

1.4 Licensing . 19

1.5 Trademarks . 20

1.6 Customer Support . 20

1.7 Release Notes . 20

1.8 Contributing to Hazelcast . 20

1.9 Phone Home . 20

1.10 Typographical Conventions . 21

2 Document Revision History 23

3 Getting Started 25

3.1 Installation . 25

3.1.1 Hazelcast . 25

3.1.2 Hazelcast Enterprise . 25

3.1.3 Setting the License Key . 26

3.1.4 Upgrading from 3.x . 27

3.1.5 Upgrading from 2.x . 28

3.2 Starting the Member and Client . 30

3.3 Using the Scripts In The Package . 31

3.4 Deploying On Amazon EC2 . 31

3.5 Deploying using Docker . 32

4 Hazelcast Overview 33

4.1 Sharding in Hazelcast . 34

4.2 Hazelcast Topology . 34

4.3 Why Hazelcast? . 35

4.4 Data Partitioning . 36

4.4.1 How the Data is Partitioned . 38

3

4 CONTENTS

4.4.2 Partition Table . 38

4.4.3 Repartitioning . 39

4.5 Use Cases . 39

4.6 Resources . 40

5 Understanding Configuration 41

5.1 Configuring Declaratively . 41

5.1.1 Composing Declarative Configuration . 42

5.2 Configuring Programmatically . 43

5.3 Configuring with System Properties . 44

5.4 Configuring within Spring Context . 45

5.5 Checking Configuration . 45

5.6 Using Wildcards . 45

5.7 Using Variables . 46

6 Setting Up Clusters 49

6.1 Discovering Cluster Members . 49

6.1.1 Discovering Members by Multicast . 49

6.1.2 Discovering Members by TCP . 50

6.1.3 Discovering Members within EC2 Cloud . 51

6.1.4 Discovering Members with jclouds . 52

6.2 Creating Cluster Groups . 55

6.3 Partition Group Configuration . 56

6.4 Logging Configuration . 57

6.5 Other Network Configurations . 58

6.5.1 Public Address . 59

6.5.2 Port . 59

6.5.3 Outbound Ports . 60

6.5.4 Reuse Address . 60

6.5.5 Join . 61

6.5.6 Interfaces . 63

6.5.7 IPv6 Support . 64

7 Distributed Data Structures 65

7.1 Map . 66

7.1.1 Getting a Map and Putting an Entry . 66

7.1.2 Backing Up Maps . 70

7.1.3 Evicting Map Entries . 71

7.1.4 Setting In Memory Format . 75

7.1.5 Using High-Density Memory Store with Map . 75

7.1.6 Loading and Storing Persistent Data . 77

CONTENTS 5

7.1.7 Creating Near Cache for Map . 83

7.1.8 Locking Maps . 85

7.1.9 Accessing Entry Statistics . 88

7.1.10 Map Listener . 88

7.1.11 Listening to Map Entries with Predicates . 88

7.1.12 Adding Interceptors . 90

7.1.13 Preventing Out of Memory Exceptions . 93

7.2 Queue . 95

7.2.1 Getting a Queue and Putting Items . 95

7.2.2 Creating an Example Queue . 95

7.2.3 Setting a Bounded Queue . 97

7.2.4 Queueing with Persistent Datastore . 98

7.2.5 Configuring Queue . 99

7.3 MultiMap . 100

7.3.1 Getting a MultiMap and Putting an Entry . 100

7.3.2 Configuring MultiMap . 101

7.4 Set . 102

7.4.1 Getting a Set and Putting Items . 102

7.4.2 Configuring Set . 103

7.5 List . 103

7.5.1 Getting a List and Putting Items . 103

7.5.2 Configuring List . 104

7.6 Ringbuffer . 105

7.6.1 Getting a Ringbuffer and Reading Items . 105

7.6.2 Adding Items to a Ringbuffer . 105

7.6.3 IQueue vs. Ringbuffer . 105

7.6.4 Configuring Ringbuffer Capacity . 106

7.6.5 Backing Up Ringbuffer . 106

7.6.6 Configuring Ringbuffer Time To Live . 106

7.6.7 Setting Ringbuffer Overflow Policy . 106

7.6.8 Configuring Ringbuffer In-Memory Format . 107

7.6.9 Adding Batched Items . 107

7.6.10 Reading Batched Items . 107

7.6.11 Using Async Methods . 108

7.6.12 Ringbuffer Configuration Examples . 109

7.7 Topic . 109

7.7.1 Getting a Topic and Publishing Messages . 109

7.7.2 Getting Topic Statistics . 110

7.7.3 Understanding Topic Behavior . 110

6 CONTENTS

7.7.4 Configuring Topic . 111

7.8 Reliable Topic . 112

7.8.1 Sample Reliable ITopic Code . 113

7.8.2 Slow Consumers . 113

7.8.3 Configuring Reliable Topic . 113

7.9 Lock . 114

7.9.1 Using Try-Catch Blocks with Locks . 114

7.9.2 Releasing Locks with tryLock Timeout . 114

7.9.3 Avoiding Waiting Threads with Lease Time . 115

7.9.4 Understanding Lock Behavior . 115

7.9.5 Synchronizing Threads with ICondition . 116

7.10 IAtomicLong . 116

7.10.1 Sending Functions to IAtomicLong . 117

7.10.2 Executing Functions on IAtomicLong . 117

7.10.3 Reasons to Use Functions with IAtomic . 118

7.11 ISemaphore . 118

7.11.1 Controlling Thread Counts with Semaphore Permits . 118

7.11.2 Example Semaphore Code . 118

7.11.3 Configuring Semaphore . 119

7.12 IAtomicReference . 120

7.12.1 Sending Functions to IAtomicReference . 120

7.12.2 Using IAtomicReference . 121

7.13 ICountDownLatch . 121

7.13.1 Gate-Keeping Concurrent Activities . 121

7.13.2 Recovering From Failure . 122

7.13.3 Using ICountDownLatch . 122

7.14 IdGenerator . 122

7.14.1 Generating Cluster-Wide IDs . 122

7.14.2 Unique IDs and Duplicate IDs . 123

7.15 Replicated Map . 123

7.15.1 Replicating Instead of Partitioning . 123

7.15.2 Example Replicated Map Code . 124

7.15.3 Considerations for Replicated Map . 124

7.15.4 Configuration Design for Replicated Map . 125

7.15.5 Configuring Replicated Map . 125

7.15.6 Using EntryListener on Replicated Map . 126

CONTENTS 7

8 Distributed Events 129

8.1 Event Listeners for Hazelcast Members . 129

8.1.1 Listening for Member Events . 129

8.1.2 Listening for Distributed Object Events . 131

8.1.3 Listening for Migration Events . 132

8.1.4 Listening for Partition Lost Events . 133

8.1.5 Listening for Lifecycle Events . 134

8.1.6 Listening for Map Events . 135

8.1.7 Listening for MultiMap Events . 139

8.1.8 Listening for Item Events . 140

8.1.9 Listening for Topic Messages . 142

8.1.10 Listening for Clients . 143

8.2 Event Listeners for Hazelcast Clients . 144

8.3 Global Event Configuration . 144

9 Distributed Computing 145

9.1 Executor Service . 145

9.1.1 Implementing a Callable Task . 145

9.1.2 Implementing a Runnable Task . 147

9.1.3 Scaling The Executor Service . 148

9.1.4 Executing Code in the Cluster . 148

9.1.5 Canceling an Executing Task . 149

9.1.6 Callback When Task Completes . 150

9.1.7 Selecting Members for Task Execution . 151

9.1.8 Configuring Executor Service . 152

9.2 Entry Processor . 152

9.2.1 Performing Fast In-Memory Map Operations . 153

9.2.2 Creating an Entry Processor . 154

9.2.3 Abstract Entry Processor . 156

10 Distributed Query 159

10.1 How Distributed Query Works . 159

10.1.1 Employee Map Query Example . 159

10.1.2 Querying with Criteria API . 160

10.1.3 Querying with SQL . 162

10.1.4 Filtering with Paging Predicates . 163

10.1.5 Indexing Queries . 163

10.1.6 Configuring Query Thread Pool . 164

10.2 Querying in Collections and Arrays . 165

10.2.1 Indexing in Collections and Arrays . 165

8 CONTENTS

10.2.2 Corner cases . 166

10.3 Custom Attributes . 166

10.3.1 Implementing a ValueExtractor . 167

10.3.2 Extraction Arguments . 169

10.3.3 Configuring a Custom Attribute Programmatically . 169

10.3.4 Configuring a Custom Attribute Declaratively . 169

10.3.5 Indexing Custom Attributes . 170

10.4 MapReduce . 170

10.4.1 Understanding MapReduce . 170

10.4.2 Using the MapReduce API . 173

10.4.3 Hazelcast MapReduce Architecture . 179

10.5 Aggregators . 182

10.5.1 Aggregations Basics . 182

10.5.2 Using the Aggregations API . 183

10.5.3 Aggregations Examples . 187

10.5.4 Implementing Aggregations . 191

10.6 Continuous Query Cache . 191

10.6.1 Keeping Query Results Local and Ready . 191

10.6.2 Accessing Continuous Query Cache from Member . 191

10.6.3 Accessing Continuous Query Cache from Client Side . 192

10.6.4 Features of Continuous Query Cache . 192

11 Transactions 195

11.1 Creating a Transaction Interface . 195

11.1.1 Queue/Set/List vs. Map/Multimap . 196

11.1.2 ONE_PHASE vs. TWO_PHASE . 196

11.2 Providing XA Transactions . 197

11.3 Integrating into J2EE . 197

11.3.1 Sample Code for J2EE Integration . 198

11.3.2 Configuring Resource Adapter . 198

11.3.3 Configuring a Glassfish v3 Web Application . 199

11.3.4 Configuring a JBoss AS 5 Web Application . 199

11.3.5 Configuring a JBoss AS 7 / EAP 6 Web Application . 200

12 Hazelcast JCache 203

12.1 JCache Overview . 203

12.2 JCache Setup and Configuration . 203

12.2.1 Setting up Your Application . 203

12.2.2 Example JCache Application . 205

12.2.3 Configuring for JCache . 206

CONTENTS 9

12.3 JCache Providers . 208

12.3.1 Configuring JCache Provider . 208

12.3.2 Configuring JCache with Client Provider . 209

12.3.3 Configuring JCache with Server Provider . 209

12.4 JCache API . 209

12.4.1 JCache API Application Example . 209

12.4.2 JCache Base Classes . 211

12.4.3 Implementing Factory and FactoryBuilder . 212

12.4.4 Implementing CacheLoader . 212

12.4.5 CacheWriter . 213

12.4.6 Implementing EntryProcessor . 215

12.4.7 CacheEntryListener . 216

12.4.8 ExpirePolicy . 217

12.5 Hazelcast JCache Extension - ICache . 217

12.5.1 Scoping to Join Clusters . 218

12.5.2 Namespacing . 221

12.5.3 Retrieving an ICache Instance . 221

12.5.4 ICache Configuration . 221

12.5.5 ICache Async Methods . 222

12.5.6 Defining a Custom ExpiryPolicy . 224

12.5.7 JCache Eviction . 225

12.5.8 JCache Near Cache . 228

12.5.9 ICache Convenience Methods . 231

12.5.10 Implementing BackupAwareEntryProcessor . 231

12.5.11 ICache Partition Lost Listener . 232

12.5.12JCache Split-Brain . 233

12.6 Testing for JCache Specification Compliance . 235

13 Integrated Clustering 237

13.1 Hibernate Second Level Cache . 237

13.1.1 Sample Code for Hibernate . 237

13.1.2 Supported Hibernate Versions . 237

13.1.3 Configuring Hibernate for Hazelcast . 237

13.1.4 Configuring Hazelcast for Hibernate . 239

13.1.5 Setting P2P (Peer-to-Peer) for Hibernate . 240

13.1.6 Setting Client/Server for Hibernate . 240

13.1.7 Configuring Cache Concurrency Strategy . 241

13.1.8 Advanced Settings . 241

13.2 Web Session Replication . 241

13.2.1 Filter Based Web Session Replication . 242

10 CONTENTS

13.2.2 Tomcat Based Web Session Replication . 247

13.2.3 Jetty Based Web Session Replication . 251

13.3 Spring Integration . 254

13.3.1 Supported Versions . 254

13.3.2 Configuring Spring . 254

13.3.3 Enabling SpringAware Objects . 257

13.3.4 Adding Caching to Spring . 260

13.3.5 Configuring Hibernate Second Level Cache . 262

13.3.6 Best Practices . 262

14 Storage 265

14.1 High-Density Memory Store . 265

14.1.1 Configuring High-Density Memory Store . 265

14.2 Sizing Practices . 266

14.3 Hot Restart Persistence . 267

14.3.1 Hot Restart Persistence Overview . 267

14.3.2 Configuring Hot Restart . 268

14.3.3 Hot Restart and IP Address-Port . 269

14.3.4 Hot Restart Persistence Design Details . 269

14.3.5 Concurrent, Incremental, Generational GC . 270

14.3.6 Hot Restart Performance Considerations . 271

15 Hazelcast Java Client 275

15.1 Hazelcast Clients Feature Comparison . 275

15.2 Java Client Overview . 277

15.2.1 Including Dependencies for Java Clients . 277

15.2.2 Getting Started with Client API . 277

15.2.3 Java Client Operation Modes . 278

15.2.4 Handling Failures . 278

15.2.5 Using Supported Distributed Data Structures . 278

15.2.6 Using Client Services . 280

15.2.7 Client Listeners . 281

15.2.8 Client Transactions . 281

15.3 Configuring Java Client . 281

15.3.1 Configuring Client Network . 282

15.3.2 Configuring Client Load Balancer . 287

15.3.3 Configuring Client Near Cache . 288

15.3.4 Client Group Configuration . 288

15.3.5 Client Security Configuration . 288

15.3.6 Client Serialization Configuration . 288

CONTENTS 11

15.3.7 Configuring Client Listeners . 289
15.3.8 ExecutorPoolSize . 289
15.3.9 ClassLoader . 289

15.4 Client System Properties . 289
15.5 Sample Codes for Client . 290
15.6 Using High-Density Memory Store with Java Client . 290

16 Other Client Implementations 293
16.1 C++ Client . 293

16.1.1 Setting Up C++ Client . 293
16.1.2 Installing C++ Client . 294
16.1.3 C++ Client Code Examples . 294

16.2 .NET Client . 298
16.2.1 Configuring .NET Client . 301
16.2.2 Starting .NET Client . 301

16.3 REST Client . 301
16.3.1 REST Client GET/POST/DELETE Examples . 302
16.3.2 Checking the Status of the Cluster for REST Client . 304

16.4 Memcache Client . 305
16.4.1 Memcache Client Code Examples . 305
16.4.2 Unsupported Operations for Memcache . 306

17 Serialization 307
17.1 Serialization Interface Types . 307
17.2 Comparing Serialization Interfaces . 308
17.3 Implementing Java Serializable and Externalizable . 308

17.3.1 Implementing Java Externalizable . 309
17.4 Implementing DataSerializable . 309

17.4.1 IdentifiedDataSerializable . 311
17.5 Implementing Portable Serialization . 313

17.5.1 Portable Serialization Example Code . 313
17.5.2 Registering the Portable Factory . 314
17.5.3 Versioning for Portable Serialization . 315
17.5.4 Null Portable Serialization . 316
17.5.5 DistributedObject Serialization . 316

17.6 Custom Serialization . 316
17.6.1 Implementing StreamSerializer . 316
17.6.2 Implementing ByteArraySerializer . 319

17.7 Global Serializer . 320
17.7.1 Sample Global Serializer . 320

17.8 Implementing HazelcastInstanceAware . 321
17.9 Serialization Configuration Wrap-Up . 322

12 CONTENTS

18 Management 325

18.1 Getting Member Statistics from Distributed Data Structures . 325

18.1.1 Map Statistics . 325

18.1.2 Multimap Statistics . 328

18.1.3 Queue Statistics . 331

18.1.4 Topic Statistics . 332

18.1.5 Executor Statistics . 333

18.2 JMX API per Node . 334

18.3 Monitoring with JMX . 340

18.3.1 MBean Naming for Hazelcast Data Structures . 340

18.3.2 Connecting to JMX Agent . 340

18.4 Cluster Utilities . 341

18.4.1 Getting Member Events and Member Sets . 341

18.4.2 Managing Cluster and Member States . 342

18.4.3 Using the Script cluster.sh . 343

18.4.4 Using REST API for Cluster Management . 344

18.4.5 Enabling Lite Members . 345

18.4.6 Defining Member Attributes . 345

18.4.7 Safety Checking Cluster Members . 346

18.4.8 Defining a Cluster Quorum . 347

18.5 Management Center . 350

18.5.1 Installing Management Center . 350

18.5.2 Getting Started to Management Center . 351

18.5.3 Management Center Tools . 351

18.5.4 Management Center Home Page . 354

18.5.5 Monitoring Caches . 356

18.5.6 Managing Maps . 357

18.5.7 Monitoring Replicated Maps . 360

18.5.8 Monitoring Queues . 361

18.5.9 Monitoring Topics . 364

18.5.10Monitoring MultiMaps . 364

18.5.11Monitoring Executors . 364

18.5.12Monitoring WAN Replication . 366

18.5.13Monitoring Members . 366

18.5.14Scripting . 370

18.5.15Executing Console Commands . 371

18.5.16Creating Alerts . 371

18.5.17Administering Management Center . 375

18.5.18Hot Restart . 376

CONTENTS 13

18.5.19Checking Past Status with Time Travel . 379

18.5.20Management Center Documentation . 379

18.5.21Suggested Heap Size . 379

18.6 Clustered JMX via Management Center . 380

18.6.1 Configuring Clustered JMX . 380

18.6.2 Clustered JMX API . 380

18.6.3 Integrating with New Relic . 385

18.6.4 Integrating with AppDynamics . 386

18.7 Clustered REST via Management Center . 386

18.7.1 Enabling Clustered REST . 387

18.7.2 Clustered REST API Root . 387

18.7.3 Clusters Resource . 387

18.7.4 Cluster Resource . 387

18.7.5 Members Resource . 387

18.7.6 Member Resource . 388

18.7.7 Clients Resource . 391

18.7.8 Maps Resource . 391

18.7.9 MultiMaps Resource . 392

18.7.10Queues Resource . 393

18.7.11Topics Resource . 394

18.7.12Executors Resource . 395

19 Security 397

19.1 Enabling Security for Hazelcast Enterprise . 397

19.2 Socket Interceptor . 397

19.3 Security Interceptor . 398

19.4 Encryption . 399

19.5 SSL . 400

19.6 Credentials . 401

19.7 ClusterLoginModule . 402

19.7.1 Enterprise Integration . 403

19.8 Cluster Member Security . 403

19.9 Native Client Security . 404

19.9.1 Authentication . 404

19.9.2 Authorization . 405

19.9.3 Permissions . 407

14 CONTENTS

20 Performance 411

20.1 Data Affinity . 411

20.2 Back Pressure . 414

20.3 Threading Model . 415

20.3.1 I/O Threading . 415

20.3.2 Event Threading . 416

20.3.3 IExecutor Threading . 416

20.3.4 Operation Threading . 416

20.4 SlowOperationDetector . 418

20.4.1 Logging of Slow Operations . 419

20.4.2 Purging of Slow Operation Logs . 419

20.5 Hazelcast Performance on AWS . 419

20.5.1 Selecting EC2 Instance Type . 419

20.5.2 Dealing with Network Latency . 420

20.5.3 Selecting Virtualization . 420

21 Hazelcast Simulator 421

21.1 Key Concepts . 421

21.2 Installing Simulator . 422

21.2.1 Firewall Settings . 422

21.2.2 Setting Up the Local Machine (Coordinator) . 423

21.2.3 Setting Up the Remote Machines (Agents, Workers) . 423

21.2.4 Setting Up the Public/Private Key Pair . 423

21.3 Setting Up For Amazon EC2 . 424

21.4 Setting Up For Google Compute Engine . 424

21.5 Setting Up Machines Manually . 425

21.6 Executing a Simulator Test . 425

21.6.1 Creating and Editing Properties File . 426

21.6.2 Running the Test . 427

21.6.3 Running the Test with a Script . 431

21.6.4 Using Maven Archetypes . 431

21.7 Provisioner . 432

21.7.1 Accessing the Provisioned Machine . 432

21.8 Coordinator . 433

21.8.1 Controlling Hazelcast Declarative Configuration . 433

21.8.2 Controlling Test Duration . 433

21.8.3 Controlling Client And Workers . 433

21.9 Communicator . 434

21.9.1 Example . 434

21.9.2 Message Types . 434

CONTENTS 15

21.9.3 Message Addressing . 434

21.10Simulator.Properties File Description . 435

21.11Performance and Benchmarking . 436

22 WAN 439

22.1 WAN Replication . 439

22.1.1 Defining WAN Replication . 439

22.1.2 Configuring WAN Replication for IMap and ICache . 441

22.1.3 Batch Size . 443

22.1.4 Batch Maximum Delay . 444

22.1.5 Response Timeout . 444

22.1.6 Queue Capacity . 445

22.1.7 Queue Full Behavior . 445

22.1.8 Event Filtering API . 446

22.1.9 Acknowledge Types . 447

22.1.10WAN Replication Additional Information . 447

23 OSGI 449

23.1 OSGI Support . 449

23.2 API . 449

23.3 Configuring Hazelcast OSGI Support . 449

23.4 Design . 450

23.5 Using Hazelcast OSGI Service . 450

23.5.1 Getting Hazelcast OSGI Service Instances . 450

23.5.2 Managing and Using Hazelcast instances . 451

24 Extending Hazelcast 453

24.1 User Defined Services . 453

24.1.1 Creating the Service Class . 453

24.1.2 Enabling the Service Class . 454

24.1.3 Adding Properties to the Service . 455

24.1.4 Starting the Service . 455

24.1.5 Placing a Remote Call via Proxy . 455

24.1.6 Creating Containers . 460

24.1.7 Partition Migration . 464

24.1.8 Creating Backups . 468

24.2 WaitNotifyService . 471

24.3 Discovery SPI . 471

24.3.1 Discovery SPI Interfaces and Classes . 471

24.3.2 Discovery Strategy . 473

24.3.3 DiscoveryService (Framework integration) . 477

16 CONTENTS

24.4 Config Properties SPI . 477

24.4.1 Config Properties SPI Classes . 477

24.4.2 Config Properties SPI Example . 478

25 Network Partitioning - Split Brain Syndrome 481

25.1 Understanding Partition Recreation . 481

25.2 Understanding Backup Partition Creation . 481

25.3 Understanding The Update Overwrite Scenario . 481

25.4 What Happens When The Network Failure Is Fixed . 482

25.5 How Hazelcast Split Brain Merge Happens . 482

25.6 Specifying Merge Policies . 483

26 System Properties 485

27 Common Exception Types 489

28 License Questions 491

28.1 Embedded Dependencies . 491

28.2 Runtime Dependencies . 491

29 Frequently Asked Questions 493

29.1 Why 271 as the default partition count? . 493

29.2 Is Hazelcast thread safe? . 493

29.3 What happens when a member goes down? . 493

29.4 How do I test the connectivity? . 494

29.5 How do I choose keys properly? . 494

29.6 How do I reflect value modifications? . 494

29.7 How do I test my Hazelcast cluster? . 494

29.8 Does Hazelcast support hundreds of members? . 496

29.9 Does Hazelcast support thousands of clients? . 496

29.10What is the difference between old LiteMember and new Smart Client? 496

29.11How do you give support? . 496

29.12Does Hazelcast persist? . 496

29.13Can I use Hazelcast in a single server? . 496

29.14How can I monitor Hazelcast? . 497

29.15How can I see debug level logs? . 497

29.16What is the difference between client-server and embedded topologies? 497

29.17How do I know it is safe to kill the second member? . 498

29.18When do I need Native Memory solutions? . 498

29.19Is there any disadvantage of using near-cache? . 498

29.20Is Hazelcast secure? . 498

CONTENTS 17

29.21How can I set socket options? . 498

29.22I periodically see client disconnections during idle time? . 498

29.23How to get rid of “java.lang.OutOfMemoryError: unable to create new native thread”? 499

29.24Does repartitioning wait for Entry Processor? . 499

29.25Why do Hazelcast instances on different machines not see each other? 499

29.26What Does “Replica: 1 has no owner” Mean? . 500

30 Glossary 501

18 CONTENTS

Chapter 1

Preface

Welcome to the Hazelcast Reference Manual. This manual includes concepts, instructions, and samples to guide
you on how to use Hazelcast and build Hazelcast applications.
As the reader of this manual, you must be familiar with the Java programming language and you should have
installed your preferred Integrated Development Environment (IDE).

1.1 Hazelcast Editions

This Reference Manual covers all editions of Hazelcast. Throughout this manual:

• Hazelcast refers to the open source edition of Hazelcast in-memory data grid middleware. It is also the
name of the company (Hazelcast, Inc.) providing the Hazelcast product.

• Hazelcast Enterprise is a commercially licensed edition of Hazelcast which provides high-value enterprise
features in addition to Hazelcast.

• Hazelcast Enterprise HD is a commercially licensed edition of Hazelcast which provides High-Density
(HD) Memory Store and Hot Restart Persistence features in addition to Hazelcast Enterprise.

1.2 Hazelcast Architecture

You can see the features for all Hazelcast editions in the following architecture diagram.

NOTE You can see small “HD” boxes for some features in the above diagram. Those features can use
High-Density (HD) Memory Store when it is available. It means if you have Hazelcast Enterprise HD, you can use
those features with HD Memory Store.
For more information on Hazelcast’s Architecture, please see the white paper An Architect’s View of Hazelcast.

1.3 Hazelcast Plugins

You can extend Hazelcast’s functionality by using its plugins. These plugins have their own lifecycles. Please see
Plugins page to learn about Hazelcast plugins you can use.

1.4 Licensing

Hazelcast and Hazelcast Reference Manual are free and provided under the Apache License, Version 2.0. Hazelcast
Enterprise is commercially licensed by Hazelcast, Inc.
For more detailed information on licensing, please see the License Questions appendix.

19

20 CHAPTER 1. PREFACE

Figure 1.1: Hazelcast Architecture

1.5 Trademarks

Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this manual are held by their
respective owners.

1.6 Customer Support

Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow

For information on the commercial support for Hazelcast and Hazelcast Enterprise, please see hazelcast.com.

1.7 Release Notes

Please refer to the Release Notes document for the new features, enhancements and fixes performed for each
Hazelcast release.

1.8 Contributing to Hazelcast

You can contribute to the Hazelcast code, report a bug, or request an enhancement. Please see the following
resources.

• Developing with Git: Document that explains the branch mechanism of Hazelcast and how to request changes.
• Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and send back to
Hazelcast.

• Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests are managed.

1.9 Phone Home

Hazelcast uses phone home data to learn about usage of Hazelcast.

1.10. TYPOGRAPHICAL CONVENTIONS 21

Hazelcast member instances call our phone home server initially when they are started and then every 24 hours.
This applies to all the instances joined to the cluster.

What is sent in?

The following information is sent in a phone home:

• Hazelcast version
• Local Hazelcast member UUID
• Download ID
• A hash value of the cluster ID
• Cluster size bands for 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
• Number of connected clients bands of 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
• Cluster uptime
• Member uptime
• Environment Information:

– Name of operating system
– Kernel architecture (32-bit or 64-bit)
– Version of operating system
– Version of installed Java
– Name of Java Virtual Machine

• Hazelcast Enterprise specific:

– Number of clients by language (Java, C++, C#)
– Flag for Hazelcast Enterprise
– Hash value of license key
– Native memory usage

Phone Home Code

The phone home code itself is open source. Please see here.

Disabling Phone Homes

Set the hazelcast.phone.home.enabled system property to false either in the config or on the Java command
line. Please see the System Properties section for information on how to set a property.

Phone Home URLs

For versions 1.x and 2.x: http://www.hazelcast.com/version.jsp.

For versions 3.x up to 3.6: http://versioncheck.hazelcast.com/version.jsp.

For versions after 3.6: http://phonehome.hazelcast.com/ping.

1.10 Typographical Conventions

Below table shows the conventions used in this manual.

Convention Description

bold font - Indicates part of a sentence that requires the reader’s specific attention. - Also indicates property/parameter values.
italic font - When italicized words are enclosed with “<” and “>”, it indicates a variable in the command or code syntax that you must replace (for example, hazelcast-<version>.jar). - Note and Related Information texts are in italics.
monospace Indicates files, folders, class and library names, code snippets, and inline code words in a sentence.
RELATED INFORMATION Indicates a resource that is relevant to the topic, usually with a link or cross-reference.

NOTE Indicates information that is of special interest or importance, for example an additional action required only in certain circumstances.
element & attribute Mostly used in the context of declarative configuration that you perform using Hazelcast XML file. Element refers to an XML tag used to configure a Hazelcast feature. Attribute is a parameter owned by an element, contributing into the declaration of that element’s configuration. Please see the following example.<port port-count="100">5701</port> In this example, port-count is an attribute of the port element.

22 CHAPTER 1. PREFACE

Chapter 2

Document Revision History

This chapter lists the changes made to this document from the previous release.

NOTE: Please refer to the Release Notes for the new features, enhancements and fixes performed for each
Hazelcast release. You can also find information on upgrading Hazelcast from previous releases in the Release Notes
document.

Chapter Section Description

Chapter 1 - Preface Added Hazelcast Architecture as a new section. Renamed the section Product Naming as Hazelcast Editions and updated its content by adding the new edition “Hazelcast Enterprise HD”.
Chapter 3 - Getting Started Phone Home Added as a new section to explain phone home data.

Deploying using Docker Added as a new section to describe how you can deploy your Hazelcast projects using the Docker platform.
Using the Scripts in the Package Added as a new section explaining the scripts you have when you download Hazelcast.

Chapter 5 - Understanding Configuration Added as a new chapter to provide the fundamentals of Hazelcast configuration.
Chapter 6 - Setting Up Clusters Discovering Members with jclouds Added as a new section to explain how you can enable Hazelcast to discover your members with jclouds R©.

Chapter name changed to “Setting Up Clusters”. It was “Hazelcast Clusters” before. The reason is to gather all clusters related information under this chapter.
Chapter 7 - Distributed Data Structures Map Evicting Map Entries section updated by adding the definition for the min-eviction-check-millis property. The section Understanding Map Eviction added for a more clearer explanation of the eviction mechanism. Setting In Memory Format section updated by adding the information on how to configure Hazelcast Map to use High-Density Memory Store. Creating Near Cache for Map updated by adding a note related to enabling near caches on a lite member.Using High-Density Memory Store with Near Cache added as a new section.Required configuration changes when using NATIVE added as a new section.Using High-Density Memory Store with Map added as a new section.The section previously known as Continuous Query moved under the Map section with the name Listening to Map Entries with Predicates.Near Cache Invalidation added as a new section.

Lock Added the explanation for the method tryLock with lease.
Replicated Map Replicating instead of Partitioning updated by adding a note related to replicated map usage in a lite member. The whole section enhanced.

Chapter 8 - Distributed Events Whole chapter improved and new sections added explaining how to register listeners.
Chapter 9 - Distributed Computing Selecting Members for Task Execution Added a paragraph on how to select a lite member.
Chapter 10 - Distributed Query Filtering with Paging Predicates The note stating that the random page accessing is not supported removed, since it is now supported with this release.
Chapter 11 - Transactions ONE_PHASE vs. TWO_PHASE Added as a new section explaining the trade offs between these two transaction types.

Creating a Transaction Interface Replaced the transaction type name LOCAL with ONE_PHASE. Updated the definitions of transaction types.
Integrating into J2EE Added information related to class loaders.

Chapter 12 - Hazelcast JCache ICache Partition Lost Listener Added as a new section explaining how to listen when a partition is lost in a Hazelcast JCache implementation.
JCache Split-Brain Added as a new section.

Chapter 13 - Integrated Clustering Web Session Replication Marking Transient Attributes added as a new section.
Spring Integration Declarative Hazelcast JCache Based Caching Configuration added as a new section.
Hibernate Second Level Cache Added additional information related to Hibernate Native Client mode to the introduction paragraph of the Setting Client/Server for Hibernate section.

Chapter 14 - Storage Hot Restart Persistence Added as a new section to explain how Hazelcast’s Hot Restart feature works and its design details.
Chapter 15 - Hazelcast Java Client Hazelcast Clients Feature Comparison Added as a new section.

Client Network Configuration Updated by adding the definition of the new IAM role configuration element.

23

24 CHAPTER 2. DOCUMENT REVISION HISTORY

Chapter Section Description

Chapter 16 - Other Client Implementations Windows C++ Client Updated by adding static/dynamic library related flag information.
Chapter 17 - Serialization Whole chapter reviewed after serialization improvements and Global Serializer added as a new section.
Chapter 18 - Management Defining a Cluster Quorum Added information on quorum support for caches. Added the definition of the new configuration element quorum-ref to ICache Configuration section.

Management Center A note on how to see the cache statistics on the Management Center added under the Caches section.Replicated Maps added as a new section. Added the information explaining the new e-mail notification mechanism to Creating Alerts.Monitoring WAN Replication added as a new section.Hot Restart added as a new section.Getting Started to Management Center added as a new section to explain the licensing mechanism, selecting clusters and how to create administrator user credentials.
Monitoring with JMX MBean Naming for Hazelcast Data Structures and Connecting to JMX Agent added as new sections.
Enabling Lite Members Added as a new section. Also Data Partitioning and Partition Table sections updated to include Lite Member related information.
Using the Script cluster.sh Added as a new section explaining this cluster management script that comes when you download Hazelcast.
Using REST API for Cluster Management Added as a new section explaining how you can use REST commands to manage your cluster.

Chapter 19 - Security SSL First paragraph updated to include the information that SSL is capable of securing socket level communication between Hazelcast members and clients too.
Chapter 22 - WAN Whole chapter updated and new content added.
Chapter 23 - OSGI Added as a new chapter.
Chapter 24 - Extending Hazelcast This title added as a chapter to include the section previously present as “User Defined Services”.

Discovery SPI Added as a new section.
Config Properties SPI Added as a new section.

Chapter 29 - FAQ Added new questions/answers.
Chapter 30 - Glossary Added new glossary items.

Chapter 3

Getting Started

This chapter explains how to install Hazelcast and start a Hazelcast member and client. It describes the executable
files in the download package and also provides the fundamentals for configuring Hazelcast and its deployment
options.

3.1 Installation

The following sections explains the installation of Hazelcast and Hazelcast Enterprise. It also includes notes and
changes to consider when upgrading Hazelcast.

3.1.1 Hazelcast

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need to add
additional repositories to your pom.xml or add hazelcast-<version>.jar file into your classpath (Maven does
that for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.6</version>

</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast yourself. You only need to:

• Download the package hazelcast-<version>.zip or hazelcast-<version>.tar.gz from hazelcast.org.

• Extract the downloaded hazelcast-<version>.zip or hazelcast-<version>.tar.gz.

• Add the file hazelcast-<version>.jar to your classpath.

3.1.2 Hazelcast Enterprise

There are two Maven repositories defined for Hazelcast Enterprise:

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository-hazelcast-l337.forge.cloudbees.com/snapshot/</url>

25

26 CHAPTER 3. GETTING STARTED

</repository>
<repository>

<id>Hazelcast Private Release Repository</id>
<url>https://repository-hazelcast-l337.forge.cloudbees.com/release/</url>

</repository>

Hazelcast Enterprise customers may also define dependencies, a sample of which is shown below.

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat6</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat7</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>${project.version}</version>

</dependency>

3.1.3 Setting the License Key

Hazelcast Enterprise offers you two types of licenses: Enterprise and Enterprise HD. The supported features
differ in your Hazelcast setup according to the license type you own.

• Enterprise license: In addition to the open source edition of Hazelcast, Enterprise features are the following:

– Security
– WAN Replication
– Continuous Query Cache
– Clustered REST
– Clustered JMX
– Web Sessions

• Enterprise HD license: In addition to the Enterprise features, Enterprise HD features are the following:

– High-Density Memory Store
– Hot Restart Persistence

To use Hazelcast Enterprise, you need to set the provided license key using one of the configuration methods shown
below.

Declarative Configuration:

Add the below line to any place you like in the file hazelcast.xml. This XML file offers you a declarative way to
configure your Hazelcast. It is included in the Hazelcast download package. When you extract the downloaded
package, you will see the file hazelcast.xml under the /bin directory.

3.1. INSTALLATION 27

<hazelcast>
...
<license-key>Your Enterprise License Key</license-key>
...

</hazelcast>

Client Declarative Configuration:

Native client distributions (Java, C++, .NET) of Hazelcast are open source. However, there are some Hazelcast
Enterprise features which can be used with the Java Client such as SSL, Socket Interceptors, High-Density backed
Near Cache, etc. In that case, you also need to have a Hazelcast Enterprise license and you should include this
license in the file hazelcast-client-full.xml which is located under the directory src/main/resources of your
hazelcast-client package, as shown below.

<hazelcast-client>
...
<license-key>Your Enterprise License Key</license-key>
...

</hazelcast-client>

Programmatic Configuration:

Alternatively, you can set your license key programmatically as shown below.

Config config = new Config();
config.setLicenseKey("Your Enterprise License Key");

Spring XML Configuration:

If you are using Spring with Hazelcast, then you can set the license key using the Spring XML schema, as shown
below.

<hz:config>
...
<hz:license-key>Your Enterprise License Key</hz:license-key>
...

</hz:config>

JVM System Property:

As another option, you can set your license key using the below command (the “-D” command line option).

-Dhazelcast.enterprise.license.key=Your Enterprise License Key

3.1.4 Upgrading from 3.x

• Introducing the spring-aware element: Before the release 3.5, Hazelcast uses SpringManagedContext
to scan SpringAware annotations by default. This may cause some performance overhead for the users who
do not use SpringAware. This behavior has been changed with the release of Hazelcast 3.5. SpringAware
annotations are disabled by default. By introducing the spring-aware element, now it is possible to enable
it by adding the <hz:spring-aware /> tag to the configuration. Please see the Spring Integration section.

• Introducing new configuration options for WAN replication: Starting with the release 3.6, WAN
replication related system properties, which are configured on a per member basis, can now be configured per
target cluster. The 4 system properties below are no longer valid.

– hazelcast.enterprise.wanrep.batch.size, please see the WAN Replication Batch Size.

http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-size

28 CHAPTER 3. GETTING STARTED

– hazelcast.enterprise.wanrep.batchfrequency.seconds, please see the WAN Replication Batch
Maximum Delay.

– hazelcast.enterprise.wanrep.optimeout.millis, please see the WAN Replication Response Time-
out.

– hazelcast.enterprise.wanrep.queue.capacity, please see the WAN Replication Queue Capacity.

• Removal of deprecated getId() method: The method getId() in the interface DistributedObject has
been removed. Please use the method getName() instead.

• Change in the Custom Serialization in the C++ Client Distribution:

Before, the method getTypeId() was used to retrieve the ID of the object to be serialized. Now, the method
getHazelcastTypeId() is used and you give your object as a parameter to this new method. Also, getTypeId()
was used in your custom serializer class, now it has been renamed to getHazelcastTypeId() too. Note that, these
changes also apply when you want to switch from Hazelcast 3.6.1 to 3.6.2 too.

3.1.5 Upgrading from 2.x

• Removal of deprecated static methods: The static methods of Hazelcast class reaching Hazelcast data
components have been removed. The functionality of these methods can be reached from the HazelcastInstance
interface. You should replace the following:

Map<Integer, String> customers = Hazelcast.getMap("customers");

with

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
// or if you already started an instance named "instance1"
// HazelcastInstance hazelcastInstance = Hazelcast.getHazelcastInstanceByName("instance1");
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

• Renaming “instance” to “distributed object”: Before 3.0 there was confusion about the term “instance”:
it was used for both the cluster members and the distributed objects (map, queue, topic, etc. instances).
Starting with 3.0, the term instance will be only used for Hazelcast instances, namely cluster members. We
will use the term “distributed object” for map, queue, etc. instances. You should replace the related methods
with the new renamed ones. 3.0 clients are smart clients in that they know in which cluster member the data
is located, so you can replace your lite members with native clients.

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hazelcastInstance.getMap("test");
Collection<Instance> instances = hazelcastInstance.getInstances();
for (Instance instance : instances) {
if (instance.getInstanceType() == Instance.InstanceType.MAP) {
System.out.println("There is a map with name: " + instance.getId());

}
}

}

with

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hz.getMap("test");
Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects();

http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#queue-capacity

3.1. INSTALLATION 29

for (DistributedObject distributedObject : objects) {
if (distributedObject instanceof IMap) {

System.out.println("There is a map with name: " + distributedObject.getName());
}

}
}

• Package structure change: PartitionService has been moved to package com.hazelcast.core from
com.hazelcast.partition.

• Listener API change: Before 3.0, removeListener methods were taking the Listener object as a parameter.
But this caused confusion because same listener object may be used as a parameter for different listener
registrations. So we have changed the listener API. addListener methods returns a unique ID and you can
remove a listener by using this ID. So you should do the following replacement if needed:

IMap map = hazelcastInstance.getMap("map");
map.addEntryListener(listener, true);
map.removeEntryListener(listener);

with

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

• IMap changes:
• tryRemove(K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is
successful.

• tryLockAndGet(K key, long time, TimeUnit timeunit) is removed.
• putAndUnlock(K key, V value) is removed.
• lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.
• getMapEntry(K key) is renamed as getEntryView(K key). The returned object’s type, MapEntry class is
renamed as EntryView.

• There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented
merge() method causes the existing entry to be removed.

• IQueue changes: There is no change on IQueue API but there are changes on how IQueue is configured.
With Hazelcast 3.0 there will be no backing map configuration for queue. Settings like backup count will be
directly configured on queue config. For queue configuration details, please see the Queue section.

• Transaction API change: In Hazelcast 3.0, transaction API is completely different. Please see the
Transactions chapter.

• ExecutorService API change: Classes MultiTask and DistributedTask have been removed. All the
functionality is supported by the newly presented interface IExecutorService. Please see the Executor Service
section.

• LifeCycleService API: The lifecycle has been simplified. pause(), resume(), restart() methods have
been removed.

• AtomicNumber: AtomicNumber class has been renamed to IAtomicLong.
• ICountDownLatch: await() operation has been removed. We expect users to use await() method with
timeout parameters.

• ISemaphore API: The ISemaphore has been substantially changed. attach(), detach() methods have
been removed.

• In 2.x releases, the default value for max-size eviction policy was cluster_wide_map_size. In 3.x releases,
default is PER_NODE. After upgrading, the max-size should be set according to this new default, if it is
not changed. Otherwise, it is likely that OutOfMemory exception may be thrown.

30 CHAPTER 3. GETTING STARTED

3.2 Starting the Member and Client

Having installed Hazelcast, you can get started.

In this short tutorial, you perform the following activities.

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two members (JVMs).
3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client API.

Let’s begin.

• The following code starts the first Hazelcast member and creates and uses the customers map and queue.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap("customers");
customers.put(1, "Joe");
customers.put(2, "Ali");
customers.put(3, "Avi");

System.out.println("Customer with key 1: " + customers.get(1));
System.out.println("Map Size:" + customers.size());

Queue<String> queueCustomers = hazelcastInstance.getQueue("customers");
queueCustomers.offer("Tom");
queueCustomers.offer("Mary");
queueCustomers.offer("Jane");
System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

}
}

• Run this GettingStarted class a second time to get the second member started. The members form a cluster
and the output is similar to the following.

Members [2] {
Member [127.0.0.1:5701]
Member [127.0.0.1:5702] this

}

• Now, add the hazelcast-client-<version> .jar library to your classpath. This is required to use a
Hazelcast client.

• The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the customers
map.

3.3. USING THE SCRIPTS IN THE PACKAGE 31

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {
public static void main(String[] args) {

ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap map = client.getMap("customers");
System.out.println("Map Size:" + map.size());

}
}

• When you run it, you see the client properly connecting to the cluster and printing the map size as 3.

Hazelcast also offers a tool, Management Center, that enables you to monitor your cluster. To use it, deploy
the mancenter-<version> .war included in the ZIP file to your web server. You can use it to monitor your maps,
queues, and other distributed data structures and members. Please see the Management Center section for usage
explanations.

By default, Hazelcast uses Multicast to discover other members that can form a cluster. If you are working with
other Hazelcast developers on the same network, you may find yourself joining their clusters under the default
settings. Hazelcast provides a way to segregate clusters within the same network when using Multicast. Please see
the Creating Cluster Groups for more information. Alternatively, if you do not wish to use the default Multicast
mechanism, you can provide a fixed list of IP addresses that are allowed to join. Please see the Join Configuration
section for more information.

RELATED INFORMATION

You can also check the video tutorials here.

3.3 Using the Scripts In The Package

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see 3 scripts under the /bin
folder which provide basic functionalities for member and cluster management.

The following are the names and descriptions of each script:

• start.sh / start.bat: Starts a Hazelcast member with default configuration in the working directory*.
• stop.sh / stop.bat: Stops the Hazelcast member that was started in the current working directory.
• cluster.sh: Provides basic functionalities for cluster management such as getting and changing the cluster
state, shutting down the cluster or forcing the cluster to clean its persisted data and make a fresh start.

NOTE: start.sh / start.bat scripts lets you start one Hazelcast instance per folder. To start a new
instance, please unzip Hazelcast ZIP or TAR.GZ package in a new folder.

Please refer to the Using the Script cluster.sh section to learn the usage of this script.

3.4 Deploying On Amazon EC2

You can deploy your Hazelcast project onto Amazon EC2 environment using Third Party tools such as Vagrant
and Chef.

32 CHAPTER 3. GETTING STARTED

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step by step instructions in the
hazelcast-integration folder of the hazelcast-code-samples package which you can download at hazelcast.org.
Please refer to this sample project for more information.

3.5 Deploying using Docker

You can deploy your Hazelcast projects using the Docker containers. Hazelcast has three images on Docker:

• Hazelcast
• Hazelcast Enterprise
• Hazelcast Management Center

After you pull an image from the Docker registry, you can run your image to start the management center or a
Hazelcast instance with Hazelcast’s default configuration. All repositories provide the latest stable releases but you
can pull a specific release too. You can also specify environment variables when running the image.

If you want to start a customized Hazelcast instance, you can extend the Hazelcast image by providing your own
configuration file.

Please refer to https://hub.docker.com/u/hazelcast/ for more information on each repository and the procedures to
run a Hazelcast image.

Chapter 4

Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable distributed In-Memory
computing, widely recognized as the fastest and most scalable approach to application performance. Hazelcast
does this in open source. More importantly, Hazelcast makes distributed computing simple by offering distributed
implementations of many developer friendly interfaces from Java such as Map, Queue, ExecutorService, Lock,
and JCache. For example, the Map interface provides an In-Memory Key Value store which confers many of the
advantages of NoSQL in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access the CPUs in your
cluster for maximum processing speed. Hazelcast is designed to be lightweight and easy to use. Since Hazelcast is
delivered as a compact library (JAR) and since it has no external dependencies other than Java, it easily plugs into
your software solution and provides distributed data structures and distributed computing utilities.

Hazelcast is highly scalable and available (100% operational, never failing). Distributed applications can use
Hazelcast for distributed caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is
implemented in Java and has clients for Java, C/C++, .NET and REST. Hazelcast also speaks memcache protocol.
It plugs into Hibernate and can easily be used with any existing database system.

If you are looking for In-Memory speed, elastic scalability, and the developer friendliness of NoSQL, Hazelcast is a
great choice.

Hazelcast is simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar Java util
package, exposing the same interfaces. Just add hazelcast.jar to your classpath, and you can quickly enjoy
JVMs clustering and you can start building scalable applications.

Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no single point of
failure. All nodes store equal amounts of data and do equal amounts of processing. You can embed Hazelcast in
your existing application or use it in client and server mode where your application is a client to Hazelcast nodes.

Hazelcast is scalable

Hazelcast is designed to scale up to hundreds and thousands of nodes. Simply add new nodes and they will
automatically discover the cluster and will linearly increase both memory and processing capacity. The nodes
maintain a TCP connection between each other and all communication is performed through this layer.

Hazelcast is fast

Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.

Hazelcast is redundant

Hazelcast keeps the backup of each data entry on multiple nodes. On a node failure, the data is restored from the
backup and the cluster will continue to operate without downtime.

33

34 CHAPTER 4. HAZELCAST OVERVIEW

4.1 Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we serialize, hash and
mode it with the number of partitions to find the partition which the key belongs to. The partitions themselves
are distributed equally among the members of the cluster. Hazelcast also creates the backups of partitions and
distributes them among nodes for redundancy.

RELATED INFORMATION

Please refer to the Data Partitioning section for more information on how Hazelcast partitions your data.

4.2 Hazelcast Topology

You can deploy a Hazelcast cluster in two ways: Embedded or Client/Server.

If you have an application whose main focal point is asynchronous or high performance computing and lots of task
executions, then Embedded deployment is useful. In this type, members include both the application and Hazelcast
data and services. The advantage of the Embedded deployment is having a low-latency data access.

See the below illustration.

Figure 4.1: Embedded Topology

In the Client/Server deployment, Hazelcast data and services are centralized in one or more server members
and they are accessed by the application through clients. You can have a cluster of server members that can be
independently created and scaled. Your clients communicate with these members to reach to Hazelcast data and
services on them. Hazelcast provides native clients (Java, .NET and C++), Memcache clients and REST clients.
See the below illustration.

Client/Server deployment has advantages including more predictable and reliable Hazelcast performance, easier
identification of problem causes, and most importantly, better scalability. When you need to scale in this deployment
type, just add more Hazelcast server members. You can address client and server scalability concerns separately.

If you want low-latency data access, as it is in the Embedded deployment, and you also want the scalability
advantages of the Client/Server deployment, you can consider to define near caches for your clients. This enables
the frequently used data to be kept in the client’s local memory. Please refer to Configuring Client Near Cache.

4.3. WHY HAZELCAST? 35

Figure 4.2: Client Server Topology

4.3 Why Hazelcast?

A Glance at Traditional Data Persistence

Data is at the core of software systems. In conventional architectures, a relational database persists and provides
access to data. Applications are talking directly with a database which has its backup as another machine. To
increase performance, tuning or a faster machine is required. This can cost a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using technologies like
external key-value stores or second level caching. This helps to offload the database. However, when the database
is saturated or the applications perform mostly “put” operations (writes), this approach is of no use because it
insulates the database only from the “get” loads (reads). Even if the applications are read-intensive, there can be
consistency problems: when data changes, what happens to the cache, and how are the changes handled? This is
when concepts like time-to-live (TTL) or write-through come in.

However, in the case of TTL, if the access is less frequent then the TTL, the result will always be a cache miss. On
the other hand, in the case of write-through caches; if there are more than one of these caches in a cluster, then we
again have consistency issues. This can be avoided by having the nodes communicating with each other so that
entry invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. And, there are several cache
servers and in-memory database solutions in this field. However, those are stand-alone single instances with a
distribution mechanism to an extent provided by other technologies. This brings us back to square one: we would
experience saturation or capacity issues if the product is a single instance or if consistency is not provided by the
distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast shares data
around the cluster for flexibility and performance. It is an in-memory data grid for clustering and highly scalable
data distribution.

One of the main features of Hazelcast is not having a master member. Each cluster member is configured to be the
same in terms of functionality. The oldest member (the first member created in the cluster) automatically performs
the data assignment to cluster members. If the oldest member dies, the second oldest member takes over.

Another main feature is the data being held entirely in-memory. This is fast. In the case of a failure, such as a
member crash, no data will be lost since Hazelcast distributes copies of data across all the cluster members.

36 CHAPTER 4. HAZELCAST OVERVIEW

As shown in the feature list in the Hazelcast Overview, Hazelcast supports a number of distributed data structures
and distributed computing utilities. This provides powerful ways of accessing distributed clustered memory and
accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

• It is open source.
• It is only a JAR file. You do not need to install software.
• It is a library, it does not impose an architecture on Hazelcast users.
• It provides out of the box distributed data structures, such as Map, Queue, MultiMap, Topic, Lock and
Executor.

• There is no “master”, meaning no single point of failure in Hazelcast cluster; each member in the cluster is
configured to be functionally the same.

• When the size of your memory and compute requirements increase, new members can be dynamically joined
to the cluster to scale elastically.

• Data is resilient to member failure. Data backups are distributed across the cluster. This is a big benefit
when a member in the cluster crashes; data will not be lost.

• Members are always aware of each other unlike the traditional key-value caching solutions.
• You can build your own custom distributed data structures using the Service Programming Interface (SPI) if
you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

• analytic applications requiring big data processing by partitioning the data,
• to retain frequently accessed data in the grid,
• a cache, particularly an open source JCache provider with elastic distributed scalability,
• a primary data store for applications with utmost performance, scalability and low-latency requirements,
• an In-Memory NoSQL Key Value Store,
• publish/subscribe communication at highest speed and scalability between applications,
• applications that need to scale elastically in distributed and cloud environments,
• a highly available distributed cache for applications,
• an alternative to Coherence and Terracotta.

4.4 Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions are memory
segments, where each of those segments can contain hundreds or thousands of data entries, depending on the
memory capacity of your system.

By default, Hazelcast offers 271 partitions. When you start a cluster member, it starts with these 271 partitions.
The following illustration shows the partitions in a Hazelcast cluster with single member.

When you start a second member on that cluster (creating a Hazelcast cluster with 2 members), the partitions are
distributed as shown in the following illustration.

In the illustration, the partitions with black text are primary partitions, and the partitions with blue text are
replica partitions (backups). The first member has 135 primary partitions (black), and each of these partitions are
backed up in the second member (blue). At the same time, the first member also has the replica partitions of the
second member’s primary partitions.

As you add more members, Hazelcast one-by-one moves some of the primary and replica partitions to the new
members, making all members equal and redundant. Only the minimum amount of partitions will be moved to scale
out Hazelcast. The following is an illustration of the partition distributions in a Hazelcast cluster with 4 members.

Hazelcast distributes the partitions equally among the members of the cluster. Hazelcast creates the backups of
partitions and distributes them among the members for redundancy.

4.4. DATA PARTITIONING 37

Figure 4.3: Single Member with Partitions

Figure 4.4: Cluster with Two Members - Backups are Created

38 CHAPTER 4. HAZELCAST OVERVIEW

Figure 4.5: Cluster with Four Members

Partition distributions in the above illustrations are for your convenience and for a more clearer description.
Normally, the partitions are not distributed in an order (as they are shown in these illustrations), they are
distributed randomly. The important point here is that Hazelcast equally distributes the partitions and their
backups among the members.

With Hazelcast 3.6, lite members are introduced. Lite members are a new type of members that do not own any
partition. Lite members are intended for use in computationally-heavy task executions and listener registrations.
Although they do not own any partitions, they can access partitions that are owned by other members in the
cluster.

RELATED INFORMATION

Please refer to the Enabling Lite Members section.

4.4.1 How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key (for example,
for a map) or an object name (for example, for a topic or list):

• the key or name is serialized (converted into a byte array),
• this byte array is hashed, and
• the result of the hash is mod by the number of partitions.

The result of this modulo - MOD(hash result, partition count) - is the partition in which the data will be stored,
that is the partition ID. For ALL members you have in your cluster, the partition ID for a given key will always
be the same.

4.4.2 Partition Table

When you start a member, a partition table is created within it. This table stores the partition IDs and the cluster
members they belong. The purpose of this table is to make all members (including lite members) in the cluster
aware of this information, making sure that each member knows where the data is.

4.5. USE CASES 39

The oldest member in the cluster (the one that started first) periodically sends the partition table to all members.
In this way, each member in the cluster is informed about any changes to the partition ownership. The ownerships
may be changed when, for example, a new member joins the cluster, or when a member leaves the cluster.

NOTE: If the oldest member goes down, the next oldest member sends the partition table information to the
other ones.

You can configure the frequency (how often) that the member sends the partition table the information by using
the hazelcast.partition.table.send.interval system property. The property is set to every 15 seconds by
default.

4.4.3 Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the repartitioning in the
following cases:

• When a member joins to the cluster.
• When a member leaves the cluster.

In these cases, the partition table in the oldest member is updated with the new partition ownerships.

Note that if a lite member joins or leaves a cluster, repartitioning is not triggered since lite members do not own
any partitions.

4.5 Use Cases

Some example usages are listed below. Hazelcast can be used: - To share server configuration/information to see
how a cluster performs,

• To cluster highly changing data with event notifications (e.g. user based events) and to queue and distribute
background tasks,

• As a simple Memcache with near cache,

• As a cloud-wide scheduler of certain processes that need to be performed on some nodes,

• To share information (user information, queues, maps, etc.) on the fly with multiple nodes in different
installations under OSGI environments,

• To share thousands of keys in a cluster where there is a web service interface on an application server and
some validation,

• As a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones,

• As a front layer for a Cassandra back-end,

• To distribute user object states across the cluster, to pass messages between objects and to share system data
structures (static initialization state, mirrored objects, object identity generators),

• As a multi-tenancy cache where each tenant has its own map,

• To share datasets (e.g. table-like data structure) to be used by applications,

• To distribute the load and collect status from Amazon EC2 servers where front-end is developed using, for
example, Spring framework,

• As a real time streamer for performance detection,

• As storage for session data in web applications (enables horizontal scalability of the web application).

40 CHAPTER 4. HAZELCAST OVERVIEW

4.6 Resources

• Hazelcast source code can be found at Github/Hazelcast.
• Hazelcast API can be found at Hazelcast.org/docs/Javadoc.
• Code samples can be downloaded from Hazelcast.org/download.
• More use cases and resources can be found at Hazelcast.com.
• Questions and discussions can be posted at Hazelcast mail group.

Chapter 5

Understanding Configuration

This chapter describes the options to configure your Hazelcast applications and explains the utilities which you can
make use of while configuring. You can configure Hazelcast using one or mix of the following options:

• Declarative way
• Programmatic way
• Using Hazelcast system properties
• Within the Spring context

5.1 Configuring Declaratively

This is the configuration option where you use an XML configuration file. When you download and unzip
hazelcast-<version>.zip, you will see the following files present in /bin folder, which are standard XML-
formatted configuration files:

• hazelcast.xml: Default declarative configuration file for Hazelcast. The configuration in this XML file
should be fine for most of the Hazelcast users. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties.

• hazelcast-full-example.xml: Configuration file which includes all Hazelcast configuration ele-
ments and attributes with their descriptions. It is the “superset” of hazelcast.xml. You can use
hazelcast-full-example.xml as a reference document to learn about any element or attribute, or you can
change its name to hazelcast.xml and start to use it as your Hazelcast configuration file.

A part of hazelcast.xml is shown as an example below.

<group>
<name>dev</name>
<password>dev-pass</password>

</group>
<management-center enabled="false">http://localhost:8080/mancenter</management-center>
<network>
<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>

<!--
Allowed port range when connecting to other members.
0 or * means the port provided by the system.
-->
<ports>0</ports>

</outbound-ports>
<join>

41

42 CHAPTER 5. UNDERSTANDING CONFIGURATION

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="false">

5.1.1 Composing Declarative Configuration

You can compose the declarative configuration of your Hazelcast member or Hazelcast client from multiple declarative
configuration snippets. In order to compose a declarative configuration, you can use the <import/> element to load
different declarative configuration files.

Let’s say you want to compose the declarative configuration for Hazelcast out of two configurations:
development-group-config.xml and development-network-config.xml. These two configurations are shown
below.

development-group-config.xml:

<hazelcast>
<group>

<name>dev</name>
<password>dev-pass</password>

</group>
</hazelcast>

development-network-config.xml:

<hazelcast>
<network>
<port auto-increment="true" port-count="100">5701</port>
<join>

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>

</multicast>
</join>

</network>
</hazelcast>

To get your example Hazelcast declarative configuration out of the above two, use the <import/> element as shown
below.

<hazelcast>
<import resource="development-group-config.xml"/>
<import resource="development-network-config.xml"/>

</hazelcast>

This feature also applies to the declarative configuration of Hazelcast client. Please see the following examples.

client-group-config.xml:

<hazelcast-client>
<group>

<name>dev</name>
<password>dev-pass</password>

</group>
</hazelcast-client>

5.2. CONFIGURING PROGRAMMATICALLY 43

client-network-config.xml:

<hazelcast-client>
<network>

<cluster-members>
<address>127.0.0.1:7000</address>

</cluster-members>
</network>

</hazelcast-client>

To get a Hazelcast client declarative configuration from the above two examples, use the <import/> element as
shown below.

<hazelcast-client>
<import resource="client-group-config.xml"/>
<import resource="client-network-config.xml"/>

</hazelcast>

NOTE: Use <import/> element on top level of the XML hierarchy.

Using the element <import>, you can also load XML resources from classpath and file system:

<hazelcast>
<import resource="file:///etc/hazelcast/development-group-config.xml"/> <!-- loaded from filesystem -->
<import resource="classpath:development-network-config.xml"/> <!-- loaded from classpath -->

</hazelcast>

The element <import> supports placeholders too. Please see the following example snippet:

<hazelcast>
<import resource="${environment}-group-config.xml"/>
<import resource="${environment}-network-config.xml"/>

</hazelcast>

5.2 Configuring Programmatically

Besides declarative configuration, you can configure your cluster programmatically. For this you can create a
Config object, set/change its properties and attributes, and use this Config object to create a new Hazelcast
member. Following is an example code which configures some network and Hazelcast Map properties.

Config config = new Config();
config.getNetworkConfig().setPort(5900)

.setPortAutoIncrement(false);

MapConfig mapConfig = new MapConfig();
mapConfig.setName("testMap")

.setBackupCount(2);

.setTimeToLiveSeconds(300);

config.addMapConfig(mapConfig);

To create a Hazelcast member with the above example configuration, pass the configuration object as shown below:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);

44 CHAPTER 5. UNDERSTANDING CONFIGURATION

You can also create a named Hazelcast member. In this case, you should set instanceName of Config object as
shown below:

Config config = new Config();
config.setInstanceName("my-instance");
Hazelcast.newHazelcastInstance(config);

To retrieve an existing Hazelcast member by its name, use the following:

Hazelcast.getHazelcastInstanceByName("my-instance");

To retrieve all existing Hazelcast members, use the following:

Hazelcast.getAllHazelcastInstances();

NOTE: Hazelcast performs schema validation through the file hazelcast-config-<version>.xsd which
comes with your Hazelcast libraries. Hazelcast throws a meaningful exception if there is an error in the declarative
or programmatic configuration.
If you want to specify your own configuration file to create Config, Hazelcast supports several ways including
filesystem, classpath, InputStream, and URL:

• Config cfg = new XmlConfigBuilder(xmlFileName).build();
• Config cfg = new XmlConfigBuilder(inputStream).build();
• Config cfg = new ClasspathXmlConfig(xmlFileName);
• Config cfg = new FileSystemXmlConfig(configFilename);
• Config cfg = new UrlXmlConfig(url);
• Config cfg = new InMemoryXmlConfig(xml);

5.3 Configuring with System Properties

You can use system properties to configure some aspects of Hazelcast. You set these properties as name and
value pairs through declarative configuration, programmatic configuration or JVM system property. Following are
examples for each option.
Declaratively:

....
<properties>
<property name="hazelcast.property.foo">value</property>
....

</properties>
</hazelcast>

Programmatically:

Config config = new Config() ;
config.setProperty("hazelcast.property.foo", "value");

Using JVM’s System class or -D argument:
System.setProperty("hazelcast.property.foo", "value");

or
java -Dhazelcast.property.foo=value

You will see Hazelcast system properties mentioned throughout this Reference Manual as required in some of the
chapters and sections. All Hazelcast system properties are listed in the System Properties appendix with their
descriptions, default values and property types as a reference for you.

5.4. CONFIGURING WITHIN SPRING CONTEXT 45

5.4 Configuring within Spring Context

If you use Hazelcast with Spring you can declare beans using the namespace hazelcast. When you add the
namespace declaration to the element beans in the Spring context file, you can start to use the namespace shortcut
hz to be used as a bean declaration. Following is an example Hazelcast configuration when integrated with Spring:

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"/>
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>

</hz:tcp-ip>
</hz:join>

</hz:network>
</hz:config>

</hz:hazelcast>

Please see the Spring Integration section for more information on Hazelcast-Spring integration.

5.5 Checking Configuration

When you start a Hazelcast member without passing a Config object, as explained in the Configuring Program-
matically section, Hazelcast checks the member’s configuration as follows:

• First, it looks for the hazelcast.config system property. If it is set, its value is used as the path. This
is useful if you want to be able to change your Hazelcast configuration; you can do this because it is not
embedded within the application. You can set the config option with the following command:
- Dhazelcast.config=<path to the hazelcast.xml>.
The path can be a regular one or a classpath reference with the prefix classpath:.

• If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml file in the
working directory.

• If not, it then checks whether hazelcast.xml exists on the classpath.

• If none of the above works, Hazelcast loads the default configuration (hazelcast.xml) that comes with your
Hazelcast package.

Before configuring Hazelcast, please try to work with the default configuration to see if it works for you. This
default configuration should be fine for most of the users. If not, you can consider to modify the configuration to be
more suitable for your environment.

5.6 Using Wildcards

Hazelcast supports wildcard configuration for all distributed data structures that can be configured using Config,
that is, for all except IAtomicLong, IAtomicReference. Using an asterisk (*) character in the name, different
instances of maps, queues, topics, semaphores, etc. can be configured by a single configuration.

A single asterisk (*) can be placed anywhere inside the configuration name.

For instance, a map named com.hazelcast.test.mymap can be configured using one of the following configurations.

https://spring.io/

46 CHAPTER 5. UNDERSTANDING CONFIGURATION

<map name="com.hazelcast.test.*">
...
</map>

<map name="com.hazel*">
...
</map>

<map name="*.test.mymap">
...
</map>

<map name="com.*test.mymap">
...
</map>

Or a queue ‘com.hazelcast.test.myqueue’:

<queue name="*hazelcast.test.myqueue">
...
</queue>

<queue name="com.hazelcast.*.myqueue">
...
</queue>

5.7 Using Variables

In your Hazelcast and/or Hazelcast Client declarative configuration, you can use variables to set the values of the
elements. This is valid when you set a system property programmatically or you use the command line interface.
You can use a variable in the declarative configuration to access the values of the system properties you set.

For example, see the following command that sets two system properties.

-Dgroup.name=dev -Dgroup.password=somepassword

Let’s get the values of these system properties in the declarative configuration of Hazelcast, as shown below.

<hazelcast>
<group>
<name>${group.name}</name>
<password>${group.password}</password>

</group>
</hazelcast>

This also applies to the declarative configuration of Hazelcast Client, as shown below.

<hazelcast-client>
<group>
<name>${group.name}</name>
<password>${group.password}</password>

</group>
</hazelcast-client>

5.7. USING VARIABLES 47

If you do not want to rely on the system properties, you can use the XmlConfigBuilder and explicitly set a
Properties instance, as shown below.

Properties properties = new Properties();

// fill the properties, e.g. from database/LDAP, etc.

XmlConfigBuilder builder = new XmlConfigBuilder();
builder.setProperties(properties)
Config config = builder.build();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

48 CHAPTER 5. UNDERSTANDING CONFIGURATION

Chapter 6

Setting Up Clusters

This chapter describes Hazelcast clusters and the methods cluster members use to form a Hazelcast cluster.

6.1 Discovering Cluster Members

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members (also called nodes)
automatically join together to form a cluster. This automatic joining takes place with various discovery mechanisms
that the cluster members use to find each other. Hazelcast uses the following discovery mechanisms:

• Multicast
• TCP
• EC2 Cloud
• jclouds R©

Each discovery mechanism is explained in the following sections.

NOTE: After a cluster is formed, communication between cluster members is always via TCP/IP, regardless
of the discovery mechanism used.

6.1.1 Discovering Members by Multicast

With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other using multicast
communication. The cluster members do not need to know the concrete addresses of the other members, they just
multicast to all the other members for listening. It depends on your environment if multicast is possible or allowed.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. Please refer to the
multicast element section for the full description of the multicast discovery configuration elements.

• Set the enabled attribute of the multicast element to “true”.
• Set multicast-group, multicast-port, multicast-time-to-live, etc. to your multicast values.
• Set the enabled attribute of both tcp-ip and aws elements to “false”.

The following is an example declarative configuration.

<hazelcast>
...
<network>
...

<join>

49

50 CHAPTER 6. SETTING UP CLUSTERS

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>
</trusted-interfaces>

</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<aws enabled="false">
</aws>

</join>
<network>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the time
in seconds that a node should wait for a valid multicast response from another node running in the network
before declaring itself as the leader node (the first node joined to the cluster) and creating its own cluster. This
only applies to the startup of nodes where no leader has been assigned yet. If you specify a high value to
multicast-timeout-seconds, such as 60 seconds, it means that until a leader is selected, each node will wait 60
seconds before moving on. Be careful when providing a high value. Also be careful not to set the value too low, or
the nodes might give up too early and create their own cluster.

6.1.2 Discovering Members by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure Hazelcast to be a
full TCP/IP cluster. When you configure Hazelcast to discover members by TCP/IP, you must list all or a subset
of the members’ hostnames and/or IP addresses as cluster members. You do not have to list all of these cluster
members, but at least one of the listed members has to be active in the cluster when a new member joins.

To set your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. Please refer to the
tcp-ip element section for the full description of the TCP/IP discovery configuration elements.

• Set the enabled attribute of the multicast element to “false”.
• Set the enabled attribute of the aws element to “false”.
• Set the enabled attribute of the tcp-ip element to “true”.
• Set your member elements within the tcp-ip element.

The following is an example declarative configuration.

<hazelcast>
...
<network>
...
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">

<member>machine1</member>
<member>machine2</member>
<member>machine3:5799</member>
<member>192.168.1.0-7</member>
<member>192.168.1.21</member>

</tcp-ip>
...

</join>

6.1. DISCOVERING CLUSTER MEMBERS 51

...
</network>
...

</hazelcast>

As shown above, you can provide IP addresses or hostnames for member elements. You can also give a range of IP
addresses, such as 192.168.1.0-7.

Instead of providing members line by line as shown above, you also have the option to use the members element
and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>

If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702, and so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can change this behavior
using the system property hazelcast.socket.bind.any. If you set this property to false, Hazelcast uses the
interfaces specified in the interfaces element (please refer to the Interfaces Configuration section). If no interfaces
are provided, then it will try to resolve one interface to bind from the member elements.

6.1.3 Discovering Members within EC2 Cloud

Hazelcast supports EC2 Auto Discovery. It is useful when you do not want to provide or you cannot provide the
list of possible IP addresses.

To configure your cluster to use EC2 Auto Discovery, set the following configuration elements. Please refer to the
aws element section for the full description of the EC2 Auto Discovery configuration elements.

• Add the hazelcast-cloud.jar dependency to your project. Note that it is also bundled inside hazelcast-all.jar.
The Hazelcast cloud module does not depend on any other third party modules.

• Disable join over multicast and TCP/IP: set the enabled attribute of the multicast element to “false”, and
set the enabled attribute of the tcp-ip element to “false”.

• Set the enabled attribute of the aws element to “true”.
• Within the aws element, provide your credentials (access and secret key), your region, etc.

The following is an example declarative configuration.

<hazelcast>
...
<network>
...
<join>
<multicast enabled="false"></multicast>
<tcp-ip enabled="false"></tcp-ip>
<aws enabled="true">

<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>
</join>

52 CHAPTER 6. SETTING UP CLUSTERS

6.1.3.1 Debugging

When needed, Hazelcast can log the events for the instances that exist in a region. To see what has happened or to
trace the activities while forming the cluster, change the log level in your logging mechanism to FINEST or DEBUG.
After this change, you can also see in the generated log whether the instances are accepted or rejected, and the
reason the instances were rejected. Note that changing the log level in this way may affect the performance of the
cluster. Please see the Logging Configuration section for information on logging mechanisms.

RELATED INFORMATION

You can download the white paper “Hazelcast on AWS: Best Practices for Deployment”* from Hazelcast.com.*

6.1.4 Discovering Members with jclouds

Hazelcast members and native clients support jclouds R© for discovery. It is useful when you do not want to provide
or you cannot provide the list of possible IP addresses on various cloud providers. However currently, for AWS EC2
which is also based on jclouds, you still need to configure your cluster using the element as described in the above
Discovering Members within EC2 Cloud section.

To configure your cluster to use jclouds Auto Discovery, follow these steps:

• Add the hazelcast-jclouds.jar dependency to your project. Note that this is also bundled inside hazelcast-all.jar.
The Hazelcast jclouds module depends on jclouds; please make sure the necessary JARs for your provider are
present on the classpath.

• Disable the multicast and TCP/IP join mechanisms. To do this, set the enabled attributes of the multicast
and tcp-ip elements to false in your hazelcast.xml configuration file

• Set the enabled attribute of the hazelcast.discovery.enabled property to true.
• Within the discovery-providers element, provide your credentials (access and secret key), your region, etc.

The following is an example declarative configuration.

...
<properties>
<property name="hazelcast.discovery.enabled">true</property>

</properties>
....

<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-strategies>

<discovery-strategy class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>
<property name="provider">google-compute-engine</property>
<property name="identity">GCE_IDENTITY</property>
<property name="credential">GCE_CREDENTIAL</property>

</properties>
</discovery-strategy>

</discovery-strategies>
</join>
...

As stated in the first paragraph of this section, Hazelcast native clients also support jclouds for discovery. It means
you can also configure your hazelcast-client.xml configuration file to include the element in the same way as it
is with hazelcast.xml.

The table below lists the jclouds configuration properties with their descriptions.

6.1. DISCOVERING CLUSTER MEMBERS 53

Property Name Type Description

provider String String value which is used to identify ComputeService provider. For example, “google-compute-engine” is used for Google Cloud services. See the full provider list here.
identity String Cloud Provider identity, can be thought of as a user name for cloud services.
credential String Cloud Provider credential, can be thought of as a password for cloud services.
zones String Defines zone for a cloud service (optional). Can be used with comma separated values for multiple values.
regions String Defines region for a cloud service (optional). Can be used with comma separated values for multiple values.
tag-keys String Filters cloud instances with tags (optional). Can be used with comma separated values for multiple values.
tag-values String Filters cloud instances with tags (optional) Can be used with comma separated values for multiple values.
group String Filters instance groups (optional). When used with AWS it maps to security group.
hz-port Int Port which the hazelcast instance service uses on the cluster member. Default value is 5701. (optional)
role-name* String Used for IAM role support specific to AWS (optional, but if defined, no identity or credential should be defined in the configuration).
credentialPath* String Used for cloud providers which require an extra JSON or P12 key file. This denotes the path of that file. Only tested with google compute engine. (Required if google-compute engine is used.)

6.1.4.1 Configuring Dependencies for jclouds via Maven

jclouds depends on many libraries internally and hazelcast-jclouds.jar does not contain any of them. If you
want to use jclouds, the recommended way is to use its dependency management tool. The following is a simple
maven dependency configuration which uses maven assembly plugin to create an uber JAR with the necessary
jclouds properties.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>group-id</groupId>
<artifactId>artifact-id </artifactId>
<version>version</version>
<name>compute-basics</name>

<properties>
<jclouds.version>latest-version</jclouds.version>
<hazelcast.version>latest-version</hazelcast.version>

</properties>

<dependencies>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>${hazelcast.version}</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-jclouds</artifactId>
<version>${hazelcast.version}</version>

</dependency>
<dependency>

<groupId>org.apache.jclouds</groupId>
<artifactId>jclouds-compute</artifactId>
<version>${jclouds.version}</version>

</dependency>
<dependency>

54 CHAPTER 6. SETTING UP CLUSTERS

<groupId>org.apache.jclouds</groupId>
<artifactId>jclouds-allcompute</artifactId>
<version>${jclouds.version}</version>

</dependency>
<dependency>

<groupId>org.apache.jclouds.labs</groupId>
<artifactId>google-compute-engine</artifactId>
<version>${jclouds.version}</version>

</dependency>
</dependencies>
<build>

<plugins>
...
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>single</goal>
</goals>

</execution>
</executions>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
...

</plugins>
</build>

</project>

6.1.4.2 Configuring IAM Roles for AWS

IAM roles are used to make secure requests from your clients. You can provide the name of your IAM role that you
created previously on your AWS console to the jclouds configuration. IAM roles only work in AWS and when a role
name is provided, the other credentials properties should be empty.

...
<properties>
<property name="hazelcast.discovery.enabled">true</property>

</properties>
....

<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-providers>

<discovery-provider class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>

<property name="provider">aws-ec2</property>
<property name="role-name">i-am-role-for-member</property>
<property name="credential">AWS_CREDENTIAL</property>

</properties>

6.2. CREATING CLUSTER GROUPS 55

</discovery-provider>
</discovery-providers>

</join>
...

6.1.4.3 Discovering Members on Different Regions

You can define multiple regions in your jclouds configuration. By default, Hazelcast Discovery SPI uses private IP
addresses for member connection. If you want the members to find each other over a different region, you must set
the system property hazelcast.discovery.public.ip.enabled to true. In this way, the members on different
regions can connect to each other by using public IPs.

...
<properties>
<property name="hazelcast.discovery.enabled">true</property>
<property name="hazelcast.discovery.public.ip.enabled">true</property>

</properties>
....

<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-providers>

<discovery-provider class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>
<property name="provider">aws-ec2</property>
<property name="identity">AWS_IDENTITY</property>
<property name="credential">AWS_CREDENTIAL</property>

</properties>
</discovery-provider>

</discovery-providers>
</join>
...

6.2 Creating Cluster Groups

You can create cluster groups. To do this, use the group configuration element.

By specifying a group name and group password, you can separate your clusters in a simple way. Example groupings
can be by development, production, test, app, etc. The following is an example declarative configuration.

<hazelcast>
<group>
<name>app1</name>
<password>app1-pass</password>

</group>
...

</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host multiple Hazelcast
instances. Each Hazelcast instance can only participate in one group. Each Hazelcast instance only joins to its own
group, it does not mess with other groups. The following code example creates three separate Hazelcast instances:
h1 belongs to the app1 cluster, while h2 and h3 belong to the app2 cluster.

56 CHAPTER 6. SETTING UP CLUSTERS

Config configApp1 = new Config();
configApp1.getGroupConfig().setName("app1").setPassword("app1-pass");

Config configApp2 = new Config();
configApp2.getGroupConfig().setName("app2").setPassword("app2-pass");

HazelcastInstance h1 = Hazelcast.newHazelcastInstance(configApp1);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

6.3 Partition Group Configuration

Hazelcast distributes key objects into partitions using a consistent hashing algorithm. Those partitions are assigned to
nodes. An entry is stored in the node that owns the partition to which the entry’s key is assigned. The total partition
count is 271 by default; you can change it with the configuration property hazelcast.map.partition.count.
Please see the System Properties section.

Along with those partitions, there are also copies of the partitions as backups. Backup partitions can have multiple
copies due to the backup count defined in configuration, such as first backup partition, second backup partition, etc.
A node cannot hold more than one copy of a partition (ownership or backup). By default, Hazelcast distributes
partitions and their backup copies randomly and equally among cluster nodes, assuming all nodes in the cluster are
identical.

But what if some nodes share the same JVM or physical machine or chassis and you want backups of these nodes
to be assigned to nodes in another machine or chassis? What if processing or memory capacities of some nodes are
different and you do not want an equal number of partitions to be assigned to all nodes?

You can group nodes in the same JVM (or physical machine) or nodes located in the same chassis. Or you can
group nodes to create identical capacity. We call these groups partition groups. Partitions are assigned to those
partition groups instead of to single nodes. Backups of these partitions are located in another partition group.

When you enable partition grouping, Hazelcast presents three choices for you to configure partition groups.

• You can group nodes automatically using the IP addresses of nodes, so nodes sharing the same network
interface will be grouped together. All members on the same host (IP address or domain name) will be a
single partition group. This helps to avoid data loss when a physical server crashes, because multiple replicas
of the same partition are not stored on the same host. But if there are multiple network interfaces or domain
names per physical machine, that will make this assumption invalid.

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType(MemberGroupType.HOST_AWARE);

• You can do custom grouping using Hazelcast’s interface matching configuration. This way, you can add
different and multiple interfaces to a group. You can also use wildcards in the interface addresses. For
example, the users can create rack aware or data warehouse partition groups using custom partition grouping.

<partition-group enabled="true" group-type="CUSTOM">
<member-group>
<interface>10.10.0.*</interface>
<interface>10.10.3.*</interface>
<interface>10.10.5.*</interface>

</member-group>
<member-group>

6.4. LOGGING CONFIGURATION 57

<interface>10.10.10.10-100</interface>
<interface>10.10.1.*</interface>
<interface>10.10.2.*</interface>

</member-group
</partition-group>

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType(MemberGroupType.CUSTOM);

MemberGroupConfig memberGroupConfig = new MemberGroupConfig();
memberGroupConfig.addInterface("10.10.0.*")
.addInterface("10.10.3.*").addInterface("10.10.5.*");

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface("10.10.10.10-100")
.addInterface("10.10.1.*").addInterface("10.10.2.*");

partitionGroupConfig.addMemberGroupConfig(memberGroupConfig);
partitionGroupConfig.addMemberGroupConfig(memberGroupConfig2);

• You can give every member its own group. Each member is a group of its own and primary and backup
partitions are distributed randomly (not on the same physical member). This gives the least amount of
protection and is the default configuration for a Hazelcast cluster.

<partition-group enabled="true" group-type="PER_MEMBER" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType(MemberGroupType.PER_MEMBER);

6.4 Logging Configuration

Hazelcast has a flexible logging configuration and does not depend on any logging framework except JDK logging.
It has built-in adaptors for a number of logging frameworks and it also supports custom loggers by providing logging
interfaces.

To use built-in adaptors, set the hazelcast.logging.type property to one of the predefined types below.

• jdk: JDK logging (default)

• log4j: Log4j

• slf4j: Slf4j

• none: disable logging

You can set hazelcast.logging.type through declarative configuration, programmatic configuration, or JVM
system property.

NOTE: If you choose to use log4j or slf4j, you should include the proper dependencies in the classpath.

Declarative Configuration

58 CHAPTER 6. SETTING UP CLUSTERS

<hazelcast>
....
<properties>
<property name="hazelcast.logging.type">jdk</property>
....

</properties>
</hazelcast>

Programmatic Configuration

Config config = new Config() ;
config.setProperty("hazelcast.logging.type", "log4j");

System Property

- Using JVM parameter: ‘java -Dhazelcast.logging.type=slf4j‘
- Using System class: ‘System.setProperty("hazelcast.logging.type", "none");‘

If the provided logging mechanisms are not satisfactory, you can implement your own using the custom logging fea-
ture. To use it, implement the com.hazelcast.logging.LoggerFactory and com.hazelcast.logging.ILogger
interfaces and set the system property hazelcast.logging.class as your custom LoggerFactory class name.

-Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

LogListener listener = new LogListener() {
public void log(LogEvent logEvent) {

// do something
}

}
HazelcastInstance instance = Hazelcast.newHazelcastInstance();
LoggingService loggingService = instance.getLoggingService();
loggingService.addLogListener(Level.INFO, listener);

Through the LoggingService, you can get the currently used ILogger implementation and log your own messages
too.

NOTE: If you are not using command line for configuring logging, you should be careful about Hazelcast
classes. They may be defaulted to jdk logging before newly configured logging is read. When logging mechanism is
selected, it will not change.

6.5 Other Network Configurations

All network related configurations are performed via the network element in the Hazelcast XML configuration file
or the class NetworkConfig when using programmatic configuration. Following subsections describe the available
configurations that you can perform under the network element.

6.5. OTHER NETWORK CONFIGURATIONS 59

6.5.1 Public Address

public-address overrides the public address of a member. By default, a member selects its socket address as its
public address. But behind a network address translation (NAT), two endpoints (members) may not be able to
see/access each other. If both members set their public addresses to their defined addresses on NAT, then that way
they can communicate with each other. In this case, their public addresses are not an address of a local network
interface but a virtual address defined by NAT. It is optional to set and useful when you have a private cloud. Note
that, the value for this element should be given in the format host IP address:port number. See the following
examples.

Declarative:

<network>
<public-address>11.22.33.44:5555</public-address>

</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig()

.setPublicAddress("11.22.33.44", "5555");

6.5.2 Port

You can specify the ports that Hazelcast will use to communicate between cluster members. Its default value is
5701. The following are example configurations.

Declarative:

<network>
<port port-count="20" auto-increment="false">5701</port>

</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig().setPort("5701");

.setPortCount("20").setPortAutoIncrement(false);

port has the following attributes.

• port-count: By default, Hazelcast will try 100 ports to bind. Meaning that, if you set the value of port as
5701, as members are joining to the cluster, Hazelcast tries to find ports between 5701 and 5801. You can
choose to change the port count in the cases like having large instances on a single machine or willing to have
only a few ports to be assigned. The parameter port-count is used for this purpose, whose default value is
100.

• auto-increment: According to the above example, Hazelcast will try to find free ports between 5701 and
5801. Normally, you will not need to change this value, but it will come very handy when needed. You may
also want to choose to use only one port. In that case, you can disable the auto-increment feature of port by
setting auto-increment to false.

The parameter port-count is ignored when the above configuration is made.

60 CHAPTER 6. SETTING UP CLUSTERS

6.5.3 Outbound Ports

By default, Hazelcast lets the system pick up an ephemeral port during socket bind operation. But security
policies/firewalls may require you to restrict outbound ports to be used by Hazelcast-enabled applications. To
fulfill this requirement, you can configure Hazelcast to use only defined outbound ports. The following are example
configurations.

Declarative:

<network>
<outbound-ports>

<!-- ports between 33000 and 35000 -->
<ports>33000-35000</ports>
<!-- comma separated ports -->
<ports>37000,37001,37002,37003</ports>
<ports>38000,38500-38600</ports>

</outbound-ports>
</network>

Programmatic:

...
NetworkConfig networkConfig = config.getNetworkConfig();
// ports between 35000 and 35100
networkConfig.addOutboundPortDefinition("35000-35100");
// comma separated ports
networkConfig.addOutboundPortDefinition("36001, 36002, 36003");
networkConfig.addOutboundPort(37000);
networkConfig.addOutboundPort(37001);
...

Note: You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one port. If you
need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port definitions.

6.5.4 Reuse Address

When you shutdown a cluster member, the server socket port will be in the TIME_WAIT state for the next couple
of minutes. If you start the member right after shutting it down, you may not be able to bind it to the same
port because it is in the TIME_WAIT state. If you set the reuse-address element to true, the TIME_WAIT state is
ignored and you can bind the member to the same port again.

The following are example configurations.

Declarative:

<network>
<reuse-address>true</reuse-address>

</network>

Programmatic:

...
NetworkConfig networkConfig = config.getNetworkConfig();

networkConfig.setReuseAddress(true);
...

6.5. OTHER NETWORK CONFIGURATIONS 61

6.5.5 Join

The join configuration element is used to discover Hazelcast members and enable them to form a cluster. Hazelcast
provides multicast, TCP/IP, EC2, and jclouds R© discovery mechanisms. These mechanisms are explained the
Discovering Cluster Members section. This section describes all the sub-elements and attributes of join element.
The following are example configurations.

Declarative:

<network>
<join>

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>
</trusted-interfaces>

</multicast>
<tcp-ip enabled="false">

<required-member>192.168.1.104</required-member>
<member>192.168.1.104</member>
<members>192.168.1.105,192.168.1.106</members>

</tcp-ip>
<aws enabled="false">

<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-members</tag-value>

</aws>
<discovery-strategies>
<discovery-strategy ... />

</discovery-strategies>
</join>

<network>

Programmatic:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
JoinConfig join = network.getJoin();
join.getMulticastConfig().setEnabled(false)

.addTrustedInterface("192.168.1.102");
join.getTcpIpConfig().addMember("10.45.67.32").addMember("10.45.67.100")

.setRequiredMember("192.168.10.100").setEnabled(true);

The join element has the following sub-elements and attributes.

6.5.5.1 multicast element

The multicast element includes parameters to fine tune the multicast join mechanism.

• enabled: Specifies whether the multicast discovery is enabled or not, true or false.

62 CHAPTER 6. SETTING UP CLUSTERS

• multicast-group: The multicast group IP address. Specify it when you want to create clusters within the
same network. Values can be between 224.0.0.0 and 239.255.255.255. Default value is 224.2.2.3.

• multicast-port: The multicast socket port that the Hazelcast member listens to and sends discovery
messages through. Default value is 54327.

• multicast-time-to-live: Time-to-live value for multicast packets sent out to control the scope of multicasts.
See more information here.

• multicast-timeout-seconds: Only when the members are starting up, this timeout (in seconds) specifies
the period during which a member waits for a multicast response from another member. For example, if you
set it as 60 seconds, each member will wait for 60 seconds until a leader member is selected. Its default value
is 2 seconds.

• trusted-interfaces: Includes IP addresses of trusted members. When a member wants to join to the
cluster, its join request will be rejected if it is not a trusted member. You can give an IP addresses range
using the wildcard (*) on the last digit of IP address (e.g. 192.168.1.* or 192.168.1.100-110).

6.5.5.2 tcp-ip element

The tcp-ip element includes parameters to fine tune the TCP/IP join mechanism.

• enabled: Specifies whether the TCP/IP discovery is enabled or not. Values can be true or false.
• required-member: IP address of the required member. Cluster will only formed if the member with this IP
address is found.

• member: IP address(es) of one or more well known members. Once members are connected to these well
known ones, all member addresses will be communicated with each other. You can also give comma separated
IP addresses using the members element.

NOTE: tcp-ip element also accepts the interface parameter. Please refer to the Interfaces element
description.

• connection-timeout-seconds: Defines the connection timeout. This is the maximum amount of time
Hazelcast is going to try to connect to a well known member before giving up. Setting it to a too low value
could mean that a member is not able to connect to a cluster. Setting it to a too high value means that
member startup could slow down because of longer timeouts (e.g. when a well known member is not up).
Increasing this value is recommended if you have many IPs listed and the members cannot properly build up
the cluster. Its default value is 5.

6.5.5.3 aws element

The aws element includes parameters to allow the members to form a cluster on the Amazon EC2 environment.

• enabled: Specifies whether the EC2 discovery is enabled or not, true or false.
• access-key, secret-key: Access and secret keys of your account on EC2.
• region: The region where your members are running. Default value is us-east-1. You need to specify this
if the region is other than the default one.

• host-header: The URL that is the entry point for a web service. It is optional.
• security-group-name: Name of the security group you specified at the EC2 management console. It is used
to narrow the Hazelcast members to be within this group. It is optional.

• tag-key, tag-value: To narrow the members in the cloud down to only Hazelcast members, you can set
these parameters as the ones you specified in the EC2 console. They are optional.

• connection-timeout-seconds: The maximum amount of time Hazelcast will try to connect to a well known
member before giving up. Setting this value too low could mean that a member is not able to connect to a
cluster. Setting the value too high means that member startup could slow down because of longer timeouts
(for example, when a well known member is not up). Increasing this value is recommended if you have many
IPs listed and the members cannot properly build up the cluster. Its default value is 5.

http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

6.5. OTHER NETWORK CONFIGURATIONS 63

NOTE: If you are using a cloud provider other than AWS, you can use the programmatic configuration to
specify a TCP/IP cluster. The members will need to be retrieved from that provider (e.g. JClouds).

6.5.5.4 discovery-strategies element

The discovery-strategies element configures internal or external discovery strategies based on the Hazelcast
Discovery SPI. For further information, please refer to the Discovery SPI section and the vendor documentation of
the used discovery strategy.

6.5.5.4.1 AWSClient Configuration To make sure EC2 instances are found correctly, you can use the
AWSClient class. It determines the private IP addresses of EC2 instances to be connected. Give the AWSClient
class the values for the parameters that you specified in the aws element, as shown below. You will see whether
your EC2 instances are found.

public static void main(String[] args)throws Exception{
AwsConfig config = new AwsConfig();
config.setSecretKey(...) ;
config.setSecretKey(...);
config.setRegion(...);
config.setSecurityGroupName(...);
config.setTagKey(...);
config.setTagValue(...);
config.setEnabled(true);
AWSClient client = new AWSClient(config);
List<String> ipAddresses = client.getPrivateIpAddresses();
System.out.println("addresses found:" + ipAddresses);
for (String ip: ipAddresses) {
System.out.println(ip);

}
}

6.5.6 Interfaces

You can specify which network interfaces that Hazelcast should use. Servers mostly have more than one network
interface, so you may want to list the valid IPs. Range characters (‘*’ and ‘-’) can be used for simplicity. For
instance, 10.3.10.* refers to IPs between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to IPs between
10.3.10.4 and 10.3.10.18 (4 and 18 included). If network interface configuration is enabled (it is disabled by default)
and if Hazelcast cannot find an matching interface, then it will print a message on the console and will not start on
that member.

The following are example configurations.

Declarative:

<hazelcast>
...
<network>
...
<interfaces enabled="true">

<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>192.168.1.3</interface>

</interfaces>
</network>
...

</hazelcast>

64 CHAPTER 6. SETTING UP CLUSTERS

Programmatic:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
InterfacesConfig interface = network.getInterfaces();
interface.setEnabled(true)

.addInterface("192.168.1.3");

6.5.7 IPv6 Support

Hazelcast supports IPv6 addresses seamlessly (This support is switched off by default, please see the note at the
end of this section).

All you need is to define IPv6 addresses or interfaces in network configuration. The only current limitation is
that you cannot define wildcard IPv6 addresses in the TCP/IP join configuration (tcp-ip element). Interfaces
configuration does not have this limitation, you can configure wildcard IPv6 interfaces in the same way as IPv4
interfaces.

<hazelcast>
...
<network>
<port auto-increment="true">5701</port>
<join>
<multicast enabled="false">
<multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
<multicast-port>54327</multicast-port>

</multicast>
<tcp-ip enabled="true">
<member>[fe80::223:6cff:fe93:7c7e]:5701</member>
<interface>192.168.1.0-7</interface>
<interface>192.168.1.*</interface>
<interface>fe80:0:0:0:45c5:47ee:fe15:493a</interface>

</tcp-ip>
</join>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>fe80:0:0:0:45c5:47ee:fe15:*</interface>
<interface>fe80::223:6cff:fe93:0-5555</interface>

</interfaces>
...

</network>
...

</hazelcast>

JVM has two system properties for setting the preferred protocol stack (IPv4 or IPv6) as well as the preferred
address family types (inet4 or inet6). On a dual stack machine, IPv6 stack is preferred by default, you can change
this through the java.net.preferIPv4Stack=<true|false> system property. When querying name services, JVM
prefers IPv4 addresses over IPv6 addresses and will return an IPv4 address if possible. You can change this through
java.net.preferIPv6Addresses=<true|false> system property.

Also see additional details on IPv6 support in Java.

NOTE: IPv6 support has been switched off by default, since some platforms have issues using the IPv6 stack.
Some other platforms such as Amazon AWS have no support at all. To enable IPv6 support, just set configuration
property hazelcast.prefer.ipv4.stack to false. Please refer to the System Properties section for details.

Chapter 7

Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java interfaces. Below is the
list of these implementations with links to the corresponding sections in this manual.

• Standard utility collections:

– Map is the distributed implementation of java.util.Map. It lets you read from and write to a Hazelcast
map with methods such as get and put.

– Queue is the distributed implementation of java.util.concurrent.BlockingQueue. You can add an
item in one member and remove it from another one.

– Ringbuffer is implemented for reliable eventing system. It is also a distributed data structure.
– Set is the distributed and concurrent implementation of java.util.Set. It does not allow duplicate

elements and does not preserve their order.
– List is similar to Hazelcast Set. The only difference is that it allows duplicate elements and preserves

their order.
– MultiMap is a specialized Hazelcast map. It is a distributed data structure where you can store multiple

values for a single key.
– Replicated Map does not partition data. It does not spread data to different cluster members. Instead,

it replicates the data to all members.

• Topic is the distributed mechanism for publishing messages that are delivered to multiple subscribers. It
is also known as the publish/subscribe (pub/sub) messaging model. Please see the Topic section for more
information. Hazelcast also has a structure called Reliable Topic which uses the same interface of Hazelcast
Topic. The difference is that it is backed up by the Ringbuffer data structure. Please see the Reliable Topic
section.

• Concurrency utilities:

– Lock is the distributed implementation of java.util.concurrent.locks.Lock. When you use lock,
the critical section that Hazelcast Lock guards is guaranteed to be executed by only one thread in the
entire cluster.

– Semaphore is the distributed implementation of java.util.concurrent.Semaphore. When performing
concurrent activities, semaphores offer permits to control the thread counts.

– AtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. Most
of AtomicLong’s operations are available. However, these operations involve remote calls and hence their
performances differ from AtomicLong, due to being distributed.

– AtomicReference is the distributed implementation of java.util.concurrent.atomic.AtomicReference.
When you need to deal with a reference in a distributed environment, you can use Hazelcast AtomicRef-
erence.

– IdGenerator is used to generate cluster-wide unique identifiers. ID generation occurs almost at the speed
of AtomicLong.incrementAndGet().

– CountdownLatch is the distributed implementation of java.util.concurrent.CountDownLatch. Hazel-
cast CountDownLatch is a gate keeper for concurrent activities. It enables the threads to wait for other
threads to complete their operations.

65

66 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Common Features of all Hazelcast Data Structures:

• If a member goes down, its backup replica (which holds the same data) will dynamically redistribute the
data, including the ownership and locks on them, to the remaining live members. As a result, there will not
be any data loss.

• There is no single cluster master that can be a single point of failure. Every member in the cluster has equal
rights and responsibilities. No single member is superior. There is no dependency on an external ‘server’ or
‘master’.

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and
how you can listen for instance events, such as an instance being created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.*;

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener(sample);

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());

}
}

@Override
public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@Override
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());

}
}

7.1 Map

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence java.util.Map.
It is the distributed implementation of Java map. You can perform operations like reading and writing from/to a
Hazelcast map with the well known get and put methods.

7.1.1 Getting a Map and Putting an Entry

Hazelcast will partition your map entries and almost evenly distribute them onto all Hazelcast members. Each
member carries approximately “(1/n * total-data) + backups”, n being the number of members in the cluster. For
example, if you have a member with 1000 objects to be stored in the cluster, and then you start a second member,
each member will both store 500 objects and back up the 500 objects in the other member.

7.1. MAP 67

Let’s create a Hazelcast instance and fill a map named Capitals with key-value pairs using the following code. Use
the HazelcastInstance getMap method to get the map, then use the map put method to put an entry into the map.

public class FillMapMember {
public static void main(String[] args) {
HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
capitalcities.put("1", "Tokyo");
capitalcities.put("2", "Paris”);
capitalcities.put("3", "Washington");
capitalcities.put("4", "Ankara");
capitalcities.put("5", "Brussels");
capitalcities.put("6", "Amsterdam");
capitalcities.put("7", "New Delhi");
capitalcities.put("8", "London");
capitalcities.put("9", "Berlin");
capitalcities.put("10", "Oslo");
capitalcities.put("11", "Moscow");
...
...
capitalcities.put("120", "Stockholm")

}
}

When you run this code, a cluster member is created with a map whose entries are distributed across the members’s
partitions. See the below illustration. For now, this is a single member cluster.

NOTE: Please note that some of the partitions will not contain any data entries since we only have 120
objects and the partition count is 271 by default. This count is configurable and can be changed using the system
property hazelcast.partition.count. Please see the System Properties section.

7.1.1.1 Creating A Member for Map Backup

Now, let’s create a second member by running the above code again. This will create a cluster with 2 members.
This is also where backups of entries are created; remember the backup partitions mentioned in the Hazelcast
Overview section. The following illustration shows two members and how the data and its backup is distributed.

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in the cluster.
Eventually, it will carry almost “(1/n * total-data) + backups” of the data, reducing the load on other nodes.

HazelcastInstance::getMap returns an instance of com.hazelcast.core.IMap which extends the java.util.concurrent.ConcurrentMap
interface. Methods like ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value)
can be used on the distributed map, as shown in the example below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
Customer customer = customers.get(id);
if (customer == null) {

customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

}

68 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Figure 7.1: Key-Values in a Member

7.1. MAP 69

Figure 7.2: Key-Values Distributed Among Two Members

70 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

return customer;
}

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return (customers.replace(customer.getId(), customer) != null);

}

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return customers.remove(customer.getId(), customer);

}

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread in the
local or remote JVM. But, they will eventually return with success. ConcurrentMap operations never throw a
java.util.ConcurrentModificationException.

Also see:

• Data Affinity section.
• Map Configuration with wildcards.

7.1.2 Backing Up Maps

Hazelcast distributes map entries onto multiple cluster members (JVMs). Each member holds some portion of the
data.

Distributed maps have 1 backup by default. If a member goes down, you do not lose data. Backup operations are
synchronous, so when a map.put(key, value) returns, it is guaranteed that the map entry is replicated to one
other node. For the reads, it is also guaranteed that map.get(key) returns the latest value of the entry. Consistency
is strictly enforced.

7.1.2.1 Creating Sync Backups

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to have. That way,
data on a cluster member will be copied onto other member(s).

To create synchronous backups, select the number of backup copies using the backup-count property.

<hazelcast>
<map name="default">
<backup-count>1</backup-count>

</map>
</hazelcast>

When this count is 1, a map entry will have its backup on one other node in the cluster. If you set it to 2, then a
map entry will have its backup on two other nodes. You can set it to 0 if you do not want your entries to be backed
up, e.g. if performance is more important than backing up. The maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations are synchronous
and configured with backup-count. In this case, backup operations block operations until backups are successfully
copied to backup nodes (or deleted from backup nodes in case of remove) and acknowledgements are received.
Therefore, backups are updated before a put operation is completed. Sync backup operations have a blocking cost
which may lead to latency issues.

7.1. MAP 71

7.1.2.2 Creating Async Backups

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do not require
acknowledgements; the backup operations are performed at some point in time.

To create asynchronous backups, select the number of async backups with the async-backup-count property. An
example is shown below.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>

</map>
</hazelcast>

NOTE: Backups increase memory usage since they are also kept in memory.

NOTE: A map can have both sync and aysnc backups at the same time.

7.1.2.3 Enabling Backup Reads

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each member will
carry both owned entries and backup copies of other members. So for the map.get(key) call, it is possible that
the calling member has a backup copy of that key. By default, map.get(key) will always read the value from the
actual owner of the key for consistency.

To enable backup reads (read local backup entries), set the value of the read-backup-data property to true. Its
default value is false for strong consistency. Enabling backup reads can improve performance.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>

</map>
</hazelcast>

This feature is available when there is at least 1 sync or async backup.

Please note that, if you are performing a read from a backup, you should take into account that your hits to the
keys in the backups are not reflected as hits to the original keys on the primary members; this has an impact on
IMap’s maximum idle seconds or time-to-live seconds expiration. Therefore, even though there is a hit on a key in
backups, your original key on the primary member may expire.

7.1.3 Evicting Map Entries

Unless you delete the map entries manually or use an eviction policy, they will remain in the map. Hazelcast
supports policy based eviction for distributed maps. Currently supported policies are LRU (Least Recently Used)
and LFU (Least Frequently Used).

7.1.3.1 Understanding Map Eviction

Hazelcast Map performs eviction based on partitions. For example, when you specify a size using the PER_NODE
attribute for max-size (please see Configuring Map Eviction), Hazelcast internally calculates the maximum size for
every partition. Hazelcast uses the following equation to calculate the maximum size of a partition:

72 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

partition maximum size = max-size * member-count / partition-count

The eviction process starts according to this calculated partition maximum size when you try to put an entry.
When entry count in that partition exceeds partition maximum size, eviction starts on that partition.

Assume that you have the following figures as examples:

• Partition count: 200
• Entry count for each partition: 100
• max-size (PER_NODE): 20000
• eviction-percentage (please see Configuring Map Eviction): 10%

The total number of entries here is 20000 (partition count * entry count for each partition). This means you are at
the eviction threshold since you set the max-size to 20000. When you try to put an entry:

1. The entry goes to the relevant partition.
2. The partition checks whether the eviction threshold is reached (max-size).
3. If reached, approximately 10 (100 * 10%) entries are evicted from that particular partition.

As a result of this eviction process, when you check the size of your map, it is ~19990 (20000 - ~10). After this
eviction, subsequent put operations will not trigger the next eviction until the map size is again close to the
max-size.

NOTE: The above scenario is just an example to describe how the eviction process works. Hazelcast finds
the most optimum number of entries to be evicted according to your cluster size and selected policy.

7.1.3.2 Configuring Map Eviction

The following is an example declarative configuration for map eviction.

<hazelcast>
<map name="default">
...
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
<eviction-percentage>25</eviction-percentage>
<min-eviction-check-millis>100</min-eviction-check-millis>
...

</map>
</hazelcast>

Let’s describe each element.

• time-to-live: Maximum time in seconds for each entry to stay in the map. If it is not 0, entries that
are older than this time and not updated for this time are evicted automatically. Valid values are integers
between 0 and Integer.MAX VALUE. Default value is 0, which means infinite. If it is not 0, entries are evicted
regardless of the set eviction-policy.

• max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. Entries that are idle
for more than this time are evicted automatically. An entry is idle if no get, put, EntryProcessor.process
or containsKey is called. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0,
which means infinite.

• eviction-policy: Valid values are described below.

7.1. MAP 73

– NONE: Default policy. If set, no items will be evicted and the property max-size will be ignored. You
still can combine it with time-to-live-seconds and max-idle-seconds.

– LRU: Least Recently Used.
– LFU: Least Frequently Used.

• max-size: Maximum size of the map. When maximum size is reached, the map is evicted based on the
policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0. If you
want max-size to work, set the eviction-policy property to a value other than NONE. Its attributes are
described below.

– PER_NODE: Maximum number of map entries in each cluster member. This is the default policy. If you
use this option, please note that you cannot set the max-size to a value lower than the partition count
(which is 271 by default).
<max-size policy="PER_NODE">5000</max-size>

– PER_PARTITION: Maximum number of map entries within each partition. Storage size depends on the
partition count in a cluster member. This attribute should not be used often. Avoid using this attribute
with a small cluster: if the cluster is small it will be hosting more partitions, and therefore map entries,
than that of a larger cluster. Thus, for a small cluster, eviction of the entries will decrease performance
(the number of entries is large).
<max-size policy="PER_PARTITION">27100</max-size>

– USED_HEAP_SIZE: Maximum used heap size in megabytes per map for each Hazelcast instance. Please
note that this policy does not work when in-memory format is set to OBJECT, since the memory footprint
cannot be determined when data is put as OBJECT.
<max-size policy="USED_HEAP_SIZE">4096</max-size>

– USED_HEAP_PERCENTAGE: Maximum used heap size percentage per map for each Hazelcast instance. If,
for example, JVM is configured to have 1000 MB and this value is 10, then the map entries will be
evicted when used heap size exceeds 100 MB. Please note that this policy does not work when in-memory
format is set to OBJECT, since the memory footprint cannot be determined when data is put as OBJECT.
<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>

– FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.
<max-size policy="FREE_HEAP_SIZE">512</max-size>

– FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example, JVM is
configured to have 1000 MB and this value is 10, then the map entries will be evicted when free heap
size is below 100 MB.
<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

– USED_NATIVE_MEMORY_SIZE: (Hazelcast Enterprise HD) Maximum used native memory size in
megabytes per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_SIZE">1024</max-size>

– USED_NATIVE_MEMORY_PERCENTAGE: (Hazelcast Enterprise HD) Maximum used native memory size
percentage per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">65</max-size>

– FREE_NATIVE_MEMORY_SIZE: (Hazelcast Enterprise HD) Minimum free native memory size in
megabytes for each Hazelcast instance.
<max-size policy="FREE_NATIVE_MEMORY_SIZE">256</max-size>

– FREE_NATIVE_MEMORY_PERCENTAGE: (Hazelcast Enterprise HD) Minimum free native memory size
percentage for each Hazelcast instance.
<max-size policy="FREE_NATIVE_MEMORY_PERCENTAGE">5</max-size>

• eviction-percentage: When max-size is reached, the specified percentage of the map will be evicted.
For example, if set to 25, 25% of the entries will be evicted. Setting this property to a smaller value will
cause eviction of a smaller number of map entries. Therefore, if map entries are inserted frequently, smaller
percentage values may lead to overheads. Valid values are integers between 0 and 100. The default value is 25.

• min-eviction-check-millis: Minimum time in milliseconds which should elapse before checking whether a
partition of the map is evictable or not. In other terms, this property specifies the frequency of the eviction
process. The default value is 100. Setting it to 0 (zero) makes the eviction process run for every put operation.

74 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

NOTE: When map entries are inserted frequently, the property min-eviction-check-millis should be set
to a number lower than the insertion period in order not to let any entry escape from the eviction.

7.1.3.3 Example Eviction Configurations

<map name="documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>

</map>

In the above example, documents map starts to evict its entries from a member when the map size exceeds 10000 in
that member. Then, the entries least recently used will be evicted. The entries not used for more than 60 seconds
will be evicted as well.

And the following is an example eviction configuration for a map having NATIVE as the in-memory format:

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-policy>LFU</eviction-policy>
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">99</max-size>

</map>

7.1.3.4 Evicting Specific Entries

The eviction policies and configurations explained above apply to all the entries of a map. The entries that meet
the specified eviction conditions are evicted.

But you may want to evict some specific map entries. In this case, you can use the ttl and timeunit parameters
of the method map.put(). An example code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key “1” will be evicted 50 seconds after it is put into myMap.

7.1.3.5 Evicting All Entries

To evict all keys from the map except the locked ones, use the method evictAll(). If a MapStore is defined for
the map, deleteAll is not called by evictAll. If you want to call the method deleteAll, use clear().

An example is given below.

public class EvictAll {

public static void main(String[] args) {
final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance node1 = Hazelcast.newHazelcastInstance();
HazelcastInstance node2 = Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = node1.getMap(EvictAll.class.getCanonicalName());
for (int i = 0; i < numberOfEntriesToAdd; i++) {

map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {

7.1. MAP 75

map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf("# After calling evictAll...\n");
System.out.printf("# Expected map size\t: %d\n", numberOfKeysToLock);
System.out.printf("# Actual map size\t: %d\n", map.size());

}
}

NOTE: Only EVICT_ALL event is fired for any registered listeners.

7.1.4 Setting In Memory Format

IMap (and a few other Hazelcast data structures, such as ICache) has an in-memory-format configuration option.
By default, Hazelcast stores data into memory in binary (serialized) format. But sometimes, it can be efficient to
store the entries in their object form, especially in cases of local processing, such as entry processor and queries.

To set how the data will be stored in memory, set in-memory-format in the configuration. You have the following
format options.

• BINARY (default): This is the default option. The data will be stored in serialized binary format. You can use
this option if you mostly perform regular map operations, such as put and get.

• OBJECT: The data will be stored in deserialized form. This configuration is good for maps where entry processing
and queries form the majority of all operations and the objects are complex, making the serialization cost
respectively high. By storing objects, entry processing will not contain the deserialization cost.

• NATIVE: (Hazelcast Enterprise HD) This option is used to enable the map to use Hazelcast’s High-Density
Memory Store. Please refer to the Using High-Density Memory Store with Map section.

Regular operations like get rely on the object instance. When the OBJECT format is used and a get is performed,
the map does not return the stored instance, but creates a clone. Therefore, this whole get operation first includes
a serialization on the member owning the instance, and then a deserialization on the member calling the instance.
When the BINARY format is used, only a deserialization is required; BINARY is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, map would create a
clone of the instance, and there would first be a serialization and then a deserialization. When BINARY is used,
only a deserialization is needed.

NOTE: If a value is stored in OBJECT format, a change on a returned value does not affect the stored
instance. In this case, the returned instance is not the actual one but a clone. Therefore, changes made on an object
after it is returned will not reflect on the actual stored data. Similarly, when a value is written to a map and the
value is stored in OBJECT format, it will be a copy of the put value. Therefore, changes made on the object after it
is stored will not reflect on the stored data.

7.1.5 Using High-Density Memory Store with Map

Hazelcast Enterprise HD

Hazelcast instances are Java programs. In case of BINARY and OBJECT in-memory formats, Hazelcast stores your
distributed data into the heap of its server instances. Java heap is subject to garbage collection (GC). In case of

76 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

larger heaps, garbage collection might cause your application to pause for tens of seconds (even minutes for really
large heaps), badly affecting your application performance and response times.

As the data gets bigger, you either run the application with larger heap, which would result in longer GC pauses
or run multiple instances with smaller heap which can turn into an operational nightmare if the number of such
instances becomes very high.

To overcome this challenge, Hazelcast offers High-Density Memory Store for your maps. You can configure your
map to use High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>

</map>

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see Configuring High-Density Memory Store section.

7.1.5.1 Required configuration changes when using NATIVE

Note that the eviction mechanism is different for NATIVE in-memory format. The new eviction algorithm for map
with High-Density Memory Store is similar to that of JCache with High-Density Memory Store and is described
here.

- Eviction percentage has no effect.

‘‘‘xml
<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-percentage>25</eviction-percentage> <-- NO IMPACT with NATIVE

</map>
‘‘‘

- These IMap eviction policies for ‘max-size‘ cannot be used: ‘FREE_HEAP_PERCENTAGE‘, ‘FREE_HEAP_SIZE‘, ‘USED_HEAP_PERCENTAGE‘, ‘USED_HEAP_SIZE‘.

- Near cache eviction configuration is also different for ‘NATIVE‘ in-memory format.

For a near cache configuration with in-memory format set to ‘BINARY‘:

‘‘‘xml
<map name="nativeMap*">

<near-cache>
<in-memory-format>BINARY</in-memory-format>
<max-size>10000</max-size> <-- NO IMPACT with NATIVE
<eviction-policy>LFU</eviction-policy> <-- NO IMPACT with NATIVE

</near-cache>

</map>
‘‘‘

the equivalent configuration for ‘NATIVE‘ in-memory format would be similar to the following:
‘‘‘xml

<map name="nativeMap*">

<near-cache>
<in-memory-format>NATIVE</in-memory-format>
<eviction size="10000" eviction-policy="LFU" max-size-policy="USED_NATIVE_MEMORY_SIZE"/> <-- Correct configuration with NATIVE

</near-cache>

7.1. MAP 77

</map>
‘‘‘

- Near cache eviction policy ‘ENTRY_COUNT‘ cannot be used for ‘max-size-policy‘.

RELATED INFORMATION

Please refer to the High-Density Memory Store section for more information.

7.1.6 Loading and Storing Persistent Data

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a
relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory,
MapLoader’s load or loadAll methods will load that entry from the data store. This loaded entry is placed into
the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast members. Persistence
to local file system is not supported.

NOTE: Also note that, the MapStore interface extends the MapLoader interface as you can see in the
interface code.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
private final Connection con;

public PersonMapStore() {
try {

con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
con.createStatement().executeUpdate(

"create table if not exists person (id bigint, name varchar(45))");
} catch (SQLException e) {

throw new RuntimeException(e);
}

}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {

con.createStatement().executeUpdate(
format("delete from person where id = %s", key));

} catch (SQLException e) {
throw new RuntimeException(e);

}
}

public synchronized void store(Long key, Person value) {
try {

con.createStatement().executeUpdate(
format("insert into person values(%s,’%s’)", key, value.name));

} catch (SQLException e) {

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/core/MapStore.java

78 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

throw new RuntimeException(e);
}

}

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet())

store(entry.getKey(), entry.getValue());
}

public synchronized void deleteAll(Collection<Long> keys) {
for (Long key : keys) delete(key);

}

public synchronized Person load(Long key) {
try {

ResultSet resultSet = con.createStatement().executeQuery(
format("select name from person where id =%s", key));

try {
if (!resultSet.next()) return null;
String name = resultSet.getString(1);
return new Person(name);

} finally {
resultSet.close();

}
} catch (SQLException e) {

throw new RuntimeException(e);
}

}

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) result.put(key, load(key));
return result;

}

public Iterable<Long> loadAllKeys() {
return null;

}
}

NOTE: During the initial loading process, MapStore uses a thread different than the partition threads that
is used by the ExecutorService. After the initialization is completed, the map.get method looks up any inexistent
value from the database in a partition thread or the map.put method looks up the database to return the previously
associated value for a key also in a partition thread.

RELATED INFORMATION

For more MapStore/MapLoader code samples please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes which are explained in the
subsections below.

7.1.6.1 Using Read-Through Persistence

If an entry does not exist in the memory when an application asks for it, Hazelcast asks your loader implementation
to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to
Hazelcast, and Hazelcast puts it into the memory. This is read-through persistence mode.

7.1. MAP 79

7.1.6.2 Setting Write-Through Persistence

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means
the entries will be put to the data store synchronously.

In this mode, when the map.put(key,value) call returns:

• MapStore.store(key,value) is successfully called so the entry is persisted.
• In-Memory entry is updated.
• In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than
0).

The same behavior goes for a map.remove(key) call. The only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in
the form of RuntimeException.

7.1.6.3 Setting Write-Behind Persistence

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than
0. This means the modified entries will be put to the data store asynchronously after a configured delay.

NOTE: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies only the
last update on it. However, you can set MapStoreConfig#setWriteCoalescing to FALSE and you can store all
updates performed on a key to the data store.

NOTE: When you set MapStoreConfig#setWriteCoalescing to FALSE, after you reached per-node max-
imum write-behind-queue capacity, subsequent put operations will fail with ReachedMaxSizeException. This
exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per node maximum
capacity using the system property hazelcast.map.write.behind.queue.capacity. Please refer to the System
Properties section for information on this property and how to set the system properties.

In write-behind mode, when the map.put(key,value) call returns:

• In-Memory entry is updated.
• In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than
0).

• The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store(key,value)
call.

• For fault tolerance, dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove(key), the only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a
log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll(map)
and MapStore.deleteAll(collection) to do all writes in a single call.

NOTE: If a map entry is marked as dirty, i.e. it is waiting to be persisted to the MapStore in a write-behind
scenario, the eviction process forces the entry to be stored. By this way, you will have control on the number of
entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

80 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queue/MultiMap/List/Set
operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock
situations.

Here is a sample configuration:

<hazelcast>
...
<map name="default">
...
<map-store enabled="true" initial-mode="LAZY">
<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>

</map-store>
</map>

</hazelcast>

The following are the descriptions of MapStore configuration elements and attributes:

• class-name: Name of the class implementing MapLoader and/or MapStore.
• write-delay-seconds: Number of seconds to delay to call the MapStore.store(key, value). If the value is zero

then it is write-through so MapStore.store(key, value) will be called as soon as the entry is updated. Otherwise
it is write-behind so updates will be stored after write-delay-seconds value by calling Hazelcast.storeAll(map).
Default value is 0.

• write-batch-size: Used to create batch chunks when writing map store. In default mode, all map entries will
be tried to be written in one go. To create batch chunks, the minimum meaningful value for write-batch-size
is 2. For values smaller than 2, it works as in default mode.

• write-coalescing: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies
only the last update on it. You can set this element to false to store all updates performed on a key to the
data store.

• enabled: True to enable this map-store, false to disable. Default value is true.
• initial-mode: Sets the initial load mode. LAZY is the default load mode, where load is asynchronous.
EAGER means load is blocked till all partitions are loaded.

7.1.6.4 Storing Entries to Multiple Maps

A configuration can be applied to more than one map using wildcards (see Using Wildcard), meaning that the
configuration is shared among the maps. But MapStore does not know which entries to store when there is one
configuration applied to multiple maps.

To store entries when there is one configuration applied to multiple maps, use Hazelcast’s MapStoreFactory interface.
Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is
used. Example code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig();
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
@Override
public MapLoader<Object, Object> newMapStore(String mapName, Properties properties) {
return null;

}
});

7.1. MAP 81

To initialize the MapLoader implementation with the given map name, configuration properties, and the Hazelcast
instance, implement the MapLoaderLifecycleSupport interface. This interface has the methods init() and
destroy() as shown below.

public interface MapLoaderLifecycleSupport {

void init(HazelcastInstance hazelcastInstance, Properties properties, String mapName);

void destroy();
}

The method init() initializes the MapLoader implementation. Hazelcast calls this method when the map is
first used on the Hazelcast instance. The MapLoader implementation can initialize the required resources for
implementing MapLoader such as reading a configuration file or creating a database connection.

Hazelcast calls the method destroy() before shutting down. You can override this method to cleanup the resources
held by this MapLoader implementation, such as closing the database connections.

7.1.6.5 Initializing Map on Startup - LAZY/EAGER

To pre-populate the in-memory map when the map is first touched/used, use the MapLoader.loadAllKeys API.

If MapLoader.loadAllKeys returns NULL, then nothing will be loaded. Your MapLoader.loadAllKeys imple-
mentation can return all or some of the keys. For example, you may select and return only the hot keys.
MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast will optimize the loading
process by having each cluster member load its owned portion of the entries.

The InitialLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If
InitialLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, the whole data
is loaded while the map is created and everything becomes ready to use. Also, if you add indices to your map with
the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig
behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any member, initialization will start depending on the value of
InitialLoadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start
but data is loaded each time a partition loading completes.

2. Hazelcast will call MapLoader.loadAllKeys() to get all your keys on one of the members.
3. That member will distribute keys to all other members in batches.
4. Each member will load values of all its owned keys by calling MapLoader.loadAll(keys).
5. Each member puts its owned entries into the map by calling IMap.putTransient(key,value).

If the load mode is LAZY and when the clear() method is called (which triggers MapStore.deleteAll()), Hazelcast
will remove ONLY the loaded entries from your map and datastore. Since the whole data is not loaded for this
case (LAZY mode), please note that there may be still entries in your datastore.

NOTE: The return type of loadAllKeys() is changed from Set to Iterable with the release of Hazelcast
3.5. MapLoader implementations from previous releases are also supported and do not need to be adapted.

While implementing a MapLoader you can either set a className and Hazelcast will create an instance for you
OR you can set directly an instance. When you set className and Hazelcast creates an instance for you, then
the instance is set back to your MapConfig. Before Hazelcast 3.6.3, this injection happens immediately when you
create a proxy regardless of the LAZY/EAGER configuration. Starting with Hazelcast 3.6.3, the instance is set
only after the map is touched for first time (when in LAZY mode). There is no behavior change in EAGER mode.

Loading Keys Incrementally

82 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

If the number of keys to load is large, it is more efficient to load them incrementally than loading them all at once.
To support incremental loading, the MapLoader.loadAllKeys() method returns an Iterable which can be lazily
populated with the results of a database query.

Hazelcast iterates over the Iterable and, while doing so, sends out the keys to their respective owner members.
The Iterator obtained from MapLoader.loadAllKeys() may also implement the Closeable interface, in which
case Iterator is closed once the iteration is over. This is intended for releasing resources such as closing a JDBC
result set.

7.1.6.6 Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load operations.
The method has two signatures (i.e. the same method can take two different parameter lists). One signature loads
the given keys and the other loads all keys. Please see the example code below.

public class LoadAll {

public static void main(String[] args) {
final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName();
final Config config = createNewConfig(mapName);
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName);

populateMap(map, numberOfEntriesToAdd);
System.out.printf("# Map store has %d elements\n", numberOfEntriesToAdd);

map.evictAll();
System.out.printf("# After evictAll map size\t: %d\n", map.size());

map.loadAll(true);
System.out.printf("# After loadAll map size\t: %d\n", map.size());

}
}

7.1.6.7 Post-Processing Objects in Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can get
an ID or version auto-generated by your database and then you need to modify your object stored in the distributed
map but not to break the synchronization between database and data grid.

To post-process an object in the map store, implement the PostProcessingMapStore interface to put the modified
object into the distributed map. That causes an extra step of Serialization, so use it only when needed. (This is
only valid when using the write-through map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
@Override
public void store(Integer key, Employee employee) {
EmployeeId id = saveEmployee();
employee.setId(id.getId());

}
}

NOTE: Please note that if you are using a post processing map store in combination with entry processors,
post-processed values will not be carried to backups.

7.1. MAP 83

7.1.7 Creating Near Cache for Map

Map entries in Hazelcast are partitioned across the cluster. Suppose you read the key k a number of times and k is
owned by another member in your cluster. Each map.get(k) will be a remote operation, meaning lots of network
trips. If you have a map that is read-mostly, then you should consider creating a near cache for the map so that
reads can be much faster and consume less network traffic. These benefits do not come free; when using near cache,
you should consider the following issues:

• Cluster members will have to hold extra cached data, which increases memory consumption.
• If invalidation is turned on and entries are updated frequently, then invalidations will be costly.
• Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. The following is the configuration example
for map’s near cache in the Hazelcast configuration file.

<hazelcast>
...
<map name="my-read-mostly-map">
...
<near-cache name="default">

<in-memory-format>BINARY</in-memory-format>
<max-size>5000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>60</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<cache-local-entries>false</cache-local-entries>

</near-cache>
</map>

</hazelcast>

The element <near-cache> has an optional attribute “name” whose default value is default. Following are the
descriptions of all configuration elements:

• <max-size>: Maximum size of the near cache. When this is reached, near cache is evicted based on the policy
defined. Any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Its default value is
0.

• <time-to-live-seconds>: Maximum number of seconds for each entry to stay in the near cache. Entries
that are older than this period are automatically evicted from the near cache. Regardless of the eviction
policy used, <time-to-live-seconds> still applies. Any integer between 0 and Integer.MAX_VALUE. 0 means
infinite. Its default value is 0.

• <max-idle-seconds>: Maximum number of seconds each entry can stay in the near cache as untouched (not
read). Entries that are not read more than this period are removed from the near cache. Any integer between
0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Its default value is 0.

• <eviction-policy>: Eviction policy configuration. Its default values is NONE. Available values are as
follows:

– NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

– LRU: Least Recently Used.
– LFU: Least Frequently Used.

• <invalidate-on-change>: Specifies whether the cached entries are evicted when the entries are updated or
removed. Its default value is true.

• <in-memory-format>: Specifies in which format data will be stored in your near cache. Note that a map’s
in-memory format can be different from that of its near cache. Available values are as follows:

– BINARY: Data will be stored in serialized binary format. It is the default option.

84 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

– OBJECT: Data will be stored in deserialized form.
– NATIVE: Data will be stored in the near cache that uses Hazelcast’s High-Density Memory Store feature.

This option is available only in Hazelcast Enterprise HD. Note that a map and its near cache can
independently use High-Density Memory Store. For example, while your map does not use High-Density
Memory Store, its near cache can use it.

• <cache-local-entries>: Specifies whether the local entries will be cached. It can be useful when in-memory
format for near cache is different from that of the map. By default, it is disabled.

NOTE: If you use High-Density Memory Store for your near cache, the elements <max-size> and
<eviction-policy> do not have any impact. In this case, you need to use the element <eviction> to spec-
ify the eviction behavior. Please refer to the Using High-Density Memory Store with Near Cache section.

Programmatically, you configure near cache by using the class NearCacheConfig. This class is used both in the
cluster members and clients. In a client/server system, you must enable the near cache separately on the client,
without you needing to configure it on the member. For information on how to create a near cache on a client
(native Java client), please see Configuring Client Near Cache. Please note that near cache configuration is specific
to the member or client itself, a map in a member may not have near cache configured while the same map in a
client may have near cache configured.

If you are using near cache, you should take into account that your hits to the keys in near cache are not reflected
as hits to the original keys on the primary members; this has an impact on IMap’s maximum idle seconds or
time-to-live seconds expiration. Therefore, even though there is a hit on a key in near cache, your original key on
the primary member may expire.

NOTE: Near cache works only when you access data via map.get(k) methods. Data returned using a
predicate is not stored in the near cache.

NOTE: Even though lite members do not store any data for Hazelcast data structures, you can enable near
cache on lite members for faster reads.

7.1.7.1 Using High-Density Memory Store with Near Cache

Hazelcast Enterprise HD

Hazelcast offers High-Density Memory Store for the near caches in your maps. You can enable your near cache
to use the High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<hazelcast>
...
<map name="my-read-mostly-map">
...
<near-cache>

...
<in-memory-format>NATIVE</in-memory-format>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>
...

</near-cache>
...

</map>
</hazelcast>

The element <eviction> is used to specify the eviction behavior when you use High-Density Memory Store for
your near cache. It has the following attributes:

7.1. MAP 85

• size: Maximum size (entry count) of the near cache.
• max-size-policy: Maximum size policy for eviction of the near cache. Available values are as follows:

– ENTRY_COUNT: Maximum entry count per member.
– USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes.
– USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory percentage.
– FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size to trigger cleanup.
– FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory percentage to trigger

cleanup.

• eviction-policy: Eviction policy configuration. Its default values is NONE. Available values are as follows:

– NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

– LRU: Least Recently Used.
– LFU: Least Frequently Used.

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see the Configuring High-Density Memory Store section.

Note that a map and its near cache can independently use High-Density Memory Store. For example, while your
map does not use High-Density Memory Store, its near cache can use it.

7.1.7.2 Near Cache Invalidation

When you enable invalidations on near cache, either programmatically via NearCacheConfig#setInvalidateOnChange
or declaratively via <invalidate-on-change>true</invalidate-on-change>, when entires are updated or
removed from an entry in the underlying IMap, corresponding entries are removed from near caches to prevent
stale reads. This is called near cache invalidation.

Invalidation can be sent from members to client near caches or to member near caches, either individually or in
batches. Default behavior is sending in batches. If there are lots of mutating operations such as put/remove on
IMap, it is advised that you make invalidations in batches. This reduces the network traffic and keeps the eventing
system less busy.

You can use the following system properties to configure the near cache invalidation:

• hazelcast.map.invalidation.batch.enabled: Enable or disable batching. Default value is true. When it
is set to false, all invalidations are sent immediately.

• hazelcast.map.invalidation.batch.size: Maximum number of invalidations in a batch. Default value is
100.

• hazelcast.map.invalidation.batchfrequency.seconds: If we cannot reach the configured batch size, a
background process sends invalidations periodically. Default value is 10 seconds.

If there are a lot of clients or many mutating operations, batching should remain enabled and the batch size should
be configured with the hazelcast.map.invalidation.batch.size system property to a suitable value.

7.1.8 Locking Maps

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When these requirements
increase or you want to have more control on the concurrency, consider the following Hazelcast solutions.

Let’s work on a sample case as shown below.

public class RacyUpdateMember {
public static void main(String[] args) throws Exception {

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");

86 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {

if (k % 100 == 0) System.out.println("At: " + k);
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);

}
System.out.println("Finished! Result = " + map.get(key).amount);

}

static class Value implements Serializable {
public int amount;

}
}

If the above code is run by more than one cluster member simultaneously, there will be likely a race condition. You
can solve this condition with Hazelcast using either of the following solutions.

7.1.8.1 Pessimistic Locking

One way to solve the race issue is using pessimistic locking: lock the map entry until you are finished with it.

To perform pessimistic locking, use the lock mechanism provided by Hazelcast distributed map, i.e. the map.lock
and map.unlock methods. See the below example code.

public class PessimisticUpdateMember {
public static void main(String[] args) throws Exception {

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {

map.lock(key);
try {

Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);

} finally {
map.unlock(key);

}
}
System.out.println("Finished! Result = " + map.get(key).amount);

}

static class Value implements Serializable {
public int amount;

}
}

The IMap lock will automatically be collected by the garbage collector when the lock is released and no other
waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

7.1. MAP 87

Another way to solve the race issue can be acquiring a predictable Lock object from Hazelcast. This way, every
value in the map can be given a lock or you can create a stripe of locks.

7.1.8.2 Optimistic Locking

In Hazelcast, you can apply the optimistic locking strategy with the map’s replace method. This method compares
values in object or data forms depending on the in-memory format configuration. If the values are equal, it replaces
the old value with the new one. If you want to use your defined equals method, in-memory-format should be
OBJECT. Otherwise, Hazelcast serializes objects to BINARY forms and compares them.

See the below example code.

public class OptimisticMember {
public static void main(String[] args) throws Exception {

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {

if (k % 10 == 0) System.out.println("At: " + k);
for (; ;) {

Value oldValue = map.get(key);
Value newValue = new Value(oldValue);
Thread.sleep(10);
newValue.amount++;
if (map.replace(key, oldValue, newValue))

break;
}

}
System.out.println("Finished! Result = " + map.get(key).amount);

}

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value(Value that) {
this.amount = that.amount;

}

public boolean equals(Object o) {
if (o == this) return true;
if (!(o instanceof Value)) return false;
Value that = (Value) o;
return that.amount == this.amount;

}
}

}

NOTE: The above example code is intentionally broken.

7.1.8.3 Pessimistic vs. Optimistic Locking

Depending on your locking requirements, you can pick one locking strategy.

88 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Optimistic locking is better for mostly read-only systems. It has a performance boost over pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than optimistic locking
from the perspective of data consistency.

In Hazelcast, use IExecutorService to submit a task to a key owner, or to a member or members. This is the
recommended way to perform task executions, rather than using pessimistic or optimistic locking techniques.
IExecutorService will have less network hops and less data over wire, and tasks will be executed very near to the
data. Please refer to the Data Affinity section.

7.1.8.4 Solving the ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple threads. Even if
one thread sees the same value for a particular key in consecutive reads, it does not mean that nothing has changed
between the reads. Another thread may change the value, do work, and change the value back, while the first
thread thinks that nothing has changed.

To prevent these kind of problems, one solution is to use a version number and to check it before any write to be sure
that nothing has changed between consecutive reads. Although all the other fields will be equal, the version field
will prevent objects from being seen as equal. This is the optimistic locking strategy, and it is used in environments
which do not expect intensive concurrent changes on a specific key.

In Hazelcast, you can apply the optimistic locking strategy with the map replace method.

7.1.9 Accessing Entry Statistics

Hazelcast keeps statistics about each map entry, such as creation time, last update time, last access time, number
of hits, and version. To access the map entry statistics, use an IMap.getEntryView(key) call. Here is an example.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory : " + entry.getCost());
System.out.println ("creationTime : " + entry.getCreationTime());
System.out.println ("expirationTime : " + entry.getExpirationTime());
System.out.println ("number of hits : " + entry.getHits());
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime());
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key : " + entry.getKey());
System.out.println ("value : " + entry.getValue());

7.1.10 Map Listener

Please refer to the Listening for Map Events section.

7.1.11 Listening to Map Entries with Predicates

You can listen to the modifications performed on specific map entries. You can think of it as an entry listener with
predicates. Please see the Listening for Map Events section for information on how to add entry listeners to a map.

As an example, let’s listen to the changes made on an employee with the surname “Smith”. First, let’s create the
Employee class.

7.1. MAP 89

import java.io.Serializable;

public class Employee implements Serializable {

private final String surname;

public Employee(String surname) {
this.surname = surname;

}

@Override
public String toString() {

return "Employee{" +
"surname=’" + surname + ’\’’ +
’}’;

}
}

Then, let’s create a continuous query by adding the entry listener with the surname predicate.

import com.hazelcast.core.*;
import com.hazelcast.query.SqlPredicate;

public class ContinuousQuery {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("map");
map.addEntryListener(new MyEntryListener(),

new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntryListener
implements EntryListener<String, String> {

@Override
public void entryAdded(EntryEvent<String, String> event) {

System.out.println("Entry Added:" + event);
}

@Override
public void entryRemoved(EntryEvent<String, String> event) {

System.out.println("Entry Removed:" + event);
}

@Override
public void entryUpdated(EntryEvent<String, String> event) {

System.out.println("Entry Updated:" + event);
}

@Override
public void entryEvicted(EntryEvent<String, String> event) {

System.out.println("Entry Evicted:" + event);
}

@Override
public void mapEvicted(MapEvent event) {

System.out.println("Map Evicted:" + event);

90 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

}
}

}

And now, let’s play with the employee “smith” and see how that employee will be listened to.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Employee> map = hz.getMap("map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));
System.out.println("done");
System.exit(0);

}
}

When you first run the class ContinuousQuery and then run Modify, you will see output similar to the listing
below.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,oldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

7.1.12 Adding Interceptors

You can add intercept operations and then execute your own business logic synchronously blocking the operations.
You can change the returned value from a get operation, change the value to be put, or cancel operations by
throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behavior of operation, change the values, or totally cancel
it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can result in duplicate
effects. This can easily happen when the interceptor is added to the map at node initialization, so that each node
adds the same interceptor. When you add the interceptor in this way, be sure to implement the hashCode() method
to return the same value for every instance of the interceptor. It is not strictly necessary, but it is a good idea to
also implement equals() as this will ensure that the map interceptor can be removed reliably.

The IMap API has two methods for adding and removing an interceptor to the map: addInterceptor and
removeInterceptor.

/**
* Adds an interceptor for the map. Added interceptor intercepts operations
* and executes user defined methods and cancels operations if
* user defined methods throw exceptions.
*
* @param interceptor map interceptor.
* @return id of registered interceptor.
*/
String addInterceptor(MapInterceptor interceptor);

7.1. MAP 91

/**
* Removes the given interceptor for this map. So it does not
* intercept operations anymore.
*
* @param id registration ID of the map interceptor.
*/
void removeInterceptor(String id);

Here is the MapInterceptor interface:

public interface MapInterceptor extends Serializable {

/**
* Intercept the get operation before it returns a value.
* Return another object to change the return value of get().
* Returning null causes the get() operation to return the original value,
* namely return null if you do not want to change anything.
*
*
* @param value the original value to be returned as the result of get() operation.
* @return the new value that is returned by get() operation.
*/
Object interceptGet(Object value);

/**
* Called after get() operation is completed.
*
*
* @param value the value returned as the result of get() operation.
*/
void afterGet(Object value);

/**
* Intercept put operation before modifying map data.
* Return the object to be put into the map.
* Returning null causes the put() operation to operate as expected,
* namely no interception. Throwing an exception cancels the put operation.
*
*
* @param oldValue the value currently existing in the map.
* @param newValue the new value to be put.
* @return new value after intercept operation.
*/
Object interceptPut(Object oldValue, Object newValue);

/**
* Called after put() operation is completed.
*
*
* @param value the value returned as the result of put() operation.
*/
void afterPut(Object value);

/**
* Intercept remove operation before removing the data.
* Return the object to be returned as the result of remove operation.
* Throwing an exception cancels the remove operation.

92 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

*
*
* @param removedValue the existing value to be removed.
* @return the value to be returned as the result of remove operation.
*/
Object interceptRemove(Object removedValue);

/**
* Called after remove() operation is completed.
*
*
* @param value the value returned as the result of remove(.) operation
*/
void afterRemove(Object value);

}

Example Usage:

public class InterceptorTest {

@Test
public void testMapInterceptor() throws InterruptedException {
HazelcastInstance hazelcastInstance1 = Hazelcast.newHazelcastInstance();
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance();
IMap<Object, Object> map = hazelcastInstance1.getMap("testMapInterceptor");
SimpleInterceptor interceptor = new SimpleInterceptor();
map.addInterceptor(interceptor);
map.put(1, "New York");
map.put(2, "Istanbul");
map.put(3, "Tokyo");
map.put(4, "London");
map.put(5, "Paris");
map.put(6, "Cairo");
map.put(7, "Hong Kong");

try {
map.remove(1);

} catch (Exception ignore) {
}
try {
map.remove(2);

} catch (Exception ignore) {
}

assertEquals(map.size(), 6) ;

assertEquals(map.get(1), null);
assertEquals(map.get(2), "ISTANBUL:");
assertEquals(map.get(3), "TOKYO:");
assertEquals(map.get(4), "LONDON:");
assertEquals(map.get(5), "PARIS:");
assertEquals(map.get(6), "CAIRO:");
assertEquals(map.get(7), "HONG KONG:");

map.removeInterceptor(interceptor);
map.put(8, "Moscow");

assertEquals(map.get(8), "Moscow");

7.1. MAP 93

assertEquals(map.get(1), null);
assertEquals(map.get(2), "ISTANBUL");
assertEquals(map.get(3), "TOKYO");
assertEquals(map.get(4), "LONDON");
assertEquals(map.get(5), "PARIS");
assertEquals(map.get(6), "CAIRO");
assertEquals(map.get(7), "HONG KONG");

}

static class SimpleInterceptor implements MapInterceptor, Serializable {

@Override
public Object interceptGet(Object value) {
if (value == null)
return null;

return value + ":";
}

@Override
public void afterGet(Object value) {
}

@Override
public Object interceptPut(Object oldValue, Object newValue) {
return newValue.toString().toUpperCase();

}

@Override
public void afterPut(Object value) {
}

@Override
public Object interceptRemove(Object removedValue) {
if(removedValue.equals("ISTANBUL"))
throw new RuntimeException("you can not remove this");

return removedValue;
}

@Override
public void afterRemove(Object value) {

// do something
}

}
}

7.1.13 Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query based map methods, especially with
large clusters or heap sizes. For example, on a 5 node cluster with 10 GB of data and 25 GB heap size per node, a
single call of IMap.entrySet() fetches 50 GB of data and crashes the calling instance.

A call of IMap.values() may return too much data for a single node. This can also happen with a real query and
an unlucky choice of predicates, especially when the parameters are chosen by a user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is not a limit like
SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A maximum result size limit for
query based operations is meant to be a last line of defense to prevent your nodes from retrieving more data than
they can handle.

94 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

7.1.13.1 Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each QueryOperation
runs on all partitions of a node, so it collects result entries as long as the node limit is not exceeded. If that happens,
a QueryResultSizeExceededException is thrown and propagated to the calling instance.

This feature depends on an equal distribution of the data on the cluster nodes to calculate the result size limit
per node. Therefore, there is a minimum value defined in QueryResultSizeLimiter.MINIMUM_MAX_RESULT_LIMIT.
Configured values below the minimum will be increased to the minimum.

7.1.13.1.1 Local Pre-check In addition to the distributed result size check in the QueryOperations, there is
a local pre-check on the calling instance. If you call the method from a client, the pre-check is executed on the
member which invokes the QueryOperations.

Since the local pre-check can increase the latency of a QueryOperation you can configure how many local partitions
should be considered for the pre-check or you can deactivate the feature completely.

7.1.13.1.2 Scope of Result Size Limit Besides the designated query operations, there are other operations
which use predicates internally. Those method calls will throw the QueryResultSizeExceededException as well.
Please see the following matrix to see the methods that are covered by the query result size limit.

Figure 7.3: Methods Covered by Query Result Size Limit

7.1.13.1.3 Configuring Query Result Size The query result size limit is configured via the following system
properties.

• hazelcast.query.result.size.limit: Result size limit for query operations on maps. This value defines
the maximum number of returned elements for a single query result. If a query exceeds this number of
elements, a QueryResultSizeExceededException is thrown.

• hazelcast.query.max.local.partition.limit.for.precheck: Maximum value of local partitions to trig-
ger local pre-check for TruePredicate query operations on maps.

Please refer to the System Properties section to see the full descriptions of these properties and how to set them.

7.2. QUEUE 95

7.2 Queue

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being distributed,
Hazelcast distributed queue enables all cluster members to interact with it. Using Hazelcast distributed queue, you
can add an item in one cluster member and remove it from another one.

7.2.1 Getting a Queue and Putting Items

Use the HazelcastInstance getQueue method to get the queue, then use the queue put method to put items into
the queue.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

public class SampleQueue {

public static void main(String[] args) throws Exception {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put(new MyTask());
MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {

//process task
}
}

}

FIFO ordering will apply to all queue operations across the cluster. User objects (such as MyTask in the example
above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items will be copied locally
and iteration will occur locally.

Hazelcast distributed queue uses ItemListener to listen to events which occur when items are added to and
removed from the Queue. Please refer to the Listening for Item Events section for information on how to create an
item listener class and register it.

7.2.2 Creating an Example Queue

The following example code illustrates a distributed queue that connects a producer and consumer.

7.2.2.1 Putting Items on the Queue

Let’s put one integer on the queue every second, 100 integers total.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ProducerMember {
public static void main(String[] args) throws Exception {

96 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
for (int k = 1; k < 100; k++) {
queue.put(k);
System.out.println("Producing: " + k);
Thread.sleep(1000);

}
queue.put(-1);
System.out.println("Producer Finished!");

}
}

Producer puts a -1 on the queue to show that the put’s are finished.

7.2.2.2 Taking Items off the Queue

Now, let’s create a Consumer class to take a message from this queue, as shown below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ConsumerMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
while (true) {

int item = queue.take();
System.out.println("Consumed: " + item);
if (item == -1) {
queue.put(-1);
break;

}
Thread.sleep(5000);

}
System.out.println("Consumer Finished!");

}
}

As seen in the above example code, Consumer waits 5 seconds before it consumes the next message. It stops once it
receives -1. Also note that Consumer puts -1 back on the queue before the loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be consumed from the
same queue.

7.2.2.3 Balancing the Queue Operations

From the above example code, you can see that an item is produced every second, and consumed every 5 seconds.
Therefore, the consumer keeps growing. To balance the produce/consume operation, let’s start another consumer.
By this way, consumption is distributed to these two consumers, as seen in the sample outputs below.

The second consumer is started. After a while, here is the first consumer output:

...
Consumed 13
Consumed 15
Consumer 17
...

7.2. QUEUE 97

Here is the second consumer output:

...
Consumed 14
Consumed 16
Consumer 18
...

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the queue bottlenecks.
In this case, be aware that the order of the messages sent to different queues is not guaranteed. Since in most cases
strict ordering is not important, a list of queues is a good solution.

NOTE: The items are taken from the queue in the same order they were put on the queue. However, if
there is more than one consumer, this order is not guaranteed.

7.2.2.4 ItemIDs When Offering Items

Hazelcast gives an itemId for each item you offer, which is an incrementing sequence identification for the queue
items. You should consider the following to understand the itemId assignment behavior:

• When a Hazelcast member with a queue, that is configured to have at least one backup, is restarted, the
itemId assignment resumes from the last known highest itemId before the restart; itemId assignment does
not start from the beginning for the new items.

• When the whole cluster is restarted, the same behavior explained in the above consideration applies if your
queue has a persistent data store (QueueStore). If the queue has QueueStore, the itemId for the new items
are given starting from the highest itemId found in the IDs returned by the method loadAllKeys. If the
method loadAllKeys does not return anything, the itemIds will started from the beginning after a cluster
restart.

• The above two considerations mean there will be no duplicated itemIds in the memory or in the persistent
data store.

7.2.3 Setting a Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more items can be put
into the queue until some items are taken out.

To turn a Hazelcast distributed queue into a bounded queue, set the capacity limit with the max-size property.
You can set the max-size property in the configuration, as shown below. max-size specifies the maximum size of
the queue. Once the queue size reaches this value, put operations will be blocked until the queue size goes below
max-size, which happens when a consumer removes items from the queue.

Let’s set 10 as the maximum size of our example queue in Creating an Example Queue.

<hazelcast>
...
<queue name="queue">
<max-size>10</max-size>

</queue>
...

</hazelcast>

When the producer is started, 10 items are put into the queue and then the queue will not allow more put operations.
When the consumer is started, it will remove items from the queue. This means that the producer can put more
items into the queue until there are 10 items in the queue again, at which point put operation again become blocked.

But in this example code, the producer is 5 times faster than the consumer. It will effectively always be waiting for
the consumer to remove items before it can put more on the queue. For this example code, if maximum throughput
was the goal, it would be a good option to start multiple consumers to prevent the queue from filling up.

98 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.2.4 Queueing with Persistent Datastore

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore using the interface
QueueStore. If queue store is enabled, each item added to the queue will also be stored at the configured queue
store. When the number of items in the queue exceeds the memory limit, the subsequent items are persisted in the
queue store, they are not stored in the queue memory.

The QueueStore interface enables you to store, load, and delete queue items with methods like store, storeAll,
load and delete. The following example class includes all of the QueueStore methods.

public class TheQueueStore implements QueueStore<Item> {
@Override
public void delete(Long key) {

System.out.println("delete");
}

@Override
public void store(Long key, Item value) {

System.out.println("store");
}

@Override
public void storeAll(Map<Long, Item> map) {

System.out.println("store all");
}

@Override
public void deleteAll(Collection<Long> keys) {

System.out.println("deleteAll");
}

@Override
public Item load(Long key) {

System.out.println("load");
return null;

}

@Override
public Map<Long, Item> loadAll(Collection<Long> keys) {

System.out.println("loadAll");
return null;

}

@Override
public Set<Long> loadAllKeys() {

System.out.println("loadAllKeys");
return null;

}

Item must be serializable. Following is an example queue store configuration.

<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-limit">1000</property>
<property name="bulk-load">500</property>

</properties>
</queue-store>

7.2. QUEUE 99

Let’s explain the queue store properties.

• Binary: By default, Hazelcast stores the queue items in serialized form, and before it inserts the queue items
into datastore, it deserializes them. But if you will not reach the queue store from an external application,
you might prefer that the items be inserted in binary form. Do this by setting the binary property to true:
then you can get rid of the deserialization step, which is a performance optimization. The binary property is
false by default.

• Memory Limit: This is the number of items after which Hazelcast will store items only to datastore. For
example, if the memory limit is 1000, then the 1001st item will be put only to datastore. This feature is
useful when you want to avoid out-of-memory conditions. If you want to always use memory, you can set it
to Integer.MAX_VALUE. The default number for memory-limit is 1000.

• Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load is the size
of these bulks. The default value of bulk-load is 250.

7.2.5 Configuring Queue

The following are example queue configurations including the QueueStore configuration which is explained in the
Queueing with Persistent Datastore section.

Declarative:

<queue name="default">
<max-size>0</max-size>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<empty-queue-ttl>-1</empty-queue-ttl>
<item-listeners>

<item-listener>
com.hazelcast.examples.ItemListener

</item-listener>
<item-listeners>

</queue>
<queue-store>

<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>

<property name="binary">false</property>
<property name="memory-limit">10000</property>
<property name="bulk-load">500</property>

</properties>
</queue-store>

Programmatic:

Config config = new Config();
QueueConfig queueConfig = config.getQueueConfig();
queueConfig.setName("MyQueue").setBackupCount("1")

.setMaxSize("0").setStatisticsEnabled("true");
queueConfig.getQueueStoreConfig()

.setEnabled ("true")

.setClassName("com.hazelcast.QueueStoreImpl")

.setProperty("binary", "false");

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a cluster member
with a queue goes down, another member having the backup of that queue will continue. Therefore, no items
are lost. You can define the number of synchronous backups for a queue using the backup-count element in the

100 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

declarative configuration. A queue can also have asynchronous backups: you can define the number of asynchronous
backups using the async-backup-count element.

To set the maximum size of the queue, use the max-size element. To purge unused or empty queues after a
period of time, use the empty-queue-ttl element. If you define a value (time in seconds) for the empty-queue-ttl
element, then your queue will be destroyed if it stays empty or unused for the time you give.

The following are the full list of elements with their descriptions.

• max-size: Maximum number of items in the Queue.
• backup-count: Number of synchronous backups. Queue is a non-partitioned data structure, so all entries of

a Queue resides in one partition. When this parameter is ‘1’, it means there will be 1 backup of that Queue
in another member in the cluster. When it is ‘2’, 2 members will have the backup.

• async-backup-count: Number of asynchronous backups.
• empty-queue-ttl: Used to purge unused or empty queues. If you define a value (time in seconds) for this
element, then your queue will be destroyed if it stays empty or unused for that time.

• item-listeners: Lets you add listeners (listener classes) for the queue items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local node (member).

• queue-store: Includes the queue store factory class name and the properties binary, memory limit and bulk
load. Please refer to Queueing with Persistent Datastore.

• statistics-enabled: If set to true, you can retrieve statistics for this Queue using the method
getLocalQueueStats().

7.3 MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just like any other
distributed data structure implementation in Hazelcast, MultiMap is distributed and thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method signatures. It
supports most features of Hazelcast Map except for indexing, predicates and MapLoader/MapStore. Yet, like
Hazelcast Map, entries are almost evenly distributed onto all cluster members. When a new member joins the
cluster, the same ownership logic used in the distributed map applies.

7.3.1 Getting a MultiMap and Putting an Entry

The following example creates a MultiMap and puts items into it. Use the HazelcastInstance getMultiMap method
to get the MultiMap, then use the MultiMap put method to put an entry into the MultiMap.

public class PutMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String , String > map = hazelcastInstance.getMultiMap("map");

map.put("a", "1");
map.put("a", "2");
map.put("b", "3");
System.out.println("PutMember:Done");

}
}

Now let’s print the entries in this MultiMap.

public class PrintMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

7.3. MULTIMAP 101

MultiMap <String, String > map = hazelcastInstance.getMultiMap("map");
for (String key : map.keySet()){
Collection <String > values = map.get(key);
System.out.println("%s -> %s\n",key, values);

}
}

}

After you run the first code sample, run the PrintMember sample. You will see the key a has two values, as shown
below.

b -> [3]

a -> [2, 1]

Hazelcast MultiMap uses EntryListener to listen to events which occur when entries are added to, updated in or
removed from the MultiMap. Please refer to the Listening for MultiMap Events section for information on how to
create an entry listener class and register it.

7.3.2 Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. You configure the collection
type with the valueCollectionType parameter. If you choose Set, duplicate and null values are not allowed in
your collection and ordering is irrelevant. If you choose List, ordering is relevant and your collection can include
duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you enable
statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

NOTE: Currently, eviction is not supported for the MultiMap data structure.

The following are the example MultiMap configurations.

Declarative:

<hazelcast>
<multimap name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<value-collection-type>SET</value-collection-type>
<entry-listeners>

<entry-listener include-value="false" local="false">
com.hazelcast.examples.EntryListener

</entry-listener>
</entry-listeners>

</map>
</hazelcast>

Programmatic:

MultiMapConfig mmConfig = new MultiMapConfig();
mmConfig.setName("default");

mmConfig.setBackupCount("0").setAsyncBackupCount("1");

mmConfig.setValueCollectionType("SET");

The following are the configuration elements and their descriptions:

102 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

• backup-count: Defines the number of asynchronous backups. For example, if it is set to 1, backup of a
partition will be placed on 1 other member. If it is 2, it will be placed on 2 other members.

• async-backup-count: The number of synchronous backups. Behavior is the same as that of the backup-count
element.

• statistics-enabled: You can retrieve some statistics like owned entry count, backup entry count, last
update time, locked entry count by setting this parameter’s value as “true”. The method for retrieving the
statistics is getLocalMultiMapStats().

• value-collection-type: Type of the value collection. It can be Set or List.
• entry-listeners: Lets you add listeners (listener classes) for the map entries. You can also set the attribute
include-value to true if you want the item event to contain the entry values, and you can set local to true if
you want to listen to the entries on the local node.

7.4 Set

Hazelcast Set is a distributed and concurrent implementation of java.util.Set.

• Hazelcast Set does not allow duplicate elements.
• Hazelcast Set does not preserve the order of elements.
• Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set will live on one single
partition in that member.

• Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives on a single
partition, storing large amount of data on a single set may cause memory pressure. Therefore, you should
use multiple sets to store large amount of data; this way, all the sets will be spread across the cluster, hence
sharing the load.

• A backup of Hazelcast Set is stored on a partition of another member in the cluster so that data is not lost in
the event of a primary member failure.

• All items are copied to the local member and iteration occurs locally.
• The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as opposed to
java.util.HashSet.

7.4.1 Getting a Set and Putting Items

Use the HazelcastInstance getSet method to get the Set, then use the set put method to put items into the Set.

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Set<Price> set = hazelcastInstance.getSet("IBM-Quote-History");
set.add(new Price(10, time1));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, time4));
//....
Iterator<Price> iterator = set.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();
//analyze

}

Hazelcast Set uses ItemListener to listen to events that occur when items are added to and removed from the Set.
Please refer to the Listening for Item Events section for information on how to create an item listener class and
register it.

7.5. LIST 103

7.4.2 Configuring Set

The following are the example set configurations.

Declarative:

<set name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>

<item-listener>
com.hazelcast.examples.ItemListener

</item-listener>
<item-listeners>

</set>

Programmatic:

Config config = new Config();
CollectionConfig collectionSet = config.getCollectionConfig();
collectionSet.setName("MySet").setBackupCount("1")

.setMaxSize("10");

Set configuration has the following elements.

• statistics-enabled: True (default) if statistics gathering is enabled on the set, false otherwise.
• backup-count: Count of synchronous backups. Set is a non-partitioned data structure, so all entries of a Set
reside in one partition. When this parameter is ‘1’, it means there will be 1 backup of that Set in another
member in the cluster. When it is ‘2’, 2 members will have the backup.

• async-backup-count: Count of asynchronous backups.
• max-size: The maximum number of entries for this Set.
• item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attributes
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local member.

7.5 List

Hazelcast List is similar to Hazelcast Set, but Hazelcast List also allows duplicate elements.

• Besides allowing duplicate elements, Hazelcast List preserves the order of elements.
• Hazelcast List is a non-partitioned data structure where values and each backup are represented by their own
single partition.

• Hazelcast List cannot be scaled beyond the capacity of a single machine.
• All items are copied to local and iteration occurs locally.

7.5.1 Getting a List and Putting Items

Use the HazelcastInstance getList method to get the list, then use the list put method to put items into the List.

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

104 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

List<Price> list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

//....
Iterator<Price> iterator = list.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();
//analyze

}

Hazelcast List uses ItemListener to listen to events which occur when items are added to and removed from the
List. Please refer to the Listening for Item Events section for information on how to create an item listener class
and register it.

7.5.2 Configuring List

The following are example list configurations.

Declarative:

<list name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>

<item-listener>
com.hazelcast.examples.ItemListener

</item-listener>
</item-listeners>

</list>

Programmatic:

Config config = new Config();
CollectionConfig collectionList = config.getCollectionConfig();
collectionList.setName("MyList").setBackupCount("1")

.setMaxSize("10");

List configuration has the following elements.

• statistics-enabled: True (default) if statistics gathering is enabled on the list, false otherwise.
• backup-count: Number of synchronous backups. List is a non-partitioned data structure, so all entries of a

List reside in one partition. When this parameter is ‘1’, there will be 1 backup of that List in another member
in the cluster. When it is ‘2’, 2 members will have the backup.

• async-backup-count: Number of asynchronous backups.
• max-size: The maximum number of entries for this List.
• item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set the attribute
local to true if you want to listen the items on the local member.

7.6. RINGBUFFER 105

7.6 Ringbuffer

Hazelcast Ringbuffer is a distributed data structure that stores its data in a ring-like structure. You can think of it
as a circular array with a given capacity. Each Ringbuffer has a tail and a head. The tail is where the items are
added and the head is where the items are overwritten or expired. You can reach each element in a Ringbuffer
using a sequence ID, which is mapped to the elements between the head and tail (inclusive) of the Ringbuffer.

7.6.1 Getting a Ringbuffer and Reading Items

Reading from Ringbuffer is simple: get the Ringbuffer with the HazelcastInstance getRingbuffer method, get its
current head with the headSequence method, and start reading. Use the method readOne to return the item at
the given sequence; readOne blocks if no item is available. To read the next item, increment the sequence by one.

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true){

String item = ringbuffer.readOne(sequence);
sequence++;
... process item

}

By exposing the sequence, you can now move the item from the Ringbuffer as long as the item is still available. If
the item is not available any longer, StaleSequenceException is thrown.

7.6.2 Adding Items to a Ringbuffer

Adding an item to a Ringbuffer is also easy with the Ringbuffer add method:

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
ringbuffer.add("someitem")

Use the method add to return the sequence of the inserted item; the sequence value will always be unique. You can
use this as a very cheap way of generating unique IDs if you are already using Ringbuffer.

7.6.3 IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike IQueue, Ringbuffer
does not remove the items, it only reads items using a certain position. There are many advantages to this approach:

• The same item can be read multiple times by the same thread; this is useful for realizing semantics of
read-at-least-once or read-at-most-once.

• The same item can be read by multiple threads. Normally you could use an IQueue per thread for the same
semantic, but this is less efficient because of the increased remoting. A take from an IQueue is destructive,
so the change needs to be applied for backup also, which is why a queue.take() is more expensive than a
ringBuffer.read(...).

• Reads are extremely cheap since there is no change in the Ringbuffer, therefore no replication is required.
• Reads and writes can be batched to speed up performance. Batching can dramatically improve the performance
of Ringbuffer.

106 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.6.4 Configuring Ringbuffer Capacity

By default, a Ringbuffer is configured with a capacity of 10000 items. This creates an array with a size of 10000.
If a time-to-live is configured, then an array of longs is also created that stores the expiration time for every
item. In a lot of cases, you may want to change this capacity number to something that better fits your needs.

Below is a declarative configuration example of a Ringbuffer with a capacity of 2000 items.

<ringbuffer name="rb">
<capacity>2000</capacity>

</ringbuffer>

Currently, Hazelcast Ringbuffer is not a partitioned data structure; its data is stored in a single partition and the
replicas are stored in another partition. Therefore, create a Ringbuffer that can safely fit in a single cluster member.

7.6.5 Backing Up Ringbuffer

Hazelcast Ringbuffer has 1 single synchronous backup by default. You can control the Ringbuffer backup just like
most of the other Hazelcast distributed data structures by setting the synchronous and asynchronous backups:
backup-count and async-backup-count. In the example below, a Ringbuffer is configured with 0 synchronous
backups and 1 asynchronous backup:

<ringbuffer name="rb">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>

</ringbuffer>

An asynchronous backup will probably give you better performance. However, there is a chance that the item
added will be lost when the member owning the primary crashes before the backup could complete. You may want
to consider batching methods if you need high performance but do not want to give up on consistency.

7.6.6 Configuring Ringbuffer Time To Live

You can configure Hazelcast Ringbuffer with a time to live in seconds. Using this setting, you can control how long
the items remain in the Ringbuffer before they are expired. By default, the time to live is set to 0, meaning that
unless the item is overwritten, it will remain in the Ringbuffer indefinitely. If you set a time to live and an item is
added, then depending on the Overflow Policy, either the oldest item is overwritten, or the call is rejected.

In the example below, a Ringbuffer is configured with a time to live of 180 seconds.

<ringbuffer name="rb">
<time-to-live-seconds>180</time-to-live-seconds>

</ringbuffer>

7.6.7 Setting Ringbuffer Overflow Policy

Using the overflow policy, you can determine what to do if the oldest item in the Ringbuffer is not old enough to
expire when more items than the configured Ringbuffer capacity are being added. The below options are currently
available.

• OverflowPolicy.OVERWRITE: The oldest item is overwritten.
• OverflowPolicy.FAIL: The call is aborted. The methods that make use of the OverflowPolicy return -1 to
indicate that adding the item has failed.

Overflow policy gives you fine control on what to do if the Ringbuffer is full. You can also use the overflow policy
to apply a back pressure mechanism. The following example code shows the usage of an exponential backoff.

7.6. RINGBUFFER 107

long sleepMs = 100;
for (; ;) {

long result = ringbuffer.addAsync(item, OverflowPolicy.FAIL).get();
if (result != -1) {

break;
}

TimeUnit.MILLISECONDS.sleep(sleepMs);
sleepMs = min(5000, sleepMs * 2);

}

7.6.8 Configuring Ringbuffer In-Memory Format

You can configure Hazelcast Ringbuffer with an in-memory format which controls the format of the Ringbuffer’s
stored items. By default, BINARY in-memory format is used, meaning that the object is stored in a serialized
form. You can select the OBJECT in-memory format, which is useful when filtering is applied or when the OBJECT
in-memory format has a smaller memory footprint than BINARY.

In the declarative configuration example below, a Ringbuffer is configured with the OBJECT in-memory format:

<ringbuffer name="rb">
<in-memory-format>BINARY</in-memory-format>

</ringbuffer>

7.6.9 Adding Batched Items

In the previous examples, the method ringBuffer.add() is used to add an item to the Ringbuffer. The problem
with this method is that it always overwrites and that it does not support batching. Batching can have a huge
impact on the performance. You can use the method addAllAsync to support batching.

Please see the following example code.

List<String> items = Arrays.asList("1","2","3");
ICompletableFuture<Long> f = rb.addAllAsync(items, OverflowPolicy.OVERWRITE);
f.get()

In the above case, three strings are added to the Ringbuffer using the policy OverflowPolicy.OVERWRITE. Please
see the Overflow Policy section for more information.

7.6.10 Reading Batched Items

In the previous example, the readOne method read items from the Ringbuffer. readOne is simple but not very
efficient for the following reasons:

• readOne does not use batching.
• readOne cannot filter items at the source; the items need to be retrieved before being filtered.

The method readManyAsync can read a batch of items and can filter items at the source.

Please see the following example code.

ICompletableFuture<ReadResultSet<E>> readManyAsync(
long startSequence,
int minCount,
int maxCount,
IFunction<E, Boolean> filter);

108 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

The meanings of the readManyAsync arguments are given below.

• startSequence: Sequence of the first item to read.
• minCount: Minimum number of items to read. If you do not want to block, set it to 0. If you want to block
for at least one item, set it to 1.

• maxCount: Maximum number of the items to retrieve. Its value cannot exceed 1000.
• filter: A function that accepts an item and checks if it should be returned. If no filtering should be applied,
set it to null.

A full example is given below.

long sequence = rb.headSequence();
for(;;) {

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 1, 10, null);
ReadResultSet<String> rs = f.get();
for (String s : rs) {

System.out.println(s);
}
sequence+=rs.readCount();

}

Please take a careful look at how your sequence is being incremented. You cannot always rely on the number of
items being returned if the items are filtered out.

7.6.11 Using Async Methods

Hazelcast Ringbuffer provides asynchronous methods for more powerful operations like batched writing or batched
reading with filtering. To make these methods synchronous, just call the method get() on the returned future.

Please see the following example code.

ICompletableFuture f = ringbuffer.addAsync(item, OverflowPolicy.FAIL);
f.get();

However, you can also use ICompletableFuture to get notified when the operation has completed. The advantage
of ICompletableFuture is that the thread used for the call is not blocked till the response is returned.

Please see the below code as an example of when you want to get notified when a batch of reads has completed.

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, min, max, someFilter);
f.andThen(new ExecutionCallback<ReadResultSet<String>>() {

@Override
public void onResponse(ReadResultSet<String> response) {

for (String s : response) {
System.out.println("Received:" + s);

}
}

@Override
public void onFailure(Throwable t) {

t.printStackTrace();
}

});

7.7. TOPIC 109

7.6.12 Ringbuffer Configuration Examples

The following shows the declarative configuration of a Ringbuffer called rb. The configuration is modeled after the
Ringbuffer defaults.

<ringbuffer name="rb">
<capacity>10000</capacity>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<time-to-live-seconds>0</time-to-live-seconds>
<in-memory-format>BINARY</in-memory-format>

</ringbuffer>

You can also configure a Ringbuffer programmatically. The following is a programmatic version of the above
declarative configuration.

RingbufferConfig rbConfig = new RingbufferConfig("rb")
.setCapacity(10000)
.setBackupCount(1)
.setAsyncBackupCount(0)
.setTimeToLiveSeconds(0)
.setInMemoryFormat(InMemoryFormat.BINARY);

Config config = new Config();
config.addRingbufferConfig(rbConfig);

7.7 Topic

Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple subscribers.
This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and subscribing operations are
cluster wide. When a member subscribes to a topic, it is actually registering for messages published by any member
in the cluster, including the new members that joined after you add the listener.

NOTE: Publish operation is async. It does not wait for operations to run in remote members, it works as
fire and forget.

7.7.1 Getting a Topic and Publishing Messages

Use the HazelcastInstance getTopic method to get the Topic, then use the topic publish method to publish your
messages (messageObject).

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessageListener;

public class Sample implements MessageListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(sample);
topic.publish(new MyEvent());

}

110 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {

public void run() {
doHeavyweightStuff(myEvent);

}
});

}
}

// ...

private final Executor messageExecutor = Executors.newSingleThreadExecutor();
}

Hazelcast Topic uses the MessageListener interface to listen for events that occur when a message is received.
Please refer to the Listening for Topic Messages section for information on how to create a message listener class
and register it.

7.7.2 Getting Topic Statistics

Topic has two statistic variables that you can query. These values are incremental and local to the member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic("myTopicName");

myTopic.getLocalTopicStats().getPublishOperationCount();
myTopic.getLocalTopicStats().getReceiveOperationCount();

getPublishOperationCount and getReceiveOperationCount returns the total number of published and received
messages since the start of this node, respectively. Please note that these values are not backed up, so if the node
goes down, these values will be lost.

You can disable this feature with topic configuration. Please see the Configuring Topic section.

NOTE: These statistics values can be also viewed in Management Center. Please see Monitoring Topics.

7.7.3 Understanding Topic Behavior

Each cluster member has a list of all registrations in the cluster. When a new member is registered for a topic,
it sends a registration message to all members in the cluster. Also, when a new member joins the cluster, it will
receive all registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter globalOrderEnabled.

7.7.3.1 Ordering Messages as Published

If globalOrderEnabled is disabled, messages are ordered: listeners (subscribers) process the messages in the order
that the messages are published. If cluster member M publishes messages m1, m2, m3, . . . , mn to a topic T, then
Hazelcast makes sure that all of the subscribers of topic T will receive and process m1, m2, m3, . . . , mn in the
given order.

Here is how it works. Let’s say that we have three members (member1, member2 and member3) and that member1
and member2 are registered to a topic named news. Note that all three members know that member1 and member2
are registered to news.

7.7. TOPIC 111

In this example, member1 publishes two messages: a1 and a2, and member3 publishes two messages: c1 and c2.
When member1 and member3 publish a message, they will check their local list for registered members, and they
will discover that member1 and member2 are in their lists, then they will fire messages to those members. One
possible order of the messages received can be the following.

member1 -> c1, b1, a2, c2

member2 -> c1, c2, a1, a2

7.7.3.2 Ordering Messages for Members

If globalOrderEnabled is enabled, all members listening to the same topic will get its messages in the same order.

Here is how it works. Let’s say that we have three members (member1, member2 and member3) and that member1
and member2 are registered to a topic named news. Note that all three members know that member1 and member2
are registered to news.

In this example, member1 publishes two messages: a1 and a2, and member3 publishes two messages: c1 and c2.
When a member publishes messages over the topic news, it first calculates which partition the news ID corresponds
to. Then it sends an operation to the owner of the partition for that member to publish messages. Let’s assume that
news corresponds to a partition that member2 owns. member1 and member3 first sends all messages to member2.
Assume that the messages are published in the following order:

member1 -> a1, c1, a2, c2

member2 then publishes these messages by looking at registrations in its local list. It sends these messages to
member1 and member2 (it makes a local dispatch for itself).

member1 -> a1, c1, a2, c2

member2 -> a1, c1, a2, c2

This way, we guarantee that all members will see the events in the same order.

7.7.3.3 Keeping Generated and Published Order the Same

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the received message.
For all events in Hazelcast, the order that events are generated and the order they are published to the user are
guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property hazelcast.event.thread.count
(default is 5). For a specific event source (for a particular topic name), hash of that source’s name % 5 gives the ID
of the responsible thread. Note that there can be another event source (entry listener of a map, item listener of a
collection, etc.) corresponding to the same thread. In order not to make other messages to block, heavy processing
should not be done in this thread. If there is time consuming work that needs to be done, the work should be
handed over to another thread. Please see the Getting a Topic and Publishing Messages section.

7.7.4 Configuring Topic

To configure a topic, set the topic name, decide on statistics and global ordering, and set message listeners. Default
values are:

• global-ordering is false, meaning that by default, there is no guarantee of global order.
• statistics is true, meaning that by default, statistics are calculated.

You can see the example configuration snippets below.

Declarative:

112 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

<hazelcast>
...
<topic name="yourTopicName">
<global-ordering-enabled>true</global-ordering-enabled>
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>MessageListenerImpl</message-listener>

</message-listeners>
</topic>
...

</hazelcast>

Programmatic:

TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled(true);
topicConfig.setStatisticsEnabled(true);
topicConfig.setName("yourTopicName");
MessageListener<String> implementation = new MessageListener<String>() {
@Override
public void onMessage(Message<String> message) {

// process the message
}

};
topicConfig.addMessageListenerConfig(new ListenerConfig(implementation));
HazelcastInstance instance = Hazelcast.newHazelcastInstance()

Topic configuration has the following elements.

• statistics-enabled: Default is true, meaning statistics are calculated.
• global-ordering-enabled: Default is false, meaning there is no global order guarantee.
• message-listeners: Lets you add listeners (listener classes) for the topic messages.

Besides the above elements, there are the following system properties that are topic related but not topic specific:

- ‘hazelcast.event.queue.capacity‘ with a default value of 1,000,000
- ‘hazelcast.event.queue.timeout.millis‘ with a default value of 250
- ‘hazelcast.event.thread.count‘ with a default value of 5

For a description of these parameters, please see the Global Event Configuration section.

7.8 Reliable Topic

The Reliable Topic data structure has been introduced with the release of Hazelcast 3.5. The Reliable Topic uses the
same ITopic interface as a regular topic. The main difference is that Reliable Topic is backed up by the Ringbuffer
(also introduced with Hazelcast 3.5) data structure. The following are the advantages of this approach:

• Events are not lost since the Ringbuffer is configured with 1 synchronous backup by default.
• Each Reliable ITopic gets its own Ringbuffer; if there is a topic with a very fast producer, it will not lead to
problems at the topic that runs at a slower pace.

• Since the event system behind a regular ITopic is shared with other data structures (e.g. collection listeners),
you can run into isolation problems. This does not happen with the Reliable ITopic.

7.8. RELIABLE TOPIC 113

7.8.1 Sample Reliable ITopic Code

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessageListener;

public class Sample implements MessageListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getReliableTopic("default");
topic.addMessageListener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());

}
}

You can configure the Reliable ITopic using its Ringbuffer. If there is a Reliable Topic with the name Foo, then
you can configure this topic by adding a ReliableTopicConfig for a Ringbuffer with the name Foo. By default,
a Ringbuffer does not have any TTL (time to live) and it has a limited capacity; you may want to change that
configuration.

By default, the Reliable ITopic uses a shared thread pool. If you need better isolation, you can configure a custom
executor on the ReliableTopicConfig.

Because the reads on a Ringbuffer are not destructive, it is easy to apply batching. ITopic uses read batching and
reads 10 items at a time (if available) by default.

7.8.2 Slow Consumers

The Reliable ITopic provides control and a way to deal with slow consumers. It is unwise to keep events for a slow
consumer in memory indefinitely since you do not know when it is going to catch up. You can control the size of
the Ringbuffer by using its capacity. For the cases when a Ringbuffer runs out of its capacity, you can specify the
following policies for the TopicOverloadPolicy configuration:

• DISCARD_OLDEST: Overwrite the oldest item, no matter if a TTL is set. In this case the fast producer
supersedes a slow consumer

• DISCARD_NEWEST: Discard the newest item.
• BLOCK: Wait until the items are expired in the Ringbuffer.
• FAIL: Immediately throw TopicOverloadException if there is no space in the Ringbuffer.

7.8.3 Configuring Reliable Topic

The following are example Reliable Topic configurations.

Declarative:

<reliable-topic name="default">
<statistics-enabled>true</statistics-enabled>
<message-listeners>

<message-listener>
...

114 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

</message-listener>
</message-listeners>
<read-batch-size>10</read-batch-size>
<topic-overload-policy>BLOCK</topic-overload-policy>

</reliable-topic>

Programmatic:

Config config = new Config();
ReliableTopicConfig rtConfig = config.getReliableTopicConfig();
rtConfig.setTopicOverloadPolicy(TopicOverloadPolicy.BLOCK)

.setReadBatchSize(10)

.setStatisticsEnabled(true);

Reliable Topic configuration has the following elements.

• statistics-enabled: Enables or disables the statistics collection for the Reliable Topic. The default value
is true.

• message-listener: Message listener class that listens to the messages when they are added or removed.
• read-batch-size: Minimum number of messages that Reliable Topic will try to read in batches. The default
value is 10.

• topic-overload-policy: Policy to handle an overloaded topic. Available values are DISCARD_OLDEST,
DISCARD_NEWEST, BLOCK and ERROR. The default value is ‘BLOCK.

7.9 Lock

ILock is the distributed implementation of java.util.concurrent.locks.Lock. Meaning if you lock using an
ILock, the critical section that it guards is guaranteed to be executed by only one thread in the entire cluster. Even
though locks are great for synchronization, they can lead to problems if not used properly. Also note that Hazelcast
Lock does not support fairness.

7.9.1 Using Try-Catch Blocks with Locks

Always use locks with try-catch blocks. It will ensure that locks will be released if an exception is thrown from the
code in a critical section. Also note that the lock method is outside the try-catch block, because we do not want to
unlock if the lock operation itself fails.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLock");
lock.lock();
try {

// do something here
} finally {
lock.unlock();

}

7.9.2 Releasing Locks with tryLock Timeout

If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever. To avoid this,
use tryLock with a timeout value. You can set a high value (normally it should not take that long) for tryLock.
You can check the return value of tryLock as follows:

7.9. LOCK 115

if (lock.tryLock (10, TimeUnit.SECONDS)) {
try {

// do some stuff here..
} finally {
lock.unlock();

}
} else {

// warning
}

7.9.3 Avoiding Waiting Threads with Lease Time

You can also avoid indefinitely waiting threads by using lock with lease time: the lock will be released in the given
lease time. Lock can be safely unlocked before the lease time expires. Note that the unlock operation can throw an
IllegalMonitorStateException if the lock is released because the lease time expires. If that is the case, critical
section guarantee is broken.

Please see the below example.

lock.lock(5, TimeUnit.SECONDS)
try {

// do some stuff here..
} finally {
try {
lock.unlock();

} catch (IllegalMonitorStateException ex){
// WARNING Critical section guarantee can be broken

}
}

You can also specify a lease time when trying to acquire a lock: tryLock(time, unit, leaseTime, leaseUnit).
In that case, it tries to acquire the lock within the specified lease time. If the lock is not available, the current
thread becomes disabled for thread scheduling purposes until either it acquires the lock or the specified waiting
time elapses.

7.9.4 Understanding Lock Behavior

• Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will keep your
locks safe and available. Moreover, when a member leaves the cluster, all the locks acquired by that dead
member will be removed so that those locks are immediately available for live members.

• Locks are re-entrant: the same thread can lock multiple times on the same lock. Note that for other threads
to be able to require this lock, the owner of the lock must call unlock as many times as the owner called lock.

• In the split-brain scenario, the cluster behaves as if it were two different clusters. Since two separate clusters
are not aware of each other, two nodes from different clusters can acquire the same lock. For more information
on places where split brain syndrome can be handled, please see split brain syndrome.

• Locks are not automatically removed. If a lock is not used anymore, Hazelcast will not automatically garbage
collect the lock. This can lead to an OutOfMemoryError. If you create locks on the fly, make sure they are
destroyed.

• Hazelcast IMap also provides locking support on the entry level with the method IMap.lock(key). Although
the same infrastructure is used, IMap.lock(key) is not an ILock and it is not possible to expose it directly.

116 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.9.5 Synchronizing Threads with ICondition

ICondition is the distributed implementation of the notify, notifyAll and wait operations on the Java object.
You can use it to synchronize threads across the cluster. More specifically, you use ICondition when a thread’s
work depends on another thread’s output. A good example can be producer/consumer methodology.

Please see the below code examples for a producer/consumer implementation.

Producer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!shouldProduce()) {
condition.await(); // frees the lock and waits for signal

// when it wakes up it re-acquires the lock
// if available or waits for it to become
// available

}
produce();
condition.signalAll();

} finally {
lock.unlock();

}

NOTE: The method await() takes time value and time unit as arguments. If you specify a negative value
for the time, it is interpreted as infinite.

Consumer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!canConsume()) {
condition.await(); // frees the lock and waits for signal

// when it wakes up it re-acquires the lock if
// available or waits for it to become
// available

}
consume();
condition.signalAll();

} finally {
lock.unlock();

}

7.10 IAtomicLong

Hazelcast IAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. It
offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and incrementAndGet. Since
IAtomicLong is a distributed implementation, these operations involve remote calls and hence their performances
differ from AtomicLong.

7.10. IATOMICLONG 117

The following example code creates an instance, increments it by a million, and prints the count.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong counter = hazelcastInstance.getAtomicLong("counter");
for (int k = 0; k < 1000 * 1000; k++) {
if (k % 500000 == 0) {
System.out.println("At: " + k);
}
counter.incrementAndGet();

}
System.out.printf("Count is %s\n", counter.get());

}
}

When you start other instances with the code above, you will see the count as member count times a million.

7.10.1 Sending Functions to IAtomicLong

You can send functions to an IAtomicLong. IFunction is a Hazelcast owned, single method interface. The following
sample IFunction implementation adds two to the original value.

private static class Add2Function implements IFunction <Long, Long> {
@Override
public Long apply(Long input) {
return input + 2;

}
}

7.10.2 Executing Functions on IAtomicLong

You can use the following methods to execute functions on IAtomicLong.

• apply: It applies the function to the value in IAtomicLong without changing the actual value and returning
the result.

• alter: It alters the value stored in the IAtomicLong by applying the function. It will not send back a result.
• alterAndGet: It alters the value stored in the IAtomicLong by applying the function, storing the result in
the IAtomicLong and returning the result.

• getAndAlter: It alters the value stored in the IAtomicLong by applying the function and returning the
original value.

The following sample code includes these methods.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong atomicLong = hazelcastInstance.getAtomicLong("counter");

atomicLong.set(1);
long result = atomicLong.apply(new Add2Function());
System.out.println("apply.result: " + result);
System.out.println("apply.value: " + atomicLong.get());

atomicLong.set(1);

118 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

atomicLong.alter(new Add2Function());
System.out.println("alter.value: " + atomicLong.get());

atomicLong.set(1);
result = atomicLong.alterAndGet(new Add2Function());
System.out.println("alterAndGet.result: " + result);
System.out.println("alterAndGet.value: " + atomicLong.get());

atomicLong.set(1);
result = atomicLong.getAndAlter(new Add2Function());
System.out.println("getAndAlter.result: " + result);
System.out.println("getAndAlter.value: " + atomicLong.get());

}
}

7.10.3 Reasons to Use Functions with IAtomic

The reason for using a function instead of a simple code line like atomicLong.set(atomicLong.get() + 2)); is
that the IAtomicLong read and write operations are not atomic. Since IAtomicLong is a distributed implementation,
those operations can be remote ones, which may lead to race problems. By using functions, the data is not pulled
into the code, but the code is sent to the data. This makes it more scalable.

NOTE: IAtomicLong has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

7.11 ISemaphore

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore.

7.11.1 Controlling Thread Counts with Semaphore Permits

Semaphores offer permits to control the thread counts in the case of performing concurrent activities. To execute
a concurrent activity, a thread grants a permit or waits until a permit becomes available. When the execution is
completed, the permit is released.

NOTE: Semaphore with a single permit may be considered as a lock. But unlike the locks, when semaphores
are used, any thread can release the permit and semaphores can have multiple permits.

NOTE: Hazelcast Semaphore does not support fairness.

When a permit is acquired on ISemaphore:

• if there are permits, the number of permits in the semaphore is decreased by one and the calling thread
performs its activity. If there is contention, the longest waiting thread will acquire the permit before all other
threads.

• if no permits are available, the calling thread blocks until a permit becomes available. When a timeout
happens during this block, the thread is interrupted. In the case where the semaphore is destroyed, an
InstanceDestroyedException is thrown.

7.11.2 Example Semaphore Code

The following example code uses an IAtomicLong resource 1000 times, increments the resource when a thread
starts to use it, and decrements it when the thread completes.

7.11. ISEMAPHORE 119

public class SemaphoreMember {
public static void main(String[] args) throws Exception{
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getSemaphore("semaphore");
IAtomicLong resource = hazelcastInstance.getAtomicLong("resource");
for (int k = 0 ; k < 1000 ; k++) {
System.out.println("At iteration: " + k + ", Active Threads: " + resource.get());
semaphore.acquire();
try {
resource.incrementAndGet();
Thread.sleep(1000);
resource.decrementAndGet();

} finally {
semaphore.release();

}
}
System.out.println("Finished");

}
}

Let’s limit the concurrent access to this resource by allowing at most 3 threads. You can configure it declaratively
by setting the initial-permits property, as shown below.

<semaphore name="semaphore">
<initial-permits>3</initial-permits>

</semaphore>

NOTE: If there is a shortage of permits while the semaphore is being created, value of this property can be
set to a negative number.

If you execute the above SemaphoreMember class 5 times, the output will be similar to the following:

At iteration: 0, Active Threads: 1

At iteration: 1, Active Threads: 2

At iteration: 2, Active Threads: 3

At iteration: 3, Active Threads: 3

At iteration: 4, Active Threads: 3

As can be seen, the maximum count of concurrent threads is equal or smaller than 3. If you remove the semaphore
acquire/release statements in SemaphoreMember, you will see that there is no limitation on the number of concurrent
usages.

Hazelcast also provides backup support for ISemaphore. When a member goes down, another member can
take over the semaphore with the permit information (permits are automatically released when a member goes
down). To enable this, configure synchronous or asynchronous backup with the properties backup-count and
async-backup-count (by default, synchronous backup is already enabled).

7.11.3 Configuring Semaphore

The following are example semaphore configurations.

Declarative:

<semaphore name="semaphore">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>

120 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

<initial-permits>3</initial-permits>
</semaphore>

Programmatic:

Config config = new Config();
SemaphoreConfig semaphoreConfig = config.getSemaphoreConfig();
semaphoreConfig.setName("semaphore").setBackupCount("1")

.setInitialPermits("3");

Semaphore configuration has the below elements.

• initial-permits: the thread count to which the concurrent access is limited. For example, if you set it to
“3”, concurrent access to the object is limited to 3 threads.

• backup-count: Number of synchronous backups.
• async-backup-count: Number of asynchronous backups.

NOTE: If high performance is more important (than not losing the permit information), you can disable the
backups by setting backup-count to 0.

7.12 IAtomicReference

The IAtomicLong is very useful if you need to deal with a long, but in some cases you need to deal with a
reference. That is why Hazelcast also supports the IAtomicReference which is the distributed version of the
java.util.concurrent.atomic.AtomicReference.

Here is an IAtomicReference example.

public class Member {
public static void main(String[] args) {

Config config = new Config();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

IAtomicReference<String> ref = hz.getAtomicReference("reference");
ref.set("foo");
System.out.println(ref.get());
System.exit(0);

}
}

When you execute the above example, you will see the following output.

foo

7.12.1 Sending Functions to IAtomicReference

Just like IAtomicLong, IAtomicReference has methods that accept a ‘function’ as an argument, such as alter,
alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

• From a performance point of view, it is better to send the function to the data then the data to the function.
Often the function is a lot smaller than the data and therefore cheaper to send over the line. Also the function
only needs to be transferred once to the target machine, and the data needs to be transferred twice.

• You do not need to deal with concurrency control. If you would perform a load, transform, store, you could
run into a data race since another thread might have updated the value you are about to overwrite.

7.13. ICOUNTDOWNLATCH 121

7.12.2 Using IAtomicReference

Below are some issues you need to know when you use IAtomicReference.

• IAtomicReference works based on the byte-content and not on the object-reference. If you use the
compareAndSet method, do not change to original value because its serialized content will then be dif-
ferent. It is also important to know that if you rely on Java serialization, sometimes (especially with
hashmaps) the same object can result in different binary content.

• IAtomicReference will always have 1 synchronous backup.
• All methods returning an object will return a private copy. You can modify the private copy, but the rest of

the world will be shielded from your changes. If you want these changes to be visible to the rest of the world,
you need to write the change back to the IAtomicReference; but be careful about introducing a data-race.

• The ‘in-memory format’ of an IAtomicReference is binary. The receiving side does not need to have the
class definition available, unless it needs to be deserialized on the other side (e.g. because a method like ‘alter’
is executed). This deserialization is done for every call that needs to have the object instead of the binary
content, so be careful with expensive object graphs that need to be deserialized.

• If you have an object with many fields or an object graph, and you only need to calculate some information
or need a subset of fields, you can use the apply method. With the apply method, the whole object does not
need to be sent over the line, only the information that is relevant.

7.13 ICountDownLatch

Hazelcast ICountDownLatch is the distributed implementation of java.util.concurrent.CountDownLatch.

7.13.1 Gate-Keeping Concurrent Activities

CountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads to wait for other
threads to complete their operations.

The following code samples describe the mechanism of ICountDownLatch. Assume that there is a leader process
and there are follower processes that will wait until the leader completes. Here is the leader:

public class Leader {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Starting");
latch.trySetCount(1);
Thread.sleep(30000);
latch.countDown();
System.out.println("Leader finished");
latch.destroy();

}
}

Since only a single step is needed to be completed as a sample, the above code initializes the latch with 1. Then,
the code sleeps for a while to simulate a process and starts the countdown. Finally, it clears up the latch. Let’s
write a follower:

public class Follower {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Waiting");
boolean success = latch.await(10, TimeUnit.SECONDS);

122 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

System.out.println("Complete: " + success);
}

}

The follower class above first retrieves ICountDownLatch and then calls the await method to enable the thread to
listen for the latch. The method await has a timeout value as a parameter. This is useful when the countDown
method fails. To see ICountDownLatch in action, start the leader first and then start one or more followers. You
will see that the followers will wait until the leader completes.

7.13.2 Recovering From Failure

In a distributed environment, the counting down cluster member may go down. In this case, all listeners are notified
immediately and automatically by Hazelcast. The state of the current process just before the failure should be
verified and ‘how to continue now’ should be decided (e.g. restart all process operations, continue with the first
failed process operation, throw an exception, etc.).

7.13.3 Using ICountDownLatch

Although the ICountDownLatch is a very useful synchronization aid, you will probably not use it on a daily basis.
Unlike Java’s implementation, Hazelcast’s ICountDownLatch count can be re-set after a countdown has finished
but not during an active count.

NOTE: ICountDownLatch has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable. Also, the count cannot be re-set during an active count, it should be re-set after the countdown is
finished.

7.14 IdGenerator

Hazelcast IdGenerator is used to generate cluster-wide unique identifiers. Generated identifiers are long type
primitive values between 0 and Long.MAX_VALUE.

7.14.1 Generating Cluster-Wide IDs

ID generation occurs almost at the speed of AtomicLong.incrementAndGet(). A group of 1 million identifiers is
allocated for each cluster member. In the background, this allocation takes place with an IAtomicLong incremented
by 1 million. Once a cluster member generates IDs (allocation is done), IdGenerator increments a local counter. If
a cluster member uses all IDs in the group, it will get another 1 million IDs. By this way, only one time of network
traffic is needed, meaning that 999,999 identifiers are generated in memory instead of over the network. This is fast.

Let’s write a sample identifier generator.

public class IdGeneratorExample {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IdGenerator idGen = hazelcastInstance.getIdGenerator("newId");
while (true) {
Long id = idGen.newId();
System.err.println("Id: " + id);
Thread.sleep(1000);

}
}

}

Let’s run the above code two times. The output will be similar to the following.

7.15. REPLICATED MAP 123

Members [1] {
Member [127.0.0.1]:5701 this

}
Id: 1
Id: 2
Id: 3

Members [2] {
Member [127.0.0.1]:5701
Member [127.0.0.1]:5702 this

}
Id: 1000001
Id: 1000002
Id: 1000003

7.14.2 Unique IDs and Duplicate IDs

You can see that the generated IDs are unique and counting upwards. If you see duplicated identifiers, it means
your instances could not form a cluster.

NOTE: Generated IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs
start from 0 again or you can initialize to a value using the init() method of IdGenerator.

NOTE: IdGenerator has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

7.15 Replicated Map

A replicated map is a distributed key-value data structure where the data is replicated to all members in the cluster.
It provides full replication of entries to all members for high speed access. The following are its features:

• When you have a replicated map in the cluster, your clients can communicate with any cluster member.
• All cluster members are able to perform write operations.
• It supports all methods of the interface java.util.Map.
• It supports automatic initial fill up when a new member is started.
• It provides statistics for entry access, write and update so that you can monitor it using Hazelcast Management
Center.

• New members joining to the cluster pull all the data from the existing members.
• You can listen to entry events using listeners. Please refer to Using EntryListener on Replicated Map.

7.15.1 Replicating Instead of Partitioning

All other data structures are partitioned in design. A replicated map does not partition data (it does not spread
data to different cluster members); instead, it replicates the data to all members.

This leads to higher memory consumption. However, a replicated map has faster read and write access since the
data are available on all members.

Writes could take place on local/remote members in order to provide write-order, eventually being replicated to all
other members.

Replicated map is suitable for objects, catalogue data, or idempotent calculable data (like HTML pages). It fully
implements the java.util.Map interface, but it lacks the methods from java.util.concurrent.ConcurrentMap
since there are no atomic guarantees to writes or reads.

124 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

NOTE: If replicated map is used from a dummy client and this dummy client is connected to a lite member,
the entry listeners cannot be registered/de-registered.

NOTE: You cannot use replicated map from a lite member. A com.hazelcast.replicatedmap.ReplicatedMapCantBeCreatedOnLiteMemberException
is thrown if com.hazelcast.core.HazelcastInstance#getReplicatedMap(name) is invoked on a lite member.

7.15.2 Example Replicated Map Code

Here is an example of replicated map code. The HazelcastInstance’s getReplicatedMap method gets the replicated
map, and the replicated map’s put method creates map entries.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.Collection;
import java.util.Map;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<String, Customer> customers = hazelcastInstance.getReplicatedMap("customers");
customers.put("1", new Customer("Joe", "Smith"));
customers.put("2", new Customer("Ali", "Selam"));
customers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = customers.values();
for (Customer customer : colCustomers) {

// process customer
}

HazelcastInstance::getReplicatedMap returns com.hazelcast.core.ReplicatedMap which, as stated above,
extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry listeners or
retrieving values in an expected order.

7.15.3 Considerations for Replicated Map

If you have a large cluster or very high occurrences of updates, the replicated map may not scale linearly as expected
since it has to replicate update operations to all members in the cluster.

Since the replication of updates is performed in an asynchronous manner, we recommend you to enable back
pressure in case your system has high occurrences of updates. Please refer to the Back Pressure section to learn
how to enable it.

Replicated map has an anti-entropy system, which will converge values to a common one if some of the members
are missing replication updates.

Replicated map does not guarantee eventual consistency because there are some edge cases which fails to provide
consistency.

Replicated map uses internal partition system of Hazelcast in order to serialize updates happening on the same key
at the same time. This happens by sending updates of the same key to the same Hazelcast member in the cluster.

Due to asynchronous nature of replication, a Hazelcast member could die before successfully replicating a “write”
operation to other members, after sending the “write completed” response to it’s caller during the write process. In
this scenario, Hazelcast’s internal partition system will promote one of the replicas of the partition as the primary
one. The new primary partition will not have the latest “write” since the died member could not successfully
replicate the update. This will leave the system in a state that the caller is the only one that has the update and
the rest of the cluster have not. In this case even the anti-entropy system simply could not converge the value since

7.15. REPLICATED MAP 125

the source of true information is lost for the update. This leads to a break in the eventual consistency because
different values can be read from the system for the same key.

Other than the aforementioned scenario, it will behave like an eventually consistent system with read-your-writes
consistency.

7.15.4 Configuration Design for Replicated Map

There are several technical design decisions you should consider when you configure a replicated map.

Initial provisioning

If a new member joins, there are two ways you can handle the initial provisioning that is executed to replicate all
existing values to the new member. Each involves how you configure the async fill up.

First, you can configure async fill up to true, which does not block reads while the fill up operation is underway.
That way, you have immediate access on the new member, but it will take time until all values are eventually
accessible. Not yet replicated values are returned as non-existing (null).

Second, you can configure for a synchronous initial fill up (by configuring the async fill up to false), which blocks
every read or write access to the map until the fill up operation is finished. Use this with caution since it might
block your application from operating.

7.15.5 Configuring Replicated Map

Replicated map can be configured programmatically or declaratively.

7.15.5.1 Replicated Map Declarative Configuration

You can declare your replicated map configuration in the Hazelcast configuration file hazelcast.xml. Please see
the following example.

<replicatedmap name="default">
<in-memory-format>BINARY</in-memory-format>
<async-fillup>true</async-fillup>
<statistics-enabled>true</statistics-enabled>
<entry-listeners>
<entry-listener include-value="true">

com.hazelcast.examples.EntryListener
</entry-listener>

</entry-listeners>
</replicatedmap>

• in-memory-format: Internal storage format. Please see the In-Memory Format section. The default value is
OBJECT.

• async-fillup: Specifies if the replicated map is available for reads before the initial replication is completed.
The default value is true. If set to false (i.e. synchronous initial fill up), no exception will be thrown when
the replicated map is not yet ready, but null values can be seen until the initial replication is completed.

• statistics-enabled: If set to true, the statistics such as cache hits and misses are collected. The default
value is false.

• entry-listener: Full canonical classname of the EntryListener implementation.

– entry-listener#include-value: Specifies whether the event includes the value or not. Sometimes
the key is enough to react on an event. In those situations, setting this value to false will save a
deserialization cycle. The default value is true.

– entry-listener#local: Not used for Replicated Map since listeners are always local.

126 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.15.5.2 Replicated Map Programmatic Configuration

You can configure a replicated map programmatically, as you can do for all other data structures in Hazelcast. You
must create the configuration upfront, when you instantiate the HazelcastInstance.

A basic example on how to configure the replicated map using the programmatic approach is shown in the following
snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
config.getReplicatedMapConfig("default");

replicatedMapConfig.setInMemoryFormat(InMemoryFormat.BINARY);

All properties that can be configured using the declarative configuration are also available using programmatic
configuration by transforming the tag names into getter or setter names.

7.15.5.3 In-Memory Format on Replicated Map

Currently, two in-memory-format values are usable with the replicated map.

• OBJECT (default): The data will be stored in deserialized form. This configuration is the default choice since
the data replication is mostly used for high speed access. Please be aware that changing the values without a
Map::put is not reflected on the other nodes but is visible on the changing nodes for later value accesses.

• BINARY: The data is stored in serialized binary format and has to be deserialized on every request. This
option offers higher encapsulation since changes to values are always discarded as long as the newly changed
object is not explicitly Map::put into the map again.

7.15.6 Using EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a replicated map serves the same purpose as it would on other
data structures in Hazelcast. You can use it to react on add, update, and remove operations. Replicated maps do
not yet support eviction.

7.15.6.1 Difference in EntryListener on Replicated Map

The fundamental difference in replicated map behavior, compared to the other data structures, is that an
EntryListener only reflects changes on local data. Since replication is asynchronous, all listener events are
fired only when an operation is finished on a local node. Events can fire at different times on different nodes.

7.15.6.2 Example of Replicated Map EntryListener

Here is a code example for using EntryListener on a replicated map.

The HazelcastInstance’s getReplicatedMap method gets a replicated map (customers), and the ReplicatedMap’s
addEntryListener method adds an entry listener to the replicated map. Then, the ReplicatedMap’s put method
adds a replicated map entry and updates it. The method remove removes the entry.

import com.hazelcast.core.EntryEvent;
import com.hazelcast.core.EntryListener;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.ReplicatedMap;

7.15. REPLICATED MAP 127

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ReplicatedMap<String, Customer> customers =

hazelcastInstance.getReplicatedMap("customers");

customers.addEntryListener(new EntryListener<String, Customer>() {
@Override
public void entryAdded(EntryEvent<String, Customer> event) {
log("Entry added: " + event);

}

@Override
public void entryUpdated(EntryEvent<String, Customer> event) {
log("Entry updated: " + event);

}

@Override
public void entryRemoved(EntryEvent<String, Customer> event) {
log("Entry removed: " + event);

}

@Override
public void entryEvicted(EntryEvent<String, Customer> event) {

// Currently not supported, will never fire
}

});

customers.put("1", new Customer("Joe", "Smith")); // add event
customers.put("1", new Customer("Ali", "Selam")); // update event
customers.remove("1"); // remove event

128 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Chapter 8

Distributed Events

You can register for Hazelcast entry events so you will be notified when those events occur. Event Listeners
are cluster-wide: when a listener is registered in one member of cluster, it is actually registered for events that
originated at any member in the cluster. When a new member joins, events originated at the new member will also
be delivered.

An Event is created only if you registered an event listener. If no listener is registered, then no event will be created.
If you provided a predicate when you registered the event listener, pass the predicate before sending the event to
the listener (member/client).

As a rule of thumb, your event listener should not implement heavy processes in its event methods which block
the thread for a long time. If needed, you can use ExecutorService to transfer long running processes to another
thread and thus offload the current listener thread.

NOTE: In a failover scenario, events are not highly available and may get lost. Eventing mechanism is
being improved for failover scenarios.

8.1 Event Listeners for Hazelcast Members

Hazelcast offers the following event listeners:

• Membership Listener for cluster membership events.
• Distributed Object Listener for distributed object creation and destroy events.
• Migration Listener for partition migration start and complete events.
• Partition Lost Listener for partition lost events.
• Lifecycle Listener for HazelcastInstance lifecycle events.
• Entry Listener for IMap and MultiMap entry events.
• Item Listener for IQueue, ISet and IList item events.
• Message Listener for ITopic message events.
• Client Listener for client connection events.

8.1.1 Listening for Member Events

The Membership Listener interface has methods that are invoked for the following events.

• memberAdded: A new member is added to the cluster.
• memberRemoved: An existing member leaves the cluster.
• memberAttributeChanged: An attribute of a member is changed. Please refer to Defining Member Attributes
to learn about member attributes.

129

130 CHAPTER 8. DISTRIBUTED EVENTS

To write a Membership Listener class, you implement the MembershipListener interface and its methods.
The following is an example Membership Listener class.

public class ClusterMembershipListener
implements MembershipListener {

public void memberAdded(MembershipEvent membershipEvent) {
System.err.println("Added: " + membershipEvent);

}

public void memberRemoved(MembershipEvent membershipEvent) {
System.err.println("Removed: " + membershipEvent);

}

public void memberAttributeChanged(MemberAttributeEvent memberAttributeEvent) {
System.err.println("Member attribute changed: " + memberAttributeEvent);

}

}

When a respective event is fired, the membership listener outputs the addresses of the members that joined and
left, and also which attribute changed on which member.

8.1.1.1 Registering Membership Listeners

After you create your class, you can configure your cluster to include the membership listener. Below is an example
using the method addMembershipListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getCluster().addMembershipListener(new ClusterMembershipListener());

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in configuration. You can
register listeners using declarative, programmatic, or Spring configuration, as shown below.
The following is an example programmatic configuration.

Config config = new Config();
config.addListenerConfig(
new ListenerConfig("com.your-package.ClusterMembershipListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<listeners>

<listener type="membership-listener">
com.your-package.ClusterMembershipListener

</listener>
</listeners>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.ClusterMembershipListener"/>
<hz:listener implementation="MembershipListener"/>

</hz:listeners>

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 131

8.1.2 Listening for Distributed Object Events

The Distributed Object Listener methods distributedObjectCreated and distributedObjectDestroyed are
invoked when a distributed object is created and destroyed throughout the cluster. To write a Distributed Object
Listener class, you implement the DistributedObjectListener interface and its methods.

The following is an example Distributed Object Listener class.

public class SampleDistObjListener implements DistributedObjectListener {
public static void main(String[] args) {
SampleDistObjListener sample = new SampleDistObjListener();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener(sample);

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());

}
}

@Override
public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@Override
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());

}
}

When a respective event is fired, the distributed object listener outputs the event type, and the name, service (for
example, if a Map service provides the distributed object, than it is a Map object), and ID of the object.

8.1.2.1 Registering Distributed Object Listeners

After you create your class, you can configure your cluster to include distributed object listeners. Below is an
example using the method addDistributedObjectListener. You can also see this portion in the above class
creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
SampleDistObjListener sample = new SampleDistObjListener();

hazelcastInstance.addDistributedObjectListener(sample);

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register the listeners in configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.SampleDistObjListener"));

132 CHAPTER 8. DISTRIBUTED EVENTS

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<listeners>
<listener>
com.your-package.SampleDistObjListener
</listener>

</listeners>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.SampleDistObjListener"/>
<hz:listener implementation="DistributedObjectListener"/>

</hz:listeners>

8.1.3 Listening for Migration Events

The Migration Listener interface has methods that are invoked for the following events:

• migrationStarted: A partition migration is started.
• migrationCompleted: A partition migration is completed.
• migrationFailed: A partition migration failed.

To write a Migration Listener class, you implement the DistributedObjectListener interface and its methods.

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {
@Override
public void migrationStarted(MigrationEvent migrationEvent) {
System.err.println("Started: " + migrationEvent);

}
@Override
public void migrationCompleted(MigrationEvent migrationEvent) {
System.err.println("Completed: " + migrationEvent);

}
@Override
public void migrationFailed(MigrationEvent migrationEvent) {
System.err.println("Failed: " + migrationEvent);

}
}

When a respective event is fired, the migration listener outputs the partition ID, status of the migration, the old
member and the new member. The following is an example output.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 133

8.1.3.1 Registering Migration Listeners

After you create your class, you can configure your cluster to include migration listeners. Below is an example
using the method addMigrationListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

PartitionService partitionService = hazelcastInstance.getPartitionService();
partitionService.addMigrationListener(new ClusterMigrationListener);

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register the listeners in configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.ClusterMigrationListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<listeners>
<listener>
com.your-package.ClusterMigrationListener
</listener>

</listeners>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.ClusterMigrationListener"/>
<hz:listener implementation="MigrationListener"/>

</hz:listeners>

8.1.4 Listening for Partition Lost Events

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one of your cluster
members become owner and some of the other members become replica members based on your configuration.
Nevertheless, data loss may occur if a few members crash simultaneously.

Let‘s consider the following example with three members: N1, N2, N3 for a given partition-0. N1 is owner of
partition-0, N2 and N3 are the first and second replicas respectively. If N1 and N2 crash simultaneously, partition-0
loses its data that is configured with less than 2 backups. For instance, if we configure a map with 1 backup, that
map loses its data in partition-0 since both owner and first replica of partition-0 have crashed. However, if we
configure our map with 2 backups, it does not lose any data since a copy of partition-0’s data for the given map
also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how many replicas are
lost for a partition. It listens to PartitionLostEvent instances. Partition lost events are dispatched per partition.

Partition loss detection is done after a member crash is detected by the other members and the crashed member
is removed from the cluster. Please note that false-positive PartitionLostEvent instances may be fired on the
network split errors.

134 CHAPTER 8. DISTRIBUTED EVENTS

8.1.4.1 Writing a Partition Lost Listener Class

To write a Partition Lost Listener, you implement the PartitionLostListener interface and its partitionLost
method, which is invoked when a partition loses its owner and all backups.

The following is an example Partition Lost Listener class.

public class ConsoleLoggingPartitionLostListener implements PartitionLostListener {
@Override
public void partitionLost(PartitionLostEvent event) {

System.out.println(event);
}

}

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID, the replica
index that is lost and the member that has detected the partition loss. The following is an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49]:5701}

8.1.4.2 Registering Partition Lost Listeners

After you create your class, you can configure your cluster programmatically or declaratively to include the partition
lost listener. Below is an example of its programmatic configuration.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getPartitionService().addPartitionLostListener(new ConsoleLoggingPartitionLostListener());

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<partition-lost-listeners>

<partition-lost-listener>
com.your-package.ConsoleLoggingPartitionLostListener

</partition-lost-listener>
</partition-lost-listeners>

...
</hazelcast>

8.1.5 Listening for Lifecycle Events

The Lifecycle Listener notifies for the following events:

• STARTING: A member is starting.
• STARTED: A member started.
• SHUTTING_DOWN: A member is shutting down.
• SHUTDOWN: A member’s shutdown has completed.
• MERGING: A member is merging with the cluster.
• MERGED: A member’s merge operation has completed.
• CLIENT_CONNECTED: A Hazelcast Client connected to the cluster.
• CLINET_DISCONNECTED: A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 135

public class NodeLifecycleListener implements LifecycleListener {
@Override
public void stateChanged(LifecycleEvent event) {
System.err.println(event);

}
}

This listener is local to an individual member (node). It notifies the application that uses Hazelcast about the
events mentioned above for a particular member.

8.1.5.1 Registering Lifecycle Listeners

After you create your class, you can configure your cluster to include lifecycle listeners. Below is an example using
the method addLifecycleListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getLifecycleService().addLifecycleListener(new NodeLifecycleListener());

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register the listeners in configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.NodeLifecycleListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<listeners>
<listener>
com.your-package.NodeLifecycleListener
</listener>

</listeners>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.NodeLifecycleListener"/>
<hz:listener implementation="LifecycleListener"/>

</hz:listeners>

8.1.6 Listening for Map Events

You can listen to map-wide or entry-based events using the listeners provided by the Hazelcast’s eventing framework.
To listen to these events, implement a MapListener sub-interface.

A map-wide event is fired as a result of a map-wide operation: for example, IMap#clear or IMap#evictAll. An
entry-based event is fired after the operations that affect a specific entry: for example, IMap#remove or IMap#evict.

136 CHAPTER 8. DISTRIBUTED EVENTS

8.1.6.1 Catching a Map Event

To catch an event, you should explicitly implement a corresponding sub-interface of a MapListener, such as
EntryAddedListener or MapClearedListener.

NOTE: EntryListener interface still can be implemented, we kept that for backward compatibility reasons.
However, if you need to listen to a different event which is not available in the EntryListener interface, you should
also implement a relevant MapListener sub-interface.

Let’s take a look at the following class example.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

}

static class MyEntryListener implements EntryAddedListener<String, String>,
EntryRemovedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryEvictedListener<String, String> ,
MapEvictedListener,
MapClearedListener {

@Override
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);

}

@Override
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

}

@Override
public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

}

@Override
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

}

@Override
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

}

@Override
public void mapCleared(MapEvent event) {
System.out.println("Map Cleared:" + event);

}

}
}

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 137

Now, let’s perform some modifications on the map entries using the following example code.

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
String key = "" + System.nanoTime();
String value = "1";
map.put(key, value);
map.put(key, "2");
map.delete(key);

}
}

If you execute the Listen class and then the Modify class, you get the following output produced by the Listen
class.

entryAdded:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=null, value=1, event=ADDED, by Member [192.168.1.100]:5702

entryUpdated:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=1, value=2, event=UPDATED, by Member [192.168.1.100]:5702

entryRemoved:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=2, value=2, event=REMOVED, by Member [192.168.1.100]:5702

public class MyEntryListener implements EntryListener{

private Executor executor = Executors.newFixedThreadPool(5);

@Override
public void entryAdded(EntryEvent event) {

executor.execute(new DoSomethingWithEvent(event));
}

...

8.1.6.2 Partitions and Entry Listeners

A map listener runs on the event threads that are also used by the other listeners: for example, the collection
listeners and pub/sub message listeners. This means that the entry listeners can access other partitions. Consider
this when you run long tasks, since listening to those tasks may cause the other map/event listeners to starve.

8.1.6.3 Listening for Lost Map Partitions

You can listen to MapPartitionLostEvent instances by registering an implementation of MapPartitionLostListener,
which is also a sub-interface of MapListener.

Let‘s consider the following example code:

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("map").setBackupCount(1); // might lose data if any member crashes

HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance(config);

138 CHAPTER 8. DISTRIBUTED EVENTS

IMap<Object, Object> map = instance1.getMap("map");
map.put(0, 0);

map.addPartitionLostListener(new MapPartitionLostListener() {
@Override
public void partitionLost(MapPartitionLostEvent event) {
System.out.println(event);

}
});

}

Within this example code, a MapPartitionLostListener implementation is registered to a map that is configured
with 1 backup. For this particular map and any of the partitions in the system, if the partition owner member
and its first backup member crash simultaneously, the given MapPartitionLostListener receives a corresponding
MapPartitionLostEvent. If only a single member crashes in the cluster, there will be no MapPartitionLostEvent
fired for this map since backups for the partitions owned by the crashed member are kept on other members.

Please refer to Listening for Partition Lost Events for more information about partition lost detection and partition
lost events.

8.1.6.4 Registering Map Listeners

After you create your listener class, you can configure your cluster to include map listeners using the method
addEntryListener (as you can see in the example Listen class above). Below is the related portion from this
code, showing how to register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in configuration. You can
register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

mapConfig.addEntryListenerConfig(
new EntryListenerConfig("com.yourpackage.MyEntryListener",

false, false));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<map name="somemap">
...

<entry-listeners>
<entry-listener include-value="false" local="false">

com.your-package.MyEntryListener
</entry-listener>

</entry-listeners>
</map>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 139

<hz:map name="somemap">
<hz:entry-listeners>

<hz:entry-listener include-value="true"
class-name="com.hazelcast.spring.DummyEntryListener"/>
<hz:entry-listener implementation="dummyEntryListener" local="true"/>

</hz:entry-listeners>
</hz:map>

8.1.6.5 Map Listener Attributes

As you see, there are attributes of the map listeners in the above examples: include-value and local. The
attribute include-value is a boolean attribute which is optional to use and if you set it to true, the map event
will contain the map value. Its default value is true.

The attribute local is also a boolean attribute which is optional to use and if you set it to true, you can listen to
the map on the local member. Its default value is false.

8.1.7 Listening for MultiMap Events

You can listen to entry-based events in the MultiMap using EntryListener. The following is an example listener
class for MultiMap.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

}

static class SampleEntryListener implements EntryListener<String, String>{
@Override
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);

}

@Override
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

}
}

}

8.1.7.1 Registering MultiMap Listeners

After you create your listener class, you can configure your cluster to include MultiMap listeners using the method
addEntryListener (as you can see in the example Listen class above). Below is the related portion from this
code, showing how to register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap("somemap");
map.addEntryListener(new MyEntryListener(), true);

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in configuration. You can
register listeners using declarative, programmatic, or Spring configuration, as shown below.

140 CHAPTER 8. DISTRIBUTED EVENTS

The following is an example programmatic configuration.

multiMapConfig.addEntryListenerConfig(
new EntryListenerConfig("com.your-package.SampleEntryListener",

false, false));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<multimap name="somemap">

<value-collection-type>SET</value-collection-type>
<entry-listeners>

<entry-listener include-value="false" local="false">
com.your-package.SampleEntryListener

</entry-listener>
</entry-listeners>

</multimap>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:multimap name="default" value-collection-type="LIST">
<hz:entry-listeners>

<hz:entry-listener include-value="false"
class-name="com.your-package.SampleEntryListener"/>

<hz:entry-listener implementation="EntryListener" local="false"/>
</hz:entry-listeners>

</hz:multimap>

8.1.7.2 MultiMap Listener Attributes

As you see, there are attributes of the MultiMap listeners in the above examples: include-value and local. The
attribute include-value is a boolean attribute which is optional to use and if you set it to true, the MultiMap
event will contain the map value. Its default value is true.

The attribute local is also a boolean attribute which is optional to use and if you set it to true, you can listen to
the MultiMap on the local member. Its default value is false.

8.1.8 Listening for Item Events

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces.

To write an Item Listener class, you implement the ItemListener interface and its methods itemAdded and
itemRemoved. These methods are invoked when an item is added or removed.

The following is an example Item Listener class for an ISet structure.

public class SampleItemListener implements ItemListener {

public static void main(String[] args) {
SampleItemListener sampleItemListener = new SampleItemListener();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICollection<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sampleItemListener, true);

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 141

Price price = new Price(10, time1)
set.add(price);
set.remove(price);

}

public void itemAdded(Object item) {
System.out.println("Item added = " + item);

}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);

}
}

NOTE: You can use ICollection when creating any of the collection (queue, set and list) data structures,
as shown above. You can also use IQueue, ISet or IList instead of ICollection.

8.1.8.1 Registering Item Listeners

After you create your class, you can configure your cluster to include item listeners. Below is an example using
the method addItemListener for ISet (it applies also to IQueue and IList). You can also see this portion in the
above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ICollection<Price> set = hazelcastInstance.getSet("default");
// or ISet<Prices> set = hazelcastInstance.getSet("default");
default.addItemListener(sampleItemListener, true);

With the above approach, there is a possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in configuration. You can
register listeners using declarative, programmatic, or Spring configuration, as shown below.
The following is an example programmatic configuration.

setConfig.addItemListenerConfig(
new ItemListenerConfig("com.your-package.SampleItemListener", true));

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<item-listeners>
<item-listener include-value="true">
com.your-package.SampleItemListener

</item-listener>
</item-listeners>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:set name="default" >
<hz:item-listeners>
<hz:item-listener include-value="true"
class-name="com.your-package.SampleItemListener"/>

</hz:item-listeners>
</hz:set>

142 CHAPTER 8. DISTRIBUTED EVENTS

8.1.8.2 Item Listener Attributes

As you see, there is an attribute in the above examples: include-value. It is a boolean attribute which is optional
to use and if you set it to true, the item event will contain the item value. Its default value is true.

There is also another attribute called local, which is not shown in the above examples. It is also a boolean
attribute which is optional to use and if you set it to true, you can listen to the items on the local member. Its
default value is false.

8.1.9 Listening for Topic Messages

The Message Listener is used by the ITopic interface. It notifies when a message is received for the registered topic.

To write a Message Listener class, you implement the MessageListener interface and its method onMessage, which
is invoked when a message is received for the registered topic.

The following is an example Message Listener class.

public class SampleMessageListener implements MessageListener<MyEvent> {

public static void main(String[] args) {
SampleMessageListener sample = new SampleMessageListener();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {

public void run() {
doHeavyweightStuff(myEvent);

}
});

}
}

8.1.9.1 Registering Message Listeners

After you create your class, you can configure your cluster to include message listeners. Below is an example using
the method addMessageListener. You can also see this portion in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(sample);

With the above approach, there is a possibility of missing messaging events between the creation of the instance
and registering the listener. To overcome this race condition, Hazelcast allows you to register this listener in
configuration. You can register it using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

topicConfig.addMessageListenerConfig(
new ListenerConfig("com.your-package.SampleMessageListener"));

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 143

The following is an example of the equivalent declarative configuration.

<hazelcast>
...
<topic name="default">

<message-listeners>
<message-listener>
com.your-package.SampleMessageListener
</message-listener>

</message-listeners>
</topic>
...

</hazelcast>

And, the following is an example of the equivalent Spring configuration.

<hz:topic name="default">
<hz:message-listeners>
<hz:message-listener

class-name="com.your-package.SampleMessageListener"/>
</hz:message-listeners>

</hz:topic>

8.1.10 Listening for Clients

The Client Listener is used by the Hazelcast cluster members. It notifies the cluster members when a client is
connected to or disconnected from the cluster.

To write a client listener class, you implement the ClientListener interface and its methods clientConnected
and clientDisconnected, which are invoked when a client is connected to or disconnected from the cluster. You
can add your client listener as shown below.

hazelcast.getClientService().addClientListener(SampleClientListener);

The following is the equivalent declarative configuration.

<listeners>
<listener>

com.your-package.SampleClientListener
</listener>

</listeners>

And, the following is the equivalent configuration in the Spring context.

<hz:listeners>
<hz:listener class-name="com.your-package.SampleClientListener"/>
<hz:listener implementation="com.your-package.SampleClientListener"/>

</hz:listeners>

NOTE: You can also add event listeners to a Hazelcast client. Please refer to Client Listenerconfig for the
related information.

144 CHAPTER 8. DISTRIBUTED EVENTS

8.2 Event Listeners for Hazelcast Clients

You can add event listeners to a Hazelcast Java client. You can configure the following listeners to listen to the
events on the client side. Please see the respective sections under the Event Listeners for Hazelcast Members section
for example code.

• Lifecycle Listener: Notifies when the client is starting, started, shutting down, and shutdown.
• Membership Listener: Notifies when a member joins to/leaves the cluster to which the client is connected, or
when an attribute is changed in a member.

• DistributedObject Listener: Notifies when a distributed object is created or destroyed throughout the cluster
to which the client is connected.

RELATED INFORMATION

Please refer to the Client Listenerconfig section for more information.

8.3 Global Event Configuration

• hazelcast.event.queue.capacity: default value is 1000000
• hazelcast.event.queue.timeout.millis: default value is 250
• hazelcast.event.thread.count: default value is 5

A striped executor in each cluster member controls and dispatches the received events. This striped executor also
guarantees the event order. For all events in Hazelcast, the order in which events are generated and the order in
which they are published are guaranteed for given keys. For map and multimap, the order is preserved for the
operations on the same key of the entry. For list, set, topic and queue, the order is preserved for events on that
instance of the distributed data structure.

To achieve the order guarantee, you make only one thread responsible for a particular set of events (entry events of
a key in a map, item events of a collection, etc.) in StripedExecutor (within com.hazelcast.util.executor).

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be put into
the event queue for the period specified in hazelcast.event.queue.timeout.millis, these events will be dropped
with a warning message, such as “EventQueue overloaded”.

If event listeners perform a computation that takes a long time, the event queue can reach its maximum capacity
and lose events. For map and multimap, you can configure hazelcast.event.thread.count to a higher value so
that fewer collisions occur for keys, and therefore worker threads will not block each other in StripedExecutor.
For list, set, topic and queue, you should offload heavy work to another thread. To preserve order guarantee, you
should implement similar logic with StripedExecutor in the offloaded thread pool.

Chapter 9

Distributed Computing

From Wikipedia: Distributed computing refers to the use of distributed systems to solve computational problems.
In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers.

9.1 Executor Service

One of the coolest features of Java 1.5 is the Executor framework, which allows you to asynchronously execute your
tasks (logical units of work), such as database query, complex calculation, and image rendering.

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a single JVM.
In distributed systems, this implementation is not desired since you may want a task submitted in one JVM
and processed in another one. Hazelcast offers IExecutorService for you to use in distributed environments: it
implements java.util.concurrent.ExecutorService to serve the applications requiring computational and data
processing power.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If your task
execution takes longer than expected, you can cancel the task execution. Tasks should be Serializable since they
will be distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

• Callable: If you need to return a value and submit to Executor, implement the task as java.util.concurrent.Callable.
• Runnable: If you do not need to return a value, implement the task as java.util.concurrent.Runnable.

9.1.1 Implementing a Callable Task

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a value), you
implement Callable and Serializable.

Below is an example of a Callable task. SumTask prints out map keys and returns the summed map values.

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.HazelcastInstanceAware;
import com.hazelcast.core.IMap;

import java.io.Serializable;
import java.util.concurrent.Callable;

public class SumTask
implements Callable<Integer>, Serializable, HazelcastInstanceAware {

private transient HazelcastInstance hazelcastInstance;

145

146 CHAPTER 9. DISTRIBUTED COMPUTING

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public Integer call() throws Exception {
IMap<String, Integer> map = hazelcastInstance.getMap("map");
int result = 0;
for (String key : map.localKeySet()) {
System.out.println("Calculating for key: " + key);
result += map.get(key);

}
System.out.println("Local Result: " + result);
return result;

}
}

Another example is the Echo callable below. In its call() method, it returns the local member and the input
passed in. Remember that instance.getCluster().getLocalMember() returns the local member and toString()
returns the member’s address (IP + port) in String form, just to see which member actually executed the code for
our example. Of course, the call() method can do and return anything you like.

import java.util.concurrent.Callable;
import java.io.Serializable;

public class Echo implements Callable<String>, Serializable {
String input = null;

public Echo() {
}

public Echo(String input) {
this.input = input;

}

public String call() {
Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
return instance.getCluster().getLocalMember().toString() + ":" + input;

}
}

9.1.1.1 Executing a Callable Task

To execute a callable task with the executor framework:

• Obtain an ExecutorService instance (generally via Executors).
• Submit a task which returns a Future.
• After executing the task, you do not have to wait for the execution to complete, you can process other things.
• When ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Echo("myinput"));
//while it is executing, do some useful stuff
//when ready, get the result of your execution
String result = future.get();

9.1. EXECUTOR SERVICE 147

Please note that the Echo callable in the above code sample also implements a Serializable interface, since it may
be sent to another JVM to be processed.

NOTE: When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the task should
implement HazelcastInstanceAware interface. Please see the HazelcastInstanceAware Interface section for more
information.

9.1.2 Implementing a Runnable Task

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not return a
value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

public class EchoTask implements Runnable, Serializable {
private final String msg;

public EchoTask(String msg) {
this.msg = msg;

}

@Override
public void run() {
try {

Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.println("echo:" + msg);

}
}

9.1.2.1 Executing a Runnable Task

To execute the runnable task:

• Retrieve the Executor from HazelcastInstance.
• Submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class MasterMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executor = hazelcastInstance.getExecutorService("exec");
for (int k = 1; k <= 1000; k++) {
Thread.sleep(1000);
System.out.println("Producing echo task: " + k);
executor.execute(new EchoTask(String.valueOf(k)));

}
System.out.println("EchoTaskMain finished!");

}
}

148 CHAPTER 9. DISTRIBUTED COMPUTING

9.1.3 Scaling The Executor Service

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the JVM. You can do this by increasing the pool-size
property mentioned in Configuring Executor Service (i.e., increasing the thread count). However, please be aware
of your JVM’s capacity. If you think it cannot handle such an additional load caused by increasing the thread
count, you may want to consider improving the JVM’s resources (CPU, memory, etc.). As an example, set the
pool-size to 5 and run the above MasterMember. You will see that EchoTask is run as soon as it is produced.

To scale out, more JVMs should be added instead of increasing only one JVM’s capacity. In reality, you may want
to expand your cluster by adding more physical or virtual machines. For example, in the EchoTask example in the
Runnable section, you can create another Hazelcast instance. That instance will automatically get involved in the
executions started in MasterMember and start processing.

9.1.4 Executing Code in the Cluster

The distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It
allows you to execute your code in the cluster. In this section, the code examples are based on the Echo class above
(please note that the Echo class is Serializable). The code examples show how Hazelcast can execute your code
(Runnable, Callable):

• echoOnTheMember: On a specific cluster member you choose with the IExecutorService submitToMember
method.

• echoOnTheMemberOwningTheKey: On the member owning the key you choose with the IExecutorService
submitToKeyOwner method.

• echoOnSomewhere: On the member Hazelcast picks with the IExecutorService submit method.
• echoOnMembers: On all or a subset of the cluster members with the IExecutorService submitToMembers
method.

import com.hazelcast.core.Member;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.Set;

public void echoOnTheMember(String input, Member member) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =

hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToMember(task, member);
String echoResult = future.get();

}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =

hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToKeyOwner(task, key);
String echoResult = future.get();

}

public void echoOnSomewhere(String input) throws Exception {

9.1. EXECUTOR SERVICE 149

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =

hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submit(new Echo(input));
String echoResult = future.get();

}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =

hazelcastInstance.getExecutorService("default");

Map<Member, Future<String>> futures = executorService
.submitToMembers(new Echo(input), members);

for (Future<String> future : futures.values()) {
String echoResult = future.get();
// ...

}
}

NOTE: You can obtain the set of cluster members via HazelcastInstance#getCluster().getMembers()
call.

9.1.5 Canceling an Executing Task

A task in the code that you execute in a cluster might take longer than expected. If you cannot stop/cancel that
task, it will keep eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API. This framework encourages
us to code and design for cancellations, a highly ignored part of software development.

9.1.5.1 Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the calculate method,
we check if the current thread is interrupted so that the code can respond to cancellations once the execution is
started.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

public Fibonacci() {
}

public Fibonacci(int input) {
this.input = input;

}

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (Thread.currentThread().isInterrupted()) {
return 0;

150 CHAPTER 9. DISTRIBUTED COMPUTING

}
if (n <= 1) {
return n;

} else {
return calculate(n - 1) + calculate(n - 2);

}
}

}

9.1.5.2 Example Method to Execute and Cancel the Task

The fib() method below submits the Fibonacci calculation task above for number ‘n’ and waits a maximum
of 3 seconds for the result. If the execution does not completed in 3 seconds, future.get() will throw a
TimeoutException and upon catching it, we cancel the execution, saving some CPU cycles.

long fib(int n) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();
Future future = es.submit(new Fibonacci(n));
try {
return future.get(3, TimeUnit.SECONDS);

} catch (TimeoutException e) {
future.cancel(true);

}
return -1;

}

fib(20) will probably take less than 3 seconds. However, fib(50) will take much longer. (This is not an example
for writing better Fibonacci calculation code, but for showing how to cancel a running execution that takes
too long.) The method future.cancel(false) can only cancel execution before it is running (executing), but
future.cancel(true) can interrupt running executions if your code is able to handle the interruption. If you
are willing to cancel an already running task, then your task should be designed to handle interruptions. If
the calculate (int n) method did not have the (Thread.currentThread().isInterrupted()) line, then you
would not be able to cancel the execution after it is started.

9.1.6 Callback When Task Completes

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the execution is
done.

• To be notified when your task completes without an error, implement the onResponse method.
• To be notified when your task completes with an error, implement the onFailure method.

9.1.6.1 Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that will be executed.
Note that it is Callable and Serializable.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

public Fibonacci() {
}

public Fibonacci(int input) {

9.1. EXECUTOR SERVICE 151

this.input = input;
}

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (n <= 1) {
return n;

} else {
return calculate(n - 1) + calculate(n - 2);

}
}

}

9.1.6.2 Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the result asyn-
chronously. ExecutionCallback has the methods onResponse and onFailure. In this example code, onResponse
is called upon a valid response and prints the calculation result, whereas onFailure is called upon a failure and
prints the stacktrace.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Future;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();
Callable<Long> task = new Fibonacci(10);

es.submit(task, new ExecutionCallback<Long> () {

@Override
public void onResponse(Long response) {
System.out.println("Fibonacci calculation result = " + response);

}

@Override
public void onFailure(Throwable t) {
t.printStackTrace();

}
};

9.1.7 Selecting Members for Task Execution

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or Callable is
executed. Usually, you will execute these in the cluster based on the location of a key, set of keys, or you will just
allow Hazelcast to select a member.

If you want more control over where your code runs, use the MemberSelector interface. For example, you may want
certain tasks to run only on certain members, or you may wish to implement some form of custom load balancing
regime. The MemberSelector is an interface that you can implement and then provide to the IExecutorService
when you submit or execute.

The select(Member) method is called for every available member in the cluster. Implement this method to decide
if the member is going to be used or not.

152 CHAPTER 9. DISTRIBUTED COMPUTING

In a simple example shown below, we select the cluster members based on the presence of an attribute.

public class MyMemberSelector implements MemberSelector {
public boolean select(Member member) {

return Boolean.TRUE.equals(member.getAttribute("my.special.executor"));
}

}

You can use MemberSelector instances provided via com.hazelcast.cluster.memberselector.MemberSelectors
class. For example, you can select a lite member for running a task using com.hazelcast.cluster.memberselector.MemberSelectors#LITE_MEMBER_SELECTOR.

9.1.8 Configuring Executor Service

The following are example configurations for executor service.

Declarative:

<executor-service name="exec">
<pool-size>1</pool-size>
<queue-capacity>10</queue-capacity>
<statistics-enabled>true</statistics-enabled>

</executor-service>

Programmatic:

Config config = new Config();
ExecutorConfig executorConfig = config.getExecutorConfig("exec");
executorConfig.setPoolSize("1").setQueueCapacity("10")

.setStatisticsEnabled(true);

Executor service configuration has the following elements.

• pool-size: The number of executor threads per Member for the Executor. By default, Executor is configured
to have 8 threads in the pool. You can change that with this element.

• queue-capacity: Executor’s task queue capacity.
• statistics-enabled: Some statistics like pending operations count, started operations count, completed

operations count, cancelled operations count can be retrieved by setting this parameter’s value as true. The
method for retrieving the statistics is getLocalExecutorStats().

9.2 Entry Processor

Hazelcast supports entry processing. An entry processor is a function that executes your code on a map entry in an
atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually, you perform a loop
of keys: executing IMap.get(key), mutating the value, and finally putting the entry back in the map using
IMap.put(key,value). If you perform this process from a client or from a member where the keys do not exist,
you effectively perform 2 network hops for each update: the first to retrieve the data and the second to update the
mutated value.

If you are doing the process described above, you should consider using entry processors. An entry processor
executes a read and updates upon the member where the data resides. This eliminates the costly network hops
described previously.

9.2. ENTRY PROCESSOR 153

9.2.1 Performing Fast In-Memory Map Operations

An entry processor enables fast in-memory operations on your map without you having to worry about locks or
concurrency issues. You can apply it to a single map entry or to all map entries. It supports choosing target
entries using predicates. You do not need any explicit lock on entry thanks to the isolated threading model:
Hazelcast runs the EntryProcessor for all entries on a partitionThread so there will NOT be any interleaving of
the EntryProcessor and other mutations.

Hazelcast sends the entry processor to each cluster member and these members apply it to map entries. Therefore,
if you add more members, your processing completes faster.

9.2.1.1 Using OBJECT In-Memory Format

If entry processing is the major operation for a map and if the map consists of complex objects, you should use
OBJECT as the in-memory-format to minimize serialization cost. By default, the entry value is stored as a byte
array (BINARY format). When it is stored as an object (OBJECT format), then the entry processor is applied directly
on the object. In that case, no serialization or deserialization is performed. But if there is a defined event listener,
a new entry value will be serialized when passing to the event publisher service.

NOTE: When in-memory-format is OBJECT, old value of the updated entry will be null.

9.2.1.2 Entry Processing with IMap Methods

The methods below are in the IMap interface for entry processing.

• executeOnKey processes an entry mapped by a key.
• executeOnKeys processes entries mapped by a collection of keys.
• submitToKey processes an entry mapped by a key while listening to event status.
• executeOnEntries processes all entries in a map.
• executeOnEntries can also process all entries in a map with a defined predicate.

/**
* Applies the user defined EntryProcessor to the entry mapped by the key.
* Returns the object which is the result of the process() method of EntryProcessor.
*/
Object executeOnKey(K key, EntryProcessor entryProcessor);

/**
* Applies the user defined EntryProcessor to the entries mapped by the collection of keys.
* Returns the results mapped by each key in the collection.
*/
Map<K, Object> executeOnKeys(Set<K> keys, EntryProcessor entryProcessor);

/**
* Applies the user defined EntryProcessor to the entry mapped by the key with
* specified ExecutionCallback to listen to event status and return immediately.
*/
void submitToKey(K key, EntryProcessor entryProcessor, ExecutionCallback callback);

/**
* Applies the user defined EntryProcessor to all entries in the map.
* Returns the results mapped by each key in the map.
*/
Map<K, Object> executeOnEntries(EntryProcessor entryProcessor);

154 CHAPTER 9. DISTRIBUTED COMPUTING

/**
* Applies the user defined EntryProcessor to the entries in the map which satisfies
provided predicate.
* Returns the results mapped by each key in the map.
*/
Map<K, Object> executeOnEntries(EntryProcessor entryProcessor, Predicate predicate);

NOTE: Entry Processors run via Operation Threads that are dedicated to specific partitions. Therefore, with
long running Entry Processor executions, other partition operations such as map.put(key) cannot be processed.
With this in mind, it is a good practice to make your Entry Processor executions as quick as possible.

9.2.1.3 EntryProcessor Interface

The following is the EntryProcessor interface:

public interface EntryProcessor<K, V> extends Serializable {
Object process(Map.Entry<K, V> entry);

EntryBackupProcessor<K, V> getBackupProcessor();
}

NOTE: If you want to execute a task on a single key, you can also use executeOnKeyOwner provided by
Executor Service. But, in this case, you need to perform a lock and serialization.

When using the executeOnEntries method, if the number of entries is high and you do need the results, then
returning null in process() method is a good practice. By returning null, results of the processing is not stored in
the map and hence out of memory errors are eliminated.

9.2.1.4 Processing Backup Entries

If your code modifies the data, then you should also provide a processor for backup entries. This is required to
prevent the primary map entries from having different values than the backups; it causes the entry processor to be
applied both on the primary and backup entries.

public interface EntryBackupProcessor<K, V> extends Serializable {
void processBackup(Map.Entry<K, V> entry);

}

NOTE: It is possible that an Entry Processor can see that a key exists but its backup processor may not find it
at the run time due to an unsent backup of a previous operation (e.g. a previous put operation). In those situations,
Hazelcast internally/eventually will synchronize those owner and backup partitions so you will not lose any data.
When coding an EntryBackupProcessor, you should take that case into account, otherwise NullPointerException
can be seen since Map.Entry.getValue() may return null.

9.2.2 Creating an Entry Processor

The EntryProcessorTest class has the following methods.

• testMapEntryProcessor puts one map entry and calls executeOnKey to process that map entry.
• testMapEntryProcessor puts all the entries in a map and calls executeOnEntries to process all the entries.

9.2. ENTRY PROCESSOR 155

The static class IncrementingEntryProcessor creates an entry processor to process the map entries in the
EntryProcessorTest class. It creates the entry processor class by:

• implementing the map interfaces EntryProcessor and EntryBackupProcessor.
• implementing the java.io.Serializable interface.
• implementing the EntryProcessor methods process and getBackupProcessor.
• implementing the EntryBackupProcessor method processBackup.

public class EntryProcessorTest {

@Test
public void testMapEntryProcessor() throws InterruptedException {
Config config = new Config().getMapConfig("default")

.setInMemoryFormat(MapConfig.InMemoryFormat.OBJECT);

HazelcastInstance hazelcastInstance1 = Hazelcast.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstance1.getMap("mapEntryProcessor");
map.put(1, 1);
EntryProcessor entryProcessor = new IncrementingEntryProcessor();
map.executeOnKey(1, entryProcessor);
assertEquals(map.get(1), (Object) 2);
hazelcastInstance1.getLifecycleService().shutdown();
hazelcastInstance2.getLifecycleService().shutdown();

}

@Test
public void testMapEntryProcessorAllKeys() throws InterruptedException {
StaticNodeFactory factory = new StaticNodeFactory(2);
Config config = new Config().getMapConfig("default")

.setInMemoryFormat(MapConfig.InMemoryFormat.OBJECT);

HazelcastInstance hazelcastInstance1 = factory.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = factory.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstance1

.getMap("mapEntryProcessorAllKeys");

int size = 100;
for (int i = 0; i < size; i++) {
map.put(i, i);

}
EntryProcessor entryProcessor = new IncrementingEntryProcessor();
Map<Integer, Object> res = map.executeOnEntries(entryProcessor);
for (int i = 0; i < size; i++) {
assertEquals(map.get(i), (Object) (i + 1));

}
for (int i = 0; i < size; i++) {
assertEquals(map.get(i) + 1, res.get(i));

}
hazelcastInstance1.getLifecycleService().shutdown();
hazelcastInstance2.getLifecycleService().shutdown();

}

static class IncrementingEntryProcessor
implements EntryProcessor, EntryBackupProcessor, Serializable {

public Object process(Map.Entry entry) {
Integer value = (Integer) entry.getValue();

156 CHAPTER 9. DISTRIBUTED COMPUTING

entry.setValue(value + 1);
return value + 1;

}

public EntryBackupProcessor getBackupProcessor() {
return IncrementingEntryProcessor.this;

}

public void processBackup(Map.Entry entry) {
entry.setValue((Integer) entry.getValue() + 1);

}
}

}

NOTE: You should explicitly call setValue method of Map.Entry when modifying data in Entry Processor.
Otherwise, Entry Processor will be accepted as read-only.

NOTE: An Entry Processor instance is not thread safe. If you are storing partition specific state between
invocations, be sure to register this in a thread-local. An Entry Processor instance can be used by multiple partition
threads.

9.2.3 Abstract Entry Processor

You can use the AbstractEntryProcessor class when the same processing will be performed both on the primary
and backup map entries (i.e. the same logic applies to them). If you use Entry Processor, you need to apply
the same logic to the backup entries separately. The AbstractEntryProcessor class makes this primary/backup
processing easier.

The code below shows the Hazelcast AbstractEntryProcessor class. You can use it to create your own Abstract
Entry Processor.

public abstract class AbstractEntryProcessor <K, V>
implements EntryProcessor <K, V> {

private final EntryBackupProcessor <K,V> entryBackupProcessor;
public AbstractEntryProcessor() {
this(true);

}

public AbstractEntryProcessor(boolean applyOnBackup) {
if (applyOnBackup) {
entryBackupProcessor = new EntryBackupProcessorImpl();

} else {
entryBackupProcessor = null;

}
}

@Override
public abstract Object process(Map.Entry<K, V> entry);

@Override
public final EntryBackupProcessor <K, V> getBackupProcessor() {
return entryBackupProcessor;

}

private class EntryBackupProcessorImpl implements EntryBackupProcessor <K,V>{

9.2. ENTRY PROCESSOR 157

@Override
public void processBackup(Map.Entry<K, V> entry) {
process(entry);

}
}

}

In the above code, the method getBackupProcessor returns an EntryBackupProcessor instance. This means the
same processing will be applied to both the primary and backup entries. If you want to apply the processing only
upon the primary entries, then make the getBackupProcessor method return null.

NOTE: Beware of the null issue described at the note in the Processing Backup Entries section.
Due to a yet unsent backup from a previous operation, an EntryBackupProcessor may temporarily receive
null from Map.Entry.getValue() even though the value actually exists in the map. If you decide to use
AbstractEntryProcessor, make sure your code logic is not sensitive to null values, or you may encounter
NullPointerException during runtime.

158 CHAPTER 9. DISTRIBUTED COMPUTING

Chapter 10

Distributed Query

Distributed queries access data from multiple data sources stored on either the same or different members.

Hazelcast partitions your data and spreads it across cluster of members. You can iterate over the map entries and
look for certain entries (specified by predicates) you are interested in. However, this is not very efficient because
you will have to bring the entire entry set and iterate locally. Instead, Hazelcast allows you to run distributed
queries on your distributed map.

10.1 How Distributed Query Works

1. The requested predicate is sent to each member in the cluster.
2. Each member looks at its own local entries and filters them according to the predicate. At this stage, key/value

pairs of the entries are deserialized and then passed to the predicate.
3. The predicate requester merges all the results coming from each member into a single set.

If you add new members to the cluster, the partition count for each member is reduced and hence the time spent by
each member on iterating its entries is reduced. Therefore, the above querying approach is highly scalable. Another
reason it is highly scalable is the pool of partition threads that evaluates the entries concurrently in each member.
The network traffic is also reduced since only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:

• Criteria API
• Distributed SQL Query

10.1.1 Employee Map Query Example

Assume that you have an “employee” map containing values of Employee objects, as coded below.

import java.io.Serializable;

public class Employee implements Serializable {
private String name;
private int age;
private boolean active;
private double salary;

public Employee(String name, int age, boolean live, double price) {
this.name = name;
this.age = age;
this.active = live;

159

160 CHAPTER 10. DISTRIBUTED QUERY

this.salary = price;
}

public Employee() {
}

public String getName() {
return name;

}

public int getAge() {
return age;

}

public double getSalary() {
return salary;

}

public boolean isActive() {
return active;

}
}

Now, let’s look for the employees who are active and have an age less than 30 using the aforementioned APIs
(Criteria API and Distributed SQL Query). The following subsections describe each query mechanism for this
example.

NOTE: When using Portable objects, if one field of an object exists on one node but does not exist on another
one, Hazelcast does not throw an unknown field exception. Instead, Hazelcast treats that predicate, which tries to
perform a query on an unknown field, as an always false predicate.

10.1.2 Querying with Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence Query Language
(JPQL). Below is the code for the above example query.

import com.hazelcast.core.IMap;
import com.hazelcast.query.Predicate;
import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;
import com.hazelcast.config.Config;

IMap<String, Employee> map = hazelcastInstance.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = map.values(predicate);

In the above example code, predicate verifies whether the entry is active and its age value is less than 30. This
predicate is applied to the employee map using the map.values(predicate) method. This method sends the
predicate to all cluster members and merges the results coming from them. Since the predicate is communicated
between the members, it needs to be serializable.

NOTE: Predicates can also be applied to keySet, entrySet and localKeySet of Hazelcast distributed
map.

10.1. HOW DISTRIBUTED QUERY WORKS 161

10.1.2.1 Predicates Class Operators

The Predicates class offered by Hazelcast includes many operators for your query requirements. Some of them are
explained below.

• equal: Checks if the result of an expression is equal to a given value.
• notEqual: Checks if the result of an expression is not equal to a given value.
• instanceOf: Checks if the result of an expression has a certain type.
• like: Checks if the result of an expression matches some string pattern. % (percentage sign) is placeholder
for many characters, (underscore) is placeholder for only one character.

• greaterThan: Checks if the result of an expression is greater than a certain value.
• greaterEqual: Checks if the result of an expression is greater than or equal to a certain value.
• lessThan: Checks if the result of an expression is less than a certain value.
• lessEqual: Checks if the result of an expression is less than or equal to a certain value.
• between: Checks if the result of an expression is between 2 values (this is inclusive).
• in: Checks if the result of an expression is an element of a certain collection.
• isNot: Checks if the result of an expression is false.
• regex: Checks if the result of an expression matches some regular expression.

RELATED INFORMATION
Please see the Predicates class for all predicates provided.

10.1.2.2 Joining Predicates with AND, OR, NOT

You can join predicates using the and, or and not operators, as shown in the below examples.

public Set<Person> getWithNameAndAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age", age);
Predicate predicate = Predicates.and(namePredicate, agePredicate);
return personMap.values(predicate);

}

public Set<Person> getWithNameOrAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age", age);
Predicate predicate = Predicates.or(namePredicate, agePredicate);
return personMap.values(predicate);

}

public Set<Person> getNotWithName(String name) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate predicate = Predicates.not(namePredicate);
return personMap.values(predicate);

}

10.1.2.3 Simplifying with PredicateBuilder

You can simplify predicate usage with the PredicateBuilder class, which offers simpler predicate building. Please
see the below example code which selects all people with a certain name and age.

public Set<Person> getWithNameAndAgeSimplified(String name, int age) {
EntryObject e = new PredicateBuilder().getEntryObject();
Predicate agePredicate = e.get("age").equal(age);
Predicate predicate = e.get("name").equal(name).and(agePredicate);
return personMap.values(predicate);

}

162 CHAPTER 10. DISTRIBUTED QUERY

10.1.3 Querying with SQL

com.hazelcast.query.SqlPredicate takes the regular SQL where clause. Here is an example:

IMap<Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(new SqlPredicate("active AND age < 30"));

10.1.3.1 Supported SQL Syntax

AND/OR: <expression> AND <expression> AND <expression>...

• active AND age>30
• active=false OR age = 45 OR name = ’Joe’
• active AND (age > 20 OR salary < 60000)

Equality: =, !=, <, <=, >, >=

• <expression> = value
• age <= 30
• name = "Joe"
• salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <value1> AND <value2>

• age BETWEEN 20 AND 33 (same as age >= 20 AND age <= 33)
• age NOT BETWEEN 30 AND 40 (same as age < 30 OR age > 40)

IN: <attribute> [NOT] IN (val1, val2,...)

• age IN (20, 30, 40)
• age NOT IN (60, 70)
• active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))
• age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

LIKE: <attribute> [NOT] LIKE ’expression’

The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for only one character.

• name LIKE ’Jo%’ (true for ‘Joe’, ‘Josh’, ‘Joseph’ etc.)
• name LIKE ’Jo_’ (true for ‘Joe’; false for ‘Josh’)
• name NOT LIKE ’Jo_’ (true for ‘Josh’; false for ‘Joe’)
• name LIKE ’J_s%’ (true for ‘Josh’, ‘Joseph’; false ‘John’, ‘Joe’)

ILIKE: <attribute> [NOT] ILIKE ‘expression’

Similar to LIKE predicate but in a case-insensitive manner.

• name ILIKE ’Jo%’ (true for ‘Joe’, ‘joe’, ‘jOe’,‘Josh’,‘joSH’, etc.)
• name ILIKE ’Jo_’ (true for ‘Joe’ or ‘jOE’; false for ‘Josh’)

REGEX: <attribute> [NOT] REGEX ‘expression’

• name REGEX ’abc-.*’ (true for ‘abc-123’; false for ‘abx-123’)

10.1. HOW DISTRIBUTED QUERY WORKS 163

10.1.4 Filtering with Paging Predicates

Hazelcast provides paging for defined predicates. With its PagingPredicate class, you can get a collection of keys,
values, or entries page by page by filtering them with predicates and giving the size of the pages. Also, you can sort
the entries by specifying comparators.

In the example code below:

• The greaterEqual predicate gets values from the “students” map. This predicate has a filter to retrieve the
objects with a “age” greater than or equal to 18.

• Then a PagingPredicate is constructed in which the page size is 5, so there will be 5 objects in each page.
The first time the values are called creates the first page.

• It gets subsequent pages with the nextPage() method of PagingPredicate and querying the map again
with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap("students");
Predicate greaterEqual = Predicates.greaterEqual("age", 18);
PagingPredicate pagingPredicate = new PagingPredicate(greaterEqual, 5);
// Retrieve the first page
Collection<Student> values = map.values(pagingPredicate);
...
// Set up next page
pagingPredicate.nextPage();
// Retrieve next page
values = map.values(pagingPredicate);
...

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or values page by page,
this collection must be an instance of Comparable (i.e. it must implement java.lang.Comparable). Otherwise,
the java.lang.IllegalArgument exception is thrown.

Starting with Hazelcast 3.6, you can also access to a specific page more easily with the help of the method setPage().
By this way, if you make a query for 100th page, for example, it will get all the 100 pages at once instead of reaching
the 100th page one by one using the method nextPage(). Please note that this feature tires the memory and refer
to the PagingPredicate class.

Paging Predicate, also known as Order & Limit, is not supported in Transactional Context.

RELATED INFORMATION
Please see the Predicates class for all predicates provided.

10.1.5 Indexing Queries

Hazelcast distributed queries will run on each member in parallel and will return only the results to the caller.
Then, on the caller side, the results will be merged.

When a query runs on a member, Hazelcast will iterate through the entire owned entries and find the matching
ones. This can be made faster by indexing the mostly queried fields, just like you would do for your database.
Indexing will add overhead for each write operation but queries will be a lot faster. If you query your map a lot,
make sure to add indexes for the most frequently queried fields. For example, if you do an active and age < 30
query, make sure you add an index for the active and age fields. The following example code does that by:

• getting the map from the Hazelcast instance, and
• adding indexes to the map with the IMap addIndex method.

IMap map = hazelcastInstance.getMap("employees");
// ordered, since we have ranged queries for this field
map.addIndex("age", true);
// not ordered, because boolean field cannot have range
map.addIndex("active", false);

https://github.com/hazelcast/hazelcast/blob/66263987a7bf4bec20217f3c555381a51712d017/hazelcast/src/main/java/com/hazelcast/query/PagingPredicate.java

164 CHAPTER 10. DISTRIBUTED QUERY

10.1.5.1 Indexing Ranged Queries

IMap.addIndex(fieldName, ordered) is used for adding index. For each indexed field, if you have ranged queries
such as age>30, age BETWEEN 40 AND 60, then you should set the ordered parameter to true. Otherwise, set it
to false.

10.1.5.2 Configuring IMap Indexes

Also, you can define IMap indexes in configuration. An example is shown below.

<map name="default">
...
<indexes>
<index ordered="false">name</index>
<index ordered="true">age</index>

</indexes>
</map>

You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addMapIndexConfig(new MapIndexConfig("name", false));
mapConfig.addMapIndexConfig(new MapIndexConfig("age", true));

The following is the Spring declarative configuration for the same sample.

<hz:map name="default">
<hz:indexes>
<hz:index attribute="name"/>
<hz:index attribute="age" ordered="true"/>

</hz:indexes>
</hz:map>

NOTE: Non-primitive types to be indexed should implement Comparable.

10.1.6 Configuring Query Thread Pool

You can change the size of the thread pool dedicated to query operations using the pool-size property. Below is
an example of that declarative configuration.

<executor-service name="hz:query">
<pool-size>100</pool-size>

</executor-service>

Below is an example of the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query").setPoolSize(100);

10.2. QUERYING IN COLLECTIONS AND ARRAYS 165

10.2 Querying in Collections and Arrays

Hazelcast allows querying in collections and arrays. Querying in Collections and Arrays is compatible all Hazelcast
serialisation methods, including the Portable serialisation.

Let’s have a look at the following data structure expressed in pseudo-code:

class Motorbike {
Wheel wheels[2];

}

class Wheel {
String name;

}

In order to query a single element of a collection / array, you can execute the following query:

// it matches all motorbikes where the zero wheel’s name is ’front-wheel’
Predicate p = Predicates.equals(’wheels[0].name’, ’front-wheel’);
Collection<Motorbike> result = map.values(p);

It is also possible to query a collection / array using the any semantic as shown below:

// it matches all motorbikes where any wheel’s name is ’front-wheel’
Predicate p = Predicates.equals(’wheels[any].name’, ’front’);
Collection<Motorbike> result = map.values(p);

The exact same query may be executed using the SQLPredicate as shown below:

Predicate p = new SQLPredicate(’wheels[any].name’, ’front’);
Collection<Motorbike> result = map.values(p);

[] notation applies to both collections and arrays.

10.2.1 Indexing in Collections and Arrays

You can also create an index using a query in collections / arrays.

Please note that in order to leverage the index, the attribute name used in the query has to be the same as the one
used in the index definition.

Let’s assume you have the following index definition:

<indexes>
<index ordered="false">wheels[any].name</index>

</indexes>

The following query will use the index:

Predicate p = Predicates.equals(’wheels[any].name’, ’front-wheel’);

The following query, however, will NOT leverage the index, since it does not use exactly the same attribute name
that was used in the index:

166 CHAPTER 10. DISTRIBUTED QUERY

Predicates.equals(’wheels[0].name’, ’front-wheel’)

In order to use the index in the above mentioned case you have to create another index as shown below:

<indexes>
<index ordered="false">wheels[0].name</index>

</indexes>

10.2.2 Corner cases

Handling of corner cases may be a bit different than the one used in programming language, like Java.

Let’s have a look at the following examples in order to understand the differences. To make the analysis simpler
let’s assume that there is only one Motorbike object stored in an IMap.

Id Query Data state Extraction Result Match

1 Predicates.equals(‘wheels[7].name’, ‘front-wheel’) wheels.size() == 1 null No
2 Predicates.equals(‘wheels[7].name’, null) wheels.size() == 1 null Yes
3 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels[0].name == null null No
4 Predicates.equals(‘wheels[0].name’, null) wheels[0].name == null null Yes
5 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels[0] == null null No
6 Predicates.equals(‘wheels[0].name’, null) wheels[0] == null null Yes
7 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels == null null No
8 Predicates.equals(‘wheels[0].name’, null) wheels == null null Yes

As you can see no NullPointerExceptions or IndexOutOfBoundExceptions are thrown in the extraction process
even though parts of the expression are null.

Looking at examples 4, 6 and 8 we can also easily notice that it is impossible to distinguish which part of the
expression was null. If we execute the following query wheels[1].name = null it may be evaluated to true because:

• wheels collection / array is null
• index == 1 is out of bound
• name attribute of the wheels[1] object is null

In order to make the query unambiguous extra conditions would have to be added, e.g. wheels != null AND
wheels[1].name = null

10.3 Custom Attributes

It is possible to define a custom attribute that may be referenced in predicates, queries and indexes.

A custom attribute is a “synthetic” attribute which does not exist as a field or a getter in the object that it is
extracted from. Thus, it is required to define the policy how the attribute is supposed to be extracted. Currently,
the only way to extract a custom attribute is to implement a com.hazelcast.query.extractor.ValueExtractor
which encompasses the extraction logic.

Custom Attributes are compatible with all Hazelcast serialisation methods, including the Portable serialisation.

10.3. CUSTOM ATTRIBUTES 167

10.3.1 Implementing a ValueExtractor

In order to implement a ValueExtractor just extend the abstract com.hazelcast.query.extractor.ValueExtractor
class and implement the extract() method.

The ValueExtractor interface looks as follows:

/***
* Common superclass for all extractors.
*
* @param <T> type of the target object to extract the value from
* @param <A> type of the extraction argument object passed to the extract() method
*
*/
public abstract class ValueExtractor<T, A> {

/**
* Extracts custom attribute’s value from the given target object.
*
* @param target object to extract the value from
* @param argument extraction argument
* @param collector collector of the extracted value(s)
*
*/

public abstract void extract(T target, A argument, ValueCollector collector);

}

The extract() method does not return any value since the extracted value is collected by the ValueCollector.
In order to return multiple results from a single extraction just invoke the ValueCollector.collect() method
multiple times, so that the collector collects all results.

Here’s the ValueCollector contract:

/**
* Enables collecting values extracted by a {@see com.hazelcast.query.extractor.ValueExtractor}
*/
public abstract class ValueCollector {

/**
* Collects a value extracted by a ValueExtractor.
* <p />
* More than one value may be collected in a single extraction
*
* @param value value to be collected
*/

public abstract void addObject(Object value);

}

10.3.1.1 ValueExtractor with Portable serialisation

Portable serialisation is a special kind of serialisation where there is no need to have the Class of the serialised
object on the classpath in order to read its attributes. That is the reason why the target object passed to the
ValueExtractor.extract() method will not be of the exact type that has been stored. Instead, an instance of a
com.hazelcast.query.extractor.ValueReader will be passed. ValueReader enables reading the attributes of a
Portable object in a generic and type-agnostic way. It contains two methods:

168 CHAPTER 10. DISTRIBUTED QUERY

• read(String path, ValueCollector<T> collector) - enables passing all results directly to the
ValueCollector.

• read(String path, ValueCallback<T> callback) - enables filtering, transforming and grouping the result
of the read operation and manually passing it to the ValueCollector.

Here’s the ValueReader contract:

/**
* Enables reading the value of the attribute specified by the path
* <p >
* The path may be:
* - simple -> it includes a single attribute only, like "name"
* - nested -> it includes more then a single attribute separated with a dot (.), e.g. person.address.city
* <p>
* The path may also includes array cells:
* - specific quantifier, like person.leg[1] -> returns the leg with index 1
* - wildcard quantifier, like person.leg[any] -> returns all legs
* <p>
* The wildcard quantifier may be used a couple of times, like person.leg[any].finger[any] which returns all fingers
* from all legs.
*/
public abstract class ValueReader {

/**
* Read the value of the attribute specified by the path and returns the result via the callback.
*
*/

public abstract <T> void read(String path, ValueCallback<T> callback) throws ValueReadingException;

/**
* Read the value of the attribute specified by the path and returns the result directly to the collector.
*
*/

public abstract <T> void read(String path, ValueCollector<T> collector) throws ValueReadingException;

}

10.3.1.2 Returning Multiple Values from a Single Extraction

It sounds counter-intuitive, but a single extraction may return multiple values when arrays or collections are
involved. Let’s have a look at the following data structure in pseudo-code:

class Motorbike {
Wheel wheel[2];

}

class Wheel {
String name;

}

Let’s assume that we want to extract the names of all wheels from a single motorbike object. Each motorbike has
two wheels so there are two names too. In order to return both values from the extraction operation just collect
them separately using the ValueCollector. Collecting multiple values in such a way allows operating on these
multiple values as if they were single-values during the evaluation of the predicates.

Let’s assume that we registered a custom extractor with the name wheelName and executed the following query:
wheelName = front-wheel.

10.3. CUSTOM ATTRIBUTES 169

The extraction may return up to two wheel names for each Motorbike since each Motorbike has up to two wheels.
In such a case, it is enough if a single value evaluates the predicate’s condition to true to return a match, so it will
return a Motorbike if “any” of the wheels matches the expression.

10.3.2 Extraction Arguments

A ValueExtractor may use a custom argument if it is specified in the query. The custom argument may be passed
within the square brackets located after the name of the custom attribute, e.g. customAttribute[argument].

Let’s have a look at the following query: currency[incoming] == EUR The currency is a custom attribute that
uses a com.test.CurrencyExtractor for extraction.

The string incoming is an argument that will be passed to the ArgumentParser during the extraction. The parser
will parse the string according to the parser’s custom logic and it will return a parsed object. The parsed object
may be a single object, array, collection, or any arbitrary object. It’s up to the ValueExtractor’s implementor to
understand the semantics of the parsed argument object.

For now, it’s not possible to register a custom ArgumentParser, thus a default parser is used. It follows a
pass-through semantic, which means that the string located in the square-brackets is passed as-is to the
ValueExtractor.extract() method.

Please note that it is not allowed to use square brackets within the argument string.

10.3.3 Configuring a Custom Attribute Programmatically

The following snippet demonstrates how to define a custom attribute using a ValueExtractor.

MapAttributeConfig attributeConfig = new MapAttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractor("com.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addMapAttributeConfig(attributeConfig);

currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Please, bear in mind that an extractor may not be added after the map has been instantiated. All extractors have
to be defined upfront in the map’s initial configuration.

10.3.4 Configuring a Custom Attribute Declaratively

The following snippet demonstrates how to define a custom attribute in the Hazelcast XML Configuration.

<map name="trades">
<attributes>

<attribute extractor="com.bank.CurrencyExtractor">currency</attribute>
</attributes>

</map>

Analogously to the example above, currency is the name of the custom attribute that will be extracted using the
CurrencyExtractor class.

Please note that an attribute name may begin with an ascii letter [A-Za-z] or digit [0-9] and may contain ascii
letters [A-Za-z], digits [0-9] or underscores later on.

170 CHAPTER 10. DISTRIBUTED QUERY

10.3.5 Indexing Custom Attributes

You can create an index using a custom attribute.

The name of the attribute used in the index definition has to match the one used in the attributes configuration.

It is allowed to define indexes with extraction arguments, as shown in the example below:

<indexes>
<!-- custom attribute without an extraction argument -->
<index ordered="true">currency</index>

<!-- custom attribute using an extraction argument -->
<index ordered="true">currency[EUR]</index>

</indexes>

10.4 MapReduce

You have likely heard about MapReduce ever since Google released its research white paper on this concept. With
Hadoop as the most common and well known implementation, MapReduce gained a broad audience and made it
into all kinds of business applications dominated by data warehouses.

MapReduce is a software framework for processing large amounts of data in a distributed way. Therefore, the
processing is normally spread over several machines. The basic idea behind MapReduce is to map your source data
into a collection of key-value pairs and reducing those pairs, grouped by key, in a second step towards the final
result.

The main idea can be summarized with the following steps.

1. Read the source data.
2. Map the data to one or multiple key-value pairs.
3. Reduce all pairs with the same key.

Use Cases

The best known examples for MapReduce algorithms are text processing tools, such as counting the word frequency
in large texts or websites. Apart from that, there are more interesting examples of use cases listed below.

• Log Analysis
• Data Querying
• Aggregation and summing
• Distributed Sort
• ETL (Extract Transform Load)
• Credit and Risk management
• Fraud detection
• and more.

10.4.1 Understanding MapReduce

This section will give a deeper insight on the MapReduce pattern and helps you understand the semantics behind
the different MapReduce phases and how they are implemented in Hazelcast.

In addition to this, the following sections compare Hadoop and Hazelcast MapReduce implementations to help
adopters with Hadoop backgrounds to quickly get familiar with Hazelcast MapReduce.

10.4. MAPREDUCE 171

10.4.1.1 MapReduce Workflow Example

The flowchart below demonstrates the basic workflow of the word count example (distributed occurrences analysis)
mentioned in the MapReduce section introduction. From left to right, it iterates over all the entries of a data
structure (in this case an IMap). In the mapping phase, it splits the sentence into single words and emits a key-value
pair per word: the word is the key, 1 is the value. In the next phase, values are collected (grouped) and transported
to their corresponding reducers, where they are eventually reduced to a single key-value pair, the value being the
number of occurrences of the word. At the last step, the different reducer results are grouped up to the final result
and returned to the requester.

Figure 10.1: MapReduce Workflow

In pseudo code, the corresponding map and reduce function would look like the following. A Hazelcast code example
will be shown in the next section.

map(key:String, document:String):Void ->
for each w:word in document:
emit(w, 1)

reduce(word:String, counts:List[Int]):Int ->
return sum(counts)

10.4.1.2 MapReduce Phases

As seen in the workflow example, a MapReduce process consists of multiple phases. The original MapReduce
pattern describes two phases (map, reduce) and one optional phase (combine). In Hazelcast, these phases are
either only existing virtually to explain the data flow or are executed in parallel during the real operation while the
general idea is still persisting.

(K x V)* -> (L x W)*

172 CHAPTER 10. DISTRIBUTED QUERY

[(k1, v1), . . . , (kn, vn)] -> [(l1, w1), . . . , (lm, wm)]

Mapping Phase

The mapping phase iterates all key-value pairs of any kind of legal input source. The mapper then analyzes the
input pairs and emits zero or more new key-value pairs.

K x V -> (L x W)*

(k, v) -> [(l1, w1), . . . , (ln, wn)]

Combine Phase

In the combine phase, multiple key-value pairs with the same key are collected and combined to an intermediate
result before being send to the reducers. Combine phase is also optional in Hazelcast, but is highly
recommended to lower the traffic.

In terms of the word count example, this can be explained using the sentences “Saturn is a planet but the Earth
is a planet, too”. As shown above, we would send two key-value pairs (planet, 1). The registered combiner now
collects those two pairs and combines them into an intermediate result of (planet, 2). Instead of two key-value pairs
sent through the wire, there is now only one for the key “planet”.

The pseudo code for a combiner is similar to the reducer.

combine(word:String, counts:List[Int]):Void ->
emit(word, sum(counts))

Grouping / Shuffling Phase

The grouping or shuffling phase only exists virtually in Hazelcast since it is not a real phase; emitted key-value
pairs with the same key are always transferred to the same reducer in the same job. They are grouped together,
which is equivalent to the shuffling phase.

Reducing Phase

In the reducing phase, the collected intermediate key-value pairs are reduced by their keys to build the final by-key
result. This value can be a sum of all the emitted values of the same key, an average value, or something completely
different, depending on the use case.

Here is a reduced representation of this phase.

L x W* -> X*

(l, [w1, . . . , wn]) -> [x1, . . . , xn]

Producing the Final Result

This is not a real MapReduce phase, but it is the final step in Hazelcast after all reducers are notified that reducing
has finished. The original job initiator then requests all reduced results and builds the final result.

10.4.1.3 Additional MapReduce Resources

The Internet is full of useful resources to find deeper information on MapReduce. Below is a short collection of
more introduction material. In addition, there are books written about all kinds of MapReduce patterns and how
to write a MapReduce function for your use case. To name them all is out of scope of this documentation.

• http://research.google.com/archive/mapreduce.html
• http://en.wikipedia.org/wiki/MapReduce
• http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf
• http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
• http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635

10.4. MAPREDUCE 173

10.4.2 Using the MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the different API
classes, we will build the word count example that was discussed earlier and create it step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to build
and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is retrieved from
com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the name of the required
JobTracker configuration. The configuration for JobTrackers will be discussed later, for now we focus on the API
itself. In addition, the complete submission part of the API is built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar as possible to
their counterparts on Hadoop. That means while most users will recognize a lot of similar sounding classes, the
way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g. we create a specialized JobTracker
configuration (at the end). Special JobTracker configuration is not required, because for all other Hazelcast features
you can use “default” as the configuration name. However, special configurations offer better options to predict
behavior of the framework execution.

The full example is available here as a ready to run Maven project.

10.4.2.1 Retrieving a JobTracker Instance

JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a single
MapReduce configuration. The same Job can be submitted multiple times, no matter if it is executed in parallel or
after the previous execution is finished.

NOTE: After retrieving the JobTracker, be aware that it should only be used with data structures derived
from the same HazelcastInstance. Otherwise, you can get unexpected behavior.

To retrieve a JobTracker from Hazelcast, we will start by using the “default” configuration for convenience reasons
to show the basic way.

import com.hazelcast.mapreduce.*;

JobTracker jobTracker = hazelcastInstance.getJobTracker("default");

JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After building the
cluster connection, you use the created HazelcastInstance to request the configured (or default) JobTracker from
Hazelcast.

The next step will be to create a new Job and configure it to execute our first MapReduce request against cluster
data.

10.4.2.2 Creating a Job

As mentioned in Retrieving a JobTracker Instance, you create a Job using the retrieved JobTracker instance. A
Job defines exactly one configuration of a MapReduce task. Mapper, combiner and reducers will be defined per job.
However, since the Job instance is only a configuration, it can be submitted multiple times, no matter if executions
happen in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker’s name and a jobId generated
on submit-time. The way to retrieve the jobId will be shown in one of the later sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a deeper
look at the KeyValueSource class in the next section. KeyValueSource is used to wrap any kind of data or data
structure into a well defined set of key-value pairs.

The example code below is a direct follow up of the example in Retrieving a JobTracker Instance. The example
reuses the already created HazelcastInstance and JobTracker instances.

174 CHAPTER 10. DISTRIBUTED QUERY

The example starts by retrieving an instance of our data map, and then it creates the Job instance. Implementations
used to configure the Job will be discussed while walking further through the API documentation.

NOTE: Since the Job class is highly dependent upon generics to support type safety, the generics change
over time and may not be assignment compatible to old variable types. To make use of the full potential of the fluent
API, we recommend you use fluent method chaining as shown in this example to prevent the need for too many
variables.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);
Job<String, String> job = jobTracker.newJob(source);

ICompletableFuture<Map<String, Long>> future = job
.mapper(new TokenizerMapper())
.combiner(new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit();

// Attach a callback listener
future.andThen(buildCallback());

// Wait and retrieve the result
Map<String, Long> result = future.get();

As seen above, we create the Job instance and define a mapper, combiner, reducer. Then we submit the request to
the cluster. The submit method returns an ICompletableFuture that can be used to attach our callbacks or to wait
for the result to be processed in a blocking fashion.

There are more options available for job configurations, such as defining a general chunk size or on what keys the
operation will operate. For more information, please refer to the Hazelcast source code for Job.java.

10.4.2.3 Creating Key-Value Input Sources with KeyValueSource

KeyValueSource can either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-value pair
input sources, or build your own custom key-value input source. The latter option makes it possible to feed
Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web page contents or data files.
People familiar with Hadoop will recognize similarities with the Input class.

You can imagine a KeyValueSource as a bigger java.util.Iterator implementation. Whereas most methods are
required to be implemented, the getAllKeys method is optional to implement. If implementation is able to gather
all keys upfront, it should be implemented and isAllKeysSupported must return true. That way, Job configured
KeyPredicates are able to evaluate keys upfront before sending them to the cluster. Otherwise, they are serialized
and transferred as well, to be evaluated at execution time.

As shown in the example above, the abstract KeyValueSource class provides a number of static methods to easily
wrap Hazelcast data structures into KeyValueSource implementations already provided by Hazelcast. The data
structures’ generics are inherited into the resulting KeyValueSource instance. For data structures like IList or ISet,
the key type is always String. While mapping, the key is the data structure’s name whereas the value type and
value itself are inherited from the IList or ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap("my-map");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);

// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap("my-multimap");
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap(multiMap);

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/mapreduce/Job.java

10.4. MAPREDUCE 175

// KeyValueSource from com.hazelcast.core.IList
IList<String> list = hazelcastInstance.getList("my-list");
KeyValueSource<String, String> source = KeyValueSource.fromList(list);

// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet("my-set");
KeyValueSource<String, String> source = KeyValueSource.fromSet(set);

PartitionIdAware

The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource imple-
mentation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for all internal data
structures). If this interface is implemented, the same KeyValueSource instance is reused multiple times for all
partitions on the cluster member. As a consequence, the close and open methods are also executed multiple times
but once per partitionId.

10.4.2.4 Implementing Mapping Logic with Mapper

Using the Mapper interface, you will implement the mapping logic. Mappers can transform, split, calculate, and
aggregate data from data sources. In Hazelcast, you can also integrate data from more than the KeyValueSource
data source by implementing com.hazelcast.core.HazelcastInstanceAware and requesting additional maps,
multimaps, list, and/or sets.

The mappers map function is called once per available entry in the data structure. If you work on distributed data
structures that operate in a partition based fashion, then multiple mappers work in parallel on the different cluster
members, on the members’ assigned partitions. Mappers then prepare and maybe transform the input key-value
pair and emit zero or more key-value pairs for reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it by splitting
the text into the available words. After that, as discussed in the pseudo code, we emit every single word with a
key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
private static final Long ONE = Long.valueOf(1L);

@Override
public void map(String key, String document, Context<String, Long> context) {
StringTokenizer tokenizer = new StringTokenizer(document.toLowerCase());
while (tokenizer.hasMoreTokens()) {
context.emit(tokenizer.nextToken(), ONE);

}
}

}

The code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are more tokens, and
emits a pair per word. Note that we’re not yet collecting multiple occurrences of the same word, we just fire every
word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the Mapper
implementation lifecycle aware. That means it will be notified when mapping of a partition or set of data begins
and when the last entry was mapped.

Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit additional values.

176 CHAPTER 10. DISTRIBUTED QUERY

10.4.2.5 Minimizing Cluster Traffic with Combiner

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster members when
transmitting mapped values from mappers to the reducers. It does this by aggregating multiple values for the same
emitted key. This is a fully optional operation, but using it is highly recommended.
Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to the key for which
the combiner initially was created. Since combiners are created per emitted key, the Combiner implementation itself
is not defined in the jobs configuration; instead, a CombinerFactory is created that is able to create the expected
Combiner instance.
Because Hazelcast MapReduce is executing mapping and reducing phase in parallel, the Combiner implementation
must be able to deal with chunked data. Therefore, you must reset its internal state whenever you call finalizeChunk.
Calling the finalizeChunk method creates a chunk of intermediate data to be grouped (shuffled) and sent to the
reducers.
Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.
For our word count example, we are going to have a simple CombinerFactory and Combiner implementation similar
to the following example.

public class WordCountCombinerFactory
implements CombinerFactory<String, Long, Long> {

@Override
public Combiner<Long, Long> newCombiner(String key) {
return new WordCountCombiner();

}

private class WordCountCombiner extends Combiner<Long, Long> {
private long sum = 0;

@Override
public void combine(Long value) {
sum++;

}

@Override
public Long finalizeChunk() {
return sum;

}

@Override
public void reset() {
sum = 0;

}
}

}

The Combiner must be able to return its current value as a chunk and reset the internal state by setting sum back
to 0. Since combiners are always called from a single thread, no synchronization or volatility of the variables is
necessary.

10.4.2.6 Doing Algorithm Work with Reducer

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or any other work
that is expected from the algorithm.
Since values arrive in chunks, the reduce method is called multiple times for every emitted value of the creation
key. This also can happen multiple times per chunk if no Combiner implementation was configured for a job
configuration.

10.4. MAPREDUCE 177

Different from combiners, a reducers finalizeReduce method is only called once per reducer (which means once
per key). Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation will look similar to the following code example.

public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

@Override
public Reducer<Long, Long> newReducer(String key) {
return new WordCountReducer();

}

private class WordCountReducer extends Reducer<Long, Long> {
private volatile long sum = 0;

@Override
public void reduce(Long value) {
sum += value.longValue();

}

@Override
public Long finalizeReduce() {
return sum;

}
}

}

10.4.2.6.1 Reducers Switching Threads Different from combiners, reducers tend to switch threads if running
out of data to prevent blocking threads from the JobTracker configuration. They are rescheduled at a later point
when new data to be processed arrives but are unlikely to be executed on the same thread as before. As of Hazelcast
version 3.3.3 the guarantee for memory visibility on the new thread is ensured by the framework. This means the
previous requirement for making fields volatile is dropped.

10.4.2.7 Modifying the Result with Collator

A Collator is an optional operation that is executed on the job emitting member and is able to modify the finally
reduced result before returned to the user’s codebase. Only special use cases are likely to use collators.

For an imaginary use case, we might want to know how many words were all over in the documents we analyzed.
For this case, a Collator implementation can be given to the submit method of the Job instance.

A collator would look like the following snippet:

public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

@Override
public Long collate(Iterable<Map.Entry<String, Long>> values) {
long sum = 0;

for (Map.Entry<String, Long> entry : values) {
sum += entry.getValue().longValue();

}
return sum;

}
}

178 CHAPTER 10. DISTRIBUTED QUERY

The definition of the input type is a bit strange, but because Combiner and Reducer implementations are optional,
the input type heavily depends on the state of the data. As stated above, collators are non-typical use cases and
the generics of the framework always help in finding the correct signature.

10.4.2.8 Preselecting Keys with KeyPredicate

You can use KeyPredicate to pre-select whether or not a key should be selected for mapping in the mapping phase.
If the KeyValueSource implementation is able to know all keys prior to execution, the keys are filtered before the
operations are divided among the different cluster members.

A KeyPredicate can also be used to select only a special range of data (e.g. a time-frame) or similar use cases.

A basic KeyPredicate implementation that only maps keys containing the word “hazelcast” might look like the
following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

@Override
public boolean evaluate(String s) {
return s != null && s.toLowerCase().contains("hazelcast");

}
}

10.4.2.9 Job Monitoring with TrackableJob

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker using the
unique jobId (per JobTracker). You can use it get runtime statistics of the job. The information available is
limited to the number of processed (mapped) records and the processing state of the different partitions or members
(if KeyValueSource is not PartitionIdAware).

To retrieve the jobId after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture instead
of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

The example code below gives a quick introduction on how to retrieve the instance and the runtime data. For more
information, please have a look at the Javadoc corresponding your running Hazelcast version.

The example performs the following steps to get the job instance.

• It gets the map with the hazelcastInstance getMap method.
• From the map, it gets the source with the KeyValueSource fromMap method.
• From the source, it gets a job with the JobTracker newJob method.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);
Job<String, String> job = jobTracker.newJob(source);

JobCompletableFuture<Map<String, Long>> future = job
.mapper(new TokenizerMapper())
.combiner(new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit();

String jobId = future.getJobId();
TrackableJob trackableJob = jobTracker.getTrackableJob(jobId);

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log("ProcessedRecords: " + processedRecords);

10.4. MAPREDUCE 179

JobPartitionState[] partitionStates = stats.getPartitionStates();
for (JobPartitionState partitionState : partitionStates) {
log("PartitionOwner: " + partitionState.getOwner()

+ ", Processing state: " + partitionState.getState().name());
}

NOTE: Caching of the JobProcessInformation does not work on Java native clients since current values are
retrieved while retrieving the instance to minimize traffic between executing member and client.

10.4.2.10 Configuring JobTracker

You configure JobTracker configuration to set up behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is meant as a shared
resource for all jobs created by the same JobTracker. The configuration gives full control over the expected load
behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. The configuration properties are discussed below
the example.

<jobtracker name="default">
<max-thread-size>0</max-thread-size>
<!-- Queue size 0 means number of partitions * 2 -->
<queue-size>0</queue-size>
<retry-count>0</retry-count>
<chunk-size>1000</chunk-size>
<communicate-stats>true</communicate-stats>
<topology-changed-strategy>CANCEL_RUNNING_OPERATION</topology-changed-strategy>

</jobtracker>

• max-thread-size: Maximum thread pool size of the JobTracker.
• queue-size: Maximum number of tasks that are able to wait to be processed. A value of 0 means an
unbounded queue. Very low numbers can prevent successful execution since job might not be correctly
scheduled or intermediate chunks might be lost.

• retry-count: Currently not used. Reserved for later use where the framework will automatically try to
restart / retry operations from an available save point.

• chunk-size: Number of emitted values before a chunk is sent to the reducers. If your emitted values are
big or you want to better balance your work, you might want to change this to a lower or higher value. A
value of 0 means immediate transmission, but remember that low values mean higher traffic costs. A very
high value might cause an OutOfMemoryError to occur if the emitted values do not fit into heap memory
before being sent to the reducers. To prevent this, you might want to use a combiner to pre-reduce values on
mapping members.

• communicate-stats: Specifies whether the statistics (for example, statistics about processed entries) are
transmitted to the job emitter. This can show progress to a user inside of an UI system, but it produces
additional traffic. If not needed, you might want to deactivate this.

• topology-changed-strategy: Specifies how the MapReduce framework reacts on topology changes while
executing a job. Currently, only CANCEL_RUNNING_OPERATION is fully supported, which throws an
exception to the job emitter (will throw a com.hazelcast.mapreduce.TopologyChangedException).

10.4.3 Hazelcast MapReduce Architecture

This section explains some of the internals of the MapReduce framework. This is more advanced information. If
you’re not interested in how it works internally, you might want to skip this section.

180 CHAPTER 10. DISTRIBUTED QUERY

10.4.3.1 Node Interoperation Example

To understand the following technical internals, we first have a short look at what happens in terms of an example
workflow.

As a simple example, think of an IMap<String, Integer> and emitted keys having the same types. Imagine you
have a three node cluster (a cluster with three members) and you initiate the MapReduce job on the first node.
After you requested the JobTracker from your running / connected Hazelcast, we submit the task and retrieve the
ICompletableFuture which gives us a chance to wait for the result to be calculated or to add a callback (and being
more reactive).

The example expects that the chunk size is 0 or 1, so an emitted value is directly sent to the reducers. Internally,
the job is prepared, started, and executed on all nodes as shown below. The first node acts as the job owner (job
emitter).

Node1 starts MapReduce job
Node1 emits key=Foo, value=1
Node1 does PartitionService::getKeyOwner(Foo) => results in Node3

Node2 emits key=Foo, value=14
Node2 asks jobOwner (Node1) for keyOwner of Foo => results in Node3

Node1 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer,
if not creates one for key=Foo

Node3 processes chunk for key=Foo

Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Node3 processes chunk for key=Foo

Node1 send LastChunk information to Node3 because processing local values finished

Node2 emits key=Foo, value=27
Node2 has cached keyOwner of Foo => results in Node3
Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Node3 processes chunk for key=Foo

Node2 send LastChunk information to Node3 because processing local values finished

Node3 finishes reducing for key=Foo

Node1 registers its local partitions are processed
Node2 registers its local partitions are processed

Node1 sees all partitions processed and requests reducing from all nodes

Node1 merges all reduced results together in a final structure and returns it

The flow is quite complex but extremely powerful since everything is executed in parallel. Reducers do not wait
until all values are emitted, but they immediately begin to reduce (when first chunk for an emitted key arrives).

10.4. MAPREDUCE 181

10.4.3.2 Internal MapReduce Packages

Beginning with the package level, there is one basic package: com.hazelcast.mapreduce. This includes the
external API and the impl package which itself contains the internal implementation.

• The impl package contains all the default KeyValueSource implementations and abstract base and support
classes for the exposed API.

• The client package contains all classes that are needed on client and member side when a client offers a
MapReduce job.

• The notification package contains all “notification” or event classes that notify other members about progress
on operations.

• The operation package contains all operations that are used by the workers or job owner to coordinate work
and sync partition or reducer processing.

• The task package contains all classes that execute the actual MapReduce operation. It features the supervisor,
mapping phase implementation and mapping and reducing tasks.

10.4.3.3 MapReduce Job Walk-Through

And now to the technical walk-through: a MapReduce Job is always retrieved from a named JobTracker, which is
implemented in NodeJobTracker (extends AbstractJobTracker) and is configured using the configuration DSL.
All of the internal implementation is completely ICompletableFuture-driven and mostly non-blocking in design.

On submit, the Job creates a unique UUID which afterwards acts as a jobId and is combined with the JobTracker’s
name to be uniquely identifiable inside the cluster. Then, the preparation is sent around the cluster and every
member prepares its execution by creating a JobSupervisor, MapCombineTask, and ReducerTask. The job-emitting
JobSupervisor gains special capabilities to synchronize and control JobSupervisors on other nodes for the same job.

If preparation is finished on all nodes, the job itself is started by executing a StartProcessingJobOperation on every
node. This initiates a MappingPhase implementation (defaults to KeyValueSourceMappingPhase) and starts the
actual mapping on the nodes.

The mapping process is currently a single threaded operation per node, but will be extended to run in parallel on
multiple partitions (configurable per Job) in future versions. The Mapper is now called on every available value on
the partition and eventually emits values. For every emitted value, either a configured CombinerFactory is called to
create a Combiner or a cached one is used (or the default CollectingCombinerFactory is used to create Combiners).
When the chunk limit is reached on a node, a IntermediateChunkNotification is prepared by collecting emitted
keys to their corresponding nodes. This is either done by asking the job owner to assign members or by an already
cached assignment. In later versions, a PartitionStrategy might also be configurable.

The IntermediateChunkNotification is then sent to the reducers (containing only values for this node) and is offered
to the ReducerTask. On every offer, the ReducerTask checks if it is already running and if not, it submits itself to
the configured ExecutorService (from the JobTracker configuration).

If reducer queue runs out of work, the ReducerTask is removed from the ExecutorService to not block threads but
eventually will be resubmitted on next chunk of work.

On every phase, the partition state is changed to keep track of the currently running operations. A JobPartitionState
can be in one of the following states with self-explanatory titles: [WAITING, MAPPING, REDUCING, PROCESSED,
CANCELLED]. If you have a deeper interest of these states, look at the Javadoc.

• Node asks for new partition to process: WAITING => MAPPING
• Node emits first chunk to a reducer: MAPPING => REDUCING
• All nodes signal that they finished mapping phase and reducing is finished, too: REDUCING => PROCESSED

Eventually (or hopefully), all JobPartitionStates reach the state of PROCESSED. Then, the job emitter’s JobSu-
pervisor asks all nodes for their reduced results and executes a potentially offered Collator. With this Collator, the
overall result is calculated before it removes itself from the JobTracker, doing some final cleanup and returning the
result to the requester (using the internal TrackableJobFuture).

182 CHAPTER 10. DISTRIBUTED QUERY

If a job is cancelled while execution, all partitions are immediately set to the CANCELLED state and a CancelJob-
SupervisorOperation is executed on all nodes to kill the running processes.

While the operation is running in addition to the default operations, some more operations like ProcessStatsUpda-
teOperation (updates processed records statistics) or NotifyRemoteExceptionOperation (notifies the nodes that the
sending node encountered an unrecoverable situation and the Job needs to be cancelled - e.g. NullPointerException
inside of a Mapper) are executed against the job owner to keep track of the process.

10.5 Aggregators

Based on the Hazelcast MapReduce framework, Aggregators are ready-to-use data aggregations. These are typical
operations like sum up values, finding minimum or maximum values, calculating averages, and other operations
that you would expect in the relational database world.

Aggregation operations are implemented, as mentioned above, on top of the MapReduce framework and all
operations can be achieved using pure MapReduce calls. However, using the Aggregation feature is more convenient
for a big set of standard operations.

10.5.1 Aggregations Basics

This section will quickly guide you through the basics of the Aggregations framework and some of its available
classes. We also will implement a first base example.

10.5.1.1 Aggregations and Map Interfaces

Aggregations are available on both types of map interfaces, com.hazelcast.core.IMap and com.hazelcast
.core.MultiMap, using the aggregatemethods. Two overloaded methods are available that customize resource man-
agement of the underlying MapReduce framework by supplying a custom configured com.hazelcast.mapreduce.JobTracker
instance. To find out how to configure the MapReduce framework, please see Configuring JobTracker. We will later
see another way to configure the automatically used MapReduce framework if no special JobTracker is supplied.

10.5.1.2 Aggregations and Java

To make Aggregations more convenient to use and future proof, the API is heavily optimized for Java 8 and future
versions. The API is still fully compatible with any Java version Hazelcast supports (Java 6 and Java 7). The
biggest difference is how you work with the Java generics: on Java 6 and 7, the process to resolve generics is not as
strong as on Java 8 and upcoming Java versions. In addition, the whole Aggregations API has full Java 8 Project
Lambda (or Closure, JSR 335) support.

For illustration of the differences in Java 6 and 7 in comparison to Java 8, we will have a quick look at code
examples for both. After that, we will focus on using Java 8 syntax to keep examples short and easy to understand,
and we will see some hints as to what the code looks like in Java 6 or 7.

The first example will produce the sum of some int values stored in a Hazelcast IMap. This example does not use
much of the functionality of the Aggregations framework, but it will show the main difference.

IMap<String, Integer> personAgeMapping = hazelcastInstance.getMap("person-age");
for (int i = 0; i < 1000; i++) {
String lastName = RandomUtil.randomLastName();
int age = RandomUtil.randomAgeBetween(20, 80);
personAgeMapping.put(lastName, Integer.valueOf(age));

}

With our demo data prepared, we can see how to produce the sums in different Java versions.

10.5. AGGREGATORS 183

10.5.1.3 Aggregations and Java 6 or Java 7

Since Java 6 and 7 are not as strong on resolving generics as Java 8, you need to be a bit more verbose with the
code you write. You might also consider using raw types, but breaking the type safety to ease this process.

For a short introduction on what the following code example means, look at the source code comments. We will
later dig deeper into the different options.

// No filter applied, select all entries
Supplier<String, Integer, Integer> supplier = Supplier.all();
// Choose the sum aggregation
Aggregation<String, Integer, Integer> aggregation = Aggregations.integerSum();
// Execute the aggregation
int sum = personAgeMapping.aggregate(supplier, aggregation);

10.5.1.4 Aggregations and Java 8

With Java 8, the Aggregations API looks simpler because Java 8 can resolve the generic parameters for us. That
means the above lines of Java 6/7 example code will end up in just one easy line on Java 8.

int sum = personAgeMapping.aggregate(Supplier.all(), Aggregations.integerSum());

10.5.1.5 Aggregations and the MapReduce Framework

As mentioned before, the Aggregations implementation is based on the Hazelcast MapReduce framework and
therefore you might find overlaps in their APIs. One overload of the aggregate method can be supplied with a
JobTracker which is part of the MapReduce framework.

If you implement your own aggregations, you will use a mixture of the Aggregations and the MapReduce API. If
you will implement your own aggregation, e.g. to make the life of colleagues easier, please read the Implementing
Aggregations section.

For the full MapReduce documentation please see the MapReduce section.

10.5.2 Using the Aggregations API

We now look into the possible options of what can be achieved using the Aggregations API. To work on some
deeper examples, let’s quickly have a look at the available classes and interfaces and discuss their usage.

10.5.2.1 Supplier

The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the aggrega-
tion operation. This class already provides a few different static methods to achieve the most common cases.
Supplier.all() accepts all incoming values and does not apply any data extraction or transformation upon them
before supplying them to the aggregation function itself.

For filtering data sets, you have two different options by default. - You can either supply a com.hazelcast.query.Predicate
if you want to filter on values and / or keys, or - you can supply a com.hazelcast.mapreduce.KeyPredicate if
you can decide directly on the data key without the need to deserialize the value.

As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let’s have a look on how we can do basic
filtering using those two options.

184 CHAPTER 10. DISTRIBUTED QUERY

10.5.2.1.1 Basic Filtering with KeyPredicate First, we have a look at a KeyPredicate and we only accept
people whose last name is “Jones”.

Supplier<...> supplier = Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName)

);

class JonesKeyPredicate implements KeyPredicate<String> {
public boolean evaluate(String key) {
return "Jones".equalsIgnoreCase(key);

}
}

10.5.2.1.2 Filtering on Values with Predicate Using the standard Hazelcast Predicate interface, we can
also filter based on the value of a data entry. In the following example, you can only select values which are divisible
by 4 without a remainder.

Supplier<...> supplier = Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0

);

class DivisiblePredicate implements Predicate<String, Integer> {
public boolean apply(Map.Entry<String, Integer> entry) {
return entry.getValue() % 4 == 0;

}
}

10.5.2.1.3 Extracting and Transforming Data As well as filtering, Supplier can also extract or transform
data before providing it to the aggregation operation itself. The following example shows how to transform an
input value to a string.

Supplier<String, Integer, String> supplier = Supplier.all(
value -> Integer.toString(value)

);

You can see a Java 6 / 7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see that the generic
information of the resulting Supplier has changed as well. This indicates that we now have an aggregation working
on string values.

10.5.2.1.4 Chaining Multiple Filtering Rules Another feature of Supplier is its ability to chain multiple
filtering rules. Let’s combine all of the above examples into one rule set:

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(

lastName -> "Jones".equalsIgnoreCase(lastName),
Supplier.fromPredicate(

entry -> entry.getValue() % 4 == 0,
Supplier.all(value -> Integer.toString(value))

)
);

10.5. AGGREGATORS 185

10.5.2.1.5 Implementing Supplier with Special Requirements You might prefer or need to implement
your Supplier based on special requirements. This is a very basic task. The Supplier abstract class has just one
method: the apply method.

NOTE: Due to a limitation of the Java Lambda API, you cannot implement abstract classes using Lambdas.
Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
public String apply(Map.Entry<String, Integer> entry) {
Integer value = entry.getValue();
if (value == null) {
return null;

}
return value % 4 == 0 ? String.valueOf(value) : null;

}
}

The Supplier apply methods are expected to return null whenever the input value should not be mapped to the
aggregation process. This can be used, as in the example above, to implement filter rules directly. Implementing
filters using the KeyPredicate and Predicate interfaces might be more convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other Suppliers.

int sum = personAgeMapping.aggregate(new MyCustomSupplier(), Aggregations.count());

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(

lastName -> "Jones".equalsIgnoreCase(lastName),
new MyCustomSupplier()

);
int sum = personAgeMapping.aggregate(supplier, Aggregations.count());

10.5.2.2 Defining the Aggregation Operation

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation itself. It
contains a set of MapReduce API implementations like Mapper, Combiner, Reducer, and Collator. These
implementations are normally unique to the chosen Aggregation. This interface can also be implemented with
your aggregation operations based on MapReduce calls. For more information, refer to Implementing Aggregations
section.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of aggrega-
tions. This class contains type safe aggregations of the following types:

• Average (Integer, Long, Double, BigInteger, BigDecimal)
• Sum (Integer, Long, Double, BigInteger, BigDecimal)
• Min (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
• Max (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
• DistinctValues
• Count

Those aggregations are similar to their counterparts on relational databases and can be equated to SQL statements
as set out below.

186 CHAPTER 10. DISTRIBUTED QUERY

10.5.2.2.1 Average Calculates an average value based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerAvg());

SELECT AVG(person.age) FROM person;

10.5.2.2.2 Sum Calculates a sum based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerSum());

SELECT SUM(person.age) FROM person;

10.5.2.2.3 Minimum (Min) Finds the minimal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMin());

SELECT MIN(person.age) FROM person;

10.5.2.2.4 Maximum (Max) Finds the maximal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMax());

SELECT MAX(person.age) FROM person;

10.5.2.2.5 Distinct Values Returns a collection of distinct values over the selected values

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.distinctValues());

SELECT DISTINCT person.age FROM person;

10.5.2.2.6 Count Returns the element count over all selected values

map.aggregate(Supplier.all(), Aggregations.count());

SELECT COUNT(*) FROM person;

10.5.2.3 Extracting Attribute Values with PropertyExtractor

We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had a look
at the example on how to use a Supplier to transform a value to another type. It can also be used to extract
attributes from values.

10.5. AGGREGATORS 187

class Person {
private String firstName;
private String lastName;
private int age;

// getters and setters
}

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();

class AgeExtractor implements PropertyExtractor<Person, Integer> {
public Integer extract(Person value) {
return value.getAge();

}
}

In this example, we extract the value from the person’s age attribute. The value type changes from Person to
Integer which is reflected in the generics information to stay type safe.

You can use PropertyExtractors for any kind of transformation of data. You might even want to have multiple
transformation steps chained one after another.

10.5.2.4 Configuring Aggregations

As stated before, the easiest way to configure the resources used by the underlying MapReduce framework is to supply
a JobTracker to the aggregation call itself by passing it to either IMap::aggregate or MultiMap::aggregate.

There is another way to implicitly configure the underlying used JobTracker. If no specific JobTracker was passed
for the aggregation call, internally one will be created using the following naming specifications:

For IMap aggregation calls the naming specification is created as:

• hz::aggregation-map- and the concatenated name of the map.

For MultiMap it is very similar:

• hz::aggregation-multimap- and the concatenated name of the MultiMap.

Knowing that (the specification of the name), we can configure the JobTracker as expected (as described in
Retrieving a JobTracker Instance) using the naming spec we just learned. For more information on configuration of
the JobTracker, please see Configuring Jobtracker.

To finish this section, let’s have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap("mymap");

// The internal JobTracker name resolves to ’hz::aggregation-map-mymap’
map.aggregate(...);

MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap("mymultimap");

// The internal JobTracker name resolves to ’hz::aggregation-multimap-mymultimap’
multimap.aggregate(...);

10.5.3 Aggregations Examples

For the final example, imagine you are working for an international company and you have an employee database
stored in Hazelcast IMap with all employees worldwide and a MultiMap for assigning employees to their certain
locations or offices. In addition, there is another IMap which holds the salary per employee.

188 CHAPTER 10. DISTRIBUTED QUERY

10.5.3.1 Setting up the Data Model

Let’s have a look at our data model.

class Employee implements Serializable {
private String firstName;
private String lastName;
private String companyName;
private String address;
private String city;
private String county;
private String state;
private int zip;
private String phone1;
private String phone2;
private String email;
private String web;

// getters and setters
}

class SalaryMonth implements Serializable {
private Month month;
private int salary;

// getters and setters
}

class SalaryYear implements Serializable {
private String email;
private int year;
private List<SalaryMonth> months;

// getters and setters

public int getAnnualSalary() {
int sum = 0;
for (SalaryMonth salaryMonth : getMonths()) {

sum += salaryMonth.getSalary();
}
return sum;

}
}

The two IMaps and the MultiMap are keyed by the string of email. They are defined as follows:

IMap<String, Employee> employees = hz.getMap("employees");
IMap<String, SalaryYear> salaries = hz.getMap("salaries");
MultiMap<String, String> officeAssignment = hz.getMultiMap("office-employee");

So far, we know all the important information to work out some example aggregations. We will look into some
deeper implementation details and how we can work around some current limitations that will be eliminated in
future versions of the API.

10.5.3.2 Average Aggregation Example

Let’s start with a very basic example. We want to know the average salary of all of our employees. To do this, we
need a PropertyExtractor and the average aggregation for type Integer.

10.5. AGGREGATORS 189

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =

(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.all(extractor),

Aggregations.integerAvg());

That’s it. Internally, we created a MapReduce task based on the predefined aggregation and fired it up immediately.
Currently, all aggregation calls are blocking operations, so it is not yet possible to execute the aggregation in a
reactive way (using com.hazelcast.core.ICompletableFuture) but this will be part of an upcoming version.

10.5.3.3 Map Join Example

The following example is a little more complex. We only want to have our US based employees selected into the
average salary calculation, so we need to execute some kind of a join operation between the employees and salaries
maps.

class USEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
Employee employee = employees.get(email);
return "US".equals(employee.getCountry());

}
}

Using the HazelcastInstanceAware interface, we get the current instance of Hazelcast injected into our filter and
we can perform data joins on other data structures of the cluster. We now only select employees that work as part
of our US offices into the aggregation.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =

(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(

new USEmployeeFilter(), extractor
), Aggregations.integerAvg());

10.5.3.4 Grouping Example

For our next example, we will do some grouping based on the different worldwide offices. Currently, a group
aggregator is not yet available, so we need a small workaround to achieve this goal. (In later versions of the
Aggregations API this will not be required because it will be available out of the box in a much more convenient
way.)

Again, let’s start with our filter. This time, we want to filter based on an office name and we need to do some data
joins to achieve this kind of filtering.

A short tip: to minimize the data transmission on the aggregation we can use Data Affinity rules to influence the
partitioning of data. Be aware that this is an expert feature of Hazelcast.

class OfficeEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;
private String office;

190 CHAPTER 10. DISTRIBUTED QUERY

// Deserialization Constructor
public OfficeEmployeeFilter() {
}

public OfficeEmployeeFilter(String office) {
this.office = office;

}

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
MultiMap<String, String> officeAssignment = hazelcastInstance

.getMultiMap("office-employee");

return officeAssignment.containsEntry(office, email);
}

}

Now we can execute our aggregations. As mentioned before, we currently need to do the grouping on our own by
executing multiple aggregations in a row.

Map<String, Integer> avgSalariesPerOffice = new HashMap<String, Integer>();

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
MultiMap<String, String> officeAssignment =

hazelcastInstance.getMultiMap("office-employee");

PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();

for (String office : officeAssignment.keySet()) {
OfficeEmployeeFilter filter = new OfficeEmployeeFilter(office);
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(filter, extractor),

Aggregations.integerAvg());

avgSalariesPerOffice.put(office, avgSalary);
}

10.5.3.5 Simple Count Example

After the previous example, we want to end this section by executing one final and easy aggregation. We want to
know how many employees we currently have on a worldwide basis. Before reading the next lines of example code,
you can try to do it on your own to see if you understood how to execute aggregations.

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.size();

Ok, after the quick joke of the previous two code lines, we look at the real two code lines:

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.aggregate(Supplier.all(), Aggregations.count());

We now have an overview of how to use aggregations in real life situations. If you want to do your colleagues a favor,
you might want to write your own additional set of aggregations. If so, then read the next section, Implementing
Aggregations.

10.6. CONTINUOUS QUERY CACHE 191

10.5.4 Implementing Aggregations

This section explains how to implement your own aggregations in your own application. It is an advanced section,
so if you do not intend to implement your own aggregation, you might want to stop reading here and come back
later when you need to know how to implement your own aggregation.

An Aggregation implementation is defining a MapReduce task, but with a small difference: the Mapper is always
expected to work on a Supplier that filters and / or transforms the mapped input value to some output value.

10.5.4.1 Aggregation Methods

The main interface for making your own aggregation is com.hazelcast.mapreduce.aggregation.Aggregation.
It consists of four methods.

interface Aggregation<Key, Supplied, Result> {
Mapper getMapper(Supplier<Key, ?, Supplied> supplier);
CombinerFactory getCombinerFactory();
ReducerFactory getReducerFactory();
Collator<Map.Entry, Result> getCollator();

}

The getMapper and getReducerFactory methods should return non-null values. getCombinerFactory and
getCollator are optional operations and you do not need to implement them. You can decide to implement them
depending on the use case you want to achieve.

10.5.4.2 Aggregation Tips

For more information on how you implement mappers, combiners, reducers, and collators, refer to the MapReduce
section.

For best speed and traffic usage, as mentioned in the MapReduce section, you should add a Combiner to your
aggregation whenever it is possible to do some kind of pre-reduction step.

Your implementation also should use DataSerializable or IdentifiedDataSerializable for best compatibility
and speed / stream-size reasons.

10.6 Continuous Query Cache

Hazelcast Enterprise

A continuous query cache is used to cache the result of a continuous query. After the construction of a continuous
query cache, all changes on the underlying IMap are immediately reflected to this cache as a stream of events.
Therefore, this cache will be an always up-to-date view of the IMap. You can create a continuous query cache either
on the client or member.

10.6.1 Keeping Query Results Local and Ready

A continuous query cache is beneficial when you need to query the distributed IMap data in a very frequent and fast
way. By using a continuous query cache, the result of the query will always be ready and local to the application.

10.6.2 Accessing Continuous Query Cache from Member

The following code snippet shows how you can access a continuous query cache from a member.

192 CHAPTER 10. DISTRIBUTED QUERY

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig("map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig);

Config config = new Config();
config.addMapConfig(mapConfig);

HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
IEnterpriseMap<Integer, String> map = (IEnterpriseMap) node.getMap("map-name");

QueryCache<Integer, String> cache = map.getQueryCache("cache-name");

10.6.3 Accessing Continuous Query Cache from Client Side

The following code snippet shows how you can access a continuous query cache from the client side. The difference
in this code from the member side code above is that you configure and instantiate a client instance instead of a
member instance.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IEnterpriseMap<Integer, Integer> clientMap = (IEnterpriseMap) client.getMap("map-name");

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

10.6.4 Features of Continuous Query Cache

The following features of continuous query cache are valid for both the member and client.

• The initial query that is run on the existing IMap data during the continuous query cache construction can be
enabled/disabled according to the supplied predicate via QueryCacheConfig#setPopulate.

• Continuous query cache allows you to run queries with indexes, and perform event batching and coalescing.

• A continuous query cache is evictable. Note that a continuous query cache has a default maxi-
mum capacity of 10000. If you need a non-evictable cache, you should configure the eviction via
QueryCacheConfig#setEvictionConfig.

• A listener can be added to a continuous query cache using QueryCache#addEntryListener.

• IMap events are reflected in continuous query cache in the same order as they were generated on map
entries. Since events are created on entries stored in partitions, ordering of events is maintained based on
the ordering within the partition. You can add listeners to capture lost events using EventLostListener
and you can recover lost events with the method QueryCache#tryRecover. Recovery of lost events largely
depends on the size of the buffer on Hazelcast members. Default buffer size is 16 per partition; i.e. 16
events per partition can be maintained in the buffer. If the event generation is high, setting the buffer
size to a higher number will provide better chances of recovering lost events. You can set buffer size with
QueryCacheConfig#setBufferSize. You can use the following example code for a recovery case.

10.6. CONTINUOUS QUERY CACHE 193

‘‘‘java

QueryCache queryCache = map.getQueryCache("cache-name", new SqlPredicate("this > 20"), true);
queryCache.addEntryListener(new EventLostListener() {

@Override
public void eventLost(EventLostEvent event) {

queryCache.tryRecover();
}

}, false);
‘‘‘

• You can configure continuous query cache declaratively or programmatically.

• You can populate a continuous query cache with only the keys of its entries and retrieve the subsequent values
directly via QueryCache#get from the underlying IMap. This helps to decrease the initial population time
when the values are very large.

194 CHAPTER 10. DISTRIBUTED QUERY

Chapter 11

Transactions

This chapter explains the usage of Hazelcast in transactional context. It describes the Hazelcast transaction types
and how they work, how to provide XA (eXtended Architeture) transactions, and how to integrate Hazelcast with
J2EE containers.

11.1 Creating a Transaction Interface

You create a TransactionContext object to begin, commit, and rollback a transaction. You can obtain transaction-
aware instances of queues, maps, sets, lists, multimaps via TransactionContext, work with them, and com-
mit/rollback in one shot. You can see the TransactionContext source code here.

Hazelcast supports two types of transactions: ONE_PHASE and TWO_PHASE. With the type, you have influence
over how much guarantee you get when a member crashes while a transaction is committing. The default behavior is

TWO_PHASE. NOTE: Starting with Hazelcast 3.6, the transaction type LOCAL has been deprecated. Please
use ONE_PHASE for the Hazelcast releases 3.6 and higher.

• ONE_PHASE: By selecting this transaction type, you execute the transactions with a single phase, that
is committing the changes. Since a preparing phase does not exist, the conflicts are not detected. When a
conflict happens during committing the changes (e.g. due to a member crash), it means not all the changes
are written and this leaves the system in an inconsistent state.

• TWO_PHASE: When you select this transaction type, it first tries to execute the prepare phase. This
phase fails if there are any conflicts. Once the prepare phase is successful, then it executes the commit phase
(writing the changes). Before TWO_PHASE commits, it copies the commit log to other members, so in case
of a member failure, another member can complete the commit.

import java.util.Queue;
import java.util.Map;
import java.util.Set;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

TransactionOptions options = new TransactionOptions()
.setTransactionType(TransactionType.ONE_PHASE);

TransactionContext context = hazelcastInstance.newTransactionContext(options);
context.beginTransaction();

TransactionalQueue queue = context.getQueue("myqueue");

195

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/TransactionContext.java

196 CHAPTER 11. TRANSACTIONS

TransactionalMap map = context.getMap("mymap");
TransactionalSet set = context.getSet("myset");

try {
Object obj = queue.poll();
//process obj
map.put("1", "value1");
set.add("value");
//do other things..
context.commitTransaction();

} catch (Throwable t) {
context.rollbackTransaction();

}

In a transaction, operations will not be executed immediately. Their changes will be local to the
TransactionContext until committed. However, they will ensure the changes via locks.

For the above example, when map.put is executed, no data will be put in the map but the key will be locked against
changes. While committing, operations will be executed, the value will be put to the map, and the key will be
unlocked.

Isolation level in Hazelcast Transactions is READ_COMMITTED. If you are in a transaction, you can read the data in
your transaction and the data that is already committed. If you are not in a transaction, you can only read the
committed data.

NOTE: The REPEATABLE_READ isolation level can also be exercised using the method getForUpdate()
of TransactionalMap.

11.1.1 Queue/Set/List vs. Map/Multimap

Hazelcast implements queue/set/list operations differently than map/multimap operations. For queue operations
(offer, poll), offered and/or polled objects are copied to the owner member in order to safely commit/rollback. For
map/multimap, Hazelcast first acquires the locks for the write operations (put, remove) and holds the differences
(what is added/removed/updated) locally for each transaction. When the transaction is set to commit, Hazelcast
will release the locks and apply the differences. When rolling back, Hazelcast will release the locks and discard the
differences.

MapStore and QueueStore do not participate in transactions. Hazelcast will suppress exceptions thrown by store
in a transaction. Please refer to the XA Transactions section for further information.

11.1.2 ONE_PHASE vs. TWO_PHASE

As discussed in Creating a Transaction Interface, when you choose ONE_PHASE as the transaction type, Hazelcast
tracks all changes you make locally in a commit log, i.e. a list of changes. In this case, all the other members are
asked to agree that the commit can succeed and once they agree, Hazelcast starts to write the changes. However, if
the member that initiates the commit crashes after it has written to at least one member (but has not completed
writing to all other members), your system may be left in an inconsistent state.

On the other hand, if you choose TWO_PHASE as the transaction type, the commit log is again tracked locally
but it is copied to another cluster member. Therefore, when a failure happens (e.g. the member initiating the
commit crashes), you still have the commit log in another member and that member can complete the commit.
However, copying the commit log to another member makes the TWO_PHASE approach slow.

Consequently, it is recommended that you choose ONE_PHASE as the transaction type if you want a better
performance, and that you choose TWO_PHASE if reliability of your system is more important than the performance.

11.2. PROVIDING XA TRANSACTIONS 197

11.2 Providing XA Transactions

XA describes the interface between the global transaction manager and the local resource manager. XA allows
multiple resources (such as databases, application servers, message queues, transactional caches, etc.) to be accessed
within the same transaction, thereby preserving the ACID properties across applications. XA uses a two-phase
commit to ensure that all resources either commit or rollback any particular transaction consistently (all do the
same).

When you implement the XAResource interface, Hazelcast provides XA transactions. You can obtain the
HazelcastXAResource instance via the HazelcastInstance getXAResource method. You can see the Hazel-
castXAResource source code here.

Below is example code that uses Atomikos for transaction management.

UserTransactionManager tm = new UserTransactionManager();
tm.setTransactionTimeout(60);
tm.begin();

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = hazelcastInstance.getXAResource();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);
// other resources (database, app server etc...) can be enlisted

try {
TransactionContext context = xaResource.getTransactionContext();
TransactionalMap map = context.getMap("m");
map.put("key", "value");
// other resource operations

transaction.delistResource(xaResource, XAResource.TMSUCCESS);
tm.commit();

} catch (Exception e) {
tm.rollback();

}

11.3 Integrating into J2EE

You can integrate Hazelcast into J2EE containers via the Hazelcast Resource Adapter (hazelcast-jca-rar-version.rar).
After proper configuration, Hazelcast can participate in standard J2EE transactions.

<%@page import="javax.resource.ResourceException" %>
<%@page import="javax.transaction.*" %>
<%@page import="javax.naming.*" %>
<%@page import="javax.resource.cci.*" %>
<%@page import="java.util.*" %>
<%@page import="com.hazelcast.core.*" %>
<%@page import="com.hazelcast.jca.*" %>

<%
UserTransaction txn = null;
HazelcastConnection conn = null;
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

try {
Context context = new InitialContext();

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/HazelcastXAResource.java
https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/HazelcastXAResource.java

198 CHAPTER 11. TRANSACTIONS

txn = (UserTransaction) context.lookup("java:comp/UserTransaction");
txn.begin();

HazelcastConnectionFactory cf = (HazelcastConnectionFactory)
context.lookup ("java:comp/env/HazelcastCF");

conn = cf.getConnection();

TransactionalMap<String, String> txMap = conn.getTransactionalMap("default");
txMap.put("key", "value");

txn.commit();

} catch (Throwable e) {
if (txn != null) {
try {

txn.rollback();
} catch (Exception ix) {
ix.printStackTrace();

};
}
e.printStackTrace();

} finally {
if (conn != null) {
try {

conn.close();
} catch (Exception ignored) {};

}
}
%>

Sometimes Hazelcast class loader might not be able to find the classes you provide, i.e. your class loader might
be different than that of Hazelcast. In this case, you need to specify the class loader through Config to be used
internally by Hazelcast.

Assume that Hazelcast is embedded in a container and you want to run your own Runnable through
IExecutorService. Here, Hazelcast class loader and your class loader are different. Therefore, Hazelcast class
loader does not know your Runnable class. You need to tell Hazelcast to use a specified class loader to lookup classes
internally. A sample code line for this could be config.setClassLoader(getClass().getClassLoader()).

11.3.1 Sample Code for J2EE Integration

Please see our sample application for J2EE Integration.

11.3.2 Configuring Resource Adapter

Deploying and configuring the Hazelcast resource adapter is no different than configuring any other resource
adapter since the Hazelcast resource adapter is a standard JCA one. However, resource adapter installation and
configuration is container specific, so please consult your J2EE vendor documentation for details. The most common
steps are:

1. Add the hazelcast-version.jar and hazelcast-jca-version.jar to the container’s classpath. Usually there
is a lib directory that is loaded automatically by the container on startup.

2. Deploy hazelcast-jca-rar-version.rar. Usually there is some kind of a deploy directory. The name of the
directory varies by container.

3. Make container specific configurations when/after deploying hazelcast-jca-rar-version.rar. In addition
to container specific configurations, set the JNDI name for the Hazelcast resource.

11.3. INTEGRATING INTO J2EE 199

4. Configure your application to use the Hazelcast resource. Update web.xml and/or ejb-jar.xml to let the
container know that your application will use the Hazelcast resource, and define the resource reference.

5. Make the container specific application configuration to specify the JNDI name used for the resource in the
application.

11.3.3 Configuring a Glassfish v3 Web Application

To configure an example Glassfish v3 web application:

1. Place the hazelcast-version.jar and hazelcast-jca-version.jar into the GLASSFISH_HOME/glassfish/
domains/domain1/lib/ext/ folder.

2. Place the hazelcast-jca-rar-version.rar into GLASSFISH_HOME/glassfish/domains/domain1/autodeploy/
folder.

3. Add the following lines to the web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Notice that we did not have to put sun-ra.xml into the RAR file since it already comes with the
hazelcast-ra-version.rar file.

If the Hazelcast resource is used from EJBs, you should configure ejb-jar.xml for resource reference and JNDI
definitions, just like for the web.xml file.

11.3.4 Configuring a JBoss AS 5 Web Application

To configure a JBoss AS 5 web application:

• Place the hazelcast-version.jar and hazelcast-jca-version.jar into the JBOSS_HOME/server/deploy/
default/lib folder.

• Place the hazelcast-jca-rar-version.rar into the JBOSS_HOME/server/deploy/default/deploy folder.
• Create a hazelcast-ds.xml file containing the following content in the JBOSS_HOME/server/deploy/default/deploy
folder. Make sure to set the rar-name element to hazelcast-ra-version.rar.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connection-factories
PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN"
"http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>
<tx-connection-factory>
<local-transaction/>
<track-connection-by-tx>true</track-connection-by-tx>
<jndi-name>HazelcastCF</jndi-name>
<rar-name>hazelcast-jca-rar-<version>.rar</rar-name>
<connection-definition>

javax.resource.cci.ConnectionFactory
</connection-definition>

</tx-connection-factory>
</connection-factories>

• Add the following lines to the web.xml file.

200 CHAPTER 11. TRANSACTIONS

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
<res-auth>Container</res-auth>

</resource-ref>

• Add the following lines to the jboss-web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<jndi-name>java:HazelcastCF</jndi-name>

</resource-ref>

If the Hazelcast resource is used from EJBs, you should configure ejb-jar.xml and jboss.xml for resource reference
and JNDI definitions.

11.3.5 Configuring a JBoss AS 7 / EAP 6 Web Application

Deploying on JBoss AS 7 or JBoss EAP 6 is a straightforward process. The steps you perform are shown below.
The only non-trivial step is the creation of a new JBoss module with Hazelcast libraries.

• Create the folder <jboss_home>/modules/system/layers/base/com/hazelcast/main.

• Place the hazelcast-<version>.jar and hazelcast-jca-<version>.jar into the folder you created in the
previous step.

• Create the file module.xml and place it in the same folder. This file should have the following content.

<module xmlns="urn:jboss:module:1.0" name="com.hazelcast">
<resources>
<resource-root path="."/>
<resource-root path="hazelcast-<version>.jar"/>
<resource-root path="hazelcast-jca-<version>.jar"/>

</resources>
<dependencies>
<module name="sun.jdk"/>
<module name="javax.api"/>
<module name="javax.resource.api"/>
<module name="javax.validation.api"/>
<module name="org.jboss.ironjacamar.api"/>

</dependencies>
</module>

11.3.5.1 Starting JBoss

At this point, you have a new JBoss module with Hazelcast in it. You can now start JBoss and deploy the
hazelcast-jca-rar-<version>.rar file via JBoss CLI or Administration Console.

11.3.5.2 Using the Resource Adapter

Once the Hazelcast Resource Adapter is deployed, you can start using it. The easiest way is to let a container
inject ConnectionFactory into your beans.

11.3. INTEGRATING INTO J2EE 201

package com.hazelcast.examples.rar;

import com.hazelcast.core.TransactionalMap;
import com.hazelcast.jca.HazelcastConnection;

import javax.annotation.Resource;
import javax.resource.ResourceException;
import javax.resource.cci.ConnectionFactory;
import java.util.logging.Level;
import java.util.logging.Logger;

@javax.ejb.Stateless
public class ExampleBean implements ExampleInterface {

private final static Logger log = Logger.getLogger(ExampleBean.class.getName());

@Resource(mappedName = "java:/HazelcastCF")
protected ConnectionFactory connectionFactory;

public void insert(String key, String value) {
HazelcastConnection hzConn = null;
try {

hzConn = getConnection();
TransactionalMap<String,String> txmap = hzConn.getTransactionalMap("txmap");
txmap.put(key, value);

} finally {
closeConnection(hzConn);

}
}

private HazelcastConnection getConnection() {
try {

return (HazelcastConnection) connectionFactory.getConnection();
} catch (ResourceException e) {

throw new RuntimeException("Error while getting Hazelcast connection", e);
}

}

private void closeConnection(HazelcastConnection hzConn) {
if (hzConn != null) {

try {
hzConn.close();

} catch (ResourceException e) {
log.log(Level.WARNING, "Error while closing Hazelcast connection.", e);

}
}

}
}

11.3.5.3 Known Issues

• There is a regression in JBoss EAP 6.1.0 causing failure during Hazelcast Resource Adapter deployment. The
issue is fixed in JBoss EAP 6.1.1. Please see this for additional details.

202 CHAPTER 11. TRANSACTIONS

Chapter 12

Hazelcast JCache

This chapter describes the basics of JCache: the standardized Java caching layer API. The JCache caching API is
specified by the Java Community Process (JCP) as Java Specification Request (JSR) 107.

Caching keeps data in memory that either are slow to calculate/process or originate from another underlying
backend system. Caching is used to prevent additional request round trips for frequently used data. In both cases,
caching could be used to gain performance or decrease application latencies.

12.1 JCache Overview

Starting with Hazelcast release 3.3.1, Hazelcast offers a specification compliant JCache implementation. To show
our commitment to this important specification that the Java world was waiting for over a decade, we do not just
provide a simple wrapper around our existing APIs; we implemented a caching structure from the ground up to
optimize the behavior to the needs of JCache. The Hazelcast JCache implementation is 100% TCK (Technology
Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost all operations to
give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup Hazelcast to be
your JCache provider. It also shows examples of basic JCache usage as well as the additionally offered features
that are not part of JSR-107. To gain a full understanding of the JCache functionality and provided guarantees of
different operations, read the specification document (which is also the main documentation for functionality) at
the specification page of JSR-107.

12.2 JCache Setup and Configuration

This sub-chapter shows what is necessary to provide the JCache API and the Hazelcast JCache implementation for
your application. In addition, it demonstrates the different configuration options as well as a description of the
configuration properties.

12.2.1 Setting up Your Application

To provide your application with this JCache functionality, your application needs the JCache API inside its
classpath. This API is the bridge between the specified JCache standard and the implementation provided by
Hazelcast.

The way to integrate the JCache API JAR into the application classpath depends on the build system used. For
Maven, Gradle, SBT, Ivy and many other build systems, all using Maven based dependency repositories, perform
the integration by adding the Maven coordinates to the build descriptor.

203

204 CHAPTER 12. HAZELCAST JCACHE

As already mentioned, next to the default Hazelcast coordinates that might be already part of the application, you
have to add JCache coordinates.

For Maven users, the coordinates look like the following code:

<dependency>
<groupId>javax.cache</groupId>
<artifactId>cache-api</artifactId>
<version>1.0.0</version>

</dependency>

With other build systems, you might need to describe the coordinates in a different way.

12.2.1.1 Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all.jar or hazelcast.jar
to the classpath (if not already available) by either one of the following Maven snippets.

If you use hazelcast-all.jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-all</artifactId>
<version>"your Hazelcast version, e.g. 3.6.2"</version>

</dependency>

If you use hazelcast.jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>"your Hazelcast version, e.g. 3.6.2"</version>

</dependency>

The users of other build systems have to adjust the way of defining the dependency to their needs.

12.2.1.2 Connecting Clients to Remote Member

When the users want to use Hazelcast clients to connect to a remote cluster, the hazelcast-client.jar dependency
is also required on the client side applications. This JAR is already included in hazelcast-all.jar. Or, you can
add it to the classpath using the following Maven snippet:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-client</artifactId>
<version>"your Hazelcast version, e.g. 3.6.2"</version>

</dependency>

For other build systems, e.g. ANT, the users have to download these dependencies from either the JSR-107
specification and Hazelcast community website (http://www.hazelcast.org) or from the Maven repository search
page (http://search.maven.org).

12.2. JCACHE SETUP AND CONFIGURATION 205

12.2.2 Example JCache Application

Before moving on to configuration, let’s have a look at a basic introductory example. The following code shows how
to use the Hazelcast JCache integration inside an application in an easy but typesafe way.

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast member or client provider
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache
CompleteConfiguration<String, String> config =

new MutableConfiguration<String, String>()
.setTypes(String.class, String.class);

// Create and get the cache
Cache<String, String> cache = cacheManager.createCache("example", config);
// Alternatively to request an already existing cache
// Cache<String, String> cache = cacheManager
// .getCache(name, String.class, String.class);

// Put a value into the cache
cache.put("world", "Hello World");

// Retrieve the value again from the cache
String value = cache.get("world");

// Print the value ’Hello World’
System.out.println(value);

Although the example is simple, let’s go through the code lines one by one.

12.2.2.1 Getting the Hazelcast JCache Implementation

First of all, we retrieve the javax.cache.spi.CachingProvider using the static method from javax.cache.Caching::
getCachingManager which automatically picks up Hazelcast as the underlying JCache implementation, if available
in the classpath. This way, the Hazelcast implementation of a CachingProvider will automatically start a new
Hazelcast node or client (depending on the chosen provider type) and pick up the configuration from either the
command line parameter or from the classpath. We will show how to use an existing HazelcastInstance later in
this chapter, for now we keep it simple.

12.2.2.2 Setting up the JCache Entry Point

In the next line, we ask the CachingProvider to return a javax.cache.CacheManager. This is the general
application’s entry point into JCache. The CachingProvider creates and manages named caches.

12.2.2.3 Configuring the Cache Before Creating It

The next few lines create a simple javax.cache.configuration.MutableConfiguration to configure the cache
before actually creating it. In this case, we only configure the key and value types to make the cache typesafe which
is highly recommended and checked on retrieval of the cache.

206 CHAPTER 12. HAZELCAST JCACHE

12.2.2.4 Creating the Cache

To create the cache, we call javax.cache.CacheManager::createCache with a name for the cache and the
previously created configuration; the call returns the created cache. If you need to retrieve a previously created
cache, you can use the corresponding method overload javax.cache.CacheManager::getCache. If the cache was
created using type parameters, you must retrieve the cache afterward using the type checking version of getCache.

12.2.2.5 get, put, and getAndPut

The following lines are simple put and get calls from the java.util.Map interface. The javax.cache.Cache::put
has a void return type and does not return the previously assigned value of the key. To imitate the
java.util.Map::put method, the JCache cache has a method called getAndPut.

12.2.3 Configuring for JCache

Hazelcast JCache provides two different ways for you to perform cache configuration:

• programmatically: the typical Hazelcast way, using the Config API seen above,
• and declaratively: using hazelcast.xml or hazelcast-client.xml.

12.2.3.1 JCache Declarative Configuration

You can declare your JCache cache configuration using the hazelcast.xml or hazelcast-client.xml configuration
files. Using this declarative configuration makes creating the javax.cache.Cache fully transparent and automatically
ensures internal thread safety. You do not need a call to javax.cache.Cache::createCache in this case: you
can retrieve the cache using javax.cache.Cache::getCache overloads and by passing in the name defined in the
configuration for the cache.

To retrieve the cache that you defined in the declaration files, you need only perform a simple call (example below)
because the cache is created automatically by the implementation.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager

.getCache("default", Object.class, Object.class);

Note that this section only describes the JCache provided standard properties. For the Hazelcast specific properties,
please see the ICache Configuration section.

<cache name="default">
<key-type class-name="java.lang.Object" />
<value-type class-name="java.lang.Object" />
<statistics-enabled>false</statistics-enabled>
<management-enabled>false</management-enabled>

<read-through>true</read-through>
<write-through>true</write-through>
<cache-loader-factory

class-name="com.example.cache.MyCacheLoaderFactory" />
<cache-writer-factory

class-name="com.example.cache.MyCacheWriterFactory" />
<expiry-policy-factory

class-name="com.example.cache.MyExpirePolicyFactory" />

<cache-entry-listeners>

12.2. JCACHE SETUP AND CONFIGURATION 207

<cache-entry-listener old-value-required="false" synchronous="false">
<cache-entry-listener-factory

class-name="com.example.cache.MyEntryListenerFactory" />
<cache-entry-event-filter-factory

class-name="com.example.cache.MyEntryEventFilterFactory" />
</cache-entry-listener>
...

</cache-entry-listeners>
</cache>

• key-type#class-name: Fully qualified class name of the cache key type. Its default value is
java.lang.Object.

• value-type#class-name: Fully qualified class name of the cache value type. Its default value is
java.lang.Object.

• statistics-enabled: If set to true, statistics like cache hits and misses are collected. Its default value is
false.

• management-enabled: If set to true, JMX beans are enabled and collected statistics are provided. It doesn’t
automatically enable statistics collection. Defaults to false.

• read-through: If set to true, enables read-through behavior of the cache to an underlying configured
javax.cache.integration.CacheLoader which is also known as lazy-loading. Its default value is false.

• write-through: If set to true, enables write-through behavior of the cache to an underlying configured
javax.cache.integration.CacheWriter which passes any changed value to the external backend resource.
Its default value is false.

• cache-loader-factory#class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheLoader instance to the cache.

• cache-writer-factory#class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheWriter instance to the cache.

• expiry-policy-factory#-class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.expiry.ExpiryPolicy instance to the cache.

• cache-entry-listener: A set of attributes and elements, explained below, to describe a javax.cache.event.
CacheEntryListener.

– cache-entry-listener#old-value-required: If set to true, previously assigned values for the af-
fected keys will be sent to the javax.cache.event.CacheEntryListener implementation. Setting this
attribute to true creates additional traffic. Its default value is false.

– cache-entry-listener#synchronous: If set to true, the javax.cache.event.CacheEntryListener
implementation will be called in a synchronous manner. Its default value is false.

– cache-entry-listener/entry-listener-factory#class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a javax.cache.event.CacheEntryListener
instance.

– cache-entry-listener/entry-event-filter-factory#class-name: Fully qualified class name
of the javax.cache.configuration.Factory implementation providing a javax.cache.event.
CacheEntryEventFilter instance.

NOTE: The JMX MBeans provided by Hazelcast JCache show statistics of the local node only. To show
the cluster-wide statistics, the user should collect statistic information from all nodes and accumulate them to the
overall statistics.

12.2.3.2 JCache Programmatic Configuration

To configure the JCache programmatically:

• either instantiate javax.cache.configuration.MutableConfiguration if you will use only the JCache
standard configuration,

• or instantiate com.hazelcast.config.CacheConfig for a deeper Hazelcast integration.

208 CHAPTER 12. HAZELCAST JCACHE

com.hazelcast.config.CacheConfig offers additional options that are specific to Hazelcast, such as asynchronous
and synchronous backup counts. Both classes share the same supertype interface javax.cache.configuration.
CompleteConfiguration which is part of the JCache standard.

NOTE: To stay vendor independent, try to keep your code as near as possible to the standard JCache API. We
recommend that you use declarative configuration and that you use the javax.cache.configuration.Configuration
or javax.cache.configuration.CompleteConfiguration interfaces in your code only when you need to pass the
configuration instance throughout your code.

If you don’t need to configure Hazelcast specific properties, we recommend that you instantiate javax.cache.configuration.MutableConfiguration
and that you use the setters to configure Hazelcast as shown in the example in the Example JCache Application
section. Since the configurable properties are the same as the ones explained in the JCache Declarative Configuration
section, they are not mentioned here. For Hazelcast specific properties, please read the ICache Configuration
section section.

12.3 JCache Providers

Use JCache providers to create caches for a specification compliant implementation. Those providers abstract the
platform specific behavior and bindings, and provide the different JCache required features.

Hazelcast has two types of providers. Depending on your application setup and the cluster topology, you can use
the Client Provider (used by Hazelcast clients) or the Server Provider (used by cluster members).

12.3.1 Configuring JCache Provider

You configure the JCache javax.cache.spi.CachingProvider by either specifying the provider at the command
line or by declaring the provider inside the Hazelcast configuration XML file. For more information on setting
properties in this XML configuration file, please see the JCache Declarative Configuration section.

Hazelcast implements a delegating CachingProvider that can automatically be configured for either client or
member mode and that delegates to the real underlying implementation based on the user’s choice. Hazelcast
recommends that you use this CachingProvider implementation.

The delegating CachingProviders fully qualified class name is:

com.hazelcast.cache.HazelcastCachingProvider

To configure the delegating provider at the command line, add the following parameter to the Java startup call,
depending on the chosen provider:

-Dhazelcast.jcache.provider.type=[client|server]

By default, the delegating CachingProvider is automatically picked up by the JCache SPI and provided as
shown above. In cases where multiple javax.cache.spi.CachingProvider implementations reside on the
classpath (like in some Application Server scenarios), you can select a CachingProvider by explicitly calling
Caching::getCachingProvider overloads and providing them using the canonical class name of the provider to
be used. The class names of member and client providers provided by Hazelcast are mentioned in the following two
subsections.

NOTE: Hazelcast advises that you use the Caching::getCachingProvider overloads to select a
CachingProvider explicitly. This ensures that uploading to later environments or Application Server versions
doesn’t result in unexpected behavior like choosing a wrong CachingProvider.

For more information on cluster topologies and Hazelcast clients, please see the Hazelcast Topology section.

12.4. JCACHE API 209

12.3.2 Configuring JCache with Client Provider

For cluster topologies where Hazelcast light clients are used to connect to a remote Hazelcast cluster, use the Client
Provider to configure JCache.

The Client Provider provides the same features as the Server Provider. However, it does not hold data on its own
but instead delegates requests and calls to the remotely connected cluster.

The Client Provider can connect to multiple clusters at the same time. This can be achieved by scoping the client
side CacheManager with different Hazelcast configuration files. For more information, please see Scoping to Join
Clusters.

To request this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.client.cache.impl.HazelcastClientCachingProvider

12.3.3 Configuring JCache with Server Provider

If a Hazelcast node is embedded into an application directly and the Hazelcast client is not used, the Server Provider
is required. In this case, the node itself becomes a part of the distributed cache and requests and operations are
distributed directly across the cluster by its given key.

The Server Provider provides the same features as the Client provider, but it keeps data in the local Hazelcast node
and also distributes non-owned keys to other direct cluster members.

Like the Client Provider, the Server Provider can connect to multiple clusters at the same time. This can be
achieved by scoping the client side CacheManager with different Hazelcast configuration files. For more information
please see Scoping to Join Clusters.

To request this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.cache.impl.HazelcastServerCachingProvider

12.4 JCache API

This section explains the JCache API by providing simple examples and use cases. While walking through the
examples, we will have a look at a couple of the standard API classes and see how these classes are used.

12.4.1 JCache API Application Example

The code in this subsection creates a small account application by providing a caching layer over an imagined
database abstraction. The database layer will be simulated using single demo data in a simple DAO interface. To
show the difference between the “database” access and retrieving values from the cache, a small waiting time is
used in the DAO implementation to simulate network and database latency.

12.4.1.1 Creating User Class Example

Before we implement the JCache caching layer, let’s have a quick look at some basic classes we need for this
example.

The User class is the representation of a user table in the database. To keep it simple, it has just two properties:
userId and username.

210 CHAPTER 12. HAZELCAST JCACHE

public class User {
private int userId;
private String username;

// Getters and setters
}

12.4.1.2 Creating DAO Interface Example

The DAO interface is also kept easy in this example. It provides a simple method to retrieve (find) a user by its
userId.

public interface UserDAO {
User findUserById(int userId);
boolean storeUser(int userId, User user);
boolean removeUser(int userId);
Collection<Integer> allUserIds();

}

12.4.1.3 Configuring JCache Example

To show most of the standard features, the configuration example is a little more complex.

// Create javax.cache.configuration.CompleteConfiguration subclass
CompleteConfiguration<Integer, User> config =

new MutableConfiguration<Integer, User>()
// Configure the cache to be typesafe
.setTypes(Integer.class, User.class)
// Configure to expire entries 30 secs after creation in the cache
.setExpiryPolicyFactory(FactoryBuilder.factoryOf(

new AccessedExpiryPolicy(new Duration(TimeUnit.SECONDS, 30))
))
// Configure read-through of the underlying store
.setReadThrough(true)
// Configure write-through to the underlying store
.setWriteThrough(true)
// Configure the javax.cache.integration.CacheLoader
.setCacheLoaderFactory(FactoryBuilder.factoryOf(

new UserCacheLoader(userDao)
))
// Configure the javax.cache.integration.CacheWriter
.setCacheWriterFactory(FactoryBuilder.factoryOf(

new UserCacheWriter(userDao)
))
// Configure the javax.cache.event.CacheEntryListener with no
// javax.cache.event.CacheEntryEventFilter, to include old value
// and to be executed synchronously
.addCacheEntryListenerConfiguration(

new MutableCacheEntryListenerConfiguration<Integer, User>(
new UserCacheEntryListenerFactory(),
null, true, true

)
);

Let’s go through this configuration line by line.

12.4. JCACHE API 211

12.4.1.3.1 Setting the Cache Type and Expire Policy First, we set the expected types for the cache, which
is already known from the previous example. On the next line, an javax.cache.expiry.ExpirePolicy is configured.
Almost all integration ExpirePolicy implementations are configured using javax.cache.configuration.Factory
instances. Factory and FactoryBuilder are explained later in this chapter.

12.4.1.3.2 Configuring Read-Through and Write-Through The next two lines configure the thread that
will be read-through and write-through to the underlying backend resource that is configured over the next few lines.
The JCache API offers javax.cache.integration.CacheLoader and javax.cache.integration.CacheWriter
to implement adapter classes to any kind of backend resource, e.g. JPA, JDBC, or any other backend technology
implementable in Java. The interfaces provides the typical CRUD operations like create, get, update, delete
and some bulk operation versions of those common operations. We will look into the implementation of those
implementations later.

12.4.1.3.3 Configuring Entry Listeners The last configuration setting defines entry listeners based on sub-
interfaces of javax.cache.event.CacheEntryListener. This config does not use a javax.cache.event.CacheEntryEventFilter
since the listener is meant to be fired on every change that happens on the cache. Again we will look in the
implementation of the listener in later in this chapter.

12.4.1.3.4 Full Example Code A full running example that is presented in this subsection is available in
the code samples repository. The application is built to be a command line app. It offers a small shell to accept
different commands. After startup, you can enter help to see all available commands and their descriptions.

12.4.2 JCache Base Classes

In the Example JCache Application section, we have already seen a couple of the base classes and explained how
those work. Following are quick descriptions of them.

javax.cache.Caching:

The access point into the JCache API. It retrieves the general CachingProvider backed by any compliant JCache
implementation, such as Hazelcast JCache.

javax.cache.spi.CachingProvider:

The SPI that is implemented to bridge between the JCache API and the implementation itself. Hazelcast nodes
and clients use different providers chosen as seen in the Configuring JCache Provider section which enable the
JCache API to interact with Hazelcast clusters.

When a javax.cache.spi.CachingProvider::getCacheManager overload is used that takes a java.lang.ClassLoader
argument, this classloader will be part of the scope of the created java.cache.Cache and it is not possible to
retrieve it on other nodes. We advise not to use those overloads, those are not meant to be used in distributed
environments!

javax.cache.CacheManager:

The CacheManager provides the capability to create new and manage existing JCache caches.

NOTE: A javax.cache.Cache instance created with key and value types in the configuration provides a
type checking of those types at retrieval of the cache. For that reason, all non-types retrieval methods like getCache
throw an exception because types cannot be checked.

javax.cache.configuration.Configuration, javax.cache.configuration.MutableConfiguration:

These two classes are used to configure a cache prior to retrieving it from a CacheManager. The Configuration inter-
face, therefore, acts as a common super type for all compatible configuration classes such as MutableConfiguration.

Hazelcast itself offers a special implementation (com.hazelcast.config.CacheConfig) of the Configuration
interface which offers more options on the specific Hazelcast properties that can be set to configure features like
synchronous and asynchronous backups counts or selecting the underlying In Memory Format of the cache. For
more information on this configuration class, please see the reference in JCache Programmatic Configuration section.

212 CHAPTER 12. HAZELCAST JCACHE

javax.cache.Cache:

This interface represents the cache instance itself. It is comparable to java.util.Map but offers special operations
dedicated to the caching use case. Therefore, for example javax.cache.Cache::put, unlike java.util.Map::put,
does not return the old value previously assigned to the given key.

NOTE: Bulk operations on the Cache interface guarantee atomicity per entry but not over all given keys in
the same bulk operations since no transactional behavior is applied over the whole batch process.

12.4.3 Implementing Factory and FactoryBuilder

The javax.cache.configuration.Factory implementations configure features like CacheEntryListener,
ExpirePolicy and CacheLoaders or CacheWriters. These factory implementations are required to distribute the
different features to nodes in a cluster environment like Hazelcast. Therefore, these factory implementations have
to be serializable.

Factory implementations are easy to do: they follow the default Provider- or Factory-Pattern. The sample class
UserCacheEntryListenerFactory shown below implements a custom JCache Factory.

public class UserCacheEntryListenerFactory
implements Factory<CacheEntryListener<Integer, User>> {

@Override
public CacheEntryListener<Integer, User> create() {

// Just create a new listener instance
return new UserCacheEntryListener();

}
}

To simplify the process for the users, JCache API offers a set of helper methods collected in javax.cache.
configuration.FactoryBuilder. In the above configuration example, FactoryBuilder::factoryOf creates a
singleton factory for the given instance.

12.4.4 Implementing CacheLoader

javax.cache.integration.CacheLoader loads cache entries from any external backend resource.

12.4.4.1 Cache read-through

If the cache is configured to be read-through, then CacheLoader::load is called transparently from the cache
when the key or the value is not yet found in the cache. If no value is found for a given key, it returns null.

If the cache is not configured to be read-through, nothing is loaded automatically. The user code must call
javax.cache.Cache::loadAll to load data for the given set of keys into the cache.

For the bulk load operation (loadAll()), some keys may not be found in the returned result set. In this case, a
javax.cache.integration.CompletionListener parameter can be used as an asynchronous callback after all the
key-value pairs are loaded because loading many key-value pairs can take lots of time.

12.4.4.2 CacheLoader Example

Let’s look at the UserCacheLoader implementation. This implementation is quite straight forward.

• It implements CacheLoader.
• It overrides the load method to compute or retrieve the value corresponding to key.

12.4. JCACHE API 213

• It overrides the loadAll method to compute or retrieve the values corresponding to keys.

An important note is that any kind of exception has to be wrapped into javax.cache.integration.CacheLoaderException.

public class UserCacheLoader
implements CacheLoader<Integer, User>, Serializable {

private final UserDao userDao;

public UserCacheLoader(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

}

@Override
public User load(Integer key) throws CacheLoaderException {

// Just call through into the dao
return userDao.findUserById(key);

}

@Override
public Map<Integer, User> loadAll(Iterable<? extends Integer> keys)

throws CacheLoaderException {

// Create the resulting map
Map<Integer, User> loaded = new HashMap<Integer, User>();
// For every key in the given set of keys
for (Integer key : keys) {

// Try to retrieve the user
User user = userDao.findUserById(key);
// If user is not found do not add the key to the result set
if (user != null) {

loaded.put(key, user);
}

}
return loaded;

}
}

12.4.5 CacheWriter

You use a javax.cache.integration.CacheWriter to update an external backend resource. If the cache is
configured to be write-through, this process is executed transparently to the users code. Otherwise, there is
currently no way to trigger writing changed entries to the external resource to a user-defined point in time.

If bulk operations throw an exception, java.util.Collection has to be cleaned of all successfully written keys so
the cache implementation can determine what keys are written and can be applied to the cache state.

The following example performs the following tasks.

• It implements CacheWriter.
• It overrides the write method to write the specified entry to the underlying store.
• It overrides the writeAll method to write the specified entires to the underlying store.
• It overrides the delete method to delete the key entry from the store.
• It overrides the deleteAll method to delete the data and keys from the underlying store for the given
collection of keys, if present.

214 CHAPTER 12. HAZELCAST JCACHE

public class UserCacheWriter
implements CacheWriter<Integer, User>, Serializable {

private final UserDao userDao;

public UserCacheWriter(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

}

@Override
public void write(Cache.Entry<? extends Integer, ? extends User> entry)

throws CacheWriterException {

// Store the user using the dao
userDao.storeUser(entry.getKey(), entry.getValue());

}

@Override
public void writeAll(Collection<Cache.Entry<...>> entries)

throws CacheWriterException {

// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<Cache.Entry<...>> iterator = entries.iterator();
while (iterator.hasNext()) {

// Write entry using dao
write(iterator.next());
// Remove from collection of keys
iterator.remove();

}
}

@Override
public void delete(Object key) throws CacheWriterException {

// Test for key type
if (!(key instanceof Integer)) {
throw new CacheWriterException("Illegal key type");

}
// Remove user using dao
userDao.removeUser((Integer) key);

}

@Override
public void deleteAll(Collection<?> keys) throws CacheWriterException {

// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<?> iterator = keys.iterator();
while (iterator.hasNext()) {

// Write entry using dao
delete(iterator.next());
// Remove from collection of keys
iterator.remove();

}
}

}

Again the implementation is pretty straight forward and also as above all exceptions thrown by the external resource,

12.4. JCACHE API 215

like java.sql.SQLException has to be wrapped into a javax.cache.integration.CacheWriterException. Note
this is a different exception from the one thrown by CacheLoader.

12.4.6 Implementing EntryProcessor

With javax.cache.processor.EntryProcessor, you can apply an atomic function to a cache entry. In a distributed
environment like Hazelcast, you can move the mutating function to the node that owns the key. If the value object
is big, it might prevent traffic by sending the object to the mutator and sending it back to the owner to update it.

By default, Hazelcast JCache sends the complete changed value to the backup partition. Again, this can cause a lot
of traffic if the object is big. Another option to prevent this is part of the Hazelcast ICache extension. Further
information is available at Implementing BackupAwareEntryProcessor.

An arbitrary number of arguments can be passed to the Cache::invoke and Cache::invokeAll methods. All of
those arguments need to be fully serializable because in a distributed environment like Hazelcast, it is very likely
that these arguments have to be passed around the cluster.

The following example performs the following tasks.

• It implements EntryProcessor.
• It overrides the process method to process an entry.

public class UserUpdateEntryProcessor
implements EntryProcessor<Integer, User, User> {

@Override
public User process(MutableEntry<Integer, User> entry, Object... arguments)

throws EntryProcessorException {

// Test arguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username");

}

// Get first argument and test for String type
Object argument = arguments[0];
if (!(argument instanceof String)) {
throw new EntryProcessorException(

"First argument has wrong type, required java.lang.String");
}

// Retrieve the value from the MutableEntry
User user = entry.getValue();

// Retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// Set the new username
user.setUsername(newUsername);

// Set the changed user to mark the entry as dirty
entry.setValue(user);

// Return the changed user to return it to the caller
return user;

}
}

216 CHAPTER 12. HAZELCAST JCACHE

NOTE: By executing the bulk Cache::invokeAll operation, atomicity is only guaranteed for a single cache
entry. No transactional rules are applied to the bulk operation.

NOTE: JCache EntryProcessor implementations are not allowed to call javax.cache.Cache methods;
this prevents operations from deadlocking between different calls.

In addition, when using a Cache::invokeAll method, a java.util.Map is returned that maps the key to
its javax.cache.processor.EntryProcessorResult, and which itself wraps the actual result or a thrown
javax.cache.processor.EntryProcessorException.

12.4.7 CacheEntryListener

The javax.cache.event.CacheEntryListener implementation is straight forward. CacheEntryListener is a
super-interface which is used as a marker for listener classes in JCache. The specification brings a set of sub-interfaces.

• CacheEntryCreatedListener: Fires after a cache entry is added (even on read-through by a CacheLoader)
to the cache.

• CacheEntryUpdatedListener: Fires after an already existing cache entry was updates.
• CacheEntryRemovedListener: Fires after a cache entry was removed (not expired) from the cache.
• CacheEntryExpiredListener: Fires after a cache entry has been expired. Expiry does not have to be parallel
process, it is only required to be executed on the keys that are requested by Cache::get and some other
operations. For a full table of expiry please see the https://www.jcp.org/en/jsr/detail?id=107 point 6.

To configure CacheEntryListener, add a javax.cache.configuration.CacheEntryListenerConfiguration in-
stance to the JCache configuration class, as seen in the above example configuration. In addition listeners can be
configured to be executed synchronously (blocking the calling thread) or asynchronously (fully running in parallel).

In this example application, the listener is implemented to print event information on the console. That visualizes
what is going on in the cache. This application performs the following tasks:

• It implements CacheEntryCreatedListener.
• It implements the onCreated method to call after an entry is created.
• It implements the onUpdated method to call after an entry is updated.
• It implements the onRemoved method to call after an entry is removed.
• It implements the onExpired method to call after an entry expires.
• It implements printEvents to print event information on the console.

public class UserCacheEntryListener
implements CacheEntryCreatedListener<Integer, User>,

CacheEntryUpdatedListener<Integer, User>,
CacheEntryRemovedListener<Integer, User>,
CacheEntryExpiredListener<Integer, User> {

@Override
public void onCreated(Iterable<CacheEntryEvent<...>> cacheEntryEvents)

throws CacheEntryListenerException {

printEvents(cacheEntryEvents);
}

@Override
public void onUpdated(Iterable<CacheEntryEvent<...>> cacheEntryEvents)

throws CacheEntryListenerException {

printEvents(cacheEntryEvents);

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 217

}

@Override
public void onRemoved(Iterable<CacheEntryEvent<...>> cacheEntryEvents)

throws CacheEntryListenerException {

printEvents(cacheEntryEvents);
}

@Override
public void onExpired(Iterable<CacheEntryEvent<...>> cacheEntryEvents)

throws CacheEntryListenerException {

printEvents(cacheEntryEvents);
}

private void printEvents(Iterable<CacheEntryEvent<...>> cacheEntryEvents) {
Iterator<CacheEntryEvent<...>> iterator = cacheEntryEvents.iterator();
while (iterator.hasNext()) {

CacheEntryEvent<...> event = iterator.next();
System.out.println(event.getEventType());

}
}

}

12.4.8 ExpirePolicy

In JCache, javax.cache.expiry.ExpirePolicy implementations are used to automatically expire cache entries
based on different rules.

Expiry timeouts are defined using javax.cache.expiry.Duration, which is a pair of java.util.concurrent.TimeUnit,
which describes a time unit and a long, defining the timeout value. The minimum allowed TimeUnit is
TimeUnit.MILLISECONDS. The long value durationAmount must be equal or greater than zero. A value of zero (or
Duration.ZERO) indicates that the cache entry expires immediately.

By default, JCache delivers a set of predefined expiry strategies in the standard API.

• AccessedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on accessing the key.

• CreatedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is never updated.

• EternalExpiryPolicy: Never expires, this is the default behavior, similar to ExpiryPolicy to be set to null.
• ModifiedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on updating the key.

• TouchedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on accessing or updating the key.

Because EternalExpirePolicy does not expire cache entries, it is still possible to evict values from memory if an
underlying CacheLoader is defined.

12.5 Hazelcast JCache Extension - ICache

Hazelcast provides extension methods to Cache API through the interface com.hazelcast.cache.ICache.

It has two sets of extensions:

• Asynchronous version of all cache operations. See Async Operations.

218 CHAPTER 12. HAZELCAST JCACHE

• Cache operations with custom ExpiryPolicy parameter to apply on that specific operation. See Custom
ExpiryPolicy.

12.5.1 Scoping to Join Clusters

As mentioned before, you can scope a CacheManager in the case of client to connect to multiple clusters. In
the case of an embedded node, you can scope a CacheManager to join different clusters at the same time. This
process is called scoping. To apply scoping, request a CacheManager by passing a java.net.URI instance to
CachingProvider::getCacheManager. The java.net.URI instance must point to either a Hazelcast configuration
or to the name of a named com.hazelcast.core.HazelcastInstance instance.

NOTE: Multiple requests for the same java.net.URI result in returning a CacheManager instance that
shares the same HazelcastInstance as the CacheManager returned by the previous call.

12.5.1.1 Applying Configuration Scope

To connect or join different clusters, apply a configuration scope to the CacheManager. If the same URI is
used to request a CacheManager that was created previously, those CacheManagers share the same underlying
HazelcastInstance.

To apply a configuration scope, pass in the path of the configuration file using the location property
HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which resolves to hazelcast.config.location)
as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager(uri,
classLoader, properties) call.

Here is an example of using Configuration Scope.

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_CONFIG_LOCATION,

"classpath://my-configs/scoped-hazelcast.xml");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider::propertiesByLocation helper method.

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file
String configFile = "classpath://my-configs/scoped-hazelcast.xml";
Properties properties = HazelcastCachingProvider

.propertiesByLocation(configFile);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

The retrieved CacheManager is scoped to use the HazelcastInstance that was just created and was configured
using the given XML configuration file.

Available protocols for config file URL include classpath:// to point to a classpath location, file:// to point to
a filesystem location, http:// an https:// for remote web locations. In addition, everything that does not specify
a protocol is recognized as a placeholder that can be configured using a system property.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 219

String configFile = "my-placeholder";
Properties properties = HazelcastCachingProvider

.propertiesByLocation(configFile);

You can set this on the command line.

-Dmy-placeholder=classpath://my-configs/scoped-hazelcast.xml

NOTE: No check is performed to prevent creating multiple CacheManagers with the same cluster configuration
on different configuration files. If the same cluster is referred from different configuration files, multiple cluster
members or clients are created.

NOTE: The configuration file location will not be a part of the resulting identity of the CacheManager. An
attempt to create a CacheManager with a different set of properties but an already used name will result in undefined
behavior.

12.5.1.2 Binding to a Named Instance

You can bind CacheManager to an existing and named HazelcastInstance instance. If the instanceName is
specified in com.hazelcast.config.Config, it can be used directly by passing it to CachingProvider implemen-
tation. Otherwise (instanceName not set or instance is a client instance) you must get the instance name from
HazelcastInstance instance via the String getName() method to pass the CachingProvider implementation.
Please note that instanceName is not configurable for the client side HazelcastInstance instance and is auto-
generated by using group name (if it is specified). In general, String getName() method over HazelcastInstance
is safer and the preferable way to get the name of the instance. Multiple CacheManagers created using an equal
java.net.URI will share the same HazelcastInstance.

A named scope is applied nearly the same way as the configuration scope: pass in the instance name using the
HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to hazelcast.instance.name) prop-
erty as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager(uri,
classLoader, properties) call.

Here is an example of Named Instance Scope with specified name.

Config config = new Config();
config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,

"my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name.

Config config = new Config();
// Create a auto-generated named HazelcastInstance
HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);

220 CHAPTER 12. HAZELCAST JCACHE

String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,

instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name on client instance.

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("127.0.0.1", "127.0.0.2");

// Create a client side HazelcastInstance
HazelcastInstance instance = HazelcastClient.newHazelcastClient(clientConfig);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,

instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider::propertiesByInstanceName method.

Config config = new Config();
config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = HazelcastCachingProvider

.propertiesByInstanceName("my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider

.getCacheManager(cacheManagerName, null, properties);

NOTE: The instanceName will not be a part of the resulting identity of the CacheManager. An attempt to
create a CacheManager with a different set of properties but an already used name will result in undefined behavior.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 221

12.5.2 Namespacing

The java.net.URIs that don’t use the above mentioned Hazelcast specific schemes are recognized as names-
pacing. Those CacheManagers share the same underlying default HazelcastInstance created (or set) by the
CachingProvider, but they cache with the same names and different namespaces on the CacheManager level,
and therefore they won’t share the same data. This is useful where multiple applications might share the same
Hazelcast JCache implementation (e.g. on application or OSGi servers) but are developed by independent teams.
To prevent interfering on caches using the same name, every application can use its own namespace when retrieving
the CacheManager.

Here is an example of using namespacing.

CachingProvider cachingProvider = Caching.getCachingProvider();

URI nsApp1 = new URI("application-1");
CacheManager cacheManagerApp1 = cachingProvider.getCacheManager(nsApp1, null);

URI nsApp2 = new URI("application-2");
CacheManager cacheManagerApp2 = cachingProvider.getCacheManager(nsApp2, null);

That way both applications share the same HazelcastInstance instance but not the same caches.

12.5.3 Retrieving an ICache Instance

Besides Scoping to Join Clusters and Namespacing, which are implemented using the URI feature of the specification,
all other extended operations are required to retrieve the com.hazelcast.cache.ICache interface instance from
the JCache javax.cache.Cache instance. For Hazelcast, both interfaces are implemented on the same object
instance. It is recommended that you stay with the specification way to retrieve the ICache version, since ICache
might be subject to change without notification.

To retrieve or unwrap the ICache instance, you can execute the following code example:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager.getCache(...);

ICache<Object, Object> unwrappedCache = cache.unwrap(ICache.class);

After unwrapping the Cache instance into an ICache instance, you have access to all of the following operations,
e.g. ICache Async Methods and ICache Convenience Methods.

12.5.4 ICache Configuration

As mentioned in the JCache Declarative Configuration section, the Hazelcast ICache extension offers additional
configuration properties over the default JCache configuration. These additional properties include internal storage
format, backup counts, eviction policy and quorum reference.

The declarative configuration for ICache is a superset of the previously discussed JCache configuration:

<cache>
<!-- ... default cache configuration goes here ... -->
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<in-memory-format>BINARY</in-memory-format>
<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
<partition-lost-listeners>

<partition-lost-listener>CachePartitionLostListenerImpl</partition-lost-listener>

222 CHAPTER 12. HAZELCAST JCACHE

</partition-lost-listeners>
<quorum-ref>quorum-name</quorum-ref>
</cache>

• backup-count: Number of synchronous backups. Those backups are executed before the mutating cache
operation is finished. The mutating operation is blocked. backup-count default value is 1.

• async-backup-count: Number of asynchronous backups. Those backups are executed asynchronously so
the mutating operation is not blocked and it will be done immediately. async-backup-count default value is 0.

• in-memory-format: Internal storage format. For more information, please see the In Memory Format section.
Default is BINARY.

• eviction: Defines the used eviction strategies and sizes for the cache. For more information on eviction,
please see the JCache Eviction.

– size: Maximum number of records or maximum size in bytes depending on the max-size-policy
property. Size can be any integer between 0 and Integer.MAX_VALUE. Default max-size-policy is
ENTRY_COUNT and default size is 10.000.

– max-size-policy: Maximum size. If maximum size is reached, the cache is evicted based on the eviction
policy. Default max-size-policy is ENTRY_COUNT and default size is 10.000. The following eviction policies
are available:

∗ ENTRY_COUNT: Maximum number of cache entries in the cache. Available on heap based cache
record store only.

∗ USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes per cache for each
Hazelcast instance. Available on High-Density Memory cache record store only.

∗ USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory size percentage per cache for
each Hazelcast instance. Available on High-Density Memory cache record store only.

∗ FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size in megabytes for each Hazelcast
instance. Available on High-Density Memory cache record store only.

∗ FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory size percentage for each Hazelcast
instance. Available on High-Density Memory cache record store only.

– eviction-policy: Eviction policy which compares values to find the best matching eviction candidate.
Default is LRU.

∗ LRU: Less Recently Used - finds the best eviction candidate based on the lastAccessTime.
∗ LFU: Less Frequently Used - finds the best eviction candidate based on the number of hits.

• partition-lost-listeners : Defines listeners for dispatching partition lost events for the cache. For more
information, please see the ICache Partition Lost Listener section.

• quorum-ref : Name of quorum configuration that you want this cache to use.

Since javax.cache.configuration.MutableConfiguration misses the above additional configuration properties,
Hazelcast ICache extension provides an extended configuration class called com.hazelcast.config.CacheConfig.
This class is an implementation of javax.cache.configuration.CompleteConfiguration and all the properties
shown above can be configured using its corresponding setter methods.

NOTE: At the client side, ICache can be configured only programmatically.

12.5.5 ICache Async Methods

As another addition of Hazelcast ICache over the normal JCache specification, Hazelcast provides asynchronous
versions of almost all methods, returning a com.hazelcast.core.ICompletableFuture. By using these methods
and the returned future objects, you can use JCache in a reactive way by registering zero or more callbacks on the
future to prevent blocking the current thread.

The asynchronous versions of the methods append the phrase Async to the method name. The example code below
uses the method putAsync().

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 223

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
ICompletableFuture<String> future = unwrappedCache.putAsync(1, "value");
future.andThen(new ExecutionCallback<String>() {

public void onResponse(String response) {
System.out.println("Previous value: " + response);

}

public void onFailure(Throwable t) {
t.printStackTrace();

}
});

Following methods are available in asynchronous versions:

• get(key):

– getAsync(key)
– getAsync(key, expiryPolicy)

• put(key, value):

– putAsync(key, value)
– putAsync(key, value, expiryPolicy)

• putIfAbsent(key, value):

– putIfAbsentAsync(key, value)
– putIfAbsentAsync(key, value, expiryPolicy)

• getAndPut(key, value):

– getAndPutAsync(key, value)
– getAndPutAsync(key, value, expiryPolicy)

• remove(key):

– removeAsync(key)

• remove(key, value):

– removeAsync(key, value)

• getAndRemove(key):

– getAndRemoveAsync(key)

• replace(key, value):

– replaceAsync(key, value)
– replaceAsync(key, value, expiryPolicy)

• replace(key, oldValue, newValue):

– replaceAsync(key, oldValue, newValue)
– replaceAsync(key, oldValue, newValue, expiryPolicy)

• getAndReplace(key, value):

– getAndReplaceAsync(key, value)
– getAndReplaceAsync(key, value, expiryPolicy)

The methods with a given javax.cache.expiry.ExpiryPolicy are further discussed in the Defining a Custom
ExpiryPolicy.

NOTE: Asynchronous versions of the methods are not compatible with synchronous events.

224 CHAPTER 12. HAZELCAST JCACHE

12.5.6 Defining a Custom ExpiryPolicy

The JCache specification has an option to configure a single ExpiryPolicy per cache. Hazelcast ICache extension
offers the possibility to define a custom ExpiryPolicy per key by providing a set of method overloads with an
expirePolicy parameter, as in the list of asynchronous methods in the Async Methods section. This means that
you can pass custom expiry policies to a cache operation.

Here is how an ExpirePolicy is set on JCache configuration:

CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()

setExpiryPolicyFactory(
AccessedExpiryPolicy.factoryOf(Duration.ONE_MINUTE)

);

To pass a custom ExpirePolicy, a set of overloads is provided. You can use them as shown in the following code
example.

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
unwrappedCache.put(1, "value", new AccessedExpiryPolicy(Duration.ONE_DAY));

The ExpirePolicy instance can be pre-created, cached, and re-used, but only for each cache instance. This is
because ExpirePolicy implementations can be marked as java.io.Closeable. The following list shows the pro-
vided method overloads over javax.cache.Cache by com.hazelcast.cache.ICache featuring the ExpiryPolicy
parameter:

• get(key):

– get(key, expiryPolicy)

• getAll(keys):

– getAll(keys, expirePolicy)

• put(key, value):

– put(key, value, expirePolicy)

• getAndPut(key, value):

– getAndPut(key, value, expirePolicy)

• putAll(map):

– putAll(map, expirePolicy)

• putIfAbsent(key, value):

– putIfAbsent(key, value, expirePolicy)

• replace(key, value):

– replace(key, value, expirePolicy)

• replace(key, oldValue, newValue):

– replace(key, oldValue, newValue, expirePolicy)

• getAndReplace(key, value):

– getAndReplace(key, value, expirePolicy)

Asynchronous method overloads are not listed here. Please see ICache Async Methods for the list of asynchronous
method overloads.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 225

12.5.7 JCache Eviction

Caches are generally not expected to grow to an infinite size. Implementing an expiry policy is one way you can
prevent the infinite growth, but sometimes it is hard to define a meaningful expiration timeout. Therefore, Hazelcast
JCache provides the eviction feature. Eviction offers the possibility to remove entries based on the cache size or
amount of used memory (Hazelcast Enterprise Only) and not based on timeouts.

12.5.7.1 Eviction and Runtime

Since a cache is designed for high throughput and fast reads, Hazelcast put a lot of effort into designing the eviction
system to be as predictable as possible. All built-in implementations provide an amortized O(1) runtime. The
default operation runtime is rendered as O(1), but it can be faster than the normal runtime cost if the algorithm
finds an expired entry while sampling.

12.5.7.2 Cache Types

Most importantly, typical production systems have two common types of caches:

• Reference Caches: Caches for reference data are normally small and are used to speed up the de-referencing
as a lookup table. Those caches are commonly tend to be small and contain a previously known, fixed number
of elements (e.g. states of the USA or abbreviations of elements).

• Active DataSet Caches: The other type of caches normally caches an active data set. These caches run to
their maximum size and evict the oldest or not frequently used entries to keep in memory bounds. They sit
in front of a database or HTML generators to cache the latest requested data.

Hazelcast JCache eviction supports both types of caches using a slightly different approach based on the configured
maximum size of the cache. For detailed information, please see the Eviction Algorithm section.

12.5.7.3 Configuring Eviction Policies

Hazelcast JCache provides two commonly known eviction policies, LRU and LFU, but loosens the rules for predictable
runtime behavior. LRU, normally recognized as Least Recently Used, is implemented as Less Recently Used,
and LFU known as Least Frequently Used is implemented as Less Frequently Used. The details about this
difference is explained in the Eviction Algorithm section.

Eviction Policies are configured by providing the corresponding abbreviation to the configuration as shown in the
ICache Configuration section. As already mentioned, two built-in policies are available:

To configure the use of the LRU (Less Recently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />

And to configure the use of the LFU (Less Frequently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU" />

The default eviction policy is LRU. Therefore, Hazelcast JCache does not offer the possibility to perform no eviction.

12.5.7.4 Eviction Strategy

Eviction strategies implement the logic of selecting one or more eviction candidates from the underlying storage
implementation and passing them to the eviction policies. Hazelcast JCache provides an amortized O(1) cost
implementation for this strategy to select a fixed number of samples from the current partition that it is executed
against.

The default implementation is com.hazelcast.cache.impl.eviction.impl.strategy.sampling.SamplingBasedEvictionStrategy
which, as mentioned, samples random 15 elements. A detailed description of the algorithm will be explained in the
next section.

226 CHAPTER 12. HAZELCAST JCACHE

12.5.7.5 Eviction Algorithm

The Hazelcast JCache eviction algorithm is specially designed for the use case of high performance caches and with
predictability in mind. The built-in implementations provide an amortized O(1) runtime and therefore provide a
highly predictable runtime behavior which does not rely on any kind of background threads to handle the eviction.
Therefore, the algorithm takes some assumptions into account to prevent network operations and concurrent
accesses.

As an explanation of how the algorithm works, let’s examine the following flowchart step by step.

Figure 12.1: Eviction Flowchart for Hazelcast JCache

1. A new cache is created. Without any special settings, the eviction is configured to kick in when the cache
exceeds 10.000 elements and an LRU (Less Recently Used) policy is set up.

2. The user puts in a new entry (e.g. a key-value pair).
3. For every put, the eviction strategy evaluates the current cache size and decides if an eviction is necessary or

not. If not the entry is stored in step 10.
4. If eviction is required, a new sampling is started. The built-in sampler is implemented as an lazy iterator.
5. The sampling algorithm selects a random sample from the underlying data storage.
6. The eviction strategy tests the sampled entry to already be expired (lazy expiration). If expired, the sampling

stops and the entry is removed in step 9.
7. If not yet expired, the entry (eviction candidate) is compared to the last best matching candidate (based on

the eviction policy) and the new best matching candidate is remembered.
8. The sampling is repeated for 15 times and then the best matching eviction candidate is returned to the

eviction strategy.
9. The expired or best matching eviction candidate is removed from the underlying data storage.
10. The new put entry is stored.
11. The put operation returns to the user.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 227

As seen by the flowchart, the general eviction operation is easy. As long as the cache does not reach its maximum
capacity or you execute updates (put/replace), no eviction is executed.

To prevent network operations and concurrent access, as mentioned earlier, the cache size is estimated based on the
size of the currently handled partition. Due to the imbalanced partitions, the single partitions might start to evict
earlier than the other partitions.

As mentioned in the Cache Types section, typically two types of caches are found in the production systems. For
small caches, referred to as Reference Caches, the eviction algorithm has a special set of rules depending on the
maximum configured cache size. Please see the Reference Caches section for details. The other type of cache is
referred to as Active DataSet Cache, which in most cases makes heavy use of the eviction to keep the most active
data set in the memory. Those kinds of caches using a very simple but efficient way to estimate the cluster-wide
cache size.

All of the following calculations have a well known set of fixed variables:

• GlobalCapacity: User defined maximum cache size (cluster-wide).
• PartitionCount: Number of partitions in the cluster (defaults to 271).
• BalancedPartitionSize: Number of elements in a balanced partition state, BalancedPartitionSize :=
GlobalCapacity / PartitionCount.

• Deviation: An approximated standard deviation (tests proofed it to be pretty near), Deviation :=
sqrt(BalancedPartitionSize).

12.5.7.5.1 Reference Caches A Reference Cache is typically small and the number of elements to store in
the reference caches is normally known prior to creating the cache. Typical examples of reference caches are lookup
tables for abbreviations or the states of a country. They tend to have a fixed but small element number and the
eviction is an unlikely event and rather undesirable behavior.

Since an imbalanced partition is the worst problem in the small and mid-sized caches than for the caches with
millions of entries, the normal estimation rule (as discussed in a bit) is not applied to these kinds of caches. To
prevent unwanted eviction on the small and mid-sized caches, Hazelcast implements a special set of rules to estimate
the cluster size.

To adjust the imbalance of partitions as found in the typical runtime, the actual calculated maximum cache size (as
known as the eviction threshold) is slightly higher than the user defined size. That means more elements can be
stored into the cache than expected by the user. This needs to be taken into account especially for large objects,
since those can easily exceed the expected memory consumption!

Small caches:

If a cache is configured with no more than 4.000 element, this cache is considered to be a small cache. The actual
partition size is derived from the number of elements (GlobalCapacity) and the deviation using the following
formula:

MaxPartitionSize := Deviation * 5 + BalancedPartitionSize

This formula ends up with big partition sizes which summed up exceed the expected maximum cache size (set by
the user), but since the small caches typically have a well known maximum number of elements, this is not a big
issue. Only if the small caches are used for a use case other than using it as a reference cache, this needs to be
taken into account.

Mid-sized caches

A mid-sized cache is defined as a cache with a maximum number of elements that is bigger than 4.000 but not
bigger than 1.000.000 elements. The calculation of mid-sized caches is similar to that of the small caches but with
a different multiplier. To calculate the maximum number of elements per partition, the following formula is used:

MaxPartitionSize := Deviation * 3 + BalancedPartitionSize

228 CHAPTER 12. HAZELCAST JCACHE

12.5.7.5.2 Active DataSet Caches For large caches, where the maximum cache size is bigger than 1.000.000
elements, there is no additional calculation needed. The maximum partition size is considered to be equal to
BalancedPartitionSize since statistically big partitions are expected to almost balance themselves. Therefore,
the formula is as easy as the following:

MaxPartitionSize := BalancedPartitionSize

12.5.7.5.3 Cache Size Estimation As mentioned earlier, Hazelcast JCache provides an estimation algorithm
to prevent cluster-wide network operations, concurrent access to other partitions and background tasks. It also
offers a highly predictable operation runtime when the eviction is necessary.

The estimation algorithm is based on the previously calculated maximum partition size (please see the Reference
Caches section and Active DataSet Caches section) and is calculated against the current partition only.

The algorithm to reckon the number of stored entries in the cache (cluster-wide) and if the eviction is necessary is
shown in the following pseudo-code example:

RequiresEviction[Boolean] := CurrentPartitionSize >= MaxPartitionSize

12.5.8 JCache Near Cache

Cache entries in Hazelcast are stored as partitioned across the cluster. When you try to read a record with the
key k, if the current node is not the owner of that key (i.e. not the owner of partition that the key belongs to),
Hazelcast sends a remote operation to the owner node. Each remote operation means lots of network trips. If your
cache is used for mostly read operations, it is advised to use a near cache storage in front of the cache itself to read

cache records faster and consume less network traffic. NOTE: Near cache for JCache is only available for
clients NOT members.

However, using near cache comes with some trade-off for some cases:

• There will be extra memory consumption for storing near cache records at local.
• If invalidation is enabled and entries are updated frequently, there will be many invalidation events across the
cluster.

• Near cache does not give strong consistency but gives eventual consistency guarantees. It is possible to read
stale data.

12.5.8.1 Configuring Invalidation Event Sending

Invalidation is the process of removing an entry from the near cache since the entry is not valid anymore (its value
is updated or it is removed from actual cache). Near cache invalidation happens asynchronously at the cluster level,
but synchronously in real-time at the current node. This means when an entry is updated (explicitly or via entry
processor) or removed (deleted explicitly or via entry processor, evicted, expired), it is invalidated from all near
caches asynchronously within the whole cluster but updated/removed at/from the current node synchronously.
Generally, whenever the state of an entry changes in the record store by updating its value or removing it, the
invalidation event is sent for that entry.

Invalidation events can be sent either individually or in batches. If there are lots of mutating operations such as
put/remove on the cache, sending the events in batches is advised. This reduces the network traffic and keeps the
eventing system less busy.

You can use the following system properties to configure the sending of invalidation events in batches:

• hazelcast.cache.invalidation.batch.enabled: Specifies whether the cache invalidation event batch
sending is enabled or not. The default value is true.

• hazelcast.cache.invalidation.batch.size: Maximum number of cache invalidation events to be drained
and sent to the event listeners in a batch. The default value is 100.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 229

• hazelcast.cache.invalidation.batchfrequency.seconds: Cache invalidation event batch sending fre-
quency in seconds. When event size does not reach to hazelcast.cache.invalidation.batch.size in the
given time period, those events are gathered into a batch and sent to the target. The default value is 10
seconds.

So if there are so many clients or so many mutating operations, batching should remain enabled and the batch size
should be configured with the hazelcast.cache.invalidation.batch.size system property to a suitable value.

12.5.8.2 JCache Near Cache Expiration

Expiration means the eviction of expired records. A record is expired: - if it is not touched (accessed/read) for
<max-idle-seconds>, - <time-to-live-seconds> passed since it is put to near-cache.

Expiration is performed in two cases:

• When a record is accessed, it is checked about if it is expired or not. If it is expired, it is evicted and returns
null to caller.

• In the background, there is an expiration task that periodically (currently 5 seconds) scans records and evicts
the expired records.

12.5.8.3 Configuring JCache Near Cache Eviction

In the scope of near cache, eviction means evicting (clearing) the entries selected according to the given
eviction-policy when the specified max-size-policy has been reached. Eviction is handled with max-size
policy and eviction-policy elements. Please see Configuring JCache Near Cache.

12.5.8.3.1 max-size-policy This element defines the state when near cache is full and whether the eviction
should be triggered. The following policies for maximum cache size are supported by the near cache eviction:

• ENTRY_COUNT: Maximum size based on the entry count in the near cache. Available only for BINARY
and OBJECT in-memory formats.

• USED_NATIVE_MEMORY_SIZE: Maximum used native memory size of the specified near cache in
MB to trigger the eviction. If the used native memory size exceeds this threshold, the eviction is triggered.
Available only for NATIVE in-memory format. This is supported only by Hazelcast Enterprise.

• USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory percentage of the
specified near cache to trigger the eviction. If the native memory usage percentage (relative to maximum
native memory size) exceeds this threshold, the eviction is triggered. Available only for NATIVE in-memory
format. This is supported only by Hazelcast Enterprise.

• FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size of the specified near cache in
MB to trigger the eviction. If free native memory size goes down below of this threshold, eviction is triggered.
Available only for NATIVE in-memory format. This is supported only by Hazelcast Enterprise.

• FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory percentage of the spec-
ified near cache to trigger eviction. If free native memory percentage (relative to maximum native memory
size) goes down below of this threshold, eviction is triggered. Available only for NATIVE in-memory format.
This is supported only by Hazelcast Enterprise.

12.5.8.3.2 eviction-policy Once a near cache is full (reached to its maximum size as specified with the
max-size-policy element), an eviction policy determines which, if any, entries must be evicted. Currently, the
following eviction policies are supported by near cache eviction:

• LRU (Least Recently Used)
• LFU (Least Frequently Used)

230 CHAPTER 12. HAZELCAST JCACHE

12.5.8.4 Configuring JCache Near Cache

The following are example configurations for JCache near cache.
Declarative:

<hazelcast-client>
...
<near-cache name="myCache">

<in-memory-format>BINARY</in-memory-format>
<invalidate-on-change>true</invalidate-on-change>
<cache-local-entries>false</cache-local-entries>
<time-to-live-seconds>3600000</time-to-live-seconds>
<max-idle-seconds>600000</max-idle-seconds>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>

</near-cache>
...

</hazelcast-client>

Programmatic:

EvictionConfig evictionConfig = new EvictionConfig();
evictionConfig.setMaxSizePolicy(MaxSizePolicy.ENTRY_COUNT);
evictionConfig.setEvictionPolicy(EvictionPolicy.LFU);
evictionConfig.setSize(10000);

NearCacheConfig nearCacheConfig =
new NearCacheConfig()

.setName("myCache")

.setInMemoryFormat(InMemoryFormat.BINARY)

.setInvalidateOnChange(true)

.setCacheLocalEntries(false)

.setTimeToLiveSeconds(60 * 60 * 1000) // 1 hour TTL

.setMaxIdleSeconds(10 * 60 * 1000) // 10 minutes max idle seconds

.setEvictionConfig(evictionConfig);
...

clientConfig.addNearCacheConfig(nearCacheConfig);

The following are the definitions of the configuration elements and attributes.

• in-memory-format: Storage type of near cache entries. Available values are BINARY, OBJECT and
NATIVE_MEMORY. NATIVE_MEMORY is available only for Hazelcast Enterprise. Default value is BINARY.

• invalidate-on-change: Specifies whether the cached entries are evicted when the entries are changed
(updated or removed) on the local and global. Available values are true and false. Default value is true.

• cache-local-entries: Specifies whether the local cache entries are stored eagerly (immediately) to near
cache when a put operation from the local is performed on the cache. Available values are true and false.
Default value is false.

• time-to-live-seconds: Maximum number of seconds for each entry to stay in the near cache. Entries that
are older than <time-to-live-seconds> will be automatically evicted from the near cache. It can be any
integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default value is 0.

• max-idle-seconds: Maximum number of seconds each entry can stay in the near cache as untouched (not-
read). Entries that are not read (touched) more than <max-idle-seconds> value will be removed from the
near cache. It can be any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Default
is 0.

• eviction: Specifies when the eviction is triggered (max-size policy) and which eviction policy (LRU or LFU)
is used for the entries to be evicted. The default value for max-size-policy is ENTRY_COUNT, default size is
10000 and default eviction-policy is LRU. For High-Density Memory Store near cache, since ENTRY_COUNT
eviction policy is not supported yet, you must explicitly configure eviction with one of the supported policies:

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 231

– USED_NATIVE_MEMORY_SIZE
– USED_NATIVE_MEMORY_PERCENTAGE
– FREE_NATIVE_MEMORY_SIZE
– FREE_NATIVE_MEMORY_PERCENTAGE.

Near cache can be configured only at the client side.

NOTE: It is recommended to specify a time-to-live-seconds value to guarantee the eventual eviction of
invalidated near cache records.

12.5.8.5 Lookup for Client Near Cache Configuration

Near cache configuration can be defined at the client side (using hazelcast-client.xml or ClientConfig) as
independent configuration (independent from the CacheConfig). Near cache configuration lookup is handled as
described below:

• Look for near cache configuration with the name of the cache given in the client configuration.
• If a defined near cache configuration is found, use this near cache configuration defined at the client.
• Otherwise:

– If there is a defined default near cache configuration is found, use this default near cache configuration.
– If there is no default near cache configuration, it means there is no near cache configuration for cache.

12.5.9 ICache Convenience Methods

In addition to the operations explained in ICache Async Methods and Defining a Custom ExpiryPolicy, Hazelcast
ICache also provides a set of convenience methods. These methods are not part of the JCache specification.

• size(): Returns the estimated size of the distributed cache.
• destroy(): Destroys the cache and removes the data from memory. This is different from the method
javax.cache.Cache::close.

• getLocalCacheStatistics(): Returns a com.hazelcast.cache.CacheStatistics instance providing the
same statistics data as the JMX beans. This method is not available yet on Hazelcast clients: the exception
java.lang.UnsupportedOperationException is thrown when you use this method on a Hazelcast client.

12.5.10 Implementing BackupAwareEntryProcessor

Another feature, especially interesting for distributed environments like Hazelcast, is the JCache specified
javax.cache.processor.EntryProcessor. For more general information, please see the Implementing EntryPro-
cessor section.

Since Hazelcast provides backups of cached entries on other nodes, the default way to backup an object changed by
an EntryProcessor is to serialize the complete object and send it to the backup partition. This can be a huge
network overhead for big objects.

Hazelcast offers a sub-interface for EntryProcessor called com.hazelcast.cache.BackupAwareEntryProcessor.
This allows you to create or pass another EntryProcessor to run on backup partitions and apply delta changes to
the backup entries.

The backup partition EntryProcessor can either be the currently running processor (by returning this) or it
can be a specialized EntryProcessor implementation (other from the currently running one) which does different
operations or leaves out operations, e.g. sending emails.

If we again take the EntryProcessor example from the demonstration application provided in the Implementing
EntryProcessor section, the changed code will look like the following snippet.

232 CHAPTER 12. HAZELCAST JCACHE

public class UserUpdateEntryProcessor
implements BackupAwareEntryProcessor<Integer, User, User> {

@Override
public User process(MutableEntry<Integer, User> entry, Object... arguments)

throws EntryProcessorException {

// Test arguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username");

}

// Get first argument and test for String type
Object argument = arguments[0];
if (!(argument instanceof String)) {
throw new EntryProcessorException(

"First argument has wrong type, required java.lang.String");
}

// Retrieve the value from the MutableEntry
User user = entry.getValue();

// Retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// Set the new username
user.setUsername(newUsername);

// Set the changed user to mark the entry as dirty
entry.setValue(user);

// Return the changed user to return it to the caller
return user;

}

public EntryProcessor<K, V, T> createBackupEntryProcessor() {
return this;

}
}

You can use the additional method BackupAwareEntryProcessor::createBackupEntryProcessor to create or
return the EntryProcessor implementation to run on the backup partition (in the example above, the same
processor again).

NOTE: For the backup runs, the returned value from the backup processor is ignored and not returned to the
user.

12.5.11 ICache Partition Lost Listener

You can listen to CachePartitionLostEvent instances by registering an implementation of CachePartitionLostListener,
which is also a sub-interface of java.util.EventListener from ICache.

Let’s consider the following example code:

public static void main(String[] args) {
CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 233

Cache<Object, Object> cache = cacheManager.getCache(...);

ICache<Object, Object> unwrappedCache = cache.unwrap(ICache.class);

unwrappedCache.addPartitionLostListener(new CachePartitionLostListener() {
@Override
public void partitionLost(CachePartitionLostEvent event) {
System.out.println(event);

}
});

}

Within this example code, a CachePartitionLostListener implementation is registered to a cache and
assume that this cache is configured with 1 backup. For this particular cache and any of the partitions
in the system, if the partition owner member and its first backup member crash simultaneously, the given
CachePartitionLostListener receives a corresponding CachePartitionLostEvent. If only a single member
crashes in the cluster, a CachePartitionLostEvent is not fired for this cache since backups for the partitions
owned by the crashed member are kept on other members.

Please refer to the Partition Lost Listener section for more information about partition lost detection and partition
lost events.

12.5.12 JCache Split-Brain

Split-Brain handling is internally supported as a service inside Hazelcast (see Network Partitioning for more details)
and JCache uses same infrastructure with IMap to support Split-Brain. You can specify cache merge policy to
determine which entry is used while merging. You can also provide your own cache merge policy implementations
through CacheMergePolicyInterface.

NOTE: Split-Brain is only supported for heap based JCache but not for HD-JCache since merging high
volume of data in consistent way may cause significant performance loss on the system.

12.5.12.1 CacheMergePolicy Interface

After split clusters are joined again, they merge their entries with each other. This merge process is handled over
the CacheMergePolicy interface. The CacheMergePolicy instance takes two entries: the owned entry, and the
merging entry which comes from the joined cluster. The CacheEntryView instance wraps the key, value, and some
metadata about the entry (such as creation time, expiration time and access hit). Then the CacheMergePolicy
instance selects one of the entries and returns it. The returned entry is used as the stored cache entry.

12.5.12.1.1 CacheEntryView Wraps key, value and some metadata (such as expiration time, last access time
and access hit of cache entry) and exposes them to outside as read only.

12.5.12.1.2 CacheMergePolicy Policy for merging cache entries. Entries from joined clusters are merged by
using this policy to select one of them from source and target. Passed CacheEntryView instances wrap the key and
value as their original types, with conversion to object from their storage types. If the user doesn’t need the original
types of key and value, you should use StorageTypeAwareCacheMergePolicy which is a sub-type of this interface.

12.5.12.1.3 StorageTypeAwareCacheMergePolicy Marker interface indicating that the key and value wrapped
by CacheEntryView will be not converted to their original types. The motivation of this interface is that while
merging cache entries, actual key and value are not usually not checked. Therefore, there is no need to convert
them to their original types.

234 CHAPTER 12. HAZELCAST JCACHE

At worst case, value is returned from the merge method as selected, meaning that in all cases, value is accessed.
So even if the the conversion is done as lazy, it will be processed at this point. But by default, key and value are
converted to their original types unless this StorageTypeAwareCacheMergePolicy is used.

Another motivation for using this interface is that at the member side, there is no need to locate classes of stored
entries. It means that entries can be put from the client with BINARY in-memory format and the classpath of the
client can be different from the member. So in this case, if entries try to convert to their original types while
merging, ClassNotFoundException is thrown here.

As a result, both for performance and for the ClassNotFoundExceptionmentioned above, it is strongly recommended
that you use this interface if the original values of key and values are not needed.

12.5.12.2 Configuration

There are four built-in cache merge policies: - Pass Through: Merges cache entry from source to destination directly.
You can specify this policy with its full class name as com.hazelcast.cache.merge.PassThroughCacheMergePolicy
or with its constant name as PASS_THROUGH. - Put If Absent: Merges cache entry from source to
destination if it does not exist in the destination cache. You can specify this policy with its full
class name as com.hazelcast.cache.merge.PutIfAbsentCacheMergePolicy or with its constant name
as PUT_IF_ABSENT. - Higher Hits: Merges cache entry from source to destination cache if source en-
try has more hits than the destination one. You can specify this policy with its full class name as
com.hazelcast.cache.merge.HigherHitsCacheMergePolicy or with its constant name as HIGHER_HITS.
- Latest Access: Merges cache entry from source to destination cache if source entry has been ac-
cessed more recently than the destination entry. You can specify this policy with its full class name as
com.hazelcast.cache.merge.LatestAccessCacheMergePolicy or with its constant name as LATEST_ACCESS.

You can access full class names or constant names of all build-in cache merge policies over com.hazelcast.cache.BuiltInCacheMergePolicies
enum. You can specify merge policy configuration for cache declaratively or programmatically.

The following are example configurations for JCache Split-Brain.

Declarative:

<cache name="cacheWithBuiltInMergePolicyAsConstantName">
...
<merge-policy>HIGHER_HITS</merge-policy>
...

</cache><cache name="cacheWithBuiltInMergePolicyAsFullClassName">
...
<merge-policy>com.hazelcast.cache.merge.LatestAccessCacheMergePolicy</merge-policy>
...

</cache>
<cache name="cacheWithBuiltInMergePolicyAsCustomImpl">

...
<merge-policy>com.mycompany.cache.merge.MyCacheMergePolicy</merge-policy>
...

</cache>

Programmatic:

CacheConfig cacheConfigWithBuiltInMergePolicyAsConstantName = new CacheConfig();
cacheConfig.setMergePolicy(BuiltInCacheMergePolicies.HIGGER_HITS.name());

CacheConfig cacheConfigWithBuiltInMergePolicyAsFullClassName = new CacheConfig();
cacheConfig.setMergePolicy(BuiltInCacheMergePolicies.LATEST_ACCESS.getImplementationClassName());

CacheConfig cacheConfigWithBuiltInMergePolicyAsCustomImpl = new CacheConfig();
cacheConfig.setMergePolicy("com.mycompany.cache.merge.MyCacheMergePolicy");

12.6. TESTING FOR JCACHE SPECIFICATION COMPLIANCE 235

12.6 Testing for JCache Specification Compliance

Hazelcast JCache is fully compliant with the JSR 107 TCK (Technology Compatibility Kit), therefore it is officially
a JCache implementation. This is tested by running the TCK against the Hazelcast implementation.

You can test Hazelcast JCache for compliance by executing the TCK. Just perform the instructions below:

1. Checkout the TCK from https://github.com/jsr107/jsr107tck.
2. Change the properties in tck-parent/pom.xml as shown below.
3. Run the TCK by mvn clean install.

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<CacheInvocationContextImpl>
javax.cache.annotation.impl.cdi.CdiCacheKeyInvocationContextImpl

</CacheInvocationContextImpl>

<domain-lib-dir>${project.build.directory}/domainlib</domain-lib-dir>
<domain-jar>domain.jar</domain-jar>

<!-- ### -->
<!-- Change the following properties on the command line

to override with the coordinates for your implementation-->
<implementation-groupId>com.hazelcast</implementation-groupId>
<implementation-artifactId>hazelcast</implementation-artifactId>
<implementation-version>3.4</implementation-version>

<!-- Change the following properties to your CacheManager and
Cache implementation. Used by the unwrap tests. -->

<CacheManagerImpl>
com.hazelcast.client.cache.impl.HazelcastClientCacheManager

</CacheManagerImpl>
<CacheImpl>com.hazelcast.cache.ICache</CacheImpl>
<CacheEntryImpl>
com.hazelcast.cache.impl.CacheEntry

</CacheEntryImpl>

<!-- Change the following to point to your MBeanServer, so that
the TCK can resolve it. -->

<javax.management.builder.initial>
com.hazelcast.cache.impl.TCKMBeanServerBuilder

</javax.management.builder.initial>
<org.jsr107.tck.management.agentId>
TCKMbeanServer

</org.jsr107.tck.management.agentId>
<jsr107.api.version>1.0.0</jsr107.api.version>

<!-- ### -->
</properties>

This will run the tests using an embedded Hazelcast Member.

236 CHAPTER 12. HAZELCAST JCACHE

Chapter 13

Integrated Clustering

In this chapter, we show you how Hazelcast is integrated with Hibernate 2nd level cache and Spring, and how
Hazelcast helps with your Filter, Tomcat and Jetty based web session replications.

The Hibernate Second Level Cache section tells how you should configure both Hazelcast and Hibernate to integrate
them. It explains the modes of Hazelcast that can be used by Hibernate and also provides how to perform advanced
settings like accessing the underlying Hazelcast instance used by Hibernate.

The Web Session Replication section tells how to cluster user HTTP sessions automatically. You will learn how
to enable session replication using filter based solution. In addition, Tomcat and Jetty specific modules will be
explained.

The Spring Integration section tells how you can integrate Hazelcast into a Spring project by explaining the
Hazelcast instance and client configurations with the hazelcast namespace. It also lists the supported Spring bean
attributes.

13.1 Hibernate Second Level Cache

Hazelcast provides distributed second level cache for your Hibernate entities, collections and queries.

13.1.1 Sample Code for Hibernate

Please see our sample application for Hibernate Second Level Cache.

13.1.2 Supported Hibernate Versions

• hibernate 3.3.x+
• hibernate 4.x

13.1.3 Configuring Hibernate for Hazelcast

To configure Hibernate for Hazelcast:

• Add hazelcast-hibernate3-<hazelcastversion>.jar or hazelcast- hibernate4-<hazelcastversion>.jar
into your classpath depending on your Hibernate version.

• Then add the following properties into your Hibernate configuration file (e.g. hibernate.cfg.xml).

13.1.3.1 Enabling Second Level Cache

<property name="hibernate.cache.use_second_level_cache">true</property>

237

238 CHAPTER 13. INTEGRATED CLUSTERING

13.1.3.2 Configuring RegionFactory

You can configure Hibernate RegionFactory with HazelcastCacheRegionFactory or HazelcastLocalCacheRegionFactory.

13.1.3.2.1 HazelcastCacheRegionFactory HazelcastCacheRegionFactory uses standard Hazelcast Dis-
tributed Maps to cache the data, so all cache operations go through the wire.

<property name="hibernate.cache.region.factory_class">
com.hazelcast.hibernate.HazelcastCacheRegionFactory

</property>

All operations like get, put, and remove will be performed using the Distributed Map logic. The only downside of us-
ing HazelcastCacheRegionFactory may be lower performance compared to HazelcastLocalCacheRegionFactory
since operations are handled as distributed calls.

NOTE: If you use HazelcastCacheRegionFactory, you can see your maps on Management Center.

With HazelcastCacheRegionFactory, all of the following caches are distributed across Hazelcast Cluster.

• Entity Cache
• Collection Cache
• Timestamp Cache

13.1.3.2.2 HazelcastLocalCacheRegionFactory You can use HazelcastLocalCacheRegionFactory which
stores data in a local node and sends invalidation messages when an entry is updated/deleted locally.

<property name="hibernate.cache.region.factory_class">
com.hazelcast.hibernate.HazelcastLocalCacheRegionFactory

</property>

With HazelcastLocalCacheRegionFactory, each cluster member has a local map and each of them is registered
to a Hazelcast Topic (ITopic). Whenever a put or remove operation is performed on a member, an invalidation
message is generated on the ITopic and sent to the other members. Those other members remove the related
key-value pair on their local maps as soon as they get these invalidation messages. The new value is only updated
on this member when a get operation runs on that key. In the case of get operations, invalidation messages are
not generated and reads are performed on the local map.

An illustration of the above logic is shown below.

If your operations are mostly reads, then this option gives better performance.

NOTE: If you use HazelcastLocalCacheRegionFactory, you cannot see your maps on Management
Center.

With HazelcastLocalCacheRegionFactory, all of the following caches are not distributed and are kept locally in
the Hazelcast Node.

• Entity Cache
• Collection Cache
• Timestamp Cache

Entity and Collection are invalidated on update. When they are updated on a node, an invalidation message is sent
to all other nodes in order to remove the entity from their local cache. When needed, each node reads that data
from the underlying DB.

Timestamp cache is replicated. On every update, a replication message is sent to all the other nodes.

Eviction support is limited to maximum size of the map (defined by max-size configuration element) and TTL
only. When maximum size is hit, 20% of the entries will be evicted automatically.

13.1. HIBERNATE SECOND LEVEL CACHE 239

Figure 13.1: HazelcastLocalCacheRegionFactory Invalidation

13.1.3.3 Configuring Query Cache and Other Settings

• To enable use of query cache:

<property name="hibernate.cache.use_query_cache">true</property>

• To force minimal puts into query cache:

<property name="hibernate.cache.use_minimal_puts">true</property>

• To avoid NullPointerException when you have entities that have composite keys (using @IdClass):

‘‘‘xml

yourFactoryName “‘

NOTE: QueryCache is always LOCAL to the node and never distributed across Hazelcast Cluster.

13.1.4 Configuring Hazelcast for Hibernate

To configure Hazelcast for Hibernate, put the configuration file named hazelcast.xml into the root of your
classpath. If Hazelcast cannot find hazelcast.xml, then it will use the default configuration from hazelcast.jar.

You can define a custom-named Hazelcast configuration XML file with one of these Hibernate configuration
properties.

<property name="hibernate.cache.provider_configuration_file_resource_path">
hazelcast-custom-config.xml

</property>

<property name="hibernate.cache.hazelcast.configuration_file_path">
hazelcast-custom-config.xml

</property>

240 CHAPTER 13. INTEGRATED CLUSTERING

Hazelcast creates a separate distributed map for each Hibernate cache region. You can easily configure these regions
via Hazelcast map configuration. You can define backup, eviction, TTL and Near Cache properties.

• Backup Configuration

• Eviction And TTL Configuration

• Near Cache Configuration

13.1.5 Setting P2P (Peer-to-Peer) for Hibernate

Hibernate Second Level Cache can use Hazelcast in two modes: Peer-to-Peer (P2P) and Client/Server (next section).

With P2P mode, each Hibernate deployment launches its own Hazelcast Instance. You can also configure Hibernate
to use an existing instance, instead of creating a new HazelcastInstance for each SessionFactory. To do this,
set the hibernate.cache.hazelcast.instance_name Hibernate property to the HazelcastInstance’s name. For
more information, please see Named Instance Scope.

Disabling shutdown during SessionFactory.close()

You can disable shutting down HazelcastInstance during SessionFactory.close(). To do this, set the Hibernate
property hibernate.cache.hazelcast.shutdown_on_session_factory_close to false. (In this case, you should
not set the Hazelcast property hazelcast.shutdownhook.enabled to false.) The default value is true.

13.1.6 Setting Client/Server for Hibernate

You can set up Hazelcast to connect to the cluster as Native Client. Native client is not a member; it connects to
one of the cluster members and delegates all cluster wide operations to it. Client instance started in the Native
Client mode uses Smart Routing: when the relied cluster member dies, the client transparently switches to another
live member. All client operations are Retry-able, meaning that the client resends the request as many as 10 times
in case of a failure. After the 10th retry, it throws an exception. You cannot change the routing mode and retry-able
operation configurations of the Native Client instance used by Hibernate 2nd Level Cache. Please see the Smart
Routing section and Retry-able Operation Failure section for more details.

<property name="hibernate.cache.hazelcast.use_native_client">true</property>

To set up Native Client, add the Hazelcast group-name, group-password and cluster member address
properties. Native Client will connect to the defined member and will get the addresses of all members in the
cluster. If the connected member dies or leaves the cluster, the client will automatically switch to another member
in the cluster.

<property name="hibernate.cache.hazelcast.native_client_address">10.34.22.15</property>
<property name="hibernate.cache.hazelcast.native_client_group">dev</property>
<property name="hibernate.cache.hazelcast.native_client_password">dev-pass</property>

NOTE: To use Native Client, add hazelcast-client-<version>.jar into your classpath. Refer to
Hazelcast Java Client chapter for more information.

NOTE: To use Native Client, add hazelcast-all-<version>.jar into your remote cluster’s classpath.

13.2. WEB SESSION REPLICATION 241

13.1.7 Configuring Cache Concurrency Strategy

Hibernate has four cache concurrency strategies: read-only, read-write, nonstrict-read-write and transactional.
Hibernate does not force cache providers to support all those strategies. Hazelcast supports the first three: read-only,
read-write, and nonstrict-read-write. It does not yet support transactional strategy.

If you are using XML based class configurations, add a cache element into your configuration with the usage
attribute set to one of the read-only, read-write, or nonstrict-read-write strategies.

<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>
....

</class>

<class name="eg.Cat" >
<cache usage="read-write"/>
....
<set name="kittens" ... >
<cache usage="read-write"/>
....

</set>
</class>

If you are using Hibernate-Annotations, then you can add a class-cache or collection-cache element into your
Hibernate configuration file with the usage attribute set to read only, read/write, or nonstrict read/write.

<class-cache usage="read-only" class="eg.Immutable"/>
<class-cache usage="read-write" class="eg.Cat"/>
<collection-cache collection="eg.Cat.kittens" usage="read-write"/>

Or alternatively, you can put Hibernate Annotation’s @Cache annotation on your entities and collections.

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Cat implements Serializable {
...

}

13.1.8 Advanced Settings

Accessing underlying HazelcastInstance

If you need to access HazelcastInstance used by Hibernate SessionFactory, you can give a name to
the HazelcastInstance while configuring Hazelcast. Then it is possible to retrieve the instance using
getHazelcastInstanceByName static method of Hazelcast.

Please refer to the Configuring Programmatically section to learn how to create a named Hazelcast instance.

Changing/setting lock timeout value of read-write strategy

You can set a lock timeout value using the hibernate.cache.hazelcast.lock_timeout_in_seconds Hibernate
property. The value should be in seconds. The default value is 300 seconds.

13.2 Web Session Replication

This section explains how you can cluster your web sessions using Servlet Filter, Tomcat and Jetty based solutions.
Each web session clustering is explained in the following subsections.

Please note that Tomcat and Jetty based web session replications are Hazelcast Enterprise modules.

242 CHAPTER 13. INTEGRATED CLUSTERING

Filter based web session replication has the option to use a map with High-Density Memory Store to keep your
session objects. Note that High-Density Memory Store is available in Hazelcast Enterprise HD. Please refer to
the High-Density Memory Store section for details on this feature.

13.2.1 Filter Based Web Session Replication

Sample Code: Please see our sample application for Filter Based Web Session Replication.

Assume that you have more than one web server (A, B, C) with a load balancer in front of it. If server A goes
down, your users on that server will be directed to one of the live servers (B or C), but their sessions will be lost.

We need to have all these sessions backed up somewhere if we do not want to lose the sessions upon server crashes.
Hazelcast Web Manager (WM) allows you to cluster user HTTP sessions automatically.

13.2.1.1 Session Clustering Requirements

The following are required before enabling Hazelcast Session Clustering:

• Target application or web server should support Java 1.6 or higher.

• Target application or web server should support Servlet 3.0 or higher spec.

• Session objects that need to be clustered have to be Serializable.

• In the client/server architecture, session classes do not have to be present in the server classpath.

13.2.1.2 Setting Up Session Clustering

To set up Hazelcast Session Clustering:

• Put the hazelcast and hazelcast-wm jars in your WEB-INF/lib folder. Optionally, if you wish to connect
to a cluster as a client, add hazelcast-client as well.

• Put the following XML into the web.xml file. Make sure Hazelcast filter is placed before all the other filters if
any; for example, you can put it at the top.

<filter>
<filter-name>hazelcast-filter</filter-name>
<filter-class>com.hazelcast.web.WebFilter</filter-class>
<!--

Name of the distributed map storing
your web session objects

-->
<init-param>
<param-name>map-name</param-name>
<param-value>my-sessions</param-value>

</init-param>
<!--

TTL value of the distributed map storing
your web session objects.
Any integer between 0 and Integer.MAX_VALUE.
Default is 1800 which is 30 minutes.

-->
<init-param>
<param-name>session-ttl-seconds</param-name>
<param-value>10</param-value>

</init-param>
<!--

13.2. WEB SESSION REPLICATION 243

How is your load-balancer configured?
sticky-session means all requests of a session
is routed to the node where the session is first created.
This is excellent for performance.
If sticky-session is set to false, when a session is updated
on a node, entry for this session on all other nodes is invalidated.
You have to know how your load-balancer is configured before
setting this parameter. Default is true.

-->
<init-param>
<param-name>sticky-session</param-name>
<param-value>true</param-value>

</init-param>
<!--

Name of session id cookie
-->
<init-param>
<param-name>cookie-name</param-name>
<param-value>hazelcast.sessionId</param-value>

</init-param>
<!--

Domain of session id cookie. Default is based on incoming request.
-->
<init-param>
<param-name>cookie-domain</param-name>
<param-value>.mywebsite.com</param-value>

</init-param>
<!--

Should cookie only be sent using a secure protocol? Default is false.
-->
<init-param>
<param-name>cookie-secure</param-name>
<param-value>false</param-value>

</init-param>
<!--

Should HttpOnly attribute be set on cookie ? Default is false.
-->
<init-param>
<param-name>cookie-http-only</param-name>
<param-value>false</param-value>

</init-param>
<!--

Are you debugging? Default is false.
-->
<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>

</init-param>
<!--

Configuration xml location;
* as servlet resource OR
* as classpath resource OR
* as URL

Default is one of hazelcast-default.xml
or hazelcast.xml in classpath.

-->
<init-param>
<param-name>config-location</param-name>

244 CHAPTER 13. INTEGRATED CLUSTERING

<param-value>/WEB-INF/hazelcast.xml</param-value>
</init-param>
<!--

Do you want to use an existing HazelcastInstance?
Default is null.

-->
<init-param>
<param-name>instance-name</param-name>
<param-value>default</param-value>

</init-param>
<!--

Do you want to connect as a client to an existing cluster?
Default is false.

-->
<init-param>
<param-name>use-client</param-name>
<param-value>false</param-value>

</init-param>
<!--

Client configuration location;
* as servlet resource OR
* as classpath resource OR
* as URL

Default is null.
-->
<init-param>
<param-name>client-config-location</param-name>
<param-value>/WEB-INF/hazelcast-client.xml</param-value>

</init-param>
<!--

Do you want to shutdown HazelcastInstance during
web application undeploy process?
Default is true.

-->
<init-param>
<param-name>shutdown-on-destroy</param-name>
<param-value>true</param-value>

</init-param>
<!--

Do you want to cache sessions locally in each instance?
Default is false.

-->
<init-param>
<param-name>deferred-write</param-name>
<param-value>false</param-value>

</init-param>
</filter>
<filter-mapping>
<filter-name>hazelcast-filter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

<listener>
<listener-class>com.hazelcast.web.SessionListener</listener-class>

</listener>

13.2. WEB SESSION REPLICATION 245

• Package and deploy your war file as you would normally do.

It is that easy. All HTTP requests will go through Hazelcast WebFilter and it will put the session objects into the
Hazelcast distributed map if needed.

13.2.1.3 Using High-Density Memory Store

Hazelcast Enterprise HD

As you see in the above declarative configuration snippet, you provide the name of your map which will store the
web session objects:

<init-param>
<param-name>map-name</param-name>
<param-value>my-sessions</param-value>

</init-param>

If you have Hazelcast Enterprise HD, you can configure your map to use Hazelcast’s High-Density Memory
Store. By this way, the filter based web session replication will use a High-Density Memory Store backed map.

Please refer to the Using High-Density Memory Store with Map section to learn how you can configure a map to
use this feature.

13.2.1.4 Supporting Spring Security

Sample Code: Please see our sample application for Spring Security Support.

If Spring based security is used for your application, you should use com.hazelcast.web.spring.SpringAwareWebFilter
instead of com.hazelcast.web.WebFilter in your filter definition.

...

<filter>
<filter-name>hazelcast-filter</filter-name>
<filter-class>com.hazelcast.web.spring.SpringAwareWebFilter</filter-class>
...

</filter>

...

SpringAwareWebFilter notifies Spring by publishing events to Spring context. The org.springframework.security.core.session.SessionRegistry
instance uses these events.

As before, you must also define com.hazelcast.web.SessionListener in your web.xml. However, you do not
need to define org.springframework.security.web.session.HttpSessionEventPublisher in your web.xml as
before, since SpringAwareWebFilter already informs Spring about session based events like create or destroy.

13.2.1.5 Client Mode vs. P2P Mode

Hazelcast Session Replication works as P2P by default. To switch to Client/Server architecture, you need to
set the use-client parameter to true. P2P mode is more flexible and requires no configuration in advance; in
Client/Server architecture, clients need to connect to an existing Hazelcast Cluster. In case of connection problems,
clients will try to reconnect to the cluster. The default retry count is 3. In the client/server architecture, if servers
goes down, Hazelcast web manager will keep the updates in the local and after servers come back, the clients will
update the distributed map.

Note that, in the client/server mode of session replication, session-ttl-seconds configuration does not have
any effect. The reason is that the filter based session replication uses IMap and a Hazelcast client cannot change

246 CHAPTER 13. INTEGRATED CLUSTERING

the configuration of a distributed map. Instead, you should configure the max-idle-seconds element in your
hazelcast.xml on the server side.

... <map name="my-sessions"> <!-- How much seconds do you want your session attributes to be
stored on server? Default is 0. --> <max-idle-seconds>20</max-idle-seconds> </map> ...

Also make sure that name of the distributed map is same as the map-name parameter defined in your web.xml
configuration file.

13.2.1.6 Caching Locally with deferred-write

If the value for deferred-write is set as true, Hazelcast will cache the session locally and will update the local
session when an attribute is set or deleted. At the end of the request, it will update the distributed map with all
the updates. It will not update the distributed map upon each attribute update, but will only call it once at the
end of the request. It will also cache it, i.e. whenever there is a read for the attribute, it will read it from the cache.

Updating an attribute when deferred-write=false:

If deferred-write is false, any update (i.e. setAttribute) on the session will directly be available in the cluster.
One exception to this behavior is the changes to the session attribute objects. To update an attribute cluster-wide,
setAttribute must be called after changes are made to the attribute object.

The following example explains how to update an attribute in the case of deferred-write=false setting:

session.setAttribute("myKey", new ArrayList());
List list1 = session.getAttribute("myKey");
list1.add("myValue");
session.setAttribute("myKey", list1); // changes updated in the cluster

13.2.1.7 SessionId Generation

SessionId generation is done by the Hazelcast Web Session Module if session replication is configured in the web
application. The default cookie name for the sessionId is hazelcast.sessionId. This name is configurable with
a cookie-name parameter in the web.xml file of the application. hazelcast.sessionId is just a UUID prefixed
with “HZ” characters and without a “-“ character, e.g. HZ6F2D036789E4404893E99C05D8CA70C7.

When called by the target application, the value of HttpSession.getId() is the same as the value of
hazelcast.sessionId.

13.2.1.8 Defining Session Expiry

Hazelcast automatically removes sessions from the cluster if the sessions are expired on the Web Con-
tainer. This removal is done by com.hazelcast.web.SessionListener, which is an implementation of
javax.servlet.http.HttpSessionListener.

Default session expiration configuration depends on the Servlet Container that is being used. You can also define it
in your web.xml.

<session-config>
<session-timeout>60</session-timeout>

</session-config>

13.2.1.9 Using Sticky Sessions

Hazelcast holds whole session attributes in a distributed map and in a local HTTP session. Local session is required
for fast access to data and distributed map is needed for fail-safety.

13.2. WEB SESSION REPLICATION 247

• If sticky-session is not used, whenever a session attribute is updated in a node (in both node local session
and clustered cache), that attribute should be invalidated in all other nodes’ local sessions, because now
they have dirty values. Therefore, when a request arrives at one of those other nodes, that attribute value is
fetched from clustered cache.

• To overcome the performance penalty of sending invalidation messages during updates, you can use sticky
sessions. If Hazelcast knows sessions are sticky, invalidation will not be sent because Hazelcast assumes there
is no other local session at the moment. When a server is down, requests belonging to a session hold in that
server will routed to other server, and that server will fetch session data from clustered cache. That means
that when using sticky sessions, you will not suffer the performance penalty of accessing clustered data and
can benefit recover from a server failure.

13.2.1.10 Marking Transient Attributes

If you have some attributes that you do not want to be distributed, you can mark those attributes as transient.
Transient attributes are kept in and when the server is shutdown, you lose the attribute values. You can set the
transient attributes in your web.xml file. Here is an example:

...
<init-param>

<param-name>transient-attributes</param-name>
<param-value>key1,key2,key3</param-value>

</init-param>
...

13.2.2 Tomcat Based Web Session Replication

Hazelcast Enterprise

Sample Code: Please see our sample application for Tomcat Based Web Session Replication.

13.2.2.1 Hazelcast Tomcat Features and Requirements

Session Replication with Hazelcast Enterprise is a container specific module that enables session replication for
JEE Web Applications without requiring changes to the application.

Features

• Seamless Tomcat 6, 7 & 8 integration. (Tomcat 8 is supported for Hazelcast Enterprise 3.5 or higher.)
• Support for sticky and non-sticky sessions.
• Tomcat failover.
• Deferred write for performance boost.

Supported Containers

Tomcat Web Session Replication Module has been tested against the following containers.

• Tomcat 6.0.x - It can be downloaded here.
• Tomcat 7.0.x - It can be downloaded here.
• Tomcat 8.0.x - It can be downloaded here.

The latest tested versions are 6.0.39, 7.0.40 and 8.0.20.

Requirements

• Tomcat instance must be running with Java 1.6 or higher.
• Session objects that need to be clustered have to be Serializable.

248 CHAPTER 13. INTEGRATED CLUSTERING

13.2.2.2 How Tomcat Session Replication Works

Tomcat Session Replication in Hazelcast Enterprise is a Hazelcast Module where each created HttpSession Object
is kept in the Hazelcast Distributed Map. If configured with Sticky Sessions, each Tomcat Instance has its own
local copy of the session for performance boost.

Since the sessions are in Hazelcast Distributed Map, you can use all the available features offered by Hazelcast
Distributed Map implementation, such as MapStore and WAN Replication.

Tomcat Web Sessions run in two different modes:

• P2P: all Tomcat instances launch its own Hazelcast Instance and join to the Hazelcast Cluster and,
• Client/Server: all Tomcat instances put/retrieve the session data to/from an existing Hazelcast Cluster.

13.2.2.3 Deploying P2P (Peer-to-Peer) for Tomcat

P2P deployment launches an embedded Hazelcast Node in each server instance.

This type of deployment is simple: just configure your Tomcat and launch. There is no need for an external
Hazelcast cluster.

The following steps configure a sample P2P for Hazelcast Session Replication.

1. Go to hazelcast.com and download the latest Hazelcast Enterprise.

2. Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.

3. Update $HAZELCAST_ENTERPRISE_ROOT/bin/hazelcast.xml with the provided Hazelcast Enterprise License
Key.

4. Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-all-<version>.jar, $HAZELCAST_
ENTERPRISE_ROOT/lib/hazelcast-enterprise-<tomcatversion>-<version>.jar and hazelcast.xml in
the folder $CATALINA_HOME/lib/.

5. Put a <Listener> element into the file $CATALINA_HOME$/conf/server.xml as shown below.

xml <Server> ... <Listener className="com.hazelcast.session.P2PLifecycleListener"/> ... </Server>

6. Put a <Manager> element into the file $CATALINA_HOME$/conf/context.xml as shown below.

xml <Context> ... <Manager className="com.hazelcast.session.HazelcastSessionManager"/> ...
</Context>

7. Start Tomcat instances with a configured load balancer and deploy the web application.

Optional Attributes for Listener Element

Optionally, you can add a configLocation attribute into the <Listener> element. If not provided, hazelcast.xml
in the classpath is used by default. URL or full filesystem path as a configLocation value is supported.

13.2.2.4 Deploying Client/Server for Tomcat

In this deployment type, Tomcat instances work as clients on an existing Hazelcast Cluster.

Features

• The existing Hazelcast cluster is used as the Session Replication Cluster.
• Offloading Session Cache from Tomcat to the Hazelcast Cluster.
• The architecture is completely independent. Complete reboot of Tomcat instances.

13.2. WEB SESSION REPLICATION 249

The following steps configure a sample Client/Server for Hazelcast Session Replication.

1. Go to hazelcast.com and download the latest Hazelcast Enterprise.

2. Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.

3. Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-client-<version>.jar, $HAZELCAST_ ENTERPRISE_ROOT/lib/hazelcast-enterprise-<version>.jar
and $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-<tomcatversion>-<version>.jar in the
folder $CATALINA_HOME/lib/.

4. Put a <Listener> element into the $CATALINA_HOME$/conf/server.xml as shown below.

xml <Server> ... <Listener className="com.hazelcast.session.ClientServerLifecycleListener"/>
... </Server>

5. Update the <Manager> element in the $CATALINA_HOME$/conf/context.xml as shown below.

xml <Context> <Manager className="com.hazelcast.session.HazelcastSessionManager" clientOnly="true"/>
</Context>

6. Launch a Hazelcast Instance using $HAZELCAST_ENTERPRISE_ROOT/bin/server.sh or $HAZELCAST_
ENTERPRISE_ROOT/bin/server.bat.

7. Start Tomcat instances with a configured load balancer and deploy the web application.

Optional Attributes for Listener Element

Optionally, you can add configLocation attribute into the <Listener> element. If not provided,
hazelcast-client-default.xml in hazelcast-client-<version>.jar file is used by default. Any client
XML file in the classpath, URL or full filesystem path as a configLocation value is also supported.

13.2.2.5 Configuring Manager Element for Tomcat

<Manager> element is used both in P2P and Client/Server mode. You can use the following attributes to configure
Tomcat Session Replication Module to better serve your needs.

• Add mapName attribute into <Manager> element. Its default value is default Hazelcast Distributed Map.
Use this attribute if you have a specially configured map for special cases like WAN Replication, Eviction,
MapStore, etc.

• Add sticky attribute into <Manager> element. Its default value is true.
• Add processExpiresFrequency attribute into <Manager> element. It specifies the frequency of session
validity check, in seconds. Its default value is 6 and the minimum value that you can set is 1.

• Add deferredWrite attribute into <Manager> element. Its default value is true.

13.2.2.6 Controlling Session Caching with deferredWrite

Tomcat Web Session Replication Module has its own nature of caching. Attribute changes during the HTTP
Request/HTTP Response cycle is cached by default. Distributing those changes to the Hazelcast Cluster is costly.
Because of that, Session Replication is only done at the end of each request for updated and deleted attributes.
The risk in this approach is losing data if a Tomcat crash happens in the middle of the HTTP Request operation.

You can change that behavior by setting deferredWrite=false in your <Manager> element. By disabling it, all
updates that are done on session objects are directly distributed into Hazelcast Cluster.

250 CHAPTER 13. INTEGRATED CLUSTERING

13.2.2.7 Setting Session Expiration Checks

Based on Tomcat configuration or sessionTimeout setting in web.xml, sessions are expired over time. This requires
a cleanup on the Hazelcast Cluster since there is no need to keep expired sessions in the cluster.

processExpiresFrequency, which is defined in <Manager>, is the only setting that controls the behavior of session
expiry policy in the Tomcat Web Session Replication Module. By setting this, you can set the frequency of the
session expiration checks in the Tomcat Instance.

13.2.2.8 Enabling Session Replication in Multi-App Environment

Tomcat can be configured in two ways to enable Session Replication for deployed applications.

• Server Context.xml Configuration
• Application Context.xml Configuration

Server Context.xml Configuration

By configuring $CATALINA_HOME$/conf/context.xml, you can enable session replication for all applications
deployed in the Tomcat Instance.

Application Context.xml Configuration

By configuring $CATALINA_HOME/conf/[enginename]/[hostname]/[applicationName].xml, you can enable Ses-
sion Replication per deployed application.

13.2.2.9 Sticky Sessions and Tomcat

Sticky Sessions (default)

Sticky Sessions are used to improve the performance since the sessions do not move around the cluster.

Requests always go to the same instance where the session was firstly created. By using a sticky session, you mostly
eliminate session replication problems, except for the failover cases. In case of failovers, Hazelcast helps you to not
lose existing sessions.

Non-Sticky Sessions

Non-Sticky Sessions are not good for performance because you need to move session data all over the cluster every
time a new request comes in.

However, load balancing might be super easy with Non-Sticky caches. In case of heavy load, you can distribute the
request to the least used Tomcat instance. Hazelcast supports Non-Sticky Sessions as well.

13.2.2.10 Tomcat Failover and the jvmRoute Parameter

Each HTTP Request is redirected to the same Tomcat instance if sticky sessions are enabled. The parameter
jvmRoute is added to the end of session ID as a suffix, to make Load Balancer aware of the target Tomcat instance.

When Tomcat Failure happens and Load Balancer cannot redirect the request to the owning instance, it sends a
request to one of the available Tomcat instances. Since the jvmRoute parameter of session ID is different than that
of the target Tomcat instance, Hazelcast Session Replication Module updates the session ID of the session with the
new jvmRoute parameter. That means that the Session is moved to another Tomcat instance and Load Balancer
will redirect all subsequent HTTP Requests to the new Tomcat Instance.

NOTE: If stickySession is enabled, jvmRoute parameter must be set in $CATALINA_HOME$/conf/server.xml
and unique among Tomcat instances in the cluster.

<Engine name="Catalina" defaultHost="localhost" jvmRoute="tomcat-8080">

13.2. WEB SESSION REPLICATION 251

13.2.3 Jetty Based Web Session Replication

Hazelcast Enterprise

Sample Code: Please see our sample application for Jetty Based Web Session Replication.

13.2.3.1 Hazelcast Jetty Features and Requirements

Jetty Web Session Replication with Hazelcast Enterprise is a container specific module that enables session
replication for JEE Web Applications without requiring changes to the application.

Features

• Jetty 7 & 8 & 9 support
• Support for sticky and non-sticky sessions
• Jetty failover
• Deferred write for performance boost
• Client/Server and P2P modes
• Declarative and programmatic configuration

Supported Containers

Jetty Web Session Replication Module has been tested against the following containers.

• Jetty 7 - It can be downloaded here.
• Jetty 8 - It can be downloaded here.
• Jetty 9 - It can be downloaded here.

Latest tested versions are 7.6.16.v20140903, 8.1.16.v20140903 and 9.2.3.v20140905

Requirements

• Jetty instance must be running with Java 1.6 or higher.
• Session objects that need to be clustered have to be Serializable.
• Hazelcast Jetty-based Web Session Replication is built on top of the jetty-nosql module. This module
(jetty-nosql-<*jettyversion*>.jar) needs to be added to $JETTY_HOME/lib/ext. This module can be
found here.

13.2.3.2 How Jetty Session Replication Works

Jetty Session Replication in Hazelcast Enterprise is a Hazelcast Module where each created HttpSession Object’s
state is kept in Hazelcast Distributed Map.

Since the session data are in Hazelcast Distributed Map, you can use all the available features offered by Hazelcast
Distributed Map implementation, such as MapStore and WAN Replication.

Jetty Web Session Replication runs in two different modes:

• P2P: all Jetty instances launch its own Hazelcast Instance and join to the Hazelcast Cluster and,
• Client/Server: all Jetty instances put/retrieve the session data to/from an existing Hazelcast Cluster.

13.2.3.3 Deploying P2P (Peer-to-Peer) for Jetty

P2P deployment launches embedded Hazelcast Node in each server instance.

This type of deployment is simple: just configure your Jetty and launch. There is no need for an external Hazelcast
cluster.

The following steps configure a sample P2P for Hazelcast Session Replication.

252 CHAPTER 13. INTEGRATED CLUSTERING

1. Go to hazelcast.com and download the latest Hazelcast Enterprise.
2. Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.
3. Update $HAZELCAST_ENTERPRISE_ROOT/bin/hazelcast.xml with the provided Hazelcast Enterprise License

Key.
4. Put hazelcast.xml in the folder $JETTY_HOME/etc.
5. Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-all-<version>.jar, $HAZELCAST_

ENTERPRISE_ROOT/lib/hazelcast-enterprise-<jettyversion>-<version>.jar in the folder $JETTY_HOME/lib/ext.
6. Configure the Session IDManager. You need to configure a com.hazelcast.session.HazelcastSessionIdManager

instance in jetty.xml. Add the following lines to your jetty.xml.

xml <Set name="sessionIdManager"> <New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">
<Arg><Ref id="Server"/></Arg> <Set name="configLocation">etc/hazelcast.xml</Set> </New> </Set>

7. Configure the Session Manager. You can configure HazelcastSessionManager from a context.xml file.
Each application has a context file in the $CATALINA_HOME$/contexts folder. You need to create this context
file if it does not exist. The context filename must be the same as the application name, e.g. example.war
should have a context file named example.xml. The file context.xml should have the following content.

xml <Ref name="Server" id="Server"> <Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref> <Set name="sessionHandler"> <New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg> <New id="hazelcastMgr" class="com.hazelcast.session.HazelcastSessionManager"> <Set
name="idManager"> <Ref id="hazelcastIdMgr"/> </Set> </New> </Arg> </New> </Set>

8. Start Jetty instances with a configured load balancer and deploy the web application.

NOTE: In Jetty 9, there is no folder with the name contexts. You have to put the file context.xml* under
the webapps directory. And you need to add the following lines to context.xml.*:

xml <Ref name="Server" id="Server"> <Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref> <Set name="sessionHandler"> <New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg> <New id="hazelcastMgr" class="com.hazelcast.session.HazelcastSessionManager"> <Set
name="sessionIdManager"> <Ref id="hazelcastIdMgr"/> </Set> </New> </Arg> </New> </Set>

13.2.3.4 Deploying Client/Server for Jetty

In client/server deployment type, Jetty instances work as clients to an existing Hazelcast Cluster.

• Existing Hazelcast cluster is used as the Session Replication Cluster.
• The architecture is completely independent. Complete reboot of Jetty instances without losing data.

The following steps configure a sample Client/Server for Hazelcast Session Replication.

1. Go to hazelcast.com and download the latest Hazelcast Enterprise.
2. Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.
3. Update $HAZELCAST_ENTERPRISE_ROOT/bin/hazelcast.xml with the provided Hazelcast Enterprise License

Key.
4. Put hazelcast.xml in the folder $JETTY_HOME/etc.
5. Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-all-<version>.jar, $HAZELCAST_

ENTERPRISE_ROOT/lib/hazelcast-enterprise-<jettyversion>-<version>.jar in the folder $JETTY_HOME/lib/ext.
6. Configure the Session IDManager. You need to configure a com.hazelcast.session.HazelcastSessionIdManager

instance in jetty.xml. Add the following lines to your jetty.xml.

xml <Set name="sessionIdManager"> <New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">
<Arg><Ref id="Server"/></Arg> <Set name="configLocation">etc/hazelcast.xml</Set> <Set name="clientOnly">true</Set>
</New> </Set>

13.2. WEB SESSION REPLICATION 253

7. Configure the Session Manager. You can configure HazelcastSessionManager from a context.xml file. Each
application has a context file under the $CATALINA_HOME$/contexts folder. You need to create this context
file if it does not exist. The context filename must be the same as the application name, e.g. example.war
should have a context file named example.xml.

xml <Ref name="Server" id="Server"> <Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref> <Set name="sessionHandler"> <New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg> <New id="hazelMgr" class="com.hazelcast.session.HazelcastSessionManager"> <Set name="idManager">
<Ref id="hazelcastIdMgr"/> </Set> </New> </Arg> </New> </Set>

NOTE: In Jetty 9, there is no folder with name contexts. You have to put the file context.xml* file under
webapps directory. And you need to add below lines to context.xml.*

xml <Ref name="Server" id="Server"> <Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref> <Set name="sessionHandler"> <New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg> <New id="hazelMgr" class="com.hazelcast.session.HazelcastSessionManager"> <Set name="sessionIdManager">
<Ref id="hazelcastIdMgr"/> </Set> </New> </Arg> </New> </Set>

8. Launch a Hazelcast Instance using $HAZELCAST_ENTERPRISE_ROOT/bin/server.sh or $HAZELCAST_
ENTERPRISE_ROOT/bin/server.bat.

9. Start Tomcat instances with a configured load balancer and deploy the web application.

13.2.3.5 Configuring HazelcastSessionIdManager for Jetty

HazelcastSessionIdManager is used both in P2P and Client/Server mode. Use the following parameters to
configure the Jetty Session Replication Module to better serve your needs.

• workerName: Set this attribute to a unique value for each Jetty instance to enable session affinity with a
sticky-session configured load balancer.

• cleanUpPeriod: Defines the working period of session clean-up task in milliseconds.
• configLocation: specifies the location of hazelcast.xml.

13.2.3.6 Configuring HazelcastSessionManager for Jetty

HazelcastSessionManager is used both in P2P and Client/Server mode. Use the following parameters to configure
Jetty Session Replication Module to better serve your needs.

• savePeriod: Sets the interval of saving session data to the Hazelcast cluster. Jetty Web Session Replication
Module has its own nature of caching. Attribute changes during the HTTP Request/HTTP Response cycle
are cached by default. Distributing those changes to the Hazelcast Cluster is costly, so Session Replication is
only done at the end of each request for updated and deleted attributes. The risk with this approach is losing
data if a Jetty crash happens in the middle of the HTTP Request operation. You can change that behavior
by setting the savePeriod attribute.

Notes:

• If savePeriod is set to -2, HazelcastSessionManager.save method is called for every doPutOrRemove
operation.

• If it is set to -1, the same method is never called if Jetty is not shut down.
• If it is set to 0 (the default value), the same method is called at the end of request.
• If it is set to 1, the same method is called at the end of request if session is dirty.

254 CHAPTER 13. INTEGRATED CLUSTERING

13.2.3.7 Setting Session Expiration

Based on Tomcat configuration or sessionTimeout setting in web.xml, the sessions are expired over time. This
requires a cleanup on Hazelcast Cluster, since there is no need to keep expired sessions in it.

cleanUpPeriod, which is defined in HazelcastSessionIdManager, is the only setting that controls the behavior of
session expiry policy in Jetty Web Session Replication Module. By setting this, you can set the frequency of the
session expiration checks in the Jetty Instance.

13.2.3.8 Sticky Sessions and Jetty

HazelcastSessionIdManager can work in sticky and non-sticky setups.

The clustered session mechanism works in conjunction with a load balancer that supports stickiness. Stickiness can
be based on various data items, such as source IP address, or characteristics of the session ID, or a load-balancer
specific mechanism. For those load balancers that examine the session ID, HazelcastSessionIdManager appends
a node ID to the session ID, which can be used for routing. You must configure the HazelcastSessionIdManager
with a workerName that is unique across the cluster. Typically the name relates to the physical node on which the
instance is executed. If this name is not unique, your load balancer might fail to distribute your sessions correctly.
If sticky sessions are enabled, the workerName parameter has to be set, as shown below.

<Set name="sessionIdManager">
<New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">

<Arg><Ref id="Server"/></Arg>
<Set name="configLocation">etc/hazelcast.xml</Set>
<Set name="workerName">unique-worker-1</Set>

</New>
</Set>

13.3 Spring Integration

You can integrate Hazelcast with Spring and this chapter explains the configuration of Hazelcast within Spring
context.

13.3.1 Supported Versions

• Spring 2.5+

13.3.2 Configuring Spring

Sample Code: Please see our sample application for Spring Configuration.

13.3.2.1 Declaring Beans by Spring beans Namespace

Classpath Configuration

This configuration requires the following jar file in the classpath:

• hazelcast-<version>.jar

Bean Declaration

You can declare Hazelcast Objects using the default Spring beans namespace. Example code for a Hazelcast Instance
declaration is listed below.

13.3. SPRING INTEGRATION 255

<bean id="instance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
<constructor-arg>
<bean class="com.hazelcast.config.Config">

<property name="groupConfig">
<bean class="com.hazelcast.config.GroupConfig">
<property name="name" value="dev"/>
<property name="password" value="pwd"/>

</bean>
</property>
<!-- and so on ... -->

</bean>
</constructor-arg>

</bean>

<bean id="map" factory-bean="instance" factory-method="getMap">
<constructor-arg value="map"/>

</bean>

13.3.2.2 Declaring Beans by hazelcast Namespace

Configuring Classpath

Hazelcast-Spring integration requires the following JAR files in the classpath:

• hazelcast-spring-<version>.jar
• hazelcast-<version>.jar

or

• hazelcast-all-<version>.jar

Declaring Beans

Hazelcast has its own namespace hazelcast for bean definitions. You can easily add the namespace declaration
xmlns:hz=“http://www.hazelcast.com/schema/spring” to the beans element in the context file so that hz namespace
shortcut can be used as a bean declaration.

Here is an example schema definition for Hazelcast 3.3.x:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:hz="http://www.hazelcast.com/schema/spring"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

13.3.2.3 Supported Configurations with hazelcast Namespace

• Configuring Hazelcast Instance

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"

256 CHAPTER 13. INTEGRATED CLUSTERING

multicast-group="224.2.2.3"
multicast-port="54327"/>

<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>

</hz:tcp-ip>
</hz:join>

</hz:network>
<hz:map name="map"

backup-count="2"
max-size="0"
eviction-percentage="30"
read-backup-data="true"
eviction-policy="NONE"
merge-policy="com.hazelcast.map.merge.PassThroughMergePolicy"/>

</hz:config>
</hz:hazelcast>

• Configuring Hazelcast Client

<hz:client id="client">
<hz:group name="${cluster.group.name}" password="${cluster.group.password}" />
<hz:network connection-attempt-limit="3"

connection-attempt-period="3000"
connection-timeout="1000"
redo-operation="true"
smart-routing="true">

<hz:member>10.10.1.2:5701</hz:member>
<hz:member>10.10.1.3:5701</hz:member>

</hz:network>
</hz:client>

• Hazelcast Supported Type Configurations and Examples

– map
– multiMap
– replicatedmap
– queue
– topic
– set
– list
– executorService
– idGenerator
– atomicLong
– atomicReference
– semaphore
– countDownLatch
– lock

<hz:map id="map" instance-ref="client" name="map" lazy-init="true" />
<hz:multiMap id="multiMap" instance-ref="instance" name="multiMap"

lazy-init="false" />
<hz:replicatedmap id="replicatedmap" instance-ref="instance"

name="replicatedmap" lazy-init="false" />
<hz:queue id="queue" instance-ref="client" name="queue"

lazy-init="true" depends-on="instance"/>
<hz:topic id="topic" instance-ref="instance" name="topic"

13.3. SPRING INTEGRATION 257

depends-on="instance, client"/>
<hz:set id="set" instance-ref="instance" name="set" />
<hz:list id="list" instance-ref="instance" name="list"/>
<hz:executorService id="executorService" instance-ref="client"

name="executorService"/>
<hz:idGenerator id="idGenerator" instance-ref="instance"

name="idGenerator"/>
<hz:atomicLong id="atomicLong" instance-ref="instance" name="atomicLong"/>
<hz:atomicReference id="atomicReference" instance-ref="instance"

name="atomicReference"/>
<hz:semaphore id="semaphore" instance-ref="instance" name="semaphore"/>
<hz:countDownLatch id="countDownLatch" instance-ref="instance"

name="countDownLatch"/>
<hz:lock id="lock" instance-ref="instance" name="lock"/>

• Supported Spring Bean Attributes

Hazelcast also supports lazy-init, scope and depends-on bean attributes.

<hz:hazelcast id="instance" lazy-init="true" scope="singleton">
...

</hz:hazelcast>
<hz:client id="client" scope="prototype" depends-on="instance">
...

</hz:client>

• Configuring MapStore and NearCache

For map-store, you should set either the class-name or the implementation attribute.

<hz:config>
<hz:map name="map1">
<hz:near-cache time-to-live-seconds="0" max-idle-seconds="60"

eviction-policy="LRU" max-size="5000" invalidate-on-change="true"/>

<hz:map-store enabled="true" class-name="com.foo.DummyStore"
write-delay-seconds="0"/>

</hz:map>

<hz:map name="map2">
<hz:map-store enabled="true" implementation="dummyMapStore"

write-delay-seconds="0"/>
</hz:map>

<bean id="dummyMapStore" class="com.foo.DummyStore" />
</hz:config>

13.3.3 Enabling SpringAware Objects

You can mark Hazelcast Distributed Objects with @SpringAware if the object wants:

• to apply bean properties,
• to apply factory callbacks such as ApplicationContextAware, BeanNameAware,
• to apply bean post-processing annotations such as InitializingBean, @PostConstruct.

Hazelcast Distributed ExecutorService, or more generally any Hazelcast managed object, can benefit from these
features. To enable SpringAware objects, you must first configure HazelcastInstance using hazelcast namespace
as explained in Configuring Spring and add <hz:spring-aware /> tag.

258 CHAPTER 13. INTEGRATED CLUSTERING

13.3.3.1 SpringAware Examples

• Configure a Hazelcast Instance (3.3.x) via Spring Configuration and define someBean as Spring Bean.
• Add <hz:spring-aware /> to Hazelcast configuration to enable @SpringAware.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:hz="http://www.hazelcast.com/schema/spring"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

<context:annotation-config />

<hz:hazelcast id="instance">
<hz:config>
<hz:spring-aware />
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false" />
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>

</hz:tcp-ip>
</hz:join>

</hz:network>
...

</hz:config>
</hz:hazelcast>

<bean id="someBean" class="com.hazelcast.examples.spring.SomeBean"
scope="singleton" />

...
</beans>

Distributed Map SpringAware Example:

• Create a class called SomeValue which contains Spring Bean definitions like ApplicationContext and
SomeBean.

@SpringAware
@Component("someValue")
@Scope("prototype")
public class SomeValue implements Serializable, ApplicationContextAware {

private transient ApplicationContext context;

private transient SomeBean someBean;

private transient boolean init = false;

public void setApplicationContext(ApplicationContext applicationContext)
throws BeansException {

13.3. SPRING INTEGRATION 259

context = applicationContext;
}

@Autowired
public void setSomeBean(SomeBean someBean) {
this.someBean = someBean;

}

@PostConstruct
public void init() {
someBean.doSomethingUseful();
init = true;

}
...

}

• Get SomeValue Object from Context and put it into Hazelcast Distributed Map on Node-1.

HazelcastInstance hazelcastInstance =
(HazelcastInstance) context.getBean("hazelcast");

SomeValue value = (SomeValue) context.getBean("someValue")
IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
map.put("key", value);

• Read SomeValue Object from Hazelcast Distributed Map and assert that init method is called since it is
annotated with @PostConstruct.

HazelcastInstance hazelcastInstance =
(HazelcastInstance) context.getBean("hazelcast");

IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
SomeValue value = map.get("key");
Assert.assertTrue(value.init);

ExecutorService SpringAware Example:

• Create a Callable Class called SomeTask which contains Spring Bean definitions like ApplicationContext,
SomeBean.

@SpringAware
public class SomeTask

implements Callable<Long>, ApplicationContextAware, Serializable {

private transient ApplicationContext context;

private transient SomeBean someBean;

public Long call() throws Exception {
return someBean.value;

}

public void setApplicationContext(ApplicationContext applicationContext)
throws BeansException {

context = applicationContext;
}

@Autowired

260 CHAPTER 13. INTEGRATED CLUSTERING

public void setSomeBean(SomeBean someBean) {
this.someBean = someBean;

}
}

• Submit SomeTask to two Hazelcast Members and assert that someBean is autowired.

HazelcastInstance hazelcastInstance =
(HazelcastInstance) context.getBean("hazelcast");

SomeBean bean = (SomeBean) context.getBean("someBean");

Future<Long> f = hazelcastInstance.getExecutorService().submit(new SomeTask());
Assert.assertEquals(bean.value, f.get().longValue());

// choose a member
Member member = hazelcastInstance.getCluster().getMembers().iterator().next();

Future<Long> f2 = (Future<Long>) hazelcast.getExecutorService()
.submitToMember(new SomeTask(), member);

Assert.assertEquals(bean.value, f2.get().longValue());

NOTE: Spring managed properties/fields are marked as transient.

13.3.4 Adding Caching to Spring

Sample Code: Please see our sample application for Spring Cache.

As of version 3.1, Spring Framework provides support for adding caching into an existing Spring application. Spring
3.2 and later versions support JCache compliant caching providers. You can also use JCache caching backed by
Hazelcast if your Spring version supports JCache.

13.3.4.1 Declarative Spring Cache Configuration

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="hazelcast">
...

</hz:hazelcast>

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
<constructor-arg ref="instance"/>

</bean>

Hazelcast uses its Map implementation for underlying cache. You can configure a map with your cache’s name if
you want to set additional configuration such as ttl.

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="hazelcast">
<hz:config>
...

<hz:map name="city" time-to-live-seconds="0" in-memory-format="BINARY" />
</hz:hazelcast>

13.3. SPRING INTEGRATION 261

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
<constructor-arg ref="instance"/>

</bean>

public interface IDummyBean {
@Cacheable("city")
String getCity();

}

13.3.4.2 Declarative Hazelcast JCache Based Caching Configuration

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="hazelcast">
...

</hz:hazelcast>

<hz:cache-manager id="hazelcastJCacheCacheManager" instance-ref="instance" name="hazelcastJCacheCacheManager"/>

<bean id="cacheManager" class="org.springframework.cache.jcache.JCacheCacheManager">
<constructor-arg ref="hazelcastJCacheCacheManager" />

</bean>

You can use JCache implementation in both member and client mode. A cache manager should be bound to
an instance. Instance can be referenced by instance-ref attribute or provided by hazelcast.instance.name
property which is passed to CacheManager. Instance should be specified using one of these methods.

NOTE: Instance name provided in properties overrides instance-ref attribute.

You can specify a uri for each cache manager with uri attribute.

<hz:cache-manager id="cacheManager2" name="cacheManager2" uri="testURI">
<hz:properties>

<hz:property name="hazelcast.instance.name">named-spring-hz-instance</hz:property>
<hz:property name="testProperty">testValue</hz:property>

</hz:properties>
</hz:cache-manager>

13.3.4.3 Annotation-Based Spring Cache Configuration

Annotation-Based Configuration does not require any XML definition. To perform Annotation-Based Configuration:

• Implement a CachingConfiguration class with related Annotations.

@Configuration
@EnableCaching
public class CachingConfiguration implements CachingConfigurer{

@Bean
public CacheManager cacheManager() {

ClientConfig config = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(config);
return new HazelcastCacheManager(client);

}
@Bean
public KeyGenerator keyGenerator() {

return null;
}

262 CHAPTER 13. INTEGRATED CLUSTERING

• Launch Application Context and register CachingConfiguration.

AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext();
context.register(CachingConfiguration.class);
context.refresh();

For more information about Spring Cache, please see Spring Cache Abstraction.

13.3.5 Configuring Hibernate Second Level Cache

Sample Code: Please see our sample application for Hibernate 2nd Level Cache Config.

If you are using Hibernate with Hazelcast as a second level cache provider, you can easily create RegionFactory
instances within Spring configuration (by Spring version 3.1). That way, you can use the same HazelcastInstance
as Hibernate L2 cache instance.

<hz:hibernate-region-factory id="regionFactory" instance-ref="instance"
mode="LOCAL" />

...
<bean id="sessionFactory"

class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"
scope="singleton">

<property name="dataSource" ref="dataSource"/>
<property name="cacheRegionFactory" ref="regionFactory" />
...

</bean>

Hibernate RegionFactory Modes

• LOCAL
• DISTRIBUTED

Please refer to Hibernate Configuring RegionFactory for more information.

13.3.6 Best Practices

Spring tries to create a new Map/Collection instance and fill the new instance by iterating and converting values
of the original Map/Collection (IMap, IQueue, etc.) to required types when generic type parameters of the original
Map/Collection and the target property/attribute do not match.

Since Hazelcast Maps/Collections are designed to hold very large data which a single machine cannot carry,
iterating through whole values can cause out of memory errors.

To avoid this issue, the target property/attribute can be declared as un-typed Map/Collection as shown below.

public class SomeBean {
@Autowired
IMap map; // instead of IMap<K, V> map

@Autowired
IQueue queue; // instead of IQueue<E> queue

...
}

Or, parameters of injection methods (constructor, setter) can be un-typed as shown below.

13.3. SPRING INTEGRATION 263

public class SomeBean {

IMap<K, V> map;

IQueue<E> queue;

// Instead of IMap<K, V> map
public SomeBean(IMap map) {
this.map = map;

}

...

// Instead of IQueue<E> queue
public void setQueue(IQueue queue) {
this.queue = queue;

}
...

}

RELATED INFORMATION

For more information please see Spring issue-3407.

264 CHAPTER 13. INTEGRATED CLUSTERING

Chapter 14

Storage

This chapter describes Hazelcast’s High-Density Memory Store and Hot Restart Persistence features along with
their configurations, and gives recommendations on the storage sizing.

14.1 High-Density Memory Store

Hazelcast Enterprise HD

Hazelcast High-Density Memory Store is Hazelcast’s enterprise grade backend storage solution. By default, Hazelcast
offers a production ready, low garbage collection (GC) pressure, storage backend. Serialized keys and values are still
stored in the standard Java map, such as data structures on the heap. The data structures are stored in serialized
form for the highest data compaction, and are still subject to Java Garbage Collection.

In Hazelcast Enterprise HD, the High-Density Memory Store is built around a pluggable memory manager
which enables multiple memory stores. These memory stores are all accessible using a common access layer that
scales up to Terabytes of main memory on a single JVM. At the same time, by further minimizing the GC pressure,
High-Density Memory Store enables predictable application scaling and boosts performance and latency while
minimizing pauses for Java Garbage Collection.

This foundation includes, but is not limited to, storing keys and values next to the heap in a native memory region.

High-Density Memory Store is currently provided for the following Hazelcast features and implementations:

• Map and near cache
• JCache Implementation
• Hot Restart Persistence
• Java Client, when using the near cache for client
• Web Session Replications
• Hibernate 2nd Level Caching

14.1.1 Configuring High-Density Memory Store

To use the High-Density memory storage, the native memory usage must be enabled using the programmatic or
declarative configuration. Also, you can configure its size, memory allocator type, minimum block size, page size
and metadata space percentage.

• size: Size of the total native memory to allocate. Default value is 512 MB.
• allocator type: Type of the memory allocator. Available values are as follows:

– STANDARD: This option is used internally by Hazelcast’s POOLED allocator type or for debug-
ging/testing purposes.

265

266 CHAPTER 14. STORAGE

– With this option, the memory is allocated or deallocated using your operating system’s default memory
manager.

∗ It uses GNU C Library’s standard malloc() and free() methods which are subject to contention
on multithreaded/multicore systems.

∗ Memory operations may become slower when you perform a lot of small allocations and deallocations.
∗ It may cause large memory fragmentations, unless you use a method in the background that

emphasizes fragmentation avoidance, such as jemalloc(). Note that a large memory fragmentation
can trigger the Linux Out of Memory Killer if there is no swap space enabled in your system. Even
if the swap space is enabled, the killer can be again triggered if there is not enough swap space left.

∗ If you still want to use the operating system’s default memory management, you can set the allocator
type to STANDARD in your native memory configuration.

– POOLED: This is the default option, Hazelcast’s own pooling memory allocator.
∗ With this option, memory blocks are managed using internal memory pools.
∗ It allocates memory blocks, each of which has a 4MB page size by default, and splits them into
chunks or merges them to create larger chunks when required. Sizing of these chunks follows the
buddy memory allocation algorithm, i.e. power-of-two sizing.

∗ It never frees memory blocks back to the operating system. It marks disposed memory blocks as
available to be used later, meaning that these blocks are reusable.

∗ Memory allocation and deallocation operations (except the ones requiring larger sizes than the page
size) do not interact with the operating system mostly.

∗ For memory allocation, it tries to find the requested memory size inside the internal memory pools.
If it cannot be found, then it interacts with the operating system.

• minimum block size: Minimum size of the blocks in bytes to split and fragment a page block to assign to
an allocation request. It is used only by the POOLED memory allocator. Default value is 16.

• page size: Size of the page in bytes to allocate memory as a block. It is used only by the POOLED memory
allocator. Default value is 1 << 22 = 4194304 Bytes, about 4 MB.

• metadata space percentage: Defines the percentage of the allocated native memory that is used for
internal memory structures by the High-Density Memory for tracking the used and available memory blocks.
It is used only by the POOLED memory allocator. Default value is 12.5.

The following is the programmatic configuration example.

MemorySize memorySize = new MemorySize(512, MemoryUnit.MEGABYTES);
NativeMemoryConfig nativeMemoryConfig =

new NativeMemoryConfig()
.setAllocatorType(NativeMemoryConfig.MemoryAllocatorType.POOLED)
.setSize(memorySize)
.setEnabled(true)
.setMinBlockSize(16)
.setPageSize(1 << 20);

The following is the declarative configuration example.

<native-memory enabled="true" allocator-type="POOLED">
<size value="512" unit="MEGABYTES"/>

</native-memory>

14.2 Sizing Practices

Data in Hazelcast is both active data and backup data for high availability, so the total memory footprint is the
size of active data plus the size of backup data. If you use a single backup, it means the total memory footprint
is two times the active data (active data + backup data). If you use, for example, two backups, then the total
memory footprint is three times the active data (active data + backup data + backup data).

https://en.wikipedia.org/wiki/Buddy_memory_allocation

14.3. HOT RESTART PERSISTENCE 267

If you use only heap memory, each Hazelcast node with a 4 GB heap should accommodate a maximum of 3.5 GB
of total data (active and backup). If you use the High-Density Memory Store, up to 75% of your physical memory
footprint may be used for active and backup data, with headroom of 25% for normal fragmentation. In both
cases, however, you should also keep some memory headroom available to handle any node failure or explicit node
shutdown. When a node leaves the cluster, the data previously owned by the newly offline node will be distributed
among the remaining members. For this reason, we recommend that you plan to use only 60% of available memory,
with 40% headroom to handle node failure or shutdown.

14.3 Hot Restart Persistence

Hazelcast Enterprise HD

This chapter explains the Hazelcast’s Hot Restart Persistence feature, introduced with Hazelcast 3.6. Hot Restart
Persistence provides fast cluster restarts by storing the states of the cluster members on the disk. This feature is
currently provided for the Hazelcast map data structure and the Hazelcast JCache implementation.

14.3.1 Hot Restart Persistence Overview

Hot Restart Persistence enables you to get your cluster up and running swiftly after a cluster restart. A restart can
be caused by a planned shutdown (including rolling upgrades) or a sudden cluster-wide crash (e.g. power outage).
For Hot Restart Persistence, required states for Hazelcast clusters and members are introduced. Please refer to the
Managing Cluster and Member States section for information on the cluster and member states.

14.3.1.1 Hot Restart Types

The Hot Restart feature is supported for the following restart types:

• Restart after a planned shutdown:

– The cluster is shutdown completely and restarted with the exact same previous setup and data.
You can shutdown the cluster completely using the method HazelcastInstance.getCluster().shutdown()
or you can manually change the cluster state to PASSIVE and then shut down each member one by one.
When you send the command to shut the cluster down, i.e. HazelcastInstance.getCluster().shutdown(),
the members that are not in the PASSIVE state change their states to PASSIVE. Then, each member
shuts itself down by calling the method HazelcastInstance.shutdown().

– Rolling upgrade: The cluster is restarted intentionally member by member. For example, this could be
done to install an operating system patch or new hardware.
To be able to shutdown the cluster member by member as part of a planned restart, each member in the
cluster should be in the FROZEN or PASSIVE state. After the cluster state is changed to FROZEN or PASSIVE,
you can manually shutdown each member by calling the method HazelcastInstance.shutdown(). When
that member is restarted, it will rejoin the running cluster. After all members are restarted, the cluster
state can be changed back to ACTIVE.

• Restart after a cluster crash: The cluster is restarted after all its members crashed at the same time due
to a power outage, networking interruptions, etc.

14.3.1.2 The Restart Process

During the restart process, each member waits to load data until all the members in the partition table are started.
During this process, no operations are allowed. Once all cluster members are started, Hazelcast changes the cluster
state to PASSIVE and starts to load data. When all data is loaded, Hazelcast changes the cluster state to its previous
known state before shutdown and starts to accept the operations which are allowed by the restored cluster state.

If a member fails to either start, join the cluster in time (within the timeout), or load its data, then that member
will be terminated immediately. After the problems causing the failure are fixed, that member can be restarted. If

268 CHAPTER 14. STORAGE

the cluster start cannot be completed in time, then all members will fail to start. Please refer to the Configuring
Hot Restart section for defining timeouts.

In the case of a restart after a cluster crash, the Hot Restart feature realizes that it was not a clean shutdown and
Hazelcast tries to restart the cluster with the last saved data following the process explained above. In some cases,
specifically when the cluster crashes while it has an ongoing partition migration process, currently it is not possible
to restore the last saved state.

14.3.1.3 Force Start

A member can crash permanently and then be unable to recover from the failure. In that case, restart process
cannot be completed since some of the members do not start or fail to load their own data. In that case, you can
force the cluster to clean its persisted data and make a fresh start. This process is called force start.

You can trigger the force start process using the Management Center, REST API and cluster management scripts.
Force start process is managed by the master member. Therefore, you should trigger the force start on master
member.

Please refer to the Hot Restart functionality of the Management Center section to learn how you can perform a
force start using the Management Center.

14.3.2 Configuring Hot Restart

You can configure Hot Restart programmatically or declaratively. The configuration includes elements to en-
able/disable the feature, to specify the directory where the Hot Restart data will be stored, and to define timeout
values.

14.3.2.1 Hot Restart Configuration Elements

The following are the descriptions of the Hot Restart configuration elements.

• hot-restart-persistence: The configuration that enables the Hot Restart feature. It includes the element
base-dir that is used to specify the directory where the Hot Restart data will be stored. The default value
for base-dir is hot-restart. You can use the default value, or you can specify the value of another folder
containing the Hot Restart configuration, but it is mandatory that this hot-restart element has a value.
This directory will be created automatically if it does not exist.

• validation-timeout-seconds: Validation timeout for the Hot Restart process when validating the cluster
members expected to join and the partition table on the whole cluster.

• data-load-timeout-seconds: Data load timeout for the Hot Restart process. All members in the cluster
should finish restoring their local data before this timeout.

• hot-restart: The configuration that enables or disables the Hot Restart feature per data structure. This
element is used for the supported data structures (in the above examples, you can see that it is included in
map and cache). Turning on fsync guarantees that data is persisted to the disk device when a write operation
returns successful response to the caller. By default, fsync is turned off. That means data will be persisted
to the disk device eventually, instead of on every disk write. This generally provides better performance.

14.3.2.2 Hot Restart Configuration Examples

The following are example configurations for a Hazelcast map and JCache implementation.

Declarative Configuration:

An example configuration is shown below.

<hazelcast>
...
<hot-restart-persistence enabled="true">

14.3. HOT RESTART PERSISTENCE 269

<base-dir>/mnt/hot-restart</base-dir>
<validation-timeout-seconds>120</validation-timeout-seconds>
<data-load-timeout-seconds>900</data-load-timeout-seconds>

</hot-restart-persistence>
...
<map>
<hot-restart enabled="true">
<fsync>false</fsync>

</hot-restart>
</map>
...
<cache>
<hot-restart enabled="true">
<fsync>false</fsync>

</hot-restart>
</cache>
...

</hazelcast>

Programmatic Configuration:

The programmatic equivalent of the above declarative configuration is shown below.

HotRestartPersistenceConfig hotRestartPersistenceConfig = new HotRestartPersistenceConfig();
hotRestartPersistenceConfig.setEnabled(true);
hotRestartPersistenceConfig.setBaseDir(new File("/mnt/hot-restart"));
hotRestartPersistenceConfig.setValidationTimeoutSeconds(120);
hotRestartPersistenceConfig.setDataLoadTimeoutSeconds(900);
config.setHotRestartPersistenceConfig(hotRestartPersistenceConfig);

...
MapConfig mapConfig = new MapConfig();
mapConfig.getHotRestartConfig().setEnabled(true);

...
CacheConfig cacheConfig = new CacheConfig();
cacheConfig.getHotRestartConfig().setEnabled(true);

14.3.3 Hot Restart and IP Address-Port

Hazelcast relies on the IP address-port pair as a unique identifier for a cluster member. The member must restart
with these address-port settings the same as before shutdown. Otherwise, Hot Restart fails.

14.3.4 Hot Restart Persistence Design Details

Hazelcast’s Hot Restart Persistence uses the log-structured storage approach. The following is a top-level design
description:

• The only kind of update operation on persistent data is appending.
• What is appended are facts about events that happened to the data model represented by the store; either a
new value was assigned to a key or a key was removed.

• Each record associated with a key makes stale the previous record that was associated with that key.
• Stale records contribute to the amount of garbage present in the persistent storage.
• Measures are taken to remove garbage from the storage.

270 CHAPTER 14. STORAGE

This kind of design focuses almost all of the system’s complexity into the garbage collection (GC) process, stripping
down the client’s operation to the bare necessity of guaranteeing persistent behavior: a simple file append operation.
Consequently, the latency of operations is close to the theoretical minimum in almost all cases. Complications arise
only during prolonged periods of maximum load; this is where the details of the GC process begin to matter.

14.3.5 Concurrent, Incremental, Generational GC

In order to maintain the lowest possible footprint in the update operation latency, the following properties are built
into the garbage collection process:

• A dedicated thread performs the GC. In Hazelcast terms, this thread is called the Collector and the application
thread is called the Mutator.

• On each update there is metadata to be maintained; this is done asynchronously by the Collector thread.
The Mutator enqueues update events to the Collector’s work queue.

• The Collector keeps draining its work queue at all times, including the time it goes through the GC cycle.
Updates are taken into account at each stage in the GC cycle, preventing the copying of already dead records
into compacted files.

• All GC-induced I/O competes for the same resources as the Mutator’s update operations. Therefore, measures
are taken to minimize the impact of I/O done during GC:
– data is never read from files, but from RAM;
– a heuristic scheme is employed which minimizes the number of bytes written to disk for each kilobyte of

reclaimed garbage;
– measures are also taken to achieve a good interleaving of Collector and Mutator operations, minimizing

latency outliers perceived by the Mutator.

14.3.5.1 I/O Minimization Scheme

The success of this scheme is subject to a bet on the Weak Generational Garbage Hypothesis, which states that a
new record entering the system is likely to become garbage soon. In other words, a key updated now is more likely
than average to be updated again soon.

The scheme was taken from the seminal Sprite LFS paper, Rosenblum, Ousterhout, The Design and Implementation
of a Log-Structured File System. The following is an outline of the paper:

• Data is not written to one huge file, but to many files of moderate size (8 MB) called “chunks”.
• Garbage is collected incrementally, i.e. by choosing several chunks, then copying all their live data to new
chunks, then deleting the old ones.

• I/O is minimized using a collection technique which results in a bimodal distribution of chunks with respect
to their garbage content: most files are either almost all live data or they are all garbage.

• The technique consists of two main principles: 1. Chunks are selected based on their Cost-Benefit factor (see
below). 2. Records are sorted by age before copying to new chunks.

14.3.5.2 Cost-Benefit Factor

The Cost-Benefit factor of a chunk consists of two components multiplied together:

1. The ratio of benefit (amount of garbage that can be collected) to I/O cost (amount of live data to be written).
2. The age of the data in the chunk, measured as the age of the youngest record it contains.

The essence is in the second component: given equal amount of garbage in all chunks, it will make the young ones
less attractive to the Collector. Assuming the generational garbage hypothesis, this will allow the young chunks
to quickly accumulate more garbage. On the flip side, it will also ensure that even files with little garbage are
eventually garbage collected. This removes garbage which would otherwise linger on, thinly spread across many
chunk files.

Sorting records by age will group young records together in a single chunk and will do the same for older records.
Therefore the chunks will either tend to keep their data live for a longer time, or quickly become full of garbage.

http://www.cs.berkeley.edu/~brewer/cs262/LFS.pdf
http://www.cs.berkeley.edu/~brewer/cs262/LFS.pdf

14.3. HOT RESTART PERSISTENCE 271

14.3.6 Hot Restart Performance Considerations

In this section you can find performance test summaries which are results of benchmark tests performed with a
single Hazelcast member running on a physical server and on AWS R3.

14.3.6.1 Performance on a Physical Server

The member has the following:

• An IMap data structure with High-Density Memory Store.
• Its data size is changed for each test, started from 10 GB to 500 GB (each map entry has a value of 1 KB).

The tests investigate the write and read performance of Hot Restart Persistence and are performed on HP ProLiant
servers with RHEL 7 operating system using Hazelcast Simulator.

The following are the specifications of the server hardware used for the test:

• CPU: 2x Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz – with 10 cores per processor. Total 20 cores, 40
with hyper threading enabled.

• Memory: 768GB 2133 MHz memory 24x HP 32GB 4Rx4 PC4-2133P-L Kit

The following are the storage media used for the test:

• A hot-pluggable 2.5 inch HDD with 1 TB capacity and 10K RPM.
• An SSD, Light Endurance PCle Workload Accelerator.

The below table shows the test results.

Figure 14.1: Performance on a Physical Server

272 CHAPTER 14. STORAGE

14.3.6.2 Performance on AWS R3

The member has the following:

• An IMap data structure with High-Density Memory Store.
• IMap has 40 million distinct keys, each map entry is 1 KB.
• High-Density Memory Store is 59 GiB whose 19% is metadata.
• Hot Restart is configured with fsync turned off.
• Data size reloaded on restart is 38 GB.

The tests investigate the write and read performance of Hot Restart Persistence and are performed on R3.2xlarge
and R3.4xlarge EC2 instances using Hazelcast Simulator.

The following are the AWS storage types used for the test:

• Elastic Block Storage (EBS) General Purpose SSD (GP2).
• Elastic Block Storage with Provisioned IOPS (IO1). Provisioned 10,000 IOPS on a 340 GiB volume, enabled
EBS-optimized on instance.

• SSD-backed instance store.

The below table shows the test results.

14.3. HOT RESTART PERSISTENCE 273

Figure 14.2: Performance on AWS

274 CHAPTER 14. STORAGE

Chapter 15

Hazelcast Java Client

There are currently three ways to connect to a running Hazelcast cluster:

• Native Clients (Java, C++, .NET)
• Memcache Client
• REST Client

Native Clients enable you to perform almost all Hazelcast operations without being a member of the cluster. It
connects to one of the cluster members and delegates all cluster wide operations to it (dummy client), or it connects
to all of them and delegates operations smartly (smart client). When the relied cluster member dies, the client will
transparently switch to another live member.

Hundreds or even thousands of clients can be connected to the cluster. By default, there are core count * 10
threads on the server side that will handle all the requests (e.g. if the server has 4 cores, there will be 40 threads).

Imagine a trading application where all the trading data are stored and managed in a Hazelcast cluster with tens of
nodes. Swing/Web applications at the traders’ desktops can use Native Clients to access and modify the data in
the Hazelcast cluster.

Currently, Hazelcast has Native Java, C++ and .NET Clients available. This chapter describes the Java Client.

IMPORTANT: Starting with the Hazelcast 3.5. release, a new Java Native Client Library is introduced
in the release package: hazelcast-client-new-<version>.jar. This library contains clients which use the new
Hazelcast Binary Client Protocol. This library does not exist for the releases before 3.5.

15.1 Hazelcast Clients Feature Comparison

Before detailing the Java Client, this section provides the below comparison matrix to show which features are
supported by the Hazelcast clients.

Feature Java Client .NET Client

Map Yes Yes
Queue Yes Yes
Set Yes Yes
List Yes Yes
MultiMap Yes Yes
Replicated Map Yes No
Topic Yes Yes

275

276 CHAPTER 15. HAZELCAST JAVA CLIENT

Feature Java Client .NET Client

MapReduce Yes No
Lock Yes Yes
Semaphore Yes Yes
AtomicLong Yes Yes
AtomicReference Yes Yes
IdGenerator Yes Yes
CountDownLatch Yes Yes
Transactional Map Yes Yes
Transactional MultiMap Yes Yes
Transactional Queue Yes Yes
Transactional List Yes Yes
Transactional Set Yes Yes
JCache Yes No
Ringbuffer Yes No
Reliable Topic Yes No
Hot Restart Yes (with a near cache) No
Client Configuration Import Yes No
Hazelcast Client Protocol Yes Yes
Fail Fast on Invalid Conviguration Yes No
Sub-Listener Interfaces for Map ListenerMap Yes No
Continuous Query Yes No
Listener with Predicate Yes Yes
Distributed Executor Service Yes No
Query Yes Yes
Near Cache Yes Yes
Heartbeat Yes Yes
Declarative Configuration Yes Yes
Programmatic Configuration Yes Yes
SSL Support Yes No
XA Transactions Yes No
Smart Client Yes Yes
Dummy Client Yes Yes
Lifecycle Service Yes Yes
Event Listeners Yes Yes
DataSerializable Yes Yes
IdentifiedDataSerializable Yes Yes
Portable Yes Yes

15.2. JAVA CLIENT OVERVIEW 277

15.2 Java Client Overview

The Java client is the most full featured Hazelcast native client. It is offered both with Hazelcast and Hazelcast
Enterprise. The main idea behind the Java client is to provide the same Hazelcast functionality by proxying each
operation through a Hazelcast node. It can access and change distributed data, and it can listen to distributed
events of an already established Hazelcast cluster from another Java application.

15.2.1 Including Dependencies for Java Clients

You should include two dependencies in your classpath to start using the Hazelcast client: hazelcast.jar and
hazelcast-client.jar.

After adding these dependencies, you can start using the Hazelcast client as if you are using the Hazelcast API.
The differences are discussed in the below sections.

If you prefer to use maven, add the following lines to your pom.xml.

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-client</artifactId>
<version>$LATEST_VERSION$</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>$LATEST_VERSION$</version>

</dependency>

15.2.2 Getting Started with Client API

The first step is configuration. You can configure the Java client declaratively or programmatically. We will use the
programmatic approach throughout this tutorial. Please refer to the Java Client Declarative Configuration section
for details.

ClientConfig clientConfig = new ClientConfig();
clientConfig.getGroupConfig().setName("dev").setPassword("dev-pass");
clientConfig.getNetworkConfig().addAddress("10.90.0.1", "10.90.0.2:5702");

The second step is to initialize the HazelcastInstance to be connected to the cluster.

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

This client interface is your gateway to access all Hazelcast distributed objects.

Let’s create a map and populate it with some data.

IMap<String, Customer> mapCustomers = client.getMap("customers"); //creates the map proxy

mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));
mapCustomers.put("3", new Customer("Avi", "Noyan"));

As a final step, if you are done with your client, you can shut it down as shown below. This will release all the used
resources and will close connections to the cluster.

client.shutdown();

278 CHAPTER 15. HAZELCAST JAVA CLIENT

15.2.3 Java Client Operation Modes

The client has two operation modes because of the distributed nature of the data and cluster.

Smart Client: In smart mode, clients connect to each cluster node. Since each data partition uses the well known
and consistent hashing algorithm, each client can send an operation to the relevant cluster node, which increases
the overall throughput and efficiency. Smart mode is the default mode.

Dummy Client: For some cases, the clients can be required to connect to a single node instead of to each node in
the cluster. Firewalls, security, or some custom networking issues can be the reason for these cases.

In dummy client mode, the client will only connect to one of the configured addresses. This single node will behave
as a gateway to the other nodes. For any operation requested from the client, it will redirect the request to the
relevant node and return the response back to the client returned from this node.

15.2.4 Handling Failures

There are two main failure cases you should be aware of, and configurations you can perform to achieve proper
behavior.

15.2.4.1 Handling Client Connection Failure

While the client is trying to connect initially to one of the members in the ClientNetworkConfig.addressList,
all the members might be not available. Instead of giving up, throwing an exception and stopping the client, the
client will retry as many as connectionAttemptLimit times.

You can configure connectionAttemptLimit for the number of times you want the client to retry connecting.
Please see Setting Connection Attempt Limit.

The client executes each operation through the already established connection to the cluster. If this connection(s)
disconnects or drops, the client will try to reconnect as configured.

15.2.4.2 Handling Retry-able Operation Failure

While sending the requests to related nodes, operations can fail due to various reasons. Read-only operations are
retried by default. If you want to enable retry for the other operations, set the redoOperation to true. Please see
Enabling Redo Operation.

You can set a timeout for retrying the operations sent to a member. This can be provided by using the property
hazelcast.client.invocation.timeout.seconds in ClientProperties. Client will retry an operation within
this given period, of course if it is a read-only operation or you enabled the redoOperation as stated in the above
paragraph. This timeout value is important when there is a failure resulted by either of the following causes:

• Member throws an exception.
• Connection between the client and member is closed.
• Client’s heartbeat requests are timed out.

Please see the Client System Properties section.

15.2.5 Using Supported Distributed Data Structures

Most of the Distributed Data Structures are supported by the Java client. When you use clients in other languages,
you should check for the exceptions.

As a general rule, you configure these data structures on the server side and access them through a proxy on the
client side.

15.2. JAVA CLIENT OVERVIEW 279

15.2.5.1 Using Map with Java Client

You can use any Distributed Map object with the client, as shown below.

Imap<Integer, String> map = client.getMap(“myMap”);

map.put(1, “Ali”);
String value= map.get(1);
map.remove(1);

Locality is ambiguous for the client, so addLocalEntryListener and localKeySet are not supported. Please see
the Distributed Map section for more information.

15.2.5.2 Using MultiMap with Java Client

A MultiMap usage example is shown below.

MultiMap<Integer, String> multiMap = client.getMultiMap("myMultiMap");

multiMap.put(1,”ali”);
multiMap.put(1,”veli”);

Collection<String> values = multiMap.get(1);

addLocalEntryListener, localKeySet and getLocalMultiMapStats are not supported because locality is am-
biguous for the client. Please see the Distributed MultiMap section for more information.

15.2.5.3 Using Queue with Java Client

A sample usage is shown below.

IQueue<String> myQueue = client.getQueue(“theQueue”);
myQueue.offer(“ali”)

getLocalQueueStats is not supported because locality is ambiguous for the client. Please see the Distributed
Queue section for more information.

15.2.5.4 Using Topic with Java Client

getLocalTopicStats is not supported because locality is ambiguous for the client.

15.2.5.5 Using Other Supported Distributed Structures

The distributed data structures listed below are also supported by the client. Since their logic is the same in both
the node side and client side, you can refer to their sections as listed below.

• Replicated Map
• MapReduce
• List
• Set
• IAtomicLong
• IAtomicReference
• ICountDownLatch
• ISemaphore
• IdGenerator
• Lock

280 CHAPTER 15. HAZELCAST JAVA CLIENT

15.2.6 Using Client Services

Hazelcast provides the services discussed below for some common functionalities on the client side.

15.2.6.1 Using Distributed Executor Service

The distributed executor service is for distributed computing. It can be used to execute tasks on the cluster on
a designated partition or on all the partitions. It can also be used to process entries. Please see the Distributed
Executor Service section for more information.

IExecutorService executorService = client.getExecutorService("default");

After getting an instance of IExecutorService, you can use the instance as the interface with the one provided on
the server side. Please see the Distributed Computing chapter for detailed usage.

NOTE: This service is only supported by the Java client.

15.2.6.2 Listening to Client Connection

If you need to track clients and you want to listen to their connection events, you can use the clientConnected
and clientDisconnected methods of the ClientService class. This class must be run on the node side. The
following is an example code.

final ClientService clientService = hazelcastInstance.getClientService();
final Collection<Client> connectedClients = clientService.getConnectedClients();

clientService.addClientListener(new ClientListener() {
@Override
public void clientConnected(Client client) {

//Handle client connected event
}

@Override
public void clientDisconnected(Client client) {

//Handle client disconnected event
}

});

15.2.6.3 Finding the Partition of a Key

You use partition service to find the partition of a key. It will return all partitions. See the example code below.

PartitionService partitionService = client.getPartitionService();

//partition of a key
Partition partition = partitionService.getPartition(key);

//all partitions
Set<Partition> partitions = partitionService.getPartitions();

15.3. CONFIGURING JAVA CLIENT 281

15.2.6.4 Handling Lifecycle

Lifecycle handling performs the following:

• checks to see if the client is running,
• shuts down the client gracefully,
• terminates the client ungracefully (forced shutdown), and
• adds/removes lifecycle listeners.

LifecycleService lifecycleService = client.getLifecycleService();

if(lifecycleService.isRunning()){
//it is running

}

//shutdown client gracefully
lifecycleService.shutdown();

15.2.7 Client Listeners

You can configure listeners to listen to various event types on the client side. You can configure global events not
relating to any distributed object through Client ListenerConfig. You should configure distributed object listeners
like map entry listeners or list item listeners through their proxies. You can refer to the related sections under each
distributed data structure in this reference manual.

15.2.8 Client Transactions

Transactional distributed objects are supported on the client side. Please see the Transactions chapter on how to
use them.

15.3 Configuring Java Client

You can configure Hazelcast Java Client declaratively (XML) or programmatically (API).

For declarative configuration, the Hazelcast client looks at the following places for the client configuration file.

• System property: The client first checks if hazelcast.client.config system property is set to a file path,
e.g. -Dhazelcast.client.config=C:/myhazelcast.xml.

• Classpath: If config file is not set as a system property, the client checks the classpath for
hazelcast-client.xml file.

If the client does not find any configuration file, it starts with the default configuration (hazelcast-client-default.xml)
located in the hazelcast-client.jar library. Before configuring the client, please try to work with the default
configuration to see if it works for you. The default should be just fine for most users. If not, then consider custom
configuration for your environment.

If you want to specify your own configuration file to create a Config object, the Hazelcast client supports the
following.

• Config cfg = new XmlClientConfigBuilder(xmlFileName).build();

• Config cfg = new XmlClientConfigBuilder(inputStream).build();

For programmatic configuration of the Hazelcast Java Client, just instantiate a ClientConfig object and configure
the desired aspects. An example is shown below.

282 CHAPTER 15. HAZELCAST JAVA CLIENT

ClientConfig clientConfig = new ClientConfig();
clientConfig.setGroupConfig(new GroupConfig("dev","dev-pass”);
clientConfig.setLoadBalancer(yourLoadBalancer);
...
...

15.3.1 Configuring Client Network

All network related configuration of Hazelcast Java Client is performed via the network element in the declarative
configuration file, or in the class ClientNetworkConfig when using programmatic configuration. Let’s first give
the examples for these two approaches. Then we will look at its sub-elements and attributes.

15.3.1.1 Declarative Client Network Configuration

Here is an example of configuring network for Java Client declaratively.

...
<network>
<cluster-members>
<address>127.0.0.1</address>
<address>127.0.0.2</address>

</cluster-members>
<smart-routing>true</smart-routing>
<redo-operation>true</redo-operation>
<socket-interceptor enabled="true">
<class-name>com.hazelcast.XYZ</class-name>
<properties>
<property name="kerberos-host">kerb-host-name</property>
<property name="kerberos-config-file">kerb.conf</property>

</properties>
</socket-interceptor>
<aws enabled="true" connection-timeout-seconds="11">
<inside-aws>false</inside-aws>
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<iam-role>s3access</iam-role>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>
</network>

15.3.1.2 Programmatic Client Network Configuration

Here is an example of configuring network for Java Client programmatically.

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();

15.3.1.3 Configuring Address List

Address List is the initial list of cluster addresses to which the client will connect. The client uses this list to
find an alive node. Although it may be enough to give only one address of a node in the cluster (since all nodes
communicate with each other), it is recommended that you give the addresses for all the nodes.

15.3. CONFIGURING JAVA CLIENT 283

Declarative:

<hazelcast-client>
...
<network>
<cluster-members>
<address>10.1.1.21</address>
<address>10.1.1.22:5703</address>

</cluster-members>
...
</network>

...
</hazelcast-client>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig().addAddress("10.1.1.21", "10.1.1.22:5703");

If the port part is omitted, then 5701, 5702, and 5703 will be tried in random order.

You can provide multiple addresses with ports provided or not, as seen above. The provided list is shuffled and
tried in random order. Default value is localhost.

15.3.1.4 Setting Smart Routing

Smart routing defines whether the client mode is smart or dummy. The following are example configurations.

Declarative:

...
<network>
...

<smart-routing>true</smart-routing>
...
</network>
...

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig().setSmartRouting(true);

The default is smart client mode.

15.3.1.5 Enabling Redo Operation

It enables/disables redo-able operations as described in Handling Retry-able Operation Failure. The following are
the example configurations.

Declarative:

284 CHAPTER 15. HAZELCAST JAVA CLIENT

...
<network>
...
<redo-operation>true</redo-operation>

...
</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig().setRedoOperation(true);

Default is disabled.

15.3.1.6 Setting Connection Timeout

Connection timeout is the timeout value in milliseconds for nodes to accept client connection requests. The following
are the example configurations.

Declarative:

...
<network>
...

<connection-timeout>5000</connection-timeout>
...
</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().setConnectionTimeout(5000);

The default value is 5000 milliseconds.

15.3.1.7 Setting Connection Attempt Limit

While the client is trying to connect initially to one of the members in the ClientNetworkConfig.addressList, all
members might be not available. Instead of giving up, throwing an exception and stopping the client, the client will
retry as many as ClientNetworkConfig.connectionAttemptLimit times. This is also the case when an existing
client-member connection goes down. The following are example configurations.

Declarative:

...
<network>
...

<connection-attempt-limit>5</connection-attempt-limit>
...
</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().setConnectionAttemptLimit(5);

Default value is 2.

15.3. CONFIGURING JAVA CLIENT 285

15.3.1.8 Setting Connection Attempt Period

Connection timeout period is the duration in milliseconds between the connection attempts defined by
ClientNetworkConfig.connectionAttemptLimit. The following are example configurations.

Declarative:

...
<network>
...

<connection-attempt-period>5000</connection-attempt-period>
...
</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().setConnectionAttemptPeriod(5000);

Default value is 3000.

15.3.1.9 Setting a Socket Interceptor

Hazelcast Enterprise

Following is a client configuration to set a socket intercepter. Any class implementing com.hazelcast.nio.SocketInterceptor
is a socket interceptor.

public interface SocketInterceptor {
void init(Properties properties);
void onConnect(Socket connectedSocket) throws IOException;

}

SocketInterceptor has two steps. First, it will be initialized by the configured properties. Second, it will be
informed just after the socket is connected using onConnect.

SocketInterceptorConfig socketInterceptorConfig = clientConfig
.getNetworkConfig().getSocketInterceptorConfig();

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();

socketInterceptorConfig.setEnabled(true);
socketInterceptorConfig.setImplementation(myClientSocketInterceptor);

If you want to configure the socket connector with a class name instead of an instance, see the example below.

SocketInterceptorConfig socketInterceptorConfig = clientConfig
.getNetworkConfig().getSocketInterceptorConfig();

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();

socketInterceptorConfig.setEnabled(true);

//These properties are provided to interceptor during init
socketInterceptorConfig.setProperty("kerberos-host","kerb-host-name");
socketInterceptorConfig.setProperty("kerberos-config-file","kerb.conf");

socketInterceptorConfig.setClassName(myClientSocketInterceptor);

286 CHAPTER 15. HAZELCAST JAVA CLIENT

RELATED INFORMATION

Please see the Socket Interceptor section for more information.

15.3.1.10 Configuring Network Socket Options

You can configure the network socket options using SocketOptions. It has the following methods.

• socketOptions.setKeepAlive(x): Enables/disables the SO_KEEPALIVE socket option. The default value
is true.

• socketOptions.setTcpNoDelay(x): Enables/disables the TCP_NODELAY socket option. The default
value is true.

• socketOptions.setReuseAddress(x): Enables/disables the SO_REUSEADDR socket option. The default
value is true.

• socketOptions.setLingerSeconds(x): Enables/disables SO_LINGER with the specified linger time in
seconds. The default value is 3.

• socketOptions.setBufferSize(x): Sets the SO_SNDBUF and SO_RCVBUF options to the specified
value in KB for this Socket. The default value is 32.

SocketOptions socketOptions = clientConfig.getNetworkConfig().getSocketOptions();
socketOptions.setBufferSize(32);
socketOptions.setKeepAlive(true);
socketOptions.setTcpNoDelay(true);
socketOptions.setReuseAddress(true);
socketOptions.setLingerSeconds(3);

15.3.1.11 Enabling Client SSL

Hazelcast Enterprise

You can use SSL to secure the connection between the client and the nodes. If you want SSL enabled for the
client-cluster connection, you should set SSLConfig. Once set, the connection (socket) is established out of an SSL
factory defined either by a factory class name or factory implementation. Please see the SSLConfig class in the
com.hazelcast.config package at the JavaDocs page of the Hazelcast Documentation web site.

15.3.1.12 Configuring Client for AWS

The example declarative and programmatic configurations below show how to configure a Java client for connecting
to a Hazelcast cluster in AWS.

Declarative:

...
<network>

<aws enabled="true">
<inside-aws>false</inside-aws>
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<iam-role>s3access</iam-role>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

15.3. CONFIGURING JAVA CLIENT 287

</aws>
...
</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientAwsConfig clientAwsConfig = new ClientAwsConfig();
clientAwsConfig.setInsideAws(false)

.setAccessKey("my-access-key")

.setSecretKey("my-secret-key")

.setRegion("us-west-1")

.setHostHeader("ec2.amazonaws.com")

.setSecurityGroupName(">hazelcast-sg")

.setTagKey("type")

.setTagValue("hz-nodes");

.setIamRole("s3access");
clientConfig.getNetworkConfig().setAwsConfig(clientAwsConfig);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

You can refer to the aws element section for the descriptions of above AWS configuration elements except inside-aws
and iam-role, which are explained below.

If the inside-aws element is not set, the private addresses of cluster members will always be converted to public
addresses. Also, the client will use public addresses to connect to the members. In order to use private addresses, set
the inside-aws parameter to true. Also note that, when connecting outside from AWS, setting the inside-aws
parameter to true will cause the client to not be able to reach the members.

IAM roles are used to make secure requests from your clients. You can provide the name of your IAM role that you
created previously on your AWS console using the iam-role or setIamRole() method.

15.3.2 Configuring Client Load Balancer

LoadBalancer allows you to send operations to one of a number of endpoints (Members). Its main purpose is to
determine the next Member if queried. It is up to your implementation to use different load balancing policies. You
should implement the interface com.hazelcast.client.LoadBalancer for that purpose.

If the client is configured in smart mode, only the operations that are not key-based will be routed to the endpoint
that is returned by the LoadBalancer. If the client is not a smart client, LoadBalancer will be ignored.

The following are example configurations.

Declarative:

<hazelcast-client>
...
<load-balancer type=“random”>
yourLoadBalancer

</load-balancer>
...

</hazelcast-client>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.setLoadBalancer(yourLoadBalancer);

288 CHAPTER 15. HAZELCAST JAVA CLIENT

15.3.3 Configuring Client Near Cache

Hazelcast distributed map has a Near Cache feature to reduce network latencies. Since the client always requests
data from the cluster nodes, it can be helpful for some of your use cases to configure a near cache on the client side.
The client supports the same Near Cache that is used in Hazelcast distributed map.

You can create Near Cache on the client side by providing a configuration per map name, as shown below.

ClientConfig clientConfig = new ClientConfig();
CacheConfig nearCacheConfig = new NearCacheConfig();
nearCacheConfig.setName("mapName");
clientConfig.addNearCacheConfig(nearCacheConfig);

You can use wildcards for the map name, as shown below.

nearCacheConfig.setName("map*");
nearCacheConfig.setName("*map");

The following is an example declarative configuration for Near Cache.

</hazelcast-client>
...
...
<near-cache name="MENU">
<max-size>2000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LFU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<in-memory-format>OBJECT</in-memory-format>

</near-cache>
...

</hazelcast-client>

Name of Near Cache on the client side must be the same as the name of IMap on the server for which this Near
Cache is being created.

Near Cache can have its own in-memory-format which is independent of the in-memory-format of the servers.

15.3.4 Client Group Configuration

Clients should provide a group name and password in order to connect to the cluster. You can configure them
using GroupConfig, as shown below.

clientConfig.setGroupConfig(new GroupConfig("dev","dev-pass"));

15.3.5 Client Security Configuration

In the cases where the security established with GroupConfig is not enough and you want your clients connecting
securely to the cluster, you can use ClientSecurityConfig. This configuration has a credentials parameter to
set the IP address and UID. Please see ClientSecurityConfig.java in our code.

15.3.6 Client Serialization Configuration

For the client side serialization, use Hazelcast configuration. Please refer to the Serialization chapter.

15.4. CLIENT SYSTEM PROPERTIES 289

15.3.7 Configuring Client Listeners

You can configure global event listeners using ListenerConfig as shown below.

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig(LifecycleListenerImpl);
clientConfig.addListenerConfig(listenerConfig);

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig("com.hazelcast.example.MembershipListenerImpl");
clientConfig.addListenerConfig(listenerConfig);

You can add three types of event listeners.

• LifecycleListener
• MembershipListener
• DistributedObjectListener

RELATED INFORMATION

Please refer to LifecycleListener, MembershipListener and DistributedObjectListener.

15.3.8 ExecutorPoolSize

Hazelcast has an internal executor service (different from the data structure Executor Service) that has threads and
queues to perform internal operations such as handling responses. This parameter specifies the size of the pool of
threads which perform these operations laying in the executor’s queue. If not configured, this parameter has the
value as 5 * core size of the client (i.e. it is 20 for a machine that has 4 cores).

15.3.9 ClassLoader

You can configure a custom classLoader. It will be used by the serialization service and to load any class configured
in configuration, such as event listeners or ProxyFactories.

15.4 Client System Properties

There are some advanced client configuration properties to tune some aspects of Hazelcast Client. You can set
them as property name and value pairs through declarative configuration, programmatic configuration, or JVM
system property. Please see the System Properties section to learn how to set these properties.

The table below lists the client configuration properties with their descriptions.

Property Name Default Value Type Description

hazelcast.client.event.queue.capacity 1000000 string The default value of the capacity of executor that handles incoming event packets.
hazelcast.client.event.thread.count 5 string The thread count for handling incoming event packets.
hazelcast.client.heartbeat.interval 10000 string The frequency of heartbeat messages sent by the clients to the members.
hazelcast.client.heartbeat.timeout 300000 string Timeout for the heartbeat messages sent by the client to members. If no messages pass between client and member within the given time via this property in milliseconds, the connection will be closed.
hazelcast.client.invocation.timeout.seconds 120 string Time to give up the invocation when a member in the member list is not reachable.
hazelcast.client.shuffle.member.list true string The client shuffles the given member list to prevent all clients to connect to the same node when this property is false. When it is set to true, the client tries to connect to the nodes in the given order.

290 CHAPTER 15. HAZELCAST JAVA CLIENT

15.5 Sample Codes for Client

Please refer to Client Code Samples.

15.6 Using High-Density Memory Store with Java Client

Hazelcast Enterprise HD

If you have Hazelcast Enterprise HD, your Hazelcast Java client’s near cache can benefit from the High-Density
Memory Store.

Let’s recall the Java client’s near cache configuration (please see the Configuring Client Near Cache section) without
High-Density Memory Store:

</hazelcast-client>
...
...
<near-cache name="MENU">

<max-size>2000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LFU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<in-memory-format>OBJECT</in-memory-format>

</near-cache>
...

</hazelcast-client>

You can configure this near cache to use Hazelcast’s High-Density Memory Store by setting the in-memory format
to NATIVE. Please see the following configuration example:

</hazelcast-client>
...
...
<near-cache>

...
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<invalidate-on-change>true</invalidate-on-change>
<in-memory-format>NATIVE</in-memory-format>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>
...

</near-cache>
</hazelcast-client>

Please notice that when the in-memory format is NATIVE, i.e. High-Density Memory Store is enabled, the
configuration element <eviction> is used to specify the eviction behavior of your client’s near cache. In this case,
the elements <max-size> and <eviction-policy> used in the configuration of a near cache without High-Density
Memory Store do not have any impact.

The element <eviction> has the following attributes:

• size: Maximum size (entry count) of the near cache.
• max-size-policy: Maximum size policy for eviction of the near cache. Available values are as follows:

– ENTRY_COUNT: Maximum entry count per member.
– USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes.

15.6. USING HIGH-DENSITY MEMORY STORE WITH JAVA CLIENT 291

– USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory percentage.
– FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size to trigger cleanup.
– FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory percentage to trigger

cleanup.

• eviction-policy: Eviction policy configuration. Its default values is NONE. Available values are as follows:

– NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds.

– LRU: Least Recently Used.
– LFU: Least Frequently Used.

Keep in mind that you should have already enabled the High-Density Memory Store usage for your client, using
the <native-memory> element in the client’s configuration.

Please see the High-Density Memory Store section for more information on Hazelcast’s High-Density Memory Store
feature.

292 CHAPTER 15. HAZELCAST JAVA CLIENT

Chapter 16

Other Client Implementations

This chapter describes the clients other than the Hazelcast Java Client.

16.1 C++ Client

You can use Native C++ Client to connect to Hazelcast cluster members and perform almost all operations that a
member can perform. Clients differ from members in that clients do not hold data. The C++ Client is by default a
smart client, i.e. it knows where the data is and asks directly for the correct member. You can disable this feature
(using the ClientConfig::setSmart method) if you do not want the clients to connect to every member.

The features of C++ Clients are:

• Access to distributed data structures (IMap, IQueue, MultiMap, ITopic, etc.).
• Access to transactional distributed data structures (TransactionalMap, TransactionalQueue, etc.).
• Ability to add cluster listeners to a cluster and entry/item listeners to distributed data structures.
• Distributed synchronization mechanisms with ILock, ISemaphore and ICountDownLatch.

16.1.1 Setting Up C++ Client

Hazelcast C++ Client is shipped with 32/64 bit, shared and static libraries. You only need to include the boost
shared_ptr.hpp header in your compilation since the API makes use of the boost shared_ptr.

The downloaded release folder consists of:

• Mac_64/
• Windows_32/
• Windows_64/
• Linux_32/
• Linux_64/
• docs/ (HTML Doxygen documents are here)

Each of the folders above contains the following:

• examples/

– testApp.exe => example command line client tool to connect hazelcast servers.
– TestApp.cpp => code of the example command line tool.

• hazelcast/

– lib/ => Contains both shared and static library of hazelcast.

293

294 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

– include/ => Contains headers of client.

• external/

– include/ => Contains headers of dependencies. (boost::shared_ptr)

16.1.2 Installing C++ Client

The C++ Client is tested on Linux 32/64-bit, Mac 64-bit and Windows 32/64-bit machines. For each of the
headers above, it is assumed that you are in the correct folder for your platform. Folders are Mac_64, Windows_32,
Windows_64, Linux_32 or Linux_64.

16.1.2.1 Linux C++ Client

For Linux, there are two distributions: 32 bit and 64 bit.

Here is an example script to build with static library:

g++ main.cpp -pthread -I./external/include -I./hazelcast/include ./hazelcast/lib/libHazelcastClientStatic_64.a

Here is an example script to build with shared library:

g++ main.cpp -lpthread -Wl,–no-as-needed -lrt -I./external/include -I./hazelcast/include
-L./hazelcast/lib -lHazelcastClientShared_64

16.1.2.2 Mac C++ Client

For Mac, there is one distribution: 64 bit.

Here is an example script to build with static library:

g++ main.cpp -I./external/include -I./hazelcast/include ./hazelcast/lib/libHazelcastClientStatic_64.a

Here is an example script to build with shared library:

g++ main.cpp -I./external/include -I./hazelcast/include -L./hazelcast/lib -lHazelcastClientShared_64

16.1.2.3 Windows C++ Client

For Windows, there are two distributions; 32 bit and 64 bit. The static library is located in a folder named “static”
while the dynamic library(dll) is in the folder named as “shared”.

When compiling for Windows environment the user should specify one of the following flags: HAZEL-
CAST_USE_STATIC: You want the application to use the static Hazelcast library. HAZELCAST_USE_SHARED:
You want the application to use the shared Hazelcast library.

16.1.3 C++ Client Code Examples

You can try the following C++ client code examples. You need to have a Hazelcast client member running for the
code examples to work.

16.1.3.1 C++ Client Map Example

#include <hazelcast/client/HazelcastAll.h>
#include <iostream>

using namespace hazelcast::client;

int main() {

16.1. C++ CLIENT 295

ClientConfig clientConfig;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IMap<int,int> myMap = hazelcastClient.getMap<int ,int>("myIntMap");
myMap.put(1,3);
boost::shared_ptr<int> value = myMap.get(1);
if(value.get() != NULL) {

//process the item
}

return 0;
}

16.1.3.2 C++ Client Queue Example

#include <hazelcast/client/HazelcastAll.h>
#include <iostream>
#include <string>

using namespace hazelcast::client;

int main() {
ClientConfig clientConfig;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IQueue<std::string> queue = hazelcastClient.getQueue<std::string>("q");
queue.offer("sample");
boost::shared_ptr<std::string> value = queue.poll();
if(value.get() != NULL) {

//process the item
}
return 0;

}

16.1.3.3 C++ Client Entry Listener Example

#include "hazelcast/client/ClientConfig.h"
#include "hazelcast/client/EntryEvent.h"
#include "hazelcast/client/IMap.h"
#include "hazelcast/client/Address.h"
#include "hazelcast/client/HazelcastClient.h"
#include <iostream>
#include <string>

using namespace hazelcast::client;

class SampleEntryListener {
public:

void entryAdded(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "

296 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

<< event.getValue() << std::endl;
};

void entryRemoved(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "

<< event.getValue() << std::endl;
}

void entryUpdated(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "

<< event.getValue() << std::endl;
}

void entryEvicted(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "

<< event.getValue() << std::endl;
}

};

int main(int argc, char **argv) {
ClientConfig clientConfig;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IMap<std::string,std::string> myMap = hazelcastClient
.getMap<std::string ,std::string>("myIntMap");

SampleEntryListener * listener = new SampleEntryListener();

std::string id = myMap.addEntryListener(*listener, true);
// Prints entryAdded
myMap.put("key1", "value1");
// Prints updated
myMap.put("key1", "value2");
// Prints entryRemoved
myMap.remove("key1");
// Prints entryEvicted after 1 second
myMap.put("key2", "value2", 1000);

// WARNING: deleting listener before removing it from hazelcast leads to crashes.
myMap.removeEntryListener(id);
// Delete listener after remove it from hazelcast.
delete listener;
return 0;

};

16.1.3.4 C++ Client Serialization Example

Assume that you have the following two classes in Java and you want to use them with a C++ client.

class Foo implements Serializable {
private int age;
private String name;

}

16.1. C++ CLIENT 297

class Bar implements Serializable {
private float x;
private float y;

}

First, let them implement Portable or IdentifiedDataSerializable as shown below.

class Foo implements Portable {
private int age;
private String name;

public int getFactoryId() {
// a positive id that you choose
return 123;

}

public int getClassId() {
// a positive id that you choose
return 2;

}

public void writePortable(PortableWriter writer) throws IOException {
writer.writeUTF("n", name);
writer.writeInt("a", age);

}

public void readPortable(PortableReader reader) throws IOException {
name = reader.readUTF("n");
age = reader.readInt("a");

}
}

class Bar implements IdentifiedDataSerializable {
private float x;
private float y;

public int getFactoryId() {
// a positive id that you choose
return 4;

}

public int getId() {
// a positive id that you choose
return 5;

}

public void writeData(ObjectDataOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);

}

public void readData(ObjectDataInput in) throws IOException {
x = in.readFloat();
y = in.readFloat();

}
}

Then, implement the corresponding classes in C++ with same factory and class ID as shown below.

298 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

class Foo : public Portable {
public:
int getFactoryId() const {
return 123;

};

int getClassId() const {
return 2;

};

void writePortable(serialization::PortableWriter &writer) const {
writer.writeUTF("n", name);
writer.writeInt("a", age);

};

void readPortable(serialization::PortableReader &reader) {
name = reader.readUTF("n");
age = reader.readInt("a");

};

private:
int age;
std::string name;

};

class Bar : public IdentifiedDataSerializable {
public:
int getFactoryId() const {
return 4;

};

int getClassId() const {
return 2;

};

void writeData(serialization::ObjectDataOutput& out) const {
out.writeFloat(x);
out.writeFloat(y);

};

void readData(serialization::ObjectDataInput& in) {
x = in.readFloat();
y = in.readFloat();

};

private:
float x;
float y;

};

Now, you can use the classes Foo and Bar in distributed structures. For example, you can use as Key or Value of
IMap or as an Item in IQueue.

16.2 .NET Client

You can use the native .NET client to connect to Hazelcast client members. You need to add HazelcastClient3x.dll
into your .NET project references. The API is very similar to the Java native client.

16.2. .NET CLIENT 299

.NET Client has the following distributed objects.

• IMap<K,V>
• IMultiMap<K,V>
• IQueue<E>
• ITopic<E>
• IHList<E>
• IHSet<E>
• IIdGenerator
• ILock
• ISemaphore
• ICountDownLatch
• IAtomicLong
• ITransactionContext
• IRingbuffer

ITransactionContext can be used to obtain:

• ITransactionalMap<K,V>
• ITransactionalMultiMap<K,V>
• ITransactionalList<E>
• ITransactionalSet<E>
• ITransactionalQueue<E>

At present the following features are not available in the .NET Client as they are in the Java Client:

• Distributed Executor Service
• Replicated Map
• JCache

A code example is shown below.

using Hazelcast.Config;
using Hazelcast.Client;
using Hazelcast.Core;
using Hazelcast.IO.Serialization;

using System.Collections.Generic;

namespace Hazelcast.Client.Example
{

public class SimpleExample
{

public static void Test()
{
var clientConfig = new ClientConfig();
clientConfig.GetNetworkConfig().AddAddress("10.0.0.1");
clientConfig.GetNetworkConfig().AddAddress("10.0.0.2:5702");

// Portable Serialization setup up for Customer Class
clientConfig.GetSerializationConfig()

.AddPortableFactory(MyPortableFactory.FactoryId, new MyPortableFactory());

IHazelcastInstance client = HazelcastClient.NewHazelcastClient(clientConfig);

300 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

// All cluster operations that you can do with ordinary HazelcastInstance
IMap<string, Customer> mapCustomers = client.GetMap<string, Customer>("customers");
mapCustomers.Put("1", new Customer("Joe", "Smith"));
mapCustomers.Put("2", new Customer("Ali", "Selam"));
mapCustomers.Put("3", new Customer("Avi", "Noyan"));

ICollection<Customer> customers = mapCustomers.Values();
foreach (var customer in customers)
{
//process customer

}
}

}

public class MyPortableFactory : IPortableFactory
{
public const int FactoryId = 1;

public IPortable Create(int classId) {
if (Customer.Id == classId)
return new Customer();

else
return null;

}
}

public class Customer : IPortable
{
private string name;
private string surname;

public const int Id = 5;

public Customer(string name, string surname)
{
this.name = name;
this.surname = surname;

}

public Customer() {}

public int GetFactoryId()
{
return MyPortableFactory.FactoryId;

}

public int GetClassId()
{
return Id;

}

public void WritePortable(IPortableWriter writer)
{
writer.WriteUTF("n", name);
writer.WriteUTF("s", surname);

}

public void ReadPortable(IPortableReader reader)

16.3. REST CLIENT 301

{
name = reader.ReadUTF("n");
surname = reader.ReadUTF("s");

}
}

}

16.2.1 Configuring .NET Client

You can configure the Hazelcast .NET client via API or XML. To start the client, you can pass a configuration or
leave it empty to use default values.

NOTE: .NET and Java clients are similar in terms of configuration. Therefore, you can refer to Java Client
section for configuration aspects. Please also refer to the .NET API documentation.

16.2.2 Starting .NET Client

After configuration, you can obtain a client using one of the static methods of Hazelcast, as shown below.

IHazelcastInstance client = HazelcastClient.NewHazelcastClient(clientConfig);

...

IHazelcastInstance defaultClient = HazelcastClient.NewHazelcastClient();

...

IHazelcastInstance xmlConfClient = Hazelcast
.NewHazelcastClient(@"..\Hazelcast.Net\Resources\hazelcast-client.xml");

The IHazelcastInstance interface is the starting point where all distributed objects can be obtained.

var map = client.GetMap<int,string>("mapName");

...

var lock= client.GetLock("thelock");

16.3 REST Client

Hazelcast provides a REST interface, i.e. it provides an HTTP service in each cluster member (node) so that you
can access your map and queue using HTTP protocol. Assuming mapName and queueName are already configured in
your Hazelcast, its structure is shown below.

http://node IP address:port/hazelcast/rest/maps/mapName/key

http://node IP address:port/hazelcast/rest/queues/queueName

For the operations to be performed, standard REST conventions for HTTP calls are used.

302 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

16.3.1 REST Client GET/POST/DELETE Examples

In the following GET, POST, and DELETE examples, assume that your cluster members are as shown below.

Members [5] {
Member [10.20.17.1:5701]
Member [10.20.17.2:5701]
Member [10.20.17.4:5701]
Member [10.20.17.3:5701]
Member [10.20.17.5:5701]

}

NOTE: All of the requests below can return one of the following responses in case of a failure.

• If the HTTP request syntax is not known, the following response will be returned.

HTTP/1.1 400 Bad Request
Content-Length: 0

• In case of an unexpected exception, the following response will be returned.

< HTTP/1.1 500 Internal Server Error
< Content-Length: 0

16.3.1.1 Creating/Updating Entries in a Map for REST Client

You can put a new key1/value1 entry into a map by using POST call to http://10.20.17.1:5701/hazelcast/
rest/maps/mapName/key1 URL. This call’s content body should contain the value of the key. Also, if the call
contains the MIME type, Hazelcast stores this information, too.

A sample POST call is shown below.

$ curl -v -X POST -H "Content-Type: text/plain" -d "bar"
http://10.20.17.1:5701/hazelcast/rest/maps/mapName/foo

It will return the following response if successful:

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

16.3.1.2 Retrieving Entries from a Map for REST Client

If you want to retrieve an entry, you can use a GET call to http://10.20.17.1:5701/hazelcast/rest/maps/mapName/key1.
You can also retrieve this entry from another member of your cluster, such as http://10.20.17.3:5701/hazelcast/rest/
maps/mapName/key1.

An example of a GET call is shown below.

$ curl -X GET http://10.20.17.3:5701/hazelcast/rest/maps/mapName/foo

16.3. REST CLIENT 303

It will return the following response if there is a corresponding value:

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 3
bar

This GET call returned a value, its length, and also the MIME type (text/plain) since the POST call example
shown above included the MIME type.

It will return the following if there is no mapping for the given key:

< HTTP/1.1 204 No Content
< Content-Length: 0

16.3.1.3 Removing Entries from a Map for REST Client

You can use a DELETE call to remove an entry. A sample DELETE call is shown below with its response.

$ curl -v -X DELETE http://10.20.17.1:5701/hazelcast/rest/maps/mapName/foo

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

If you leave the key empty as follows, DELETE will delete all entries from the map.

$ curl -v -X DELETE http://10.20.17.1:5701/hazelcast/rest/maps/mapName

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

16.3.1.4 Offering Items on a Queue for REST Client

You can use a POST call to create an item on the queue. A sample is shown below.

$ curl -v -X POST -H "Content-Type: text/plain" -d "foo"
http://10.20.17.1:5701/hazelcast/rest/queues/myEvents

The above call is equivalent to HazelcastInstance#getQueue("myEvents").offer("foo");.

It will return the following if successful:

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

It will return the following if the queue is full and the item is not able to be offered to the queue:

< HTTP/1.1 503 Service Unavailable
< Content-Length: 0

304 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

16.3.1.5 Retrieving Items from a Queue for REST Client

You can use a DELETE call for retrieving items from a queue. Note that you should state the poll timeout while
polling for queue events by an extra path parameter.

An example is shown below (10 being the timeout value).

$ curl -v -X DELETE \http://10.20.17.1:5701/hazelcast/rest/queues/myEvents/10

The above call is equivalent to HazelcastInstance#getQueue("myEvents").poll(10, SECONDS);. Below is the
response.

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 3
foo

When the timeout is reached, the response will be No Content success, i.e. there is no item on the queue to be
returned.

< HTTP/1.1 204 No Content
< Content-Length: 0

16.3.1.6 Getting the size of the queue for REST Client

$ curl -v -X GET \http://10.20.17.1:5701/hazelcast/rest/queues/myEvents/size

The above call is equivalent to HazelcastInstance#getQueue("myEvents").size();. Below is a sample response.

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 1
5

16.3.2 Checking the Status of the Cluster for REST Client

Besides the above operations, you can check the status of your cluster, a sample of which is shown below.

$ curl -v http://127.0.0.1:5701/hazelcast/rest/cluster

The return will be similar to the following:

< HTTP/1.1 200 OK
< Content-Length: 119

Members [5] {
Member [10.20.17.1:5701] this
Member [10.20.17.2:5701]
Member [10.20.17.4:5701]
Member [10.20.17.3:5701]
Member [10.20.17.5:5701]

}

ConnectionCount: 5
AllConnectionCount: 20

16.4. MEMCACHE CLIENT 305

RESTful access is provided through any member of your cluster. You can even put an HTTP load-balancer in front
of your cluster members for load balancing and fault tolerance.

NOTE: REST client request listener service is not enabled by default. You should enable it on your cluster
members to use REST client. It can be enabled using the system property hazelcast.rest.enabled. Please refer
to the System Properties section for the definition of this property and how to set a system property.

NOTE: You need to handle the failures on REST polls as there is no transactional guarantee.

16.4 Memcache Client

NOTE: Hazelcast Memcache Client only supports ASCII protocol. Binary Protocol is not supported.

A Memcache client written in any language can talk directly to a Hazelcast cluster. No additional configuration is
required.

16.4.1 Memcache Client Code Examples

Assume that your cluster members are as shown below.

Members [5] {
Member [10.20.17.1:5701]
Member [10.20.17.2:5701]
Member [10.20.17.4:5701]
Member [10.20.17.3:5701]
Member [10.20.17.5:5701]

}

Assume that you have a PHP application that uses PHP Memcache client to cache things in Hazelcast. All you
need to do is have your PHP Memcache client connect to one of these members. It does not matter which member
the client connects to because the Hazelcast cluster looks like one giant machine (Single System Image). Here is a
PHP client code example.

<?php
$memcache = new Memcache;
$memcache->connect(’10.20.17.1’, 5701) or die ("Could not connect");
$memcache->set(’key1’, ’value1’, 0, 3600);
$get_result = $memcache->get(’key1’); // retrieve your data
var_dump($get_result); // show it

?>

Notice that Memcache client connects to 10.20.17.1 and uses port 5701. Here is a Java client code example with
SpyMemcached client:

MemcachedClient client = new MemcachedClient(
AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));

client.set("key1", 3600, "value1");
System.out.println(client.get("key1"));

If you want your data to be stored in different maps (e.g. to utilize per map configuration), you can do that with a
map name prefix as in the following example code.

306 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

MemcachedClient client = new MemcachedClient(
AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));

client.set("map1:key1", 3600, "value1"); // store to *hz_memcache_map1
client.set("map2:key1", 3600, "value1"); // store to hz_memcache_map2
System.out.println(client.get("key1")); // get from hz_memcache_map1
System.out.println(client.get("key2")); // get from hz_memcache_map2

hz_memcache prefix_ separates Memcache maps from Hazelcast maps. If no map name is given, it will be stored in
a default map named hz_memcache_default.

An entry written with a Memcache client can be read by another Memcache client written in another language.

16.4.2 Unsupported Operations for Memcache

• CAS operations are not supported. In operations that get CAS parameters, such as append, CAS values are
ignored.

• Only a subset of statistics are supported. Below is the list of supported statistic values.

- cmd_set
- cmd_get
- incr_hits
- incr_misses
- decr_hits
- decr_misses

NOTE: Memcache client request listener service is not enabled by default. You should enable it on your
cluster members to use Memcache client. It can be enabled using the system property hazelcast.memcache.enabled.
Please refer to the System Properties section for the definition of this property and how to set a system property.

Chapter 17

Serialization

Hazelcast needs to serialize the Java objects that you put into Hazelcast because Hazelcast is a distributed system.
The data and its replicas are stored in different partitions on multiple cluster members. The data you need may
not be present on the local member, and in that case, Hazelcast retrieves that data from another member. This
requires serialization.

Hazelcast serializes all your objects into an instance of com.hazelcast.nio.serialization.Data. Data is the
binary representation of an object.

Serialization is used when:

• key/value objects are added to a map,
• items are put in a queue/set/list,
• a runnable is sent using an executor service,
• an entry processing is performed within a map,
• an object is locked, and
• a message is sent to a topic.

Hazelcast optimizes the serialization for the basic types and their array types. You cannot override this behavior.

Default Types;

• Byte, Boolean, Character, Short, Integer, Long, Float, Double, String
• byte[], boolean[], char[], short[], int[], long[], float[], double[], String[]
• java.util.Date, java.math.BigInteger, java.math.BigDecimal, java.lang.Class, java.lang.Enum

Hazelcast optimizes all of the above object types. You do not need to worry about their (de)serializations.

17.1 Serialization Interface Types

For complex objects, use the following interfaces for serialization and deserialization.

• java.io.Serializable: Please see the Implementing Java Serializable and Externalizable section.

• java.io.Externalizable: Please see the Implementing Java Externalizable section.

• com.hazelcast.nio.serialization.DataSerializable: Please see the Implementing DataSerializable
section.

• com.hazelcast.nio.serialization.IdentifiedDataSerializable: Please see the IdentifiedDataSerializ-
able section.

• com.hazelcast.nio.serialization.Portable: Please see the Implementing Portable Serialization section.

307

308 CHAPTER 17. SERIALIZATION

• Custom Serialization (using StreamSerializer and ByteArraySerializer).

• Global Serializer: Please see the Global Serializer section for details.

**When Hazelcast serializes an object into Data:

(1) It first checks whether the object is null.

(2) If the above check fails, then Hazelcast checks if it is an instance of com.hazelcast.nio.serialization.DataSerializable
or com.hazelcast.nio.serialization.IdentifiedDataSerializable.

(3) If the above check fails, then Hazelcast checks if it is an instance of com.hazelcast.nio.serialization.Portable.

(4) If the above check fails, then Hazelcast checks if it is an instance of one of the default types (see the Serialization
chapter introduction for default types).

(5) If the above check fails, then Hazelcast looks for a user-specified Custom Serializer, i.e. an implementation of
ByteArraySerializer or StreamSerializer. Custom serializer is searched using the input Object’s Class and
its parent class up to Object. If parent class search fails, all interfaces implemented by the class are also checked
(excluding java.io.Serializable and java.io.Externalizable).

(6) If the above check fails, then Hazelcast checks if it is an instance of java.io.Serializable or
java.io.Externalizable and a Global Serializer is not registered with Java Serialization Override fea-
ture.

(7) If the above check fails, Hazelcast will use the registered Global Serializer if one exists.

If all of the above checks fail, then serialization will fail. When a class implements multiple interfaces, the above
steps are important to determine the serialization mechanism that Hazelcast will use. When a class definition is
required for any of these serializations, you need to have all the classes needed by the application on your classpath
because Hazelcast does not download them automatically.

17.2 Comparing Serialization Interfaces

The table below provides a comparison between the interfaces listed in the previous section to help you in deciding
which interface to use in your applications.

Serialization Interface Advantages Drawbacks

Serializable - A standard and basic Java interface - Requires no implementation - More time and CPU usage - More space occupancy - Not supported by Native clients
Externalizable - A standard Java interface - More CPU and memory usage efficient than Serializable - Serialization interface must be implemented - Not supported by Native clients
DataSerializable - More CPU and memory usage efficient than Serializable - Specific to Hazelcast - Not supported by Native clients
IdentifiedDataSerializable - More CPU and memory usage efficient than Serializable - Reflection is not used during deserialization - Supported by all Native Clients - Specific to Hazelcast - Serialization interface must be implemented - A Factory and configuration must be implemented
Portable - More CPU and memory usage efficient than Serializable - Reflection is not used during deserialization - Versioning is supported Partial deserialization is supported during Queries - Supported by all Native Clients - Specific to Hazelcast - Serialization interface must be implemented - A Factory and configuration must be implemented - Class definition is also sent with data but stored only once per class
Custom Serialization - Does not require class to implement an interface - Convenient and flexible - Can be based on StreamSerializer ByteArraySerializer - Serialization interface must be implemented - Plug in and configuration is required

Let’s dig into the details of the above serialization mechanisms in the following sections.

17.3 Implementing Java Serializable and Externalizable

A class often needs to implement the java.io.Serializable interface; native Java serialization is the easiest way
to do serialization.

Let’s take a look at the example code below for Java Serializable.

public class Employee implements Serializable {
private static final long serialVersionUID = 1L;

17.4. IMPLEMENTING DATASERIALIZABLE 309

private String surname;

public Employee(String surname) {
this.surname = surname;

}
}

Here, the fields that are non-static and non-transient are automatically serialized. To eliminate class compatibility
issues, it is recommended that you add a serialVersionUID, as shown above. Also, when you are using methods
that perform byte-content comparisons (e.g. IMap.replace()) and if byte-content of equal objects is different, you
may face unexpected behaviors. For example, if the class relies on a hash map, the replace method may fail. The
reason for this is the hash map is a serialized data structure with unreliable byte-content.

17.3.1 Implementing Java Externalizable

Hazelcast also supports java.io.Externalizable. This interface offers more control on the way fields are serialized
or deserialized. Compared to native Java serialization, it also can have a positive effect on performance. With
java.io.Externalizable, there is no need to add serialVersionUID.

Let’s take a look at the example code below.

public class Employee implements Externalizable {
private String surname;
public Employee(String surname) {

this.surname = surname;
}

@Override
public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {
this.surname = in.readUTF();

}

@Override
public void writeExternal(ObjectOutput out)

throws IOException {
out.writeUTF(surname);

}
}

You explicitly perform writing and reading of fields. Perform reading in the same order as writing.

17.4 Implementing DataSerializable

As mentioned in Implementing Java Serializable & Externalizable, Java serialization is an easy mechanism. However,
it does not control how fields are serialized or deserialized. Moreover, Java serialization can lead to excessive CPU
loads since it keeps track of objects to handle the cycles and streams class descriptors. These are performance
decreasing factors; thus, serialized data may not have an optimal size.

The DataSerializable interface of Hazelcast overcomes these issues. Here is an example of a class implementing
the com.hazelcast.nio.serialization.DataSerializable interface.

public class Address implements DataSerializable {
private String street;
private int zipCode;
private String city;

310 CHAPTER 17. SERIALIZATION

private String state;

public Address() {}

//getters setters..

public void writeData(ObjectDataOutput out) throws IOException {
out.writeUTF(street);
out.writeInt(zipCode);
out.writeUTF(city);
out.writeUTF(state);

}

public void readData(ObjectDataInput in) throws IOException {
street = in.readUTF();
zipCode = in.readInt();
city = in.readUTF();
state = in.readUTF();

}
}

17.4.0.1 Reading and Writing and DataSerializable

Let’s take a look at another example which encapsulates a DataSerializable field.

Since the address field itself is DataSerializable, it calls address.writeData(out) when writing and
address.readData(in) when reading. Also note that you should have writing and reading of the fields occur in
the same order. When Hazelcast serializes a DataSerializable, it writes the className first. When Hazelcast
deserializes it, className is used to instantiate the object using reflection.

public class Employee implements DataSerializable {
private String firstName;
private String lastName;
private int age;
private double salary;
private Address address; //address itself is DataSerializable

public Employee() {}

//getters setters..

public void writeData(ObjectDataOutput out) throws IOException {
out.writeUTF(firstName);
out.writeUTF(lastName);
out.writeInt(age);
out.writeDouble (salary);
address.writeData (out);

}

public void readData(ObjectDataInput in) throws IOException {
firstName = in.readUTF();
lastName = in.readUTF();
age = in.readInt();
salary = in.readDouble();
address = new Address();
// since Address is DataSerializable let it read its own internal state
address.readData(in);

17.4. IMPLEMENTING DATASERIALIZABLE 311

}
}

As you can see, since the address field itself is DataSerializable, it calls address.writeData(out) when writing
and address.readData(in) when reading. Also note that you should have writing and reading of the fields occur
in the same order. While Hazelcast serializes a DataSerializable, it writes the className first. When Hazelcast
deserializes it, className is used to instantiate the object using reflection.

NOTE: Since Hazelcast needs to create an instance during deserialization,DataSerializable class has a
no-arg constructor.

NOTE: DataSerializable is a good option if serialization is only needed for in-cluster communication.

NOTE: DataSerializable is not supported by non-Java clients as it uses Java reflection. If you need
non-Java clients, please use IdentifiedDataSerializable or Portable.

17.4.1 IdentifiedDataSerializable

For a faster serialization of objects, avoiding reflection and long class names, Hazelcast recommends you imple-
ment com.hazelcast.nio.serialization.IdentifiedDataSerializable which is a slightly better version of
DataSerializable.

DataSerializable uses reflection to create a class instance, as mentioned in Implementing DataSerializable. But
IdentifiedDataSerializable uses a factory for this purpose and it is faster during deserialization, which requires
new instance creations.

17.4.1.1 getID and getFactoryId Methods

IdentifiedDataSerializable extends DataSerializable and introduces two new methods.

• int getId();
• int getFactoryId();

IdentifiedDataSerializable uses getId() instead of class name, and it uses getFactoryId() to load the class
when given the Id. To complete the implementation, you should also implement com.hazelcast.nio.serialization.DataSerializableFactory
and register it into SerializationConfig, which can be accessed from Config.getSerializationConfig().
Factory’s responsibility is to return an instance of the right IdentifiedDataSerializable object, given the Id.
This is currently the most efficient way of Serialization that Hazelcast supports off the shelf.

17.4.1.2 Implementing IdentifiedDataSerializable

Let’s take a look at the following example code and configuration to see IdentifiedDataSerializable in action.

public class Employee
implements IdentifiedDataSerializable {

private String surname;

public Employee() {}

public Employee(String surname) {
this.surname = surname;

}

312 CHAPTER 17. SERIALIZATION

@Override
public void readData(ObjectDataInput in)

throws IOException {
this.surname = in.readUTF();

}

@Override
public void writeData(ObjectDataOutput out)

throws IOException {
out.writeUTF(surname);

}

@Override
public int getFactoryId() {
return EmployeeDataSerializableFactory.FACTORY_ID;

}

@Override
public int getId() {
return EmployeeDataSerializableFactory.EMPLOYEE_TYPE;

}

@Override
public String toString() {
return String.format("Employee(surname=%s)", surname);

}
}

The methods getId and getFactoryId return a unique positive number within the EmployeeDataSerializableFactory.
Now, let’s create an instance of this EmployeeDataSerializableFactory.

public class EmployeeDataSerializableFactory
implements DataSerializableFactory{

public static final int FACTORY_ID = 1;

public static final int EMPLOYEE_TYPE = 1;

@Override
public IdentifiedDataSerializable create(int typeId) {
if (typeId == EMPLOYEE_TYPE) {
return new Employee();

} else {
return null;

}
}

}

The only method you should implement is create, as seen in the above example. It is recommended that you use a
switch-case statement instead of multiple if-else blocks if you have a lot of subclasses. Hazelcast throws an
exception if null is returned for typeId.

17.4.1.3 Registering EmployeeDataSerializableFactory

As the last step, you need to register EmployeeDataSerializableFactory declaratively (declare in the configuration
file hazelcast.xml) as shown below. Note that factory-id has the same value of FACTORY_ID in the above code.
This is crucial to enable Hazelcast to find the correct factory.

17.5. IMPLEMENTING PORTABLE SERIALIZATION 313

<hazelcast>
...
<serialization>
<data-serializable-factories>
<data-serializable-factory factory-id="1">

EmployeeDataSerializableFactory
</data-serializable-factory>

</data-serializable-factories>
</serialization>
...

</hazelcast>

RELATED INFORMATION

Please refer to the Serialization Configuration Wrap-Up section for a full description of Hazelcast Serialization
configuration.

17.5 Implementing Portable Serialization

As an alternative to the existing serialization methods, Hazelcast offers a language/platform independent Portable
serialization that has the following advantages:

• Supports multi-version of the same object type.
• Fetches individual fields without having to rely on reflection.
• Queries and indexing support without deserialization and/or reflection.

In order to support these features, a serialized Portable object contains meta information like the version and the
concrete location of the each field in the binary data. This way, Hazelcast navigates in the byte[] and deserializes
only the required field without actually deserializing the whole object. This improves the Query performance.

With multi-version support, you can have two cluster members where each has different versions of the same object.
Hazelcast will store both meta information and use the correct one to serialize and deserialize Portable objects
depending on the member. This is very helpful when you are doing a rolling upgrade without shutting down the
cluster.

Portable serialization is totally language independent and is used as the binary protocol between Hazelcast server
and clients.

17.5.1 Portable Serialization Example Code

Here is example code for Portable implementation of a Foo class.

public class Foo implements Portable{
final static int ID = 5;

private String foo;

public String getFoo() {
return foo;

}

public void setFoo(String foo) {
this.foo = foo;

}

@Override

314 CHAPTER 17. SERIALIZATION

public int getFactoryId() {
return 1;

}

@Override
public int getClassId() {
return ID;

}

@Override
public void writePortable(PortableWriter writer) throws IOException {
writer.writeUTF("foo", foo);

}

@Override
public void readPortable(PortableReader reader) throws IOException {
foo = reader.readUTF("foo");

}
}

Similar to IdentifiedDataSerializable, a Portable Class must provide classId and factoryId. The Factory
object creates the Portable object given the classId.

An example Factory could be implemented as follows:

public class MyPortableFactory implements PortableFactory {

@Override
public Portable create(int classId) {
if (Foo.ID == classId)
return new Foo();

else
return null;

}
}

17.5.2 Registering the Portable Factory

The last step is to register the Factory to the SerializationConfig. Below are the programmatic and declarative
configurations for this step.

Config config = new Config();
config.getSerializationConfig().addPortableFactory(1, new MyPortableFactory());

<hazelcast>
<serialization>
<portable-version>0</portable-version>
<portable-factories>
<portable-factory factory-id="1">

com.hazelcast.nio.serialization.MyPortableFactory
</portable-factory>

</portable-factories>
</serialization>

</hazelcast>

Note that the id that is passed to the SerializationConfig is the same as the factoryId that the Foo class
returns.

17.5. IMPLEMENTING PORTABLE SERIALIZATION 315

17.5.3 Versioning for Portable Serialization

More than one version of the same class may need to be serialized and deserialized. For example, a client may have
an older version of a class, and the node to which it is connected may have a newer version of the same class.

Portable serialization supports versioning. It is a global versioning, meaning that all portable classes that are
serialized through a member get the globally configured portable version.

You can declare Version in the configuration file hazelcast.xml using the portable-version element, as shown
below.

<serialization>
<portable-version>1</portable-version>
<portable-factories>
<portable-factory factory-id="1">

PortableFactoryImpl
</portable-factory>

</portable-factories>
</serialization>

You can also use the interface VersionedPortable which enables to upgrade the version per class, instead of global
versioning. If you need to update only one class, you can use this interface. In this case, your class should
implement VersionedPortable instead of Portable, and you can give the desired version using the method
VersionedPortable.getClassVersion().

You should consider the following when you perform versioning.

• It is important to change the version whenever an update is performed in the serialized fields of a class
(e.g. increment the version).

• If a client performs a Portable deserialization on a field, and then that Portable is updated by removing that
field on the cluster side, this may lead to a problem.

• Portable serialization does not use reflection and hence, fields in the class and in the serialized content are not
automatically mapped. Field renaming is a simpler process. Also, since the class ID is stored, renaming the
Portable does not lead to problems.

• Types of fields need to be updated carefully. Hazelcast performs basic type upgradings (e.g. int to float).

17.5.3.1 Example Portable Versioning Scenarios

Assume that a new member joins to the cluster with a class that has been modified and class’ version has been
upgraded due to this modification.

• If you modified the class by adding a new field, the new member’s put operations will include that new field.
If this new member tries to get an object that was put from the older members, it will get null for the newly
added field.

• If you modified the class by removing a field, the old members get null for the objects that are put by the
new member.

• If you modified the class by changing the type of a field, the error IncompatibleClassChangeError is
generated unless the change was made on a built-in type or the byte size of the new type is less than or equal
to the old one. The following are example allowed type conversions:

– long -> int, byte, char, short
– int-> byte, char, short

If you have not modify a class at all, it will work as usual.

316 CHAPTER 17. SERIALIZATION

17.5.4 Null Portable Serialization

Be careful with serializing null portables. Hazelcast lazily creates a class definition of portable internally when
the user first serializes. This class definition is stored and used later for deserializing that portable class. When
the user tries to serialize a null portable when there is no class definition at the moment, Hazelcast throws
an exception saying that com.hazelcast.nio.serialization.HazelcastSerializationException: Cannot
write null portable without explicitly registering class definition!.

There are two solutions to get rid of this exception. Either put a non-null portable class of the same type before
any other operation, or manually register a class definition in serialization configuration as shown below.

Config config = new Config();
final ClassDefinition classDefinition = new ClassDefinitionBuilder(Foo.factoryId, Foo.getClassId)

.addUTFField("foo").build();
config.getSerializationConfig().addClassDefinition(classDefinition);
Hazelcast.newHazelcastInstance(config);

17.5.5 DistributedObject Serialization

Putting a DistributedObject (Hazelcast Semaphore, Queue, etc.) in a cluster member and getting it from another
one is not a straightforward operation. Passing the ID and type of the DistributedObject can be a solution. For
deserialization, you can get the object from HazelcastInstance. For instance, if your object is an instance of IQueue,
you can either use HazelcastInstance.getQueue(id) or Hazelcast.getDistributedObject.

You can use the HazelcastInstanceAware interface in the case of a deserialization of a Portable DistributedObject
if it gets an ID to be looked up. HazelcastInstance is set after deserialization, so you first need to store the ID and
then retrieve the DistributedObject using the setHazelcastInstance method.

RELATED INFORMATION

Please refer to the Serialization Configuration Wrap-Up section for a full description of Hazelcast Serialization
configuration.

17.6 Custom Serialization

Hazelcast lets you plug in a custom serializer for serializing your objects. You can use StreamSerializer and
ByteArraySerializer interfaces for this purpose.

17.6.1 Implementing StreamSerializer

You can use a stream to serialize and deserialize data by using StreamSerializer. This is a good option for your
own implementations. It can also be adapted to external serialization libraries like Kryo, JSON, and protocol
buffers.

17.6.1.1 StreamSerializer Example Code 1

First, let’s create a simple object.

public class Employee {
private String surname;

public Employee(String surname) {
this.surname = surname;

}
}

17.6. CUSTOM SERIALIZATION 317

Now, let’s implement StreamSerializer for Employee class.

public class EmployeeStreamSerializer
implements StreamSerializer<Employee> {

@Override
public int getTypeId () {
return 1;

}

@Override
public void write(ObjectDataOutput out, Employee employee)

throws IOException {
out.writeUTF(employee.getSurname());

}

@Override
public Employee read(ObjectDataInput in)

throws IOException {
String surname = in.readUTF();
return new Employee(surname);

}

@Override
public void destroy () {
}

}

In practice, classes may have many fields. Just make sure the fields are read in the same order as they are written.
The type ID must be unique and greater than or equal to 1. Uniqueness of the type ID enables Hazelcast to
determine which serializer will be used during deserialization.

As the last step, let’s register the EmployeeStreamSerializer in the configuration file hazelcast.xml, as shown
below.

<serialization>
<serializers>
<serializer type-class="Employee" class-name="EmployeeStreamSerializer" />

</serializers>
</serialization>

NOTE: StreamSerializer cannot be created for well-known types (e.g. Long, String) and primitive arrays.
Hazelcast already registers these types.

17.6.1.2 StreamSerializer Example Code 2

Let’s take a look at another example implementing StreamSerializer.

public class Foo {
private String foo;

public String getFoo() {
return foo;

}

318 CHAPTER 17. SERIALIZATION

public void setFoo(String foo) {
this.foo = foo;

}
}

Assume that our custom serialization will serialize Foo into XML. First you need to implement a
com.hazelcast.nio.serialization.StreamSerializer. A very simple one that uses XMLEncoder and
XMLDecoder could look like the following:

public static class FooXmlSerializer implements StreamSerializer<Foo> {

@Override
public int getTypeId() {
return 10;

}

@Override
public void write(ObjectDataOutput out, Foo object) throws IOException {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
XMLEncoder encoder = new XMLEncoder(bos);
encoder.writeObject(object);
encoder.close();
out.write(bos.toByteArray());

}

@Override
public Foo read(ObjectDataInput in) throws IOException {
InputStream inputStream = (InputStream) in;
XMLDecoder decoder = new XMLDecoder(inputStream);
return (Foo) decoder.readObject();

}

@Override
public void destroy() {
}

}

17.6.1.3 Configuring StreamSerializer

Note that typeId must be unique because Hazelcast will use it to look up the StreamSerializer while it deserializes
the object. The last required step is to register the StreamSerializer in your Hazelcast configuration. Below are
the programmatic and declarative configurations for this step.

SerializerConfig sc = new SerializerConfig()
.setImplementation(new FooXmlSerializer())
.setTypeClass(Foo.class);

Config config = new Config();
config.getSerializationConfig().addSerializerConfig(sc);

<hazelcast>
<serialization>
<serializers>
<serializer type-class="com.www.Foo" class-name="com.www.FooXmlSerializer" />

</serializers>
</serialization>

</hazelcast>

17.6. CUSTOM SERIALIZATION 319

From now on, this Hazelcast example will use FooXmlSerializer to serialize Foo objects. In this way, you can
write an adapter (StreamSerializer) for any Serialization framework and plug it into Hazelcast.

RELATED INFORMATION

Please refer to the Serialization Configuration Wrap-Up section for a full description of Hazelcast Serialization
configuration.

17.6.2 Implementing ByteArraySerializer

ByteArraySerializer exposes the raw ByteArray used internally by Hazelcast. It is a good option if the serialization
library you are using deals with ByteArrays instead of streams.

Let’s implement ByteArraySerializer for the Employee class mentioned in Implementing StreamSerializer.

public class EmployeeByteArraySerializer
implements ByteArraySerializer<Employee> {

@Override
public void destroy () {
}

@Override
public int getTypeId () {
return 1;

}

@Override
public byte[] write(Employee object)

throws IOException {
return object.getName().getBytes();

}

@Override
public Employee read(byte[] buffer)

throws IOException {
String surname = new String(buffer);
return new Employee(surname);

}
}

17.6.2.1 Configuring ByteArraySerializer

As usual, let’s register the EmployeeByteArraySerializer in the configuration file hazelcast.xml, as shown
below.

<serialization>
<serializers>
<serializer type-class="Employee">EmployeeByteArraySerializer</serializer>

</serializers>
</serialization>

RELATED INFORMATION

Please refer to the Serialization Configuration Wrap-Up section for a full description of Hazelcast Serialization
configuration.

320 CHAPTER 17. SERIALIZATION

17.7 Global Serializer

The global serializer is identical to custom serializers from the implementation perspective. The global serializer is
registered as a fallback serializer to handle all other objects if a serializer cannot be located for them.

By default, the global serializer does not handle java.io.Serializable and java.io.Externalizable instances.
However, you can configure it to be responsible for those instances.

A custom serializer should be registered for a specific class type. The global serializer will handle all class types if
all the steps in searching for a serializer fail as described in Serialization Interface Types.

Use cases

• Third party serialization frameworks can be integrated using the global serializer.

• For your custom objects, you can implement a single serializer to handle all of them.

• You can replace the internal Java serialization by enabling the overrideJavaSerialization option of the
global serializer configuration.

Any custom serializer can be used as the global serializer. Please refer to the Custom Serialization section for
implementation details.

NOTE: To function properly, Hazelcast needs the Java serializable objects to be handled correctly. If the
global serializer is configured to handle the Java serialization, the global serializer must properly serialize/deserialize
the java.io.Serializable instances. Otherwise, it causes Hazelcast to malfunction.

17.7.1 Sample Global Serializer

A sample global serializer that integrates with a third party serializer is shown below.

public class GlobalStreamSerializer
implements StreamSerializer<Object> {

private SomeThirdPartySerializer someThirdPartySerializer;

private init() {
//someThirdPartySerializer = ...

}

@Override
public int getTypeId () {
return 123;

}

@Override
public void write(ObjectDataOutput out, Object object) throws IOException {

byte[] bytes = someThirdPartySerializer.encode(object);
out.writeByteArray(bytes);

}

@Override
public Object read(ObjectDataInput in) throws IOException {
byte[] bytes = in.readByteArray();
return someThirdPartySerializer.decode(bytes);

}

@Override

17.8. IMPLEMENTING HAZELCASTINSTANCEAWARE 321

public void destroy () {
someThirdPartySerializer.destroy();

}
}

Now, we can register the global serializer in the configuration file hazelcast.xml, as shown below.

<serialization>
<serializers>
<global-serializer override-java-serialization="true">GlobalStreamSerializer</global-serializer>

</serializers>
</serialization>

17.8 Implementing HazelcastInstanceAware

You can implement the HazelcastInstanceAware interface to access distributed objects for cases where an object
is deserialized and needs access to HazelcastInstance.

Let’s implement it for the Employee class mentioned in the Custom Serialization section.

public class Employee
implements Serializable, HazelcastInstanceAware {

private static final long serialVersionUID = 1L;
private String surname;
private transient HazelcastInstance hazelcastInstance;

public Person(String surname) {
this.surname = surname;

}

@Override
public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;
System.out.println("HazelcastInstance set");

}

@Override
public String toString() {
return String.format("Person(surname=%s)", surname);

}
}

After deserialization, the object is checked to see if it implements HazelcastInstanceAware and the method
setHazelcastInstance is called. Notice the hazelcastInstance is transient. This is because this field should
not be serialized.

It may be a good practice to inject a HazelcastInstance into a domain object (e.g. Employee in the above
sample) when used together with Runnable/Callable implementations. These runnables/callables are executed
by IExecutorService which sends them to another machine. And after a task is deserialized, run/call method
implementations need to access HazelcastInstance.

We recommend you only set the HazelcastInstance field while using setHazelcastInstance method and you
not execute operations on the HazelcastInstance. The reason is that when HazelcastInstance is injected for a
HazelcastInstanceAware implementation, it may not be up and running at the injection time.

322 CHAPTER 17. SERIALIZATION

17.9 Serialization Configuration Wrap-Up

This section summarizes the configuration of serialization options, explained in the above sections, into all-in-one
examples. The following are example serialization configurations.

Declarative:

<serialization>
<portable-version>2</portable-version>
<use-native-byte-order>true</use-native-byte-order>
<byte-order>BIG_ENDIAN</byte-order>
<enable-compression>true</enable-compression>
<enable-shared-object>false</enable-shared-object>
<allow-unsafe>true</allow-unsafe>
<data-serializable-factories>

<data-serializable-factory factory-id="1001">
abc.xyz.Class

</data-serializable-factory>
</data-serializable-factories>
<portable-factories>

<portable-factory factory-id="9001">
xyz.abc.Class

</portable-factory>
</portable-factories>
<serializers>

<global-serializer>abc.Class</global-serializer>
<serializer type-class="Employee" class-name="com.EmployeeSerializer">
</serializer>

</serializers>
<check-class-def-errors>true</check-class-def-errors>

</serialization>

Programmatic:

Config config = new Config();
SerializationConfig srzConfig = config.getSerializationConfig();
srzConfig.setPortableVersion("2").setUseNativeByteOrder(true);
srzConfig.setAllowUnsafe(true).setEnableCompression(true);
srzConfig.setCheckClassDefErrors(true);

GlobalSerializerConfig globSrzConfig = srzConfig.getGlobalSerializerConfig();
globSrzConfig.setClassName("abc.Class");

SerializerConfig serializerConfig = srzConfig.getSerializerConfig();
serializerConfig.setTypeClass("Employee")

.setClassName("com.EmployeeSerializer");

Serialization configuration has the following elements.

• portable-version: Defines versioning of the portable serialization. Portable version differentiates two of the
same classes that have changes, such as adding/removing field or changing a type of a field.

• use-native-byte-order: Set to true to use native byte order for the underlying platform.
• byte-order: Defines the byte order that the serialization will use: BIG_ENDIAN or LITTLE_ENDIAN. The
default value is BIG_ENDIAN.

• enable-compression: Enables compression if default Java serialization is used.
• enable-shared-object: Enables shared object if default Java serialization is used.
• allow-unsafe: Set to true to allow unsafe to be used.

17.9. SERIALIZATION CONFIGURATION WRAP-UP 323

• data-serializable-factory: The DataSerializableFactory class to be registered.
• portable-factory: The PortableFactory class to be registered.
• global-serializer: The global serializer class to be registered if no other serializer is applicable.
• serializer: The class name of the serializer implementation.
• check-class-def-errors: When set to true, the serialization system will check for class definitions error at
start and will throw a Serialization Exception with an error definition.

324 CHAPTER 17. SERIALIZATION

Chapter 18

Management

This chapter provides information on managing and monitoring your Hazelcast cluster. It gives detailed instructions
related to gathering statistics, monitoring via JMX protocol, and managing the cluster with useful utilities. It also
explains how to use Hazelcast Management Center.

18.1 Getting Member Statistics from Distributed Data Structures

You can get various statistics from your distributed data structures via the Statistics API. Since the data structures
are distributed in the cluster, the Statistics API provides statistics for the local portion (1/Number of Members in
the Cluster) of data on each member (or node).

18.1.1 Map Statistics

To get local map statistics, use the getLocalMapStats() method from the IMap interface. This method returns a
LocalMapStats object that holds local map statistics.

Below is example code where the getLocalMapStats() method and the getOwnedEntryCount() method get the
number of entries owned by this member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap<String, Customer> customers = hazelcastInstance.getMap("customers");
LocalMapStats mapStatistics = customers.getLocalMapStats;
System.out.println("number of entries owned on this node = "

+ mapStatistics.getOwnedEntryCount());

Below is the list of metrics that you can access via the LocalMapStats object.

/**
* Returns the number of entries owned by this member.
*/
long getOwnedEntryCount();

/**
* Returns the number of backup entries hold by this member.
*/
long getBackupEntryCount();

/**
* Returns the number of backups per entry.
*/

325

326 CHAPTER 18. MANAGEMENT

int getBackupCount();

/**
* Returns memory cost (number of bytes) of owned entries in this member.
*/
long getOwnedEntryMemoryCost();

/**
* Returns memory cost (number of bytes) of backup entries in this member.
*/
long getBackupEntryMemoryCost();

/**
* Returns the creation time of this map on this member.
*/
long getCreationTime();

/**
* Returns the last access (read) time of the locally owned entries.
*/
long getLastAccessTime();

/**
* Returns the last update time of the locally owned entries.
*/
long getLastUpdateTime();

/**
* Returns the number of hits (reads) of the locally owned entries.
*/
long getHits();

/**
* Returns the number of currently locked locally owned keys.
*/
long getLockedEntryCount();

/**
* Returns the number of entries that the member owns and are dirty (updated
* but not persisted yet).
* dirty entry count is meaningful when there is a persistence defined.
*/
long getDirtyEntryCount();

/**
* Returns the number of put operations.
*/
long getPutOperationCount();

/**
* Returns the number of get operations.
*/
long getGetOperationCount();

/**
* Returns the number of Remove operations.
*/
long getRemoveOperationCount();

18.1. GETTING MEMBER STATISTICS FROM DISTRIBUTED DATA STRUCTURES 327

/**
* Returns the total latency of put operations. To get the average latency,
* divide by number of puts
*/
long getTotalPutLatency();

/**
* Returns the total latency of get operations. To get the average latency,
* divide by the number of gets.
*/
long getTotalGetLatency();

/**
* Returns the total latency of remove operations. To get the average latency,
* divide by the number of gets.
*/
long getTotalRemoveLatency();

/**
* Returns the maximum latency of put operations. To get the average latency,
* divide by the number of puts.
*/
long getMaxPutLatency();

/**
* Returns the maximum latency of get operations. To get the average latency,
* divide by the number of gets.
*/
long getMaxGetLatency();

/**
* Returns the maximum latency of remove operations. To get the average latency,
* divide by the number of gets.
*/
long getMaxRemoveLatency();

/**
* Returns the number of Events Received.
*/
long getEventOperationCount();

/**
* Returns the total number of Other Operations.
*/
long getOtherOperationCount();

/**
* Returns the total number of total operations.
*/
long total();

/**
* Cost of map & near cache & backup in bytes.
* todo: in object mode, object size is zero.
*/
long getHeapCost();

328 CHAPTER 18. MANAGEMENT

/**
* Returns statistics related to the Near Cache.
*/
NearCacheStats getNearCacheStats();

18.1.1.1 Near Cache Statistics

To get Near Cache statistics, use the getNearCacheStats() method from the LocalMapStats object. This method
returns a NearCacheStats object that holds Near Cache statistics.

Below is example code where the getNearCacheStats() method and the getRatio method from NearCacheStats
get a Near Cache hit/miss ratio.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IMap<String, Customer> customers = node.getMap("customers");
LocalMapStats mapStatistics = customers.getLocalMapStats();
NearCacheStats nearCacheStatistics = mapStatistics.getNearCacheStats();
System.out.println("near cache hit/miss ratio= "

+ nearCacheStatistics.getRatio());

Below is the list of metrics that you can access via the NearCacheStats object. This behavior applies to both
client and node near caches.

/**
* Returns the creation time of this NearCache on this member
*/
long getCreationTime();

/**
* Returns the number of entries owned by this member.
*/
long getOwnedEntryCount();

/**
* Returns memory cost (number of bytes) of entries in this cache.
*/
long getOwnedEntryMemoryCost();

/**
* Returns the number of hits (reads) of the locally owned entries.
*/
long getHits();

/**
* Returns the number of misses of the locally owned entries.
*/
long getMisses();

/**
* Returns the hit/miss ratio of the locally owned entries.
*/
double getRatio();

18.1.2 Multimap Statistics

To get MultiMap statistics, use the getLocalMultiMapStats() method from the MultiMap interface. This method
returns a LocalMultiMapStats object that holds local MultiMap statistics.

18.1. GETTING MEMBER STATISTICS FROM DISTRIBUTED DATA STRUCTURES 329

Below is example code where the getLocalMultiMapStats() method and the getLastUpdateTime method from
LocalMultiMapStats get the last update time.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
MultiMap<String, Customer> customers = node.getMultiMap("customers");
LocalMultiMapStats multiMapStatistics = customers.getLocalMultiMapStats();
System.out.println("last update time = "

+ multiMapStatistics.getLastUpdateTime());

Below is the list of metrics that you can access via the LocalMultiMapStats object.

/**
* Returns the number of entries owned by this member.
*/
long getOwnedEntryCount();

/**
* Returns the number of backup entries hold by this member.
*/
long getBackupEntryCount();

/**
* Returns the number of backups per entry.
*/
int getBackupCount();

/**
* Returns memory cost (number of bytes) of owned entries in this member.
*/
long getOwnedEntryMemoryCost();

/**
* Returns memory cost (number of bytes) of backup entries in this member.
*/
long getBackupEntryMemoryCost();

/**
* Returns the creation time of this map on this member.
*/
long getCreationTime();

/**
* Returns the last access (read) time of the locally owned entries.
*/
long getLastAccessTime();

/**
* Returns the last update time of the locally owned entries.
*/
long getLastUpdateTime();

/**
* Returns the number of hits (reads) of the locally owned entries.
*/
long getHits();

/**
* Returns the number of currently locked locally owned keys.

330 CHAPTER 18. MANAGEMENT

*/
long getLockedEntryCount();

/**
* Returns the number of entries that the member owns and are dirty (updated
* but not persisted yet).
* Dirty entry count is meaningful when a persistence is defined.
*/
long getDirtyEntryCount();

/**
* Returns the number of put operations.
*/
long getPutOperationCount();

/**
* Returns the number of get operations.
*/
long getGetOperationCount();

/**
* Returns the number of Remove operations.
*/
long getRemoveOperationCount();

/**
* Returns the total latency of put operations. To get the average latency,
* divide by the number of puts.
*/
long getTotalPutLatency();

/**
* Returns the total latency of get operations. To get the average latency,
* divide by the number of gets.
*/
long getTotalGetLatency();

/**
* Returns the total latency of remove operations. To get the average latency,
* divide by the number of gets.
*/
long getTotalRemoveLatency();

/**
* Returns the maximum latency of put operations. To get the average latency,
* divide by the number of puts.
*/
long getMaxPutLatency();

/**
* Returns the maximum latency of get operations. To get the average latency,
* divide by the number of gets.
*/
long getMaxGetLatency();

/**
* Returns the maximum latency of remove operations. To get the average latency,
* divide by the number of gets.

18.1. GETTING MEMBER STATISTICS FROM DISTRIBUTED DATA STRUCTURES 331

*/
long getMaxRemoveLatency();

/**
* Returns the number of Events Received.
*/
long getEventOperationCount();

/**
* Returns the total number of Other Operations.
*/
long getOtherOperationCount();

/**
* Returns the total number of total operations.
*/
long total();

/**
* Cost of map & near cache & backup in bytes.
* todo: in object mode, object size is zero.
*/
long getHeapCost();

18.1.3 Queue Statistics

To get local queue statistics, use the getLocalQueueStats() method from the IQueue interface. This method
returns a LocalQueueStats object that holds local queue statistics.

Below is example code where the getLocalQueueStats() method and the getAvgAge method from
LocalQueueStats get the average age of items.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IQueue<Order> orders = node.getQueue("orders");
LocalQueueStats queueStatistics = orders.getLocalQueueStats();
System.out.println("average age of items = "

+ queueStatistics.getAvgAge());

Below is the list of metrics that you can access via the LocalQueueStats object.

/**
* Returns the number of owned items in this member.
*/
long getOwnedItemCount();

/**
* Returns the number of backup items in this member.
*/
long getBackupItemCount();

/**
* Returns the min age of the items in this member.
*/
long getMinAge();

/**
* Returns the max age of the items in this member.

332 CHAPTER 18. MANAGEMENT

*/
long getMaxAge();

/**
* Returns the average age of the items in this member.
*/
long getAvgAge();

/**
* Returns the number of offer/put/add operations.
* Offers returning false will be included.
* #getRejectedOfferOperationCount can be used
* to get the rejected offers.
*/
long getOfferOperationCount();

/**
* Returns the number of rejected offers. Offer
* can be rejected because of max-size limit
* on the queue.
*/
long getRejectedOfferOperationCount();

/**
* Returns the number of poll/take/remove operations.
* Polls returning null (empty) will be included.
* #getEmptyPollOperationCount can be used to get the
* number of polls returned null.
*/
long getPollOperationCount();

/**
* Returns the number of null returning poll operations.
* Poll operation might return null if the queue is empty.
*/
long getEmptyPollOperationCount();

/**
* Returns the number of other operations.
*/
long getOtherOperationsCount();

/**
* Returns the number of event operations.
*/
long getEventOperationCount();

18.1.4 Topic Statistics

To get local topic statistics, use the getLocalTopicStats() method from the ITopic interface. This method
returns a LocalTopicStats object that holds local topic statistics.

Below is example code where the getLocalTopicStats() method and the getPublishOperationCount method
from LocalTopicStats get the number of publish operations.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
ITopic<Object> news = node.getTopic("news");
LocalTopicStats topicStatistics = news.getLocalTopicStats();

18.1. GETTING MEMBER STATISTICS FROM DISTRIBUTED DATA STRUCTURES 333

System.out.println("number of publish operations = "
+ topicStatistics.getPublishOperationCount());

Below is the list of metrics that you can access via the LocalTopicStats object.

/**
* Returns the creation time of this topic on this member.
*/
long getCreationTime();

/**
* Returns the total number of published messages of this topic on this member.
*/
long getPublishOperationCount();

/**
* Returns the total number of received messages of this topic on this member.
*/
long getReceiveOperationCount();

18.1.5 Executor Statistics

To get local executor statistics, use the getLocalExecutorStats() method from the IExecutorService interface.
This method returns a LocalExecutorStats object that holds local executor statistics.

Below is example code where the getLocalExecutorStats() method and the getCompletedTaskCount method
from LocalExecutorStats get the number of completed operations of the executor service.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IExecutorService orderProcessor = node.getExecutorService("orderProcessor");
LocalExecutorStats executorStatistics = orderProcessor.getLocalExecutorStats();
System.out.println("completed task count = "

+ executorStatistics.getCompletedTaskCount());

Below is the list of metrics that you can access via the LocalExecutorStats object.

/**
* Returns the number of pending operations of the executor service.
*/
long getPendingTaskCount();

/**
* Returns the number of started operations of the executor service.
*/
long getStartedTaskCount();

/**
* Returns the number of completed operations of the executor service.
*/
long getCompletedTaskCount();

/**
* Returns the number of cancelled operations of the executor service.
*/
long getCancelledTaskCount();

334 CHAPTER 18. MANAGEMENT

/**
* Returns the total start latency of operations started.
*/
long getTotalStartLatency();

/**
* Returns the total execution time of operations finished.
*/
long getTotalExecutionLatency();

18.2 JMX API per Node

Hazelcast members expose various management beans which include statistics about distributed data structures
and the states of Hazelcast node internals.

The metrics are local to the nodes, i.e. they do not reflect cluster wide values.

You can find the JMX API definition below with descriptions and the API methods in parenthesis.

Atomic Long (IAtomicLong)

• Name (name)
• Current Value (currentValue)
• Set Value (set(v))
• Add value and Get (addAndGet(v))
• Compare and Set (compareAndSet(e,v))
• Decrement and Get (decrementAndGet())
• Get and Add (getAndAdd(v))
• Get and Increment (getAndIncrement())
• Get and Set (getAndSet(v))
• Increment and Get (incrementAndGet())
• Partition key (partitionKey)

Atomic Reference (IAtomicReference)

• Name (name)
• Partition key (partitionKey)

Countdown Latch (ICountDownLatch)

• Name (name)
• Current count (count)
• Countdown (countDown())
• Partition key (partitionKey)

Executor Service (IExecutorService)

• Local pending operation count (localPendingTaskCount)
• Local started operation count (localStartedTaskCount)
• Local completed operation count (localCompletedTaskCount)
• Local cancelled operation count (localCancelledTaskCount)
• Local total start latency (localTotalStartLatency)
• Local total execution latency (localTotalExecutionLatency)

List (IList)

18.2. JMX API PER NODE 335

• Name (name)
• Clear list (clear)

Lock (ILock)

• Name (name)
• Lock Object (lockObject)
• Partition key (partitionKey)

Map (IMap)

• Name (name)
• Size (size)
• Config (config)
• Owned entry count (localOwnedEntryCount)
• Owned entry memory cost (localOwnedEntryMemoryCost)
• Backup entry count (localBackupEntryCount)
• Backup entry cost (localBackupEntryMemoryCost)
• Backup count (localBackupCount)
• Creation time (localCreationTime)
• Last access time (localLastAccessTime)
• Last update time (localLastUpdateTime)
• Hits (localHits)
• Locked entry count (localLockedEntryCount)
• Dirty entry count (localDirtyEntryCount)
• Put operation count (localPutOperationCount)
• Get operation count (localGetOperationCount)
• Remove operation count (localRemoveOperationCount)
• Total put latency (localTotalPutLatency)
• Total get latency (localTotalGetLatency)
• Total remove latency (localTotalRemoveLatency)
• Max put latency (localMaxPutLatency)
• Max get latency (localMaxGetLatency)
• Max remove latency (localMaxRemoveLatency)
• Event count (localEventOperationCount)
• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
• Total operation count (localTotal)
• Heap Cost (localHeapCost)
• Clear (clear())
• Values (values(p))
• Entry Set (entrySet(p))

MultiMap (MultiMap)

• Name (name)
• Size (size)
• Owned entry count (localOwnedEntryCount)
• Owned entry memory cost (localOwnedEntryMemoryCost)
• Backup entry count (localBackupEntryCount)
• Backup entry cost (localBackupEntryMemoryCost)
• Backup count (localBackupCount)
• Creation time (localCreationTime)
• Last access time (localLastAccessTime)

336 CHAPTER 18. MANAGEMENT

• Last update time (localLastUpdateTime)
• Hits (localHits)
• Locked entry count (localLockedEntryCount)
• Put operation count (localPutOperationCount)
• Get operation count (localGetOperationCount)
• Remove operation count (localRemoveOperationCount)
• Total put latency (localTotalPutLatency)
• Total get latency (localTotalGetLatency)
• Total remove latency (localTotalRemoveLatency)
• Max put latency (localMaxPutLatency)
• Max get latency (localMaxGetLatency)
• Max remove latency (localMaxRemoveLatency)
• Event count (localEventOperationCount)
• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
• Total operation count (localTotal)
• Clear (clear())

Replicated Map (ReplicatedMap)

• Name (name)
• Size (size)
• Config (config)
• Owned entry count (localOwnedEntryCount)
• Creation time (localCreationTime)
• Last access time (localLastAccessTime)
• Last update time (localLastUpdateTime)
• Hits (localHits)
• Put operation count (localPutOperationCount)
• Get operation count (localGetOperationCount)
• Remove operation count (localRemoveOperationCount)
• Total put latency (localTotalPutLatency)
• Total get latency (localTotalGetLatency)
• Total remove latency (localTotalRemoveLatency)
• Max put latency (localMaxPutLatency)
• Max get latency (localMaxGetLatency)
• Max remove latency (localMaxRemoveLatency)
• Event count (localEventOperationCount)
• Replication event count (localReplicationEventCount)
• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
• Total operation count (localTotal)
• Clear (clear())
• Values (values())
• Entry Set (entrySet())

Queue (IQueue)

• Name (name)
• Config (QueueConfig)
• Partition key (partitionKey)
• Owned item count (localOwnedItemCount)
• Backup item count (localBackupItemCount)
• Minimum age (localMinAge)
• Maximum age (localMaxAge)
• Average age (localAveAge)

18.2. JMX API PER NODE 337

• Offer operation count (localOfferOperationCount)
• Rejected offer operation count (localRejectedOfferOperationCount)
• Poll operation count (localPollOperationCount)
• Empty poll operation count (localEmptyPollOperationCount)
• Other operation count (localOtherOperationsCount)
• Event operation count (localEventOperationCount)
• Clear (clear())

Semaphore (ISemaphore)

• Name (name)
• Available permits (available)
• Partition key (partitionKey)
• Drain (drain())
• Shrink available permits by given number (reduce(v))
• Release given number of permits (release(v))

Set (ISet)

• Name (name)
• Partition key (partitionKey)
• Clear (clear())

Topic (ITopic)

• Name (name)
• Config (config)
• Creation time (localCreationTime)
• Publish operation count (localPublishOperationCount)
• Receive operation count (localReceiveOperationCount)

Hazelcast Instance (HazelcastInstance)

• Name (name)

• Version (version)

• Build (build)

• Configuration (config)

• Configuration source (configSource)

• Group name (groupName)

• Network Port (port)

• Cluster-wide Time (clusterTime)

• Size of the cluster (memberCount)

• List of members (Members)

• Running state (running)

• Shutdown the member (shutdown())

– Node (HazelcastInstance.Node)
∗ Address (address)

338 CHAPTER 18. MANAGEMENT

∗ Master address (masterAddress)

• Event Service (HazelcastInstance.EventService)

– Event thread count (eventThreadCount)
– Event queue size (eventQueueSize)
– Event queue capacity (eventQueueCapacity)

• Operation Service (HazelcastInstance.OperationService)

– Response queue size (responseQueueSize)
– Operation executor queue size (operationExecutorQueueSize)
– Running operation count (runningOperationsCount)
– Remote operation count (remoteOperationCount)
– Executed operation count (executedOperationCount)
– Operation thread count (operationThreadCount)

• Proxy Service (HazelcastInstance.ProxyService)

– Proxy count (proxyCount)

• Partition Service (HazelcastInstance.PartitionService)

– Partition count (partitionCount)
– Active partition count (activePartitionCount)
– Cluster Safe State (isClusterSafe)
– LocalMember Safe State (isLocalMemberSafe)

• Connection Manager (HazelcastInstance.ConnectionManager)

– Client connection count (clientConnectionCount)
– Active connection count (activeConnectionCount)
– Connection count (connectionCount)

• Client Engine (HazelcastInstance.ClientEngine)

– Client endpoint count (clientEndpointCount)

• System Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

• Operation Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

18.2. JMX API PER NODE 339

• Async Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

• Scheduled Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

• Client Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

• Query Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

• IO Executor (HazelcastInstance.ManagedExecutorService)

– Name (name)
– Work queue size (queueSize)
– Thread count of the pool (poolSize)
– Maximum thread count of the pool (maximumPoolSize)
– Remaining capacity of the work queue (remainingQueueCapacity)
– Is shutdown (isShutdown)
– Is terminated (isTerminated)
– Completed task count (completedTaskCount)

340 CHAPTER 18. MANAGEMENT

18.3 Monitoring with JMX

You can monitor your Hazelcast members via the JMX protocol.

To achieve this, first add the following system properties to enable JMX agent:

- ‘-Dcom.sun.management.jmxremote‘
- ‘-Dcom.sun.management.jmxremote.port=_portNo_‘ (to specify JMX port, the default is ‘1099‘) (*optional*)
- ‘-Dcom.sun.management.jmxremote.authenticate=false‘ (to disable JMX auth) (*optional*)

Then enable the Hazelcast property hazelcast.jmx (please refer to the System Properties section) using one of
the following ways:

• By declarative configuration:

<properties>
<property name="hazelcast.jmx">true</property>

</properties>

• By programmatic configuration:

config.setProperty("hazelcast.jmx", "true");

• By Spring XML configuration:

<hz:properties>
<hz: property name="hazelcast.jmx">true</hz:property>

</hz:properties>

• By setting the system property -Dhazelcast.jmx=true

18.3.1 MBean Naming for Hazelcast Data Structures

Hazelcast set the naming convention for MBeans as follows:

final ObjectName mapMBeanName = new ObjectName("com.hazelcast:instance=_hzInstance_1_dev,type=IMap,name=trial");

The MBeans name consists of the Hazelcast instance name, the type of the data structure, and that data structure’s
name. In the above sample, _hzInstance_1_dev is the instance name, we connect to an IMap with the name
trial.

18.3.2 Connecting to JMX Agent

One of the ways you can connect to JMX agent is using jconsole, jvisualvm (with MBean plugin) or another JMX
compliant monitoring tool.

The other way to connect is to use a custom JMX client.

First, you need to specify the URL where the Hazelcast JMX service is running. Please see the following sample
code snippet. The port in this sample should be the one that you define while setting the JMX remote port number
(if different than the default port 1099).

// Parameters for connecting to the JMX Service
int port = 1099;
String hostname = InetAddress.getLocalHost().getHostName();
JMXServiceURL url = new JMXServiceURL("service:jmx:rmi://" + hostname + ":" + port + "/jndi/rmi://" + hostname + ":" + port + "/jmxrmi");

18.4. CLUSTER UTILITIES 341

Then use the URL you acquired to connect to the JMX service and get the JMXConnector object. Using this object,
get the MBeanServerConnection object. The MBeanServerConnection object will enable you to use the MBean
methods. Please see the example code below.

// Connect to the JMX Service
JMXConnector jmxc = JMXConnectorFactory.connect(url, null);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Once you get the MBeanServerConnection object, you can call the getter methods of MBeans as follows:

System.out.println("\nTotal entries on map " + mbsc.getAttribute(mapMBeanName, "name") + " : "
+ mbsc.getAttribute(mapMBeanName, "localOwnedEntryCount"));

18.4 Cluster Utilities

This section provides information on programmatic utilities you can use to listen to the cluster events, to change
the state of your cluster, to check whether the cluster and/or members are safe before shutting down a member,
and to define the minimum number of cluster members required for the cluster to remain up and running. It also
gives information on the Hazelcast Lite Member.

18.4.1 Getting Member Events and Member Sets

Hazelcast allows you to register for membership events so you will be notified when members are added or removed.
You can also get the set of cluster members.

The following example code does the above: registers for member events, notified when members are added or
removed, and gets the set of cluster members.

import com.hazelcast.core.*;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Cluster cluster = hazelcastInstance.getCluster();
cluster.addMembershipListener(new MembershipListener() {

public void memberAdded(MembershipEvent membershipEvent) {
System.out.println("MemberAdded " + membershipEvent);

}

public void memberRemoved(MembershipEvent membershipEvent) {
System.out.println("MemberRemoved " + membershipEvent);

}
});

Member localMember = cluster.getLocalMember();
System.out.println ("my inetAddress= " + localMember.getInetAddress());

Set setMembers = cluster.getMembers();
for (Member member : setMembers) {
System.out.println("isLocalMember " + member.localMember());
System.out.println("member.inetaddress " + member.getInetAddress());
System.out.println("member.port " + member.getPort());

}

RELATED INFORMATION

Please refer to the Membership Listener section for more information on membership events.

342 CHAPTER 18. MANAGEMENT

18.4.2 Managing Cluster and Member States

With the release of 3.6, Hazelcast introduces cluster and member states in addition to the default ACTIVE state.
This section explains these states of Hazelcast clusters and members which you can use to allow or restrict the
designated cluster/member operations.

18.4.2.1 Cluster States

By changing the state of your cluster, you can allow/restrict several cluster operations or change the behavior
of those operations. You can use the methods changeClusterState() and shutdown() which are in the Cluster
interface to change your cluster’s state.

Hazelcast clusters have the following states:

• ACTIVE: This is the default cluster state. Cluster continues to operate without restrictions.
• FROZEN:

– In this state, the partition table is frozen and partition assignments are not performed.
– Your cluster does not accept new members.
– If a member leaves, it can join back. Its partition assignments (both primary and replica) remain the

same until either it joins back or the cluster state is changed to ACTIVE. When it joins back to the cluster,
it will own all previous partition assignments as it was. On the other hand, when the cluster state
changes to ACTIVE, re-partitioning starts and unassigned partitions are assigned to the active members.

– All other operations in the cluster, except migration, continue without restrictions.
– You cannot change the state of a cluster to FROZEN when migration/replication tasks are being performed.

• PASSIVE:

– In this state, the partition table is frozen and partition assignments are not performed.
– Your cluster does not accept new members.
– If a member leaves while the cluster is in this state, the member will be removed from the partition table

if cluster state moves back to ACTIVE.
– This state rejects ALL operations immediately EXCEPT the read-only operations like map.get() and

cache.get(), replication and cluster heartbeat tasks.
– You cannot change the state of a cluster to PASSIVE when migration/replication tasks are being performed.

• IN_TRANSITION:

– This state shows that the state of the cluster is in transition.
– You cannot set your cluster’s state as IN_TRANSITION explicitly.
– It is a temporary and intermediate state.
– During this state, your cluster does not accept new members and migration/replication tasks are paused.

NOTE: All in-cluster methods are fail-fast, i.e. when a method fails in the cluster, it throws an exception
immediately (it will not be retried).

The following snippet is from the Cluster interface showing the new methods used to manage your cluster’s states.

public interface Cluster {
...
...

ClusterState getClusterState();
void changeClusterState(ClusterState newState);
void changeClusterState(ClusterState newState, TransactionOptions transactionOptions);
void shutdown();
void shutdown(TransactionOptions transactionOptions);

Please refer to the Cluster interface for information on these methods.

18.4. CLUSTER UTILITIES 343

18.4.2.2 Cluster Member States

Hazelcast cluster members have the following states:

• ACTIVE: This is the initial member state. The member can execute and process all operations. When the
state of the cluster is ACTIVE or FROZEN, the members are in the ACTIVE state.

• PASSIVE: In this state, member rejects all operations EXCEPT the read-only ones, replication and migration
operations, heartbeat operations, and the join operations as explained in the Cluster States section above. A
member can go into this state when either of the following happens:

1. Until the member’s shutdown process is completed after the method Node.shutdown(boolean) is called.
Note that, when the shutdown process is completed, member’s state changes to SHUT_DOWN.

2. Cluster’s state is changed to PASSIVE using the method changeClusterState().

• SHUT_DOWN: A member goes into this state when the member’s shutdown process is completed. The member
in this state rejects all operations and invocations. A member in this state cannot be restarted.

18.4.3 Using the Script cluster.sh

The script cluster.sh that comes with the Hazelcast package is used to get/change the state of your cluster, to
shutdown your cluster and to force your cluster to clean its persisted data and make a fresh start. The latter is the

Force Start operation of Hazelcast’s Hot Restart Persistence feature. Please refer to the Force Start section.
NOTE: The script cluster.sh uses curl command and curl must be installed to be able to use the script.

The script cluster.sh needs the following parameters to operate according to your needs. If these parameters are
not provided, the default values are used.

Parameter Default Value Description

-o or --operation get-state Executes a cluster-wide operation. Operation can be get-state, change-state, shutdown and force-start.
-s or --state None Updates the state of the cluster to a new state. New state can be active, frozen, passive. It is used with the operation change-state and has no default value. You should provide a valid state.
-a or --address 127.0.0.1 Defines the IP address of a cluster member. If you want to manage your cluster remotely, you should provide the IP address of a member to the script.
-p or --port 5701 Defines on which port Hazelcast is running on the local or remote machine. Its default value is 5701.
-g or --groupname dev Defines the name of a cluster group which is used for a simple authentication. Please see the Creating Cluster Groups section.
-P or --password dev-pass Defines the password of a cluster group. Please see the Creating Cluster Groups section.

The script cluster.sh is self-documented; you can see the parameter descriptions using the command sh
cluster.sh -h or sh cluster.sh --help.

NOTE: You can perform the above operations using the Hot Restart tab of Hazelcast Management Center
or using the REST API. Please see the Hot Restart section and Using REST API for Cluster Management section.

18.4.3.1 Example Usages for cluster.sh

Let’s say you have a cluster running on remote machines and one Hazelcast member is running on the IP
172.16.254.1 and on the port 5702. Group name and password of the cluster is test/test.

Getting the cluster state:

To get the state of the cluster, use the following command:

sh cluster.sh -o get-state -a 172.16.254.1 -p 5702 -g test -P test

The following also gets the cluster state, using the alternative parameter names (e.g. --port instead of -p):

344 CHAPTER 18. MANAGEMENT

sh cluster.sh --operation get-state --address 172.16.254.1 --port 5702 --groupname test --password
test

Changing the cluster state:

To change the state of the cluster to frozen, use the following command:

sh cluster.sh -o change-state -s frozen -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

sh cluster.sh --operation change-state --state frozen --address 172.16.254.1 --port 5702
--groupname test --password test

Shutting down the cluster:

To shutdown the cluster, use the following command:

sh cluster.sh -o shutdown -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

sh cluster.sh --operation shutdown --address 172.16.254.1 --port 5702 --groupname test --password
test

Force starting the cluster:

To force start the cluster, use the following command:

sh cluster.sh -o force-start -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

sh cluster.sh --operation force-start --address 172.16.254.1 --port 5702 --groupname test
--password test

NOTE: Currently, this script is not supported on the Windows platforms.

18.4.4 Using REST API for Cluster Management

Besides the Management Center’s Hot Restart tab and the script cluster.sh, you can also use REST API to
manage your cluster’s state. The following are the commands you can use.

Getting the cluster state:

To get the state of the cluster, use the following command:

curl --data "${GROUPNAME}&${PASSWORD}" http://127.0.0.1:5701/hazelcast/rest/management/cluster/state

Changing the cluster state:

To change the state of the cluster to frozen, use the following command:

curl --data "${GROUPNAME}&${PASSWORD}&${STATE}" http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/changeState

Shutting down the cluster:

To shutdown the cluster, use the following command:

curl --data "${GROUPNAME}&${PASSWORD}" http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/shutdown

Force starting the cluster:

To force start the cluster, use the following command:

18.4. CLUSTER UTILITIES 345

curl --data "${GROUPNAME}&${PASSWORD}" http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/forceStart/

NOTE: You can also perform the above operations using the Hot Restart tab of Hazelcast Management
Center or using the script cluster.sh. Please see the Hot Restart section and Using the Script cluster.sh section.

18.4.5 Enabling Lite Members

Lite members are the Hazelcast cluster members that do not store data. These members are used mainly to execute
tasks and register listeners, and they do not have partitions.

You can form your cluster to include the regular Hazelcast members to store data and Hazelcast lite members to
run heavy computations. The presence of the lite members do not affect the operations performed on the other
members in the cluster. You can directly submit your tasks to the lite members, register listeners on them and
invoke operations for the Hazelcast data structures on them (e.g. map.put() and map.get()).

18.4.5.1 Configuring Lite Members

You can enable a cluster member to be a lite member using declarative or programmatic configuration.

18.4.5.1.1 Declarative Configuration

<hazelcast>
<lite-member enabled="true">

</hazelcast>

18.4.5.1.2 Programmatic Configuration

Config config = new Config();
config.setLiteMember(true);

NOTE: Note that you cannot change a member’s role at runtime.

18.4.6 Defining Member Attributes

You can define various member attributes on your Hazelcast members. You can use these member attributes to tag
your members as your business logic requirements.

To define member attribute on a member, you can either:

• provide MemberAttributeConfig to your Config object,

• or provide member attributes at runtime via attribute setter methods on the Member interface.

For example, you can tag your members with their CPU characteristics and you can route CPU intensive tasks to
those CPU-rich members.

MemberAttributeConfig fourCore = new MemberAttributeConfig();
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 4);
MemberAttributeConfig twelveCore = new MemberAttributeConfig();
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 12);
MemberAttributeConfig twentyFourCore = new MemberAttributeConfig();
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 24);

346 CHAPTER 18. MANAGEMENT

Config member1Config = new Config();
config.setMemberAttributeConfig(fourCore);
Config member2Config = new Config();
config.setMemberAttributeConfig(twelveCore);
Config member3Config = new Config();
config.setMemberAttributeConfig(twentyFourCore);

HazelcastInstance member1 = Hazelcast.newHazelcastInstance(member1Config);
HazelcastInstance member2 = Hazelcast.newHazelcastInstance(member2Config);
HazelcastInstance member3 = Hazelcast.newHazelcastInstance(member3Config);

IExecutorService executorService = member1.getExecutorService("processor");

executorService.execute(new CPUIntensiveTask(), new MemberSelector() {
@Override
public boolean select(Member member) {
int coreCount = (int) member.getIntAttribute("CPU_CORE_COUNT");
// Task will be executed at either member2 or member3
if (coreCount > 8) {
return true;

}
return false;

}
});

HazelcastInstance member4 = Hazelcast.newHazelcastInstance();
// We can also set member attributes at runtime.
member4.setIntAttribute("CPU_CORE_COUNT", 2);

18.4.7 Safety Checking Cluster Members

To prevent data loss when shutting down a cluster member, Hazelcast provides a graceful shutdown feature. You
perform this shutdown by calling the method HazelcastInstance.shutdown(). Once this method is called, it
checks the following conditions to ensure the member is safe to shutdown.

• There is no active migration.
• At least one backup of partitions are synced with primary ones.

Even if the above conditions are not met, HazelcastInstance.shutdown() will force them to be completed. When
this method eventually returns, the member has been brought to a safe state and it can be shut down without any
data loss.

18.4.7.1 Ensuring Safe State with PartitionService

What if you want to be sure that your cluster is in a safe state, as in safe to shutdown without any data loss? For
example, you may have some use cases like rolling upgrades, development/testing, or other logic that requires a
cluster/member to be safe.

To provide this safety, Hazelcast offers the PartitionService interface with the methods isClusterSafe,
isMemberSafe, isLocalMemberSafe and forceLocalMemberToBeSafe. These methods can be deemed as decoupled
pieces from the method Hazelcast.shutdown.

public interface PartitionService {
...
...

18.4. CLUSTER UTILITIES 347

boolean isClusterSafe();
boolean isMemberSafe(Member member);
boolean isLocalMemberSafe();
boolean forceLocalMemberToBeSafe(long timeout, TimeUnit unit);

}

The method isClusterSafe checks whether the cluster is in a safe state. It returns true if there are no active
partition migrations and there are sufficient backups for each partition. Once it returns true, the cluster is safe
and a node can be shut down without data loss.

The method isMemberSafe checks whether a specific member is in a safe state. This check controls if the first
backups of partitions of the given member are synced with the primary ones. Once it returns true, the given
member is safe and it can be shut down without data loss.

Similarly, the method isLocalMemberSafe does the same check for the local member. The method
forceLocalMemberToBeSafe forces the owned and backup partitions to be synchronized, making the lo-
cal member safe.

NOTE: These methods are available starting with Hazelcast 3.3.

18.4.7.2 Example PartitionService Code

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isClusterSafe()) {

hazelcastInstance.shutdown(); // or terminate
}

OR

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isLocalMemberSafe()) {

hazelcastInstance.shutdown(); // or terminate
}

RELATED INFORMATION

For more code samples please refer to PartitionService Code Samples.

18.4.8 Defining a Cluster Quorum

Hazelcast Cluster Quorum enables you to define the minimum number of machines required in a cluster for the
cluster to remain in an operational state. If the number of machines is below the defined minimum at any time, the
operations are rejected and the rejected operations return a QuorumException to their callers.

When a network partitioning happens, by default Hazelcast chooses to be available. With Cluster Quorum, you can
tune your Hazelcast instance towards achieving better consistency by rejecting updates that do not pass a minimum
threshold. This reduces the chance of concurrent updates to an entry from two partitioned clusters. Note that the
consistency defined here is the best effort, it is not full or strong consistency. To prevent mutative operations in
case of a split brain syndrome, you can define a minimum quorum that must be present in the cluster.

Hazelcast initiates a quorum when a change happens on the member list.

NOTE: Currently, cluster quorum only applies to the Map, Transactional Map and Cache; support for other
data structures will be added soon. Also, lock methods in the IMap interface do not participate in a quorum.

348 CHAPTER 18. MANAGEMENT

18.4.8.1 Configuring a Cluster Quorum

You can set up Cluster Quorum using either declarative or programmatic configuration.

Assume that you have a 5-member Hazelcast Cluster and you want to set the minimum number of 3 members for
the cluster to continue operating. The following examples are configurations for this scenario.

Declarative:

<hazelcast>
....
<quorum name="quorumRuleWithThreeMembers" enabled="true">
<quorum-size>3</quorum-size>

</quorum>

<map name="default">
<quorum-ref>quorumRuleWithThreeNodes</quorum-ref>
</map>
....
</hazelcast>

Programmatic:

QuorumConfig quorumConfig = new QuorumConfig();
quorumConfig.setName("quorumRuleWithThreeNodes")
quorumConfig.setEnabled(true);
quorumConfig.setSize(3);

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName("quorumRuleWithThreeNodes");

Config config = new Config();
config.addQuorumConfig(quorumConfig);
config.addMapConfig(mapConfig);

Quorum configuration has the following elements.

• quorum-size: Minimum number of members required in a cluster for the cluster to remain in an operational
state. If the number of members is below the defined minimum at any time, the operations are rejected and
the rejected operations return a QuorumException to their callers.

• quorum-type: Type of the cluster quorum. Available values are READ, WRITE and READ_WRITE.

18.4.8.2 Configuring Quorum Listeners

You can register quorum listeners to be notified about quorum results. Quorum listeners are local to the member
where they are registered, so they receive only events that occurred on that local member.

Quorum listeners can be configured via declarative or programmatic configuration. The following examples are
such configurations.

Declarative:

<hazelcast>
....
<quorum name="quorumRuleWithThreeMembers" enabled="true">
<quorum-size>3</quorum-size>
<quorum-listeners>
<quorum-listener>com.company.quorum.ThreeMemberQuorumListener</quorum-listener>

18.4. CLUSTER UTILITIES 349

</quorum-listeners>
</quorum>

<map name="default">
<quorum-ref>quorumRuleWithThreeMembers</quorum-ref>

</map>
....
</hazelcast>

Programmatic:

QuorumListenerConfig listenerConfig = new QuorumListenerConfig();
// You can either directly set quorum listener implementation of your own
listenerConfig.setImplementation(new QuorumListener() {

@Override
public void onChange(QuorumEvent quorumEvent) {
if (QuorumResult.PRESENT.equals(quorumEvent.getType())) {

// handle quorum presence
} else if (QuorumResult.ABSENT.equals(quorumEvent.getType())) {

// handle quorum absence
}

}
});

// Or you can give the name of the class that implements QuorumListener interface.
listenerConfig.setClassName("com.company.quorum.ThreeMemberQuorumListener");

QuorumConfig quorumConfig = new QuorumConfig();
quorumConfig.setName("quorumRuleWithThreeMembers")
quorumConfig.setEnabled(true);
quorumConfig.setSize(3);
quorumConfig.addListenerConfig(listenerConfig);

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName("quorumRuleWithThreeMembers");

Config config = new Config();
config.addQuorumConfig(quorumConfig);
config.addMapConfig(mapConfig);

18.4.8.3 Querying Quorum Results

Quorum service gives you the ability to query quorum results over the Quorum instances. Quorum instances let you
query the quorum result of a particular quorum.

Here is a Quorum interface that you can interact with.

/**
* {@link Quorum} provides access to the current status of a quorum.
*/
public interface Quorum {

/**
* Returns true if quorum is present, false if absent.
*
* @return boolean presence of the quorum
*/

boolean isPresent();
}

350 CHAPTER 18. MANAGEMENT

You can retrieve the quorum instance for a particular quorum over the quorum service, as in the following example.

String quorumName = "at-least-one-storage-member";
QuorumConfig quorumConfig = new QuorumConfig();
quorumConfig.setName(quorumName)
quorumConfig.setEnabled(true);

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName(quorumName);

Config config = new Config();
config.addQuorumConfig(quorumConfig);
config.addMapConfig(mapConfig);

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
QuorumService quorumService = hazelcastInstance.getQuorumService();
Quorum quorum = quorumService.getQuorum(quorumName);

boolean quorumPresence = quorum.isPresent();

18.5 Management Center

Hazelcast Management Center enables you to monitor and manage your cluster members running Hazelcast. In
addition to monitoring overall state of your clusters, you can also analyze and browse your data structures in detail,
update map configurations and take thread dumps from members. With its scripting and console module, you can
run scripts (JavaScript, Groovy, etc.) and commands on your members.

18.5.1 Installing Management Center

You have two options for installing Hazelcast Management Center: - deploy the mancenter-version.war application
into your Java application server/container, - or start Hazelcast Management Center from the command line and
then have the Hazelcast cluster members communicate with that web application. This means that your members
should know the URL of the mancenter application before they start.

Here are the steps.

• Download the latest Hazelcast ZIP from hazelcast.org. The ZIP contains the mancenter-version.war file.
• You can directly start mancenter-version.war file from the command line. The following command will start

Hazelcast Management Center on port 8080 with context root ‘mancenter’ (http://localhost:8080/mancenter).

java -jar mancenter-*version*.war 8080 mancenter

• Or, instead of starting at the command line, you can deploy it to your web server (Tomcat, Jetty, etc.). Let
us say it is running at http://localhost:8080/mancenter.

• After you perform the above steps, make sure that http://localhost:8080/mancenter is up.
• Configure your Hazelcast members by adding the URL of your web application to your hazelcast.xml.
Hazelcast members will send their states to this URL.

<management-center enabled="true">
http://localhost:8080/mancenter

</management-center>

• You can also set a frequency (in seconds) for which Management Center will take information from the
Hazelcast cluster, using the element update-interval as shown below. update-interval is optional and its
default value is 3 seconds.

18.5. MANAGEMENT CENTER 351

<management-center enabled="true" update-interval="3">http://localhost:8080/
mancenter</management-center>

• Start your Hazelcast cluster.
• Browse to http://localhost:8080/mancenter and setup your administrator account explained in the next
section.

18.5.2 Getting Started to Management Center

If you have the open source edition of Hazelcast, Management Center can be used for at most 2 members in the
cluster. To use it for more members, you need to have either a Management Center license, Hazelcast Enterprise
license or Hazelcast Enterprise HD license. This license should be entered within the Management Center as
described in the following paragraphs.

NOTE: Even if you have a Hazelcast Enterprise or Enterprise HD license key and you set it as explained in
the Setting the License Key section, you still need to enter this same license within the Management Center. Please
see the following paragraphs to learn how you can enter your license.

Once you browse to http://localhost:8080/mancenter and since you are going to use Management Center for
the first time, the following dialog box appears.

NOTE: If you already created an administrator account before, a login dialog box appears instead.

It asks you to create a username and password and give a valid e-mail address of yours. Once you press the Sign
Up button, your administrator account credentials are created and the following dialog box appears.

“Select Cluster to Connect” dialog box lists the clusters that send statistics to Management Center. You can either
select a cluster to connect using the Connect button or enter your Management Center license key using the
Enter License button. Management Center can be used without a license if the cluster that you want to monitor
has at most 2 members.

If you have a Management Center license or Hazelcast Enterprise license, you can enter it in the dialog box that
appears once you press the Enter License button, as shown below.

When you try to connect to a cluster that has more than 2 members without entering a license key or if your license
key is expired, the following dialog box appears.

Here, you can either choose to connect to a cluster without providing a license key or to enter your license key. If
you choose to continue without a license, Management Center still continues to function but you will only be able
to monitor up to 2 members of your cluster.

Management Center creates a folder with the name mancenter under your user/home folder to save data files and
above settings/license information. You can change the data folder by setting the hazelcast.mancenter.home
system property. Please see the System Properties section to see the description of this property and to learn how
to set a system property.

RELATED INFORMATION

Please refer to the Management Center Configuration section for a full description of Hazelcast Management Center
configuration.

18.5.3 Management Center Tools

Once the page is loaded after selecting a cluster, the tool’s home page appears as shown below.

This page provides the fundamental properties of the selected cluster which are explained in the Home Page section.
The page has a toolbar on the top and a menu on the left.

352 CHAPTER 18. MANAGEMENT

18.5.3.1 Toolbar

The toolbar has the following buttons:

• Home: Loads the home page shown above. Please see the Management Center Home Page section.

• Scripting: Loads the page used to write and execute the user‘s own scripts on the cluster. Please see the
Scripting section.

• Console: Loads the page used to execute commands on the cluster. Please see the Console section.

• Alerts: Creates alerts by specifying filters. Please see the Setting Alerts section.

• Documentation: Opens the Management Center documentation in a window inside the tool. Please see the
Documentation section.

• Administration: Used by the admin users to manage users in the system. Please see the Administering
Management Center section.

• Logout: Closes the current user’s session.

• Hot Restart: Used by the admin users to manage cluster state. Please see the Hot Restart section.

• Time Travel: Sees the cluster’s situation at a time in the past. Please see the Time Travel section.

• Cluster Selector: Switches between clusters. When the mouse is moved onto this item, a drop down list of
clusters appears.
The user can select any cluster and once selected, the page immediately loads with the selected cluster’s
information.

NOTE: Some of the above listed toolbar items are not visible to users who are not admin or who have
read-only permission. Also, some of the operations explained in the later sections cannot be performed by users
with read-only permission. Please see the Administering Management Center section for details.

18.5. MANAGEMENT CENTER 353

18.5.3.2 Menu

The Home Page includes a menu on the left which lists the distributed data structures in the cluster and all the
cluster members, as shown below.

NOTE: Distributed data structures will be shown there when the proxies are created for them.

NOTE: WAN Replication tab is only visible with Hazelcast Enterprise license.

You can expand and collapse menu items by clicking on them. Below is the list of menu items with links to their
explanations.

• Caches

354 CHAPTER 18. MANAGEMENT

• Maps
• Replicated Maps
• Queues
• Topics
• MultiMaps
• Executors
• WAN
• Members

18.5.3.3 Tabbed View

Each time you select an item from the toolbar or menu, the item is added to the main view as a tab, as shown
below.

In the above example, Home, Scripting, Console, queue1 and map1 windows can be seen as tabs. Windows can be
closed using the icon on each tab (except the Home Page; it cannot be closed).

18.5.4 Management Center Home Page

This is the first page appearing after logging in. It gives an overview of the connected cluster. The following
subsections describe each portion of the page.

18.5.4.1 CPU Utilization

This part of the page provides load and utilization information for the CPUs for each node (cluster member), as
shown below.

The first column lists the nodes with their IPs and ports. The next columns list the system load averages on each
node for the last 1, 5 and 15 minutes. These average values are calculated as the sum of the count of runnable
entities running on and queued to the available CPUs averaged over the last 1, 5 and 15 minutes. This calculation

18.5. MANAGEMENT CENTER 355

is operating system specific, typically a damped time-dependent average. If system load average is not available,
these columns show negative values.
The last column (Chart) graphically shows the recent load on the CPUs. When you move the mouse cursor on a
chart, you can see the CPU load at the time where the cursor is placed. Charts under this column shows the CPU
loads approximately for the last 2 minutes. If recent CPU load is not available, you will see a negative value.

18.5.4.2 Memory Utilization

This part of the page provides information related to memory usages for each node (cluster member), as shown
below.

The first column lists the nodes with their IPs and ports. The next columns show the used and free memories
out of the total memory reserved for Hazelcast usage, in real-time. The Max column lists the maximum memory
capacity of each node and the Percent column lists the percentage value of used memory out of the maximum
memory. The last column (Chart) shows the memory usage of nodes graphically. When you move the mouse
cursor on a desired graph, you can see the memory usage at the time where the cursor is placed. Graphs under this
column shows the memory usages approximately for the last 2 minutes.

18.5.4.3 Memory Distribution

This part of the page graphically provides the cluster wise breakdown of memory, as shown below. The blue area
is the memory used by maps. The dark yellow area is the memory used by both non-Hazelcast entities and all
Hazelcast entities except the map (i.e. the memory used by all entities subtracted by the memory used by map).
The green area is the free memory out of the whole cluster‘s memory capacity.

In the above example, you can see 0.32% of the total memory is used by Hazelcast maps (it can be seen by placing
the mouse cursor on it), 58.75% is used by non-Hazelcast entities and 40.85% of the total memory is free.

18.5.4.4 Map Memory Distribution

This part is the breakdown of the blue area shown in the Memory Distribution graph explained above. It
provides the percentage values of the memories used by each map, out of the total cluster memory reserved for all
Hazelcast maps.
In the above example, you can see 49.55% of the total map memory is used by map1 and 49.55% is used by map2.

356 CHAPTER 18. MANAGEMENT

18.5.4.5 Partition Distribution

This pie chart shows what percentage of partitions each node (cluster member) has, as shown below.

You can see each node’s partition percentages by placing the mouse cursor on the chart. In the above example, you
can see the node “127.0.0.1:5708” has 5.64% of the total partition count (which is 271 by default and configurable,
please see the hazelcast.partition.count property explained in the System Properties section).

18.5.5 Monitoring Caches

You can monitor your caches’ metrics by clicking the cache name listed on the left panel under Caches menu item.
A new tab for monitoring that cache instance is opened on the right, as shown below.

On top of the page, four charts monitor the Gets, Puts, Removals and Evictions in real-time. The X-axis of all

the charts show the current system time. To open a chart as a separate dialog, click on the button placed at
the top right of each chart.

18.5. MANAGEMENT CENTER 357

Under these charts is the Cache Statistics Data Table. From left to right, this table lists the IP addresses and ports
of each member, and the get, put, removal, eviction, and hit and miss counts per second in real-time.

You can navigate through the pages using the buttons at the bottom right of the table (First, Previous, Next,
Last). You can ascend or descend the order of the listings in each column by clicking on column headings.

NOTE: You need to enable the statistics for caches to monitor them in the Management Center. Use the
<statistics-enabled> element or setStatisticsEnabled() method in declarative or programmatic configuration,
respectively, to enable the statistics. Please refer to the JCache Declarative Configuration section for more
information.

18.5.6 Managing Maps

Map instances are listed under the Maps menu item on the left. When you click on a map, a new tab for monitoring
that map instance opens on the right, as shown below. In this tab, you can monitor metrics and also re-configure
the selected map.

The below subsections explain the portions of this window.

18.5.6.1 Map Browser

Use the Map Browser tool to retrieve properties of the entries stored in the selected map. To open the Map Browser
tool, click on the Map Browser button, located at the top right of the window. Once opened, the tool appears as
a dialog, as shown below.

Once the key and the key’s type are specified and the Browse button is clicked, the key’s properties along with its
value are listed.

18.5.6.2 Map Config

Use the Map Config tool to set the selected map’s attributes, such as the backup count, TTL, and eviction policy.
To open the Map Config tool, click on the Map Config button, located at the top right of the window. Once
opened, the tool appears as a dialog, as shown below.

You can change any attribute and click the Update button to save your changes.

358 CHAPTER 18. MANAGEMENT

18.5. MANAGEMENT CENTER 359

18.5.6.3 Map Monitoring

Besides the Map Browser and Map Config tools, the map monitoring page has monitoring options that are explained
below. All of these options perform real-time monitoring.

On top of the page, small charts monitor the size, throughput, memory usage, backup size, etc. of the selected map
in real-time. The X-axis of all the charts show the current system time. You can select other small monitoring
charts using the button at the top right of each chart. When you click the button, the monitoring options are
listed, as shown below.

When you click on a desired monitoring, the chart is loaded with the selected option. To open a chart as a separate

dialog, click on the button placed at the top right of each chart. The monitoring charts below are available:

• Size: Monitors the size of the map. Y-axis is the entry count (should be multiplied by 1000).
• Throughput: Monitors get, put and remove operations performed on the map. Y-axis is the operation
count.

• Memory: Monitors the memory usage on the map. Y-axis is the memory count.
• Backups: Chart loaded when “Backup Size” is selected. Monitors the size of the backups in the map. Y-axis
is the backup entry count (should be multiplied by 1000).

• Backup Memory: Chart loaded when “Backup Mem.” is selected. Monitors the memory usage of the
backups. Y-axis is the memory count.

• Hits: Monitors the hit count of the map.
• Puts/s, Gets/s, Removes/s: These three charts monitor the put, get and remove operations (per second)
performed on the selected map.

Under these charts are Map Memory and Map Throughput data tables. The Map Memory data table provides
memory metrics distributed over members, as shown below.

From left to right, this table lists the IP address and port, entry counts, memory used by entries, backup entry
counts, memory used by backup entries, events, hits, locks and dirty entries (in the cases where MapStore is enabled,
these are the entries that are put to/removed from the map but not written to/removed from a database yet) of
each entry in the map. You can navigate through the pages using the buttons at the bottom right of the table
(First, Previous, Next, Last). You can ascend or descend the order of the listings by clicking on the column
headings.

Map Throughput data table provides information about the operations (get, put, remove) performed on each
member in the map, as shown below.

From left to right, this table lists:

360 CHAPTER 18. MANAGEMENT

• the IP address and port of each member,
• the put, get and remove operations on each member,
• the average put, get, remove latencies,
• and the maximum put, get, remove latencies on each member.

You can select the period in the combo box placed at the top right corner of the window, for which the table data
will be shown. Available values are Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.
You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). To ascend or descent the order of the listings, click on the column headings.

18.5.7 Monitoring Replicated Maps

Replicated Map instances are shown under the Replicated Maps menu item on the left. When you click on a
Replicated Map, a new tab for monitoring that instance opens on the right, as shown below.

In this tab, you can monitor metrics and also re-configure the selected Replicated Map. All of the statistics are
real-time monitoring statistics.

When you click on a desired monitoring, the chart is loaded with the selected option. Also you can open the chart
in new window.

• Size: Monitors the size of the Replicated Map. Y-axis is the entry count (should be multiplied by 1000).
• Throughput: Monitors get, put and remove operations performed on the Replicated Map. Y-axis is the
operation count.

• Memory: Monitors the memory usage on the Replicated Map. Y-axis is the memory count.
• Hits: Monitors the hit count of the Replicated Map.
• Puts/s, Gets/s, Removes/s: These three charts monitor the put, get and remove operations (per second)

performed on the selected Replicated Map, the average put, get, remove latencies, and the maximum put, get,
remove latencies on each member.

18.5. MANAGEMENT CENTER 361

The Replicated Map Throughput Data Table provides information about operations (get, put, remove) performed
on each member in the selected Replicated Map.

From left to right, this table lists:

• the IP address and port of each member,
• the put, get, and remove operations on each member,
• the average put, get, and remove latencies,
• and the maximum put, get, and remove latencies on each member.

You can select the period from the combo box placed at the top right corner of the window, in which the table data
is shown. Available values are Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). To ascend or descent the order of the listings, click on the column headings.

18.5.8 Monitoring Queues

Using the menu item Queues, you can monitor your queues data structure. When you expand this menu item and
click on a queue, a new tab for monitoring that queue instance is opened on the right, as shown below.

362 CHAPTER 18. MANAGEMENT

18.5. MANAGEMENT CENTER 363

On top of the page, small charts monitor the size, offers and polls of the selected queue in real-time. The X-axis of

all the charts shows the current system time. To open a chart as a separate dialog, click on the button placed
at the top right of each chart. The monitoring charts below are available:

• Size: Monitors the size of the queue. Y-axis is the entry count (should be multiplied by 1000).
• Offers: Monitors the offers sent to the selected queue. Y-axis is the offer count.
• Polls: Monitors the polls sent to the selected queue. Y-axis is the poll count.

Under these charts are Queue Statistics and Queue Operation Statistics tables. The Queue Statistics table
provides item and backup item counts in the queue and age statistics of items and backup items at each member,
as shown below.

From left to right, this table lists the IP address and port, items and backup items on the queue of each member,
and maximum, minimum and average age of items in the queue. You can navigate through the pages using the
buttons placed at the bottom right of the table (First, Previous, Next, Last). The order of the listings in each
column can be ascended or descended by clicking on column headings.

Queue Operations Statistics table provides information about the operations (offers, polls, events) performed on
the queues, as shown below.

From left to right, this table lists the IP address and port of each member, and counts of offers, rejected offers,
polls, poll misses and events.

You can select the period in the combo box placed at the top right corner of the window to show the table data.
Available values are Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). Click on the column headings to ascend or descend the order of the listings.

364 CHAPTER 18. MANAGEMENT

18.5.9 Monitoring Topics

To monitor your topics’ metrics, click the topic name listed on the left panel under the Topics menu item. A new
tab for monitoring that topic instance opens on the right, as shown below.

On top of the page, two charts monitor the Publishes and Receives in real-time. They show the published and
received message counts of the cluster, the members of which are subscribed to the selected topic. The X-axis of

both charts show the current system time. To open a chart as a separate dialog, click on the button placed at
the top right of each chart.

Under these charts is the Topic Operation Statistics table. From left to right, this table lists the IP addresses and
ports of each member, and counts of message published and receives per second in real-time. You can select the
period in the combo box placed at top right corner of the table to show the table data. The available values are
Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). Click on the column heading to ascend or descend the order of the listings.

18.5.10 Monitoring MultiMaps

MultiMap is a specialized map where you can associate a key with multiple values. This monitoring option is
similar to the Maps option: the same monitoring charts and data tables monitor MultiMaps. The differences are
that you cannot browse the MultiMaps and re-configure it. Please see Managing Maps.

18.5.11 Monitoring Executors

Executor instances are listed under the Executors menu item on the left. When you click on a executor, a new
tab for monitoring that executor instance opens on the right, as shown below.

On top of the page, small charts monitor the pending, started, completed, etc. executors in real-time. The X-axis
of all the charts shows the current system time. You can select other small monitoring charts using the button
placed at the top right of each chart. Click the button to list the monitoring options, as shown below.

When you click on a desired monitoring, the chart loads with the selected option. To open a chart as a separate

dialog, click on the button placed at top right of each chart. The below monitoring charts are available:

• Pending: Monitors the pending executors. Y-axis is the executor count.
• Started: Monitors the started executors. Y-axis is the executor count.
• Start Lat. (msec.): Shows the latency when executors are started. Y-axis is the duration in milliseconds.
• Completed: Monitors the completed executors. Y-axis is the executor count.
• Comp. Time (msec.): Shows the completion period of executors. Y-axis is the duration in milliseconds.

18.5. MANAGEMENT CENTER 365

366 CHAPTER 18. MANAGEMENT

Under these charts is the Executor Operation Statistics table, as shown below.

From left to right, this table lists the IP address and port of members, the counts of pending, started and completed
executors per second, and the execution time and average start latency of executors on each member. You can
navigate through the pages using the buttons placed at the bottom right of the table (First, Previous, Next,
Last). Click on the column heading to ascend or descend the order of the listings.

18.5.12 Monitoring WAN Replication

WAN Replication schemes are listed under the WAN menu item on the left. When you click on a scheme, a new
tab for monitoring the targets which that scheme has appears on the right, as shown below.

In this tab, you see WAN Replication Operations Table for each target which belongs to this scheme. One of
the example tables is shown below.

• Connected: Status of the member connection to the target.
• Outbound Recs (sec): Average number of records sent to target per second from this member.
• Outbound Lat (ms): Average latency of sending a record to the target from this member.
• Outbound Queue: Number of records waiting in the queue to be sent to the target.
• Action: Stops/Resumes replication of this member’s records.

18.5.13 Monitoring Members

Use this menu item to monitor each cluster member and perform operations like running garbage collection (GC)
and taking a thread dump. Once you select a member from the menu, a new tab for monitoring that member opens
on the right, as shown below.

The CPU Utilization chart shows the percentage of CPU usage on the selected member. The Memory
Utilization chart shows the memory usage on the selected member with three different metrics (maximum, used
and total memory). You can open both of these charts as separate windows using the button placed at top
right of each chart; this gives you a clearer view of the chart.

The window titled Partitions shows which partitions are assigned to the selected member. Runtime is a
dynamically updated window tab showing the processor number, the start and up times, and the maximum, total
and free memory sizes of the selected member. These values are collected from the default MXBeans provided by
the Java Virtual Machine (JVM). Descriptions from the Javadocs and some explanations are below:

18.5. MANAGEMENT CENTER 367

• Number of Processors: Number of processors available to the member (JVM).

• Start Time: Start time of the member (JVM) in milliseconds.

• Up Time: Uptime of the member (JVM) in milliseconds

• Maximum Memory: Maximum amount of memory that the member (JVM) will attempt to use.

• Free Memory: Amount of free memory in the member (JVM).

• Used Heap Memory: Amount of used memory in bytes.

• Max Heap Memory: Maximum amount of memory in bytes that can be used for memory management.

• Used Non-Heap Memory: Amount of used memory in bytes.

• Max Non-Heap Memory: Maximum amount of memory in bytes that can be used for memory management.

• Total Loaded Classes: Total number of classes that have been loaded since the member (JVM) has started
execution.

• Current Loaded Classes: Number of classes that are currently loaded in the member (JVM).

• Total Unloaded Classes: Total number of classes unloaded since the member (JVM) has started execution.

• Total Thread Count: Total number of threads created and also started since the member (JVM) started.

• Active Thread Count: Current number of live threads including both daemon and non-daemon threads.

• Peak Thread Count: Peak live thread count since the member (JVM) started or peak was reset.

• Daemon Thread Count: Current number of live daemon threads.

• OS: Free Physical Memory: Amount of free physical memory in bytes.

• OS: Committed Virtual Memory: Amount of virtual memory that is guaranteed to be available to the
running process in bytes.

• OS: Total Physical Memory: Total amount of physical memory in bytes.

368 CHAPTER 18. MANAGEMENT

• OS: Free Swap Space: Amount of free swap space in bytes. Swap space is used when the amount of
physical memory (RAM) is full. If the system needs more memory resources and the RAM is full, inactive
pages in memory are moved to the swap space.

• OS: Total Swap Space: Total amount of swap space in bytes.

• OS: Maximum File Descriptor Count: Maximum number of file descriptors. File descriptor is an integer
number that uniquely represents an opened file in the operating system.

• OS: Open File Descriptor Count: Number of open file descriptors.

• OS: Process CPU Time: CPU time used by the process on which the member (JVM) is running in
nanoseconds.

• OS: Process CPU Load: Recent CPU usage for the member (JVM) process. This is a double with a value
from 0.0 to 1.0. A value of 0.0 means that none of the CPUs were running threads from the member (JVM)
process during the recent period of time observed, while a value of 1.0 means that all CPUs were actively
running threads from the member (JVM) 100% of the time during the recent period being observed. Threads
from the member (JVM) include the application threads as well as the member (JVM) internal threads.

• OS: System Load Average: System load average for the last minute. The system load average is the
average over a period of time of this sum: (the number of runnable entities queued to the available processors)
+ (the number of runnable entities running on the available processors). The way in which the load average is
calculated is operating system specific but it is typically a damped time-dependent average.

• OS: System CPU Load: Recent CPU usage for the whole system. This is a double with a value from 0.0
to 1.0. A value of 0.0 means that all CPUs were idle during the recent period of time observed, while a value
of 1.0 means that all CPUs were actively running 100% of the time during the recent period being observed.

NOTE: These descriptions may vary according to the JVM version or vendor.

Next to the Runtime tab, the Properties tab shows the system properties. The Member Configuration
window shows the XML configuration of the connected Hazelcast cluster.

The List of Slow Operations gives an overview of detected slow operations which occurred on that member.
The data is collected by the SlowOperationDetector.

Click on an entry to open a dialog which shows the stacktrace and detailed information about each slow invocation
of this operation.

Besides the aforementioned monitoring charts and windows, you can also perform operations on the selected member
through this page. The operation buttons are located at the top right of the page, as explained below:

• Run GC: Press this button to execute garbage collection on the selected member. A notification stating
that the GC execution was successful will be shown.

• Thread Dump: Press this button to take a thread dump of the selected member and show it as a separate
dialog to the user.

• Shutdown Node: Press this button to shutdown the selected member.

18.5. MANAGEMENT CENTER 369

370 CHAPTER 18. MANAGEMENT

18.5.14 Scripting

You can use the scripting feature of this tool to execute codes on the cluster. To open this feature as a tab, select
Scripting located at the toolbar on top. Once selected, the scripting feature opens as shown below.

In this window, the Scripting part is the actual coding editor. You can select the members on which the code
will execute from the Members list shown at the right side of the window. Below the members list, a combo
box enables you to select a scripting language: currently, JavaScript, Ruby, Groovy and Python languages are
supported. After you write your script and press the Execute button, you can see the execution result in the
Result part of the window.

NOTE: To use the scripting languages other than JavaScript on a member, the libraries for those languages
should be placed in the classpath of that member.

There are Save and Delete buttons on the top right of the scripting editor. To save your scripts, press the Save
button after you type a name for your script into the field next to this button. The scripts you saved are listed in
the Saved Scripts part of the window, located at the bottom right of the page. Click on a saved script from this
list to execute or edit it. If you want to remove a script that you wrote and saved before, select it from this list and
press the Delete button.

In the scripting engine you have a HazelcastInstance bonded to a variable named hazelcast. You can invoke
any method that HazelcastInstance has via the hazelcast variable. You can see example usage for JavaScript
below.

var name = hazelcast.getName();
var node = hazelcast.getCluster().getLocalMember();
var employees = hazelcast.getMap("employees");
employees.put("1","John Doe");
employees.get("1"); // will return "John Doe"

18.5. MANAGEMENT CENTER 371

18.5.15 Executing Console Commands

The Management Center has a console feature that enables you to execute commands on the cluster. For example,
you can perform puts and gets on a map, after you set the namespace with the command ns <name of your
map>. The same is valid for queues, topics, etc. To execute your command, type it into the field below the console
and press Enter. Type help to see all the commands that you can use.

Open a console window by clicking on the Console button located on the toolbar. Below is a sample view with
some executed commands.

18.5.16 Creating Alerts

You can use the alerts feature of this tool to receive alerts and/or e-mail notifications by creating filters. In these
filters, you can specify criteria for cluster members or data structures. When the specified criteria are met for a
filter, the related alert is shown as a pop-up message on the top right of the page or sent as an e-mail.

Once you click the Alerts button located on the toolbar, the page shown below appears.

If you want to enable the Management Center to send e-mail notifications to the Management Center Admin users,
you need to configure the SMTP server. To do this, click on the Create STMP Config shown above. The form
shown below appears.

In this form, specify the e-mail address from which the notifications will be sent and also its password. Then,
provide the SMTP server host address and port. Finally, check the TLS Connection checkbox if the connection
is secured by TLS (Transport Layer Security).

After you provide the required information, click on the Save Config button. After a processing period (for a
couple of seconds), the form will be closed if the configuration is created successfully. In this case, an e-mail will be
sent to the e-mail address you provided in the form stating that the SMTP configuration is successful and e-mail
alert system is created.

If not, you will see an error message at the bottom of this form as shown below.

372 CHAPTER 18. MANAGEMENT

18.5. MANAGEMENT CENTER 373

374 CHAPTER 18. MANAGEMENT

As you can see, the reasons can be wrong SMTP configuration or connectivity problems. In this case, please check
the form fields and check for any causes for the connections issues with your server.

Creating Filters for Cluster Members

Select Member Alerts check box to create filters for some or all members in the cluster. Once selected, the next
screen asks for which members the alert will be created. Select the desired members and click on the Next button.
On the next page (shown below), specify the criteria.

You can create alerts when:

• free memory on the selected member nodes is less than the specified number.
• used heap memory is larger than the specified number.
• the number of active threads are less than the specified count.
• the number of daemon threads are larger than the specified count.

When two or more criteria is specified they will be bound with the logical operator AND.

On the next page, give a name for the filter. Then, select whether notification e-mails will be sent to the Management
Center Admins using the Send Email Alert checkbox. Then, provide a time interval (in seconds) for which
the e-mails with the same notification content will be sent using the Email Interval (secs) field. Finally,
select whether the alert data will be written to the disk (if checked, you can see the alert log at the folder
/users//mancenter).

Click on the Save button; your filter will be saved and put into the Filters part of the page. To edit the filter,

click on the icon. To delete it, click on the icon.

Creating Filters for Data Types

Select the Data Type Alerts check box to create filters for data structures. The next screen asks for which data
structure (maps, queues, multimaps, executors) the alert will be created. Once a structure is selected, the next
screen immediately loads and you then select the data structure instances (i.e. if you selected Maps, it will list all
the maps defined in the cluster, you can select one map or more). Select as desired, click on the Next button, and
select the members on which the selected data structure instances will run.

The next screen, as shown below, is the one where you specify the criteria for the selected data structure.

As the screen shown above shows, you will select an item from the left combo box, select the operator in the middle
one, specify a value in the input field, and click on the Add button. You can create more than one criteria in this
page; those will be bound by the logical operator AND.

18.5. MANAGEMENT CENTER 375

After you specify the criteria, click the Next button. On the next page, give a name for the filter. Then, select
whether notification e-mails will be sent to the Management Center Admins using the Send Email Alert checkbox.
Then, provide a time interval (in seconds) for which the e-mails with the same notification content will be sent
using the Email Interval (secs) field. Finally, select whether the alert data will be written to the disk (if checked,
you can see the alert log at the folder /users//mancenter).

Click on the Save button; your filter will be saved and put into the Filters part of the page. To edit the filter,

click on the icon. To delete it, click on the icon.

18.5.17 Administering Management Center

NOTE: This toolbar item is available only to admin users.

The Admin user can add, edit, and remove users and specify the permissions for the users of Management Center.
To perform these operations, click on the Administration button located on the toolbar. The page below appears.

To add a user to the system, specify the username, e-mail and password in the Add/Edit User part of the page.
If the user to be added will have administrator privileges, select isAdmin checkbox. Permissions checkboxes
have two values:

376 CHAPTER 18. MANAGEMENT

• Read Only: If this permission is given to the user, only Home, Documentation and Time Travel items
will be visible at the toolbar at that user’s session. Also, users with this permission cannot update a map
configuration, run a garbage collection and take a thread dump on a cluster member, or shutdown a member
(please see Monitoring Members).

• Read/Write: If this permission is given to the user, Home, Scripting, Console, Documentation and Time
Travel items will be visible. The users with this permission can update a map configuration and perform
operations on the members.

After you enter/select all fields, click Save button to create the user. You will see the newly created user’s username
on the left side, in the Users part of the page.

To edit or delete a user, select a username listed in the Users. Selected user information appears on the right side
of the page. To update the user information, change the fields as desired and click the Save button. To delete the
user from the system, click the Delete button.

18.5.18 Hot Restart

NOTE: This toolbar item is available only to admin users.

The admin user can see and change the cluster state, shut down the cluster, and force start the cluster using the
operations listed in this screen as shown below.

Cluster States

• Active: Cluster will continue to operate without any restriction. All operations are allowed. This is the
default state of a cluster.

• Frozen: New members are not allowed to join, except the members left in this state or Passive state. All
other operations except migrations are allowed and will operate without any restriction.

• Passive: New members are not allowed to join, except the members left in this state or Frozen state. All
operations, except the ones marked with AllowedDuringPassiveState, will be rejected immediately.

• In Transition: Shows that the cluster state is in transition. This is a temporary and intermediate state. It
is not allowed to set it explicitly.

Changing Cluster State

18.5. MANAGEMENT CENTER 377

• Click the dropdown menu and choose the state to which you want your cluster to change. A pop-up will
appear and stay on the screen until the state is successfully changed.

Shutting Down the Cluster

• Click the Shutdown button. A pop-up will appear and stay on screen until the cluster is successfully
shutdown.

If an exception occurs during the state change or shutdown operation on the cluster, this exception message will be
shown on the screen as a notification.

Force Start the Cluster

Restart process cannot be completed if a node crashes permanently and cannot recover from the failure since it
cannot start or it fails to load its own data. In that case, you can force the cluster to clean its persisted data and
make a fresh start. This process is called force start.

Click the Force Start button. A pop-up will appear and stay on screen until the operation is triggered.

378 CHAPTER 18. MANAGEMENT

18.5. MANAGEMENT CENTER 379

If an exception occurs, this exception message will be showed on the screen as a notification.

NOTE: The operations explained in this section (Hot Restart) can also be performed using REST API and
the script cluster.sh. Please refer to the Using REST API for Cluster Management section and Using the Script
cluster.sh section.

18.5.19 Checking Past Status with Time Travel

Use the Time Travel toolbar item to check the status of the cluster at a time in the past. When you select it on the
toolbar, a small window appears on top of the page, as shown below.

To see the cluster status in a past time, you should first enable the Time Travel. Click on the area where it says
OFF (on the right of Time Travel window). It will turn to ON after it asks whether to enable the Time Travel
with a dialog: click on Enable in the dialog to enable the Time Travel.

Once it is ON, the status of your cluster will be stored on your disk as long as your web server is alive.

You can go back in time using the slider and/or calendar and check your cluster’s situation at the selected time.
All data structures and members can be monitored as if you are using the management center normally (charts and
data tables for each data structure and members). Using the arrow buttons placed at both sides of the slider, you
can go back or further with steps of 5 seconds. It will show status if Time Travel has been ON at the selected time
in past; otherwise, all the charts and tables will be shown as empty.

The historical data collected with Time Travel feature are stored in a file database on the disk. These files can
be found in the folder <User’s Home Directory>/mancenter<Hazelcast version>, e.g. /home/mancenter3.5.
This folder can be changed using the hazelcast.mancenter.home property on the server where Management
Center is running.

Time travel data files are created monthly. Their file name format is [group-name]-[year][month].db and
[group-name]-[year][month].lg. Time travel data is kept in the *.db files. The files with the extension lg are
temporary files created internally and you do not have to worry about them.

Management Center has no automatic way of removing or archiving old time travel data files. They remain in the
aforementioned folder until you delete or archive them.

18.5.20 Management Center Documentation

To see the documentation, click on the Documentation button located at the toolbar. Management Center
manual will appear as a tab.

18.5.21 Suggested Heap Size

For 2 Nodes (Cluster Members)

Mancenter Heap Size # of Maps # of Queues # of Topics

256m 3k 1k 1k
1024m 10k 1k 1k

380 CHAPTER 18. MANAGEMENT

For 10 Nodes

Mancenter Heap Size # of Maps # of Queues # of Topics

256m 50 30 30
1024m 2k 1k 1k

For 20 Nodes

Mancenter Heap Size | # of Maps | # of Queues | # of Topics |
——– | ——— | ———- | ———— |
256m* | N/A | N/A | N/A |
1024m | 1k | 1k | 1k |

* With 256m heap, management center is unable to collect statistics.

18.6 Clustered JMX via Management Center

Hazelcast Enterprise

Clustered JMX via Management Center allows you to monitor clustered statistics of distributed objects from a
JMX interface.

18.6.1 Configuring Clustered JMX

In order to configure Clustered JMX, use two command line parameters for your Management Center deployment.

• -Dhazelcast.mc.jmx.enabled=true (default is false)
• -Dhazelcast.mc.jmx.port=9000 (optional, default is 9999)

With embedded Jetty, you do not need to deploy your Management Center application to any container or
application server.

You can start Management Center application with Clustered JMX enabled as shown below.

java -Dhazelcast.mc.jmx.enabled=true -Dhazelcast.mc.jmx.port=9999 -jar mancenter-3.3.jar

Once Management Center starts, you should see a log similar to below.

INFO: Management Center 3.3
Jun 05, 2014 11:55:32 AM com.hazelcast.webmonitor.service.jmx.impl.JMXService
INFO: Starting Management Center JMX Service on port :9999

You should be able to connect to Clustered JMX interface from the address localhost:9999.

You can use jconsole or any other JMX client to monitor your Hazelcast Cluster. As a sample, below is the
jconsole screenshot of the Clustered JMX hierarchy.

18.6.2 Clustered JMX API

The management beans are exposed with the following object name format.

ManagementCenter[cluster name]:type=<object type>,name=<object name>,member="<cluster member IP ad-
dress>"

Object name starts with ManagementCenter prefix. Then it has the cluster name in brackets followed by a colon.
After that, type,name and member attributes follows, each separated with a comma.

18.6. CLUSTERED JMX VIA MANAGEMENT CENTER 381

382 CHAPTER 18. MANAGEMENT

• type is the type of object. Values are Clients, Executors, Maps, Members, MultiMaps, Queues, Services,
and Topics.

• name is the name of object.

• member is the node address of object (only required if the statistics are local to the node).

A sample bean is shown below.

ManagementCenter[dev]:type=Services,name=OperationService,member="192.168.2.79:5701"

Here is the list of attributes that are exposed from the Clustered JMX interface.

• ManagementCenter[ClusterName]
• Clients
• Address
• ClientType
• Uuid
• Executors
• Cluster

– Name
– StartedTaskCount
– CompletedTaskCount
– CancelledTaskCount
– PendingTaskCount

• Maps

– Cluster
– Name
– BackupEntryCount
– BackupEntryMemoryCost
– CreationTime
– DirtyEntryCount
– Events
– GetOperationCount
– HeapCost
– Hits
– LastAccessTime
– LastUpdateTime
– LockedEntryCount
– MaxGetLatency
– MaxPutLatency
– MaxRemoveLatency
– OtherOperationCount
– OwnedEntryCount
– PutOperationCount
– RemoveOperationCount

• Members

– ConnectedClientCount
– HeapFreeMemory
– HeapMaxMemory
– HeapTotalMemory
– HeapUsedMemory
– IsMaster

18.6. CLUSTERED JMX VIA MANAGEMENT CENTER 383

– OwnedPartitionCount

• MultiMaps

– Cluster
– Name
– BackupEntryCount
– BackupEntryMemoryCost
– CreationTime
– DirtyEntryCount
– Events
– GetOperationCount
– HeapCost
– Hits
– LastAccessTime
– LastUpdateTime
– LockedEntryCount
– MaxGetLatency
– MaxPutLatency
– MaxRemoveLatency
– OtherOperationCount
– OwnedEntryCount
– PutOperationCount
– RemoveOperationCount

• Queues

– Cluster
– Name
– MinAge
– MaxAge
– AvgAge
– OwnedItemCount
– BackupItemCount
– OfferOperationCount
– OtherOperationsCount
– PollOperationCount
– RejectedOfferOperationCount
– EmptyPollOperationCount
– EventOperationCount
– CreationTime

• Services

– ConnectionManager
∗ ActiveConnectionCount
∗ ClientConnectionCount
∗ ConnectionCount

– EventService
∗ EventQueueCapacity
∗ EventQueueSize
∗ EventThreadCount

– OperationService
∗ ExecutedOperationCount
∗ OperationExecutorQueueSize
∗ OperationThreadCount
∗ RemoteOperationCount

384 CHAPTER 18. MANAGEMENT

∗ ResponseQueueSize
∗ RunningOperationsCount

– PartitionService
∗ ActivePartitionCount
∗ PartitionCount

– ProxyService
∗ ProxyCount

– ManagedExecutor[hz::async]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::client]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::global-operation]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::io]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::query]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::scheduled]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize

18.6. CLUSTERED JMX VIA MANAGEMENT CENTER 385

∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

– ManagedExecutor[hz::system]
∗ Name
∗ CompletedTaskCount
∗ MaximumPoolSize
∗ PoolSize
∗ QueueSize
∗ RemainingQueueCapacity
∗ Terminated

• Topics

– Cluster
– Name
– CreationTime
– PublishOperationCount
– ReceiveOperationCount

18.6.3 Integrating with New Relic

Use the Clustered JMX interface to integrate Hazelcast Management Center with New Relic. To perform this
integration, attach New Relic Java agent and provide an extension file that describes which metrics will be sent to
New Relic.

Please see Custom JMX instrumentation by YAML on the New Relic webpage.

Below is an example Map monitoring .yml file for New Relic.

name: Clustered JMX
version: 1.0
enabled: true

jmx:
- object_name: ManagementCenter[clustername]:type=Maps,name=mapname
metrics:
- attributes: PutOperationCount, GetOperationCount, RemoveOperationCount, Hits,\

BackupEntryCount, OwnedEntryCount, LastAccessTime, LastUpdateTime
type: simple

- object_name: ManagementCenter[clustername]:type=Members,name="node address in\
double quotes"

metrics:
- attributes: OwnedPartitionCount
type: simple

Put the .yml file in the extensions folder in your New Relic installation. If an extensions folder does not exist
there, create one.

After you set your extension, attach the New Relic Java agent and start Management Center as shown below.

java -javaagent:/path/to/newrelic.jar -Dhazelcast.mc.jmx.enabled=true\
-Dhazelcast.mc.jmx.port=9999 -jar mancenter-3.3.jar

If your logging level is set as FINER, you should see the log listing in the file newrelic_agent.log, which is located
in the logs folder in your New Relic installation. Below is an example log listing.

386 CHAPTER 18. MANAGEMENT

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINE:
JMX Service : querying MBeans (1)

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
JMX Service : MBeans query ManagementCenter[dev]:type=Members,
name="192.168.2.79:5701", matches 1

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric OwnedPartitionCount : 68

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
JMX Service : MBeans query ManagementCenter[dev]:type=Maps,name=orders,
matches 1

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric Hits : 46,593

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric BackupEntryCount : 1,100

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric OwnedEntryCount : 1,100

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric RemoveOperationCount : 0

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric PutOperationCount : 118,962

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric GetOperationCount : 0

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric LastUpdateTime : 1,401,962,426,811

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric LastAccessTime : 1,401,962,426,811

Then you can navigate to your New Relic account and create Custom Dashboards. Please see Creating custom
dashboards.

While you are creating the dashboard, you should see the metrics that you are sending to New Relic from
Management Center in the Metrics section under the JMX folder.

18.6.4 Integrating with AppDynamics

Use the Clustered JMX interface to integrate Hazelcast Management Center with AppDynamics. To perform this
integration, attach AppDynamics Java agent to the Management Center.

For agent installation, refer to Install the App Agent for Java page.

For monitoring on AppDynamics, refer to Using AppDynamics for JMX Monitoring page.

After installing AppDynamics agent, you can start Management Center as shown below.

java -javaagent:/path/to/javaagent.jar -Dhazelcast.mc.jmx.enabled=true\
-Dhazelcast.mc.jmx.port=9999 -jar mancenter-3.3.jar

When Management Center starts, you should see the logs below.

Started AppDynamics Java Agent Successfully.
Hazelcast Management Center starting on port 8080 at path : /mancenter

18.7 Clustered REST via Management Center

Hazelcast Enterprise

The Clustered REST API is exposed from Management Center to allow you to monitor clustered statistics of
distributed objects.

18.7. CLUSTERED REST VIA MANAGEMENT CENTER 387

18.7.1 Enabling Clustered REST

To enable Clustered REST on your Management Center, pass the following system property at startup. This
property is disabled by default.

-Dhazelcast.mc.rest.enabled=true

18.7.2 Clustered REST API Root

The entry point for Clustered REST API is /rest/.

This resource does not have any attributes.

18.7.3 Clusters Resource

This resource returns a list of clusters that are connected to the Management Center.

18.7.3.0.1 Retrieve Clusters

• Request Type: GET

• URL: /rest/clusters

• Request:

curl http://localhost:8083/mancenter/rest/clusters

• Response: 200 (application/json)

• Body:

["dev","qa"]

18.7.4 Cluster Resource

This resource returns information related to the provided cluster name.

18.7.4.0.2 Retrieve Cluster Information

• Request Type: GET

• URL: /rest/clusters/{clustername}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/

• Response: 200 (application/json)

• Body:

{"masterAddress":"192.168.2.78:5701"}

18.7.5 Members Resource

This resource returns a list of members belonging to the provided clusters.

388 CHAPTER 18. MANAGEMENT

18.7.5.0.3 Retrieve Members [GET] [/rest/clusters/{clustername}/members]

• Request Type: GET

• URL: /rest/clusters/{clustername}/members

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members

• Response: 200 (application/json)

• Body:

["192.168.2.78:5701","192.168.2.78:5702","192.168.2.78:5703","192.168.2.78:5704"]

18.7.6 Member Resource

This resource returns information related to the provided member.

18.7.6.0.4 Retrieve Member Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701

• Response: 200 (application/json)

• Body:

{
"cluster":"dev",
"name":"192.168.2.78:5701",
"maxMemory":129957888,
"ownedPartitionCount":68,
"usedMemory":60688784,
"freeMemory":24311408,
"totalMemory":85000192,
"connectedClientCount":1,
"master":true

}

18.7.6.0.5 Retrieve Connection Manager Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/connectionManager

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/connectionManager

• Response: 200 (application/json)

• Body:

{
"clientConnectionCount":2,
"activeConnectionCount":5,
"connectionCount":5

}

18.7. CLUSTERED REST VIA MANAGEMENT CENTER 389

18.7.6.0.6 Retrieve Operation Service Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/operationService

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/operationService

• Response: 200 (application/json)

• Body:

{
"responseQueueSize":0,
"operationExecutorQueueSize":0,
"runningOperationsCount":0,
"remoteOperationCount":1,
"executedOperationCount":461139,
"operationThreadCount":8

}

18.7.6.0.7 Retrieve Event Service Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/eventService

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/eventService

• Response: 200 (application/json)

• Body:

{
"eventThreadCount":5,
"eventQueueCapacity":1000000,
"eventQueueSize":0

}

18.7.6.0.8 Retrieve Partition Service Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/partitionService

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/partitionService

• Response: 200 (application/json)

• Body:

{
"partitionCount":271,
"activePartitionCount":68

}

390 CHAPTER 18. MANAGEMENT

18.7.6.0.9 Retrieve Proxy Service Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/proxyService

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/proxyService

• Response: 200 (application/json)

• Body:

{
"proxyCount":8

}

18.7.6.0.10 Retrieve All Managed Executors

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/managedExecutors

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/managedExecutors

• Response: 200 (application/json)

• Body:

["hz:system","hz:scheduled","hz:client","hz:query","hz:io","hz:async"]

18.7.6.0.11 Retrieve a Managed Executor

• Request Type: GET

• URL: /rest/clusters/{clustername}/members/{member}/managedExecutors/{managedExecutor}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701
/managedExecutors/hz:system

• Response: 200 (application/json)

• Body:

{
"name":"hz:system",
"queueSize":0,
"poolSize":0,
"remainingQueueCapacity":2147483647,
"maximumPoolSize":4,
"completedTaskCount":12,
"terminated":false

}

18.7. CLUSTERED REST VIA MANAGEMENT CENTER 391

18.7.7 Clients Resource

This resource returns a list of clients belonging to the provided cluster.

18.7.7.0.12 Retrieve List of Clients

• Request Type: GET

• URL: /rest/clusters/{clustername}/clients

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/clients

• Response: 200 (application/json)

• Body:

["192.168.2.78:61708"]

18.7.7.0.13 Retrieve Client Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/clients/{client}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/clients/192.168.2.78:61708

• Response: 200 (application/json)

• Body:

{
"uuid":"6fae7af6-7a7c-4fa5-b165-cde24cf070f5",
"address":"192.168.2.78:61708",
"clientType":"JAVA"

}

18.7.8 Maps Resource

This resource returns a list of maps belonging to the provided cluster.

18.7.8.0.14 Retrieve List of Maps

• Request Type: GET

• URL: /rest/clusters/{clustername}/maps

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/maps

• Response: 200 (application/json)

• Body:

["customers","orders"]

392 CHAPTER 18. MANAGEMENT

18.7.8.0.15 Retrieve Map Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/maps/{mapName}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/maps/customers

• Response: 200 (application/json)

• Body:

{
"cluster":"dev",
"name":"customers",
"ownedEntryCount":1000,
"backupEntryCount":1000,
"ownedEntryMemoryCost":157890,
"backupEntryMemoryCost":113683,
"heapCost":297005,
"lockedEntryCount":0,
"dirtyEntryCount":0,
"hits":3001,
"lastAccessTime":1403608925777,
"lastUpdateTime":1403608925777,
"creationTime":1403602693388,
"putOperationCount":110630,
"getOperationCount":165945,
"removeOperationCount":55315,
"otherOperationCount":0,
"events":0,
"maxPutLatency":52,
"maxGetLatency":30,
"maxRemoveLatency":21

}

18.7.9 MultiMaps Resource

This resource returns a list of multimaps belonging to the provided cluster.

18.7.9.0.16 Retrieve List of MultiMaps

• Request Type: GET

• URL: /rest/clusters/{clustername}/multimaps

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/multimaps

• Response: 200 (application/json)

• Body:

["customerAddresses"]

18.7. CLUSTERED REST VIA MANAGEMENT CENTER 393

18.7.9.0.17 Retrieve MultiMap Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/multimaps/{multimapname}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/multimaps/customerAddresses

• Response: 200 (application/json)

• Body:

{
"cluster":"dev",
"name":"customerAddresses",
"ownedEntryCount":996,
"backupEntryCount":996,
"ownedEntryMemoryCost":0,
"backupEntryMemoryCost":0,
"heapCost":0,
"lockedEntryCount":0,
"dirtyEntryCount":0,
"hits":0,
"lastAccessTime":1403603095521,
"lastUpdateTime":1403603095521,
"creationTime":1403602694158,
"putOperationCount":166041,
"getOperationCount":110694,
"removeOperationCount":55347,
"otherOperationCount":0,
"events":0,
"maxPutLatency":77,
"maxGetLatency":69,
"maxRemoveLatency":42

}

18.7.10 Queues Resource

This resource returns a list of queues belonging to the provided cluster.

18.7.10.0.18 Retrieve List of Queues

• Request Type: GET

• URL: /rest/clusters/{clustername}/queues

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/queues

• Response: 200 (application/json)

• Body:

["messages"]

394 CHAPTER 18. MANAGEMENT

18.7.10.0.19 Retrieve Queue Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/queues/{queueName}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/queues/messages

• Response: 200 (application/json)

• Body:

{
"cluster":"dev",
"name":"messages",
"ownedItemCount":55408,
"backupItemCount":55408,
"minAge":0,
"maxAge":0,
"aveAge":0,
"numberOfOffers":55408,
"numberOfRejectedOffers":0,
"numberOfPolls":0,
"numberOfEmptyPolls":0,
"numberOfOtherOperations":0,
"numberOfEvents":0,
"creationTime":1403602694196

}

18.7.11 Topics Resource

This resource returns a list of topics belonging to the provided cluster.

18.7.11.0.20 Retrieve List of Topics

• Request Type: GET

• URL: /rest/clusters/{clustername}/topics

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/topics

• Response: 200 (application/json)

• Body:

["news"]

18.7. CLUSTERED REST VIA MANAGEMENT CENTER 395

18.7.11.0.21 Retrieve Topic Information

• Request Type: GET

• URL: /rest/clusters/{clustername}/topics/{topicName}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/topics/news

• Response: 200 (application/json)

• Body:

{
"cluster":"dev",
"name":"news",
"numberOfPublishes":56370,
"totalReceivedMessages":56370,
"creationTime":1403602693411

}

18.7.12 Executors Resource

This resource returns a list of executors belonging to the provided cluster.

18.7.12.0.22 Retrieve List of Executors

• Request Type: GET

• URL: /rest/clusters/{clustername}/executors

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/executors

• Response: 200 (application/json)

• Body:

["order-executor"]

18.7.12.0.23 Retrieve Executor Information [GET] [/rest/clusters/{clustername}/executors/{executorName}]

• Request Type: GET

• URL: /rest/clusters/{clustername}/executors/{executorName}

• Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/executors/order-executor

• Response: 200 (application/json)

• Body:

396 CHAPTER 18. MANAGEMENT

{
"cluster":"dev",
"name":"order-executor",
"creationTime":1403602694196,
"pendingTaskCount":0,
"startedTaskCount":1241,
"completedTaskCount":1241,
"cancelledTaskCount":0

}

Chapter 19

Security

Hazelcast Enterprise
This chapter describes the security features of Hazelcast. These features allow you to perform security activities, such
as intercepting socket connections and remote operations executed by the clients, encrypting the communications
between the members at socket level, and using SSL socket communication. All of the Security features explained
in this chapter are the features of Hazelcast Enterprise edition.

19.1 Enabling Security for Hazelcast Enterprise

With Hazelcast’s extensible, JAAS based security feature, you can:

• authenticate both cluster members and clients,
• and perform access control checks on client operations. Access control can be done according to endpoint
principal and/or endpoint address.

You can enable security declaratively or programmatically, as shown below.

<hazelcast>
...
<security enabled="true">

...
</security>

</hazelcast>

Config cfg = new Config();
SecurityConfig securityCfg = cfg.getSecurityConfig();
securityCfg.setEnabled(true);

Also, see the Setting License Key section for information on how to set your Hazelcast Enterprise license.

19.2 Socket Interceptor

Hazelcast Enterprise
Hazelcast allows you to intercept socket connections before a member joins a cluster or a client connects to a
member of a cluster. This allow you to add custom hooks to join and perform connection procedures (like identity
checking using Kerberos, etc.).

To use the socket interceptor, implement com.hazelcast.nio.MemberSocketInterceptor for members and
com.hazelcast.nio.SocketInterceptor for clients.

The following example code enables the socket interceptor for members.

397

398 CHAPTER 19. SECURITY

public class MySocketInterceptor implements MemberSocketInterceptor {
public void init(SocketInterceptorConfig socketInterceptorConfig) {

// initialize interceptor
}

void onConnect(Socket connectedSocket) throws IOException {
// do something meaningful when a member has connected to the cluster

}

public void onAccept(Socket acceptedSocket) throws IOException {
// do something meaningful when the cluster is ready to accept the member connection

}
}

<hazelcast>
...
<network>
...
<socket-interceptor enabled="true">

<class-name>com.hazelcast.examples.MySocketInterceptor</class-name>
<properties>
<property name="kerberos-host">kerb-host-name</property>
<property name="kerberos-config-file">kerb.conf</property>

</properties>
</socket-interceptor>

</network>
...

</hazelcast>

public class MyClientSocketInterceptor implements SocketInterceptor {
void onConnect(Socket connectedSocket) throws IOException {

// do something meaningful when connected
}

}

ClientConfig clientConfig = new ClientConfig();
clientConfig.setGroupConfig(new GroupConfig("dev", "dev-pass"))

.addAddress("10.10.3.4");

MyClientSocketInterceptor clientSocketInterceptor = new MyClientSocketInterceptor();
clientConfig.setSocketInterceptor(clientSocketInterceptor);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

19.3 Security Interceptor

Hazelcast Enterprise

Hazelcast allows you to intercept every remote operation executed by the client. This lets you add a very flexible
custom security logic. To do this, implement com.hazelcast.security.SecurityInterceptor.

public class MySecurityInterceptor implements SecurityInterceptor {

public void before(Credentials credentials, String serviceName,
String methodName, Parameters parameters)

throws AccessControlException {
// credentials: client credentials

19.4. ENCRYPTION 399

// serviceName: MapService.SERVICE_NAME, QueueService.SERVICE_NAME, ... etc
// methodName: put, get, offer, poll, ... etc
// parameters: holds parameters of the executed method, iterable.

}

public void after(Credentials credentials, String serviceName,
String methodName, Parameters parameters) {

// can be used for logging etc.
}

}

The before method will be called before processing the request on the remote server. The after method will be
called after the processing. Exceptions thrown while executing the before method will propagate to the client, but
exceptions thrown while executing the after method will be suppressed.

19.4 Encryption

Hazelcast Enterprise

Hazelcast allows you to encrypt the entire socket level communication among all Hazelcast members. Encryption is
based on Java Cryptography Architecture. In symmetric encryption, each node uses the same key, so the key is
shared. Here is an example configuration for symmetric encryption.

You set the encryption algorithm, the salt value to use for generating the secret key, the password to use when
generating the secret key, and the iteration count to use when generating the secret key. You also need to set
enabled to true.

<hazelcast>
...
<network>
...
<!--

Make sure to set enabled=true
Make sure this configuration is exactly the same on
all members

-->
<symmetric-encryption enabled="true">

<!--
encryption algorithm such as
DES/ECB/PKCS5Padding,
PBEWithMD5AndDES,
Blowfish,
DESede

-->
<algorithm>PBEWithMD5AndDES</algorithm>

<!-- salt value to use when generating the secret key -->
<salt>thesalt</salt>

<!-- pass phrase to use when generating the secret key -->
<password>thepass</password>

<!-- iteration count to use when generating the secret key -->
<iteration-count>19</iteration-count>

</symmetric-encryption>
</network>
...

</hazelcast>

400 CHAPTER 19. SECURITY

RELATED INFORMATION

Please see the SSL section.

19.5 SSL

Hazelcast Enterprise

Hazelcast allows you to encrypt socket level communication between Hazelcast members and between Hazelcast clients
and members, for end to end encryption. To use it, you need to implement com.hazelcast.nio.ssl.SSLContextFactory
and configure the SSL section in network configuration.

public class MySSLContextFactory implements SSLContextFactory {
public void init(Properties properties) throws Exception {
}

public SSLContext getSSLContext() {
...
SSLContext sslCtx = SSLContext.getInstance(protocol);
return sslCtx;

}
}

<hazelcast>
...
<network>
...
<ssl enabled="true">
<factory-class-name>

com.hazelcast.examples.MySSLContextFactory
</factory-class-name>
<properties>
<property name="foo">bar</property>

</properties>
</ssl>

</network>
...

</hazelcast>

Hazelcast provides a default SSLContextFactory, com.hazelcast.nio.ssl.BasicSSLContextFactory, which uses
configured keystore to initialize SSLContext. You define keyStore and keyStorePassword, and you can set
keyManagerAlgorithm (default SunX509), trustManagerAlgorithm (default SunX509) and protocol (default
TLS).

<hazelcast>
...
<network>
...
<ssl enabled="true">
<factory-class-name>

com.hazelcast.nio.ssl.BasicSSLContextFactory
</factory-class-name>
<properties>
<property name="keyStore">keyStore</property>
<property name="keyStorePassword">keyStorePassword</property>
<property name="keyManagerAlgorithm">SunX509</property>
<property name="trustManagerAlgorithm">SunX509</property>

19.6. CREDENTIALS 401

<property name="protocol">TLS</property>
</properties>

</ssl>
</network>
...

</hazelcast>

Hazelcast client also has SSL support. You can configure Client SSL programmatically as shown below.

System.setProperty("javax.net.ssl.keyStore", new File("hazelcast.ks").getAbsolutePath());
System.setProperty("javax.net.ssl.trustStore", new File("hazelcast.ts").getAbsolutePath());
System.setProperty("javax.net.ssl.keyStorePassword", "password");

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().addAddress("127.0.0.1");

For example, you can set keyStore and keyStorePassword with the following system properties.

• javax.net.ssl.keyStore
• javax.net.ssl.keyStorePassword

NOTE: You cannot use SSL when Hazelcast Encryption is enabled.

19.6 Credentials

Hazelcast Enterprise

One of the key elements in Hazelcast security is the Credentials object, which carries all credentials of an endpoint
(member or client). Credentials is an interface which extends Serializable. You can either implement the three
methods in the Credentials interface, or you can extend the AbstractCredentials class, which is an abstract
implementation of Credentials.

Hazelcast calls the Credentials.setEndpoint() method when an authentication request arrives at the node before
authentication takes place.

package com.hazelcast.security;
public interface Credentials extends Serializable {

String getEndpoint();
void setEndpoint(String endpoint) ;
String getPrincipal() ;

}

Here is an example of extending the AbstractCredentials class.

package com.hazelcast.security;
...
public abstract class AbstractCredentials implements Credentials, DataSerializable {
private transient String endpoint;
private String principal;
...

}

UsernamePasswordCredentials, a custom implementation of Credentials, is in the Hazelcast com.hazelcast.security
package. UsernamePasswordCredentials is used for default configuration during the authentication process of
both members and clients.

402 CHAPTER 19. SECURITY

package com.hazelcast.security;
...
public class UsernamePasswordCredentials extends Credentials {
private byte[] password;
...

}

19.7 ClusterLoginModule

Hazelcast Enterprise
All security attributes are carried in the Credentials object. Credentials is used by LoginModule s during
the authentication process. User supplied attributes from LoginModules are accessed by CallbackHandler s. To
access the Credentials object, Hazelcast uses its own specialized CallbackHandler. During initialization of
LoginModules, Hazelcast passes this special CallbackHandler into the LoginModule.initialize() method.

Your implementation of LoginModule should create an instance of com.hazelcast.security.CredentialsCallback
and call the handle(Callback[] callbacks) method of CallbackHandler during the login process.

CredentialsCallback.getCredentials() returns the supplied Credentials object.

public class CustomLoginModule implements LoginModule {
CallbackHandler callbackHandler;
Subject subject;

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map<String, ?> sharedState, Map<String, ?> options) {

this.subject = subject;
this.callbackHandler = callbackHandler;

}

public final boolean login() throws LoginException {
CredentialsCallback callback = new CredentialsCallback();
try {
callbackHandler.handle(new Callback[] { callback });
credentials = cb.getCredentials();

} catch (Exception e) {
throw new LoginException(e.getMessage());

}
...

}
...

}

To use the default Hazelcast permission policy, you must create an instance of com.hazelcast.security.ClusterPrincipal
that holds the Credentials object, and you must add it to Subject.principals onLoginModule.commit() as
shown below.

public class MyCustomLoginModule implements LoginModule {
...
public boolean commit() throws LoginException {
...
Principal principal = new ClusterPrincipal(credentials);
subject.getPrincipals().add(principal);

return true;
}
...

}

19.8. CLUSTER MEMBER SECURITY 403

Hazelcast has an abstract implementation of LoginModule that does callback and cleanup operations and holds the
resulting Credentials instance. LoginModules extending ClusterLoginModule can access Credentials, Subject,
LoginModule instances and options, and sharedState maps. Extending the ClusterLoginModule is recommended
instead of implementing all required stuff.

package com.hazelcast.security;
...
public abstract class ClusterLoginModule implements LoginModule {

protected abstract boolean onLogin() throws LoginException;
protected abstract boolean onCommit() throws LoginException;
protected abstract boolean onAbort() throws LoginException;
protected abstract boolean onLogout() throws LoginException;

}

19.7.1 Enterprise Integration

Using the above API, you can implement a LoginModule that performs authentication against the Security System
of your choice, such as an LDAP store like Apache Directory or some other corporate standard you might have. For
example, you may wish to have your clients send an identification token in the Credentials object. This token
can then be sent to your back-end security system via the LoginModule that runs on the cluster side.

Additionally, the same system may authenticate the user and also then return the roles that are attributed to the
user. These roles can then be used for data structure authorization.

RELATED INFORMATION

Please refer to JAAS Reference Guide for further information.

19.8 Cluster Member Security

Hazelcast Enterprise

Hazelcast supports standard Java Security (JAAS) based authentication between cluster members. To implement
it, you configure one or more LoginModules and an instance of com.hazelcast.security.ICredentialsFactory.
Although Hazelcast has default implementations using cluster group and group-password and UsernamePass-
wordCredentials on authentication, it is recommended that you implement the LoginModules and an instance of
com.hazelcast.security.ICredentialsFactory according to your specific needs and environment.

<security enabled="true">
<member-credentials-factory

class-name="com.hazelcast.examples.MyCredentialsFactory">
<properties>
<property name="property1">value1</property>
<property name="property2">value2</property>

</properties>
</member-credentials-factory>
<member-login-modules>
<login-module usage="required"

class-name="com.hazelcast.examples.MyRequiredLoginModule">
<properties>
<property name="property3">value3</property>

</properties>
</login-module>
<login-module usage="sufficient"

class-name="com.hazelcast.examples.MySufficientLoginModule">
<properties>

404 CHAPTER 19. SECURITY

<property name="property4">value4</property>
</properties>

</login-module>
<login-module usage="optional"

class-name="com.hazelcast.examples.MyOptionalLoginModule">
<properties>
<property name="property5">value5</property>

</properties>
</login-module>

</member-login-modules>
...

</security>

You can define as many as LoginModules as you want in configuration. They are executed in the order listed in
configuration. The usage attribute has 4 values: ‘required’, ‘requisite’, ‘sufficient’ and ‘optional’ as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

package com.hazelcast.security;
/**
* ICredentialsFactory is used to create Credentials objects to be used
* during node authentication before connection accepted by master node.
*/
public interface ICredentialsFactory {

void configure(GroupConfig groupConfig, Properties properties);

Credentials newCredentials();

void destroy();
}

Properties defined in configuration are passed to the ICredentialsFactory.configure() method as
java.util.Properties and to the LoginModule.initialize() method as java.util.Map.

19.9 Native Client Security

Hazelcast Enterprise

Hazelcast’s Client security includes both authentication and authorization.

19.9.1 Authentication

The authentication mechanism works the same as cluster member authentication. To implement client authentication,
you configure a Credential and one or more LoginModules. The client side does not have and does not need a
factory object to create Credentials objects like ICredentialsFactory. You must create the credentials at the
client side and send them to the connected member during the connection process.

<security enabled="true">
<client-login-modules>
<login-module usage="required"

class-name="com.hazelcast.examples.MyRequiredClientLoginModule">
<properties>
<property name="property3">value3</property>

</properties>
</login-module>

19.9. NATIVE CLIENT SECURITY 405

<login-module usage="sufficient"
class-name="com.hazelcast.examples.MySufficientClientLoginModule">

<properties>
<property name="property4">value4</property>

</properties>
</login-module>
<login-module usage="optional"

class-name="com.hazelcast.examples.MyOptionalClientLoginModule">
<properties>
<property name="property5">value5</property>

</properties>
</login-module>

</client-login-modules>
...

</security>

You can define as many as LoginModules as you want in configuration. Those are executed in the order given
in configuration. The usage attribute has 4 values: ‘required’, ‘requisite’, ‘sufficient’ and ‘optional’ as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

ClientConfig clientConfig = new ClientConfig();
clientConfig.setCredentials(new UsernamePasswordCredentials("dev", "dev-pass"));
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

19.9.2 Authorization

Hazelcast client authorization is configured by a client permission policy. Hazelcast has a default permission
policy implementation that uses permission configurations defined in the Hazelcast security configuration. Default
policy permission checks are done against instance types (map, queue, etc.), instance names (map, queue, name,
etc.), instance actions (put, read, remove, add, etc.), client endpoint addresses, and client principal defined by the
Credentials object. Instance and principal names and endpoint addresses can be defined as wildcards(*). Please see
the Network Configuration section and Using Wildcard section.

<security enabled="true">
<client-permissions>

<!-- Principal ’admin’ from endpoint ’127.0.0.1’ has all permissions. -->
<all-permissions principal="admin">

<endpoints>
<endpoint>127.0.0.1</endpoint>

</endpoints>
</all-permissions>

<!-- Principals named ’dev’ from all endpoints have ’create’, ’destroy’,
’put’, ’read’ permissions for map named ’default’. -->

<map-permission name="default" principal="dev">
<actions>
<action>create</action>
<action>destroy</action>
<action>put</action>
<action>read</action>

</actions>
</map-permission>

<!-- All principals from endpoints ’127.0.0.1’ or matching to ’10.10.*.*’
have ’put’, ’read’, ’remove’ permissions for map
whose name matches to ’com.foo.entity.*’. -->

<map-permission name="com.foo.entity.*">

406 CHAPTER 19. SECURITY

<endpoints>
<endpoint>10.10.*.*</endpoint>
<endpoint>127.0.0.1</endpoint>

</endpoints>
<actions>
<action>put</action>
<action>read</action>
<action>remove</action>

</actions>
</map-permission>

<!-- Principals named ’dev’ from endpoints matching to either
’192.168.1.1-100’ or ’192.168.2.*’
have ’create’, ’add’, ’remove’ permissions for all queues. -->

<queue-permission name="*" principal="dev">
<endpoints>
<endpoint>192.168.1.1-100</endpoint>
<endpoint>192.168.2.*</endpoint>

</endpoints>
<actions>
<action>create</action>
<action>add</action>
<action>remove</action>

</actions>
</queue-permission>

<!-- All principals from all endpoints have transaction permission.-->
<transaction-permission />

</client-permissions>
</security>

You can also define your own policy by implementing com.hazelcast.security.IPermissionPolicy.

package com.hazelcast.security;
/**
* IPermissionPolicy is used to determine any Subject’s
* permissions to perform a security sensitive Hazelcast operation.
*
*/
public interface IPermissionPolicy {
void configure(SecurityConfig securityConfig, Properties properties);

PermissionCollection getPermissions(Subject subject,
Class<? extends Permission> type);

void destroy();
}

Permission policy implementations can access client-permissions that are in configuration by using SecurityConfig.
getClientPermissionConfigs() when Hazelcast calls the method configure(SecurityConfig securityConfig,
Properties properties).

The IPermissionPolicy.getPermissions(Subject subject, Class<? extends Permission> type) method
is used to determine a client request that has been granted permission to perform a security-sensitive operation.

Permission policy should return a PermissionCollection containing permissions of the given type for the given
Subject. The Hazelcast access controller will call PermissionCollection.implies(Permission) on returning
PermissionCollection and it will decide whether or not the current Subject has permission to access the requested
resources.

19.9. NATIVE CLIENT SECURITY 407

19.9.3 Permissions

• All Permission

<all-permissions principal="principal">
<endpoints>
...

</endpoints>
</all-permissions>

• Map Permission

<map-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</map-permission>

Actions: all, create, destroy, put, read, remove, lock, intercept, index, listen

• Queue Permission

<queue-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</queue-permission>

Actions: all, create, destroy, add, remove, read, listen

• Multimap Permission

<multimap-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</multimap-permission>

Actions: all, create, destroy, put, read, remove, listen, lock

• Topic Permission

<topic-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</topic-permission>

408 CHAPTER 19. SECURITY

Actions: create, destroy, publish, listen

• List Permission

<list-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</list-permission>

Actions: all, create, destroy, add, read, remove, listen

• Set Permission

<set-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</set-permission>

Actions: all, create, destroy, add, read, remove, listen

• Lock Permission

<lock-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</lock-permission>

Actions: all, create, destroy, lock, read

• AtomicLong Permission

<atomic-long-permission name="name" principal="principal">
<endpoints>

...
</endpoints>
<actions>
...

</actions>
</atomic-long-permission>

Actions: all, create, destroy, read, modify

• CountDownLatch Permission

19.9. NATIVE CLIENT SECURITY 409

<countdown-latch-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</countdown-latch-permission>

Actions: all, create, destroy, modify, read

• IdGenerator Permission

<id-generator-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</id-generator-permission>

Actions: all, create, destroy, modify, read

• Semaphore Permission

<semaphore-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</semaphore-permission>

Actions: all, create, destroy, acquire, release, read

• Executor Service Permission

<executor-service-permission name="name" principal="principal">
<endpoints>
...

</endpoints>
<actions>
...

</actions>
</executor-service-permission>

Actions: all, create, destroy

• Transaction Permission

<transaction-permission principal="principal">
<endpoints>
...

</endpoints>
</transaction-permission>

410 CHAPTER 19. SECURITY

Chapter 20

Performance

This chapter provides information on the performance features of Hazelcast including slow operations detector, back
pressure and data affinity. Moreover, the chapter describes the best performance practices for Hazelcast deployed
on Amazon EC2. It also describes the threading models for I/O, events, executors and operations.

20.1 Data Affinity

Data affinity ensures that related entries exist on the same node. If related data is on the same node, operations
can be executed without the cost of extra network calls and extra wire data. This feature is provided by using the
same partition keys for related data.

Co-location of related data and computation

Hazelcast has a standard way of finding out which member owns/manages each key object. The following operations
will be routed to the same member, since all of them are operating based on the same key "key1".

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapA = hazelcastInstance.getMap("mapA");
Map mapB = hazelcastInstance.getMap("mapB");
Map mapC = hazelcastInstance.getMap("mapC");

// since map names are different, operation will be manipulating
// different entries, but the operation will take place on the
// same member since the keys ("key1") are the same
mapA.put("key1", value);
mapB.get("key1");
mapC.remove("key1");

// lock operation will still execute on the same member
// of the cluster since the key ("key1") is same
hazelcastInstance.getLock("key1").lock();

// distributed execution will execute the ’runnable’ on the
// same member since "key1" is passed as the key.
hazelcastInstance.getExecutorService().executeOnKeyOwner(runnable, "key1");

When the keys are the same, entries are stored on the same node. But we sometimes want to have related entries
stored on the same node, such as a customer and his/her order entries. We would have a customers map with
customerId as the key and an orders map with orderId as the key. Since customerId and orderId are different keys,
a customer and his/her orders may fall into different members/nodes in your cluster. So how can we have them
stored on the same node? We create an affinity between customer and orders. If we make them part of the same
partition then these entries will be co-located. We achieve this by making orderIds PartitionAware.

411

412 CHAPTER 20. PERFORMANCE

public class OrderKey implements Serializable, PartitionAware {

private final long customerId;
private final long orderId;

public OrderKey(long orderId, long customerId) {
this.customerId = customerId;
this.orderId = orderId;

}

public long getCustomerId() {
return customerId;

}

public long getOrderId() {
return orderId;

}

public Object getPartitionKey() {
return customerId;

}

@Override
public String toString() {
return "OrderKey{"
+ "customerId=" + customerId
+ ", orderId=" + orderId
+ ’}’;

}
}

Notice that OrderKey implements PartitionAware and that getPartitionKey() returns the customerId. This
will make sure that the Customer entry and its Orders will be stored on the same node.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapCustomers = hazelcastInstance.getMap("customers");
Map mapOrders = hazelcastInstance.getMap("orders");

// create the customer entry with customer id = 1
mapCustomers.put(1, customer);

// now create the orders for this customer
mapOrders.put(new OrderKey(21, 1), order);
mapOrders.put(new OrderKey(22, 1), order);
mapOrders.put(new OrderKey(23, 1), order);

Assume that you have a customers map where customerId is the key and the customer object is the value. You
want to remove one of the customer orders and return the number of remaining orders. Here is how you would
normally do it.

public static int removeOrder(long customerId, long orderId) throws Exception {
IMap<Long, Customer> mapCustomers = instance.getMap("customers");
IMap mapOrders = hazelcastInstance.getMap("orders");

mapCustomers.lock(customerId);
mapOrders.remove(orderId);
Set orders = orderMap.keySet(Predicates.equal("customerId", customerId));

20.1. DATA AFFINITY 413

mapCustomers.unlock(customerId);

return orders.size();
}

There are couple of things you should consider.

1. There are four distributed operations there: lock, remove, keySet, unlock. Can you reduce the number of
distributed operations?

2. The customer object may not be that big, but can you not have to pass that object through the wire? Think
about a scenario where you set order count to the customer object for fast access, so you should do a get and
a put, and as a result, the customer object is passed through the wire twice.

Instead, why not move the computation over to the member (JVM) where your customer data resides. Here is how
you can do this with distributed executor service.

1. Send a PartitionAware Callable task.
2. Callable does the deletion of the order right there and returns with the remaining order count.
3. Upon completion of the Callable task, return the result (remaining order count). You do not have to wait

until the task is completed; since distributed executions are asynchronous, you can do other things in the
meantime.

Here is some example code.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

public int removeOrder(long customerId, long orderId) throws Exception {
IExecutorService executorService
= hazelcastInstance.getExecutorService("ExecutorService");

OrderDeletionTask task = new OrderDeletionTask(customerId, orderId);
Future<Integer> future = executorService.submit(task);
int remainingOrders = future.get();

return remainingOrders;
}

public static class OrderDeletionTask
implements Callable<Integer>, PartitionAware, Serializable {

private long customerId;
private long orderId;

public OrderDeletionTask() {
}

public OrderDeletionTask(long customerId, long orderId) {
this.customerId = customerId;
this.orderId = orderId;

}

@Override
public Integer call() {
Map<Long, Customer> customerMap = hazelcastInstance.getMap("customers");
IMap<OrderKey, Order> orderMap = hazelcastInstance.getMap("orders");

414 CHAPTER 20. PERFORMANCE

mapCustomers.lock(customerId);
Customer customer = mapCustomers.get(customerId);
Predicate predicate = Predicates.equal("customerId", customerId);
Set<OrderKey> orderKeys = orderMap.localKeySet(predicate);
int orderCount = orderKeys.size();
for (OrderKey key : orderKeys) {
if (key.orderId == orderId) {
orderCount--;
orderMap.delete(key);

}
}
mapCustomers.unlock(customerId);

return orderCount;
}

@Override
public Object getPartitionKey() {
return customerId;

}
}

The benefits of doing the same operation with distributed ExecutorService based on the key are:

• Only one distributed execution (executorService.submit(task)), instead of four.
• Less data is sent over the wire.
• Since lock/update/unlock cycle is done locally (local to the customer data), lock duration for the Customer
entry is much less, thus enabling higher concurrency.

20.2 Back Pressure

Hazelcast uses operations to make remote calls. For example, a map.get is an operation and a map.put is one
operation for the primary and one operation for each of the backups, i.e. map.put is executed for the primary and
also for each backup. In most cases, there will be a natural balance between the number of threads performing
operations and the number of operations being executed. However, there are two situations where this balance and
operations can pile up and eventually lead to Out of Memory Exception (OOME):

• Asynchronous calls: With async calls, the system may be flooded with the requests.

• Asynchronous backups: The asynchronous backups may be piling up.

To prevent the system from crashing, Hazelcast provides back pressure. Back pressure works by:

• limiting the number of concurrent operation invocations,

• periodically making an async backup sync.

Back pressure is disabled by default and you can enable it using the following system property:

hazelcast.backpressure.enabled

To control the number of concurrent invocations, you can configure the number of invocations allowed per partition
using the following system property:

hazelcast.backpressure.max.concurrent.invocations.per.partition

The default value of this system property is 100. Using a default configuration a system is allowed to have (271 +
1) * 100 = 27200 concurrent invocations (271 partitions + 1 for generic operations).

20.3. THREADING MODEL 415

Back pressure is only applied to normal operations. System operations like heart beats and partition migration
operations are not influenced by back pressure. 27200 invocations might seem like a lot, but keep in mind that
executing a task on IExecutor or acquiring a lock also requires an operation.

If the maximum number of invocations has been reached, Hazelcast will automatically apply an exponential back
off policy. This gives the system some time to deal with the load. Using the following system property, you can
configure the maximum time to wait before a HazelcastOverloadException is thrown:

hazelcast.backpressure.backoff.timeout.millis

This system property’s default value is 60000 ms.

The Health Monitor keeps an eye on the usage of the invocations. If it sees a member has consumed 70% or more
of the invocations, it starts to log health messages.

Apart from controlling the number of invocations, you also need to control the number of pending async backups.
This is done by periodically making these backups sync instead of async. This forces all pending backups to get
drained. For this, Hazelcast tracks the number of asynchronous backups for each partition. At every Nth call, one
synchronization is forced. This N is controlled through the following property:

hazelcast.backpressure.syncwindow

This system property’s default value is 100. It means, out of 100 asynchronous backups, Hazelcast makes 1 of them
a synchronous one. A randomization is added, so the sync window with default configuration will be between 75
and 125 invocations.

RELATED INFORMATION

Please refer to the System Properties section to learn how to configure the system properties.

20.3 Threading Model

Your application server has its own threads. Hazelcast does not use these; it manages its own threads.

20.3.1 I/O Threading

Hazelcast uses a pool of threads for I/O. A single thread does not perform all the I/O. Instead, multiple threads
perform the I/O. On each cluster member, the I/O threading is split up in 3 types of I/O threads:

• I/O thread for the accept requests.
• I/O threads to read data from other members/clients.
• I/O threads to write data to other members/clients.

You can configure the number of I/O threads using the hazelcast.io.thread.count system property. Its default
value is 3 per member. If 3 is used, in total there are 7 I/O threads: 1 accept I/O thread, 3 read I/O threads, and
3 write I/O threads. Each I/O thread has its own Selector instance and waits on the Selector.select if there is
nothing to do.

NOTE: You can also specify counts for input and output threads separately. There are hazelcast.io.input.thread.count
and hazelcast.io.output.thread.count properties for this purpose. Please refer to the System Properties
section for information on these properties and how to set them.

Hazelcast periodically scans utilization of each I/O thread and can decide to migrate a connection to a new thread
if the existing thread is servicing a disproportionate number of I/O events. You can customize the scanning interval
by configuring the hazelcast.io.balancer.interval.seconds system property; its default interval is 20 seconds.
You can disable the balancing process by setting this property to a negative value.

In case of the read I/O thread, when sufficient bytes for a packet have been received, the Packet object is created.
This Packet object is then sent to the system where it is de-multiplexed. If the Packet header signals that it is
an operation/response, the Packet is handed over to the operation service (please see the Operation Threading
section). If the Packet is an event, it is handed over to the event service (please see the Event Threading section).

416 CHAPTER 20. PERFORMANCE

20.3.2 Event Threading

Hazelcast uses a shared event system to deal with components that rely on events, such as topic, collections,
listeners, and Near Cache.

Each cluster member has an array of event threads and each thread has its own work queue. When an event is
produced, either locally or remotely, an event thread is selected (depending on if there is a message ordering) and
the event is placed in the work queue for that event thread.

The following properties can be set to alter the behavior of the system.

• hazelcast.event.thread.count: Number of event-threads in this array. Its default value is 5.
• hazelcast.event.queue.capacity: Capacity of the work queue. Its default value is 1000000.
• hazelcast.event.queue.timeout.millis: Timeout for placing an item on the work queue. Its default
value is 250.

If you process a lot of events and have many cores, changing the value of hazelcast.event.thread.count property
to a higher value is a good practice. This way, more events can be processed in parallel.

Multiple components share the same event queues. If there are 2 topics, say A and B, for certain messages they
may share the same queue(s) and hence the same event thread. If there are a lot of pending messages produced by
A, then B needs to wait. Also, when processing a message from A takes a lot of time and the event thread is used
for that, B suffers from this. That is why it is better to offload processing to a dedicated thread (pool) so that
systems are better isolated.

If the events are produced at a higher rate than they are consumed, the queue grows in size. To prevent overloading
the system and running into an OutOfMemoryException, the queue is given a capacity of 1 million items. When
the maximum capacity is reached, the items are dropped. This means that the event system is a ‘best effort’ system.
There is no guarantee that you are going to get an event. Topic A might have a lot of pending messages and
therefore B cannot receive messages because the queue has no capacity and messages for B are dropped.

20.3.3 IExecutor Threading

Executor threading is straight forward. When a task is received to be executed on Executor E, then E will have its
own ThreadPoolExecutor instance and the work is placed in the work queue of this executor. Thus, Executors are
fully isolated, but still share the same underlying hardware - most importantly the CPUs.

You can configure the IExecutor using the ExecutorConfig (programmatic configuration) or using <executor>
(declarative configuration). Please also see the Configuring Executor Service section.

20.3.4 Operation Threading

There are 2 types of operations:

• Operations that are aware of a certain partition, e.g. IMap.get(key).
• Operations that are not partition aware, such as the IExecutorService.executeOnMember(command,
member) operation.

Each of these operation types has a different threading model explained in the following sections.

20.3.4.1 Partition-aware Operations

To execute partition-aware operations, an array of operation threads is created. The size of this array has a
default value of two times the number of cores and a minimum value of 2. This value can be changed using the
hazelcast.operation.thread.count property.

Each operation thread has its own work queue and it consumes messages from this work queue. If a partition-aware
operation needs to be scheduled, the right thread is found using the formula below.

20.3. THREADING MODEL 417

threadIndex = partitionId % partition thread-count

After the threadIndex is determined, the operation is put in the work queue of that operation thread. This means
the followings:

• A single operation thread executes operations for multiple partitions; if there are 271 partitions and 10
partition threads, then roughly every operation thread executes operations for 27 partitions.

• Each partition belongs to only 1 operation thread. All operations for a partition are always handled by exactly
the same operation thread.

• Concurrency control is not needed to deal with partition-aware operations because once a partition-aware
operation is put in the work queue of a partition-aware operation thread, only 1 thread is able to touch that
partition.

Because of this threading strategy, there are two forms of false sharing you need to be aware of:

• False sharing of the partition - two completely independent data structures share the same partition. For
example, if there is a map employees and a map orders, the method employees.get("peter") running on
partition 25 may be blocked by the method orders.get(1234) also running on partition 25. If independent
data structures share the same partition, a slow operation on one data structure can slow down the other
data structures.

• False sharing of the partition-aware operation thread - each operation thread is responsible for executing
operations on a number of partitions. For example, thread 1 could be responsible for partitions 0, 10, 20, etc.
and thread-2 could be responsible for partitions 1, 11, 21, etc. If an operation for partition 1 takes a lot of
time, it blocks the execution of an operation for partition 11 because both of them are mapped to the same
operation thread.

You need to be careful with long running operations because you could starve operations of a thread. As a general
rule, the partition thread should be released as soon as possible because operations are not designed as long
running operations. That is why, for example, it is very dangerous to execute a long running operation using
AtomicReference.alter() or an IMap.executeOnKey(), because these operations block other operations to be
executed.

Currently, there is no support for work stealing. Different partitions that map to the same thread may need to wait
till one of the partitions is finished, even though there are other free partition-aware operation threads available.

Example:
Take a 3 node cluster. Two members will have 90 primary partitions and one member will have 91 primary partitions.
Let’s say you have one CPU and 4 cores per CPU. By default, 8 operation threads will be allocated to serve 90 or
91 partitions.

20.3.4.2 Operations that are Not Partition-aware

To execute operations that are not partition-aware, e.g. IExecutorService.executeOnMember(command, member),
generic operation threads are used. When the Hazelcast instance is started, an array of operation threads is created.
The size of this array has a default value of the number of cores divided by two with a minimum value of 2. It can
be changed using the hazelcast.operation.generic.thread.count property.

A non-partition-aware operation thread does not execute an operation for a specific partition. Only partition-aware
operation threads execute partition-aware operations.

Unlike the partition-aware operation threads, all the generic operation threads share the same work queue:
genericWorkQueue.

If a non-partition-aware operation needs to be executed, it is placed in that work queue and any generic operation
thread can execute it. The big advantage is that you automatically have work balancing since any generic operation
thread is allowed to pick up work from this queue.

The disadvantage is that this shared queue can be a point of contention. You may not see this contention
in production since performance is dominated by I/O and the system does not run many non-partition-aware
operations.

418 CHAPTER 20. PERFORMANCE

20.3.4.3 Priority Operations

In some cases, the system needs to run operations with a higher priority, e.g. an important system operation. To
support priority operations, Hazelcast has the following features:

• For partition-aware operations: Each partition thread has its own work queue and it also has a priority work
queue. The partition thread always checks the priority queue before it processes work from its normal work
queue.

• For non-partition-aware operations: Next to the genericWorkQueue, there is also a genericPriorityWorkQueue.
When a priority operation needs to be run, it is put in the genericPriorityWorkQueue. Like the partition-
aware operation threads, a generic operation thread first checks the genericPriorityWorkQueue for
work.

Since a worker thread blocks on the normal work queue (either partition specific or generic), a priority operation
may not be picked up because it is not put in the queue where it is blocking. Hazelcast always sends a ‘kick the
worker’ operation that
only triggers the worker to wake up and check the priority queue.

20.3.4.4 Operation-response and Invocation-future

When an Operation is invoked, a Future is returned. Please see the example code below.

GetOperation operation = new GetOperation(mapName, key);
Future future = operationService.invoke(operation);
future.get();

The calling side blocks for a reply. In this case, GetOperation is set in the work queue for the partition of key,
where it eventually is executed. Upon execution, a response is returned and placed on the genericWorkQueue
where it is executed by a “generic operation thread”. This thread signals the future and notifies the blocked thread
that a response is available. Hazelcast has a plan of exposing this future to the outside world, and we will provide
the ability to register a completion listener so you can perform asynchronous calls.

20.3.4.5 Local Calls

When a local partition-aware call is done, an operation is made and handed over to the work queue of the correct
partition operation thread, and a future is returned. When the calling thread calls get on that future, it acquires
a lock and waits for the result to become available. When a response is calculated, the future is looked up and the
waiting thread is notified.

In the future, this will be optimized to reduce the amount of expensive systems calls, such as lock.acquire()/notify()
and the expensive interaction with the operation-queue. Probably, we will add support for a caller-runs mode, so
that an operation is directly run on the calling thread.

20.4 SlowOperationDetector

The SlowOperationDetector monitors the operation threads and collects information about all slow operations.
An Operation is a task executed by a generic or partition thread (see Operation Threading). An operation is
considered as slow when it takes more computation time than the configured threshold.

The SlowOperationDetector stores the fully qualified classname of the operation and its stacktrace as well as
operation details, start time and duration of each slow invocation. All collected data is available in the Management
Center.

The SlowOperationDetector is configured via the following system properties.

20.5. HAZELCAST PERFORMANCE ON AWS 419

• hazelcast.slow.operation.detector.enabled
• hazelcast.slow.operation.detector.log.purge.interval.seconds
• hazelcast.slow.operation.detector.log.retention.seconds
• hazelcast.slow.operation.detector.stacktrace.logging.enabled
• hazelcast.slow.operation.detector.threshold.millis

Please refer to the System Properties section for explanations of these properties.

20.4.1 Logging of Slow Operations

The detected slow operations are logged as warnings in the Hazelcast log files:

WARN 2015-05-07 11:05:30,890 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
Hint: You can enable the logging of stacktraces with the following config
property: hazelcast.slow.operation.detector.stacktrace.logging.enabled

WARN 2015-05-07 11:05:30,891 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
(2 invocations)

WARN 2015-05-07 11:05:30,892 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
(3 invocations)

Stacktraces are always reported to the Management Center, but by default they are not printed to keep the log size
small. If logging of stacktraces is enabled, the full stacktrace is printed every 100 invocations. All other invocations
print a shortened version.

20.4.2 Purging of Slow Operation Logs

Since a Hazelcast cluster can run for a very long time, Hazelcast purges the slow operation logs periodically to
prevent an OOME. You can configure the purge interval and the retention time for each invocation.

The purging removes each invocation whose retention time is exceeded. When all invocations are purged from a
slow operation log, the log is deleted.

20.5 Hazelcast Performance on AWS

Amazon Web Services (AWS) platform can be an unpredictable environment compared to traditional in-house data
centers. This is because the machines, databases or CPUs are shared with other unknown applications in the cloud,
causing fluctuations. When you gear up your Hazelcast application from a physical environment to Amazon EC2,
you should configure it so that any network outage or fluctuation is minimized and its performance is maximized.
This section provides notes on improving the performance of Hazelcast on AWS.

20.5.1 Selecting EC2 Instance Type

Hazelcast is an in-memory data grid that distributes the data and computation to the nodes that are connected
with a network, making Hazelcast very sensitive to the network. Not all EC2 Instance types are the same in terms
of the network performance. It is recommended that you choose instances that have 10 Gigabit or High network
performance for Hazelcast deployments. Please see the below table for the recommended instances.

Instance Type Network Performance

m3.2xlarge High

420 CHAPTER 20. PERFORMANCE

Instance Type Network Performance

m1.xlarge High
c3.2xlarge High
c3.4xlarge High
c3.8xlarge 10 Gigabit
c1.xlarge High
cc2.8xlarge 10 Gigabit
m2.4xlarge High
cr1.8xlarge 10 Gigabit

20.5.2 Dealing with Network Latency

Since data is sent and received very frequently in Hazelcast applications, latency in the network becomes a crucial
issue. In terms of the latency, AWS cloud performance is not the same for each region. There are vast differences in
the speed and optimization from region to region.

When you do not pay attention to AWS regions, Hazelcast applications may run tens or even hundreds of times
slower than necessary. The following notes are potential workarounds.

• Create a cluster only within a region. It is not recommended that you deploy a single cluster that spans
across multiple regions.

• If a Hazelcast application is hosted on Amazon EC2 instances in multiple EC2 regions, you can reduce the
latency by serving the end users‘ requests from the EC2 region which has the lowest network latency. Changes
in network connectivity and routing result in changes in the latency between hosts on the Internet. Amazon
has a web service (Route 53) that lets the cloud architects use DNS to route end-user requests to the EC2
region that gives the fastest response. This latency-based routing is based on latency measurements performed
over a period of time. Please have a look at Route53.

• Move the deployment to another region. The CloudPing tool gives instant estimates on the latency from your
location. By using it frequently, CloudPing can be helpful to determine the regions which have the lowest
latency.

• The SpeedTest tool allows you to test the network latency and also the downloading/uploading speeds.

20.5.3 Selecting Virtualization

AWS uses two virtualization types to launch the EC2 instances: Para-Virtualization (PV) and Hardware-assisted
Virtual Machine (HVM). According to the tests we performed, HVM provided up to three times higher throughput
than PV. Therefore, we recommend you use HVM when you run Hazelcast on EC2.

Chapter 21

Hazelcast Simulator

Hazelcast Simulator is a production simulator used to test Hazelcast and Hazelcast-based applications in clustered
environments. It also allows you to create your own tests and perform them on your Hazelcast clusters and
applications that are deployed to cloud computing environments. In your tests, you can provide any property that
can be specified on these environments (Amazon EC2, Google Compute Engine(GCE), or your own environment):
properties such as hardware specifications, operating system, Java version, etc.

Hazelcast Simulator allows you to add potential production problems, such as real-life failures, network problems,
overloaded CPU, and failing nodes to your tests. It also provides a benchmarking and performance testing platform
by supporting performance tracking and also supporting various out-of-the-box profilers.

Hazelcast Simulator makes use of Apache jclouds R©, an open source multi-cloud toolkit that is primarily designed
for testing on the clouds like Amazon EC2 and GCE.

You can use Hazelcast Simulator for the following use cases:

• In your pre-production phase to simulate the expected throughput/latency of Hazelcast with your specific
requirements.

• To test if Hazelcast behaves as expected when you implement a new functionality in your project.
• As part of your test suite in your deployment process.
• When you upgrade your Hazelcast version.

Hazelcast Simulator is available as a downloadable package on the Hazelcast web site. Please refer to the Installing
Simulator section for more information.

21.1 Key Concepts

The following are the key concepts mentioned with Hazelcast Simulator.

• Test - A test class for the functionality you want to test, such as a Hazelcast map. This test class may
seem like a JUnit test, but it uses custom annotations to define methods for different test phases (e.g. setup,
warmup, run, verify).

• TestSuite - A property file that contains the name of the test class and the properties you want to set
on that test class instance. In most cases, a TestSuite contains a single test class, but you can configure
multiple tests within a single TestSuite.

• Failure - An indication that something has gone wrong. Failures are picked up by the Agent and sent back
to the Coordinator. Please see the descriptions below for the Agent and Coordinator.

• Worker - A Java Virtual Machine (JVM) responsible for running a TestSuite. It can be configured to
spawn a Hazelcast client or member instance.

421

422 CHAPTER 21. HAZELCAST SIMULATOR

• Agent - A JVM installed on a piece of hardware. Its main responsibility is spawning, monitoring and
terminating Workers.

• Coordinator - A JVM that can run anywhere, such as on your local machine. Coordinator is actually
responsible for running the test using the Agents. You configure it with a list of Agent IP addresses, and you
run it by sending a command like “run this testsuite with 10 worker JVMs for 2 hours”.

• Provisioner - Spawns and terminates cloud instances, and installs Agents on the remote machines. It can
be used in combination with EC2 (or any other cloud), but it can also be used in a static setup, such as a
local machine or a cluster of machines in your data center.

• Communicator - A JVM that enables the communication between the Agents and Workers.

• simulator.properties - The configuration file you use to adapt the Hazelcast Simulator to your business
needs (e.g. cloud selection and configuration).

21.2 Installing Simulator

Hazelcast Simulator needs a Unix shell to run. Ensure that your local and remote machines are running under Unix,
Linux or Mac OS. Hazelcast Simulator may work with Windows using a Unix-like environment such as Cygwin,
but that is not officially supported at the moment.

21.2.1 Firewall Settings

Please ensure that all remote machines are reachable via TCP ports 22, 9000 and 5701 to 5751 on their external
network interface (for example, eth0). The first two ports are used by Hazelcast Simulator. The other ports are
used by Hazelcast itself. Port 9001 is used on the loopback device on all remote machines for local communication.

21.2. INSTALLING SIMULATOR 423

21.2.2 Setting Up the Local Machine (Coordinator)

Hazelcast Simulator is provided as a separate downloadable package, in zip or tar.gz format. You can download
either one here.

After the download is completed, follow the below steps.

• Unpack the tar.gz or zip file to a folder that you prefer to be the home folder for Hazelcast Simulator.
The file extracts with the name hazelcast-simulator-<version>. (If you are updating Hazelcast Simulator,
perform this same unpacking, but skip the following steps.)

• Add the following lines to the file ~/.bashrc (for Unix/Linux) or to the file ~/.profile (for Mac OS).

export SIMULATOR_HOME=<extracted folder path>/hazelcast-simulator-<version>
PATH=$SIMULATOR_HOME/bin:$PATH

• Create a working folder for your Simulator TestSuite (tests is an example name in the following commands).

mkdir ~/tests

• Copy the simulator.properties file to your working folder.

cp $SIMULATOR_HOME/conf/simulator.properties ~/tests

21.2.3 Setting Up the Remote Machines (Agents, Workers)

After you have installed Hazelcast Simulator as described in the previous section, make sure you create a user on
the remote machines upon which you want to run Agents and Workers. The default username used by Hazelcast
Simulator is simulator. You can change this in the simulator.properties file in your working folder.

Please ensure that you can connect to the remote machines with the configured username and without password
authentication (see the next section). The Provisioner terminates when it needs to access the remote machines and
cannot connect automatically.

21.2.4 Setting Up the Public/Private Key Pair

The preferred method for password free authentication is using an RSA (Rivest,Shamir and Adleman cryptosystem)
public/private key pair. The RSA key should not require you to enter the pass-phrase manually. A key with a
pass-phrase and ssh-agent-forwarding is strongly recommended, but a key without a pass-phrase also works.

21.2.4.1 Local Machine (Coordinator)

Make sure you have the files id_rsa.pub and id_rsa in your local ~/.ssh folder.

If you do not have the RSA keys, you can generate a public/private key pair using the following command.

ssh-keygen -t rsa -C "your_email@example.com"

Press [Enter] for all questions. The value for the e-mail address is not relevant in this case. After you execute this
command, you should have the files id_rsa.pub and id_rsa in your ~/.ssh folder.

21.2.4.2 Remote Machines (Agents, Workers)

Please ensure you have appended the public key (id_rsa.pub) to the ~/.ssh/authorized_keys file on all remote
machines (Agents and Workers). You can copy the public key to all your remote machines using the following
command.

ssh-copy-id -i ~/.ssh/id_rsa.pub simulator@remote-ip-address

http://www.hazelcast.org/download

424 CHAPTER 21. HAZELCAST SIMULATOR

21.2.4.3 SSH Connection Test

You can check if the connection works as expected using the following command from the Coordinator machine (it
will print ok if everything is fine).

ssh -o BatchMode=yes simulator@remote-ip-address "echo ok" 2>&1

21.3 Setting Up For Amazon EC2

Having installed the Simulator, this section describes how to prepare the Simulator for testing a Hazelcast cluster
deployed at Amazon EC2.
To do this, copy the file SIMULATOR_HOME/conf/simulator.properties to your working folder and edit this file.
You should set the values for the following parameters that are included in this file.

• CLOUD_PROVIDER: Maven artifact ID of the cloud provider. In this case it is aws-ec2 for Amazon EC2.
Please refer to the Simulator.Properties File Description section for a full list of cloud providers.

• CLOUD_IDENTITY: The path to the file that contains your EC2 access key.
• CLOUD_CREDENTIAL: The path to the file that contains your EC2 secret key.
• MACHINE_SPEC: The parameter by which you can specify the EC2 instance type, operating system of the
instance, EC2 region, etc.

The following is an example of a simulator.properties file with the parameters explained above. For this example,
you should have created the files ~/ec2.identity and ~/ec2.credential that contain your EC2 access key and
secret key, respectively.

CLOUD_PROVIDER=aws-ec2
CLOUD_IDENTITY=~/ec2.identity
CLOUD_CREDENTIAL=~/ec2.credential
MACHINE_SPEC=hardwareId=c3.xlarge,imageId=us-east-1/ami-1b3b2472

NOTE: Creating these files in your working folder instead of just setting the access and secret keys in the
simulator.properties file is for security reasons. It is too easy to share your credentials with the outside world;
now you can safely add the simulator.properties file in your source repository or share it with other people.

NOTE: For the full description of the simulator.properties file, please refer to the Simulator.Properties
File Description section.

21.4 Setting Up For Google Compute Engine

To prepare the Simulator for testing a Hazelcast cluster deployed at Google Compute Engine (GCE), first you
need an e-mail address to be used as a GCE service account. You can obtain this e-mail address in the Admin
GUI console of GCE. In this console, select Credentials in the menu API & Auth. Then, click the Create
New Client ID button and select Service Account. Usually, this e-mail address is in this form: <your account
ID>@developer.gserviceaccount.com.
Save the p12 keystore file that you obtained while creating your Service Account (you will refer to that path). In
the bin folder of the Hazelcast Simulator package that you downloaded, edit the setupGce.sh script to specify the
following parameters:

• GCE_id: Your developer e-mail address that you obtained in the Admin GUI console of GCE.
• p12File: The path to your p12 file you saved while you were obtaining your developer e-mail address.

After you run the edited setupGce.sh script, the simulator.properties file that you need for a proper testing of
your instances on GCE is created in the conf folder of Hazelcast Simulator.

21.5. SETTING UP MACHINES MANUALLY 425

21.5 Setting Up Machines Manually

You may want to set up Hazelcast Simulator on the environments different than your clusters placed on a cloud:
for example, your local machines, a test laboratory, etc. In this case, perform the following steps.

1. Copy the SIMULATOR_HOME/conf/simulator.properties to your working directory.

2. Change CLOUD_PROVIDER to ‘static’

3. Edit the USER in the simulator.properties file if you want to use a different user name than simulator.

4. Create an RSA key pair or use an existing one. Using the key should not require entering the pass-phrase
manually. A key with pass-phrase and ssh-agent-forwarding is strongly recommended, but a key without a
pass-phrase will also work.

You can check whether a key pair exists with this command:

ls -al ~/.ssh If it does not exist, you can create a key pair on the client machine with this command:

ssh-keygen -t rsa

You will get a few more questions:

* Enter a file in which to save the key (/home/demo/.ssh/id_rsa):
* Enter a pass-phrase (empty for no pass-phrase): (pass-phrase is optional)

5. Copy the public key into the ~/.ssh/authorized_keys file on the remote machines with this command:

ssh-copy-id user@123.45.56.78

6. Create the agents.txt file and add the IP addresses of the machines. The content of the agents.txt file
with the IP addresses added looks like the following:

98.76.65.54 10.28.37.46

7. Run the command provisioner --restart to verify.

NOTE: For the full description of the simulator.properties file, please refer to the Simulator.Properties
File Description section.

21.6 Executing a Simulator Test

After you install and prepare the Hazelcast Simulator for your environment, it is time to perform a test. In the
following sections, you are going to verify the setup by running a simple map test with strings as keys and values.

You can start with creating the working folder.

mkdir simulator-example

A path of working folder needs to be visible in the output of the provisioner/coordinator.

426 CHAPTER 21. HAZELCAST SIMULATOR

21.6.1 Creating and Editing Properties File

You need to create the file test.properties in the working folder. Execute the following command to create and
edit this file.

cat > test.properties

Copy the following lines into the file test.properties.

class=com.hazelcast.simulator.tests.map.StringStringMapTest
threadCount=10
keyLocality=Random
keyLength=300
valueLength=300
keyCount=100000
putProb=0.2
basename=map

The property class defines the actual test case and the rest are the properties you want to bind to your test. If a
property is not defined in this file, the default value of the property given in your test code is used. Please see the
properties comment in the StringStringMapTest. You will see the following.

// properties
public int keyLength = 10;
public int valueLength = 10;
public int keyCount = 10000;
public int valueCount = 10000;
public String basename = "stringStringMap";
public KeyLocality keyLocality = KeyLocality.RANDOM;
public int minNumberOfMembers = 0;

After you created the file test.properties and set your properties successfully, you need to configure the simulator
using the file simulator.properties.

Execute the following command to create and edit this file.

cat > simulator.properties

Copy the following lines into this file and set the properties.

CLOUD_PROVIDER=aws-ec2
CLOUD_IDENTITY=~/ec2.identity
CLOUD_CREDENTIAL=~/ec2.credential
MACHINE_SPEC=hardwareId=m3.medium,locationId=us-east-1,imageId=us-east-1/ami-fb8e9292
JDK_FLAVOR=oracle
JDK_VERSION=7

Please refer to here for information on CLOUD_IDENTITY and CLOUD_CREDENTIAL.

NOTE: For a full description of the file simulator.properties, please see the Simulator.Properties File Descrip-
tion section. You can find the sample simulator properties in the dist/simulator-tests/simulator.properties.
You can also copy this file to the working folder and then edit according to your needs.

21.6. EXECUTING A SIMULATOR TEST 427

21.6.2 Running the Test

When in the working folder, execute the following commands step by step to run the test.

1. Starting Instances

First of all, you need agents to run the test on them. Execute the following command to start 4 EC2 instances and
install Java and the agents to these instances.

provisioner --scale 4

The output of the command looks like the following.

INFO 09:05:06 Hazelcast Simulator Provisioner
INFO 09:05:06 Version: 0.5, Commit: c6e82c5, Build Time: 18.06.2015 @ 11:58:06 UTC
INFO 09:05:06 SIMULATOR_HOME: /disk1/hazelcast-simulator-0.5
INFO 09:05:07 Loading simulator.properties: /disk1/exampleSandbox/simulator.properties
INFO 09:05:07 ==
INFO 09:05:07 Provisioning 4 aws-ec2 machines
INFO 09:05:07 ==
INFO 09:05:07 Current number of machines: 0
INFO 09:05:07 Desired number of machines: 4
INFO 09:05:07 Using init script:/disk1/hazelcast-simulator-0.5/conf/init.sh
INFO 09:05:07 JDK spec: oracle 7
INFO 09:05:07 Hazelcast version-spec: outofthebox
INFO 09:05:11 Created compute
INFO 09:05:11 Machine spec: hardwareId=m3.medium,locationId=us-east-1,imageId=us-east-1/ami-fb8e9292
INFO 09:05:18 Created template
INFO 09:05:18 Login name to the remote machines: simulator
INFO 09:05:18 Security group: ’simulator’ is found in region ’us-east-1’
INFO 09:05:18 Creating machines... (can take a few minutes)
INFO 09:06:18 54.211.146.186 LAUNCHED
INFO 09:06:18 54.166.1.79 LAUNCHED
INFO 09:06:18 54.147.196.63 LAUNCHED
INFO 09:06:18 54.144.235.111 LAUNCHED
INFO 09:06:30 54.211.146.186 JAVA INSTALLED
INFO 09:06:32 54.166.1.79 JAVA INSTALLED
INFO 09:06:32 54.144.235.111 JAVA INSTALLED
INFO 09:06:34 54.147.196.63 JAVA INSTALLED
INFO 09:06:40 54.166.1.79 SIMULATOR AGENT INSTALLED
INFO 09:06:40 Killing Agent on: 54.166.1.79
INFO 09:06:40 Starting Agent on: 54.166.1.79
INFO 09:06:40 54.211.146.186 SIMULATOR AGENT INSTALLED
INFO 09:06:40 Killing Agent on: 54.211.146.186
INFO 09:06:40 54.166.1.79 SIMULATOR AGENT STARTED
INFO 09:06:40 Starting Agent on: 54.211.146.186
INFO 09:06:40 54.211.146.186 SIMULATOR AGENT STARTED
INFO 09:06:42 54.144.235.111 SIMULATOR AGENT INSTALLED
INFO 09:06:42 Killing Agent on: 54.144.235.111
INFO 09:06:42 Starting Agent on: 54.144.235.111
INFO 09:06:43 54.144.235.111 SIMULATOR AGENT STARTED
INFO 09:06:47 54.147.196.63 SIMULATOR AGENT INSTALLED
INFO 09:06:47 Killing Agent on: 54.147.196.63
INFO 09:06:47 Starting Agent on: 54.147.196.63
INFO 09:06:47 54.147.196.63 SIMULATOR AGENT STARTED
INFO 09:06:47 Pausing for machine warmup... (10 sec)
INFO 09:06:57 Duration: 00d 00h 01m 49s
INFO 09:06:57 ==
INFO 09:06:57 Successfully provisioned 4 aws-ec2 machines

428 CHAPTER 21. HAZELCAST SIMULATOR

INFO 09:06:57 ==
INFO 09:06:57 Shutting down Provisioner...
INFO 09:06:57 Done!

You can also see the file agents.txt that was created automatically by the provisioner in the working folder.
The file agents.txt includes IP addresses of the started EC2 instances. You can see this file’s content using the
following command.

less agents.txt

First column lists the public IP addresses and the second one lists the private IP addresses. A public IP address is
used for the communication between the coordinator and agent. A private IP address is used for the communications
between client and member and also between member and member. A private IP address cannot be connected to
from the outside of EC2 environment.

2. Running the Test Suite

After you created the instances and agents are installed to them, execute the following command to run your test
suite.

coordinator test.properties

Please refer to the Coordinator section for detailed information about the arguments of coordinator.

The output looks like the following.

INFO 09:57:17 Hazelcast Simulator Coordinator
INFO 09:57:17 Version: 0.5, Commit: c6e82c5, Build Time: 02.07.2015 @ 09:50:21 UTC
INFO 09:57:17 SIMULATOR_HOME: /disk1/hazelcast-simulator-0.5
INFO 09:57:17 Loading simulator.properties: /disk1/exampleSandbox/simulator.properties
INFO 09:57:17 Loading testsuite file: /disk1/exampleSandbox/test.properties
INFO 09:57:17 Loading Hazelcast configuration: /disk1/hazelcast-simulator-0.5/conf/hazelcast.xml
INFO 09:57:17 Loading Hazelcast client configuration: /disk1/hazelcast-simulator-0.5/conf/client-hazelcast.xml
INFO 09:57:17 Loading Log4j configuration for worker: /disk1/hazelcast-simulator-0.5/conf/worker-log4j.xml
INFO 09:57:17 Loading agents file: /disk1/exampleSandbox/agents.txt
INFO 09:57:17 HAZELCAST_VERSION_SPEC: maven=3.5
INFO 09:57:17 --
INFO 09:57:17 Waiting for agents to start
INFO 09:57:17 --
INFO 09:57:17 Connect to agent 54.211.146.186 OK
INFO 09:57:17 Connect to agent 54.166.1.79 OK
INFO 09:57:17 Connect to agent 54.147.196.63 OK
INFO 09:57:17 Connect to agent 54.144.235.111 OK
INFO 09:57:17 --
INFO 09:57:17 All agents are reachable!
INFO 09:57:17 --
INFO 09:57:21 Performance monitor enabled: false
INFO 09:57:21 Total number of agents: 4
INFO 09:57:21 Total number of Hazelcast member workers: 4
INFO 09:57:21 Total number of Hazelcast client workers: 0
INFO 09:57:21 Agent 54.211.146.186 members: 1 clients: 0 mode: MIXED
INFO 09:57:21 Agent 54.166.1.79 members: 1 clients: 0 mode: MIXED
INFO 09:57:21 Agent 54.147.196.63 members: 1 clients: 0 mode: MIXED
INFO 09:57:21 Agent 54.144.235.111 members: 1 clients: 0 mode: MIXED
INFO 09:57:21 Killing all remaining workers
INFO 09:57:21 Successfully killed all remaining workers
INFO 09:57:21 Starting 4 member workers
INFO 09:57:41 Successfully started member workers

21.6. EXECUTING A SIMULATOR TEST 429

INFO 09:57:41 Skipping client startup, since no clients are configured
INFO 09:57:41 Successfully started a grand total of 4 Workers JVMs after 20120 ms
INFO 09:57:41 Starting testsuite: 2015-07-02__09_57_17
INFO 09:57:41 Tests in testsuite: 1
INFO 09:57:41 Running time per test: 00d 00h 01m 00s
INFO 09:57:41 Expected total testsuite time: 00d 00h 01m 00s
INFO 09:57:41 Running 1 tests sequentially
INFO 09:57:41 --
Running Test:
TestCase{

id=
, class=com.hazelcast.simulator.tests.map.StringStringMapTest
, keyCount=100000
, keyLength=300
, keyLocality=Random
, putProb=0.2
, threadCount=10
, valueLength=300

}
--
INFO 09:57:41 Starting Test initialization
INFO 09:57:42 Completed Test initialization
INFO 09:57:42 Starting Test setup
INFO 09:57:44 Completed Test setup
INFO 09:57:44 Starting Test local warmup
INFO 09:57:46 Waiting for localWarmup completion: 00d 00h 00m 00s
INFO 09:57:52 Waiting for localWarmup completion: 00d 00h 00m 06s
INFO 09:57:57 Waiting for localWarmup completion: 00d 00h 00m 12s
INFO 09:58:03 Waiting for localWarmup completion: 00d 00h 00m 18s
INFO 09:58:09 Waiting for localWarmup completion: 00d 00h 00m 24s
INFO 09:58:15 Waiting for localWarmup completion: 00d 00h 00m 30s
INFO 09:58:20 Waiting for localWarmup completion: 00d 00h 00m 35s
INFO 09:58:26 Waiting for localWarmup completion: 00d 00h 00m 41s
INFO 09:58:32 Completed Test local warmup
INFO 09:58:32 Starting Test global warmup
INFO 09:58:33 Completed Test global warmup
INFO 09:58:33 Starting Test start
INFO 09:58:34 Completed Test start
INFO 09:58:34 Test will run for 00d 00h 01m 00s
INFO 09:59:04 Running 00d 00h 00m 30s 50.00% complete
INFO 09:59:34 Running 00d 00h 01m 00s 100.00% complete
INFO 09:59:34 Test finished running
INFO 09:59:34 Starting Test stop
INFO 09:59:36 Completed Test stop
INFO 09:59:37 Starting Test global verify
INFO 09:59:39 Completed Test global verify
INFO 09:59:39 Starting Test local verify
INFO 09:59:41 Completed Test local verify
INFO 09:59:41 Starting Test global tear down
INFO 09:59:43 Finished Test global tear down
INFO 09:59:43 Starting Test local tear down
INFO 09:59:45 Completed Test local tear down
INFO 09:59:45 Terminating workers
INFO 09:59:45 All workers have been terminated
INFO 09:59:45 Starting cool down (10 sec)
INFO 09:59:55 Finished cool down
INFO 09:59:55 Total running time: 133 seconds
INFO 09:59:55 ---

430 CHAPTER 21. HAZELCAST SIMULATOR

INFO 09:59:55 No failures have been detected!
INFO 09:59:55 ---

3. Downloading the Results
Now you need the logs and results that the workers generated. You can get these requirements from agents via
provisioner.

provisioner --download

The output looks like the following.

INFO 10:05:41 Hazelcast Simulator Provisioner
INFO 10:05:41 Version: 0.5, Commit: c6e82c5, Build Time: 02.07.2015 @ 09:50:21 UTC
INFO 10:05:41 SIMULATOR_HOME: /disk1/hazelcast-simulator-0.5
INFO 10:05:41 Loading simulator.properties: /disk1/exampleSandbox/simulator.properties
INFO 10:05:42 ==
INFO 10:05:42 Download artifacts of 4 machines
INFO 10:05:42 ==
INFO 10:05:42 Downloading from 54.211.146.186
INFO 10:05:42 Downloading from 54.166.1.79
INFO 10:05:42 Downloading from 54.147.196.63
INFO 10:05:42 Downloading from 54.144.235.111
INFO 10:05:43 ==
INFO 10:05:43 Finished Downloading Artifacts of 4 machines
INFO 10:05:43 ==
INFO 10:05:43 Shutting down Provisioner...
INFO 10:05:43 Done!

The artifacts (log files) are downloaded into the workers subfolder of the working folder.
4. Terminating the Instances
If want to terminate the instances, execute the following command.

provisioner --terminate

If an EC2 machine with an agent running is idle for 2 hours, that machine will automatically terminate itself to
prevent running into a big bill.
The output looks like the following.

INFO 10:26:46 Hazelcast Simulator Provisioner
INFO 10:26:46 Version: 0.5, Commit: c6e82c5, Build Time: 02.07.2015 @ 09:50:21 UTC
INFO 10:26:46 SIMULATOR_HOME: /disk1/hazelcast-simulator-0.5
INFO 10:26:46 Loading simulator.properties: /disk1/exampleSandbox/simulator.properties
INFO 10:26:46 ==
INFO 10:26:46 Terminating 4 aws-ec2 machines (can take some time)
INFO 10:26:46 ==
INFO 10:26:46 Current number of machines: 4
INFO 10:26:46 Desired number of machines: 0
INFO 10:27:10 54.211.146.186 Terminating
INFO 10:27:10 54.147.196.63 Terminating
INFO 10:27:10 54.144.235.111 Terminating
INFO 10:27:10 54.166.1.79 Terminating
INFO 10:28:13 Updating /disk1/exampleSandbox/agents.txt
INFO 10:28:13 Duration: 00d 00h 01m 27s
INFO 10:28:13 ==
INFO 10:28:13 Terminated 4 of 4, remaining=0
INFO 10:28:13 ==
INFO 10:28:13 Shutting down Provisioner...
INFO 10:28:13 Done!

21.6. EXECUTING A SIMULATOR TEST 431

21.6.3 Running the Test with a Script

Another option to run the test is using a script. Execute the following command to create a script called, for
example, run.sh.

cat > run.sh

This option is for your convenience. It gathers all the commands used to perform a test into one script. The
following is the content of this example run.sh script.

#!/bin/bash
set -e
provisioner --scale 4
coordinator test.properties
provisioner --download

Note that you should make the script run.sh executable executing the following command.

chmod +x run.sh

RELATED INFORMATION

Please see the Provisioner section and the Coordinator section for more provisioner and coordinator commands.

21.6.4 Using Maven Archetypes

Alternatively, you can execute tests using the Simulator archetype. Please see the following.

mvn archetype:generate \
-DarchetypeGroupId=com.hazelcast.simulator \
-DarchetypeArtifactId=archetype \
-DarchetypeVersion=0.5 \
-DgroupId=yourgroupid \
-DartifactId=yourproject

This creates a fully working Simulator project, including the test having yourgroupid.

1. After this project is generated, go to the created folder and execute the following command.

mvn clean install

2. Then, go to your working folder.

cd <working folder>

3. Edit the simulator.properties file as explained in the Simulator.Properties File Description section.

4. Run the test from your working folder using the following command.

./run.sh

The output is the same as shown in the Running the Test section.

432 CHAPTER 21. HAZELCAST SIMULATOR

21.7 Provisioner

The provisioner is responsible for provisioning (starting/stopping) instances in a cloud. It will start an Operating
System instance, install Java, open firewall ports and install Simulator Agents.

You can configure the behavior of the cluster—such as cloud, operating system, hardware, JVM version, Hazelcast
version or region—through the file simulator.properties. Please see the Simulator.Properties File Description
section for more information.

You can use the following arguments with the provisioner.

To start a cluster:

provisioner --scale 1

To scale to a 2 member cluster:

provisioner --scale 2

To scale back to a 1 member cluster:

provisioner --scale 1

To terminate all members in the cluster:

provisioner --terminate

or

provisioner --scale 0

If you want to restart all agents and also upload the newest JARs to the machines:

provisioner --restart

To download all the worker home folders (containing logs and whatever has been put inside):

provisioner --download

This command is also useful if you added a profiling because the profiling information will also be downloaded. The
command is also useful when an out of memory exception is thrown because you can download the heap dump.

To remove all the worker home directories:

provisioner --clean

21.7.1 Accessing the Provisioned Machine

When a machine is provisioned, a user with the name simulator is created on the remote machine by default, and
that user is added to the sudousers list. Also, the public key of your local user is copied to the remote machine and
added to the file ~/.ssh/authorized_keys. You can login to that machine using the following command.

ssh simulator@ip

You can change the name of the created user to something else by setting the USER=<somename> property in the file
simulator.properties. Be careful not to pick a name that is used on the target image: for example, if you use
ec2-user/ubuntu, and the default user of that image is ec2-user/ubuntu, then you can run into authentication
problems.

21.8. COORDINATOR 433

21.8 Coordinator

The Coordinator is responsible for actually running the test using the agents.

You can deploy your test on the workers using the following command.

coordinator yourtest.properties.

This command creates a single worker per agent and runs the test for 60 seconds (the default duration for a
Hazelcast Simulator test).

If your test properties file is called test.properties, then you can use the following command to have the
coordinator pick up your test.properties file automatically.

coordinator

21.8.1 Controlling Hazelcast Declarative Configuration

By default, the coordinator uses the files SIMULATOR_HOME/conf/hazelcast.xml and SIMULATOR_HOME/conf/
client-hazelcast.xml to generate the correct Hazelcast configuration. To use your own configuration files instead,
use the following arguments:

coordinator --clientHzFile=your-client-hazelcast.xml --hzFile your-hazelcast.xml

21.8.2 Controlling Test Duration

You can control the duration of a single test using the --duration argument. The default duration is 60 seconds.
You can specify your own durations using m for minutes, d for days or s for seconds with this argument.

You can see the usage of the --duration argument in the following example commands.

coordinator --duration 90s map.properties

coordinator --duration 3m map.properties

coordinator --duration 12h map.properties

coordinator --duration 2d map.properties

21.8.3 Controlling Client And Workers

By default, the provisioner starts the cluster members. You can also use the --memberWorkerCount and
--clientWorkerCount arguments to control how many members and clients you want to have.

The following command creates a 4 node Hazelcast cluster and 8 clients, and all load will be generated through the
clients. It also runs the map.properties test for a duration of 12 hours.

coordinator --memberWorkerCount 4 --clientWorkerCount 8 --duration 12h map.properties

Profiles are usually configured with some clients and some members. If you want to have members and no clients:

coordinator --memberWorkerCount 12 --duration 12h map.properties

If you want to have a JVM with embedded client plus member and all communication goes through the client:

434 CHAPTER 21. HAZELCAST SIMULATOR

coordinator --mixedWorkerCount 12 --duration 12h map.properties

If you want to run 2 member JVMs per machine:

coordinator --memberWorkerCount 24 --duration 12h map.properties

As you notice, you can play with the actual deployment.

21.9 Communicator

Communicator enables you to pass messages to Agents, Workers and Tests. You can use messages to simulate
various conditions: for example, Hazelcast discomforts like network partitioning and high CPU utilization.

21.9.1 Example

$ communicator --message-address Agent=*,Worker=* spinCore

This will send the message spinCore to all Workers.

Each interaction with Communicator has to specify:

• Message Type
• Message Address

21.9.2 Message Types

• kill - Kills a JVM running a message recipient. In practice, you probably want to send this message to
Worker(s) only. The reason for this is you rarely want to kill an Agent and it does not make sense to send
this to just a single test; it would kill other tests sharing the same JVM as well.

• blockHzTraffic - Blocks the incoming traffic to TCP port range 5700:5800.
• newMember - Starts a new member. You can send this message to Agents only.
• softKill - Instructs a JVM that is running a message recipient to exit.
• spinCore - Starts a new busy-spinning thread. You can use it to simulate increased CPU consumption.
• unblockTraffic - Open ports blocked by the blockHzTraffic message.
• oom - Forces a message recipient to use all memory and cause an OutOfMemoryError.
• terminateWorker - Terminates a random Worker. This message type can be targeted to an Agent only.

21.9.3 Message Addressing

You can send a message to Agent, Worker or Test. These resources create a naturally hierarchy, making the
messaging address hierarchical as well.

Syntax: Agent=<mode>[,Worker=<mode>[,Test=<mode>]].

Mode can be either ’*‘for broadcast or ’R’ for a single random destination.

Addressing Example 1:

Agent=*,Worker=R: A message will be routed to all agents, then each agent will pass it to a single random worker,
and each worker will pass the message for processing.

Addressing Example 2:

Agent=*,Worker=R,Test=*: A message will be routed to all agents, then each agent will pass the message to a
single random worker and workers will pass the message to all tests for processing.

21.10. SIMULATOR.PROPERTIES FILE DESCRIPTION 435

21.9.3.1 Addressing Shortcuts

Hierarchical addressing is powerful, but it can be quite verbose. You can use convenient shortcuts, as shown below.

• --oldest-member: Sends a message to a worker with the oldest cluster member.
• --random-agent: Sends a message to a random agent.
• --random-worker: Sends a message to a random worker.

Example: The following command starts a busy-spinning thread in a JVM running a random Worker.

communicator --random-worker spinCore

21.10 Simulator.Properties File Description

The file simulator.properties is placed at the conf folder of your Hazelcast Simulator. This file is used to
prepare the Simulator tests for their proper executions according to your business needs.

NOTE: Currently, the main focuses are on the Simulator tests of Hazelcast on Amazon EC2 and Google
Compute Engine (GCE). For the preparation of simulator.properties for GCE, please refer to the Setting Up
For GCE section. The following simulator.properties file description is mainly for Amazon EC2.

This file includes the following parameters.

• CLOUD_PROVIDER: The Maven artifact ID of your cloud provider. For example, it is aws-ec2 if you are going
to test your Hazelcast on Amazon EC2. For the full list of supported clouds, please refer to here.

• CLOUD_IDENTITY: The full path of the file containing your AWS access key.
• CLOUD_CREDENTIAL: The full path of the file containing your AWS secret key.
• CLOUD_POLL_INITIAL_PERIOD: The time in milliseconds between the requests (polls) from jclouds R© to your
cloud. Its default value is 50.

• CLOUD_POLL_MAX_PERIOD: The maximum time in milliseconds between the polls to your cloud. Its default
value is 1000.

• CLOUD_BATCH_SIZE: The number of machines to be started/terminated in one go. For Amazon EC2, its
acceptable value is 20.

• GROUP_NAME: The prefix for the agent name. You may want to give different names for different test clusters.
For GCE, you need to be very careful using multiple group names, since for every port and every group name,
a firewall rule is made and you can only have 100 firewall rules. If the name contains ${username}, this
section will be replaced by the actual user that runs the test. This makes it very easy to identify which user
owns a certain machine.

• USER: The name of the user on your local machine. jclouds R© automatically creates a new user on the remote
machine with this name as the login name. It also copies the public key of your system to the remote machine
and adds it to the file ~/.ssh/authorized_keys. Therefore, once the instance is created, you can login with
the command ssh <USER>@<IP address>. Its default value is simulator.

• SSH_OPTIONS: The options added to SSH. You do not need to change these options.
• SECURITY_GROUP: The name of the security group that includes the instances created for the Simulator test.
For Amazon EC2, this group will be created automatically if it does not exist. If you do not specify a
region for the parameter MACHINE_SPEC (using the locationId attribute), the region will be us-east-1. If a
security group already exists, please make sure the ports 22, 9000, 9001 and the ports between 5701 and 5751
are open. For GCE, this parameter is not used.

• SUBNET_ID: The VPC Subnet ID for Amazon EC2. If this value is different from default, then the instances
will be created in EC2 VPC and the parameter SECURITY_GROUP will be ignored. For GCE, this parameter is
not used.

• MACHINE_SPEC: Specifications of the instance to be created. You can specify attributes such as the operating
system, Amazon Machine Image (AMI), hardware properties, EC2 instance type and EC2 region. Please see the
Setting Up For EC2 section for an example MACHINE-SPEC value and please refer to the TemplateBuilderSpec
class of the org.jclouds.compute.domain package at jclouds R© JavaDoc for a full list of machine specifications.
Please refer to Amazon EC2 for more information, such as for Amazon EC2 instance types.

436 CHAPTER 21. HAZELCAST SIMULATOR

• HAZELCAST_VERSION_SPEC: The workers can be configured to use a specific version of Hazelcast. By this
way, you do not need to depend on the Hazelcast version provided by the simulator. You can configure the
Hazelcast version in one of the following ways:

– outofthebox: This is the default value provided by the Simulator itself.
– maven=<version>: Used to give a specific version from the maven repository (for examples, maven=3.2,

maven=3.3-SNAPSHOT). Local Hazelcast artifacts will be preferred, so you can checkout, for example, an
experimental branch and build the artifacts locally. This will all be done on the local machine, not on
the agent machine.

– bringmyown: Used to specify your own dependencies. For more information on the values, please see the
--workerClassPath setting of the Controller.

– git=<version>: If you want the Simulator to use a specific version of Hazelcast from GIT, you can
use this parameter (for example, git=f0288f713 to build a specific revision, or git=v3.2.3 to build a
version from a GIT tag, or git=<your repository>/<your branch> to build a version from a branch
in a specific repository). Use the parameter GIT_CUSTOM_REPOSITORIES to specify custom repositories,
explained below. The main Hazelcast repository is always named as origin.

• GIT_BUILD_DIR: When you set the parameter HAZELCAST_VERSION_SPEC to git=<version>, the Hazelcast
sources will be downloaded to this directory. Its default value is $HOME/.hazelcast-build/

• GIT_CUSTOM_REPOSITORIES: Comma separated list of additional GIT repositories to be fetched. Use this
parameter when you set the parameter HAZELCAST_VERSION_SPEC to git=<version> and specify additional
repositories. Hazelcast Simulator will always fetch the repository at https://github.com/hazelcast/hazelcast.
This parameter specifies additional repositories. You can use both remote and local repositories. Remote
repositories must be accessible for anonymous and local repositories must be accessible for the current user.
Its default value is empty. Only the main Hazelcast repository is used by default.

• MVN_EXECUTABLE: This parameter specifies the path to a local Maven installation when you set the parameter
HAZELCAST_VERSION_SPEC to git=<version>. Its default value is /usr/bin/mvn.

• JDK_FLAVOR: Available flavors are oracle, openjdk, ibm and outofthebox. outofthebox is the one provided
by the image so no software is installed by the Simulator. If you select a flavor different than outofthebox,
the currect behavior is that only 64-bit JVMs are going to be installed. Therefore, make sure that your
operating system is 64-bit.

• JDK_64_BITS: Specifies whether a 64-bit JVM should be installed or not. For now, only true is allowed.
• JDK_VERSION: The version of Java to be installed. Oracle and IBM support 6, 7, and 8. OpenJDK supports 6
and 7.

• PROFILER: The worker can be configured with a profiler. Available options are none, yourkit, hprof, perf,
vtune and flightrecorder. The yourkit profiles currently only work on 64-bit Linux (there is no support
for Windows or Mac).

• FLIGHTRECORDER_SETTINGS: Includes the settings for the flightrecorder profiler. For options, please refer
to here.

• YOURKIT_SETTINGS: Includes the settings for the yourkit profiler. When yourkit is enabled, a snapshot is
created and put in the worker home directory. Therefore, when the artifacts are downloaded, the snapshots
are included and can be loaded with your Yourkit GUI. Make sure that the path matches the JVM 32/64
bits. The files libypagent.so, which are included in the Simulator, are for YourKit Java Profiler 2013. For
more information on the Yourkit setting, please refer to here and here.

• HPROF_SETTINGS: Includes the settings for the hprof profiler, which is a part of the JDK. By default, the
file java.hprof.txt is created in the worker directory. This file can be downloaded using the command
provisioner --download after a test has run. For configuration options, please refer to here.

• PERF_SETTINGS: Includes the settings for the perf profiler, available only for Linux. For more information,
please see https://perf.wiki.kernel.org/index.php/Tutorial#Sampling_with_perf_record.

• VTUNE_SETTINGS: Includes the settings for the vtune profiler. It requires Intel VTune to be installed on the
system. For more information, please refer to here.

21.11 Performance and Benchmarking

Hazelcast Simulator can use probes to record throughput and latency while running a test. Hazelcast Simulator
can inject a probe into a test, and then it is the responsibility of the test to notify the probe about the start/end of
each action.

21.11. PERFORMANCE AND BENCHMARKING 437

There are two classes of probes:

• SimpleProbe: Counts the number of events. It does not have a notion of start/end.
• IntervalProbe: Differentiates between start/end of an action. Used to measure latency.

How to use probes is explained below.

1. Define a probe as a test property. Hazelcast Simulator will inject the appropriate probe implementation.
public class IntIntMapTest { private static final ILogger log = Logger.getLogger(IntIntMapTest.class);
private enum Operation { PUT, GET } [...] // Probes will be injected by Hazelcast Simulator
public IntervalProbe intervalProbe; public IntervalProbe anotherIntervalProbe; public
SimpleProbe simpleProbe;

2. Use the probe in your test code.
getLatency.started(); map.get(key); getLatency.done();

3. Configure the probe in your test.properties file.
probe-intervalProbe=throughput probe-simpleProbe=throughput

The configuration format is probe-<nameOfField>=<type>, where nameOfField is the name you choose for the
probe, and type is the type of probe. Please keep in mind that this format is likely to change in future versions of
Hazelcast Simulator.

A probe of class IntervalProbe can have the following types.

• latency: Measures the latency distribution.
• maxLatency: Records the highest latency. Unlike the previous probe, it records only the single highest latency
measured, not a full distribution.

• hdr: Same as latency, but it uses HdrHistogram under the hood. This will replace the latency probe in future
versions of Simulator.

• disabled: Dummy probe. It does not record anything.

A probe of class SimpleProbe can have the following implementations.

• throughput: Measures throughput.
• disabled: Dummy probe. It does not record anything.

It is important to understand that the class of a probe does not mandate what the probe is actually measuring.
Therefore, the tests just know a class of probe, but they do not know if the probe generates, for example, a full
latency histogram or just a maximum recorded latency. This detail must be implemented from a point of view of a
test.

438 CHAPTER 21. HAZELCAST SIMULATOR

Chapter 22

WAN

Hazelcast Enterprise

This chapter explains how you can replicate the state of your clusters over Wide Area Network (WAN) environments.

RELATED INFORMATION

You can download the white paper Hazelcast on AWS: Best Practices for Deployment from Hazelcast.com.

22.1 WAN Replication

There are cases where you need to synchronize multiple clusters to the same state. Synchronization of clusters, also
known as WAN Replication, is mainly used for replicating state of different clusters over WAN environments like
the Internet.

Imagine you have different data centers in New York, London and Tokyo each running an independent Hazelcast
cluster. Every cluster would be operating at native speed in their own LAN (Local Area Network), but you also
want some or all recordsets in these clusters to be replicated to each other: updates in the Tokyo cluster should
also replicate to London and New York, in the meantime updates in the New York cluster are synchronized to the
Tokyo and London clusters.

22.1.1 Defining WAN Replication

The current WAN Replication implementation supports two different operation modes.

• Active-Passive: This mode is mostly used for failover scenarios where you want to replicate an active cluster
to one or more passive clusters, for the purpose of maintaining a backup.

• Active-Active: Every cluster is equal, each cluster replicate to all other clusters. This is normally used to
connect different clients to different clusters for the sake of the shortest path between client and server.

Let’s see how we can declaratively configure WAN Replication from the New York cluster to target the London and
Tokyo clusters:

<hazelcast>
...

<!-- No Delay Replication Configuration -->
<wan-replication name="my-wan-cluster">
<target-cluster group-name="tokyo" group-password="tokyo-pass">

<replication-impl>
com.hazelcast.enterprise.wan.replication.WanNoDelayReplication

</replication-impl>

439

440 CHAPTER 22. WAN

<end-points>
<address>10.2.1.1:5701</address>
<address>10.2.1.2:5701</address>

</end-points>
</target-cluster>

</wan-replication>

<!-- Batch Replication Configuration -->
<wan-replication name="my-wan-cluster-batch" snapshot-enabled="false">
<target-cluster group-name="london" group-password="london-pass">
<replication-impl>

com.hazelcast.enterprise.wan.replication.WanBatchReplication
</replication-impl>
<end-points>
<address>10.3.5.1:5701</address>
<address>10.3.5.2:5701</address>

</end-points>
</target-cluster>

</wan-replication>
...
</hazelcast>

The following are the definitions for the configuration elements:

• name: Name for your WAN replication configuration.
• snapshot-enabled: Only valid when used with WanBatchReplication. When set to true, only the latest
events (based on key) are selected and sent in a batch.

• target-cluster: Configures target cluster’s group name and password.
• replication-impl: Name of the class implementation for the WAN replication.
• end-points: IP addresses of the cluster members for which the WAN replication is implemented.

And the following is the equivalent programmatic configuration snippet:

Config config = new Config();

//No delay replication config
WanReplicationConfig wrConfig = new WanReplicationConfig();
WanTargetClusterConfig wtcConfig = wrConfig.getWanTargetClusterConfig();

wrConfig.setName("my-wan-cluster");
wtcConfig.setGroupName("tokyo").setGroupPassword("tokyo-pass");
wtcConfig.setReplicationImpl("com.hazelcast.enterprise.wan.replication.WanNoDelayReplication");

List<String> endpoints = new ArrayList<String>();
endpoints.add("10.2.1.1:5701");
endpoints.add("10.2.1.1:5701");
wtcConfig.setEndpoints(endpoints);
config.addWanReplicationConfig(wrConfig);

//Batch Replication Config
WanReplicationConfig wrConfig = new WanReplicationConfig();
WanTargetClusterConfig wtcConfig = wrConfig.getWanTargetClusterConfig();

wrConfig.setName("my-wan-cluster-batch");
wrConfig.setSnapshotEnabled(false);
wtcConfig.setGroupName("london").setGroupPassword("london");
wtcConfig.setReplicationImpl("com.hazelcast.enterprise.wan.replication.WanBatchReplication");

22.1. WAN REPLICATION 441

List<String> batchEndpoints = new ArrayList<String>();
batchEndpoints.add("10.3.5.1:5701");
batchEndpoints.add("10.3.5.2:5701");
wtcConfig.setEndpoints(batchEndpoints);
config.addWanReplicationConfig(wrConfig);

Using this configuration, the cluster running in New York is replicating to Tokyo and London. The Tokyo and
London clusters should have similar configurations if you want to run in Active-Active mode.

If the New York and London cluster configurations contain the wan-replication element and the Tokyo cluster
does not, it means New York and London are active endpoints and Tokyo is a passive endpoint.

22.1.1.1 WAN Replication Implementations

Hazelcast offers two different WAN replication implementations:

• WanNoDelayReplication
• WanBatchReplication

As you see in the above configuration examples, these implementations are configured using the replication-impl
element (in the declarative configuration) or the method setReplicationImpl (in the programmatic configuration).

The implementation WanNoDelayReplication sends replication events to the target cluster as soon as they are
generated.

The implementation WanBatchReplication, on the other hand, waits until:

• a pre-defined number of replication events are generated, (please refer to the Batch Size section).
• or a pre-defined amount of time is passed (please refer to the Batch Maximum Delay section).

22.1.2 Configuring WAN Replication for IMap and ICache

Yon can configure the WAN replication for Hazelcast’s IMap and ICache data structures. To enable WAN replication
for an IMap or ICache instance, you can use the wan-replication-ref element. Each IMap and ICache instance
can have different WAN replication configurations.

Enabling WAN Replication for IMap:

Imagine you have different distributed maps, however only one of those maps should be replicated to a target
cluster. To achieve this, configure the map that you want replicated by adding the wan-replication-ref element
in the map configuration as shown below.

<hazelcast>
<wan-replication name="my-wan-cluster">
...

</wan-replication>
<map name="my-shared-map">
<wan-replication-ref name="my-wan-cluster">

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>
<republishing-enabled>false</republishing-enabled>

</wan-replication-ref>
</map>
...

</hazelcast>

The following is the equivalent programmatic configuration:

442 CHAPTER 22. WAN

Config config = new Config();

WanReplicationConfig wrConfig = new WanReplicationConfig();
WanTargetClusterConfig wtcConfig = wrConfig.getWanTargetClusterConfig();

wrConfig.setName("my-wan-cluster");
...
config.addWanReplicationConfig(wrConfig);

WanReplicationRef wanRef = new WanReplicationRef();
wanRef.setName("my-wan-cluster");
wanRef.setMergePolicy(PassThroughMergePolicy.class.getName());
wanRef.setRepublishingEnabled(false);
config.getMapConfig("my-shared-map").setWanReplicationRef(wanRef);

You see that we have my-shared-map configured to replicate itself to the cluster targets defined in the earlier
wan-replication element.

wan-replication-ref has the following elements;

• name: Name of wan-replication configuration. IMap or ICache instance uses this wan-replication
configuration.

• merge-policy: Resolve conflicts that are occurred when target cluster already has the replicated entry key.
• republishing-enabled: When enabled, an incoming event to a member is forwarded to target cluster of
that member.

When using Active-Active Replication, multiple clusters can simultaneously update the same entry in a distributed
data structure. You can configure a merge policy to resolve these potential conflicts, as shown in the above example
configuration (using the merge-policy sub-element under the wan-replication-ref element).

Hazelcast provides the following merge policies for IMap:

• com.hazelcast.map.merge.PutIfAbsentMapMergePolicy: Incoming entry merges from the source map to
the target map if it does not exist in the target map.

• com.hazelcast.map.merge.HigherHitsMapMergePolicy: Incoming entry merges from the source map to
the target map if the source entry has more hits than the target one.

• com.hazelcast.map.merge.PassThroughMergePolicy: Incoming entry merges from the source map to the
target map unless the incoming entry is not null.

• com.hazelcast.map.merge.LatestUpdateMapMergePolicy: Incoming entry merges from the source map to
the target map if the source entry has been updated more recently than the target entry. Please note that
this merge policy can only be used when the clusters’ clocks are in sync.

NOTE: When using WAN replication, please note that only key based events are replicated to the target
cluster. Operations like clear, destroy and evictAll are NOT replicated.

Enabling WAN Replication for ICache:

The following is a declarative configuration example for enabling WAN Replication for ICache:

<wan-replication name="my-wan-cluster">
...

</wan-replication>
<cache name="my-shared-cache">

<wan-replication-ref name="my-wan-cluster">
<merge-policy>com.hazelcast.cache.merge.PassThroughCacheMergePolicy</merge-policy>
<republishing-enabled>true</republishing-enabled>

</wan-replication-ref>
</cache>

22.1. WAN REPLICATION 443

The following is the equivalent programmatic configuration:

Config config = new Config();

WanReplicationConfig wrConfig = new WanReplicationConfig();
WanTargetClusterConfig wtcConfig = wrConfig.getWanTargetClusterConfig();

wrConfig.setName("my-wan-cluster");
...
config.addWanReplicationConfig(wrConfig);

WanReplicationRef cacheWanRef = new WanReplicationRef();
cacheWanRef.setName("my-wan-cluster");
cacheWanRef.setMergePolicy("com.hazelcast.cache.merge.PassThroughCacheMergePolicy");
cacheWanRef.setRepublishingEnabled(true);
config.getCacheConfig("my-shared-cache").setWanReplicationRef(cacheWanRef);

NOTE: Caches that are created dynamically do not support WAN replication functionality. Cache configura-
tions should be defined either declaratively (by XML) or programmatically on both source and target clusters.

Hazelcast provides the following merge policies for ICache:

• com.hazelcast.cache.merge.HigherHitsCacheMergePolicy: Incoming entry merges from the source cache
to the target cache if the source entry has more hits than the target one.

• com.hazelcast.cache.merge.PassThroughCacheMergePolicy: Incoming entry merges from the source
cache to the target cache unless the incoming entry is not null.

22.1.3 Batch Size

When WanBatchReplication is preferred as the replication implementation, the maximum size of events that are
sent in a single batch can be changed depending on your needs. Default value for batch size is 500.

Batch size can be set for each target cluster by modifying related WanTargetClusterConfig.

You can change this property using the declarative configuration as shown below.

...
<wan-replication name="my-wan-cluster">

<target-cluster group-name="london" group-password="london-pass">
...
<batch-size>1000</batch-size>
...

</target-cluster>
</wan-replication>
...

And, the following is the equivalent programmatic configuration:

...
WanReplicationConfig wanConfig = config.getWanReplicationConfig("my-wan-cluster");
WanTargetClusterConfig targetClusterConfig = new WanTargetClusterConfig();
...
targetClusterConfig.setBatchSize(1000);
wanConfig.addTargetClusterConfig(targetClusterConfig)
...

444 CHAPTER 22. WAN

22.1.4 Batch Maximum Delay

When using WanBatchReplication if the number of WAN replication events generated does not reach Batch Size,
they are sent to the target cluster after a certain amount of time is passed.

Default value of for this duration is 1 seconds.

Maximum delay can be set for each target cluster by modifying related WanTargetClusterConfig.

You can change this property using the declarative configuration as shown below.

...
<wan-replication name="my-wan-cluster">

<target-cluster group-name="london" group-password="london-pass">
...
<batch-max-delay-millis>2</batch-max-delay-millis>
...

</target-cluster>
</wan-replication>
...

And, the following is the equivalent programmatic configuration:

...
WanReplicationConfig wanConfig = config.getWanReplicationConfig("my-wan-cluster");
WanTargetClusterConfig targetClusterConfig = new WanTargetClusterConfig();
...
targetClusterConfig.setBatchMaxDelayMillis(2);
wanConfig.addTargetClusterConfig(targetClusterConfig)
...

22.1.5 Response Timeout

After a replication event is sent to the target cluster, the source member waits for an acknowledgement that event
has reached the target. If confirmation is not received inside a timeout duration window, the event is resent to the
target cluster.

Default value of this duration is 60000 milliseconds.

You can change this duration depending on your network latency for each target cluster by modifying related
WanTargetClusterConfig.

You can change this property using the declarative configuration as shown below.

...
<wan-replication name="my-wan-cluster">

<target-cluster group-name="london" group-password="london-pass">
...
<response-timeout-millis>70000</response-timeout-millis>
...

</target-cluster>
</wan-replication>
...

And, the following is the equivalent programmatic configuration:

...
WanReplicationConfig wanConfig = config.getWanReplicationConfig("my-wan-cluster");
WanTargetClusterConfig targetClusterConfig = new WanTargetClusterConfig();

22.1. WAN REPLICATION 445

...
targetClusterConfig.setResponseTimeoutMillis(70000);
wanConfig.addTargetClusterConfig(targetClusterConfig)
...

22.1.6 Queue Capacity

For huge clusters or high data mutation rates, you might need to increase the replication queue size. The default
queue size for replication queues is 10000. This means, if you have heavy put/update/remove rates, you might
exceed the queue size so that the oldest, not yet replicated, updates might get lost. Note that a separate queue is
used for each WAN Replication configured for IMap and ICache.

Queue capacity can be set for each target cluster by modifying related WanTargetClusterConfig.

You can change this property using the declarative configuration as shown below.

...
<wan-replication name="my-wan-cluster">

<target-cluster group-name="london" group-password="london-pass">
...
<queue-capacity>15000</queue-capacity>
...

</target-cluster>
</wan-replication>
...

And, the following is the equivalent programmatic configuration:

...
WanReplicationConfig wanConfig = config.getWanReplicationConfig("my-wan-cluster");
WanTargetClusterConfig targetClusterConfig = new WanTargetClusterConfig();
...
targetClusterConfig.setQueueCapacity(15000);
wanConfig.addTargetClusterConfig(targetClusterConfig)
...

22.1.7 Queue Full Behavior

In the previous Hazelcast releases, WAN replication was dropping the new events if WAN replication event queues
are full. This behavior is now configurable starting with the release 3.6.

There are two different supported behaviors:

• DISCARD_AFTER_MUTATION: If you select this option, the new WAN events generated by the member are
dropped and not replicated to the target cluster when the WAN event queues are full.

• THROW_EXCEPTION: If you select this option, the WAN queue size is checked before each sup-
ported mutating operation (like IMap#put, ICache#put). If one the queues of target cluster is full,
WANReplicationQueueFullException is thrown and the operation is not allowed.

The following is an example configuration:

<wan-replication name="my-wan-cluster">
<target-cluster group-name="test-cluster-1" group-password="test-pass">
...
<queue-full-behavior>DISCARD_AFTER_MUTATION</queue-full-behavior>

</target-cluster>
</wan-replication>

446 CHAPTER 22. WAN

NOTE: queue-full-behavior configuration is optional. Its default value is DISCARD_AFTER_MUTATION.

22.1.8 Event Filtering API

Starting with 3.6, Enterprise WAN replication allows you to intercept WAN replication events before they are
placed to WAN event replication queues by providing a filtering API. Using this API, you can monitor WAN
replication events of each data structure separately.

You can attach filters to your data structures using filter property of wan-replication-ref configuration inside
hazelcast.xml as shown in the following example configuration. You can also configure it using programmatic
configuration.

<hazelcast>
<map name="testMap">
<wan-replication-ref name="test">
...
<filters>
<filter-impl>com.example.SampleFilter</filter-impl>
<filter-impl>com.example.SampleFilter2</filter-impl>

</filters>
</wan-replication-ref>

</map>"
</hazelcast>

As shown in the above configuration, you can define more than one filter. Filters are called in the order that they
are introduced. A WAN replication event is only eligible to publish if it passes all the filters.

Map and Cache have different filter interfaces. These interfaces are shown below.

For map:

package com.hazelcast.map.wan.filter;
...

/**
* Wan event filtering interface for {@link com.hazelcast.core.IMap}
* based wan replication events
*
* @param <K> the type of the key
* @param <V> the type of the value
*/
public interface MapWanEventFilter<K, V> {

/**
* This method decides whether this entry view is suitable to replicate
* over WAN
*
* @param mapName
* @param entryView
* @return <tt>true</tt> if WAN event is not eligible for replication
*/

boolean filter(String mapName, EntryView<K, V> entryView, WanFilterEventType eventType);
}

For cache:

22.1. WAN REPLICATION 447

package com.hazelcast.cache.wan.filter;
...

/**
* Wan event filtering interface for cache based wan replication events
*
* @param <K> the type of the key
* @param <V> the type of the value
*/
public interface CacheWanEventFilter<K, V> {

/**
* This method decides whether this entry view is suitable to replicate
* over WAN.
*
* @param entryView
* @return <tt>true</tt> if WAN event is not eligible for replication.
*/

boolean filter(String cacheName, CacheEntryView<K, V> entryView, WanFilterEventType eventType);
}

The method filter takes three parameters:

• mapName/cacheName: Name of the related data structure.
• entryView: EntryView or CacheEntryView depending on the data structure.
• eventType: Enum type - UPDATED(1) or REMOVED(2) - depending on the event.

22.1.9 Acknowledge Types

Starting with 3.6, WAN replication supports different acknowledge (ACK) types for each target cluster group.
Using this ACK types, you can choose from two different ACK types depending on your consistency requirements.
The following ACK types are supported:

• ACK_ON_RECEIPT: Events that are received by target cluster that are considered as successful. This option
does not guarantee that the received event is actually applied but it is faster.

• ACK_ON_OPERATION_COMPLETE: This option guarantees that the event is received by the target cluster and it
is applied. It is more time consuming. But
but it is the best way if you have strong consistency requirements.

The following is an example configuration:

<wan-replication name="my-wan-cluster">
<target-cluster group-name="test-cluster-1" group-password="test-pass">
...
<acknowledge-type>ACK_ON_OPERATION_COMPLETE</acknowledge-type>

</target-cluster>
</wan-replication>

NOTE: acknowledge-type configuration is optional. Its default value is ACK_ON_RECEIPT.

22.1.10 WAN Replication Additional Information

Each cluster in WAN topology has to have a unique group-name property for a proper handling of forwarded
events.

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/core/EntryView.java
https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/cache/CacheEntryView.java

448 CHAPTER 22. WAN

Starting with 3.6, WAN replication backs up its event queues to other nodes to prevent event loss in case of member
failures. WAN replication’s backup mechanism depends on the related data structures’ backup operations. Note
that, WAN replication is supported for IMap and ICache. That means, as far as you set a backup count for your
IMap or ICache instances, WAN replication events generated by these instances are also replicated.

There is no additional configuration to enable/disable WAN replication event backups.

Chapter 23

OSGI

This chapter explains how Hazelcast is supported on OSGI (Open Service Gateway Initiatives) environments.

23.1 OSGI Support

Hazelcast bundles provide OSGI services so that Hazelcast users can manage (create, access, shutdown) Hazelcast
instances through these services on OSGI environments. When you enable the property hazelcast.osgi.start
(default is disabled), when an Hazelcast OSGI service is activated, a default Hazelcast instance is created automati-
cally.

Created Hazelcast instances can be served as an OSGI service that the other Hazelcast bundles can access.
Registering created Hazelcast instances behavior is enabled by default; you can disable it using the property
hazelcast.osgi.register.disabled.

Each Hazelcast bundle provides a different OSGI service. Their instances can be grouped (clustered) together
to prevent possible compatibility issues between different Hazelcast versions/bundles. This grouping behavior is
enabled by default and you disable it using the property hazelcast.osgi.grouping.disabled.

Hazelcast OSGI service’s lifecycle (and the owned/created instances’s lifecycles) is the same with the owner
Hazelcast bundles. When the bundle is stopped (deactivated), the owned service and Hazelcast instances are also
deactivated/shutdown and deregistered automatically. When the bundle is re-activated, its service is registered
again.

The Hazelcast Enterprise JAR package is also an OSGI bundle like the Hazelcast Open Source JAR package.

23.2 API

HazelcastOSGiService: Contract point for Hazelcast services on top of OSGI. Registered to org.osgi.framework.BundleContext
as the OSGI service so the other bundles can access and use Hazelcast on the OSGI environment through this
service.

HazelcastOSGiInstance: Contract point for HazelcastInstance implementations based on OSGI service.
HazelcastOSGiService provides proxy Hazelcast instances typed HazelcastOSGiInstance which is a subtype of
HazelcastInstance and these instances delegate all calls to the underlying HazelcastInstance.

23.3 Configuring Hazelcast OSGI Support

HazelcastOSGiService uses three configurations:

• hazelcast.osgi.start: If this property is enabled (it is disabled by default), when an HazelcastOSGiService
is activated, a default Hazelcast instance is created automatically.

449

450 CHAPTER 23. OSGI

• hazelcast.osgi.register.disabled: If this property is disabled (it is disabled by default), when a Hazelcast
instance is created by HazelcastOSGiService, the created HazelcastOSGiInstance is registered automati-
cally as OSGI service with type of HazelcastOSGiInstance and it is deregistered automatically when the
created HazelcastOSGiInstance is shutdown.

• hazelcast.osgi.grouping.disabled: If this property is disabled (it is disabled by default), every created
HazelcastOSGiInstance is grouped as their owner HazelcastOSGiService and do not join each other unless
no group name is specified in the GroupConfig of Config.

23.4 Design

HazelcastOSGiService is specific to each Hazelcast bundle. This means that every Hazelcast bundle has its own
HazelcastOSGiService instance.

Every Hazelcast bundle registers its HazelcastOSGiService instances via Hazelcast Bundle Activator
(com.hazelcast.osgi.impl.Activator) while they are being started, and it deregisters its HazelcastOSGiService
instances while they are being stopped.

Each HazelcastOSGiService instance has a different service ID as the combination of Hazelcast version and
artifact type (OSS or EE). Examples are 3.6#OSS, 3.6#EE, 3.7#OSS, 3.7#EE, etc.

HazelcastOSGiService instance lifecycle is the same with the owner Hazelcast bundle. This means that when the
owner bundle is deactivated, the owned HazelcastOSGiService instance is deactivated, and all active Hazelcast
instances that are created and served by that HazelcastOSGiService instance are also shutdown and deregistered.
When the Hazelcast bundle is re-activated, its HazelcastOSGiService instance is registered again as the OSGI
service.

23.5 Using Hazelcast OSGI Service

23.5.1 Getting Hazelcast OSGI Service Instances

You can access all HazelcastOSGiService instances through org.osgi.framework.BundleContext for each Hazel-
cast bundle as follows:

23.5. USING HAZELCAST OSGI SERVICE 451

for (ServiceReference serviceRef : context.getServiceReferences(HazelcastOSGiService.class.getName(), null)) {
HazelcastOSGiService service = (HazelcastOSGiService) context.getService(serviceRef);
String serviceId = service.getId();
...

}

23.5.2 Managing and Using Hazelcast instances

You can use HazelcastOSGiService instance to create and shutdown Hazelcast instances on OSGI environments.
The created Hazelcast instances are HazelcastOSGiInstance typed (which is sub-type of HazelcastInstance)
and are just proxies to the underlying Hazelcast instance. There are several methods in HazelcastOSGiService to
use Hazelcast instances on OSGI environments as shown below.

// Get the default Hazelcast instance owned by ‘hazelcastOsgiService‘
// Returns null if ‘HAZELCAST_OSGI_START‘ is not enabled
HazelcastOSGiInstance defaultInstance = hazelcastOsgiService.getDefaultHazelcastInstance();

// Creates a new Hazelcast instance with default configurations as owned by ‘hazelcastOsgiService‘
HazelcastOSGiInstance newInstance1 = hazelcastOsgiService.newHazelcastInstance();

// Creates a new Hazelcast instance with specified configuration as owned by ‘hazelcastOsgiService‘
Config config = new Config();
config.setInstanceName("OSGI-Instance");
...
HazelcastOSGiInstance newInstance2 = hazelcastOsgiService.newHazelcastInstance(config);

// Gets the Hazelcast instance with the name ‘OSGI-Instance‘, which is ‘newInstance2‘ created above
HazelcastOSGiInstance instance = hazelcastOsgiService.getHazelcastInstanceByName("OSGI-Instance");

// Shuts down the Hazelcast instance with name ‘OSGI-Instance‘, which is ‘newInstance2‘
hazelcastOsgiService.shutdownHazelcastInstance(instance);

// Print all active Hazelcast instances owned by ‘hazelcastOsgiService‘
for (HazelcastOSGiInstance instance : hazelcastOsgiService.getAllHazelcastInstances()) {

System.out.println(instance);
}

// Shuts down all Hazelcast instances owned by ‘hazelcastOsgiService‘
hazelcastOsgiService.shutdownAll();

452 CHAPTER 23. OSGI

Chapter 24

Extending Hazelcast

This chapter describes the different possibilities to extend Hazelcast with additional services or features.

24.1 User Defined Services

In the case of special/custom needs, you can use Hazelcast’s SPI (Service Provider Interface) module to develop
your own distributed data structures and services on top of Hazelcast. Hazelcast SPI is an internal, low-level API
which is expected to change in each release except for the patch releases. Your structures and services evolve as the
SPI changes.

Throughout this section, we create an example distributed counter that will be the guide to reveal the Hazelcast
Services SPI usage.

Here is our counter.

public interface Counter{
int inc(int amount);

}

This counter will have the following features: - It will be stored in Hazelcast. - Different cluster members can call
it. - It will be scalable, meaning that the capacity for the number of counters scales with the number of cluster
members. - It will be highly available, meaning that if a member hosting this counter goes down, a backup will be
available on a different member.

All these features are done with the steps below. Each step adds a new functionality to this counter.

1. Create the class.
2. Enable the class.
3. Add properties.
4. Place a remote call.
5. Create the containers.
6. Enable partition migration.
7. Create the backups.

24.1.1 Creating the Service Class

To have the counter as a functioning distributed object, we need a class. This class (named CounterService in the
following example code) is the gateway between Hazelcast internals and the counter, allowing us to add features to
the counter. The following example code creates the class CounterService. Its lifecycle is managed by Hazelcast.

CounterService should implement the interface com.hazelcast.spi.ManagedService as shown below. The
com.hazelcast.spi.ManagedService source code is here.

453

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/ManagedService.java

454 CHAPTER 24. EXTENDING HAZELCAST

CounterService implements the following methods.

• init: This is called when CounterService is initialized. NodeEngine enables access to Hazelcast internals
such as HazelcastInstance and PartitionService. Also, the object Properties will provide us with the
ability to create our own properties.

• shutdown: This is called when CounterService is shutdown. It cleans up the resources.
• reset: This is called when cluster members face the Split-Brain issue. This occurs when disconnected
members that have created their own cluster are merged back into the main cluster. Services can also
implement the SplitBrainHandleService to indicate that they can take part in the merge process. For
CounterService we are going to implement reset as a no-op.

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;

import java.util.Properties;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

public class CounterService implements ManagedService {
private NodeEngine nodeEngine;

@Override
public void init(NodeEngine nodeEngine, Properties properties) {

System.out.println("CounterService.init");
this.nodeEngine = nodeEngine;

}

@Override
public void shutdown(boolean terminate) {

System.out.println("CounterService.shutdown");
}

@Override
public void reset() {
}

}

24.1.2 Enabling the Service Class

Now, we need to enable the class CounterService. The declarative way of doing this is shown below.

<network>
<join><multicast enabled="true"/> </join>

</network>
<services>

<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>

</service>
</services>

The CounterService is declared within the services configuration element.

• Set the enabled attribute to true to enable the service.

24.1. USER DEFINED SERVICES 455

• Set the name attribute to the name of the service. It should be a unique name (CounterService in our case)
since it will be looked up when a remote call is made. Note that the value of this attribute will be sent at
each request, and that a longer name value means more data (de)serialization. A good practice is to give an
understandable name with the shortest possible length.

• Set the class-name attribute to the class name of the service (CounterService in our case). The class should
have a no-arg constructor. Otherwise, the object cannot be initialized.

Note that multicast is enabled as the join mechanism. In the later sections for the CounterService example, we
will see why.

24.1.3 Adding Properties to the Service

The init method for CounterService takes the Properties object as an argument. This means we can add
properties to the service that are passed to the init method; see Creating the Service Class. You can add properties
declaratively as shown below. (You likely want to name your properties something other than someproperty.)

<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>
<properties>

<someproperty>10</someproperty>
</properties>

</service>

If you want to parse a more complex XML, you can use the interface com.hazelcast.spi.ServiceConfigurationParser.
It gives you access to the XML DOM tree.

24.1.4 Starting the Service

Now, let’s start a HazelcastInstance as shown below, which will start the CounterService.

import com.hazelcast.core.Hazelcast;

public class Member {
public static void main(String[] args) {

Hazelcast.newHazelcastInstance();
}

}

Once it starts, the CounterService init method prints the following output.

CounterService.init

Once the HazelcastInstance is shutdown (for example, with Ctrl+C), the CounterService shutdown method prints
the following output.

CounterService.shutdown

24.1.5 Placing a Remote Call via Proxy

In the previous sections for the CounterService example, we started CounterService as part of a HazelcastInstance
startup.

Now, let’s connect the Counter interface to CounterService and perform a remote call to the cluster member
hosting the counter data. Then, we will return a dummy result.

Remote calls are performed via a proxy in Hazelcast. Proxies expose the methods at the client side. Once a method
is called, proxy creates an operation object, sends this object to the cluster member responsible from executing that
operation, and then sends the result.

456 CHAPTER 24. EXTENDING HAZELCAST

24.1.5.1 Making Counter a Distributed Object

First, we need to make the Counter interface a distributed object by extending the DistributedObject interface,
as shown below.

import com.hazelcast.core.DistributedObject;

public interface Counter extends DistributedObject {
int inc(int amount);

}

24.1.5.2 Implementing ManagedService and RemoteService

Now, we need to make the CounterService class implement not only the ManagedService interface, but also the
interface com.hazelcast.spi.RemoteService. This way, a client will be able to get a handle of a counter proxy.
You can read the source code for RemoteService here.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;
import com.hazelcast.spi.RemoteService;

import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public static final String NAME = "CounterService";

private NodeEngine nodeEngine;

@Override
public DistributedObject createDistributedObject(String objectName) {

return new CounterProxy(objectName, nodeEngine, this);
}

@Override
public void destroyDistributedObject(String objectName) {

// for the time being a no-op, but in the later examples this will be implemented
}

@Override
public void init(NodeEngine nodeEngine, Properties properties) {

this.nodeEngine = nodeEngine;
}

@Override
public void shutdown(boolean terminate) {
}

@Override
public void reset() {
}

}

The CounterProxy returned by the method createDistributedObject is a local representation to (potentially)
remote managed data and logic.

NOTE: Note that caching and removing the proxy instance are done outside of this service.

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/RemoteService.java

24.1. USER DEFINED SERVICES 457

24.1.5.3 Implementing CounterProxy

Now, it is time to implement the CounterProxy as shown below. CounterProxy extends AbstractDistributedObject,
source code here.

import com.hazelcast.spi.AbstractDistributedObject;
import com.hazelcast.spi.InvocationBuilder;
import com.hazelcast.spi.NodeEngine;
import com.hazelcast.util.ExceptionUtil;

import java.util.concurrent.Future;

public class CounterProxy extends AbstractDistributedObject<CounterService> implements Counter {
private final String name;

public CounterProxy(String name, NodeEngine nodeEngine, CounterService counterService) {
super(nodeEngine, counterService);
this.name = name;

}

@Override
public String getServiceName() {

return CounterService.NAME;
}

@Override
public String getName() {

return name;
}

@Override
public int inc(int amount) {

NodeEngine nodeEngine = getNodeEngine();
IncOperation operation = new IncOperation(name, amount);
int partitionId = nodeEngine.getPartitionService().getPartitionId(name);
InvocationBuilder builder = nodeEngine.getOperationService()

.createInvocationBuilder(CounterService.NAME, operation, partitionId);
try {

final Future<Integer> future = builder.invoke();
return future.get();

} catch (Exception e) {
throw ExceptionUtil.rethrow(e);

}
}

}

CounterProxy is a local representation of remote data/functionality. It does not include the counter state. Therefore,
the method inc should be invoked on the cluster member hosting the real counter. You can invoke it using Hazelcast
SPI; then it will send the operations to the correct member and return the results.

Let’s dig deeper into the method inc.

• First, we create IncOperation with a given name and amount.
• Then, we get the partition ID based on the name; by this way, all operations for a given name will result in
the same partition ID.

• Then, we create an InvocationBuilder where the connection between operation and partition is made.
• Finally, we invoke the InvocationBuilder and wait for its result. This waiting is performed with a
future.get(). In our case, timeout is not important. However, it is a good practice to use a timeout for a
real system since operations should complete in a certain amount of time.

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/AbstractDistributedObject.java
https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/AbstractDistributedObject.java

458 CHAPTER 24. EXTENDING HAZELCAST

24.1.5.4 Dealing with Exceptions

Hazelcast’s ExceptionUtil is a good solution when it comes to dealing with execution exceptions. When the
execution of the operation fails with an exception, an ExecutionException is thrown and handled with the method
ExceptionUtil.rethrow(Throwable).

If it is an InterruptedException, we have two options: either propagate the exception or just use the
ExceptionUtil.rethrow for all exceptions. Please see the example code below.

try {
final Future<Integer> future = invocation.invoke();
return future.get();

} catch(InterruptedException e){
throw e;

} catch(Exception e){
throw ExceptionUtil.rethrow(e);

}

24.1.5.5 Implementing the PartitionAwareOperation Interface

Now, let’s write the IncOperation. It implements the PartitionAwareOperation interface, meaning that it will
be executed on the partition that hosts the counter. See the PartitionAwareOperation source code here.

The method run does the actual execution. Since IncOperation will return a response, the method
returnsResponse returns true. If your method is asynchronous and does not need to return a response, it is
better to return false since it will be faster. The actual response is stored in the field returnValue; retrieve it
with the method getResponse.

There are two more methods in this code: writeInternal and readInternal. Since IncOperation needs to be
serialized, these two methods are overridden, and hence, objectId and amount are serialized and available when
those operations are executed.

For the deserialization, note that the operation must have a no-arg constructor.

import com.hazelcast.nio.ObjectDataInput;
import com.hazelcast.nio.ObjectDataOutput;
import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

// Important to have a no-arg constructor for deserialization
public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectId;

}

@Override
public void run() throws Exception {

System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
returnValue = 0;

}

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/PartitionAwareOperation.java

24.1. USER DEFINED SERVICES 459

@Override
public boolean returnsResponse() {

return true;
}

@Override
public Object getResponse() {

return returnValue;
}

@Override
protected void writeInternal(ObjectDataOutput out) throws IOException {

super.writeInternal(out);
out.writeUTF(objectId);
out.writeInt(amount);

}

@Override
protected void readInternal(ObjectDataInput in) throws IOException {

super.readInternal(in);
objectId = in.readUTF();
amount = in.readInt();

}
}

24.1.5.6 Running the Code

Now, let’s run our code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.UUID;

public class Member {
public static void main(String[] args) {

HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)

instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)

counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit(0);

}
}

Once run, you will see the output as below.

Executing 0counter.inc() on: Address[192.168.1.103]:5702

0

460 CHAPTER 24. EXTENDING HAZELCAST

Executing 1counter.inc() on: Address[192.168.1.103]:5702

0

Executing 2counter.inc() on: Address[192.168.1.103]:5701

0

Executing 3counter.inc() on: Address[192.168.1.103]:5701

0

Finished

Note that counters are stored in different cluster members. Also note that increment is not active for now since the
value remains as 0.
Until now, we have performed the basics to get this up and running. In the next section, we will make a real
counter, cache the proxy instances and deal with proxy instance destruction.

24.1.6 Creating Containers

Let’s create a Container for every partition in the system. This container will contain all counters and proxies.

import java.util.HashMap;
import java.util.Map;

class Container {
private final Map<String, Integer> values = new HashMap();

int inc(String id, int amount) {
Integer counter = values.get(id);
if (counter == null) {

counter = 0;
}
counter += amount;
values.put(id, counter);
return counter;

}

public void init(String objectName) {
values.put(objectName,0);

}

public void destroy(String objectName) {
values.remove(objectName);

}

...
}

Hazelcast guarantees that a single thread will be active in a single partition. Therefore, when accessing a container,
concurrency control will not be an issue.
The code in our example uses a Container instance per partition approach. With this approach, there will not be
any mutable shared state between partitions. This approach also makes operations on partitions simpler since you
do not need to filter out data that does not belong to a certain partition.
The code performs the tasks below.

• It creates a container for every partition with the method init.
• It creates the proxy with the method createDistributedObject.
• It removes the value of the object with the method destroyDistributedObject, otherwise we may get an
OutOfMemory exception.

24.1. USER DEFINED SERVICES 461

24.1.6.1 Integrating the Container in the CounterService

Let’s integrate the Container in the CounterService, as shown below.

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;
import com.hazelcast.spi.RemoteService;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@Override
public void init(NodeEngine nodeEngine, Properties properties) {

this.nodeEngine = nodeEngine;
containers = new Container[nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)

containers[k] = new Container();
}

@Override
public void shutdown(boolean terminate) {
}

@Override
public CounterProxy createDistributedObject(String objectName) {

int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.init(objectName);
return new CounterProxy(objectName, nodeEngine, this);

}

@Override
public void destroyDistributedObject(String objectName) {

int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.destroy(objectName);

}

@Override
public void reset() {
}

public static class Container {
final Map<String, Integer> values = new HashMap<String, Integer>();

private void init(String objectName) {
values.put(objectName, 0);

}

private void destroy(String objectName){
values.remove(objectName);

}

462 CHAPTER 24. EXTENDING HAZELCAST

}
}

24.1.6.2 Connecting the IncOperation.run Method to the Container

As the last step in creating a Container, we connect the method IncOperation.run to the Container, as shown
below.

partitionId has a range between 0 and partitionCount and can be used as an index for the container array.
Therefore, you can use partitionId to retrieve the container, and once the container has been retrieved, you can
access the value.

import com.hazelcast.nio.ObjectDataInput;
import com.hazelcast.nio.ObjectDataOutput;
import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;
import java.util.Map;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectId;

}

@Override
public void run() throws Exception {

System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
CounterService service = getService();
CounterService.Container container = service.containers[getPartitionId()];
Map<String, Integer> valuesMap = container.values;

Integer counter = valuesMap.get(objectId);
counter += amount;
valuesMap.put(objectId, counter);
returnValue = counter;

}

@Override
public boolean returnsResponse() {

return true;
}

@Override
public Object getResponse() {

return returnValue;
}

@Override
protected void writeInternal(ObjectDataOutput out) throws IOException {

super.writeInternal(out);

24.1. USER DEFINED SERVICES 463

out.writeUTF(objectId);
out.writeInt(amount);

}

@Override
protected void readInternal(ObjectDataInput in) throws IOException {

super.readInternal(in);
objectId = in.readUTF();
amount = in.readInt();

}
}

24.1.6.3 Running the Sample Code

Let’s run the following sample code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) {

HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)

instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)

counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

System.out.println("Round 1");
for (Counter counter: counters)

System.out.println(counter.inc(1));

System.out.println("Round 2");
for (Counter counter: counters)

System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit(0);

}
}

The output will be as follows. It indicates that we have now a basic distributed counter up and running.

Round 1
Executing 0counter.inc() on: Address[192.168.1.103]:5702
1
Executing 1counter.inc() on: Address[192.168.1.103]:5702
1
Executing 2counter.inc() on: Address[192.168.1.103]:5701
1
Executing 3counter.inc() on: Address[192.168.1.103]:5701
1
Round 2
Executing 0counter.inc() on: Address[192.168.1.103]:5702
2
Executing 1counter.inc() on: Address[192.168.1.103]:5702

464 CHAPTER 24. EXTENDING HAZELCAST

2
Executing 2counter.inc() on: Address[192.168.1.103]:5701
2
Executing 3counter.inc() on: Address[192.168.1.103]:5701
2
Finished

24.1.7 Partition Migration

In the previous section, we created a real distributed counter. Now, we need to make sure that the content of the
partition containers is migrated to different cluster members when a member joins or leaves the cluster. To make
this happen, first we need to add three new methods (applyMigrationData, toMigrationData and clear) to the
Container.

• toMigrationData: This method is called when Hazelcast wants to start the partition migration from the
member owning the partition. The result of the toMigrationData method is the partition data in a form
that can be serialized to another member.

• applyMigrationData: This method is called when migrationData (created by the method toMigrationData)
will be applied to the member that will be the new partition owner.

• clear: This method is called when the partition migration is successfully completed and the old partition
owner gets rid of all data in the partition. This method is also called when the partition migration operation
fails and the to-be-the-new partition owner needs to roll back its changes.

import java.util.HashMap;
import java.util.Map;

class Container {
private final Map<String, Integer> values = new HashMap();

int inc(String id, int amount) {
Integer counter = values.get(id);
if (counter == null) {

counter = 0;
}
counter += amount;
values.put(id, counter);
return counter;

}

void clear() {
values.clear();

}

void applyMigrationData(Map<String, Integer> migrationData) {
values.putAll(migrationData);

}

Map<String, Integer> toMigrationData() {
return new HashMap(values);

}

public void init(String objectName) {
values.put(objectName,0);

}

public void destroy(String objectName) {
values.remove(objectName);

24.1. USER DEFINED SERVICES 465

}
}

24.1.7.1 Transferring migrationData

After you add these three methods to the Container, you need to create a CounterMigrationOperation class that
transfers migrationData from one member to another and calls the method applyMigrationData on the correct
partition of the new partition owner.

An example is shown below.

import com.hazelcast.nio.ObjectDataInput;
import com.hazelcast.nio.ObjectDataOutput;
import com.hazelcast.spi.AbstractOperation;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class CounterMigrationOperation extends AbstractOperation {

Map<String, Integer> migrationData;

public CounterMigrationOperation() {
}

public CounterMigrationOperation(Map<String, Integer> migrationData) {
this.migrationData = migrationData;

}

@Override
public void run() throws Exception {

CounterService service = getService();
Container container = service.containers[getPartitionId()];
container.applyMigrationData(migrationData);

}

@Override
protected void writeInternal(ObjectDataOutput out) throws IOException {

out.writeInt(migrationData.size());
for (Map.Entry<String, Integer> entry : migrationData.entrySet()) {

out.writeUTF(entry.getKey());
out.writeInt(entry.getValue());

}
}

@Override
protected void readInternal(ObjectDataInput in) throws IOException {

int size = in.readInt();
migrationData = new HashMap<String, Integer>();
for (int i = 0; i < size; i++)

migrationData.put(in.readUTF(), in.readInt());
}

}

NOTE: During a partition migration, no other operations are executed on the related partition.

466 CHAPTER 24. EXTENDING HAZELCAST

24.1.7.2 Letting Hazelcast Know CounterService Can Do Partition Migrations

We need to make our CounterService class implement the MigrationAwareService interface. This will let
Hazelcast know that the CounterService can perform partition migration.

With the MigrationAwareService interface, some additional methods are exposed. For example, the method
prepareMigrationOperation returns all the data of the partition that is going to be moved. You can read the
MigrationAwareService source code here.

The method commitMigration commits the data, meaning that in this case, it clears the partition container of the
old owner.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.partition.MigrationEndpoint;
import com.hazelcast.spi.*;

import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService, MigrationAwareService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@Override
public void init(NodeEngine nodeEngine, Properties properties) {

this.nodeEngine = nodeEngine;
containers = new Container[nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)

containers[k] = new Container();
}

@Override
public void shutdown(boolean terminate) {
}

@Override
public DistributedObject createDistributedObject(String objectName) {

int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.init(objectName);
return new CounterProxy(objectName, nodeEngine,this);

}

@Override
public void destroyDistributedObject(String objectName) {

int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.destroy(objectName);

}

@Override
public void beforeMigration(PartitionMigrationEvent e) {

//no-op
}

@Override
public void clearPartitionReplica(int partitionId) {

Container container = containers[partitionId];

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/MigrationAwareService.java

24.1. USER DEFINED SERVICES 467

container.clear();
}

@Override
public Operation prepareReplicationOperation(PartitionReplicationEvent e) {

if (e.getReplicaIndex() > 1) {
return null;

}
Container container = containers[e.getPartitionId()];
Map<String, Integer> data = container.toMigrationData();
return data.isEmpty() ? null : new CounterMigrationOperation(data);

}

@Override
public void commitMigration(PartitionMigrationEvent e) {

if (e.getMigrationEndpoint() == MigrationEndpoint.SOURCE) {
Container c = containers[e.getPartitionId()];
c.clear();

}

//todo
}

@Override
public void rollbackMigration(PartitionMigrationEvent e) {

if (e.getMigrationEndpoint() == MigrationEndpoint.DESTINATION) {
Container c = containers[e.getPartitionId()];
c.clear();

}
}

@Override
public void reset() {
}

}

24.1.7.3 Running the Sample Code

We can run the following code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) throws Exception {

HazelcastInstance[] instances = new HazelcastInstance[3];
for (int k = 0; k < instances.length; k++)

instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)

counters[k] = instances[0].getDistributedObject(CounterService.NAME, k + "counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

Thread.sleep(10000);

468 CHAPTER 24. EXTENDING HAZELCAST

System.out.println("Creating new members");

for (int k = 0; k < 3; k++) {
Hazelcast.newHazelcastInstance();

}

Thread.sleep(10000);

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit(0);

}
}

And we get the following output.

Executing 0counter.inc() on: Address[192.168.1.103]:5702
Executing backup 0counter.inc() on: Address[192.168.1.103]:5703
1
Executing 1counter.inc() on: Address[192.168.1.103]:5703
Executing backup 1counter.inc() on: Address[192.168.1.103]:5701
1
Executing 2counter.inc() on: Address[192.168.1.103]:5701
Executing backup 2counter.inc() on: Address[192.168.1.103]:5703
1
Executing 3counter.inc() on: Address[192.168.1.103]:5701
Executing backup 3counter.inc() on: Address[192.168.1.103]:5703
1
Creating new members
Executing 0counter.inc() on: Address[192.168.1.103]:5705
Executing backup 0counter.inc() on: Address[192.168.1.103]:5703
2
Executing 1counter.inc() on: Address[192.168.1.103]:5703
Executing backup 1counter.inc() on: Address[192.168.1.103]:5704
2
Executing 2counter.inc() on: Address[192.168.1.103]:5705
Executing backup 2counter.inc() on: Address[192.168.1.103]:5704
2
Executing 3counter.inc() on: Address[192.168.1.103]:5704
Executing backup 3counter.inc() on: Address[192.168.1.103]:5705
2
Finished

You can see that the counters have moved. 0counter moved from 192.168.1.103:5702 to 192.168.1.103:5705 and
it is incremented correctly. Our counters can now move around in the cluster. You will see the counters will be
redistributed once you add or remove a cluster member.

24.1.8 Creating Backups

Finally, we make sure that the counter data is available on another member when a member goes down. To do this,
have the IncOperation class implement the BackupAwareOperation interface contained in the SPI package. See
the following code.

24.1. USER DEFINED SERVICES 469

class IncOperation extends AbstractOperation
implements PartitionAwareOperation, BackupAwareOperation {
...

@Override
public int getAsyncBackupCount() {

return 0;
}

@Override
public int getSyncBackupCount() {

return 1;
}

@Override
public boolean shouldBackup() {

return true;
}

@Override
public Operation getBackupOperation() {

return new IncBackupOperation(objectId, amount);
}

}

The methods getAsyncBackupCount and getSyncBackupCount specify the count for asynchronous and synchronous
backups. Our sample has one synchronous backup and no asynchronous backups. In the above code, counts of the
backups are hard-coded, but they can also be passed to IncOperation as parameters.

The method shouldBackup specifies whether our Operation needs a backup or not. For our sample, it returns
true, meaning the Operation will always have a backup even if there are no changes. Of course, in real systems, we
want to have backups if there is a change. For IncOperation for example, having a backup when amount is null
would be a good practice.

The method getBackupOperation returns the operation (IncBackupOperation) that actually performs the backup
creation; the backup itself is an operation and will run on the same infrastructure.

If a backup should be made and getSyncBackupCount returns 3, then three IncBackupOperation instances are
created and sent to the three machines containing the backup partition. If fewer machines are available, then
backups need to be created. Hazelcast will just send a smaller number of operations.

24.1.8.1 Performing the Backup with IncBackupOperation

Now, let’s have a look at the IncBackupOperation. It implements BackupOperation, you can see the source code
for BackupOperation here.

public class IncBackupOperation
extends AbstractOperation implements BackupOperation {
private String objectId;
private int amount;

public IncBackupOperation() {
}

public IncBackupOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectId;

}

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/BackupOperation.java
https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/spi/BackupOperation.java

470 CHAPTER 24. EXTENDING HAZELCAST

@Override
protected void writeInternal(ObjectDataOutput out) throws IOException {

super.writeInternal(out);
out.writeUTF(objectId);
out.writeInt(amount);

}

@Override
protected void readInternal(ObjectDataInput in) throws IOException {

super.readInternal(in);
objectId = in.readUTF();
amount = in.readInt();

}

@Override
public void run() throws Exception {

CounterService service = getService();
System.out.println("Executing backup " + objectId + ".inc() on: "
+ getNodeEngine().getThisAddress());

Container c = service.containers[getPartitionId()];
c.inc(objectId, amount);

}
}

NOTE: Hazelcast will also make sure that a new IncOperation for that particular key will not be executed
before the (synchronous) backup operation has completed.

24.1.8.2 Running the Sample Code

Let’s see the backup functionality in action with the following code.

public class Member {
public static void main(String[] args) throws Exception {

HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)

instances[k] = Hazelcast.newHazelcastInstance();

Counter counter = instances[0].getDistributedObject(CounterService.NAME, "counter");
counter.inc(1);
System.out.println("Finished");
System.exit(0);

}
}

Once it is run, the following output will be seen.

Executing counter0.inc() on: Address[192.168.1.103]:5702
Executing backup counter0.inc() on: Address[192.168.1.103]:5701
Finished

As it can be seen, both IncOperation and IncBackupOperation are executed. Notice that these operations have
been executed on different cluster members to guarantee high availability.

24.2. WAITNOTIFYSERVICE 471

24.2 WaitNotifyService

WaitNotifyService is an interface offered by SPI for the objects (e.g. Lock, Semaphore) to be used when a thread
needs to wait for a lock to be released. You can see the WaitNotifyService source code here.

WaitNotifyService keeps a list of waiters. For each notify operation:

• it looks for a waiter,
• it asks the waiter whether it wants to keep waiting,
• if the waiter responds no, the service executes its registered operation (operation itself knows where to send a
response),

• it rinses and repeats until a waiter wants to keep waiting.

Each waiter can sit on a wait-notify queue for, at most, its operation’s call timeout. For example, by default, each
waiter can wait here for at most 1 minute. A continuous task scans expired/timed-out waiters and invalidates them
with CallTimeoutException. Each waiter on the remote side should retry and keep waiting if it still wants to wait.
This is a liveness check for remote waiters.

This way, it is possible to distinguish an unresponsive node and a long (~infinite) wait. On the caller side, if the
waiting thread does not get a response for either a call timeout or for more than 2 times the call-timeout, it will
exit with OperationTimeoutException.

Note that this behavior breaks the fairness. Hazelcast does not support fairness for any of the data structures with
blocking operations (i.e. lock and semaphore).

24.3 Discovery SPI

By default, Hazelcast is bundled with multiple ways to define and find other members in the same network.
Commonly used, especially with development, is the Multicast discovery. This sends out a multicast request to a
network segment and awaits other members to answer with their IP addresses. In addition, Hazelcast supports
fixed IP addresses: JClouds or AWS (Amazon EC2) based discoveries.

Since there is an ever growing number of public and private cloud environments, as well as numerous Service
Discovery systems in the wild, Hazelcast provides cloud or service discovery vendors with the option to implement
their own discovery strategy.

Over the course of this section, we will build a simple discovery strategy based on the /etc/hosts file.

24.3.1 Discovery SPI Interfaces and Classes

The Hazelcast Discovery SPI (Member Discovery Extensions) consists of multiple interfaces and abstract classes. In
the following sub-sections, we will have a quick look at all of them and shortly introduce the idea and usage behind
them. The example will follow in the next section, Discovery Strategy.

24.3.1.1 DiscoveryStrategy: Implement

The com.hazelcast.spi.discovery.DiscoveryStrategy interface is the main entry point for vendors to imple-
ment their corresponding member discovery strategies. Its main purpose is to return discovered members on request.
The com.hazelcast.spi.discovery.DiscoveryStrategy interface also offers light lifecycle capabilities for setup
and teardown logic (for example, opening or closing sockets or REST API clients).

DiscoveryStrategys can also do automatic registration / de-registration on service discovery systems if necessary.
You can use the provided DiscoveryNode that is passed to the factory method to retrieve local addresses and ports,
as well as metadata.

https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/main/java/com/hazelcast/spi/impl/waitnotifyservice
https://jclouds.apache.org/reference/providers/
https://aws.amazon.com/de/ec2/

472 CHAPTER 24. EXTENDING HAZELCAST

24.3.1.2 AbstractDiscoveryStrategy: Abstract Class

The com.hazelcast.spi.discovery.AbstractDiscoveryStrategy is a convenience abstract class meant to ease
the implementation of strategies. It basically provides additional support for reading / resolving configuration
properties and empty implementations of lifecycle methods if unnecessary.

24.3.1.3 DiscoveryStrategyFactory: Factory Contract

The com.hazelcast.spi.discovery.DiscoveryStrategyFactory interface describes the factory contract
that creates a certain DiscoveryStrategy. DiscoveryStrategyFactorys are registered automatically at
startup of a Hazelcast member or client whenever they are found in the classpath. For automatic dis-
covery, factories need to announce themselves as SPI services using a resource file according to the Java
Service Provider Interface. The service registration file must be part of the JAR file, located under
META-INF/services/com.hazelcast.spi.discovery.DiscoveryStrategyFactory, and consist of a line with
the full canonical class name of the DiscoveryStrategy per provided strategy implementation.

24.3.1.4 DiscoveryNode: Describe a Member

The com.hazelcast.spi.discovery.DiscoveryNode abstract class describes a member in the Discovery SPI. It
is used for multiple purposes, since it will be returned from strategies for discovered members. It is also passed to
DiscoveryStrategyFactorys factory method to define the local member itself if created on a Hazelcast member;
on Hazelcast clients, null will be passed.

24.3.1.5 SimpleDiscoveryNode: Default DiscoveryNode

com.hazelcast.spi.discovery.SimpleDiscoveryNode is a default implementation of the DiscoveryNode. It is
meant for convenience use of the Discovery SPI and can be returned from vendor implementations if no special
needs are required.

24.3.1.6 NodeFilter: Filter Members

You can configure com.hazelcast.spi.discovery.NodeFilter before startup and you can implement logic to
do additional filtering of members. This might be necessary if query languages for discovery strategies are not
expressive enough to describe members or to overcome inefficiencies of strategy implementations.

NOTE: The DiscoveryStrategy vendor does not need to take possibly configured filters into account as
their use is transparent to the strategies.

24.3.1.7 DiscoveryService: Support In Integrator Systems

A com.hazelcast.spi.discovery.integration.DiscoveryService is part of the integration domain.
DiscoveryStrategy vendors do not need to implement DiscoveryService because it is meant to support the
Discovery SPI in situations where vendors integrate Hazelcast into their own systems or frameworks. Certain needs
might be necessary as part of the classloading or Java Service Provider Interface lookup.

24.3.1.8 DiscoveryServiceProvider: Provide a DiscoveryService

Use the com.hazelcast.spi.discovery.integration.DiscoveryServiceProvider to provide a DiscoveryService
to the Hazelcast discovery subsystem. Configure the provider with the Hazelcast configuration API.

24.3.1.9 DiscoveryServiceSettings: Configure DiscoveryService

A com.hazelcast.spi.discovery.integration.DiscoveryServiceSettings instance is passed to the
DiscoveryServiceProvider at creation time to configure the DiscoveryService.

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

24.3. DISCOVERY SPI 473

24.3.1.10 DiscoveryMode: Member or Client

The com.hazelcast.spi.discovery.integration.DiscoveryMode enum tells if a created DiscoveryService is
running on a Hazelcast member or client, and to change behavior accordingly.

24.3.2 Discovery Strategy

This sub-section will walk through the implementation of a simple DiscoveryStrategy and their necessary setup.

24.3.2.1 Discovery Strategy Example

The example strategy will use the local /etc/hosts (and on Windows it will use the equivalent to the *nix hosts
file named %SystemRoot%\system32\drivers\etc\hosts) to lookup IP addresses of different hosts. The strategy
implementation expects hosts to be configured with hostname sub-groups under the same domain. So far to theory,
let’s get into it.

The full example’s source code can be found in the Hazelcast examples repository.

24.3.2.2 Configuring Site Domain

As a first step we do some basic configuration setup. We want the user to be able to configure the site domain for the
discovery inside the hosts file, therefore we define a configuration property called site-domain. The configuration is
not optional: it must be configured before the creation of the HazelcastInstance, either via XML or the Hazelcast
Config API.

It is recommended that you keep all defined properties in a separate configuration class as public constants (public
final static) with sufficient documentation. This allows users to easily look up possible configuration values.

package com.hazelcast.examples.spi.discovery;

import com.hazelcast...;

public class HostsDiscoveryConfiguration {
/**
* ’site-domain’ configures the basic site domain for the lookup, to
* find other sub-domains of the cluster members and retrieve their assigned
* IP addresses.
*/
public static final PropertyDefinition DOMAIN = new SimplePropertyDefinition(
"site-domain", PropertyTypeConverter.STRING

);

// Prevent instantiation
private HostsDiscoveryConfiguration() {}

}

An additional ValueValidator could be passed to the definition to make sure the configured value looks like a
domain or has a special format.

24.3.2.3 Creating Discovery

As the second step we create the very simple DiscoveryStrategyFactory implementation class. To keep things
clear we are going to name the discovery strategy after its purpose: looking into the hosts file.

https://github.com/hazelcast/hazelcast-code-samples

474 CHAPTER 24. EXTENDING HAZELCAST

package com.hazelcast.examples.spi.discovery;

import com.hazelcast...;

public class HostsDiscoveryStrategyFactory
implements DiscoveryStrategyFactory {

private static final Collection<PropertyDefinition> PROPERTIES =
Collections.singletonList(HostsDiscoveryConfiguration.SITE_DOMAIN);

public Class<? extends DiscoveryStrategy> getDiscoveryStrategyType() {
// Returns the actual class type of the DiscoveryStrategy
// implementation, to match it against the configuration
return HostsDiscoveryStrategy.class;

}

public Collection<PropertyDefinition> getConfigurationProperties() {
return PROPERTIES;

}

public DiscoveryStrategy newDiscoveryStrategy(DiscoveryNode discoveryNode,
ILogger logger,
Map<String, Comparable> properties) {

return new HostsDiscoveryStrategy(logger, properties);
}

}

This factory now defines properties known to the discovery strategy implementation and provides a clean way
to instantiate it. While creating the HostsDiscoveryStrategy we ignore the passed DiscoveryNode since this
strategy will not support automatic registration of new nodes. In cases where the strategy does not support
registration, the environment has to handle this in some provided way.

NOTE: Remember that, when created on a Hazelcast client, the provided DiscoveryNode will be null, as
there is no local member in existence.

Next, we register the DiscoveryStrategyFactory to make Hazelcast pick it up automatically at startup. As de-
scribed earlier, this is done according to the Java Service Provider Interface specification. The filename is the name of
the interface itself. Therefore we create a new resource file called com.hazelcast.spi.discovery.DiscoveryStrategyFactory
and place it under META-INF/services. The content is the full canonical class name of our factory implementation.

com.hazelcast.examples.spi.discovery.HostsDiscoveryStrategyFactory

If our JAR file will contain multiple factories, each consecutive line can define another full canonical
DiscoveryStrategyFactory implementation class name.

24.3.2.4 Implementing Discovery Strategy

Now comes the interesting part. We are going to implement the discovery itself. The previous parts we did are
normally pretty similar for all strategies aside from the configuration properties itself. However, implementing the
discovery heavily depends on the way the strategy has to come up with IP addresses of other Hazelcast members.

24.3.2.5 Extending The AbstractDiscoveryStrategy

For ease of implementation, we will back our implementation by extending the AbstractDiscoveryStrategy and
only implementing the absolute minimum ourselves.

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

24.3. DISCOVERY SPI 475

package com.hazelcast.examples.spi.discovery;

import com.hazelcast...;

public class HostsDiscoveryStrategy
extends AbstractDiscoveryStrategy {

private final String siteDomain;

public HostsDiscoveryStrategy(ILogger logger,
Map<String, Comparable> properties) {

super(logger, properties);

// Make it possible to override the value from the configuration on
// the system’s environment or JVM properties
// -Ddiscovery.hosts.site-domain=some.domain
this.siteDomain = getOrNull("discovery.hosts",

HostsDiscoveryConfiguration.DOMAIN);
}

public Iterable<DiscoveryNode> discoverNodes() {
List<String> assignments = filterHosts();
return mapToDiscoveryNodes(assignments);

}

// ...
}

24.3.2.6 Overriding Discovery Configuration

So far our implementation will retrieve the configuration property for the site-domain. Our implementation offers
the option to override the value from the configuration (XML or Config API) right from the system environment
or JVM properties. That can be useful when the hazelcast.xml defines a setup for an developer system (like
cluster.local) and operations wants to override it for the real deployment. By providing a prefix (in this case
discovery.hosts) we created an external property named discovery.hosts.site-domain which can be set as
an environment variable or passed as a JVM property from the startup script.

The lookup priority is explained in the following list, priority is from top to bottom:

• JVM properties (or hazelcast.xml section)
• System environment
• Configuration properties

24.3.2.7 Implementing Lookup

Since we now have the value for our property we can implement the actual lookup and mapping as already prepared
in the discoverNodes method. The following part is very specific to this special discovery strategy, for completeness
we’re showing it anyways.

private static final String HOSTS_NIX = "/etc/hosts";
private static final String HOSTS_WINDOWS =

"%SystemRoot%\\system32\\drivers\\etc\\hosts";

private List<String> filterHosts() {
String os = System.getProperty("os.name");

476 CHAPTER 24. EXTENDING HAZELCAST

String hostsPath;
if (os.contains("Windows")) {
hostsPath = HOSTS_WINDOWS;

} else {
hostsPath = HOSTS_NIX;

}

File hosts = new File(hostsPath);

// Read all lines
List<String> lines = readLines(hosts);

List<String> assignments = new ArrayList<String>();
for (String line : lines) {

// Example:
// 192.168.0.1 host1.cluster.local
if (matchesDomain(line)) {
assignments.add(line);

}
}
return assignments;

}

24.3.2.8 Mapping to DiscoveryNodes

After we now collected the address assignments configured in the hosts file we can go to the final step and map
those to the DiscoveryNodes to return them from our strategy.

private Iterable<DiscoveryNode> mapToDiscoveryNodes(List<String> assignments) {
Collection<DiscoveryNode> discoveredNodes = new ArrayList<DiscoveryNode>();

for (String assignment : assignments) {
String address = sliceAddress(assignment);
String hostname = sliceHostname(assignment);

Map<String, Object> attributes =
Collections.singletonMap("hostname", hostname);

InetAddress inetAddress = mapToInetAddress(address);
Address addr = new Address(inetAddress, NetworkConfig.DEFAULT_PORT);

discoveredNodes.add(new SimpleDiscoveryNode(addr, attributes));
}
return discoveredNodes;

}

With that mapping we now have a full discovery, executed whenever Hazelcast asks for IPs. So why don’t we read
them in once and cache them? The answer is simple, it might happen that members go down or come up over time.
Since we expect the hosts file to be injected into the running container it also might change over time. We want to
get the latest available members, therefore we read the file on request.

24.3.2.9 Configuring DiscoveryStrategy

To actually use the new DiscoveryStrategy implementation we need to configure it like in the following example:

<hazelcast>
<!-- activate Discovery SPI -->

24.4. CONFIG PROPERTIES SPI 477

<properties>
<property name="hazelcast.discovery.enabled">true</property>

</properties>

<network>
<join>

<!-- deactivating other discoveries -->
<multicast enabled="false"/>
<tcp-ip enabled="false" />
<aws enabled="false"/>

<!-- activate our discovery strategy -->
<discovery-strategies>

<!-- class equals to the DiscoveryStrategy not the factory! -->
<discovery-strategy enabled="true"

class="com.hazelcast.examples.spi.discovery.HostsDiscoveryStrategy">

<properties>
<property name="site-domain">cluster.local</property>

</properties>
</discovery-strategy>

</discovery-strategies>
</join>

</network>
</hazelcast>

To find out further details, please have a look at the Discovery SPI Javadoc.

24.3.3 DiscoveryService (Framework integration)

Since the DiscoveryStrategy is meant for cloud vendors or implementors of service discovery systems, the
DiscoveryService is meant for integrators. In this case, integrators means people integrating Hazelcast into
their own systems or frameworks. In those situations, there are sometimes special requirements on how to
lookup framework services like the discovery strategies or similar services. Integrators can extend or implement
their own DiscoveryService and DiscoveryServiceProvider and inject it using the Hazelcast Config API
(com.hazelcast.config.DiscoveryConfig) prior to instantiating the HazelcastInstance. In any case, integra-
tors might have to remember that a DiscoveryService might have to change behavior based on the runtime
environment (Hazelcast member or client), and then the DiscoveryServiceSettings should provide information
about the started HazelcastInstance.

Since the implementation heavily depends on one’s needs, there is no reason to provide an example of how to imple-
ment your own DiscoveryService. However, Hazelcast provides a default implementation which can be a good exam-
ple to get started. This default implementation is com.hazelcast.spi.discovery.impl.DefaultDiscoveryService.

24.4 Config Properties SPI

The Config Properties SPI is an easy way that you can configure SPI plugins using a prebuilt system of automatic
conversion and validation.

24.4.1 Config Properties SPI Classes

The Config Properties SPI consists of a small set of classes and provided implementations.

478 CHAPTER 24. EXTENDING HAZELCAST

24.4.1.1 PropertyDefinition: Define a Single Property

The com.hazelcast.config.properties.PropertyDefinition interface defines a single property inside a given
configuration. It consists of a key string and type (in form of a com.hazelcast.core.TypeConverter).

You can mark properties as optional and you can have an additional validation step to make sure the provided
value matches certain rules (like port numbers must be between 0-65535 or similar).

24.4.1.2 SimplePropertyDefinition: Basic PropertyDefinition

For convenience, the com.hazelcast.config.properties.SimplePropertyDefinition class is provided. This
class is a basic implementation of the PropertyDefinition interface and should be enough for most situations. In
case of additional needs, you are free to provide your own implementation of the PropertyDefinition interface.

24.4.1.3 PropertyTypeConverter: Set of TypeConverters

The com.hazelcast.config.properties.PropertyTypeConverter enum provides a preset of TypeConverters.
Provided are the most common basic types:

• String
• Short
• Integer
• Long
• Float
• Double
• Boolean

24.4.1.4 ValueValidator and ValidationException

The com.hazelcast.config.properties.ValueValidator interface implements additional value valida-
tion. The configured value will be validated before it is returned to the requester. If validation fails, a
com.hazelcast.config.properties.ValidationException is thrown and the requester has to handle it or throw
the exception further.

24.4.2 Config Properties SPI Example

This sub-section will show a quick example of how to setup, configure and use the Config Properties SPI.

24.4.2.1 Defining a Config PropertyDefinition

Defining a property is as easy as giving it a name and a type.

PropertyDefinition property = new SimplePropertyDefinition(
"my-key", PropertyTypeConverter.STRING

);

We defined a property named my-key with a type of a string. If none of the predefined TypeConverters matches
the need, users are free to provide their own implementation.

24.4. CONFIG PROPERTIES SPI 479

24.4.2.2 Providing a value in XML

The above property is now configurable in two ways:

<!-- option 1 -->
<my-key>value</my-key>

<!-- option 2 -->
<property name="my-key">value</property>

NOTE: In any case, both options are useable interchangeably, however the later version is recommended by
Hazelcast for schema applicability.

24.4.2.3 Retrieving a PropertyDefinition Value

To eventually retrieve a value, use the PropertyDefinition to get and convert the value automatically.

public <T> T getConfig(PropertyDefinition property,
Map<String, Comparable> properties) {

Map<String, Comparable> properties = ...;
TypeConverter typeConverter = property.typeConverter();

Comparable value = properties.get(property.key());
return typeConverter.convert(value);

}

480 CHAPTER 24. EXTENDING HAZELCAST

Chapter 25

Network Partitioning - Split Brain
Syndrome

Imagine that you have 10-node cluster and that the network is divided into two in a way that 4 servers cannot see
the other 6. As a result, you end up having two separate clusters: 4-node cluster and 6-node cluster. Members in
each sub-cluster think that the other nodes are dead even though they are not. This situation is called Network
Partitioning (a.k.a. Split-Brain Syndrome).

However, these two clusters have a combination of the 271 (using default) primary and backup partitions. It’s
very likely that not all of the 271 partitions, including both primaries and backups, exist in both mini-clusters.
Therefore, from each mini-cluster’s perspective, data has been lost as some partitions no longer exist (they exist on
the other segment).

25.1 Understanding Partition Recreation

If a MapStore was in use, those lost partitions would be reloaded from some database, making each mini-cluster
complete. Each mini-cluster will then recreate the missing primary partitions and continue to store data in them,
including backups on the other nodes.

25.2 Understanding Backup Partition Creation

When primary partitions exist without a backup, a backup version problem will be detected and a backup partition
will be created. When backups exist without a primary, the backups will be promoted to primary partitions and
new backups will be created with proper versioning. At this time, both mini-clusters have repaired themselves with
all 271 partitions with backups, and continue to handle traffic without any knowledge of each other. Given that
they have enough remaining memory (assumption), they are just smaller and can handle less throughput.

25.3 Understanding The Update Overwrite Scenario

If a MapStore is in use and the network to the database is available, one or both of the mini-clusters will write
updates to the same database. There is a potential for the mini-clusters to overwrite the same cache entry records
if modified in both mini-clusters. This overwrite scenario represents a potential data loss, and thus the database
design should consider an insert and aggregate on read or version strategy rather than update records in place.

If the network to the database is not available, then based on the configured or coded consistency level or transaction,
entry updates are held in cache or updates are rejected (fully synchronous and consistent). When held in cache, the
updates will be considered dirty and will be written to the database when it becomes available. You can view the
dirty entry counts per cluster member in the Management Center web console (please see the Map Monitoring
section).

481

482 CHAPTER 25. NETWORK PARTITIONING - SPLIT BRAIN SYNDROME

25.4 What Happens When The Network Failure Is Fixed

Since it is a network failure, there is no way to programmatically avoid your application running as two separate
independent clusters. But what will happen after the network failure is fixed and connectivity is restored between
these two clusters? Will these two clusters merge into one again? If they do, how are the data conflicts resolved,
because you might end up having two different values for the same key in the same map?

When the network is restored, all 271 partitions should exist in both mini-clusters and they should all undergo the
merge. Once all primaries are merged, all backups are rewritten so their versions are correct. You may want to
write a merge policy using the MapMergePolicy interface that rebuilds the entry from the database rather than
from memory.

The only metadata available for merge decisions are from the EntryView interface that includes object size (cost),
hits count, last updated/stored dates, and a version number that starts at zero and is incremented for each entry
update. You could also create your own versioning scheme or capture a time series of deltas to reconstruct an entry.

25.5 How Hazelcast Split Brain Merge Happens

Here is, step by step, how Hazelcast split brain merge happens:

1. The oldest member of the cluster checks if there is another cluster with the same group-name and group-
password in the network.

2. If the oldest member finds such a cluster, then it figures out which cluster should merge to the other.
3. Each member of the merging cluster will do the following.

• Pause.
• Take locally owned map entries.
• Close all of its network connections (detach from its cluster).
• Join to the new cluster.
• Send merge request for each of its locally owned map entry.
• Resume.

Each member of the merging cluster rejoins the new cluster and sends a merge request for each of its locally owned
map entries. Two important points:

• The smaller cluster will merge into the bigger one. If they have equal number of members then a hashing
algorithm determines the merging cluster.

• Each cluster may have different versions of the same key in the same map. The destination cluster will decide
how to handle merging entry based on the MergePolicy set for that map. There are built-in merge poli-
cies such as PassThroughMergePolicy, PutIfAbsentMapMergePolicy, HigherHitsMapMergePolicy
and LatestUpdateMapMergePolicy. You can develop your own merge policy by implementing
com.hazelcast.map.merge.MapMergePolicy. You should set the full class name of your implemen-
tation to the merge-policy configuration.

public interface MergePolicy {
/**
* Returns the value of the entry after the merge
* of entries with the same key. Returning value can be
* You should consider the case where existingEntry is null.
*
* @param mapName name of the map
* @param mergingEntry entry merging into the destination cluster
* @param existingEntry existing entry in the destination cluster
* @return final value of the entry. If returns null then entry will be removed.
*/
Object merge(String mapName, EntryView mergingEntry, EntryView existingEntry);

}

25.6. SPECIFYING MERGE POLICIES 483

25.6 Specifying Merge Policies

Here is how merge policies are specified per map:

<hazelcast>
...
<map name="default">
<backup-count>1</backup-count>
<eviction-policy>NONE</eviction-policy>
<max-size>0</max-size>
<eviction-percentage>25</eviction-percentage>
<!--

While recovering from split-brain (network partitioning),
map entries in the small cluster will merge into the bigger cluster
based on the policy set here. When an entry merge into the
cluster, there might an existing entry with the same key already.
Values of these entries might be different for that same key.
Which value should be set for the key? Conflict is resolved by
the policy set here. Default policy is hz.ADD_NEW_ENTRY

There are built-in merge policies such as
There are built-in merge policies such as
com.hazelcast.map.merge.PassThroughMergePolicy; entry will be added if

there is no existing entry for the key.
com.hazelcast.map.merge.PutIfAbsentMapMergePolicy ; entry will be

added if the merging entry doesn’t exist in the cluster.
com.hazelcast.map.merge.HigherHitsMapMergePolicy ; entry with the

higher hits wins.
com.hazelcast.map.merge.LatestUpdateMapMergePolicy ; entry with the

latest update wins.
-->
<merge-policy>MY_MERGE_POLICY_CLASS</merge-policy>

</map>

...
</hazelcast>

NOTE: Map is the only Hazelcast distributed data structure that merges after a split brain syndrome. For
the other data structures (e.g. Queue, Topic, IdGenerator, etc.), one instance of that data structure is chosen after
split brain syndrome.

484 CHAPTER 25. NETWORK PARTITIONING - SPLIT BRAIN SYNDROME

Chapter 26

System Properties

The table below lists the system properties with their descriptions in alphabetical order.

Property Name Default Value Type Description

hazelcast.application.validation.token string This property can be used to verify that Hazelcast members only join when their application level configuration is the same.
hazelcast.backpressure.backoff.timeout.millis 60000 int Controls the maximum timeout in milliseconds to wait for an invocation space to be available. The value needs to be equal to or larger than 0.
hazelcast.backpressure.enabled false bool Enable back pressure.
hazelcast.backpressure.max.concurrent.invocations.per.partition 100 int The maximum number of concurrent invocations per partition.
hazelcast.backpressure.syncwindow 1000 string Used when back pressure is enabled. The larger the sync window value, the less frequent a asynchronous backup is converted to a sync backup.
hazelcast.cache.invalidation.batch.enabled true bool Specifies whether the cache invalidation event batch sending is enabled or not.
hazelcast.cache.invalidation.batch.size 100 int Defines the maximum number of cache invalidation events to be drained and sent to the event listeners in a batch.
hazelcast.cache.invalidation.batchfrequency.seconds 5 int Defines cache invalidation event batch sending frequency in seconds.
hazelcast.clientengine.thread.count int Maximum number of threads to process non-partition-aware client requests, like map.size(), query, executor tasks, etc. Default count is 20 times number of cores.
hazelcast.client.event.queue.capacity 1000000 string Default value of the capacity of executor that handles incoming event packets.
hazelcast.client.event.thread.count 5 string Thread count for handling incoming event packets.
hazelcast.client.heartbeat.interval 10000 string The frequency of heartbeat messages sent by the clients to members.
hazelcast.client.heartbeat.timeout 300000 string Timeout for the heartbeat messages sent by the client to members. If no messages pass between client and member within the given time via this property in milliseconds, the connection will be closed.
hazelcast.client.invocation.timeout.seconds 120 string Time to give up the invocation when a member in the member list is not reachable.
hazelcast.client.max.no.heartbeat.seconds 300 int Time after which the member assumes the client is dead and closes its connections to the client.
hazelcast.client.shuffle.member.list true string The client shuffles the given member list to prevent all clients to connect to the same member when this property is false. When it is set to true, the client tries to connect to the members in the given order.
hazelcast.connect.all.wait.seconds 120 int Timeout to connect all other cluster members when a member is joining to a cluster.
hazelcast.connection.monitor.interval 100 int Minimum interval in milliseconds to consider a connection error as critical.
hazelcast.connection.monitor.max.faults 3 int Maximum IO error count before disconnecting from a member.
hazelcast.discovery.public.ip.enabled false bool Enable use of public IP address in member discovery with Discovery SPI.
hazelcast.enterprise.license.key null string Hazelcast Enterprise license key.
hazelcast.event.queue.capacity 1000000 int Capacity of internal event queue.
hazelcast.event.queue.timeout.millis 250 int Timeout to enqueue events to event queue.
hazelcast.event.thread.count 5 int Number of event handler threads.
hazelcast.graceful.shutdown.max.wait 600 int Maximum wait in seconds during graceful shutdown.
hazelcast.health.monitoring.delay.seconds 30 int Health monitoring logging interval in seconds.
hazelcast.health.monitoring.level SILENT string Health monitoring log level. When SILENT, logs are printed only when values exceed some predefined threshold. When NOISY, logs are always printed periodically. Set OFF to turn off completely.

485

486 CHAPTER 26. SYSTEM PROPERTIES

Property Name Default Value Type Description

hazelcast.heartbeat.interval.seconds 1 int Heartbeat send interval in seconds.
hazelcast.icmp.enabled false bool Enable ICMP ping.
hazelcast.icmp.timeout 1000 int ICMP timeout in milliseconds.
hazelcast.icmp.ttl 0 int ICMP TTL (maximum numbers of hops to try).
hazelcast.initial.min.cluster.size 0 int Initial expected cluster size to wait before member to start completely.
hazelcast.initial.wait.seconds 0 int Initial time in seconds to wait before member to start completely.
hazelcast.io.balancer.interval.seconds 20 int Interval in seconds between IOBalancer executions.
hazelcast.io.input.thread.count 3 int Number of socket input threads.
hazelcast.io.output.thread.count 3 int Number of socket output threads.
hazelcast.io.thread.count 3 int Number of threads performing socket input and socket output. If, for example, the default value (3) is used, it means there are 3 threads performing input and 3 threads performing output (6 threads in total).
hazelcast.jcache.provider.type string Type of the JCache provider. Values can be client or server.
hazelcast.jmx false bool Enable JMX agent.
hazelcast.lock.max.lease.time.seconds Long.MAX_VALUE long All locks which are acquired without an explicit lease time use this value (in seconds) as the lease time. When you want to set an explicit lease time for your locks, you cannot set it to a longer time than this value.
hazelcast.logging.type jdk enum Name of logging framework type to send logging events.
hazelcast.mancenter.home mancenter string Folder where Management Center data files are stored (license information, time travel information, etc.).
hazelcast.map.expiry.delay.seconds 10 int Useful to deal with some possible edge cases. For example, when using EntryProcessor, without this delay, you may see an EntryProcessor running on owner partition found a key but EntryBackupProcessor did not find it on backup. As a result of this, when backup promotes to owner, you will end up an unprocessed key.
hazelcast.map.load.chunk.size 1000 int Chunk size for MapLoader’s map initialization process (MapLoader.loadAllKeys()).
hazelcast.map.replica.wait.seconds.for.scheduled.tasks 10 int Scheduler delay for map tasks those will be executed on backup members.
hazelcast.map.write.behind.queue.capacity 50000 string Maximum write-behind queue capacity per member. It is the total of all write-behind queue sizes in a member including backups. Its maximum value is Integer.MAX_VALUE. The value of this property is taken into account only if the write-coalescing element of the Map Store configuration is false. Please refer to the Map Store section for the description of the write-coalescing element.
hazelcast.master.confirmation.interval.seconds 30 int Interval at which members send master confirmation.
hazelcast.max.join.merge.target.seconds 20 int Split-brain merge timeout for a specific target.
hazelcast.max.join.seconds 300 int Join timeout, maximum time to try to join before giving.
hazelcast.max.no.heartbeat.seconds 300 int Maximum timeout of heartbeat in seconds for a member to assume it is dead.
hazelcast.max.no.master.confirmation.seconds 450 int Max timeout of master confirmation from other members.
hazelcast.max.wait.seconds.before.join 20 int Maximum wait time before join operation.
hazelcast.mc.max.visible.instance.count 100 int Management Center maximum visible instance count.
hazelcast.mc.max.visible.slow.operations.count 10 int Management Center maximum visible slow operations count.
hazelcast.mc.url.change.enabled true bool Management Center changing server url is enabled.
hazelcast.member.list.publish.interval.seconds 600 int Interval at which master member publishes a member list.
hazelcast.memcache.enabled false bool Enable Memcache client request listener service.
hazelcast.merge.first.run.delay.seconds 300 int Initial run delay of split brain/merge process in seconds.
hazelcast.merge.next.run.delay.seconds 120 int Run interval of split brain/merge process in seconds.
hazelcast.migration.min.delay.on.member.removed.seconds 5 int Minimum delay (in seconds) between detection of a member that has left and start of the rebalancing process.
hazelcast.operation.backup.timeout.millis 5000 int Maximum time a caller to wait for backup responses of an operation. After this timeout, operation response will be returned to the caller even no backup response is received.
hazelcast.operation.call.timeout.millis 60000 int Timeout to wait for a response when a remote call is sent, in milliseconds.
hazelcast.operation.generic.thread.count -1 int Number of generic operation handler threads. -1 means CPU core count x 2.
hazelcast.operation.thread.count -1 int Number of partition based operation handler threads. -1 means CPU core count x 2.
hazelcast.partition.backup.sync.interval 30 int Interval for syncing backup replicas.
hazelcast.partition.count 271 int Total partition count.

487

Property Name Default Value Type Description

hazelcast.partition.max.parallel.replications 5 int Maximum number of parallel partition backup replication operations per member. When a partition backup ownership changes or a backup inconsistency is detected, the members start to sync their backup partitions. This parameter limits the maximum running replication operations in parallel.
hazelcast.partition.migration.interval 0 int Interval to run partition migration tasks in seconds.
hazelcast.partition.migration.timeout 300 int Timeout for partition migration tasks in seconds.
hazelcast.partition.table.send.interval 15 int Interval for publishing partition table periodically to all cluster members.
hazelcast.partitioning.strategy.class null string Class name implementing com.hazelcast.core.PartitioningStrategy, which defines key to partition mapping.
hazelcast.performance.monitor.max.rolled.file.count 10 int The PerformanceMonitor uses a rolling file approach to prevent eating too much disk space. This property sets the maximum number of rolling files to keep on disk.
hazelcast.performance.monitor.max.rolled.file.size.mb 10 int The performance monitor uses a rolling file approach to prevent eating too much disk space. This property sets the maximum size in MB for a single file. Every HazelcastInstance gets its own history of log files.
hazelcast.performance.monitoring.enabled bool Enable the performance monitor, a tool which allows you to see internal performance metrics. These metrics are written to a dedicated log file.
hazelcast.performance.monitor.delay.seconds int The period between successive entries in the performance monitor’s log file.
hazelcast.prefer.ipv4.stack true bool Prefer IPv4 network interface when picking a local address.
hazelcast.query.max.local.partition.limit.for.precheck 3 int Maximum value of local partitions to trigger local pre-check for TruePredicate query operations on maps.
hazelcast.query.optimizer.type RULES String Type of the query optimizer. For optimizations based on static rules, set the value to RULES. To disable the optimization, set the value to NONE.
hazelcast.query.predicate.parallel.evaluation false bool Each Hazelcast member evaluates query predicates using a single thread by default. In most cases, the overhead of inter-thread communications overweight can benefit from parallel execution. When you have a large dataset and/or slow predicate, you may benefit from parallel predicate evaluations. Set to true if you are using slow predicates or have > 100,000s entries per member.
hazelcast.query.result.size.limit -1 int Result size limit for query operations on maps. This value defines the maximum number of returned elements for a single query result. If a query exceeds this number of elements, a QueryResultSizeExceededException is thrown. Its default value is -1, meaning it is disabled.
hazelcast.rest.enabled false bool Enable REST client request listener service.
hazelcast.shutdownhook.enabled true bool Enable Hazelcast shutdownhook thread. When this is enabled, this thread terminates the Hazelcast instance without waiting to shutdown gracefully.
hazelcast.slow.operation.detector.enabled true bool Enables/disables the SlowOperationDetector.
hazelcast.slow.operation.detector.log.purge.interval.seconds 300 int Purge interval for slow operation logs.
hazelcast.slow.operation.detector.log.retention.seconds 3600 int Defines the retention time of invocations in slow operation logs. If an invocation is older than this value, it will be purged from the log to prevent unlimited memory usage. When all invocations are purged from a log, the log itself will be deleted.
hazelcast.slow.operation.detector.stacktrace.logging.enabled false bool Defines if the stacktraces of slow operations are logged in the log file. Stack traces are always reported to the Management Center, but by default, they are not printed to keep the log size small.
hazelcast.slow.operation.detector.threshold.millis 10000 int Defines a threshold above which a running operation in OperationService is considered to be slow. These operations log a warning and are shown in the Management Center with detailed information, e.g. stacktrace.
hazelcast.socket.bind.any true bool Bind both server-socket and client-sockets to any local interface.
hazelcast.socket.client.bind true bool Bind client socket to an interface when connecting to a remote server socket. When set to false, client socket is not bound to any interface.
hazelcast.socket.client.bind.any true bool Bind client-sockets to any local interface. If not set, hazelcast.socket.bind.any will be used as default.
hazelcast.socket.client.receive.buffer.size -1 int Hazelcast creates all connections with receive buffer size set according to the hazelcast.socket.receive.buffer.size. When it detects a connection opened by a client, then it adjusts the receive buffer size according to this property. It is in kilobytes and the default value is -1.
hazelcast.socket.client.send.buffer.size -1 int Hazelcast creates all connections with send buffer size set according to the hazelcast.socket.send.buffer.size. When it detects a connection opened by a client, then it adjusts the send buffer size according to this property. It is in kilobytes and the default value is -1.
hazelcast.socket.connect.timeout.seconds 0 int Socket connection timeout in seconds. Socket.connect() will be blocked until either connection is established or connection is refused or this timeout passes. Default is 0, means infinite.
hazelcast.socket.keep.alive true bool Socket set keep alive (SO_KEEPALIVE).
hazelcast.socket.linger.seconds 0 int Set socket SO_LINGER option.
hazelcast.socket.no.delay true bool Socket set TCP no delay.
hazelcast.socket.receive.buffer.size 32 int Socket receive buffer (SO_RCVBUF) size in KB. If you have a very fast network (e.g. 10gbit) and/or you have large entries, then you may benefit from increasing sender/receiver buffer sizes. Use this property and the next one below tune the size. For example, a send/receive buffer size of 1024 kB is a safe starting point for a 10gbit network.
hazelcast.socket.send.buffer.size 32 int Socket send buffer (SO_SNDBUF) size in KB.
hazelcast.socket.server.bind.any true bool Bind server-socket to any local interface. If not set, hazelcast.socket.bind.any will be used as default.
hazelcast.tcp.join.port.try.count 3 int The number of incremental ports, starting with the port number defined in the network configuration, that will be used to connect to a host (which is defined without a port in TCP/IP member list while a member is searching for a cluster).
hazelcast.unsafe.mode auto string “auto” (the default value) automatically detects whether the usage of Unsafe is suitable for a given platform. “disabled” explicitly disables the Unsafe usage in your platform. “enforced” enforces the usage of Unsafe even if your platform does not support it. This property can only be set by passing a JVM-wide system property.
hazelcast.phone.home.enabled true bool Enable or disable the sending of phone home data to Hazelcast’s phone home server.
hazelcast.wait.seconds.before.join 5 int Wait time before join operation.

488 CHAPTER 26. SYSTEM PROPERTIES

Chapter 27

Common Exception Types

You may see the following exceptions in any Hazelcast operation when the following situations occur:

• HazelcastInstanceNotActiveException: Thrown when HazelcastInstance is not active (already shut-
down or being shutdown) during an invocation.

• HazelcastOverloadException: Thrown when the system will not handle any more load due to an overload.
This exception is thrown when back pressure is enabled.

• DistributedObjectDestroyedException: Thrown when an already destroyed DistributedObject (IMap,
IQueue, etc.) is accessed or when a method is called over a destroyed DistributedObject.

• MemberLeftException: Thrown when a member leaves during an invocation or execution.

Hazelcast also throws the following exceptions in the cases of overall system problems such as networking issues
and long pauses:

• PartitionMigratingException: Thrown when an operation is executed on a partition, but that partition is
currently being moved.

• TargetNotMemberException: Thrown when an operation is sent to a machine that is not a member of the
cluster.

• CallerNotMemberException: Thrown when an operation was sent by a machine which is not a member in
the cluster when the operation is executed.

• WrongTargetException: Thrown when an operation is executed on the wrong machine, usually because the
partition that operation belongs to has been moved to some other member.

489

490 CHAPTER 27. COMMON EXCEPTION TYPES

Chapter 28

License Questions

Hazelcast is distributed using the Apache License 2, therefore permissions are granted to use, reproduce and
distribute it along with any kind of open source and closed source applications.

Hazelcast Enterprise is a commercial product of Hazelcast, Inc. and is distributed under a commercial license that
must be acquired before using it in any type of released software. Feel free to contact Hazelcast sales department
for more information on commercial offers.

Depending on the used feature-set, Hazelcast has certain runtime dependencies which might have different licenses.
Following are dependencies and their respective licenses.

28.1 Embedded Dependencies

Embedded dependencies are merged (shaded) with the Hazelcast codebase at compile-time. These dependencies
become an integral part of the Hazelcast distribution.

For license files of embedded dependencies, please see the license directory of the Hazelcast distribution, available
at our download page.

minimal-json:

minimal-json is a JSON parsing and generation library which is a part of the Hazelcast distribution. It is used for
communication between the Hazelcast cluster and the Management Center.

minimal-json is distributed under the MIT license and offers the same rights to add, use, modify, and distribute the
source code as the Apache License 2.0 that Hazelcast uses. However, some other restrictions might apply.

28.2 Runtime Dependencies

Depending on the used features, additional dependencies might be added to the dependency set. Those runtime
dependencies might have other licenses. See the following list of additional runtime dependencies.

Spring Framework:

Hazelcast offers a tight integration into the Spring Framework. Hazelcast can be configured and controlled using
Spring.

The Spring Framework is distributed under the terms of the Apache License 2 and therefore it is fully compatible
with Hazelcast.

Hibernate:

Hazelcast integrates itself into Hibernate as a second-level cache provider.

Hibernate is distributed under the terms of the Lesser General Public License 2.1, also known as LGPL. Please
read carefully the terms of the LGPL since restrictions might apply.

491

492 CHAPTER 28. LICENSE QUESTIONS

Apache Tomcat:

Hazelcast Enterprise offers native integration into Apache Tomcat for web session clustering.

Apache Tomcat is distributed under the terms of the Apache License 2 and therefore fully compatible with Hazelcast.

Eclipse Jetty:

Hazelcast Enterprise offers native integration into Jetty for web session clustering.

Jetty is distributed with a dual licensing strategy. It is licensed under the terms of the Apache License 2 and
under the Eclipse Public License v1.0, also known as EPL. Due to the Apache License, it is fully compatible with
Hazelcast.

JCache API (JSR 107):

Hazelcast offers a native implementation for JCache (JSR 107), which has a runtime dependency to the JCache
API.

The JCache API is distributed under the terms of the so called Specification License). Please read carefully the
terms of this license since restrictions might apply.

Boost C++ Libraries:

Hazelcast Enterprise offers a native C++ client, which has a link-time dependency to the Boost C++ Libraries.

The Boost Libraries are distributed under the terms of the Boost Software License), which is very similar to the
MIT or BSD license. Please read carefully the terms of this license since restrictions might apply.

Chapter 29

Frequently Asked Questions

29.1 Why 271 as the default partition count?

The partition count of 271, being a prime number, is a good choice because it will be distributed to the members
almost evenly. For a small to medium sized cluster, the count of 271 gives an almost even partition distribution
and optimal-sized partitions. As your cluster becomes bigger, you should make this count bigger to have evenly
distributed partitions.

29.2 Is Hazelcast thread safe?

Yes. All Hazelcast data structures are thread safe.

How do members discover each other?

When a member is started in a cluster, it will dynamically and automatically be discovered. There are three types
of discovery.

• Multicast discovery: members in a cluster discover each other by multicast, by default.
• Discovery by TCP/IP: the first member created in the cluster (leader) will form a list of IP addresses of other
joining members and will send this list to these members so the members will know each other.

• If your application is placed on Amazon EC2, Hazelcast has an automatic discovery mechanism. You will
give your Amazon credentials and the joining member will be discovered automatically.

Once members are discovered, all the communication between them will be via TCP/IP. RELATED INFOR-
MATION

Please refer to the Discovering Cluster Members section for detailed information.

29.3 What happens when a member goes down?

Once a member is gone (crashes), the following happens since data in each member has a backup in other members.

• First, the backups in other members are restored.
• Then, data from these restored backups are recovered.
• And finally, backups for these recovered data are formed.

So eventually, no data is lost.

493

494 CHAPTER 29. FREQUENTLY ASKED QUESTIONS

29.4 How do I test the connectivity?

If you notice that there is a problem with a member joining a cluster, you may want to perform a connectivity test
between the member to be joined and a member from the cluster. You can use the iperf tool for this purpose. For
example, you can execute the below command on one member (i.e. listening on port 5701).

iperf -s -p 5701

And you can execute the below command on the other member.

iperf -c <IP address> -d -p 5701

The output should include connection information, such as the IP addresses, transfer speed, and bandwidth.
Otherwise, if the output says No route to host, it means a network connection problem exists.

29.5 How do I choose keys properly?

When you store a key and value in a distributed Map, Hazelcast serializes the key and value, and stores the byte array
version of them in local ConcurrentHashMaps. These ConcurrentHashMaps use equals and hashCode methods of
byte array version of your key. It does not take into account the actual equals and hashCode implementations of
your objects. So it is important that you choose your keys in a proper way.

Implementing equals and hashCode is not enough, it is also important that the object is always serialized into the
same byte array. All primitive types like String, Long, Integer, etc. are good candidates for keys to be used in
Hazelcast. An unsorted Set is an example of a very bad candidate because Java Serialization may serialize the
same unsorted set in two different byte arrays.

29.6 How do I reflect value modifications?

Hazelcast always return a clone copy of a value. Modifying the returned value does not change the actual value in
the map (or multimap, list, set). You should put the modified value back to make changes visible to all members.

V value = map.get(key);
value.updateSomeProperty();
map.put(key, value);

Collections which return values of methods (such as IMap.keySet, IMap.values, IMap.entrySet, MultiMap.get,
MultiMap.remove, IMap.keySet, IMap.values) contain cloned values. These collections are NOT backed up by
related Hazelcast objects. Therefore, changes to them are NOT reflected in the originals, and vice-versa.

29.7 How do I test my Hazelcast cluster?

Hazelcast allows you to create more than one instance on the same JVM. Each member is called HazelcastInstance
and each will have its own configuration, socket and threads, so you can treat them as totally separate instances.

This enables you to write and to run cluster unit tests on a single JVM. Because you can use this feature for creating
separate members different applications running on the same JVM (imagine running multiple web applications on
the same JVM), you can also use this feature for testing your Hazelcast cluster.

Let’s say you want to test if two members have the same size of a map.

@Test
public void testTwoMemberMapSizes() {

// start the first member
HazelcastInstance h1 = Hazelcast.newHazelcastInstance();
// get the map and put 1000 entries

29.7. HOW DO I TEST MY HAZELCAST CLUSTER? 495

Map map1 = h1.getMap("testmap");
for (int i = 0; i < 1000; i++) {
map1.put(i, "value" + i);

}
// check the map size
assertEquals(1000, map1.size());
// start the second member
HazelcastInstance h2 = Hazelcast.newHazelcastInstance();
// get the same map from the second member
Map map2 = h2.getMap("testmap");
// check the size of map2
assertEquals(1000, map2.size());
// check the size of map1 again
assertEquals(1000, map1.size());

}

In the test above, everything happens in the same thread. When developing a multi-threaded test, you need to
carefully handle coordination of the thread executions. it is highly recommended that you use CountDownLatch for
thread coordination (you can certainly use other ways). Here is an example where we need to listen for messages
and make sure that we got these messages.

@Test
public void testTopic() {

// start two member cluster
HazelcastInstance h1 = Hazelcast.newHazelcastInstance();
HazelcastInstance h2 = Hazelcast.newHazelcastInstance();
String topicName = "TestMessages";
// get a topic from the first member and add a messageListener
ITopic<String> topic1 = h1.getTopic(topicName);
final CountDownLatch latch1 = new CountDownLatch(1);
topic1.addMessageListener(new MessageListener() {
public void onMessage(Object msg) {
assertEquals("Test1", msg);
latch1.countDown();

}
});
// get a topic from the second member and add a messageListener
ITopic<String> topic2 = h2.getTopic(topicName);
final CountDownLatch latch2 = new CountDownLatch(2);
topic2.addMessageListener(new MessageListener() {
public void onMessage(Object msg) {
assertEquals("Test1", msg);
latch2.countDown();

}
});
// publish the first message, both should receive this
topic1.publish("Test1");
// shutdown the first member
h1.shutdown();
// publish the second message, second member’s topic should receive this
topic2.publish("Test1");
try {

// assert that the first member’s topic got the message
assertTrue(latch1.await(5, TimeUnit.SECONDS));
// assert that the second members’ topic got two messages
assertTrue(latch2.await(5, TimeUnit.SECONDS));

} catch (InterruptedException ignored) {

496 CHAPTER 29. FREQUENTLY ASKED QUESTIONS

}
}

You can start Hazelcast members with different configurations. Remember to call Hazelcast.shutdownAll() after
each test case to make sure that there is no other running member left from the previous tests.

@After
public void cleanup() throws Exception {
Hazelcast.shutdownAll();

}

For more information please check our existing tests.

29.8 Does Hazelcast support hundreds of members?

Yes. Hazelcast performed a successful test on Amazon EC2 with 200 members.

29.9 Does Hazelcast support thousands of clients?

Yes. However, there are some points you should consider. The environment should be LAN with a high stability
and the network speed should be 10 Gbps or higher. If the number of members is high, the client type should be
selected as Dummy, not Smart Client. In the case of Smart Clients, since each client will open a connection to the
members, these members should be powerful enough (for example, more cores) to handle hundreds or thousands of
connections and client requests. Also, you should consider using near caches in clients to lower the network traffic.
And you should use the Hazelcast releases with the NIO implementation (which starts with Hazelcast 3.2).

Also, you should configure the clients attentively. Please refer to the Java Client section section for configuration
notes.

29.10 What is the difference between old LiteMember and new Smart
Client?

LiteMember supports task execution (distributed executor service), smart client does not. Also, LiteMember is
highly coupled with cluster, smart client is not.

29.11 How do you give support?

We have two support services: community and commercial support. Community support is provided through our
Mail Group and StackOverflow web site. For information on support subscriptions, please see Hazelcast.com.

29.12 Does Hazelcast persist?

No. However, Hazelcast provides MapStore and MapLoader interfaces. For example, when you implement the
MapStore interface, Hazelcast calls your store and load methods whenever needed.

29.13 Can I use Hazelcast in a single server?

Yes. But please note that Hazelcast’s main design focus is multi-member clusters to be used as a distribution
platform.

29.14. HOW CAN I MONITOR HAZELCAST? 497

29.14 How can I monitor Hazelcast?

Hazelcast Management Center is what you use to monitor and manage the members running Hazelcast. In addition
to monitoring the overall state of a cluster, you can analyze and browse data structures in detail, you can update
map configurations, and you can take thread dumps from members.

Moreover, JMX monitoring is also provided. Please see the Monitoring with JMX section for details.

29.15 How can I see debug level logs?

By changing the log level to “Debug”. Below are sample lines for log4j logging framework. Please see the Logging
Configuration section to learn how to set logging types.

First, set the logging type as follows.

String location = "log4j.configuration";
String logging = "hazelcast.logging.type";
System.setProperty(logging, "log4j");
/**if you want to give a new location. **/
System.setProperty(location, "file:/path/mylog4j.properties");

Then set the log level to “Debug” in the properties file. Below is example content.

direct log messages to stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p [%c{1}] - %m%n

log4j.logger.com.hazelcast=debug

#log4j.logger.com.hazelcast.cluster=debug

#log4j.logger.com.hazelcast.partition=debug

#log4j.logger.com.hazelcast.partition.InternalPartitionService=debug

#log4j.logger.com.hazelcast.nio=debug

#log4j.logger.com.hazelcast.hibernate=debug

The line log4j.logger.com.hazelcast=debug is used to see debug logs for all Hazelcast operations. Below this
line, you can select to see specific logs (cluster, partition, hibernate, etc.).

29.16 What is the difference between client-server and embedded
topologies?

In the embedded topology, members include both the data and application. This type of topology is the most
useful if your application focuses on high performance computing and many task executions. Since application is
close to data, this topology supports data locality.

In the client-server topology, you create a cluster of members and scale the cluster independently. Your applications
are hosted on the clients, and the clients communicate with the members in the cluster to reach data.

Client-server topology fits better if there are multiple applications sharing the same data or if application deployment
is significantly greater than the cluster size (for example, 500 application servers vs. 10 member cluster).

498 CHAPTER 29. FREQUENTLY ASKED QUESTIONS

29.17 How do I know it is safe to kill the second member?

Below code snippet shuts down the cluster members if the cluster is safe for a member shutdown.

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isClusterSafe()) {

hazelcastInstance.shutdown(); // or terminate
}

Below code snippet shuts down the local member if the member is safe to be shutdown.

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isLocalMemberSafe()) {

hazelcastInstance.shutdown(); // or terminate
}

RELATED INFORMATION
Please refer to Safety Checking Cluster Members for more information.

29.18 When do I need Native Memory solutions?

Native Memory solutions can be preferred:

• when the amount of data per member is large enough to create significant garbage collection pauses.
• when your application requires predictable latency.

29.19 Is there any disadvantage of using near-cache?

The only disadvantage when using Near Cache is that it may cause stale reads.

29.20 Is Hazelcast secure?

Hazelcast supports symmetric encryption, secure sockets layer (SSL), and Java Authentication and Authorization
Service (JAAS). Please see the Security chapter for more information.

29.21 How can I set socket options?

Hazelcast allows you to set some socket options such as SO_KEEPALIVE, SO_SNDBUF, and SO_RCVBUF using Hazelcast
configuration properties. Please see hazelcast.socket.* properties explained in the System Properties section.

29.22 I periodically see client disconnections during idle time?

In Hazelcast, socket connections are created with the SO_KEEPALIVE option enabled by default. In most operating
systems, default keep-alive time is 2 hours. If you have a firewall between clients and servers which is configured to
reset idle connections/sessions, make sure that the firewall’s idle timeout is greater than the TCP keep-alive defined
in the OS.

For additional information please see:

• Using TCP keepalive under Linux
• Microsoft TechNet

29.23. HOWTOGET RID OF “JAVA.LANG.OUTOFMEMORYERROR: UNABLE TO CREATE NEWNATIVE THREAD”?499

29.23 How to get rid of “java.lang.OutOfMemoryError: unable to
create new native thread”?

If you encounter an error of java.lang.OutOfMemoryError: unable to create new native thread, it may
be caused by exceeding the available file descriptors on your operating system, especially if it is Linux. This
exception is usually thrown on a running member, after a period of time when the thread count exhausts the file
descriptor availability.

The JVM on Linux consumes a file descriptor for each thread created. The default number of file descriptors
available in Linux is usually 1024. If you have many JVMs running on a single machine, it is possible to exceed this
default number.

You can view the limit using the following command.

ulimit -a

At the operating system level, Linux users can control the amount of resources (and in particular, file descriptors)
used via one of the following options.

1 - Editing the limits.conf file:

vi /etc/security/limits.conf

testuser soft nofile 4096

testuser hard nofile 10240

2 - Or using the ulimit command:

ulimit -Hn

10240

The default number of process per users is 1024. Adding the following to your $HOME/.profile could solve the
issue:

ulimit -u 4096

29.24 Does repartitioning wait for Entry Processor?

Repartitioning is the process of redistributing the partition ownerships. Hazelcast performs the repartitioning in
the cases where a member leaves the cluster or joins the cluster. If a repartitioning will happen while an entry
processor is active in a member processing on an entry object, the repartitioning waits for the entry processor to
complete its job.

29.25 Why do Hazelcast instances on different machines not see each
other?

Assume you have two instances on two different machines and you develop a configuration as shown below.

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();

JoinConfig join = network.getJoin();
join.getMulticastConfig().setEnabled(false);
join.getTcpIpConfig().addMember("IP1")

.addMember("IP2").setEnabled(true);
network.getInterfaces().setEnabled(true)

.addInterface("IP1").addInterface("IP2");

500 CHAPTER 29. FREQUENTLY ASKED QUESTIONS

When you create the Hazelcast instance, you have to pass the configuration to the instance. If you create the
instances without passing the configuration, each instance starts but cannot see each other. Therefore, a correct
way to create the instance is the following:

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);

The following is an incorrect way:

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

29.26 What Does “Replica: 1 has no owner” Mean?

When you start more members after the first one is started, you will see replica: 1 has no owner entry in the
newly started member’s log. There is no need to worry about it since it refers to a transitory state. It only means
the replica partition is not ready/assigned yet and eventually it will be.

Chapter 30

Glossary

Term Definition

2-phase Commit 2-phase commit protocol is an atomic commitment protocol for distributed systems. It consists of two phases: commit-request and commit. In commit-request phase, transaction manager coordinates all of the transaction resources to commit or abort. In commit-phase, transaction manager decides to finalize operation by committing or aborting according to the votes of the each transaction resource.
ACID A set of properties (Atomicity, Consistency, Isolation, Durability) guaranteeing that transactions are processed reliably. Atomicity requires that each transaction be all or nothing (i.e. if one part of the transaction fails, the entire transaction will fail). Consistency ensures that only valid data following all rules and constraints is written. Isolation ensures that transactions are securely and independently processed at the same time without interference (and without transaction ordering). Durability means that once a transaction has been committed, it will remain so, no matter if there is a power loss, crash, or error.
Cache A high-speed access area that can be either a reserved section of main memory or storage device.
Garbage Collection Garbage collection is the recovery of storage that is being used by an application when that application no longer needs the storage. This frees the storage for use by other applications (or processes within an application). It also ensures that an application using increasing amounts of storage does not reach its quota. Programming languages that use garbage collection are often interpreted within virtual machines like the JVM. The environment that runs the code is also responsible for garbage collection.
Hazelcast Cluster A virtual environment formed by Hazelcast members communicating with each other in the cluster.
Hazelcast Partitions Memory segments containing the data. Hazelcast is built-on the partition concept, it uses partitions to store and process data. Each partition can have hundreds or thousands of data entries depending on your memory capacity. You can think of a partition as a block of data. In general and optimally, a partition should have a maximum size of 50-100 Megabytes.
IMDG An in-memory data grid (IMDG) is a data structure that resides entirely in memory, and is distributed among many nodes in a single location or across multiple locations. IMDGs can support thousands of in-memory data updates per second, and they can be clustered and scaled in ways that support large quantities of data.
Invalidation The process of marking an object as being invalid across the distributed cache.
Java heap Java heap is the space that Java can reserve and use in memory for dynamic memory allocation. All runtime objects created by a Java application are stored in heap. By default, the heap size is 128 MB, but this limit is reached easily for business applications. Once the heap is full, new objects cannot be created and the Java application shows errors.
LRU, LFU LRU and LFU are two of eviction algorithms. LRU is the abbreviation for Least Recently Used. It refers to entries eligible for eviction due to lack of interest by applications. LFU is the abbreviation for Least Frequently Used. It refers to the entries eligible for eviction due to having the lowest usage frequency.
Member A Hazelcast instance. Depending on your Hazelcast usage, it can refer to a server or a Java virtual machine (JVM). Members belong to a Hazelcast cluster. Members are also referred as nodes, member nodes, cluster members, or Hazelcast members.
Multicast A type of communication where data is addressed to a group of destination nodes simultaneously.
Near Cache A caching model. When near cache is enabled, an object retrieved from a remote node is put into the local cache and the future requests made to this object will be handled by this local node. For example, if you have a map with data that is mostly read, then using near cache is a good idea.
NoSQL “Not Only SQL”. A database model that provides a mechanism for storage and retrieval of data that is tailored in means other than the tabular relations used in relational databases. It is a type of database which does not adhering to the traditional relational database management system (RDMS) structure. It is not built on tables and does not employ SQL to manipulate data. It also may not provide full ACID guarantees, but still has a distributed and fault tolerant architecture.
OSGI Formerly known as the Open Services Gateway initiative, it describes a modular system and a service platform for the Java programming language that implements a complete and dynamic component model.
Race Condition This condition occurs when two or more threads can access shared data and they try to change it at the same time.
RSA An algorithm developed by Rivest, Shamir and Adleman to generate, encrypt and decrypt keys for secure data transmissions.
Serialization Process of converting an object into a stream of bytes in order to store the object or transmit it to memory, a database, or a file. Its main purpose is to save the state of an object in order to be able to recreate it when needed. The reverse process is called deserialization.
Split Brain Split brain syndrome, in a clustering context, is a state in which a cluster of nodes gets divided (or partitioned) into smaller clusters of nodes, each of which believes it is the only active cluster.
Transaction Means a sequence of information exchange and related work (such as data store updating) that is treated as a unit for the purposes of satisfying a request and for ensuring data store integrity.

501

	Preface
	Hazelcast Editions
	Hazelcast Architecture
	Hazelcast Plugins
	Licensing
	Trademarks
	Customer Support
	Release Notes
	Contributing to Hazelcast
	Phone Home
	Typographical Conventions

	Document Revision History
	Getting Started
	Installation
	Hazelcast
	Hazelcast Enterprise
	Setting the License Key
	Upgrading from 3.x
	Upgrading from 2.x

	Starting the Member and Client
	Using the Scripts In The Package
	Deploying On Amazon EC2
	Deploying using Docker

	Hazelcast Overview
	Sharding in Hazelcast
	Hazelcast Topology
	Why Hazelcast?
	Data Partitioning
	How the Data is Partitioned
	Partition Table
	Repartitioning

	Use Cases
	Resources

	Understanding Configuration
	Configuring Declaratively
	Composing Declarative Configuration

	Configuring Programmatically
	Configuring with System Properties
	Configuring within Spring Context
	Checking Configuration
	Using Wildcards
	Using Variables

	Setting Up Clusters
	Discovering Cluster Members
	Discovering Members by Multicast
	Discovering Members by TCP
	Discovering Members within EC2 Cloud
	Discovering Members with jclouds

	Creating Cluster Groups
	Partition Group Configuration
	Logging Configuration
	Other Network Configurations
	Public Address
	Port
	Outbound Ports
	Reuse Address
	Join
	Interfaces
	IPv6 Support

	Distributed Data Structures
	Map
	Getting a Map and Putting an Entry
	Backing Up Maps
	Evicting Map Entries
	Setting In Memory Format
	Using High-Density Memory Store with Map
	Loading and Storing Persistent Data
	Creating Near Cache for Map
	Locking Maps
	Accessing Entry Statistics
	Map Listener
	Listening to Map Entries with Predicates
	Adding Interceptors
	Preventing Out of Memory Exceptions

	Queue
	Getting a Queue and Putting Items
	Creating an Example Queue
	Setting a Bounded Queue
	Queueing with Persistent Datastore
	Configuring Queue

	MultiMap
	Getting a MultiMap and Putting an Entry
	Configuring MultiMap

	Set
	Getting a Set and Putting Items
	Configuring Set

	List
	Getting a List and Putting Items
	Configuring List

	Ringbuffer
	Getting a Ringbuffer and Reading Items
	Adding Items to a Ringbuffer
	IQueue vs. Ringbuffer
	Configuring Ringbuffer Capacity
	Backing Up Ringbuffer
	Configuring Ringbuffer Time To Live
	Setting Ringbuffer Overflow Policy
	Configuring Ringbuffer In-Memory Format
	Adding Batched Items
	Reading Batched Items
	Using Async Methods
	Ringbuffer Configuration Examples

	Topic
	Getting a Topic and Publishing Messages
	Getting Topic Statistics
	Understanding Topic Behavior
	Configuring Topic

	Reliable Topic
	Sample Reliable ITopic Code
	Slow Consumers
	Configuring Reliable Topic

	Lock
	Using Try-Catch Blocks with Locks
	Releasing Locks with tryLock Timeout
	Avoiding Waiting Threads with Lease Time
	Understanding Lock Behavior
	Synchronizing Threads with ICondition

	IAtomicLong
	Sending Functions to IAtomicLong
	Executing Functions on IAtomicLong
	Reasons to Use Functions with IAtomic

	ISemaphore
	Controlling Thread Counts with Semaphore Permits
	Example Semaphore Code
	Configuring Semaphore

	IAtomicReference
	Sending Functions to IAtomicReference
	Using IAtomicReference

	ICountDownLatch
	Gate-Keeping Concurrent Activities
	Recovering From Failure
	Using ICountDownLatch

	IdGenerator
	Generating Cluster-Wide IDs
	Unique IDs and Duplicate IDs

	Replicated Map
	Replicating Instead of Partitioning
	Example Replicated Map Code
	Considerations for Replicated Map
	Configuration Design for Replicated Map
	Configuring Replicated Map
	Using EntryListener on Replicated Map

	Distributed Events
	Event Listeners for Hazelcast Members
	Listening for Member Events
	Listening for Distributed Object Events
	Listening for Migration Events
	Listening for Partition Lost Events
	Listening for Lifecycle Events
	Listening for Map Events
	Listening for MultiMap Events
	Listening for Item Events
	Listening for Topic Messages
	Listening for Clients

	Event Listeners for Hazelcast Clients
	Global Event Configuration

	Distributed Computing
	Executor Service
	Implementing a Callable Task
	Implementing a Runnable Task
	Scaling The Executor Service
	Executing Code in the Cluster
	Canceling an Executing Task
	Callback When Task Completes
	Selecting Members for Task Execution
	Configuring Executor Service

	Entry Processor
	Performing Fast In-Memory Map Operations
	Creating an Entry Processor
	Abstract Entry Processor

	Distributed Query
	How Distributed Query Works
	Employee Map Query Example
	Querying with Criteria API
	Querying with SQL
	Filtering with Paging Predicates
	Indexing Queries
	Configuring Query Thread Pool

	Querying in Collections and Arrays
	Indexing in Collections and Arrays
	Corner cases

	Custom Attributes
	Implementing a ValueExtractor
	Extraction Arguments
	Configuring a Custom Attribute Programmatically
	Configuring a Custom Attribute Declaratively
	Indexing Custom Attributes

	MapReduce
	Understanding MapReduce
	Using the MapReduce API
	Hazelcast MapReduce Architecture

	Aggregators
	Aggregations Basics
	Using the Aggregations API
	Aggregations Examples
	Implementing Aggregations

	Continuous Query Cache
	Keeping Query Results Local and Ready
	Accessing Continuous Query Cache from Member
	Accessing Continuous Query Cache from Client Side
	Features of Continuous Query Cache

	Transactions
	Creating a Transaction Interface
	Queue/Set/List vs. Map/Multimap
	ONE_PHASE vs. TWO_PHASE

	Providing XA Transactions
	Integrating into J2EE
	Sample Code for J2EE Integration
	Configuring Resource Adapter
	Configuring a Glassfish v3 Web Application
	Configuring a JBoss AS 5 Web Application
	Configuring a JBoss AS 7 / EAP 6 Web Application

	Hazelcast JCache
	JCache Overview
	JCache Setup and Configuration
	Setting up Your Application
	Example JCache Application
	Configuring for JCache

	JCache Providers
	Configuring JCache Provider
	Configuring JCache with Client Provider
	Configuring JCache with Server Provider

	JCache API
	JCache API Application Example
	JCache Base Classes
	Implementing Factory and FactoryBuilder
	Implementing CacheLoader
	CacheWriter
	Implementing EntryProcessor
	CacheEntryListener
	ExpirePolicy

	Hazelcast JCache Extension - ICache
	Scoping to Join Clusters
	Namespacing
	Retrieving an ICache Instance
	ICache Configuration
	ICache Async Methods
	Defining a Custom ExpiryPolicy
	JCache Eviction
	JCache Near Cache
	ICache Convenience Methods
	Implementing BackupAwareEntryProcessor
	ICache Partition Lost Listener
	JCache Split-Brain

	Testing for JCache Specification Compliance

	Integrated Clustering
	Hibernate Second Level Cache
	Sample Code for Hibernate
	Supported Hibernate Versions
	Configuring Hibernate for Hazelcast
	Configuring Hazelcast for Hibernate
	Setting P2P (Peer-to-Peer) for Hibernate
	Setting Client/Server for Hibernate
	Configuring Cache Concurrency Strategy
	Advanced Settings

	Web Session Replication
	Filter Based Web Session Replication
	Tomcat Based Web Session Replication
	Jetty Based Web Session Replication

	Spring Integration
	Supported Versions
	Configuring Spring
	Enabling SpringAware Objects
	Adding Caching to Spring
	Configuring Hibernate Second Level Cache
	Best Practices

	Storage
	High-Density Memory Store
	Configuring High-Density Memory Store

	Sizing Practices
	Hot Restart Persistence
	Hot Restart Persistence Overview
	Configuring Hot Restart
	Hot Restart and IP Address-Port
	Hot Restart Persistence Design Details
	Concurrent, Incremental, Generational GC
	Hot Restart Performance Considerations

	Hazelcast Java Client
	Hazelcast Clients Feature Comparison
	Java Client Overview
	Including Dependencies for Java Clients
	Getting Started with Client API
	Java Client Operation Modes
	Handling Failures
	Using Supported Distributed Data Structures
	Using Client Services
	Client Listeners
	Client Transactions

	Configuring Java Client
	Configuring Client Network
	Configuring Client Load Balancer
	Configuring Client Near Cache
	Client Group Configuration
	Client Security Configuration
	Client Serialization Configuration
	Configuring Client Listeners
	ExecutorPoolSize
	ClassLoader

	Client System Properties
	Sample Codes for Client
	Using High-Density Memory Store with Java Client

	Other Client Implementations
	C++ Client
	Setting Up C++ Client
	Installing C++ Client
	C++ Client Code Examples

	.NET Client
	Configuring .NET Client
	Starting .NET Client

	REST Client
	REST Client GET/POST/DELETE Examples
	Checking the Status of the Cluster for REST Client

	Memcache Client
	Memcache Client Code Examples
	Unsupported Operations for Memcache

	Serialization
	Serialization Interface Types
	Comparing Serialization Interfaces
	Implementing Java Serializable and Externalizable
	Implementing Java Externalizable

	Implementing DataSerializable
	IdentifiedDataSerializable

	Implementing Portable Serialization
	Portable Serialization Example Code
	Registering the Portable Factory
	Versioning for Portable Serialization
	Null Portable Serialization
	DistributedObject Serialization

	Custom Serialization
	Implementing StreamSerializer
	Implementing ByteArraySerializer

	Global Serializer
	Sample Global Serializer

	Implementing HazelcastInstanceAware
	Serialization Configuration Wrap-Up

	Management
	Getting Member Statistics from Distributed Data Structures
	Map Statistics
	Multimap Statistics
	Queue Statistics
	Topic Statistics
	Executor Statistics

	JMX API per Node
	Monitoring with JMX
	MBean Naming for Hazelcast Data Structures
	Connecting to JMX Agent

	Cluster Utilities
	Getting Member Events and Member Sets
	Managing Cluster and Member States
	Using the Script cluster.sh
	Using REST API for Cluster Management
	Enabling Lite Members
	Defining Member Attributes
	Safety Checking Cluster Members
	Defining a Cluster Quorum

	Management Center
	Installing Management Center
	Getting Started to Management Center
	Management Center Tools
	Management Center Home Page
	Monitoring Caches
	Managing Maps
	Monitoring Replicated Maps
	Monitoring Queues
	Monitoring Topics
	Monitoring MultiMaps
	Monitoring Executors
	Monitoring WAN Replication
	Monitoring Members
	Scripting
	Executing Console Commands
	Creating Alerts
	Administering Management Center
	Hot Restart
	Checking Past Status with Time Travel
	Management Center Documentation
	Suggested Heap Size

	Clustered JMX via Management Center
	Configuring Clustered JMX
	Clustered JMX API
	Integrating with New Relic
	Integrating with AppDynamics

	Clustered REST via Management Center
	Enabling Clustered REST
	Clustered REST API Root
	Clusters Resource
	Cluster Resource
	Members Resource
	Member Resource
	Clients Resource
	Maps Resource
	MultiMaps Resource
	Queues Resource
	Topics Resource
	Executors Resource

	Security
	Enabling Security for Hazelcast Enterprise
	Socket Interceptor
	Security Interceptor
	Encryption
	SSL
	Credentials
	ClusterLoginModule
	Enterprise Integration

	Cluster Member Security
	Native Client Security
	Authentication
	Authorization
	Permissions

	Performance
	Data Affinity
	Back Pressure
	Threading Model
	I/O Threading
	Event Threading
	IExecutor Threading
	Operation Threading

	SlowOperationDetector
	Logging of Slow Operations
	Purging of Slow Operation Logs

	Hazelcast Performance on AWS
	Selecting EC2 Instance Type
	Dealing with Network Latency
	Selecting Virtualization

	Hazelcast Simulator
	Key Concepts
	Installing Simulator
	Firewall Settings
	Setting Up the Local Machine (Coordinator)
	Setting Up the Remote Machines (Agents, Workers)
	Setting Up the Public/Private Key Pair

	Setting Up For Amazon EC2
	Setting Up For Google Compute Engine
	Setting Up Machines Manually
	Executing a Simulator Test
	Creating and Editing Properties File
	Running the Test
	Running the Test with a Script
	Using Maven Archetypes

	Provisioner
	Accessing the Provisioned Machine

	Coordinator
	Controlling Hazelcast Declarative Configuration
	Controlling Test Duration
	Controlling Client And Workers

	Communicator
	Example
	Message Types
	Message Addressing

	Simulator.Properties File Description
	Performance and Benchmarking

	WAN
	WAN Replication
	Defining WAN Replication
	Configuring WAN Replication for IMap and ICache
	Batch Size
	Batch Maximum Delay
	Response Timeout
	Queue Capacity
	Queue Full Behavior
	Event Filtering API
	Acknowledge Types
	WAN Replication Additional Information

	OSGI
	OSGI Support
	API
	Configuring Hazelcast OSGI Support
	Design
	Using Hazelcast OSGI Service
	Getting Hazelcast OSGI Service Instances
	Managing and Using Hazelcast instances

	Extending Hazelcast
	User Defined Services
	Creating the Service Class
	Enabling the Service Class
	Adding Properties to the Service
	Starting the Service
	Placing a Remote Call via Proxy
	Creating Containers
	Partition Migration
	Creating Backups

	WaitNotifyService
	Discovery SPI
	Discovery SPI Interfaces and Classes
	Discovery Strategy
	DiscoveryService (Framework integration)

	Config Properties SPI
	Config Properties SPI Classes
	Config Properties SPI Example

	Network Partitioning - Split Brain Syndrome
	Understanding Partition Recreation
	Understanding Backup Partition Creation
	Understanding The Update Overwrite Scenario
	What Happens When The Network Failure Is Fixed
	How Hazelcast Split Brain Merge Happens
	Specifying Merge Policies

	System Properties
	Common Exception Types
	License Questions
	Embedded Dependencies
	Runtime Dependencies

	Frequently Asked Questions
	Why 271 as the default partition count?
	Is Hazelcast thread safe?
	What happens when a member goes down?
	How do I test the connectivity?
	How do I choose keys properly?
	How do I reflect value modifications?
	How do I test my Hazelcast cluster?
	Does Hazelcast support hundreds of members?
	Does Hazelcast support thousands of clients?
	What is the difference between old LiteMember and new Smart Client?
	How do you give support?
	Does Hazelcast persist?
	Can I use Hazelcast in a single server?
	How can I monitor Hazelcast?
	How can I see debug level logs?
	What is the difference between client-server and embedded topologies?
	How do I know it is safe to kill the second member?
	When do I need Native Memory solutions?
	Is there any disadvantage of using near-cache?
	Is Hazelcast secure?
	How can I set socket options?
	I periodically see client disconnections during idle time?
	How to get rid of ``java.lang.OutOfMemoryError: unable to create new native thread''?
	Does repartitioning wait for Entry Processor?
	Why do Hazelcast instances on different machines not see each other?
	What Does ``Replica: 1 has no owner'' Mean?

	Glossary

