Hazelcast Documentation

version 3.6.7

Dec 08, 2016

In-Memory Data Grid - Hazelcast | Documentation: version 3.6.7
Publication date Dec 08, 2016
Copyright (©) 2016 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Contents

1 Preface
1.1 Hazelcast Editions o . oL e
1.2 Hazelcast Architecture L
1.3 Hazelcast Plugins o e
1.4 Licensing o o o i e e e
1.5 Trademarks oL e
1.6 Customer Support L e
1.7 Release Notes o
1.8 Contributing to Hazelcast
1.9 Phone Home e
1.10 Typographical Conventions e

2 Document Revision History

3 Getting Started

3.1 Imstallation o o e
3.1.1 Hazelcast
3.1.2 Hazelcast Enterprise L
3.1.3 Setting the License Key
3.1.4 Upgrading from 3.X oL e
3.1.5 Upgrading from 2.x

3.2 Starting the Member and Client

3.3 Using the Scripts In The Package

3.4 Deploying On Amazon EC2

3.5 Deploying using Docker

4 Hazelcast Overview

4.1 Sharding in Hazelcast
4.2 Hazelcast Topology o e e e
4.3 Why Hazelcast? e
4.4 Data Partitioning e e

4.4.1 How the Data is Partitioned L

4 CONTENTS
4.4.2 Partition Tableo 38

4.4.3 Repartitioning oL 39

4.5 Use Cases . . v v v vt 39
4.6 Resources L e 40

5 Understanding Configuration 41
5.1 Configuring Declaratively e 41
5.1.1 Composing Declarative Configuration 42

5.2 Configuring Programmatically L 43
5.3 Configuring with System Properties o 44
5.4 Configuring within Spring Context L L 45
5.5 Checking Configuration 45
5.6 Using Wildcards o 45
5.7 Using Variables oL 46

6 Setting Up Clusters 49
6.1 Discovering Cluster Members e 49
6.1.1 Discovering Members by Multicast o o o 49

6.1.2 Discovering Members by TCP 50

6.1.3 Discovering Members within EC2 Cloud 51

6.1.4 Discovering Members with jelouds L oo 52

6.2 Creating Cluster Groups o i i i e e e 55
6.3 Partition Group Configuration L 56
6.4 Logging Configuration 57
6.5 Other Network Configurations 58
6.5.1 Public Address 59

6.5.2 Port e 59

6.5.3 Outbound Ports 60

6.5.4 Reuse Address e 60

6.5.5 Join . . .o e e e 61

6.5.6 Interfaces e 63

6.5.7 IPVv6 Support e 64

7 Distributed Data Structures 65
T.1 Map . . e e 66
7.1.1 Getting a Map and Putting an Entry oo oo 66

7.1.2 Backing Up Maps e 70

7.1.3 Evicting Map Entries oL e 71

7.1.4 Setting In Memory Format L 75

7.1.5 Using High-Density Memory Store with Map 75

7.1.6 Loading and Storing Persistent Data 0o oo 77

CONTENTS

7.2

7.3

7.4

7.5

7.6

7.7

5
7.1.7 Creating Near Cache for Map i 83
7.1.8 Locking Maps 85
7.1.9 Accessing Entry Statistics 88
7.1.10 Map Listener e 88
7.1.11 Listening to Map Entries with Predicates 88
7.1.12 Adding Interceptors e 90
7.1.13 Preventing Out of Memory Exceptions 93
QUEUE . . . o e e 95
7.2.1 Getting a Queue and Putting Items oo oL 95
7.2.2 Creating an Example Queue 95
7.2.3 Setting a Bounded Queue Lo 97
7.2.4 Queueing with Persistent Datastore L 98
7.2.5 Configuring Queue L e e 99
MultiMap o 100
7.3.1 Getting a MultiMap and Putting an Entry 100
7.3.2 Configuring MultiMap L 101
Set . . e 102
7.4.1 Getting a Set and Putting Items L oo o 102
7.4.2 Configuring Set L e 103
List . o 103
7.5.1 Getting a List and Putting Items L Lo 103
7.5.2 Configuring List oL 104
Ringbuffer o 105
7.6.1 Getting a Ringbuffer and Reading Items, 105
7.6.2 Adding Items to a Ringbuffer o 105
7.6.3 IQueue vs. Ringbuffer 105
7.6.4 Configuring Ringbuffer Capacity L 106
7.6.5 Backing Up Ringbuffero 106
7.6.6 Configuring Ringbuffer Time To Live 106
7.6.7 Setting Ringbuffer Overflow Policy L 106
7.6.8 Configuring Ringbuffer In-Memory Format 107
7.6.9 Adding Batched Ttems L 107
7.6.10 Reading Batched Items L 107
7.6.11 Using Async Methods 108
7.6.12 Ringbuffer Configuration Examples 109
Topic. . . . e e 109
7.7.1 Getting a Topic and Publishing Messages 109
7.7.2 Getting Topic Statistics L 110
7.7.3 Understanding Topic Behavior o o 110

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

CONTENTS

7.7.4 Configuring Topic 111
Reliable Topic L o L e 112
7.8.1 Sample Reliable ITopic Code 113
7.8.2 Slow Consumers e 113
7.8.3 Configuring Reliable Topic 113
Lock . . o 114
7.9.1 Using Try-Catch Blocks with Locks 114
7.9.2 Releasing Locks with tryLock Timeout 114
7.9.3 Avoiding Waiting Threads with Lease Time 115
7.9.4 Understanding Lock Behavior oo oo 115
7.9.5 Synchronizing Threads with ICondition 116
TAtomicLiong e e 116
7.10.1 Sending Functions to IAtomicLong L 117
7.10.2 Executing Functions on IAtomicLong Lo oL 117
7.10.3 Reasons to Use Functions with [Atomic 118
ISemaphore L 118
7.11.1 Controlling Thread Counts with Semaphore Permits 118
7.11.2 Example Semaphore Code L 118
7.11.3 Configuring Semaphore e 119
TAtomicReference L 120
7.12.1 Sending Functions to IAtomicReference 120
7.12.2 Using TAtomicReference L 121
ICountDownLatch 121
7.13.1 Gate-Keeping Concurrent Activities 121
7.13.2 Recovering From Failure Lo 122
7.13.3 Using ICountDownLatch 122
IdGenerator L 122
7.14.1 Generating Cluster-Wide IDs 122
7.14.2 Unique IDs and Duplicate IDs L 123
Replicated Map o e e 123
7.15.1 Replicating Instead of Partitioning L oL 123
7.15.2 Example Replicated Map Code e 124
7.15.3 Considerations for Replicated Mapo 124
7.15.4 Configuration Design for Replicated Map 125
7.15.5 Configuring Replicated Map 125

7.15.6 Using EntryListener on Replicated Map 126

CONTENTS

8 Distributed Events

8.1

8.2

Event Listeners for Hazelcast Members
8.1.1 Listening for Member Events oo
8.1.2 Listening for Distributed Object Events
8.1.3 Listening for Migration Events L
8.1.4 Listening for Partition Lost Events
8.1.5 Listening for Lifecycle Events o
8.1.6 Listening for Map Events L
8.1.7 Listening for MultiMap Events
8.1.8 Listening for Item Events
8.1.9 Listening for Topic Messages o . o
8.1.10 Listening for Clients e

Event Listeners for Hazelcast Clients 0 0 e e e e e

8.3 Global Event Configuration L e

9 Distributed Computing

9.1

9.2

Executor Service L e
9.1.1 Implementing a Callable Task
9.1.2 Implementing a Runnable Task o
9.1.3 Scaling The Executor Service
9.1.4 Executing Code in the Cluster
9.1.5 Canceling an Executing Task
9.1.6 Callback When Task Completes.
9.1.7 Selecting Members for Task Execution oL
9.1.8 Configuring Executor Service
Entry Processor L
9.2.1 Performing Fast In-Memory Map Operations
9.2.2 Creating an Entry Processor oo
9.2.3 Abstract Entry Processor

10 Distributed Query
10.1 How Distributed Query Works e

10.1.1 Employee Map Query Example
10.1.2 Querying with Criteria APT
10.1.3 Querying with SQL e
10.1.4 Filtering with Paging Predicates L o
10.1.5 Indexing Queries e
10.1.6 Configuring Query Thread Pool

10.2 Querying in Collections and Arrays o L e e

10.2.1 Indexing in Collections and Arrays

129
129
129
131
132
133
134
135
139
140
142
143
144
144

145
145
145
147
148
148
149
150
151
152
152
153
154
156

8 CONTENTS

10.2.2 COTNETr CASES . . . o v v v it i e e e e e 166

10.3 Custom Attributes 166
10.3.1 Implementing a ValueExtractor L L oo 167
10.3.2 Extraction Arguments e 169
10.3.3 Configuring a Custom Attribute Programmatically 169
10.3.4 Configuring a Custom Attribute Declaratively 169
10.3.5 Indexing Custom Attributes L 170

10.4 MapReduce L e 170
10.4.1 Understanding MapReduce 170
10.4.2 Using the MapReduce API e 173
10.4.3 Hazelcast MapReduce Architecture o 179

10.5 Aggregatorso 182
10.5.1 Aggregations Basics 182
10.5.2 Using the Aggregations APL L 183
10.5.3 Aggregations Examples 187
10.5.4 Implementing Aggregations 191

10.6 Continuous Query Cache e 191
10.6.1 Keeping Query Results Local and Ready, 191
10.6.2 Accessing Continuous Query Cache from Member 191
10.6.3 Accessing Continuous Query Cache from Client Side 192
10.6.4 Features of Continuous Query Cache o 192

11 Transactions 195
11.1 Creating a Transaction Interface L 195
11.1.1 Queue/Set/List vs. Map/Multimap 196
11.1.2 ONE_PHASE vs. TWO_PHASE e 196

11.2 Providing XA Transactions ot vttt i 197
11.3 Imtegrating into J2EE oL 197
11.3.1 Sample Code for J2EE Integration o 198
11.3.2 Configuring Resource Adapter 198
11.3.3 Configuring a Glassfish v3 Web Application 199
11.3.4 Configuring a JBoss AS 5 Web Application 199
11.3.5 Configuring a JBoss AS 7 / EAP 6 Web Application 200

12 Hazelcast JCache 203
12.1 JCache Overview o L e 203
12.2 JCache Setup and Configuration L 203
12.2.1 Setting up Your Applicationo 203
12.2.2 Example JCache Application L 205

12.2.3 Configuring for JCache 206

CONTENTS 9

12.3 JCache Providers L 208
12.3.1 Configuring JCache Provider 208
12.3.2 Configuring JCache with Client Provider 209
12.3.3 Configuring JCache with Server Provider 209

12.4 JCache APIL e 209
12.4.1 JCache API Application Example 209
12.4.2 JCache Base Classes e 211
12.4.3 Implementing Factory and FactoryBuilder 212
12.4.4 Implementing CacheLoader L 212
12.4.5 CacheWriter e 213
12.4.6 Implementing EntryProcessor Lo 215
12.4.7 CacheEntryListener 216
12.4.8 ExpirePolicy e 217

12.5 Hazelcast JCache Extension - ICache L L 217
12.5.1 Scoping to Join Clusters 218
12.5.2 Namespacing ot i e e e 221
12.5.3 Retrieving an ICache Instance L L 221
12.5.4 ICache Configuration L e 221
12.5.5 ICache Async Methods e 222
12.5.6 Defining a Custom ExpiryPolicy 224
12.5.7 JCache Eviction o L e 225
12.5.8 JCache Near Cache e 228
12.5.9 ICache Convenience Methods L 231
12.5.10 Implementing BackupAwareEntryProcessor oL oL 231
12.5.11ICache Partition Lost Listener 232
12.5.12JCache Split-Brain 233

12.6 Testing for JCache Specification Compliance 235

13 Integrated Clustering 237

13.1 Hibernate Second Level Cache 237
13.1.1 Sample Code for Hibernate 237
13.1.2 Supported Hibernate Versions e 237
13.1.3 Configuring Hibernate for Hazelcast 237
13.1.4 Configuring Hazelcast for Hibernate 239
13.1.5 Setting P2P (Peer-to-Peer) for Hibernate 240
13.1.6 Setting Client/Server for Hibernate 240
13.1.7 Configuring Cache Concurrency Strategy 241
13.1.8 Advanced Settings L 241

13.2 Web Session Replication e 241

13.2.1 Filter Based Web Session Replication o0, 242

10

13.2.2 Tomcat Based Web Session Replication
13.2.3 Jetty Based Web Session Replication
13.3 Spring Integration
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6

14 Storage

14.1 High-Density Memory Store
14.1.1 Configuring High-Density Memory Store
14.2 Sizing Practices
14.3 Hot Restart Persistence
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6

15 Hazelcast Java Client
15.1 Hagzelcast Clients Feature Comparison
15.2 Java Client Overview
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6
15.2.7
15.2.8
15.3 Configuring Java Client
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6

Supported Versions
Configuring Spring
Enabling SpringAware Objects
Adding Caching to Spring
Configuring Hibernate Second Level Cache

Best Practices

Hot Restart Persistence Overview
Configuring Hot Restart
Hot Restart and IP Address-Port
Hot Restart Persistence Design Details
Concurrent, Incremental, Generational GC

Hot Restart Performance Considerations

Including Dependencies for Java Clients
Getting Started with Client APT
Java Client Operation Modes
Handling Failures
Using Supported Distributed Data Structures
Using Client Services
Client Listeners

Client Transactions

Configuring Client Network
Configuring Client Load Balancer
Configuring Client Near Cache
Client Group Configuration
Client Security Configuration

Client Serialization Configuration

CONTENTS

CONTENTS

15.4
15.5
15.6

15.3.7 Configuring Client Listeners
15.3.8 ExecutorPoolSize
15.3.9 ClassLoader e
Client System Properties L
Sample Codes for Client o e
Using High-Density Memory Store with Java Client

16 Other Client Implementations

16.1

16.2

16.3

16.4

CH+ Client o oo
16.1.1 Setting Up CH++ Client oo s
16.1.2 Installing C+4 Client o e
16.1.3 C++ Client Code Examples e
NET Client o o e
16.2.1 Configuring NET Client 0 o e
16.2.2 Starting NET Client e
REST Client e
16.3.1 REST Client GET/POST/DELETE Examples
16.3.2 Checking the Status of the Cluster for REST Client
Memcache Client
16.4.1 Memcache Client Code Examples
16.4.2 Unsupported Operations for Memcache

17 Serialization

17.1

17.2

17.3

17.4

17.5

17.6

17.7

17.8
17.9

Serialization Interface Types. e
Comparing Serialization Interfaces L
Implementing Java Serializable and Externalizable
17.3.1 Implementing Java Externalizableo Lo
Implementing DataSerializable L
17.4.1 IdentifiedDataSerializable
Implementing Portable Serialization
17.5.1 Portable Serialization Example Code Lo o
17.5.2 Registering the Portable Factory
17.5.3 Versioning for Portable Serialization L o
17.5.4 Null Portable Serialization
17.5.5 DistributedObject Serialization
Custom Serialization L e
17.6.1 Implementing StreamSerializer L L
17.6.2 Implementing ByteArraySerializer L L
Global Serializer e
17.7.1 Sample Global Serializer
Implementing HazelcastInstanceAware e

Serialization Configuration Wrap-Up o0

11

289
289
289
289
290
290

293
293
293
294
294
298
301
301
301
302
304
305
305
306

12 CONTENTS
18 Management 325
18.1 Getting Member Statistics from Distributed Data Structures 325
18.1.1 Map Statistics e 325
18.1.2 Multimap Statistics L e 328
18.1.3 Queue Statistics L 331
18.1.4 Topic Statistics o . L e 332
18.1.5 Executor Statistics L 333

18.2 JMX API per Node e 334
18.3 Monitoring with JMX oL 340
18.3.1 MBean Naming for Hazelcast Data Structures. 340
18.3.2 Connecting to JMX Agent L 340

18.4 Cluster Utilities e 341
18.4.1 Getting Member Events and Member Sets L. 341
18.4.2 Managing Cluster and Member States 342
18.4.3 Using the Script cluster.sh 343
18.4.4 Using REST API for Cluster Management 344
18.4.5 Enabling Lite Members 345
18.4.6 Defining Member Attributes L 345
18.4.7 Safety Checking Cluster Members 346
18.4.8 Defining a Cluster Quorum L e 347

18.5 Management Center L e e 350
18.5.1 Imstalling Management Center 350
18.5.2 Getting Started to Management Center 351
18.5.3 Management Center Tools e 351
18.5.4 Management Center Home Page 354
18.5.5 Monitoring Caches L 356
18.5.6 Managing Maps e e 357
18.5.7 Monitoring Replicated Maps L 360
18.5.8 Monitoring QuUeues e e e 361
18.5.9 Monitoring Topics L 364
18.5.10 Monitoring MultiMaps 364
18.5.11 Monitoring Executors L e 364
18.5.12 Monitoring WAN Replication L 366
18.5.13 Monitoring Members Lo 366
18.5.14 Scripting e e e 370
18.5.15 Executing Console Commands L 371
18.5.16 Creating Alerts 371
18.5.17 Administering Management Center L L o 375

18.5.18 Hot Restart 376

CONTENTS 13

18.5.19 Checking Past Status with Time Travel 379
18.5.20 Management Center Documentation 379
18.5.21 Suggested Heap Size 379

18.6 Clustered JMX via Management Center 380
18.6.1 Configuring Clustered JMX 380
18.6.2 Clustered JMX APIL e 380
18.6.3 Integrating with New Relic 385
18.6.4 Integrating with AppDynamics L L 386

18.7 Clustered REST via Management Center, 386
18.7.1 Enabling Clustered REST e 387
18.7.2 Clustered REST APTRoot e 387
18.7.3 Clusters Resource o e e 387
18.7.4 Cluster Resource 387
18.7.5 Members Resource L 387
18.7.6 Member Resource L 388
18.7.7 Clients Resource e 391
18.7.8 Maps Resource L 391
18.7.9 MultiMaps Resource L 392
18.7.10Queues Resource Lo e e e 393
18.7.11 Topics Resource L e 394
18.7.12 Executors Resource L 395

19 Security 397
19.1 Enabling Security for Hazelcast Enterprise oL o 397
19.2 Socket Interceptor L 397
19.3 Security Interceptor L 398
19.4 Encryption e 399
19.5 SSL o o e 400
19.6 Credentials oL 401
19.7 ClusterLoginModule L 402
19.7.1 Enterprise Integration L Lo 403

19.8 Cluster Member Security L 403
19.9 Native Client Security o o e e 404
19.9.1 Authentication e 404
19.9.2 Authorization 405

19.9.3 Permissions e 407

14 CONTENTS

20 Performance 411
20.1 Data Affinity L 411
20.2 Back Pressure L 414
20.3 Threading Model L e e e 415

20.3.1 I/O Threading e 415
20.3.2 Event Threading« . . e 416
20.3.3 IExecutor Threading e 416
20.3.4 Operation Threading o 416
20.4 SlowOperationDetector L 418
20.4.1 Logging of Slow Operations e 419
20.4.2 Purging of Slow Operation Logs 419
20.5 Hazelcast Performance on AWS e 419
20.5.1 Selecting EC2 Instance Type L 419
20.5.2 Dealing with Network Latency 420
20.5.3 Selecting Virtualization L 420

21 Hazelcast Simulator 421
21.1 Key Concepts o v o i 421
21.2 Installing Simulator L 422

21.2.1 Firewall Settings o L e 422
21.2.2 Setting Up the Local Machine (Coordinator) 423
21.2.3 Setting Up the Remote Machines (Agents, Workers) 423
21.2.4 Setting Up the Public/Private Key Pair 423
21.3 Setting Up For Amazon EC2 424
21.4 Setting Up For Google Compute Engine 424
21.5 Setting Up Machines Manually L 425
21.6 Executing a Simulator Test L e 425
21.6.1 Creating and Editing Properties Fileo oo o 426
21.6.2 Running the Test 427
21.6.3 Running the Test with a Script 431
21.6.4 Using Maven Archetypes e 431
21.7 Provisioner e e 432
21.7.1 Accessing the Provisioned Machine 432
21.8 Coordinator L e e 433
21.8.1 Controlling Hazelcast Declarative Configuration 433
21.8.2 Controlling Test Duration 433
21.8.3 Controlling Client And Workers 433
21.9 Communicator e 434
21.9.1 Example e e e 434

21.9.2 Message Types o e e 434

CONTENTS 15

21.9.3 Message Addressing o e e 434
21.10Simulator.Properties File Description L L 435
21.11Performance and Benchmarking 436

22 WAN 439
22.1 WAN Replication 0 e 439

22.1.1 Defining WAN Replication 439

22.1.2 Configuring WAN Replication for IMap and ICache 441

22.1.3 Batch Size L e 443

22.1.4 Batch Maximum Delay e 444

22.1.5 Response Timeout e 444

22.1.6 Queue Capacity 445

22.1.7 Queue Full Behavior 445

22.1.8 Event Filtering APT e 446

22.1.9 Acknowledge Types o L e 447

22.1.10 WAN Replication Additional Information 447

23 OSGI 449
23.1 OSGI Support o e 449
23.2 APL . . e 449
23.3 Configuring Hazelcast OSGI Support 449
23.4 Design e e e 450
23.5 Using Hazelcast OSGI Service o o e 450

23.5.1 Getting Hazelcast OSGI Service Instances 450

23.5.2 Managing and Using Hazelcast instances L. 451

24 Extending Hazelcast 453
24.1 User Defined Services o o o e 453

24.1.1 Creating the Service Class 453

24.1.2 Enabling the Service Class e 454

24.1.3 Adding Properties to the Service 455

24.1.4 Starting the Service L 455

24.1.5 Placing a Remote Call via Proxy o 455

24.1.6 Creating Containers e 460

24.1.7 Partition Migrationo Lo 464

24.1.8 Creating Backups. L 468
24.2 WaitNotifyService 471
24.3 Discovery SPL 471

24.3.1 Discovery SPI Interfaces and Classes 471

24.3.2 Discovery Strategy L e 473

24.3.3 DiscoveryService (Framework integration) L0 L L 477

16 CONTENTS

24.4 Config Properties SPT e
24.4.1 Config Properties SPT Classes vttt
24.4.2 Config Properties SPI Example

25 Network Partitioning - Split Brain Syndrome
25.1 Understanding Partition Recreation o
25.2 Understanding Backup Partition Creation o o
25.3 Understanding The Update Overwrite Scenario
25.4 What Happens When The Network Failure Is Fixed o ..
25.5 How Hazelcast Split Brain Merge Happens
25.6 Specifying Merge Policies oL

26 System Properties

27 Common Exception Types

28 License Questions
28.1 Embedded Dependencies

28.2 Runtime Dependencies

29 Frequently Asked Questions
29.1 Why 271 as the default partition count?
29.2 Is Hazelcast thread safe? o
29.3 What happens when a member goes down?
29.4 How do I test the connectivity? L e
29.5 How do I choose keys properly?
29.6 How do I reflect value modifications?
29.7 How do I test my Hazelcast cluster?
29.8 Does Hazelcast support hundreds of members?
29.9 Does Hazelcast support thousands of clients?
29.10What is the difference between old LiteMember and new Smart Client?

29.11How do you give support? e e e e

29.15How can I see debug level logs? L
29.16What is the difference between client-server and embedded topologies?

29.17How do I know it is safe to kill the second member?

485

489

491
491
491

494
494

496

497

CONTENTS 17

29.21How can I set socket options? 498
29.221 periodically see client disconnections during idle time? oL oL 498
29.23How to get rid of “java.lang.OutOfMemoryError: unable to create new native thread”? 499
29.24Does repartitioning wait for Entry Processor? o oL 499
29.25Why do Hazelcast instances on different machines not see each other? 499
29.26What Does “Replica: 1 has no owner” Mean? 500

30 Glossary 501

18

CONTENTS

Chapter 1

Preface

Welcome to the Hazelcast Reference Manual. This manual includes concepts, instructions, and samples to guide
you on how to use Hazelcast and build Hazelcast applications.

As the reader of this manual, you must be familiar with the Java programming language and you should have
installed your preferred Integrated Development Environment (IDE).

1.1 Hazelcast Editions

This Reference Manual covers all editions of Hazelcast. Throughout this manual:

e Hazelcast refers to the open source edition of Hazelcast in-memory data grid middleware. It is also the
name of the company (Hazelcast, Inc.) providing the Hazelcast product.

e Hazelcast Enterprise is a commercially licensed edition of Hazelcast which provides high-value enterprise
features in addition to Hazelcast.

e Hazelcast Enterprise HD is a commercially licensed edition of Hazelcast which provides High-Density
(HD) Memory Store and Hot Restart Persistence features in addition to Hazelcast Enterprise.

1.2 Hazelcast Architecture

You can see the features for all Hazelcast editions in the following architecture diagram.

! NOTE You can see small “HD” boxes for some features in the above diagram. Those features can use
High-Density (HD) Memory Store when it is available. It means if you have Hazelcast Enterprise HD, you can use
those features with HD Memory Store.

For more information on Hazelcast’s Architecture, please see the white paper An Architect’s View of Hazelcast.

1.3 Hazelcast Plugins

You can extend Hazelcast’s functionality by using its plugins. These plugins have their own lifecycles. Please see
Plugins page to learn about Hazelcast plugins you can use.

1.4 Licensing

Hazelcast and Hazelcast Reference Manual are free and provided under the Apache License, Version 2.0. Hazelcast
Enterprise is commercially licensed by Hazelcast, Inc.

For more detailed information on licensing, please see the License Questions appendix.

19

20 CHAPTER 1. PREFACE

oo | ot [oo [wosess | scom
REST Open Client Network Protocol

Serialization
(Serializable, Externalizable, DataSerializable, |dentifiedDataSerializable, Portable, Custom)

i nd
Replicated erlg Atomic
SQL Query Entry Processor Map / Reduce | Aggregation

Low-Level Services API

Partition Manage ment
(Members, Lite Members, Master Partition, Replicas, Migrations, Partition Groups, Partition Aware)

Cluster Management with Cloud Discovery SPI
(Apache jclouds, AWS, Azure, Consul, Etcd, IP List, Kubernetes, Multicast, Zookeeper)

Hot tart Store

M open Source M Enterprise Edition M Enterprise HD Edition 8 HD Enabled Feature

Figure 1.1: Hazelcast Architecture

1.5 Trademarks

Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this manual are held by their
respective owners.

1.6 Customer Support

Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow

For information on the commercial support for Hazelcast and Hazelcast Enterprise, please see hazelcast.com.

1.7 Release Notes

Please refer to the Release Notes document for the new features, enhancements and fixes performed for each
Hazelcast release.

1.8 Contributing to Hazelcast

You can contribute to the Hazelcast code, report a bug, or request an enhancement. Please see the following
resources.

e Developing with Git: Document that explains the branch mechanism of Hazelcast and how to request changes.
o Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and send back to

Hazelcast.
e Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests are managed.

1.9 Phone Home

Hazelcast uses phone home data to learn about usage of Hazelcast.

1.10. TYPOGRAPHICAL CONVENTIONS 21

Hazelcast member instances call our phone home server initially when they are started and then every 24 hours.
This applies to all the instances joined to the cluster.

What is sent in?

The following information is sent in

Hazelcast version

Download ID
A hash value of the cluster ID

Cluster uptime
Member uptime
Environment Information:

a phone home:

Local Hazelcast member UUID

Cluster size bands for 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
Number of connected clients bands of 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600

— Name of operating system

Version of installed Java

e Hazelcast Enterprise specific:

Hash value of license key
Native memory usage

Phone Home Code

Kernel architecture (32-bit or 64-bit)
Version of operating system

Name of Java Virtual Machine

Number of clients by language (Java, C++, C#)
Flag for Hazelcast Enterprise

The phone home code itself is open source. Please see here.

Disabling Phone Homes

Set the hazelcast.phone.home.enabled system property to false either in the config or on the Java command
line. Please see the System Properties section for information on how to set a property.

Phone Home URLs

For versions 1.x and 2.x: http://www.hazelcast.com/version.jsp.

For versions 3.x up to 3.6: http://versioncheck.hazelcast.com/version.jsp.

For versions after 3.6: http://phonehome.hazelcast.com/ping.

1.10 Typographical Conventions

Below table shows the conventions used in this manual.

Convention

Description

bold font
italic font
monospace

RELATED INFORMATION

! NOTFE

element & attribute

- Indicates part of a sentence that requires the reader’s specific attention. - Also indicate
- When italicized words are enclosed with “<” and “>”, it indicates a variable in the cor
Indicates files, folders, class and library names, code snippets, and inline code words in a

Indicates a resource that is relevant to the topic, usually with a link or cross-reference.

Indicates information that is of special interest or importance, for example an additional

Mostly used in the context of declarative configuration that you perform using Hazelcast

22

CHAPTER 1. PREFACE

Chapter 2

Document Revision History

This chapter lists the changes made to this document from the previous release.

. NOTE: Please refer to the Release Notes for the new features, enhancements and fizes performed for each
Hazelcast release. You can also find information on upgrading Hazelcast from previous releases in the Release Notes

document.

Chapter

Section

Description

Chapter 1 - Preface
Chapter 3 - Getting Started

Chapter 5 - Understanding Configuration

Chapter 6 - Setting Up Clusters

Chapter 7 - Distributed Data Structures

Chapter 8 - Distributed Events

Chapter 9 - Distributed Computing

Chapter 10 - Distributed Query

Chapter 11 - Transactions

Chapter 12 - Hazelcast JCache

Chapter 13 - Integrated Clustering

Chapter 14 - Storage
Chapter 15 - Hazelcast Java Client

Phone Home
Deploying using Docker

Using the Scripts in the Package

Discovering Members with jclouds

Map
Lock
Replicated Map

Selecting Members for Task Execution
Filtering with Paging Predicates
ONE_PHASE vs. TWO_PHASE
Creating a Transaction Interface
Integrating into J2EE

ICache Partition Lost Listener
JCache Split-Brain

Web Session Replication

Spring Integration

Hibernate Second Level Cache

Hot Restart Persistence

Hazelcast Clients Feature Comparison

Client Network Configuration

23

Added Hazelcast Architecture as
Added as a new section to explai
Added as a new section to descril
Added as a new section explainin
Added as a new chapter to provic
Added as a new section to explai
Chapter name changed to “Settin
Evicting Map Entries section upd
Added the explanation for the mx¢
Replicating instead of Partitionin
Whole chapter improved and new
Added a paragraph on how to sel
The note stating that the randon
Added as a new section explainin
Replaced the transaction type na
Added information related to clas
Added as a new section explainin
Added as a new section.

Marking Transient Attributes adc
Declarative Hazelcast JCache Bas
Added additional information rel:
Added as a new section to explai
Added as a new section.

Updated by adding the definition

24

CHAPTER 2. DOCUMENT REVISION HISTORY

Chapter

Section

Description

Chapter 16 - Other Client Implementations
Chapter 17 - Serialization
Chapter 18 - Management

Chapter 19 - Security

Chapter 22 - WAN

Chapter 23 - OSGI

Chapter 24 - Extending Hazelcast

Chapter 29 - FAQ
Chapter 30 - Glossary

Windows C++ Client

Defining a Cluster Quorum

Management Center

Monitoring with JMX

Enabling Lite Members

Using the Script cluster.sh

Using REST API for Cluster Management
SSL

Discovery SPI
Config Properties SPI

Updated by adding static/dynam
Whole chapter reviewed after seri
Added information on quorum su
A note on how to see the cache s
MBean Naming for Hazelcast Da
Added as a new section. Also Da
Added as a new section explainin
Added as a new section explainin
First paragraph updated to inclu
Whole chapter updated and new
Added as a new chapter.

This title added as a chapter to i
Added as a new section.

Added as a new section.

Added new questions/answers.

Added new glossary items.

Chapter 3

Getting Started

This chapter explains how to install Hazelcast and start a Hazelcast member and client. It describes the executable
files in the download package and also provides the fundamentals for configuring Hazelcast and its deployment
options.

3.1 Installation

The following sections explains the installation of Hazelcast and Hazelcast Enterprise. It also includes notes and
changes to consider when upgrading Hazelcast.

3.1.1 Hazelcast

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need to add
additional repositories to your pom.xml or add hazelcast-<version>. jar file into your classpath (Maven does
that for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast</artifactId>
<version>3.6</version>
</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast yourself. You only need to:

e Download the package hazelcast-<version>.zip or hazelcast-<version>.tar.gz from hazelcast.org.
e Extract the downloaded hazelcast-<version>.zip or hazelcast-<version>.tar.gz.

e Add the file hazelcast-<version>.jar to your classpath.

3.1.2 Hazelcast Enterprise

There are two Maven repositories defined for Hazelcast Enterprise:

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/snapshot/</url>

25

26 CHAPTER 3. GETTING STARTED

</repository>
<repository>
<id>Hazelcast Private Release Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/release/</url>
</repository>

Hazelcast Enterprise customers may also define dependencies, a sample of which is shown below.

<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-tomcat6</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-tomcat7</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>${project.version}</version>
</dependency>

3.1.3 Setting the License Key

Hazelcast Enterprise offers you two types of licenses: Enterprise and Enterprise HD. The supported features
differ in your Hazelcast setup according to the license type you own.

e Enterprise license: In addition to the open source edition of Hazelcast, Enterprise features are the following:

Security

WAN Replication
Continuous Query Cache
Clustered REST
Clustered JMX

— Web Sessions

e Enterprise HD license: In addition to the Enterprise features, Enterprise HD features are the following:

— High-Density Memory Store
— Hot Restart Persistence

To use Hazelcast Enterprise, you need to set the provided license key using one of the configuration methods shown
below.

Declarative Configuration:

Add the below line to any place you like in the file hazelcast.xml. This XML file offers you a declarative way to
configure your Hazelcast. It is included in the Hazelcast download package. When you extract the downloaded
package, you will see the file hazelcast.xml under the /bin directory.

3.1. INSTALLATION 27

<hazelcast>
<license-key>Your Enterprise License Key</license-key>
</hazelcast>

Client Declarative Configuration:

Native client distributions (Java, C++, .NET) of Hazelcast are open source. However, there are some Hazelcast
Enterprise features which can be used with the Java Client such as SSL, Socket Interceptors, High-Density backed
Near Cache, etc. In that case, you also need to have a Hazelcast Enterprise license and you should include this
license in the file hazelcast-client-full.xml which is located under the directory src/main/resources of your
hazelcast-client package, as shown below.

<hazelcast-client>
<license-key>Your Enterprise License Key</license-key>
</hazelcast-client>

Programmatic Configuration:

Alternatively, you can set your license key programmatically as shown below.

Config config = new Config();
config.setLicenseKey("Your Enterprise License Key");

Spring XML Configuration:

If you are using Spring with Hazelcast, then you can set the license key using the Spring XML schema, as shown
below.

<hz:config>
<hz:license-key>Your Enterprise License Key</hz:license-key>
</hz:config>

JVM System Property:

As another option, you can set your license key using the below command (the “-D” command line option).

-Dhazelcast.enterprise.license.key=Your Enterprise License Key

3.1.4 Upgrading from 3.x

e Introducing the spring-aware element: Before the release 3.5, Hazelcast uses SpringManagedContext
to scan SpringAware annotations by default. This may cause some performance overhead for the users who
do not use SpringAware. This behavior has been changed with the release of Hazelcast 3.5. SpringAware
annotations are disabled by default. By introducing the spring-aware element, now it is possible to enable
it by adding the <hz:spring-aware /> tag to the configuration. Please see the Spring Integration section.

e Introducing new configuration options for WAN replication: Starting with the release 3.6, WAN
replication related system properties, which are configured on a per member basis, can now be configured per
target cluster. The 4 system properties below are no longer valid.

— hazelcast.enterprise.wanrep.batch.size, please see the WAN Replication Batch Size.

http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-size

28 CHAPTER 3. GETTING STARTED

— hazelcast.enterprise.wanrep.batchfrequency.seconds, please see the WAN Replication Batch
Maximum Delay.

— hazelcast.enterprise.wanrep.optimeout.millis, please see the WAN Replication Response Time-
out.

— hazelcast.enterprise.wanrep.queue.capacity, please see the WAN Replication Queue Capacity.

e Removal of deprecated getId() method: The method getId() in the interface DistributedObject has
been removed. Please use the method getName () instead.

e Change in the Custom Serialization in the C++4 Client Distribution:

Before, the method getTypeId() was used to retrieve the ID of the object to be serialized. Now, the method
getHazelcastTypeId() is used and you give your object as a parameter to this new method. Also, getTypeId()
was used in your custom serializer class, now it has been renamed to getHazelcastTypeId() too. Note that, these
changes also apply when you want to switch from Hazelcast 3.6.1 to 3.6.2 too.

3.1.5 Upgrading from 2.x

e Removal of deprecated static methods: The static methods of Hazelcast class reaching Hazelcast data
components have been removed. The functionality of these methods can be reached from the HazelcastInstance
interface. You should replace the following:

Map<Integer, String> customers = Hazelcast.getMap("customers");
with

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

// or if you already started an instance named "instancel”

// HazelcastInstance hazelcastInstance = Hazelcast.getHazeZcastInstanceByName("instancel);
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

¢ Renaming “instance” to “distributed object”: Before 3.0 there was confusion about the term “instance”:
it was used for both the cluster members and the distributed objects (map, queue, topic, etc. instances).
Starting with 3.0, the term instance will be only used for Hazelcast instances, namely cluster members. We
will use the term “distributed object” for map, queue, etc. instances. You should replace the related methods
with the new renamed ones. 3.0 clients are smart clients in that they know in which cluster member the data
is located, so you can replace your lite members with native clients.

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hazelcastInstance.getMap("test");
Collection<Instance> instances = hazelcastInstance.getInstances();
for (Instance instance : instances) {
if (instance.getInstanceType() == Instance.InstanceType.MAP) {
System.out.println("There is a map with name: " + instance.getId());
}
}
}

with

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hz.getMap("test");
Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects();

http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#queue-capacity

3.1.

INSTALLATION 29

for (DistributedObject distributedObject : objects) {

}
}

if (distributedObject instanceof IMap) {
System.out.println("There is a map with name: " + distributedObject.getName());

}

Package structure change: PartitionService has been moved to package com.hazelcast.core from
com.hazelcast.partition.

Listener API change: Before 3.0, removeListener methods were taking the Listener object as a parameter.
But this caused confusion because same listener object may be used as a parameter for different listener
registrations. So we have changed the listener API. addListener methods returns a unique ID and you can
remove a listener by using this ID. So you should do the following replacement if needed:

IMap map = hazelcastInstance.getMap("map");

map.
map.

with

addEntrylListener(listener, true);
removeEntryListener(listener);

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);

map.

removeEntryListener(listenerId);

IMap changes:

tryRemove (K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is
successful.

tryLockAndGet (K key, long time, TimeUnit timeunit) is removed.

putAndUnlock(K key, V value) is removed.

lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.

getMapEntry (K key) is renamed as getEntryView(K key). The returned object’s type, MapEntry class is
renamed as EntryView.

There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also

MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented

merge () method causes the existing entry to be removed.

IQueue changes: There is no change on IQueue API but there are changes on how IQueue is configured.
With Hazelcast 3.0 there will be no backing map configuration for queue. Settings like backup count will be
directly configured on queue config. For queue configuration details, please see the Queue section.
Transaction API change: In Hazelcast 3.0, transaction API is completely different. Please see the
Transactions chapter.

ExecutorService API change: Classes MultiTask and DistributedTask have been removed. All the
functionality is supported by the newly presented interface IExecutorService. Please see the Executor Service
section.

LifeCycleService API: The lifecycle has been simplified. pause(), resume (), restart () methods have
been removed.

AtomicNumber: AtomicNumber class has been renamed to IAtomicLong.

ICountDownLatch: await() operation has been removed. We expect users to use await () method with
timeout parameters.

ISemaphore API: The ISemaphore has been substantially changed. attach(), detach() methods have
been removed.

In 2.x releases, the default value for max-size eviction policy was cluster__wide__map_ size. In 3.x releases,
default is PER__ NODE. After upgrading, the max-size should be set according to this new default, if it is
not changed. Otherwise, it is likely that OutOfMemory exception may be thrown.

30 CHAPTER 3. GETTING STARTED

3.2 Starting the Member and Client

Having installed Hazelcast, you can get started.

In this short tutorial, you perform the following activities.

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two members (JVMs).
3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client API.

Let’s begin.
e The following code starts the first Hazelcast member and creates and uses the customers map and queue.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap("customers");
customers.put(1, "Joe");
customers.put(2, "Ali");
customers.put(3, "Avi");

System.out.println("Customer with key 1: " + customers.get(l));
System.out.println("Map Size:" + customers.size());

Queue<String> queueCustomers = hazelcastInstance.getQueue("customers");
queueCustomers.offer("Tom");
queueCustomers.offer("Mary");
queueCustomers.offer("Jane");

System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

e Run this GettingStarted class a second time to get the second member started. The members form a cluster
and the output is similar to the following.

Members [2] {
Member [127.0.0.1:5701]
Member [127.0.0.1:5702] this
}

e Now, add the hazelcast-client-<wersion>.jar library to your classpath. This is required to use a
Hazelcast client.

e The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the customers
map.

3.3. USING THE SCRIPTS IN THE PACKAGE 31

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {
public static void main(String[] args) {
ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap map = client.getMap("customers");
System.out.println("Map Size:" + map.size());

e When you run it, you see the client properly connecting to the cluster and printing the map size as 3.

Hazelcast also offers a tool, Management Center, that enables you to monitor your cluster. To use it, deploy
the mancenter-<wersion> .war included in the ZIP file to your web server. You can use it to monitor your maps,
queues, and other distributed data structures and members. Please see the Management Center section for usage
explanations.

By default, Hazelcast uses Multicast to discover other members that can form a cluster. If you are working with
other Hazelcast developers on the same network, you may find yourself joining their clusters under the default
settings. Hazelcast provides a way to segregate clusters within the same network when using Multicast. Please see
the Creating Cluster Groups for more information. Alternatively, if you do not wish to use the default Multicast
mechanism, you can provide a fixed list of IP addresses that are allowed to join. Please see the Join Configuration
section for more information.

RELATED INFORMATION

You can also check the video tutorials here.

3.3 Using the Scripts In The Package

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see 3 scripts under the /bin
folder which provide basic functionalities for member and cluster management.

The following are the names and descriptions of each script:

e start.sh / start.bat: Starts a Hazelcast member with default configuration in the working directory™.

e stop.sh / stop.bat: Stops the Hazelcast member that was started in the current working directory.

e cluster.sh: Provides basic functionalities for cluster management such as getting and changing the cluster
state, shutting down the cluster or forcing the cluster to clean its persisted data and make a fresh start.

l NOTE: start.sh / start.bat scripts lets you start one Hazelcast instance per folder. To start a mew
instance, please unzip Hazelcast ZIP or TAR.GZ package in a new folder.

Please refer to the Using the Script cluster.sh section to learn the usage of this script.

3.4 Deploying On Amazon EC2

You can deploy your Hazelcast project onto Amazon EC2 environment using Third Party tools such as Vagrant
and Chef.

32 CHAPTER 3. GETTING STARTED

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step by step instructions in the
hazelcast-integration folder of the hazelcast-code-samples package which you can download at hazelcast.org.
Please refer to this sample project for more information.

3.5 Deploying using Docker
You can deploy your Hazelcast projects using the Docker containers. Hazelcast has three images on Docker:

e Hazelcast
e Hazelcast Enterprise
e Hazelcast Management Center

After you pull an image from the Docker registry, you can run your image to start the management center or a
Hazelcast instance with Hazelcast’s default configuration. All repositories provide the latest stable releases but you
can pull a specific release too. You can also specify environment variables when running the image.

If you want to start a customized Hazelcast instance, you can extend the Hazelcast image by providing your own
configuration file.

Please refer to https://hub.docker.com/u/hazelcast/ for more information on each repository and the procedures to
run a Hazelcast image.

Chapter 4

Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable distributed In-Memory
computing, widely recognized as the fastest and most scalable approach to application performance. Hazelcast
does this in open source. More importantly, Hazelcast makes distributed computing simple by offering distributed
implementations of many developer friendly interfaces from Java such as Map, Queue, ExecutorService, Lock,
and JCache. For example, the Map interface provides an In-Memory Key Value store which confers many of the
advantages of NoSQL in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access the CPUs in your
cluster for maximum processing speed. Hazelcast is designed to be lightweight and easy to use. Since Hazelcast is
delivered as a compact library (JAR) and since it has no external dependencies other than Java, it easily plugs into
your software solution and provides distributed data structures and distributed computing utilities.

Hazelcast is highly scalable and available (100% operational, never failing). Distributed applications can use
Hazelcast for distributed caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is
implemented in Java and has clients for Java, C/C++, .NET and REST. Hazelcast also speaks memcache protocol.
It plugs into Hibernate and can easily be used with any existing database system.

If you are looking for In-Memory speed, elastic scalability, and the developer friendliness of NoSQL, Hazelcast is a
great choice.

Hazelcast is simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar Java util
package, exposing the same interfaces. Just add hazelcast. jar to your classpath, and you can quickly enjoy
JVMs clustering and you can start building scalable applications.

Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no single point of
failure. All nodes store equal amounts of data and do equal amounts of processing. You can embed Hazelcast in
your existing application or use it in client and server mode where your application is a client to Hazelcast nodes.

Hazelcast is scalable

Hazelcast is designed to scale up to hundreds and thousands of nodes. Simply add new nodes and they will
automatically discover the cluster and will linearly increase both memory and processing capacity. The nodes
maintain a TCP connection between each other and all communication is performed through this layer.

Hazelcast is fast
Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.
Hazelcast is redundant

Hazelcast keeps the backup of each data entry on multiple nodes. On a node failure, the data is restored from the
backup and the cluster will continue to operate without downtime.

33

34 CHAPTER 4. HAZELCAST OVERVIEW

4.1 Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we serialize, hash and
mode it with the number of partitions to find the partition which the key belongs to. The partitions themselves
are distributed equally among the members of the cluster. Hazelcast also creates the backups of partitions and
distributes them among nodes for redundancy.

RELATED INFORMATION

Please refer to the Data Partitioning section for more information on how Hazelcast partitions your data.

4.2 Hazelcast Topology

You can deploy a Hazelcast cluster in two ways: Embedded or Client/Server.

If you have an application whose main focal point is asynchronous or high performance computing and lots of task
executions, then Embedded deployment is useful. In this type, members include both the application and Hazelcast
data and services. The advantage of the Embedded deployment is having a low-latency data access.

See the below illustration.

.- Node
TCRAP
: . TCP/IP
Node
TR Node
TCR/IP

Figure 4.1: Embedded Topology

In the Client/Server deployment, Hazelcast data and services are centralized in one or more server members
and they are accessed by the application through clients. You can have a cluster of server members that can be
independently created and scaled. Your clients communicate with these members to reach to Hazelcast data and
services on them. Hazelcast provides native clients (Java, NET and C++), Memcache clients and REST clients.
See the below illustration.

Client/Server deployment has advantages including more predictable and reliable Hazelcast performance, easier
identification of problem causes, and most importantly, better scalability. When you need to scale in this deployment
type, just add more Hazelcast server members. You can address client and server scalability concerns separately.

If you want low-latency data access, as it is in the Embedded deployment, and you also want the scalability
advantages of the Client/Server deployment, you can consider to define near caches for your clients. This enables
the frequently used data to be kept in the client’s local memory. Please refer to Configuring Client Near Cache.

4.3. WHY HAZELCAST? 35

rorocet P
yative EIIP.""";E—”J o c-lr il

*t:uf____——f Client

- Node
TCPAP
: ' TCP/IP

: ;- r Memchache Protocol Memcache

. Client

Mode
Treeaemet MNode
RESTp
TCP/IP ———"Frotocq,
— REST
Client

Figure 4.2: Client Server Topology

4.3 Why Hazelcast?

A Glance at Traditional Data Persistence

Data is at the core of software systems. In conventional architectures, a relational database persists and provides
access to data. Applications are talking directly with a database which has its backup as another machine. To
increase performance, tuning or a faster machine is required. This can cost a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using technologies like
external key-value stores or second level caching. This helps to offload the database. However, when the database
is saturated or the applications perform mostly “put” operations (writes), this approach is of no use because it
insulates the database only from the “get” loads (reads). Even if the applications are read-intensive, there can be
consistency problems: when data changes, what happens to the cache, and how are the changes handled? This is
when concepts like time-to-live (TTL) or write-through come in.

However, in the case of TTL, if the access is less frequent then the TTL, the result will always be a cache miss. On
the other hand, in the case of write-through caches; if there are more than one of these caches in a cluster, then we
again have consistency issues. This can be avoided by having the nodes communicating with each other so that
entry invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. And, there are several cache
servers and in-memory database solutions in this field. However, those are stand-alone single instances with a
distribution mechanism to an extent provided by other technologies. This brings us back to square one: we would
experience saturation or capacity issues if the product is a single instance or if consistency is not provided by the
distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast shares data
around the cluster for flexibility and performance. It is an in-memory data grid for clustering and highly scalable
data distribution.

One of the main features of Hazelcast is not having a master member. Each cluster member is configured to be the
same in terms of functionality. The oldest member (the first member created in the cluster) automatically performs
the data assignment to cluster members. If the oldest member dies, the second oldest member takes over.

Another main feature is the data being held entirely in-memory. This is fast. In the case of a failure, such as a
member crash, no data will be lost since Hazelcast distributes copies of data across all the cluster members.

36 CHAPTER 4. HAZELCAST OVERVIEW

As shown in the feature list in the Hazelcast Overview, Hazelcast supports a number of distributed data structures
and distributed computing utilities. This provides powerful ways of accessing distributed clustered memory and
accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

It is open source.

It is only a JAR file. You do not need to install software.

It is a library, it does not impose an architecture on Hazelcast users.

It provides out of the box distributed data structures, such as Map, Queue, MultiMap, Topic, Lock and
Executor.

e There is no “master”, meaning no single point of failure in Hazelcast cluster; each member in the cluster is
configured to be functionally the same.

e When the size of your memory and compute requirements increase, new members can be dynamically joined
to the cluster to scale elastically.

e Data is resilient to member failure. Data backups are distributed across the cluster. This is a big benefit
when a member in the cluster crashes; data will not be lost.

e Members are always aware of each other unlike the traditional key-value caching solutions.

e You can build your own custom distributed data structures using the Service Programming Interface (SPI) if
you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

e analytic applications requiring big data processing by partitioning the data,
e to retain frequently accessed data in the grid,

e a cache, particularly an open source JCache provider with elastic distributed scalability,

e a primary data store for applications with utmost performance, scalability and low-latency requirements,
e an In-Memory NoSQL Key Value Store,

e publish/subscribe communication at highest speed and scalability between applications,

e applications that need to scale elastically in distributed and cloud environments,

e a highly available distributed cache for applications,

e an alternative to Coherence and Terracotta.

4.4 Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions are memory
segments, where each of those segments can contain hundreds or thousands of data entries, depending on the
memory capacity of your system.

By default, Hazelcast offers 271 partitions. When you start a cluster member, it starts with these 271 partitions.
The following illustration shows the partitions in a Hazelcast cluster with single member.

When you start a second member on that cluster (creating a Hazelcast cluster with 2 members), the partitions are
distributed as shown in the following illustration.

In the illustration, the partitions with black text are primary partitions, and the partitions with blue text are
replica partitions (backups). The first member has 135 primary partitions (black), and each of these partitions are
backed up in the second member (blue). At the same time, the first member also has the replica partitions of the
second member’s primary partitions.

As you add more members, Hazelcast one-by-one moves some of the primary and replica partitions to the new
members, making all members equal and redundant. Only the minimum amount of partitions will be moved to scale
out Hazelcast. The following is an illustration of the partition distributions in a Hazelcast cluster with 4 members.

Hazelcast distributes the partitions equally among the members of the cluster. Hazelcast creates the backups of
partitions and distributes them among the members for redundancy.

4.4. DATA PARTITIONING

P

P2

P_3

P 269

P 270

P_271

Mo e

Figure 4.3: Single Member with Partitions

P1 P 136

P2 P 137

P_271 P_135

Figure 4.4: Cluster with Two Members - Backups are Created

38 CHAPTER 4. HAZELCAST OVERVIEW

P_1 P_B9 P_137 P_205
P2 P70 P_138 P26
P &3 P_136 P_204 P_Z71
P_137 P_205% P P_&%
P 138 P_20& P_Z P_T0
P_204 P_2M P_&H P_136

Figure 4.5: Cluster with Four Members

Partition distributions in the above illustrations are for your convenience and for a more clearer description.
Normally, the partitions are not distributed in an order (as they are shown in these illustrations), they are
distributed randomly. The important point here is that Hazelcast equally distributes the partitions and their
backups among the members.

With Hagzelcast 3.6, lite members are introduced. Lite members are a new type of members that do not own any
partition. Lite members are intended for use in computationally-heavy task executions and listener registrations.
Although they do not own any partitions, they can access partitions that are owned by other members in the
cluster.

RELATED INFORMATION

Please refer to the Enabling Lite Members section.

4.4.1 How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key (for example,
for a map) or an object name (for example, for a topic or list):

e the key or name is serialized (converted into a byte array),
e this byte array is hashed, and
e the result of the hash is mod by the number of partitions.

The result of this modulo - MOD (hash result, partition count) - is the partition in which the data will be stored,
that is the partition ID. For ALL members you have in your cluster, the partition ID for a given key will always
be the same.

4.4.2 Partition Table

When you start a member, a partition table is created within it. This table stores the partition IDs and the cluster
members they belong. The purpose of this table is to make all members (including lite members) in the cluster
aware of this information, making sure that each member knows where the data is.

4.5. USE CASES 39

The oldest member in the cluster (the one that started first) periodically sends the partition table to all members.
In this way, each member in the cluster is informed about any changes to the partition ownership. The ownerships
may be changed when, for example, a new member joins the cluster, or when a member leaves the cluster.

l NOTE: If the oldest member goes down, the next oldest member sends the partition table information to the
other ones.

You can configure the frequency (how often) that the member sends the partition table the information by using
the hazelcast.partition.table.send.interval system property. The property is set to every 15 seconds by
default.

4.4.3 Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the repartitioning in the
following cases:

e When a member joins to the cluster.
e When a member leaves the cluster.

In these cases, the partition table in the oldest member is updated with the new partition ownerships.

Note that if a lite member joins or leaves a cluster, repartitioning is not triggered since lite members do not own
any partitions.

4.5 Use Cases

Some example usages are listed below. Hazelcast can be used: - To share server configuration/information to see
how a cluster performs,

e To cluster highly changing data with event notifications (e.g. user based events) and to queue and distribute
background tasks,

e As a simple Memcache with near cache,

e As a cloud-wide scheduler of certain processes that need to be performed on some nodes,

e To share information (user information, queues, maps, etc.) on the fly with multiple nodes in different
installations under OSGI environments,

e To share thousands of keys in a cluster where there is a web service interface on an application server and
some validation,

e As a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones,
e As a front layer for a Cassandra back-end,

e To distribute user object states across the cluster, to pass messages between objects and to share system data
structures (static initialization state, mirrored objects, object identity generators),

e As a multi-tenancy cache where each tenant has its own map,
e To share datasets (e.g. table-like data structure) to be used by applications,

e To distribute the load and collect status from Amazon EC2 servers where front-end is developed using, for
example, Spring framework,

e As a real time streamer for performance detection,

e As storage for session data in web applications (enables horizontal scalability of the web application).

40 CHAPTER 4. HAZELCAST OVERVIEW
4.6 Resources

Hazelcast source code can be found at Github/Hazelcast.
Hazelcast API can be found at Hazelcast.org/docs/Javadoc.
Code samples can be downloaded from Hazelcast.org/download.
More use cases and resources can be found at Hazelcast.com.

Questions and discussions can be posted at Hazelcast mail group.

Chapter 5

Understanding Configuration

This chapter describes the options to configure your Hazelcast applications and explains the utilities which you can
make use of while configuring. You can configure Hazelcast using one or mix of the following options:

Declarative way

Programmatic way

Using Hazelcast system properties
Within the Spring context

5.1 Configuring Declaratively

This is the configuration option where you use an XML configuration file. When you download and unzip
hazelcast-<version>.zip, you will see the following files present in /bin folder, which are standard XML-
formatted configuration files:

e hazelcast.xml: Default declarative configuration file for Hazelcast. The configuration in this XML file
should be fine for most of the Hazelcast users. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties.

e hazelcast-full-example.xml: Configuration file which includes all Hazelcast configuration ele-
ments and attributes with their descriptions. It is the “superset” of hazelcast.xml. You can use
hazelcast-full-example.xml as a reference document to learn about any element or attribute, or you can
change its name to hazelcast.xml and start to use it as your Hazelcast configuration file.

A part of hazelcast.xml is shown as an example below.

<group>
<name>dev</name>
<password>dev-pass</password>
</group>
<management-center enabled="false">http://localhost:8080/mancenter</management-center>
<network>
<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>
<l--
Allowed port range when connecting to other members.
0 or * means the port provided by the system.
-—>
<ports>0</ports>
</outbound-ports>
<join>

41

42 CHAPTER 5. UNDERSTANDING CONFIGURATION

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>

<tcp-ip enabled="false">

5.1.1 Composing Declarative Configuration

You can compose the declarative configuration of your Hazelcast member or Hazelcast client from multiple declarative
configuration snippets. In order to compose a declarative configuration, you can use the <import/> element to load
different declarative configuration files.

Let’s say you want to compose the declarative configuration for Hazelcast out of two configurations:
development-group-config.xml and development-network-config.xml. These two configurations are shown
below.

development-group-config.xml:

<hazelcast>
<group>
<name>dev</name>
<password>dev-pass</password>
</group>
</hazelcast>

development-network-config.xml:

<hazelcast>
<network>
<port auto-increment="true" port-count="100">5701</port>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
</join>
</network>
</hazelcast>

To get your example Hazelcast declarative configuration out of the above two, use the <import/> element as shown
below.

<hazelcast>
<import resource="development-group-config.xml"/>
<import resource="development-network-config.xml"/>
</hazelcast>

This feature also applies to the declarative configuration of Hazelcast client. Please see the following examples.

client-group-config.xml:

<hazelcast-client>
<group>
<name>dev</name>
<password>dev-pass</password>
</group>
</hazelcast-client>

5.2. CONFIGURING PROGRAMMATICALLY 43

client-network-config.xml:

<hazelcast-client>
<network>
<cluster-members>
<address>127.0.0.1:7000</address>
</cluster-members>
</network>
</hazelcast-client>

To get a Hazelcast client declarative configuration from the above two examples, use the <import/> element as
shown below.

<hazelcast-client>
<import resource="client-group-config.xml"/>
<import resource="client-network-config.xml"/>
</hazelcast>

. NOTE: Use <import/> element on top level of the XML hierarchy.

Using the element <import>, you can also load XML resources from classpath and file system:

<hazelcast>
<import resource="file:///etc/hazelcast/development-group-config.xml"/> </-- loaded from filesystem —-
<import resource="classpath:development-network-config.xml"/> </-- loaded from classpath —->
</hazelcast>

The element <import> supports placeholders too. Please see the following example snippet:

<hazelcast>
<import resource="${environmentl}-group-config.xml"/>
<import resource="${environment}-network-config.xml"/>
</hazelcast>

5.2 Configuring Programmatically

Besides declarative configuration, you can configure your cluster programmatically. For this you can create a
Config object, set/change its properties and attributes, and use this Config object to create a new Hazelcast
member. Following is an example code which configures some network and Hazelcast Map properties.

Config config = new Config();
config.getNetworkConfig() .setPort(5900)
.setPortAutoIncrement(false);

MapConfig mapConfig = new MapConfig() ;

mapConfig.setName("testMap")
.setBackupCount(2);
.setTimeToLiveSeconds(300);

config.addMapConfig(mapConfig);
To create a Hazelcast member with the above example configuration, pass the configuration object as shown below:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);

44 CHAPTER 5. UNDERSTANDING CONFIGURATION

You can also create a named Hazelcast member. In this case, you should set instanceName of Config object as
shown below:

Config config = new Config();
config.setInstanceName("my-instance");
Hazelcast.newHazelcastInstance(config);

To retrieve an existing Hazelcast member by its name, use the following:
Hazelcast.getHazelcastInstanceByName("my-instance");
To retrieve all existing Hazelcast members, use the following:

Hazelcast.getAllHazelcastInstances();

! NOTE: Hazelcast performs schema validation through the file hazelcast-config-<version>.zsd which
comes with your Hazelcast libraries. Hazelcast throws a meaningful exception if there is an error in the declarative
or programmatic configuration.

If you want to specify your own configuration file to create Config, Hazelcast supports several ways including

filesystem, classpath, InputStream, and URL:

e Config cfg = new XmlConfigBuilder(xmlFileName) .build();
Config cfg = new XmlConfigBuilder (inputStream) .build();
Config cfg = new ClasspathXmlConfig(xmlFileName);

Config cfg = new UrlXmlConfig(url);

[]
[]
e Config cfg = new FileSystemXmlConfig(configFilename);
[]
e Config cfg = new InMemoryXmlConfig(xml);

5.3 Configuring with System Properties

You can use system properties to configure some aspects of Hazelcast. You set these properties as name and
value pairs through declarative configuration, programmatic configuration or JVM system property. Following are
examples for each option.

Declaratively:

<properties>
<property name="hazelcast.property.foo">value</property>
</properties>
</hazelcast>

Programmatically:

Config config = new Config() ;

config.setProperty("hazelcast.property.foo", "value");
Using JVM’s Systen class or -D argument:
System.setProperty("hazelcast.property.foo", "value");
or

java -Dhazelcast.property.foo=value

You will see Hazelcast system properties mentioned throughout this Reference Manual as required in some of the
chapters and sections. All Hazelcast system properties are listed in the System Properties appendix with their
descriptions, default values and property types as a reference for you.

5.4. CONFIGURING WITHIN SPRING CONTEXT 45
5.4 Configuring within Spring Context

If you use Hazelcast with Spring you can declare beans using the namespace hazelcast. When you add the
namespace declaration to the element beans in the Spring context file, you can start to use the namespace shortcut
hz to be used as a bean declaration. Following is an example Hazelcast configuration when integrated with Spring:

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"/>
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>
</hz:tcp-ip>
</hz:join>
</hz:network>
</hz:config>
</hz:hazelcast>

Please see the Spring Integration section for more information on Hazelcast-Spring integration.

5.5 Checking Configuration

When you start a Hazelcast member without passing a Config object, as explained in the Configuring Program-
matically section, Hazelcast checks the member’s configuration as follows:

e First, it looks for the hazelcast.config system property. If it is set, its value is used as the path. This
is useful if you want to be able to change your Hazelcast configuration; you can do this because it is not
embedded within the application. You can set the config option with the following command:

- Dhazelcast.config=<path to the hazelcast.zml>.

The path can be a regular one or a classpath reference with the prefix classpath:.

e If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml file in the
working directory.

e If not, it then checks whether hazelcast.xml exists on the classpath.

e If none of the above works, Hazelcast loads the default configuration (hazelcast.xml) that comes with your
Hazelcast package.

Before configuring Hazelcast, please try to work with the default configuration to see if it works for you. This
default configuration should be fine for most of the users. If not, you can consider to modify the configuration to be
more suitable for your environment.

5.6 Using Wildcards

Hazelcast supports wildcard configuration for all distributed data structures that can be configured using Config,
that is, for all except IAtomicLong, IAtomicReference. Using an asterisk (*) character in the name, different
instances of maps, queues, topics, semaphores, etc. can be configured by a single configuration.

A single asterisk (*) can be placed anywhere inside the configuration name.

For instance, a map named com.hazelcast.test.mymap can be configured using one of the following configurations.

https://spring.io/

46 CHAPTER 5. UNDERSTANDING CONFIGURATION

<map name='"com.hazelcast.test.*">
</map>

<map name='"com.hazel*">

</map>

<map name="*.test.mymap">

</map>

<map name='"com.x*test.mymap">

</map>

Or a queue ‘com.hazelcast.test.myqueue’:
<queue name='"*hazelcast.test.myqueue">
;)éueue>

<queue name="com.hazelcast.*.myqueue">

;)éueue>
5.7 Using Variables

In your Hazelcast and/or Hazelcast Client declarative configuration, you can use variables to set the values of the
elements. This is valid when you set a system property programmatically or you use the command line interface.
You can use a variable in the declarative configuration to access the values of the system properties you set.

For example, see the following command that sets two system properties.
-Dgroup.name=dev -Dgroup.password=somepassword
Let’s get the values of these system properties in the declarative configuration of Hazelcast, as shown below.

<hazelcast>
<group>
<name>${group.name}</name>
<password>${group.password}</password>
</group>
</hazelcast>

This also applies to the declarative configuration of Hazelcast Client, as shown below.

<hazelcast-client>
<group>
<name>${group.name}</name>
<password>${group.password}</password>
</group>
</hazelcast-client>

5.7. USING VARIABLES

47

If you do not want to rely on the system properties, you can use the XmlConfigBuilder and explicitly set a

Properties instance, as shown below.

Properties properties = new Properties();
// fill the properties, e.g. from database/LDAP, etc.

XmlConfigBuilder builder = new XmlConfigBuilder();
builder.setProperties(properties)

Config config = builder.build();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config) ;

48

CHAPTER 5. UNDERSTANDING CONFIGURATION

Chapter 6

Setting Up Clusters

This chapter describes Hazelcast clusters and the methods cluster members use to form a Hazelcast cluster.

6.1 Discovering Cluster Members

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members (also called nodes)
automatically join together to form a cluster. This automatic joining takes place with various discovery mechanisms
that the cluster members use to find each other. Hazelcast uses the following discovery mechanisms:

Multicast
TCP

EC2 Cloud
jclouds®

Each discovery mechanism is explained in the following sections.

! NOTE: After a cluster is formed, communication between cluster members is always via TCP/IP, regardless
of the discovery mechanism used.

6.1.1 Discovering Members by Multicast
With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other using multicast

communication. The cluster members do not need to know the concrete addresses of the other members, they just
multicast to all the other members for listening. It depends on your environment if multicast is possible or allowed.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. Please refer to the
multicast element section for the full description of the multicast discovery configuration elements.

e Set the enabled attribute of the multicast element to “true”.
e Set multicast-group, multicast-port, multicast-time-to-live, etc. to your multicast values.
e Set the enabled attribute of both tcp-ip and aws elements to “false”.

The following is an example declarative configuration.
<hazelcast>
<ﬁé£work>
<join>

49

50 CHAPTER 6. SETTING UP CLUSTERS

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>

</trusted-interfaces>

</multicast>

<tcp-ip enabled="false">

</tcp-ip>

<aws enabled="false">

</aws>

</join>
<network>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the time
in seconds that a node should wait for a valid multicast response from another node running in the network
before declaring itself as the leader node (the first node joined to the cluster) and creating its own cluster. This
only applies to the startup of nodes where no leader has been assigned yet. If you specify a high value to
multicast-timeout-seconds, such as 60 seconds, it means that until a leader is selected, each node will wait 60
seconds before moving on. Be careful when providing a high value. Also be careful not to set the value too low, or
the nodes might give up too early and create their own cluster.

6.1.2 Discovering Members by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure Hazelcast to be a
full TCP/IP cluster. When you configure Hazelcast to discover members by TCP /IP, you must list all or a subset
of the members’ hostnames and/or IP addresses as cluster members. You do not have to list all of these cluster
members, but at least one of the listed members has to be active in the cluster when a new member joins.

To set your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. Please refer to the
tep-ip element section for the full description of the TCP/IP discovery configuration elements.

Set the enabled attribute of the multicast element to “false”.
Set the enabled attribute of the aws element to “false”.

Set the enabled attribute of the tcp-ip element to “true”.

Set your member elements within the tcp-ip element.

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">
<member>machinel</member>
<member>machine2</member>
<member>machine3:5799</member>
<member>192.168.1.0-7</member>

<member>192.168.1.21</member>
</tcp-ip>

</join>

6.1. DISCOVERING CLUSTER MEMBERS o1

</network>

</hazelcast>

As shown above, you can provide IP addresses or hostnames for member elements. You can also give a range of IP
addresses, such as 192.168.1.0-7.

Instead of providing members line by line as shown above, you also have the option to use the members element
and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>
If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702, and so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can change this behavior
using the system property hazelcast.socket.bind.any. If you set this property to false, Hazelcast uses the
interfaces specified in the interfaces element (please refer to the Interfaces Configuration section). If no interfaces
are provided, then it will try to resolve one interface to bind from the member elements.

6.1.3 Discovering Members within EC2 Cloud

Hazelcast supports EC2 Auto Discovery. It is useful when you do not want to provide or you cannot provide the
list of possible IP addresses.

To configure your cluster to use EC2 Auto Discovery, set the following configuration elements. Please refer to the
aws element section for the full description of the EC2 Auto Discovery configuration elements.

Add the hazelcast-cloud.jar dependency to your project. Note that it is also bundled inside hazelcast-all.jar.
The Hazelcast cloud module does not depend on any other third party modules.

Disable join over multicast and TCP/IP: set the enabled attribute of the multicast element to “false”, and
set the enabled attribute of the tcp-ip element to “false”.

Set the enabled attribute of the aws element to “true”.

Within the aws element, provide your credentials (access and secret key), your region, etc.

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="false"></multicast>
<tcp-ip enabled="false"></tcp-ip>
<aws enabled="true">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>
</aws>
</join>

52 CHAPTER 6. SETTING UP CLUSTERS

6.1.3.1 Debugging

When needed, Hazelcast can log the events for the instances that exist in a region. To see what has happened or to
trace the activities while forming the cluster, change the log level in your logging mechanism to FINEST or DEBUG.
After this change, you can also see in the generated log whether the instances are accepted or rejected, and the
reason the instances were rejected. Note that changing the log level in this way may affect the performance of the
cluster. Please see the Logging Configuration section for information on logging mechanisms.

RELATED INFORMATION

You can download the white paper “Hazelcast on AWS: Best Practices for Deployment”* from Hazelcast.com.*

6.1.4 Discovering Members with jclouds

Hazelcast members and native clients support jclouds®) for discovery. It is useful when you do not want to provide
or you cannot provide the list of possible IP addresses on various cloud providers. However currently, for AWS EC2
which is also based on jclouds, you still need to configure your cluster using the element as described in the above
Discovering Members within EC2 Cloud section.

To configure your cluster to use jclouds Auto Discovery, follow these steps:

e Add the hazelcast-jclouds.jar dependency to your project. Note that this is also bundled inside hazelcast-all.jar.
The Hazelcast jclouds module depends on jclouds; please make sure the necessary JARs for your provider are
present on the classpath.

e Disable the multicast and TCP/IP join mechanisms. To do this, set the enabled attributes of the multicast
and tcp-ip elements to false in your hazelcast.xml configuration file

e Set the enabled attribute of the hazelcast.discovery.enabled property to true.

e Within the discovery-providers element, provide your credentials (access and secret key), your region, etc.

The following is an example declarative configuration.

<properties>
<property name="hazelcast.discovery.enabled">true</property>
</properties>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-strategies>
<discovery-strategy class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>
<property name="provider'">google-compute-engine</property>
<property name="identity">GCE_IDENTITY</property>
<property name="credential">GCE_CREDENTIAL</property>
</properties>
</discovery-strategy>
</discovery-strategies>
</join>

As stated in the first paragraph of this section, Hazelcast native clients also support jclouds for discovery. It means
you can also configure your hazelcast-client.xml configuration file to include the element in the same way as it
is with hazelcast.xml.

The table below lists the jclouds configuration properties with their descriptions.

6.1. DISCOVERING CLUSTER MEMBERS 93

Property Name Type

Description

provider String
identity String
credential String
zones String
regions String
tag-keys String
tag-values String
group String
hz-port Int

role-namex* String

credentialPath* String

String value which is used to identify ComputeService provider. For example, “google-compute:
Cloud Provider identity, can be thought of as a user name for cloud services.

Cloud Provider credential, can be thought of as a password for cloud services.

Defines zone for a cloud service (optional). Can be used with comma separated values for mult:
Defines region for a cloud service (optional). Can be used with comma separated values for mu
Filters cloud instances with tags (optional). Can be used with comma separated values for mul
Filters cloud instances with tags (optional) Can be used with comma separated values for mult
Filters instance groups (optional). When used with AWS it maps to security group.

Port which the hazelcast instance service uses on the cluster member. Default value is 5701. (o
Used for TAM role support specific to AWS (optional, but if defined, no identity or credential s!
Used for cloud providers which require an extra JSON or P12 key file. This denotes the path o

6.1.4.1 Configuring Dependencies for jclouds via Maven

jclouds depends on many libraries internally and hazelcast-jclouds.jar does not contain any of them. If you
want to use jclouds, the recommended way is to use its dependency management tool. The following is a simple
maven dependency configuration which uses maven assembly plugin to create an uber JAR with the necessary

jclouds properties.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.x
<modelVersion>4.0.0</modelVersion>
<groupId>group-id</groupIld>
<artifactId>artifact-id </artifactId>
<version>version</version>
<name>compute-basics</name>

<properties>

<jclouds.version>latest-version</jclouds.version>
<hazelcast.version>latest-version</hazelcast.version>

</properties>

<dependencies>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>${hazelcast.version}</version>

</dependency>
<dependency>

<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-jclouds</artifactId>
<version>${hazelcast.version}</version>

</dependency>
<dependency>

<groupId>org.apache. jclouds</groupIld>
<artifactId>jclouds-compute</artifactId>
<version>${jclouds.version}</version>

</dependency>
<dependency>

54 CHAPTER 6. SETTING UP CLUSTERS

<groupId>org.apache. jclouds</groupId>
<artifactId>jclouds-allcompute</artifactId>
<version>${jclouds.version}</version>
</dependency>
<dependency>
<groupId>org.apache. jclouds.labs</groupId>
<artifactId>google-compute-engine</artifactId>
<version>${jclouds.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
</plugin>

</plugins>
</build>
</project>

6.1.4.2 Configuring IAM Roles for AWS

TAM roles are used to make secure requests from your clients. You can provide the name of your IAM role that you
created previously on your AWS console to the jclouds configuration. IAM roles only work in AWS and when a role
name is provided, the other credentials properties should be empty.

<properties>
<property name="hazelcast.discovery.enabled">true</property>
</properties>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-providers>
<discovery-provider class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>
<property name="provider'">aws-ec2</property>
<property name="role-name'">i-am-role-for-member</property>
<property name='"credential">AWS_CREDENTIAL</property>
</properties>

6.2. CREATING CLUSTER GROUPS 95

</discovery-provider>
</discovery-providers>
</join>

6.1.4.3 Discovering Members on Different Regions

You can define multiple regions in your jclouds configuration. By default, Hazelcast Discovery SPI uses private IP
addresses for member connection. If you want the members to find each other over a different region, you must set
the system property hazelcast.discovery.public.ip.enabled to true. In this way, the members on different
regions can connect to each other by using public IPs.

<properties>
<property name="hazelcast.discovery.enabled">true</property>
<property name="hazelcast.discovery.public.ip.enabled">true</property>
</properties>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<discovery-providers>
<discovery-provider class="com.hazelcast.jclouds.JCloudsDiscoveryStrategy" enabled="true">
<properties>
<property name="provider'">aws-ec2</property>
<property name="identity">AWS_IDENTITY</property>
<property name="credential">AWS_CREDENTIAL</property>
</properties>
</discovery-provider>
</discovery-providers>
</join>

6.2 Creating Cluster Groups

You can create cluster groups. To do this, use the group configuration element.

By specifying a group name and group password, you can separate your clusters in a simple way. Example groupings
can be by development, production, test, app, etc. The following is an example declarative configuration.

<hazelcast>
<group>
<name>appl</name>
<password>appl-pass</password>
</group>

</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host multiple Hazelcast
instances. Each Hazelcast instance can only participate in one group. Each Hazelcast instance only joins to its own
group, it does not mess with other groups. The following code example creates three separate Hazelcast instances:
h1 belongs to the appl cluster, while h2 and h3 belong to the app2 cluster.

56 CHAPTER 6. SETTING UP CLUSTERS

Config configAppl = new Config();
configAppl.getGroupConfig() .setName("appl").setPassword("appl-pass");

Config confighApp2 = new Config();
configApp2.getGroupConfig() .setName("app2").setPassword("app2-pass");

HazelcastInstance hl = Hazelcast.newHazelcastInstance(confighAppl);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

6.3 Partition Group Configuration

Hazelcast distributes key objects into partitions using a consistent hashing algorithm. Those partitions are assigned to
nodes. An entry is stored in the node that owns the partition to which the entry’s key is assigned. The total partition
count is 271 by default; you can change it with the configuration property hazelcast.map.partition.count.
Please see the System Properties section.

Along with those partitions, there are also copies of the partitions as backups. Backup partitions can have multiple
copies due to the backup count defined in configuration, such as first backup partition, second backup partition, etc.
A node cannot hold more than one copy of a partition (ownership or backup). By default, Hazelcast distributes
partitions and their backup copies randomly and equally among cluster nodes, assuming all nodes in the cluster are
identical.

But what if some nodes share the same JVM or physical machine or chassis and you want backups of these nodes
to be assigned to nodes in another machine or chassis? What if processing or memory capacities of some nodes are
different and you do not want an equal number of partitions to be assigned to all nodes?

You can group nodes in the same JVM (or physical machine) or nodes located in the same chassis. Or you can
group nodes to create identical capacity. We call these groups partition groups. Partitions are assigned to those
partition groups instead of to single nodes. Backups of these partitions are located in another partition group.

When you enable partition grouping, Hazelcast presents three choices for you to configure partition groups.

e You can group nodes automatically using the IP addresses of nodes, so nodes sharing the same network
interface will be grouped together. All members on the same host (IP address or domain name) will be a
single partition group. This helps to avoid data loss when a physical server crashes, because multiple replicas
of the same partition are not stored on the same host. But if there are multiple network interfaces or domain
names per physical machine, that will make this assumption invalid.

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.HOST_AWARE) ;

e You can do custom grouping using Hazelcast’s interface matching configuration. This way, you can add
different and multiple interfaces to a group. You can also use wildcards in the interface addresses. For
example, the users can create rack aware or data warehouse partition groups using custom partition grouping.

<partition-group enabled="true" group-type="CUSTOM">

<member-group>
<interface>10.10.0.*</interface>
<interface>10.10.3.*</interface>
<interface>10.10.5.*</interface>

</member-group>

<member-group>

6.4. LOGGING CONFIGURATION o7

<interface>10.10.10.10-100</interface>
<interface>10.10.1.*</interface>
<interface>10.10.2.*</interface>
</member-group
</partition-group>

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig() ;
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.CUSTOM);

MemberGroupConfig memberGroupConfig = new MemberGroupConfig() ;
memberGroupConfig.addInterface("10.10.0.*")
.addInterface("10.10.3.%").addInterface("10.10.5.%");

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface("10.10.10.10-100")
.addInterface("10.10.1.%").addInterface("10.10.2.%");

partitionGroupConfig.addMemberGroupConfig(memberGroupConfig);
partitionGroupConfig.addMemberGroupConfig(memberGroupConfig2) ;

e You can give every member its own group. Each member is a group of its own and primary and backup
partitions are distributed randomly (not on the same physical member). This gives the least amount of
protection and is the default configuration for a Hazelcast cluster.

<partition-group enabled="true" group-type="PER_MEMBER" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.PER_MEMBER) ;

6.4 Logging Configuration

Hazelcast has a flexible logging configuration and does not depend on any logging framework except JDK logging.
It has built-in adaptors for a number of logging frameworks and it also supports custom loggers by providing logging
interfaces.

To use built-in adaptors, set the hazelcast.logging.type property to one of the predefined types below.

e jdk: JDK logging (default)
e log4j: Log4j
e slf4j: Slf4j

e none: disable logging

You can set hazelcast.logging.type through declarative configuration, programmatic configuration, or JVM
system property.

Declarative Configuration

NOTE: If you choose to use 10947 or slf4j, you should include the proper dependencies in the classpath.

o8 CHAPTER 6. SETTING UP CLUSTERS

<hazelcast>

<properties>
<property name="hazelcast.logging.type">jdk</property>

</properties>
</hazelcast>

Programmatic Configuration

Config config = new Config() ;
config.setProperty("hazelcast.logging.type", "log4j")

System Property

- Using JVM parameter: ‘java -Dhazelcast.logging.type=slf4j*
- Using System class: ‘System.setProperty("hazelcast.logging.type", "none");°¢

If the provided logging mechanisms are not satisfactory, you can implement your own using the custom logging fea-
ture. To use it, implement the com.hazelcast.logging.LoggerFactory and com.hazelcast.logging.ILogger
interfaces and set the system property hazelcast.logging.class as your custom LoggerFactory class name.

-Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

LogListener listener = new LogListener() {

public void log(LogEvent logEvent) {

// do something

}
}
HazelcastInstance instance = Hazelcast.newHazelcastInstance();
LoggingService loggingService = instance.getLoggingService();
loggingService.addLoglListener(Level.INFO, listener);

Through the LoggingService, you can get the currently used ILogger implementation and log your own messages
too.

l NOTE: If you are not using command line for configuring logging, you should be careful about Hazelcast
classes. They may be defaulted to jdk logging before newly configured logging is read. When logging mechanism is
selected, it will not change.

6.5 Other Network Configurations

All network related configurations are performed via the network element in the Hazelcast XML configuration file
or the class NetworkConfig when using programmatic configuration. Following subsections describe the available
configurations that you can perform under the network element.

6.5. OTHER NETWORK CONFIGURATIONS 99

6.5.1 Public Address

public-address overrides the public address of a member. By default, a member selects its socket address as its
public address. But behind a network address translation (NAT), two endpoints (members) may not be able to
see/access each other. If both members set their public addresses to their defined addresses on NAT, then that way
they can communicate with each other. In this case, their public addresses are not an address of a local network
interface but a virtual address defined by NAT. It is optional to set and useful when you have a private cloud. Note
that, the value for this element should be given in the format host IP address:port number. See the following
examples.

Declarative:

<network>
<public-address>11.22.33.44:5555</public-address>
</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig()
.setPublicAddress("11.22.33.44", "5555");

6.5.2 Port

You can specify the ports that Hazelcast will use to communicate between cluster members. Its default value is
5701. The following are example configurations.

Declarative:

<network>
<port port-count="20" auto-increment="false">5701</port>
</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig() .setPort("5701");
.setPortCount ("20").setPortAutoIncrement(false);

port has the following attributes.

e port-count: By default, Hazelcast will try 100 ports to bind. Meaning that, if you set the value of port as
5701, as members are joining to the cluster, Hazelcast tries to find ports between 5701 and 5801. You can
choose to change the port count in the cases like having large instances on a single machine or willing to have
only a few ports to be assigned. The parameter port-count is used for this purpose, whose default value is
100.

e auto-increment: According to the above example, Hazelcast will try to find free ports between 5701 and
5801. Normally, you will not need to change this value, but it will come very handy when needed. You may
also want to choose to use only one port. In that case, you can disable the auto-increment feature of port by
setting auto-increment to false.

The parameter port-count is ignored when the above configuration is made.

60 CHAPTER 6. SETTING UP CLUSTERS

6.5.3 Outbound Ports

By default, Hazelcast lets the system pick up an ephemeral port during socket bind operation. But security
policies/firewalls may require you to restrict outbound ports to be used by Hazelcast-enabled applications. To
fulfill this requirement, you can configure Hazelcast to use only defined outbound ports. The following are example
configurations.

Declarative:

<network>
<outbound-ports>
<!-- ports between 33000 and 35000 -->
<ports>33000-35000</ports>
<!-- comma separated ports -->
<ports>37000,37001,37002,37003</ports>
<ports>38000,38500-38600</ports>
</outbound-ports>
</network>

Programmatic:

NetworkConfig networkConfig = config.getNetworkConfig();

// ports between 35000 and 35100
networkConfig.addOutboundPortDefinition("35000-35100");

// comma separated ports
networkConfig.addOutboundPortDefinition("36001, 36002, 36003");
networkConfig.addOutboundPort (37000) ;
networkConfig.addOutboundPort (37001) ;

Note: You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one port. If you
need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port definitions.

6.5.4 Reuse Address

When you shutdown a cluster member, the server socket port will be in the TIME_WAIT state for the next couple
of minutes. If you start the member right after shutting it down, you may not be able to bind it to the same
port because it is in the TIME_WAIT state. If you set the reuse-address element to true, the TIME_WAIT state is
ignored and you can bind the member to the same port again.

The following are example configurations.
Declarative:
<network>
<reuse-address>true</reuse-address>

</network>

Programmatic:

NetworkConfig networkConfig = config.getNetworkConfig();

networkConfig.setReuseAddress(true);

6.5. OTHER NETWORK CONFIGURATIONS 61

6.5.5 Join

The join configuration element is used to discover Hazelcast members and enable them to form a cluster. Hazelcast
provides multicast, TCP/IP, EC2, and jclouds® discovery mechanisms. These mechanisms are explained the
Discovering Cluster Members section. This section describes all the sub-elements and attributes of join element.
The following are example configurations.

Declarative:

<network>
<join>

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-1live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>

</trusted-interfaces>

</multicast>

<tcp-ip enabled="false">
<required-member>192.168.1.104</required-member>
<member>192.168.1.104</member>
<members>192.168.1.105,192.168.1.106</members>

</tcp-ip>

<aws enabled="false'">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-members</tag-value>

</aws>

<discovery-strategies>

<discovery-strategy ... />
</discovery-strategies>
</join>
<network>

Programmatic:

Config config = new Config();

NetworkConfig network = config.getNetworkConfig();

JoinConfig join = network.getJoin();

join.getMulticastConfig() .setEnabled(false)
.addTrustedInterface("192.168.1.102");

join.getTcpIpConfig() .addMember("10.45.67.32").addMember("10.45.67.100")
.setRequiredMember("192.168.10.100").setEnabled(true);

The join element has the following sub-elements and attributes.
6.5.5.1 multicast element
The multicast element includes parameters to fine tune the multicast join mechanism.

e enabled: Specifies whether the multicast discovery is enabled or not, true or false.

62

CHAPTER 6. SETTING UP CLUSTERS

multicast-group: The multicast group IP address. Specify it when you want to create clusters within the
same network. Values can be between 224.0.0.0 and 239.255.255.255. Default value is 224.2.2.3.
multicast-port: The multicast socket port that the Hazelcast member listens to and sends discovery
messages through. Default value is 54327.

multicast-time-to-live: Time-to-live value for multicast packets sent out to control the scope of multicasts.
See more information here.

multicast-timeout-seconds: Only when the members are starting up, this timeout (in seconds) specifies
the period during which a member waits for a multicast response from another member. For example, if you
set it as 60 seconds, each member will wait for 60 seconds until a leader member is selected. Its default value
is 2 seconds.

trusted-interfaces: Includes IP addresses of trusted members. When a member wants to join to the
cluster, its join request will be rejected if it is not a trusted member. You can give an IP addresses range
using the wildcard (*) on the last digit of IP address (e.g. 192.168.1.* or 192.168.1.100-110).

6.5.5.2 tcp-ip element

The tcp-ip element includes parameters to fine tune the TCP/IP join mechanism.

e enabled: Specifies whether the TCP/IP discovery is enabled or not. Values can be true or false.
e required-member: IP address of the required member. Cluster will only formed if the member with this IP

address is found.

e member: IP address(es) of one or more well known members. Once members are connected to these well

known ones, all member addresses will be communicated with each other. You can also give comma separated
IP addresses using the members element.

NOTE: tcp-ip element also accepts the interface parameter. Please refer to the Interfaces element

description.

e connection-timeout-seconds: Defines the connection timeout. This is the maximum amount of time

Hazelcast is going to try to connect to a well known member before giving up. Setting it to a too low value
could mean that a member is not able to connect to a cluster. Setting it to a too high value means that
member startup could slow down because of longer timeouts (e.g. when a well known member is not up).
Increasing this value is recommended if you have many IPs listed and the members cannot properly build up
the cluster. Its default value is 5.

6.5.5.3 aws element

The aws element includes parameters to allow the members to form a cluster on the Amazon EC2 environment.

enabled: Specifies whether the EC2 discovery is enabled or not, true or false.

access-key, secret-key: Access and secret keys of your account on EC2.

region: The region where your members are running. Default value is us-east-1. You need to specify this
if the region is other than the default one.

host-header: The URL that is the entry point for a web service. It is optional.

security-group-name: Name of the security group you specified at the EC2 management console. It is used
to narrow the Hazelcast members to be within this group. It is optional.

tag-key, tag-value: To narrow the members in the cloud down to only Hazelcast members, you can set
these parameters as the ones you specified in the EC2 console. They are optional.
connection-timeout-seconds: The maximum amount of time Hazelcast will try to connect to a well known
member before giving up. Setting this value too low could mean that a member is not able to connect to a
cluster. Setting the value too high means that member startup could slow down because of longer timeouts
(for example, when a well known member is not up). Increasing this value is recommended if you have many
IPs listed and the members cannot properly build up the cluster. Its default value is 5.

http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

6.5. OTHER NETWORK CONFIGURATIONS 63

l NOTE: If you are using a cloud provider other than AWS, you can use the programmatic configuration to
specify a TCP/IP cluster. The members will need to be retrieved from that provider (e.g. JClouds).

6.5.5.4 discovery-strategies element

The discovery-strategies element configures internal or external discovery strategies based on the Hazelcast
Discovery SPI. For further information, please refer to the Discovery SPI section and the vendor documentation of
the used discovery strategy.

6.5.5.4.1 AWSClient Configuration To make sure EC2 instances are found correctly, you can use the
AWSClient class. It determines the private IP addresses of EC2 instances to be connected. Give the AWSClient
class the values for the parameters that you specified in the aws element, as shown below. You will see whether
your EC2 instances are found.

public static void main(String[] args)throws Exception{
AwsConfig config = new AwsConfig();

config.setSecretKey(...) ;
config.setSecretKey(...);
config.setRegion(...);
config.setSecurityGroupName(...);
config.setTagKey(...);
config.setTagValue(...);

config.setEnabled(true);
AwSClient client = new AWSClient(config);
List<String> ipAddresses = client.getPrivateIpAddresses();
System.out.println("addresses found:" + ipAddresses);
for (String ip: ipAddresses) {
System.out.println(ip);
3
}

6.5.6 Interfaces

You can specify which network interfaces that Hazelcast should use. Servers mostly have more than one network
interface, so you may want to list the valid IPs. Range characters (‘*’ and ‘-’) can be used for simplicity. For
instance, 10.3.10.* refers to IPs between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to IPs between
10.3.10.4 and 10.3.10.18 (4 and 18 included). If network interface configuration is enabled (it is disabled by default)
and if Hazelcast cannot find an matching interface, then it will print a message on the console and will not start on
that member.

The following are example configurations.

Declarative:

<hazelcast>
<network>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>192.168.1.3</interface>

</interfaces>
</network>

</hazelcast>

64 CHAPTER 6. SETTING UP CLUSTERS
Programmatic:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
InterfacesConfig interface = network.getInterfaces();
interface.setEnabled(true)

.addInterface("192.168.1.3");

6.5.7 IPv6 Support

Hazelcast supports IPv6 addresses seamlessly (This support is switched off by default, please see the note at the
end of this section).

All you need is to define IPv6 addresses or interfaces in network configuration. The only current limitation is
that you cannot define wildcard IPv6 addresses in the TCP/IP join configuration (tcp-ip element). Interfaces
configuration does not have this limitation, you can configure wildcard IPv6 interfaces in the same way as IPv4
interfaces.

<hazelcast>
<network>
<port auto-increment="true">5701</port>
<join>
<multicast enabled="false">
<multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="true">
<member>[fe80::223:6cff:fe93:7c7e] :5701</member>
<interface>192.168.1.0-7</interface>
<interface>192.168.1.*</interface>
<interface>fe80:0:0:0:45c5:47ee:fel5:493a</interface>
</tcp-ip>
</join>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>fe80:0:0:0:45c5:47ee:felb5:*</interface>
<interface>fe80::223:6cff:fe93:0-5555</interface>
</interfaces>

</network>
</hazelcast>

JVM has two system properties for setting the preferred protocol stack (IPv4 or IPv6) as well as the preferred
address family types (inet4 or inet6). On a dual stack machine, IPv6 stack is preferred by default, you can change
this through the java.net.preferIPv4Stack=<true|false> system property. When querying name services, JVM
prefers IPv4 addresses over IPv6 addresses and will return an IPv4 address if possible. You can change this through
java.net.preferIPv6Addresses=<true|false> system property.

Also see additional details on ITPv6 support in Java.

. NOTE: IPv6 support has been switched off by default, since some platforms have issues using the IPv6 stack.
Some other platforms such as Amazon AWS have no support at all. To enable IPv6 support, just set configuration
property hazelcast.prefer. ipu.stack to false. Please refer to the System Properties section for details.

Chapter 7

Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java interfaces. Below is the
list of these implementations with links to the corresponding sections in this manual.

e Standard utility collections:

Map is the distributed implementation of java.util.Map. It lets you read from and write to a Hazelcast
map with methods such as get and put.

Queue is the distributed implementation of java.util.concurrent.BlockingQueue. You can add an
item in one member and remove it from another one.

Ringbuffer is implemented for reliable eventing system. It is also a distributed data structure.

Set is the distributed and concurrent implementation of java.util.Set. It does not allow duplicate
elements and does not preserve their order.

List is similar to Hazelcast Set. The only difference is that it allows duplicate elements and preserves
their order.

MultiMap is a specialized Hazelcast map. It is a distributed data structure where you can store multiple
values for a single key.

Replicated Map does not partition data. It does not spread data to different cluster members. Instead,
it replicates the data to all members.

e Topic is the distributed mechanism for publishing messages that are delivered to multiple subscribers. It
is also known as the publish/subscribe (pub/sub) messaging model. Please see the Topic section for more
information. Hazelcast also has a structure called Reliable Topic which uses the same interface of Hazelcast
Topic. The difference is that it is backed up by the Ringbuffer data structure. Please see the Reliable Topic
section.

e Concurrency utilities:

Lock is the distributed implementation of java.util.concurrent.locks.Lock. When you use lock,
the critical section that Hazelcast Lock guards is guaranteed to be executed by only one thread in the
entire cluster.

Semaphore is the distributed implementation of java.util.concurrent.Semaphore. When performing
concurrent activities, semaphores offer permits to control the thread counts.

AtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. Most
of AtomicLong’s operations are available. However, these operations involve remote calls and hence their
performances differ from AtomicLong, due to being distributed.

AtomicReference is the distributed implementation of java.util.concurrent.atomic.AtomicReference.
When you need to deal with a reference in a distributed environment, you can use Hazelcast AtomicRef-
erence.

IdGenerator is used to generate cluster-wide unique identifiers. ID generation occurs almost at the speed
of AtomicLong.incrementAndGet ().

CountdownLatch is the distributed implementation of java.util.concurrent.CountDownLatch. Hazel-
cast CountDownLatch is a gate keeper for concurrent activities. It enables the threads to wait for other
threads to complete their operations.

65

66 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
Common Features of all Hazelcast Data Structures:

e If a member goes down, its backup replica (which holds the same data) will dynamically redistribute the
data, including the ownership and locks on them, to the remaining live members. As a result, there will not
be any data loss.

e There is no single cluster master that can be a single point of failure. Every member in the cluster has equal
rights and responsibilities. No single member is superior. There is no dependency on an external ‘server’ or
‘master’.

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and
how you can listen for instance events, such as an instance being created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.*;

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
X
b

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

3

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

7.1 Map

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence java.util.Map.
It is the distributed implementation of Java map. You can perform operations like reading and writing from/to a
Hazelcast map with the well known get and put methods.

7.1.1 Getting a Map and Putting an Entry

Hazelcast will partition your map entries and almost evenly distribute them onto all Hazelcast members. Each
member carries approximately “(1/n * total-data) + backups”, n being the number of members in the cluster. For
example, if you have a member with 1000 objects to be stored in the cluster, and then you start a second member,
each member will both store 500 objects and back up the 500 objects in the other member.

7.1. MAP 67

Let’s create a Hazelcast instance and fill a map named Capitals with key-value pairs using the following code. Use
the HazelcastInstance getMap method to get the map, then use the map put method to put an entry into the map.

public class FillMapMember {
public static void main(String[] args) {

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
capitalcities.put("1", "Tokyo");
capitalcities.put("2", "Paris");
capitalcities.put("3", "Washington");
capitalcities.put("4", "Ankara");
capitalcities.put("5", "Brussels");
capitalcities.put("6", "Amsterdam");
capitalcities.put("7", "New Delhi");
capitalcities.put("8", "London");
capitalcities.put("9", "Berlin");
capitalcities.put("10", "Oslo");
capitalcities.put("11", "Moscow");

capitalcities.put("120", "Stockholm")

When you run this code, a cluster member is created with a map whose entries are distributed across the members’s
partitions. See the below illustration. For now, this is a single member cluster.

. NOTE: Please note that some of the partitions will not contain any data entries since we only have 120
objects and the partition count is 271 by default. This count is configurable and can be changed using the system
property hazelcast.partition. count. Please see the System Properties section.

7.1.1.1 Creating A Member for Map Backup

Now, let’s create a second member by running the above code again. This will create a cluster with 2 members.
This is also where backups of entries are created; remember the backup partitions mentioned in the Hazelcast
Overview section. The following illustration shows two members and how the data and its backup is distributed.

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in the cluster.
Eventually, it will carry almost “(1/n * total-data) 4+ backups” of the data, reducing the load on other nodes.

HazelcastInstance: : getMap returns an instance of com.hazelcast.core.IMap which extends the java.util.concurrent.Cc
interface. Methods like ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value)
can be used on the distributed map, as shown in the example below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
Customer customer = customers.get(id);
if (customer == null) {
customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

68 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

(“3", “Washington”)
{"1” . “Tﬂkfﬂ'”]

("4”, “Ankara”)

{H 12# . "Prﬂ-guE"}

{i‘i’].gl'l'I|I "Rmh‘]

[”2”; “‘Pariﬂ”]
(5", “Brussels”)

("6"”, "Amsterdam”)

Figure 7.1: Key-Values in a Member

7.1. MAP 69

(“3”, “Washington”) (6", "Amsterdam”)
I"l” . “Tﬂkj"ﬂ'”]

(2", “Paris")

("4”, “Ankara”) ("5, “Brussels”)

{le.ﬂ't "Pr&g’uﬂ”} {.l'.l'lgﬂr "m"}

("19”, "Rome”) ("3”, “Washington”)
{‘”1”: “Tﬂk}"ﬂ"}

(727, “Paris”)

(57, “Brussels”) (12", "Brague”)

("6", "Amsterdam”) (“4", “Ankara”)

Figure 7.2: Key-Values Distributed Among Two Members

70 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

return customer;

}

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return (customers.replace(customer.getId(), customer) != null);

}

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return customers.remove(customer.getId(), customer);

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread in the
local or remote JVM. But, they will eventually return with success. ConcurrentMap operations never throw a
java.util.ConcurrentModificationException.

Also see:

e Data Affinity section.
e Map Configuration with wildcards.

7.1.2 Backing Up Maps

Hazelcast distributes map entries onto multiple cluster members (JVMs). Each member holds some portion of the
data.

Distributed maps have 1 backup by default. If a member goes down, you do not lose data. Backup operations are
synchronous, so when a map.put(key, value) returns, it is guaranteed that the map entry is replicated to one
other node. For the reads, it is also guaranteed that map.get (key) returns the latest value of the entry. Consistency
is strictly enforced.

7.1.2.1 Creating Sync Backups

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to have. That way,
data on a cluster member will be copied onto other member(s).

To create synchronous backups, select the number of backup copies using the backup-count property.

<hazelcast>
<map name="default">
<backup-count>1</backup-count>
</map>
</hazelcast>

When this count is 1, a map entry will have its backup on one other node in the cluster. If you set it to 2, then a
map entry will have its backup on two other nodes. You can set it to 0 if you do not want your entries to be backed
up, e.g. if performance is more important than backing up. The maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations are synchronous
and configured with backup-count. In this case, backup operations block operations until backups are successfully
copied to backup nodes (or deleted from backup nodes in case of remove) and acknowledgements are received.
Therefore, backups are updated before a put operation is completed. Sync backup operations have a blocking cost
which may lead to latency issues.

7.1. MAP 71

7.1.2.2 Creating Async Backups

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do not require
acknowledgements; the backup operations are performed at some point in time.

To create asynchronous backups, select the number of async backups with the async-backup-count property. An
example is shown below.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</map>
</hazelcast>

NOTE: Backups increase memory usage since they are also kept in memory.

NOTE: A map can have both sync and aysnc backups at the same time.

7.1.2.3 Enabling Backup Reads

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each member will
carry both owned entries and backup copies of other members. So for the map.get (key) call, it is possible that
the calling member has a backup copy of that key. By default, map.get (key) will always read the value from the
actual owner of the key for consistency.

To enable backup reads (read local backup entries), set the value of the read-backup-data property to true. Its
default value is false for strong consistency. Enabling backup reads can improve performance.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>
</map>
</hazelcast>

This feature is available when there is at least 1 sync or async backup.

Please note that, if you are performing a read from a backup, you should take into account that your hits to the
keys in the backups are not reflected as hits to the original keys on the primary members; this has an impact on
IMap’s maximum idle seconds or time-to-live seconds expiration. Therefore, even though there is a hit on a key in
backups, your original key on the primary member may expire.

7.1.3 Evicting Map Entries

Unless you delete the map entries manually or use an eviction policy, they will remain in the map. Hazelcast
supports policy based eviction for distributed maps. Currently supported policies are LRU (Least Recently Used)
and LFU (Least Frequently Used).

7.1.3.1 Understanding Map Eviction

Hazelcast Map performs eviction based on partitions. For example, when you specify a size using the PER_NODE
attribute for max-size (please see Configuring Map Eviction), Hazelcast internally calculates the maximum size for
every partition. Hazelcast uses the following equation to calculate the maximum size of a partition:

72 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
partition maximum size = max-size * member-count / partition-count

The eviction process starts according to this calculated partition maximum size when you try to put an entry.
When entry count in that partition exceeds partition maximum size, eviction starts on that partition.

Assume that you have the following figures as examples:

Partition count: 200

Entry count for each partition: 100

max-size (PER_NODE): 20000

eviction-percentage (please see Configuring Map Eviction): 10%

The total number of entries here is 20000 (partition count * entry count for each partition). This means you are at
the eviction threshold since you set the max-size to 20000. When you try to put an entry:

1. The entry goes to the relevant partition.
2. The partition checks whether the eviction threshold is reached (max-size).
3. If reached, approximately 10 (100 * 10%) entries are evicted from that particular partition.

As a result of this eviction process, when you check the size of your map, it is ~19990 (20000 - ~10). After this
eviction, subsequent put operations will not trigger the next eviction until the map size is again close to the
max-size.

l NOTE: The above scenario is just an example to describe how the eviction process works. Hazelcast finds
the most optimum number of entries to be evicted according to your cluster size and selected policy.

7.1.3.2 Configuring Map Eviction

The following is an example declarative configuration for map eviction.

<hazelcast>
<map name="default">

<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
<eviction-percentage>25</eviction-percentage>
<min-eviction-check-millis>100</min-eviction-check-millis>
</map>
</hazelcast>

Let’s describe each element.

e time-to-live: Maximum time in seconds for each entry to stay in the map. If it is not 0, entries that
are older than this time and not updated for this time are evicted automatically. Valid values are integers
between 0 and Integer.MAX VALUE. Default value is 0, which means infinite. If it is not 0, entries are evicted
regardless of the set eviction-policy.

e max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. Entries that are idle
for more than this time are evicted automatically. An entry is idle if no get, put, EntryProcessor.process
or containsKey is called. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0,
which means infinite.

e eviction-policy: Valid values are described below.

7.1. MAP 73

— NONE: Default policy. If set, no items will be evicted and the property max-size will be ignored. You
still can combine it with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

e max-size: Maximum size of the map. When maximum size is reached, the map is evicted based on the
policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0. If you
want max-size to work, set the eviction-policy property to a value other than NONE. Its attributes are
described below.

— PER_NODE: Maximum number of map entries in each cluster member. This is the default policy. If you
use this option, please note that you cannot set the max-size to a value lower than the partition count
(which is 271 by default).

<max-size policy="PER_NODE">5000</max-size>

— PER_PARTITION: Maximum number of map entries within each partition. Storage size depends on the
partition count in a cluster member. This attribute should not be used often. Avoid using this attribute
with a small cluster: if the cluster is small it will be hosting more partitions, and therefore map entries,
than that of a larger cluster. Thus, for a small cluster, eviction of the entries will decrease performance
(the number of entries is large).

<max-size policy="PER_PARTITION">27100</max-size>

— USED_HEAP_SIZE: Maximum used heap size in megabytes per map for each Hazelcast instance. Please
note that this policy does not work when in-memory format is set to OBJECT, since the memory footprint
cannot be determined when data is put as OBJECT.

<max-size policy="USED_HEAP_SIZE">4096</max-size>

— USED_HEAP_PERCENTAGE: Maximum used heap size percentage per map for each Hazelcast instance. If,
for example, JVM is configured to have 1000 MB and this value is 10, then the map entries will be
evicted when used heap size exceeds 100 MB. Please note that this policy does not work when in-memory
format is set to OBJECT, since the memory footprint cannot be determined when data is put as OBJECT.

<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>

— FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.
<max-size policy="FREE_HEAP_SIZE">512</max-size>

— FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example, JVM is
configured to have 1000 MB and this value is 10, then the map entries will be evicted when free heap
size is below 100 MB.
<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

— USED_NATIVE_MEMORY_SIZE: (Hazelcast Enterprise HD) Maximum used native memory size in
megabytes per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_SIZE">1024</max-size>

— USED_NATIVE_MEMORY_PERCENTAGE: (Hazelcast Enterprise HD) Maximum used native memory size
percentage per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">65</max-size>

— FREE_NATIVE_MEMORY_SIZE: (Hazelcast Enterprise HD) Minimum free native memory size in
megabytes for each Hazelcast instance.

<max-size policy="FREE_NATIVE_MEMORY_SIZE">256</max-size>

— FREE_NATIVE_MEMORY_PERCENTAGE: (Hazelcast Enterprise HD) Minimum free native memory size
percentage for each Hazelcast instance.

<max-size policy="FREE_NATIVE_MEMORY_PERCENTAGE">5</max-size>

e eviction-percentage: When max-size is reached, the specified percentage of the map will be evicted.
For example, if set to 25, 25% of the entries will be evicted. Setting this property to a smaller value will
cause eviction of a smaller number of map entries. Therefore, if map entries are inserted frequently, smaller
percentage values may lead to overheads. Valid values are integers between 0 and 100. The default value is 25.

e min-eviction-check-millis: Minimum time in milliseconds which should elapse before checking whether a
partition of the map is evictable or not. In other terms, this property specifies the frequency of the eviction
process. The default value is 100. Setting it to 0 (zero) makes the eviction process run for every put operation.

74 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

. NOTE: When map entries are inserted frequently, the property min-eviction-check-millis should be set
to a number lower than the insertion period in order not to let any entry escape from the eviction.

7.1.3.3 Example Eviction Configurations

<map name='"documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>
</map>

In the above example, documents map starts to evict its entries from a member when the map size exceeds 10000 in
that member. Then, the entries least recently used will be evicted. The entries not used for more than 60 seconds
will be evicted as well.

And the following is an example eviction configuration for a map having NATIVE as the in-memory format:

<map name='"nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-policy>LFU</eviction-policy>
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">99</max-size>
</map>

7.1.3.4 Evicting Specific Entries
The eviction policies and configurations explained above apply to all the entries of a map. The entries that meet
the specified eviction conditions are evicted.

But you may want to evict some specific map entries. In this case, you can use the ttl and timeunit parameters
of the method map.put (). An example code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key “1” will be evicted 50 seconds after it is put into myMap.

7.1.3.5 Evicting All Entries

To evict all keys from the map except the locked ones, use the method evictAl1l(). If a MapStore is defined for
the map, deleteAll is not called by evictAll. If you want to call the method deleteAll, use clear().

An example is given below.

public class EvictAll {

public static void main(String[] args) {
final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance nodel = Hazelcast.newHazelcastInstance();
HazelcastInstance node2 Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = nodel.getMap(EvictAll.class.getCanonicalName());
for (int i = 0; i < numberOfEntriesToAdd; i++) {

map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {

7.1. MAP 75

map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf ("# After calling evictAll...\n");
System.out.printf ("# Expected map size\t: %d\n", numberOfKeysToLock);
System.out.printf ("# Actual map size\t: ’%d\n", map.size());

l NOTE: Only EVICT _ALL event is fired for any registered listeners.

7.1.4 Setting In Memory Format

IMap (and a few other Hazelcast data structures, such as ICache) has an in-memory-format configuration option.
By default, Hazelcast stores data into memory in binary (serialized) format. But sometimes, it can be efficient to
store the entries in their object form, especially in cases of local processing, such as entry processor and queries.

To set how the data will be stored in memory, set in-memory-format in the configuration. You have the following
format options.

e BINARY (default): This is the default option. The data will be stored in serialized binary format. You can use
this option if you mostly perform regular map operations, such as put and get.

e OBJECT: The data will be stored in deserialized form. This configuration is good for maps where entry processing
and queries form the majority of all operations and the objects are complex, making the serialization cost
respectively high. By storing objects, entry processing will not contain the deserialization cost.

e NATIVE: (Hazelcast Enterprise HD) This option is used to enable the map to use Hazelcast’s High-Density
Memory Store. Please refer to the Using High-Density Memory Store with Map section.

Regular operations like get rely on the object instance. When the 0BJECT format is used and a get is performed,
the map does not return the stored instance, but creates a clone. Therefore, this whole get operation first includes
a serialization on the member owning the instance, and then a deserialization on the member calling the instance.
When the BINARY format is used, only a deserialization is required; BINARY is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, map would create a
clone of the instance, and there would first be a serialization and then a deserialization. When BINARY is used,
only a deserialization is needed.

l NOTE: If a value is stored in OBJECT format, a change on a returned value does not affect the stored
instance. In this case, the returned instance is not the actual one but a clone. Therefore, changes made on an object
after it is returned will not reflect on the actual stored data. Similarly, when a value is written to a map and the
value is stored in OBJECT format, it will be a copy of the put value. Therefore, changes made on the object after it
is stored will not reflect on the stored data.

7.1.5 Using High-Density Memory Store with Map

Hazelcast Enterprise HD

Hazelcast instances are Java programs. In case of BINARY and OBJECT in-memory formats, Hazelcast stores your
distributed data into the heap of its server instances. Java heap is subject to garbage collection (GC). In case of

76 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

larger heaps, garbage collection might cause your application to pause for tens of seconds (even minutes for really
large heaps), badly affecting your application performance and response times.

As the data gets bigger, you either run the application with larger heap, which would result in longer GC pauses
or run multiple instances with smaller heap which can turn into an operational nightmare if the number of such
instances becomes very high.

To overcome this challenge, Hazelcast offers High-Density Memory Store for your maps. You can configure your
map to use High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
</map>

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see Configuring High-Density Memory Store section.

7.1.5.1 Required configuration changes when using NATIVE

Note that the eviction mechanism is different for NATIVE in-memory format. The new eviction algorithm for map
with High-Density Memory Store is similar to that of JCache with High-Density Memory Store and is described
here.

- Eviction percentage has no effect.
€< (Xml

<map name='"nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-percentage>25</eviction-percentage> <-- NO IMPACT with NATIVE

</map>

[N

- These IMap eviction policies for ‘max-size‘ cannot be used: ‘FREE_HEAP_PERCENTAGE‘, ‘FREE_HEAP_SIZE®,
- Near cache eviction configuration is also different for ‘NATIVE‘ in-memory format.

For a near cache configuration with in-memory format set to ‘BINARY‘:
¢ {Xml
<map name="nativeMapx*">

<near-cache>
<in-memory-format>BINARY</in-memory-format>
<max-size>10000</max-size> <-- NO IMPACT with NATIVE
<eviction-policy>LFU</eviction-policy> <-- NO IMPACT with NATIVE
</near-cache>

</map>
[N N1

the equivalent configuration for ‘NATIVE‘ in-memory format would be similar to the following:
¢ (Xml
<map name='"nativeMap*">

<near-cache>

<in-memory-format>NATIVE</in-memory-format>

<eviction size="10000" eviction-policy="LFU" max-size-policy="USED_NATIVE_MEMORY_SIZE"/> <-
</near-cache>

7.1. MAP 7

</map>

[N N1
- Near cache eviction policy ‘ENTRY_COUNT‘ cannot be used for ‘max-size-policy°‘.

RELATED INFORMATION

Please refer to the High-Density Memory Store section for more information.

7.1.6 Loading and Storing Persistent Data

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a
relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory,
MapLoader’s load or loadAll methods will load that entry from the data store. This loaded entry is placed into
the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

. NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast members. Persistence
to local file system is not supported.

. NOTE: Also note that, the MapStore interface extends the MapLoader interface as you can see in the
interface code.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
private final Connection con;

public PersonMapStore() {
try {
con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
con.createStatement () .executeUpdate (
"create table if not exists person (id bigint, name varchar(45))");
} catch (SQLException e) {
throw new RuntimeException(e);
3
}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {
con.createStatement () .executeUpdate (
format("delete from person where id = 7s", key));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void store(Long key, Person value) {
try {
con.createStatement () . executeUpdate (
format("insert into person values(%s,’%s’)", key, value.name));
} catch (SQLException e) {

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/core/MapStore.java

78 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

throw new RuntimeException(e);

3

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet())
store(entry.getKey(), entry.getValue());
}

public synchronized void deleteAll(Collection<Long> keys) {
for (Long key : keys) delete(key);
}

public synchronized Person load(Long key) {
try {
ResultSet resultSet = con.createStatement() .executeQuery(
format("select name from person where id =Ys", key));
try {
if ('resultSet.next()) return null;
String name = resultSet.getString(1);
return new Person(name);
} finally {
resultSet.close();
}
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) result.put(key, load(key));
return result;

3

public Iterable<Long> loadAllKeys() {
return null;

}

l NOTE: During the initial loading process, MapStore uses a thread different than the partition threads that
is used by the ExecutorService. After the initialization is completed, the map.get method looks up any inexistent
value from the database in a partition thread or the map.put method looks up the database to return the previously
associated value for a key also in a partition thread.

RELATED INFORMATION
For more MapStore/MapLoader code samples please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes which are explained in the
subsections below.

7.1.6.1 Using Read-Through Persistence

If an entry does not exist in the memory when an application asks for it, Hazelcast asks your loader implementation
to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to
Hazelcast, and Hazelcast puts it into the memory. This is read-through persistence mode.

7.1. MAP 79

7.1.6.2 Setting Write-Through Persistence

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means
the entries will be put to the data store synchronously.

In this mode, when the map.put (key,value) call returns:

e MapStore.store(key,value) is successfully called so the entry is persisted.
e In-Memory entry is updated.

e In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than
0).

The same behavior goes for a map.remove (key) call. The only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in
the form of RuntimeException.

7.1.6.3 Setting Write-Behind Persistence

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than
0. This means the modified entries will be put to the data store asynchronously after a configured delay.

! NOTE: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies only the
last update on it. However, you can set MapStoreConfig#setWriteCoalescing to FALSE and you can store all
updates performed on a key to the data store.

! NOTE: When you set MapStoreConfig#setiWriteCoalescing to FALSE, after you reached per-node mazx-
imum write-behind-queue capacity, subsequent put operations will fail with ReachedMazSizeException. This
exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per node mazximum
capacity using the system property hazelcast.map.write.behind. queuve. capacity. Please refer to the System
Properties section for information on this property and how to set the system properties.

In write-behind mode, when the map.put (key,value) call returns:

e In-Memory entry is updated.

e In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than
0).

e The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store (key,value)
call.

e For fault tolerance, dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove (key), the only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a
log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll (map)
and MapStore.deleteAll(collection) to do all writes in a single call.

! NOTE: If a map entry is marked as dirty, i.e. it is waiting to be persisted to the MapStore in a write-behind
scenario, the eviction process forces the entry to be stored. By this way, you will have control on the number of
entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

80

CHAPTER 7. DISTRIBUTED DATA STRUCTURES

NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queue/MultiMap/List/Set

operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock
situations.

Here is a sample configuration:

<hazelcast>

<map name="default">

<map-store enabled="true" initial-mode="LAZY">
<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>

</map-store>

</map>
</hazelcast>

The following are the descriptions of MapStore configuration elements and attributes:

class-name: Name of the class implementing MapLoader and/or MapStore.

write-delay-seconds: Number of seconds to delay to call the MapStore.store(key, value). If the value is zero
then it is write-through so MapStore.store(key, value) will be called as soon as the entry is updated. Otherwise
it is write-behind so updates will be stored after write-delay-seconds value by calling Hazelcast.storeAll(map).
Default value is 0.

write-batch-size: Used to create batch chunks when writing map store. In default mode, all map entries will
be tried to be written in one go. To create batch chunks, the minimum meaningful value for write-batch-size
is 2. For values smaller than 2, it works as in default mode.

write-coalescing: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies
only the last update on it. You can set this element to false to store all updates performed on a key to the
data store.

enabled: True to enable this map-store, false to disable. Default value is true.

initial-mode: Sets the initial load mode. LAZY is the default load mode, where load is asynchronous.
EAGER means load is blocked till all partitions are loaded.

7.1.6.4 Storing Entries to Multiple Maps

A configuration can be applied to more than one map using wildcards (see Using Wildcard), meaning that the
configuration is shared among the maps. But MapStore does not know which entries to store when there is one
configuration applied to multiple maps.

To store entries when there is one configuration applied to multiple maps, use Hazelcast’s MapStoreFactory interface.
Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is
used. Example code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig() ;
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
@0verride
public MapLoader<Object, Object> newMapStore(String mapName, Properties properties) {

}
3

return null;

7.1. MAP 81

To initialize the MapLoader implementation with the given map name, configuration properties, and the Hazelcast
instance, implement the MapLoaderLifecycleSupport interface. This interface has the methods init() and
destroy() as shown below.

public interface MapLoaderLifecycleSupport {
void init(HazelcastInstance hazelcastInstance, Properties properties, String mapName) ;

void destroy(Q);
}

The method init() initializes the MapLoader implementation. Hazelcast calls this method when the map is
first used on the Hazelcast instance. The MapLoader implementation can initialize the required resources for
implementing MapLoader such as reading a configuration file or creating a database connection.

Hazelcast calls the method destroy () before shutting down. You can override this method to cleanup the resources
held by this MapLoader implementation, such as closing the database connections.

7.1.6.5 Initializing Map on Startup - LAZY/EAGER

To pre-populate the in-memory map when the map is first touched/used, use the MapLoader.loadAllKeys APL

If MapLoader.loadAllKeys returns NULL, then nothing will be loaded. Your MapLoader.loadAllKeys imple-
mentation can return all or some of the keys. For example, you may select and return only the hot keys.
MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast will optimize the loading
process by having each cluster member load its owned portion of the entries.

The InitiallLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If
InitialLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, the whole data
is loaded while the map is created and everything becomes ready to use. Also, if you add indices to your map with
the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig
behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any member, initialization will start depending on the value of
InitialLoadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start
but data is loaded each time a partition loading completes.

Hazelcast will call MapLoader.loadAl1lKeys () to get all your keys on one of the members.

That member will distribute keys to all other members in batches.

Each member will load values of all its owned keys by calling MapLoader.loadAll (keys).

Rl i

Each member puts its owned entries into the map by calling IMap.putTransient (key,value).

If the load mode is LAZY and when the clear () method is called (which triggers MapStore.deleteAl1()), Hazelcast
will remove ONLY the loaded entries from your map and datastore. Since the whole data is not loaded for this
case (LAZY mode), please note that there may be still entries in your datastore.

! NOTE: The return type of loadAllKeys () is changed from Set to Iterable with the release of Hazelcast
3.5. MapLoader implementations from previous releases are also supported and do not need to be adapted.

While implementing a MapLoader you can either set a className and Hazelcast will create an instance for you
OR you can set directly an instance. When you set className and Hazelcast creates an instance for you, then
the instance is set back to your MapConfig. Before Hazelcast 3.6.3, this injection happens immediately when you
create a proxy regardless of the LAZY /EAGER configuration. Starting with Hazelcast 3.6.3, the instance is set
only after the map is touched for first time (when in LAZY mode). There is no behavior change in EAGER mode.

Loading Keys Incrementally

82 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

If the number of keys to load is large, it is more efficient to load them incrementally than loading them all at once.
To support incremental loading, the MapLoader.loadAl1lKeys () method returns an Iterable which can be lazily
populated with the results of a database query.

Hazelcast iterates over the Iterable and, while doing so, sends out the keys to their respective owner members.
The Iterator obtained from MapLoader.loadAllKeys() may also implement the Closeable interface, in which
case Iterator is closed once the iteration is over. This is intended for releasing resources such as closing a JDBC
result set.

7.1.6.6 Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load operations.
The method has two signatures (i.e. the same method can take two different parameter lists). One signature loads
the given keys and the other loads all keys. Please see the example code below.

public class LoadAll {

public static void main(String[] args) {
final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName();
final Config config = createNewConfig(mapName) ;
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName) ;

populateMap (map, numberOfEntriesToAdd) ;
System.out.printf ("# Map store has 7d elements\n", numberOfEntriesToAdd) ;

map.evictAll();
System.out.printf ("# After evictAll map size\t: %d\n", map.size());

map.loadAll (true);
System.out.printf ("# After loadAll map size\t: %d\n", map.size());

7.1.6.7 Post-Processing Objects in Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can get
an ID or version auto-generated by your database and then you need to modify your object stored in the distributed
map but not to break the synchronization between database and data grid.

To post-process an object in the map store, implement the PostProcessingMapStore interface to put the modified
object into the distributed map. That causes an extra step of Serialization, so use it only when needed. (This is
only valid when using the write-through map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
@0verride
public void store(Integer key, Employee employee) {
Employeeld id = saveEmployee();
employee.setId(id.getId());
b
3

l NOTE: Please note that if you are using a post processing map store in combination with entry processors,
post-processed values will not be carried to backups.

7.1. MAP 83

7.1.7 Creating Near Cache for Map

Map entries in Hazelcast are partitioned across the cluster. Suppose you read the key k a number of times and k is
owned by another member in your cluster. Each map.get (k) will be a remote operation, meaning lots of network
trips. If you have a map that is read-mostly, then you should consider creating a near cache for the map so that
reads can be much faster and consume less network traffic. These benefits do not come free; when using near cache,
you should consider the following issues:

e Cluster members will have to hold extra cached data, which increases memory consumption.
e If invalidation is turned on and entries are updated frequently, then invalidations will be costly.
e Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. The following is the configuration example
for map’s near cache in the Hazelcast configuration file.

<hazelcast>
<map name="my-read-mostly-map">

<near-cache name="default">
<in-memory-format>BINARY</in-memory-format>
<max-size>5000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>60</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<cache-local-entries>false</cache-local-entries>

</near-cache>

</map>
</hazelcast>

The element <near-cache> has an optional attribute “name” whose default value is default. Following are the
descriptions of all configuration elements:

e <max-size>: Maximum size of the near cache. When this is reached, near cache is evicted based on the policy
defined. Any integer between 0 and Integer. MAX_VALUE. 0 means Integer.MAX_VALUE. Its default value is
0.

e <time-to-live-seconds>: Maximum number of seconds for each entry to stay in the near cache. Entries
that are older than this period are automatically evicted from the near cache. Regardless of the eviction
policy used, <time-to-live-seconds> still applies. Any integer between 0 and Integer.MAX_VALUE. 0 means
infinite. Its default value is 0.

e <max-idle-seconds>: Maximum number of seconds each entry can stay in the near cache as untouched (not
read). Entries that are not read more than this period are removed from the near cache. Any integer between
0 and Integer.MAX_VALUE. 0 means Integer .MAX_VALUE. Its default value is 0.

e <eviction-policy>: Eviction policy configuration. Its default values is NONE. Available values are as
follows:

— NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

e <invalidate-on-change>: Specifies whether the cached entries are evicted when the entries are updated or
removed. Its default value is true.

e <in-memory-format>: Specifies in which format data will be stored in your near cache. Note that a map’s
in-memory format can be different from that of its near cache. Available values are as follows:

— BINARY: Data will be stored in serialized binary format. It is the default option.

84 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

— OBJECT: Data will be stored in deserialized form.

— NATIVE: Data will be stored in the near cache that uses Hazelcast’s High-Density Memory Store feature.
This option is available only in Hazelcast Enterprise HD. Note that a map and its near cache can
independently use High-Density Memory Store. For example, while your map does not use High-Density
Memory Store, its near cache can use it.

e <cache-local-entries>: Specifies whether the local entries will be cached. It can be useful when in-memory
format for near cache is different from that of the map. By default, it is disabled.

. NOTE: If you use High-Density Memory Store for your mear cache, the elements <maz-size> and
<eviction-policy> do not have any impact. In this case, you need to use the element <eviction> to spec-
ify the eviction behavior. Please refer to the Using High-Density Memory Store with Near Cache section.

Programmatically, you configure near cache by using the class NearCacheConfig. This class is used both in the
cluster members and clients. In a client/server system, you must enable the near cache separately on the client,
without you needing to configure it on the member. For information on how to create a near cache on a client
(native Java client), please see Configuring Client Near Cache. Please note that near cache configuration is specific
to the member or client itself, a map in a member may not have near cache configured while the same map in a
client may have near cache configured.

If you are using near cache, you should take into account that your hits to the keys in near cache are not reflected
as hits to the original keys on the primary members; this has an impact on IMap’s maximum idle seconds or
time-to-live seconds expiration. Therefore, even though there is a hit on a key in near cache, your original key on
the primary member may expire.

. NOTE: Near cache works only when you access data via map.get (k) methods. Data returned using a
predicate is not stored in the near cache.

. NOTE: Even though lite members do not store any data for Hazelcast data structures, you can enable near
cache on lite members for faster reads.

7.1.7.1 Using High-Density Memory Store with Near Cache

Hazelcast Enterprise HD

Hazelcast offers High-Density Memory Store for the near caches in your maps. You can enable your near cache
to use the High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<hazelcast>
<map name="my-read-mostly-map">
<near-cache>

<in-memory-format>NATIVE</in-memory-format>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>

</near-cache>
</map>
</hazelcast>

The element <eviction> is used to specify the eviction behavior when you use High-Density Memory Store for
your near cache. It has the following attributes:

7.1. MAP 85

e size: Maximum size (entry count) of the near cache.
e max-size-policy: Maximum size policy for eviction of the near cache. Available values are as follows:

— ENTRY__COUNT: Maximum entry count per member.

— USED_NATIVE_MEMORY_ SIZE: Maximum used native memory size in megabytes.

— USED_NATIVE_MEMORY__PERCENTAGE: Maximum used native memory percentage.

— FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size to trigger cleanup.

— FREE_NATIVE_MEMORY__PERCENTAGE: Minimum free native memory percentage to trigger
cleanup.

e eviction-policy: Eviction policy configuration. Its default values is NONE. Available values are as follows:

— NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see the Configuring High-Density Memory Store section.

Note that a map and its near cache can independently use High-Density Memory Store. For example, while your
map does not use High-Density Memory Store, its near cache can use it.

7.1.7.2 Near Cache Invalidation

When you enable invalidations on near cache, either programmatically via NearCacheConfig#setInvalidateOnChange
or declaratively via <invalidate-on-change>true</invalidate-on-change>, when entires are updated or
removed from an entry in the underlying IMap, corresponding entries are removed from near caches to prevent
stale reads. This is called near cache invalidation.

Invalidation can be sent from members to client near caches or to member near caches, either individually or in
batches. Default behavior is sending in batches. If there are lots of mutating operations such as put/remove on
IMap, it is advised that you make invalidations in batches. This reduces the network traffic and keeps the eventing
system less busy.

You can use the following system properties to configure the near cache invalidation:

e hazelcast.map.invalidation.batch.enabled: Enable or disable batching. Default value is true. When it
is set to false, all invalidations are sent immediately.

e hazelcast.map.invalidation.batch.size: Maximum number of invalidations in a batch. Default value is
100.

e hazelcast.map.invalidation.batchfrequency.seconds: If we cannot reach the configured batch size, a
background process sends invalidations periodically. Default value is 10 seconds.

If there are a lot of clients or many mutating operations, batching should remain enabled and the batch size should
be configured with the hazelcast.map.invalidation.batch.size system property to a suitable value.

7.1.8 Locking Maps

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When these requirements
increase or you want to have more control on the concurrency, consider the following Hazelcast solutions.

Let’s work on a sample case as shown below.

public class RacyUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");

86 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 100 == 0) System.out.println("At: " + k);
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

}

If the above code is run by more than one cluster member simultaneously, there will be likely a race condition. You
can solve this condition with Hazelcast using either of the following solutions.

7.1.8.1 Pessimistic Locking

One way to solve the race issue is using pessimistic locking: lock the map entry until you are finished with it.

To perform pessimistic locking, use the lock mechanism provided by Hazelcast distributed map, i.e. the map.lock
and map.unlock methods. See the below example code.

public class PessimisticUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
map.lock(key);
try {
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
} finally {
map.unlock(key);
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

}

The IMap lock will automatically be collected by the garbage collector when the lock is released and no other
waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

7.1. MAP 87

Another way to solve the race issue can be acquiring a predictable Lock object from Hazelcast. This way, every
value in the map can be given a lock or you can create a stripe of locks.

7.1.8.2 Optimistic Locking

In Hazelcast, you can apply the optimistic locking strategy with the map’s replace method. This method compares
values in object or data forms depending on the in-memory format configuration. If the values are equal, it replaces
the old value with the new one. If you want to use your defined equals method, in-memory-format should be
OBJECT. Otherwise, Hazelcast serializes objects to BINARY forms and compares them.

See the below example code.

public class OptimisticMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k% 10 == 0) System.out.println("At: " + k);
for (5 ;) {
Value oldValue = map.get(key);
Value newValue = new Value(oldValue);
Thread.sleep(10);
newValue.amount++;
if (map.replace(key, oldValue, newValue))
break;
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
3

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value(Value that) {
this.amount = that.amount;
}
public boolean equals(Object o) {
if (o == this) return true;
if ('(o instanceof Value)) return false;

Value that = (Value) o;
return that.amount == this.amount;

}

. NOTE: The above example code is intentionally broken.

7.1.8.3 Pessimistic vs. Optimistic Locking

Depending on your locking requirements, you can pick one locking strategy.

88 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Optimistic locking is better for mostly read-only systems. It has a performance boost over pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than optimistic locking
from the perspective of data consistency.

In Hazelcast, use IExecutorService to submit a task to a key owner, or to a member or members. This is the
recommended way to perform task executions, rather than using pessimistic or optimistic locking techniques.
IExecutorService will have less network hops and less data over wire, and tasks will be executed very near to the
data. Please refer to the Data Affinity section.

7.1.8.4 Solving the ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple threads. Even if
one thread sees the same value for a particular key in consecutive reads, it does not mean that nothing has changed
between the reads. Another thread may change the value, do work, and change the value back, while the first
thread thinks that nothing has changed.

To prevent these kind of problems, one solution is to use a version number and to check it before any write to be sure
that nothing has changed between consecutive reads. Although all the other fields will be equal, the version field
will prevent objects from being seen as equal. This is the optimistic locking strategy, and it is used in environments
which do not expect intensive concurrent changes on a specific key.

In Hazelcast, you can apply the optimistic locking strategy with the map replace method.

7.1.9 Accessing Entry Statistics

Hazelcast keeps statistics about each map entry, such as creation time, last update time, last access time, number
of hits, and version. To access the map entry statistics, use an IMap.getEntryView(key) call. Here is an example.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap("quotes").getEntryView("1");

System.out.println ("size in memory : " + entry.getCost());
System.out.println ("creationTime " + entry.getCreationTime());
System.out.println ("expirationTime " + entry.getExpirationTime());
System.out.println ("number of hits " + entry.getHits());
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime());
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key " + entry.getKey());
System.out.println ("value " + entry.getValue());

7.1.10 Map Listener

Please refer to the Listening for Map Events section.

7.1.11 Listening to Map Entries with Predicates
You can listen to the modifications performed on specific map entries. You can think of it as an entry listener with
predicates. Please see the Listening for Map Events section for information on how to add entry listeners to a map.

As an example, let’s listen to the changes made on an employee with the surname “Smith”. First, let’s create the
Employee class.

7.1. MAP

import java.io.Serializable;
public class Employee implements Serializable {
private final String surname;

public Employee(String surname) {
this.surname = surname;

3

Q@0verride
public String toString() {
return "Employee{" +
"surname=’" + surname + ’\’’ +

)}7;

Then, let’s create a continuous query by adding the entry listener with the surname predicate.

import com.hazelcast.core.*;
import com.hazelcast.query.SqlPredicate;

public class ContinuousQuery {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("map");
map.addEntryListener (new MyEntryListener(),
new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntryListener
implements EntryListener<String, String> {
@0verride
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);
b

@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

}

@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

}

@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

}

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

89

90 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

And now, let’s play with the employee “smith” and see how that employee will be listened to.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Employee> map = hz.getMap('"map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));
System.out.println("done");
System.exit (0);

When you first run the class ContinuousQuery and then run Modify, you will see output similar to the listing
below.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,0ldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

7.1.12 Adding Interceptors

You can add intercept operations and then execute your own business logic synchronously blocking the operations.
You can change the returned value from a get operation, change the value to be put, or cancel operations by
throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behavior of operation, change the values, or totally cancel
it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can result in duplicate
effects. This can easily happen when the interceptor is added to the map at node initialization, so that each node
adds the same interceptor. When you add the interceptor in this way, be sure to implement the hashCode () method
to return the same value for every instance of the interceptor. It is not strictly necessary, but it is a good idea to
also implement equals() as this will ensure that the map interceptor can be removed reliably.

The IMap API has two methods for adding and removing an interceptor to the map: addInterceptor and
removelnterceptor.

Jk*

* Adds an interceptor for the map. Added interceptor intercepts operations
and executes user defined methods and cancels operations tf

user defined methods throw exceptions.

@param interceptor map interceptor.

*
*
*
*
* Q@return id of registered interceptor.

*/
String addInterceptor(MapInterceptor interceptor);

7.1. MAP 91

/**
* Removes the given interceptor for this map. So it does not
* intercept operations anymore.
*
* @param id registration ID of the map interceptor.
*/

void removeInterceptor(String id);
Here is the MapInterceptor interface:

public interface MapInterceptor extends Serializable {

VLT

Intercept the get operation before it returns a value.

Return another object to change the return value of get().

Returning null causes the get() operation to return the original value,
namely return null if you do mot want to change anything.

*
*
*
*
*
*
* @param value the original value to be returned as the result of get() operation.
* Q@return the new value that is returned by get() operation.
*/
Object interceptGet(Object value);

/kk
* Called after get() operation is completed.
*
*
Q@param value the wvalue returned as the result of get() operation.
*/
void afterGet(Object value);

/**
* Intercept put operation before modifying map data.
* Return the object to be put into the map.
* Returning null causes the put() operation to operate as ezpected,
* namely no interception. Throwing an exception cancels the put operation.
*
*
* Q@param oldValue the wvalue currently existing in the map.
* @param newValue the new walue to be put.
* Q@return new value after intercept operation.
*/
Object interceptPut(Object oldValue, Object newValue);
/kk
* Called after put() operation is completed.
*
*

* @param value the value returned as the result of put() operation.
*/
void afterPut(Object value);

VLSS
* Intercept remove operation before removing the data.
* Return the object to be returned as the result of remove operation.
* Throwing an exception cancels the remove operation.

92

*
*
*
*

*/

Object interceptRemove(Object removedValue);

/K

CHAPTER 7. DISTRIBUTED DATA STRUCTURES

@param removedValue the existing value to be removed.
Q@return the value to be returned as the result of remove operation.

* Called after remove() operation is completed.

* @param value the value returned as the result of remove(.) operation

*/

void afterRemove(Object value);

}

Example Usage:

public class InterceptorTest {

QTest

public void testMapInterceptor() throws InterruptedException {
HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance();
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance();
IMap<Object, Object> map = hazelcastInstancel.getMap("testMapInterceptor");

SimpleInterceptor interceptor =

map.

map.put(1, "New York");
map.put(2, "Istanbul");
map.put(3, "Tokyo");
map.put(4, "London");
map.put(5, "Paris");
map.put(6, "Cairo");
map.put(7, "Hong Kong");
try {

map.remove(1);
} catch (Exception ignore) {

}
try {

map.remove(2);
} catch (Exception ignore) {

}

assertEquals(

map.

size(), 6)

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map.
map.
.get(
map .
.get(
map.
.get(

map

map

map

get(
get (

get(

get (

~N O O WwN -

null);
"ISTANBUL:");
"TOKYO:");
"LONDON:");
"PARIS:");
"CAIRO:");
"HONG KONG:");

map.removelInterceptor(interceptor);

map.put(8, "Moscow");

assertEquals(map.get(8), "Moscow");

new Simplelnterceptor();
addInterceptor(interceptor);

7.1. MAP 93

assertEquals(map.get(1), null);
assertEquals(map.get(2), "ISTANBUL");
assertEquals(map.get(3), "TOKYO");
assertEquals(map.get(4), "LONDON");
assertEquals(map.get(5), "PARIS");
assertEquals(map.get(6), "CAIRO");
assertEquals(map.get(7), "HONG KONG");

3

static class SimpleInterceptor implements MapInterceptor, Serializable {

@0verride
public Object interceptGet(Object value) {
if (value == null)

return null;
return value + ":";

}

@0verride
public void afterGet(Object value) {
}

@0verride
public Object interceptPut(Object oldValue, Object newValue) {
return newValue.toString() .toUpperCase() ;

}

@0verride
public void afterPut(Object value) {
}

Q@0verride
public Object interceptRemove(Object removedValue) {
if (removedValue.equals("ISTANBUL"))
throw new RuntimeException("you can not remove this");
return removedValue;

}

@0verride
public void afterRemove(Object value) {
// do something
}
}
}

7.1.13 Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query based map methods, especially with
large clusters or heap sizes. For example, on a 5 node cluster with 10 GB of data and 25 GB heap size per node, a
single call of IMap.entrySet() fetches 50 GB of data and crashes the calling instance.

A call of IMap.values() may return too much data for a single node. This can also happen with a real query and
an unlucky choice of predicates, especially when the parameters are chosen by a user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is not a limit like
SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A maximum result size limit for
query based operations is meant to be a last line of defense to prevent your nodes from retrieving more data than
they can handle.

94 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

7.1.13.1 Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each QueryOperation
runs on all partitions of a node, so it collects result entries as long as the node limit is not exceeded. If that happens,
a QueryResultSizeExceededException is thrown and propagated to the calling instance.

This feature depends on an equal distribution of the data on the cluster nodes to calculate the result size limit
per node. Therefore, there is a minimum value defined in QueryResultSizeLimiter .MINIMUM_MAX_RESULT_LIMIT.
Configured values below the minimum will be increased to the minimum.

7.1.13.1.1 Local Pre-check In addition to the distributed result size check in the QueryOperations, there is
a local pre-check on the calling instance. If you call the method from a client, the pre-check is executed on the
member which invokes the QueryOperations.

Since the local pre-check can increase the latency of a QueryOperation you can configure how many local partitions
should be considered for the pre-check or you can deactivate the feature completely.

7.1.13.1.2 Scope of Result Size Limit Besides the designated query operations, there are other operations
which use predicates internally. Those method calls will throw the QueryResultSizeExceededException as well.
Please see the following matrix to see the methods that are covered by the query result size limit.

Method MapProxyImpl|ClientMapProxyImpl | TransactionalMapProxy |ClientTxnMapProxy
values() v X X X
keySet () X X

entrySet()

values(predicate)

keySet (predicate)

SIS SN[> | X

entrySet(predicate)

localKeySet ()

IR S NN

localKeySet(predicate)

Interfaces: | IMap || TransactionalMap

Figure 7.3: Methods Covered by Query Result Size Limit

7.1.13.1.3 Configuring Query Result Size The query result size limit is configured via the following system
properties.

e hazelcast.query.result.size.limit: Result size limit for query operations on maps. This value defines
the maximum number of returned elements for a single query result. If a query exceeds this number of
elements, a QueryResultSizeExceededException is thrown.

e hazelcast.query.max.local.partition.limit.for.precheck: Maximum value of local partitions to trig-
ger local pre-check for TruePredicate query operations on maps.

Please refer to the System Properties section to see the full descriptions of these properties and how to set them.

7.2. QUEUE 95

7.2 Queue

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being distributed,
Hazelcast distributed queue enables all cluster members to interact with it. Using Hazelcast distributed queue, you
can add an item in one cluster member and remove it from another one.

7.2.1 Getting a Queue and Putting Items

Use the HazelcastInstance getQueue method to get the queue, then use the queue put method to put items into
the queue.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

public class SampleQueue {
public static void main(String[] args) throws Exception {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put (new MyTask());

MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {
//process task
}
}
}

FIFO ordering will apply to all queue operations across the cluster. User objects (such as MyTask in the example
above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items will be copied locally
and iteration will occur locally.

Hazelcast distributed queue uses ItemListener to listen to events which occur when items are added to and
removed from the Queue. Please refer to the Listening for Item Events section for information on how to create an
item listener class and register it.

7.2.2 Creating an Example Queue

The following example code illustrates a distributed queue that connects a producer and consumer.

7.2.2.1 Putting Items on the Queue

Let’s put one integer on the queue every second, 100 integers total.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ProducerMember {
public static void main(String[] args) throws Exception {

96 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
for (int k = 1; k < 100; k++) {
queue.put(k);
System.out.println("Producing: " + k);
Thread.sleep(1000);
}
queue.put(-1);
System.out.println("Producer Finished!");

Producer puts a -1 on the queue to show that the put’s are finished.

7.2.2.2 Taking Items off the Queue

Now, let’s create a Consumer class to take a message from this queue, as shown below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ConsumerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
while (true) {
int item = queue.take();
System.out.println("Consumed: " + item);
if (item == -1) {
queue.put(-1);
break;
}
Thread.sleep(5000);
}
System.out.println("Consumer Finished!");
}
}

As seen in the above example code, Consumer waits 5 seconds before it consumes the next message. It stops once it
receives -1. Also note that Consumer puts -1 back on the queue before the loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be consumed from the
same queue.

7.2.2.3 Balancing the Queue Operations

From the above example code, you can see that an item is produced every second, and consumed every 5 seconds.
Therefore, the consumer keeps growing. To balance the produce/consume operation, let’s start another consumer.
By this way, consumption is distributed to these two consumers, as seen in the sample outputs below.

The second consumer is started. After a while, here is the first consumer output:

Consumed 13
Consumed 15
Consumer 17

7.2. QUEUE 97

Here is the second consumer output:

Consumed 14
Consumed 16
Consumer 18

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the queue bottlenecks.
In this case, be aware that the order of the messages sent to different queues is not guaranteed. Since in most cases
strict ordering is not important, a list of queues is a good solution.

! NOTE: The items are taken from the queue in the same order they were put on the queue. However, if
there is more than one consumer, this order is not guaranteed.

7.2.2.4 TItemIDs When Offering Items

Hazelcast gives an itemId for each item you offer, which is an incrementing sequence identification for the queue
items. You should consider the following to understand the itemId assignment behavior:

e When a Hazelcast member with a queue, that is configured to have at least one backup, is restarted, the
itemId assignment resumes from the last known highest itemId before the restart; itemId assignment does
not start from the beginning for the new items.

e When the whole cluster is restarted, the same behavior explained in the above consideration applies if your
queue has a persistent data store (QueueStore). If the queue has QueueStore, the itemId for the new items
are given starting from the highest itemId found in the IDs returned by the method loadAllKeys. If the
method loadAllKeys does not return anything, the itemIds will started from the beginning after a cluster
restart.

e The above two considerations mean there will be no duplicated itemIds in the memory or in the persistent
data store.

7.2.3 Setting a Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more items can be put
into the queue until some items are taken out.

To turn a Hazelcast distributed queue into a bounded queue, set the capacity limit with the max-size property.
You can set the max-size property in the configuration, as shown below. max-size specifies the maximum size of
the queue. Once the queue size reaches this value, put operations will be blocked until the queue size goes below
max-size, which happens when a consumer removes items from the queue.

Let’s set 10 as the maximum size of our example queue in Creating an Example Queue.
<hazelcast>

<queue name='"queue'>
<max-size>10</max-size>
</queue>

</hazelcast>

When the producer is started, 10 items are put into the queue and then the queue will not allow more put operations.
When the consumer is started, it will remove items from the queue. This means that the producer can put more
items into the queue until there are 10 items in the queue again, at which point put operation again become blocked.

But in this example code, the producer is 5 times faster than the consumer. It will effectively always be waiting for
the consumer to remove items before it can put more on the queue. For this example code, if maximum throughput
was the goal, it would be a good option to start multiple consumers to prevent the queue from filling up.

98 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.2.4 Queueing with Persistent Datastore

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore using the interface
QueueStore. If queue store is enabled, each item added to the queue will also be stored at the configured queue
store. When the number of items in the queue exceeds the memory limit, the subsequent items are persisted in the
queue store, they are not stored in the queue memory.

The QueueStore interface enables you to store, load, and delete queue items with methods like store, storeAll,
load and delete. The following example class includes all of the QueueStore methods.

public class TheQueueStore implements QueueStore<Item> {
@0verride
public void delete(Long key) {
System.out.println("delete");
}

©@0verride
public void store(Long key, Item value) {
System.out.println("store");

}

O@0verride

public void storeAll(Map<Long, Item> map) {
System.out.println("store all");

}

@0verride

public void deleteAll(Collection<Long> keys) {
System.out.println("deleteAll");

}

@0verride

public Item load(Long key) {
System.out.println("load");
return null;

©@0verride

public Map<Long, Item> loadAll(Collection<Long> keys) {
System.out.println("loadAll");
return null;

@0verride

public Set<Long> loadAllKeys() {
System.out.println("loadAllKeys") ;
return null;

}
Item must be serializable. Following is an example queue store configuration.

<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class—name>
<properties>
<property name="binary">false</property>
<property name="memory-limit">1000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

7.2. QUEUE 99
Let’s explain the queue store properties.

e Binary: By default, Hazelcast stores the queue items in serialized form, and before it inserts the queue items
into datastore, it deserializes them. But if you will not reach the queue store from an external application,
you might prefer that the items be inserted in binary form. Do this by setting the binary property to true:
then you can get rid of the deserialization step, which is a performance optimization. The binary property is
false by default.

e Memory Limit: This is the number of items after which Hazelcast will store items only to datastore. For
example, if the memory limit is 1000, then the 1001st item will be put only to datastore. This feature is
useful when you want to avoid out-of-memory conditions. If you want to always use memory, you can set it
to Integer .MAX_VALUE. The default number for memory-1limit is 1000.

e Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load is the size
of these bulks. The default value of bulk-load is 250.

7.2.5 Configuring Queue

The following are example queue configurations including the QueueStore configuration which is explained in the
Queueing with Persistent Datastore section.

Declarative:

<queue name="default">
<max-size>0</max-size>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<empty-queue-ttl>-1</empty-queue-ttl>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
<item-listeners>
</queue>
<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-1limit">10000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

Programmatic:

Config config = new Config();
QueueConfig queueConfig = config.getQueueConfig();
queueConfig.setName("MyQueue").setBackupCount("1")
.setMaxSize("0").setStatisticsEnabled("true");
queueConfig.getQueueStoreConfig()
.setEnabled ("true")
.setClassName("com.hazelcast.QueueStoreImpl")
.setProperty("binary", "false");

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a cluster member
with a queue goes down, another member having the backup of that queue will continue. Therefore, no items
are lost. You can define the number of synchronous backups for a queue using the backup-count element in the

100 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

declarative configuration. A queue can also have asynchronous backups: you can define the number of asynchronous
backups using the async-backup-count element.

To set the maximum size of the queue, use the max-size element. To purge unused or empty queues after a
period of time, use the empty-queue-ttl element. If you define a value (time in seconds) for the empty-queue-ttl
element, then your queue will be destroyed if it stays empty or unused for the time you give.

The following are the full list of elements with their descriptions.

e max-size: Maximum number of items in the Queue.

e backup-count: Number of synchronous backups. Queue is a non-partitioned data structure, so all entries of
a Queue resides in one partition. When this parameter is ‘1’, it means there will be 1 backup of that Queue
in another member in the cluster. When it is ‘2’, 2 members will have the backup.

e async-backup-count: Number of asynchronous backups.

e empty-queue-ttl: Used to purge unused or empty queues. If you define a value (time in seconds) for this
element, then your queue will be destroyed if it stays empty or unused for that time.

e item-listeners: Lets you add listeners (listener classes) for the queue items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local node (member).

e queue-store: Includes the queue store factory class name and the properties binary, memory limit and bulk
load. Please refer to Queueing with Persistent Datastore.

e statistics-enabled: If set to true, you can retrieve statistics for this Queue using the method
getLocalQueueStats().

7.3 MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just like any other
distributed data structure implementation in Hazelcast, MultiMap is distributed and thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method signatures. It
supports most features of Hazelcast Map except for indexing, predicates and MapLoader/MapStore. Yet, like
Hazelcast Map, entries are almost evenly distributed onto all cluster members. When a new member joins the
cluster, the same ownership logic used in the distributed map applies.

7.3.1 Getting a MultiMap and Putting an Entry

The following example creates a MultiMap and puts items into it. Use the HazelcastInstance getMultiMap method
to get the MultiMap, then use the MultiMap put method to put an entry into the MultiMap.

public class PutMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String , String > map = hazelcastInstance.getMultiMap("map");

map.put("a", "1");
map.put("a", "2");
map.put("b", "3");
System.out.println("PutMember:Done");

Now let’s print the entries in this MultiMap.

public class PrintMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

7.3. MULTIMAP 101

MultiMap <String, String > map = hazelcastInstance.getMultiMap("map");
for (String key : map.keySet()){

Collection <String > values = map.get(key);

System.out.println("%s -> %s\n",key, values);

}

After you run the first code sample, run the PrintMember sample. You will see the key a has two values, as shown
below.

b -> [3]
a —> [2, 1]

Hazelcast MultiMap uses EntryListener to listen to events which occur when entries are added to, updated in or
removed from the MultiMap. Please refer to the Listening for MultiMap Events section for information on how to
create an entry listener class and register it.

7.3.2 Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. You configure the collection
type with the valueCollectionType parameter. If you choose Set, duplicate and null values are not allowed in
your collection and ordering is irrelevant. If you choose List, ordering is relevant and your collection can include
duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you enable
statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

. NOTE: Currently, eviction is not supported for the MultiMap data structure.
The following are the example MultiMap configurations.

Declarative:

<hazelcast>
<multimap name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<value-collection-type>SET</value-collection-type>
<entry-listeners>
<entry-listener include-value="false" local="false">
com.hazelcast.examples.EntryListener
</entry-listener>
</entry-listeners>
</map>
</hazelcast>

Programmatic:

MultiMapConfig mmConfig = new MultiMapConfig();
mmConfig.setName("default");

mmConfig.setBackupCount("0").setAsyncBackupCount("1");

mmConfig.setValueCollectionType("SET");

The following are the configuration elements and their descriptions:

102

CHAPTER 7. DISTRIBUTED DATA STRUCTURES

backup-count: Defines the number of asynchronous backups. For example, if it is set to 1, backup of a
partition will be placed on 1 other member. If it is 2, it will be placed on 2 other members.
async-backup-count: The number of synchronous backups. Behavior is the same as that of the backup-count
element.

statistics-enabled: You can retrieve some statistics like owned entry count, backup entry count, last
update time, locked entry count by setting this parameter’s value as “true”. The method for retrieving the
statistics is getLocalMultiMapStats().

value-collection-type: Type of the value collection. It can be Set or List.

entry-listeners: Lets you add listeners (listener classes) for the map entries. You can also set the attribute
include-value to true if you want the item event to contain the entry values, and you can set local to true if
you want to listen to the entries on the local node.

7.4 Set

Hazelcast Set is a distributed and concurrent implementation of java.util.Set.

Hazelcast Set does not allow duplicate elements.

Hazelcast Set does not preserve the order of elements.

Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set will live on one single
partition in that member.

Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives on a single
partition, storing large amount of data on a single set may cause memory pressure. Therefore, you should
use multiple sets to store large amount of data; this way, all the sets will be spread across the cluster, hence
sharing the load.

A backup of Hazelcast Set is stored on a partition of another member in the cluster so that data is not lost in
the event of a primary member failure.

All items are copied to the local member and iteration occurs locally.

The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as opposed to
java.util.HashSet.

7.4.1 Getting a Set and Putting Items

Use the HazelcastInstance getSet method to get the Set, then use the set put method to put items into the Set.

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Set<Price> set = hazelcastInstance.getSet("IBM-Quote-History");
set.add(new Price(10, timel));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, timed));
V2P
Iterator<Price> iterator = set.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();
//analyze

}

Hazelcast Set uses ItemListener to listen to events that occur when items are added to and removed from the Set.
Please refer to the Listening for Item Events section for information on how to create an item listener class and
register it.

7.5. LIST 103

7.4.2 Configuring Set

The following are the example set configurations.

Declarative:

<set name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
<item-listeners>
</set>

Programmatic:

Config config = new Config();

CollectionConfig collectionSet = config.getCollectionConfig();

collectionSet.setName("MySet").setBackupCount("1")
.setMaxSize("10");

Set configuration has the following elements.

e statistics-enabled: True (default) if statistics gathering is enabled on the set, false otherwise.

e backup-count: Count of synchronous backups. Set is a non-partitioned data structure, so all entries of a Set
reside in one partition. When this parameter is ‘1’, it means there will be 1 backup of that Set in another
member in the cluster. When it is ‘2’; 2 members will have the backup.

e async-backup-count: Count of asynchronous backups.

e max-size: The maximum number of entries for this Set.

e item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attributes
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local member.

7.5 List

Hazelcast List is similar to Hazelcast Set, but Hazelcast List also allows duplicate elements.

Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

Hazelcast List is a non-partitioned data structure where values and each backup are represented by their own
single partition.

Hazelcast List cannot be scaled beyond the capacity of a single machine.

All items are copied to local and iteration occurs locally.

7.5.1 Getting a List and Putting Items

Use the HazelcastInstance getList method to get the list, then use the list put method to put items into the List.

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

104 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

List<Price> list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11 ;
list.add(new Price(12
list.add(new Price(11
list.add(new Price(12

)
)

)

N
N

>

Y/
Iterator<Price> iterator = list.iterator();
while (iterator.hasNext()) {

Price price = iterator.next();

//analyze
}

Hazelcast List uses ItemListener to listen to events which occur when items are added to and removed from the
List. Please refer to the Listening for Item Events section for information on how to create an item listener class
and register it.

7.5.2 Configuring List

The following are example list configurations.

Declarative:

<list name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
</item-listeners>
</list>

Programmatic:

Config config = new Config();

CollectionConfig collectionlList = config.getCollectionConfig();

collectionList.setName("MyList").setBackupCount("1")
.setMaxSize("10");

List configuration has the following elements.

e statistics-enabled: True (default) if statistics gathering is enabled on the list, false otherwise.

e backup-count: Number of synchronous backups. List is a non-partitioned data structure, so all entries of a
List reside in one partition. When this parameter is ‘1’, there will be 1 backup of that List in another member
in the cluster. When it is ‘2’, 2 members will have the backup.

e async-backup-count: Number of asynchronous backups.

e max-size: The maximum number of entries for this List.

e item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set the attribute
local to true if you want to listen the items on the local member.

7.6. RINGBUFFER 105

7.6 Ringbuffer

Hazelcast Ringbuffer is a distributed data structure that stores its data in a ring-like structure. You can think of it
as a circular array with a given capacity. Each Ringbuffer has a tail and a head. The tail is where the items are
added and the head is where the items are overwritten or expired. You can reach each element in a Ringbuffer
using a sequence ID, which is mapped to the elements between the head and tail (inclusive) of the Ringbuffer.

7.6.1 Getting a Ringbuffer and Reading Items

Reading from Ringbuffer is simple: get the Ringbuffer with the HazelcastInstance getRingbuffer method, get its
current head with the headSequence method, and start reading. Use the method readOne to return the item at
the given sequence; readOne blocks if no item is available. To read the next item, increment the sequence by one.

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true)q{
String item = ringbuffer.readOne(sequence);
sequence++;
. process item

By exposing the sequence, you can now move the item from the Ringbuffer as long as the item is still available. If
the item is not available any longer, StaleSequenceException is thrown.

7.6.2 Adding Items to a Ringbuffer

Adding an item to a Ringbuffer is also easy with the Ringbuffer add method:

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
ringbuffer.add("someitem")

Use the method add to return the sequence of the inserted item; the sequence value will always be unique. You can
use this as a very cheap way of generating unique IDs if you are already using Ringbuffer.

7.6.3 IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike IQueue, Ringbuffer
does not remove the items, it only reads items using a certain position. There are many advantages to this approach:

e The same item can be read multiple times by the same thread; this is useful for realizing semantics of
read-at-least-once or read-at-most-once.

e The same item can be read by multiple threads. Normally you could use an IQueue per thread for the same
semantic, but thi