Hazelcast Documentation

version 1.9.4

Hazelcast Documentation: version 1.9.4

Publication date 6 September 2011
Copyright © 2011 Hazel Bilisim Ltd. Sti.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in al copies.

Table of Contents

[gL oo (B 1o o H PP PP PRSPPI 1
2. DiStrDULEA DEEA SITUCLUIESeeiiti ettt ettt ettt e e ettt e e et et e ettt e et e et t e e e ee bt e e e esbaneeeesbnaeeeenbnnaeees 2
2.1, DiStriDULEO QUEUE ...ttt et e ettt ettt e et e e et e e et e e et e e an e e et e e ea e ean e 2

2.2, DiISIITDULEA TOPIC .. eett ettt ettt ettt ettt ettt et e et et e e et e e e et et e et e abe e et e eaa e eeenaes 4

2.3, DISIITDULEA MBI ...ttt ettt ettt et e it e et et e et e b et n e e e 4
2,31 BACKUPDS ...ttt ettt et e s 5

2.3.2. EVICHION ettt et ettt et e et e e e e a e a e et e aee 6

2.3.3. PEISISIENCE ... iiiti ettt et e e e et e e et e e eeen e e e enb e aee 7

234, QUETY ettt et ettt raa s 9

235, INEBI CBENE ...ttt 11

2.3.6. ENIY SEALISHICS . ovvvneeieiti ettt ettt ettt e et e ettt e s 12

2.4, DiStriDUIE IMUITIMIBID ...ttt e et e ettt e e e e et e e et et e e e eebe e eeeees 13

2.5, DISIIDULEA SEL ...ttt ettt ettt 13

2.6, DISIITDULEA LISE ... eeetieeeeit ettt ettt ettt ettt et e et et e et et e et et e e e ana e e enaans 13

2.7, DISIIDULEA LOCK ...ttt et ettt ettt e et e e e et r e e e et e e e e naa e eeennes 14

2.8. DISIIDULEA BVENLS ...ttt ettt e et e et et e e et et e e e e et e e e e eaa s 14

R B L v A 11 11 TP 16
4. MONITONNG WITN JMX Lottt et ettt et et e b et e et e e et et r e e e et e e e e raa e e ennes 19
O U (= U 1]) (= ST TPPPTTR 21
DL, ClUSIEr INEEITACE ..t e ettt ettt e et e e et et e e e e et e e e enbe e eeene 21

5.2, ClUSIEr-Wide [0 GENEIEIONvueeeiiti ettt ettt e et e et e e et e e et et e e e e et e e e eeeanes 21

RS RS 1o/ O 1T o | T PP SPPPTPR 21

B. TTANSACHIONSeiett e eeettt ettt ettt ettt e e ettt e ettt oo e et et e e et e te e e e et he e e e et ha e e et e be e et e e bh e e e ee b e e e e et e e e entnaaeee 22
6.1, TranSaCtion INEEITACE ... coeue ettt ettt e et e e e b e e enees 22

6.2, J2EE INTEOIALION ...ttt ettt ettt e ettt et et e e et e e e 22
6.2.1. Resource Adapter CONfIQUIALIONooeuuuiieii ettt eeeeans 23

6.2.2. Sample Glassfish v3 Web Application COnfigurationoeeeeuiiieeiiiiineiiiiee e 24

6.2.3. Sample JBoss Web Application Configurationcceuuiieiiiriineeiiiie e 24

7. DiIStITDULE EXECULOT SEIVICE .. .eeitieeiiiti ettt sttt ettt ettt e et et e et e e e e et et r e e e e nbn e e e eaaneeennans 25
7.1, DiStriDULEA EXECULIONeetteeeiit ettt ettt e ettt e ettt e e et et e e et et e e e ennbaeeeees 25

7.2. EXECULION CBNCAIIBLIIONeiiiii ettt et e et et e e et et e e e eaa s 26

7.3. EXECULION CallDACKoeeeieiiii ettt 27

8. Http Session Clustering With HazelCaStWIM ... ettt e e e 29
9. WAN REPIICELION ...ttt ettt ettt ettt ettt ettt et e e et e et e et e et e et e tbaneeena e e e eneas 31
O =0 Tot oY/ o 1T o o H PO TOPPPTRPPPPIN 33
O o1 110 ¥ = (o E TP PPPRR PN 35
11.1. Configuring Hazelcast for full TCP/IP CIUSIENcoouuiieiii e 38

11.2. Configuring Hazelcast for EC2 AULO DISCOVEIYuuiiiiiiiieiiii et e ettt e ettt e et eeeat e e enaaeeees 39

11.3. Creating SEParate CIUSLE'Scouuu it ettt ettt et e e et e et et e et et e e e et r e e eest e e e eereaeeeentnaeeees 39

11.4. Specifying NEWOIK INTEITACES ... ceiie et e e e eeees 40

11.5. Network Partitioning (Split-Brain SyNAromMe)oceeureieiiiiie e e e 40

11.6. WildCard CONFIQUIBLIONceuueeeeiii ettt sttt et ettt ettt e e et e et et e e e et e e e ena e e eenanas 42

11.7. Advanced Configuration PrOPEITIESouuuu ittt et e e e e e e e e eeaes 42

11.8. LOQQiNG CONFIGQUIALIONuueieiitee ettt ettt ettt e ettt e e e ettt e et et s e et e bt e e e e ebt e eeeeraaeeeens 44

12. Hibernate SeCond LEVEl CaChEuuiiiiiii ettt e e e et e e e 46
S o aTo I 110 e = (o] o T PPN 48
i O 1= o | ST RTSPPPTRRSPPIN 51
B N ()Y O = o | PSP TPP PPN 51
O N = V7= W O 1= o | PP P PR UPPPT 52

T4.1.2. CSharP ClIENT ..ottt e et et et e et e et e ra e e enaans 52

14.2. MEMCACNE CLIENMLieit ettt e et e et e e et e e et et e e e e et e e e eeraes 52

R A =S A O 1= o | PSPPSR 52

T 1= 007 | SO PPPR P 54
15.1. INENAIS 10 TRIEAOSeuiieiei ettt e et e et e e e et e e e e aa s 54

15.2. INtErNals 2: SE@lIZALIONuuiieii e 56

Hazel cast Documentation

15.3. Internals 3: Cluster MemMBErShiDuiiiii e e eaa s 57
15.4. Internals 4: DIiStribDULEd MEDuiieniiiii e e e e e e e e e e e e e e e e aeaas 58
T VT ES o s =TS o 11 PP 60
16.1. COMMON GOLCNESiviiiiiii ettt et e e e e e e e et et e e et e e e et e et e ea e et eanns 60
T 1= o1 o T O 1 = 60
16.3. PlanN@d FEAIUMNEScuiiveiii ittt e et et et e et et e e e e e e et e et e et e e e e e e e et e et e et e s e ebn e et eebaeennns 62
R = e T S ol N Lo (P 62

List of Tables

11.1. Properties Table

Chapter 1. Introduction

Hazelcast is a clustering and highly scalable data distribution platform for Java. Hazelcast helps architects and devel opers
to easily design and develop faster, highly scalable and reliable applications for their businesses.

» Didtributed implementationsof j ava. uti | . { Queue, Set, List, Mp}
 Distributed implementation of j ava. uti | . concurrent. Execut or Servi ce
* Distributed implementation of j ava. uti | . concurrency. | ocks. Lock

* Distributed Topi ¢ for publish/subscribe messaging

 Transaction support and J2EE container integration via JCA

+ Distributed listeners and events

* Support for cluster info and membership events

e Dynamic HTTP session clustering

» Dynamic clustering

» Dynamic scaling to hundreds of servers

» Dynamic partitioning with backups

» Dynamic fail-over

* Super simpleto use; include asingle jar

 Super fast; thousands of operations per sec.

» Super small; lessthan aMB

* Super efficient; very niceto CPU and RAM

Toinstall Hazelcast:

» Download hazelcast-_version_.zip from www.hazel cast.com [http://www.hazel cast.com]
* Unzip hazelcast-_version_.zipfile

e Add hazelcast.jar file into your classpath

Hazelcast is pure Java. IV Msthat are running Hazel cast will dynamically cluster. Although by default Hazelcast will use
multicast for discovery, it can aso be configured to only use TCP/IP for environments where multicast is not available
or preferred (Click here for more info). Communication among cluster membersis always TCP/IP with Java NIO
beauty. Default configuration comes with 1 backup so if one node fails, no datawill be lost. It isas simple as using
java.util.{Queue, Set, List, Map}.Justaddthehazelcast.jar into your classpath and start coding.

http://www.hazelcast.com
http://www.hazelcast.com

Chapter 2. Distributed Data Structures

Common Features of all Hazelcast Data Structures:

« Datain the cluster is almost evenly distributed (partitioned) across al nodes. So each node carries ~ (1/n * total-data) +
backups, n being the number of nodesin the cluster.

* If amember goes down, its backup replicathat also holds the same data, will dynamically redistribute the data
including the ownership and locks on them to remaining live nodes. As aresult, no datawill get lost.

» When a new node joins the cluster, new node takes ownership(responsibility) and load of -some- of the entire data
in the cluster. Eventually the new node will carry amost (1/n * total-data) + backups and becomes the new partition
reducing the load on others.

» Thereisno single cluster master or something that can cause single point of failure. Every node in the cluster has equal
rights and responsibilities. No-one is superior. And no dependency on external 'server' or 'master' kind of concept.

Here is how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and how you can listen
for instance eventsto get notified when an instance is created or destroyed.

inmport java.util.Collection;

i mport com hazel cast. core. Hazel cast;

i mport com hazel cast. core. | nstance;

i mport com hazel cast. core. | nstanceEvent;
import com hazel cast. core. | nstanceli st ener;

public class Sanple inplenents |nstancelistener {
public static void main(String[] args) {
Sanpl e sanpl e = new Sanpl e();

Hazel cast . addl nst ancelLi st ener (sanpl e) ;

Col | ecti on<l nstance> i nstances = Hazel cast.getl nstances();
for (Instance instance : instances) {
System out. println(instance. getlnstanceType() + "," + instance.getld());
}
}

public void instanceCreated(lnstanceEvent event) {
I nstance instance = event.getlnstance();
Systemout.println("Created " + instance.getlnstanceType() + "," + instance.getld());

}

public void instanceDestroyed(lnstanceEvent event) {
I nstance instance = event.getlnstance();
System out. println("Destroyed " + instance.getlnstanceType() + "," + instance.getld());

2.1. Distributed Queue

Hazelcast distributed queue is an implementation of j ava. uti | . concurrent. Bl ocki ngQueue.

import com hazel cast. core. Hazel cast;
inmport java.util.concurrent. Bl ocki ngQueue;
inmport java.util.concurrent. TineUnit;

Bl ocki ngQueue<MyTask> q = Hazel cast . get Queue("t asks");

g. put (new MyTask());
M/Task task = q.take();

bool ean offered = q.of fer(new MyTask(), 10, Ti meUnit. SECONDS);
task = g.poll (5, TinmeUnit.SECONDS);

if (task !'=null) {

/| process task

}

Distributed Data Structures

If you have 10 million tasks in your "tasks' queue and you are running that code over 10 JVMs (or servers), then each
server carries 1 million task objects (plus backups). FIFO ordering will apply to all queue operations cluster-wide. User
objects (such as My Task in the example above), that are (en/de)queued haveto be Ser i al i zabl e. Maximum capacity
per VM and the TTL (Timeto Live) for a queue can be configured as shown in the example below.

<hazel cast >

<queue nane="tasks">
<l--
Maxi mum si ze of the queue. Wien a JVM s |ocal queue size reaches the maxi mum
all put/offer operations will get blocked until the queue size
of the JVM goes down bel ow t he maxi mum
Any integer between O and Integer. MAX VALUE. O neans | nteger. MVAX VALUE. Default is O
==
<mex- si ze- per - j vim>10000</ max- si ze- per-j v

<l--
Maxi mum nunber of seconds for each itemto stay in the queue. Itens that are
not consuned in <tine-to-live-seconds> will get automatically evicted fromthe queue
Any integer between 0 and Integer. MAX VALUE. O neans infinite. Default is O
==
<time-to-live-seconds>0</tine-to-|ive-seconds>
</ queue>
</ hazel cast >

Asof version 1.9.3, distributed queues are backed by distributed maps. Thus, queues can have custom backup counts and
persistent storage. Hazelcast will generate cluster-wide unique id for each element in the queue. Sample configuration:

<hazel cast >

<queue nanme="tasks">

<l--
Maxi mum si ze of the queue. When a JVM s |ocal queue size reaches the maxi num
all put/offer operations will get blocked until the queue size
of the JVM goes down bel ow t he maxi mum
Any integer between O and | nteger. VAX VALUE. 0 neans |nteger. VAX VALUE. Default is O

->
<max- si ze- per - j vim>10000</ max- si ze- per-j vip

<l--
Name of the map configuration that will be used for the backing distributed
map for this queue
->
<backi ng- map- r ef >queue- map</ backi ng- map-r ef >
</ queue>

<map nane="queue- map">
<backup- count >1</ backup- count >
<map- store enabl ed="true">
<cl ass- nane>com your, conpany. st or age. DBMapSt or e</ cl ass- nane>
<write-del ay- seconds>0</wite-del ay- seconds>

</ map- st or e>

</ map>
</ hazel cast >

If the backing map has no map- st or e defined then your distributed queue will be in-memory only. If the backing map
has amap- st or e defined then Hazelcast will call your MapSt or e implementation to persist queue elements. Even

if you reboot your cluster Hazelcast will rebuild the queue with its content. When implementing a MapSt or e for the
backing map, note that type of the key isaways Long and values are the elements you place into the queue. So make
sure MapSt or e. | oadAl | Keys returns Set <Long> for instance.

Distributed Data Structures

Tolearn about wildcard configuration feature, see Wildcard Configuration page.

2.2. Distributed Topic

Hazelcast provides distribution mechanism for publishing messages that are delivered to multiple subscribers which is
also known as publish/subscribe (pub/sub) messaging model. Publish and subscriptions are cluster-wide. When a member
subscribes for atopic, it is actually registering for messages published by any member in the cluster, including the new
members joined after you added the listener. Messages are ordered, meaning, listeners(subscribers) will process the
messages in the order they are actually published. If cluster member M publishes messages m1, m2, m3...mnto atopic T,
then Hazel cast makes sure that all of the subscribers of topic T will receive and process m1, m2, m3...mnin order.

i mport com hazel cast. core. Topi c;
import com hazel cast. core. Hazel cast;
import com hazel cast. core. Messageli st ener;

public class Sanple inplenents Messageli stener {

public static void main(String[] args) {
Sanpl e sanpl e = new Sanpl e();
Topi ¢ topic = Hazel cast.get Topic ("defaul t");
t opi c. addMessageli st ener (sanpl e) ;
t opi c. publi sh ("ny-nmessage-object");
}

public void onMessage(Qbj ect nsg) {
System out. println("Message received = " + nsQ);

}

Tolearn about wildcard configuration feature, see Wildcard Configuration page.

2.3. Distributed Map

Just like queue and set, Hazel cast will partition your map entries; and almost evenly distribute onto all Hazel cast
members. Distributed maps have 1 backup (replica-count) by default so that if a member goes down, we don't lose data.
Backup operations are synchronous so when amap. put (key, val ue) returns, it isguaranteed that the entry is
replicated to one other node. For the reads, it is also guaranteed that map. get (key) returnsthe latest value of the entry.
Consistency is strictly enforced.

i mport com hazel cast. core. Hazel cast;
import java.util.Map;
inmport java.util.Collection;

Map<String, Custoner> napCustoners = Hazel cast.get Map("custoners");

mapCust oners. put ("1", new Custoner("Joe", "Smth"));
mapCust oners. put ("2", new Custoner("Ali", "Selanl));
mapCust oners. put (“3", new Custoner("Avi", "Noyan"));

Col | ecti on<Cust onmer > col Cust oners = mapCust oners. val ues();
for (Customer custonmer : col Custoners) {
/| process custoner

}

Hazel cast. get Map() actually returnscom hazel cast . core. | Map which

extendsj ava. util . concurrent. Concurrent Map interface. So methods like

Concur rent Map. put | f Absent (key, val ue) and Concurr ent Map. r epl ace(key, val ue) can beused on
distributed map as shown in the example below.

Distributed Data Structures

import com hazel cast. core. Hazel cast;
inmport java.util.concurrent. Concurrent Map;

Cust oner getCustoner (String id) {
Concurrent Map<String, Custoner> map = Hazel cast. get Map("“custoners");
Custoner custoner = map.get(id);
if (custoner == null) {
custonmer = new Custoner (id);
cust oner map. put | f Absent (i d, custoner);

}

return custoner;

}

publ i ¢ bool ean updat eCust oner (Custoner custoner) {
Concurrent Map<String, Custoner> map = Hazel cast. get Map("“custoners");
return (map.replace(custoner.getld(), customer) != null);

}

publ i c bool ean renoveCust oner (Custoner custoner) {
Concurrent Map<String, Custoner> map = Hazel cast. get Map("custoners");
return map.renove(custoner.getld(), customer));

All Concur r ent Map operations such as put and r enove might wait if the key islocked by another thread
in the local or remote JVM, but they will eventually return with success. Concur r ent Map operations never
throwj ava. uti | . Concurrent Modi fi cati onExcepti on.

Also see:

* Distributed Map internals.

» Data Affinity.

» Map Configuration with wildcards..

2.3.1. Backups

Hazelcast will distribute map entries onto multiple JVMs (cluster members). Each VM holds some portion of the data
but we don't want to lose data when a member JVM crashes. To provide data-safety, Hazel cast alows you to specify the
number of backup copies you want to have. That way data on a VM will be synchronously copied onto other JVM(s).
By default, Hazelcast will have one backup copy. Backup operations aresynchronous. When amap. put (key, val ue)
call returns, it means entry is updated on the both owner and backup JVMs. If backup count >= 1, then each member
will carry both owned entries and backup copies of other member(s). So for the map. get (key) call, it is possible that
calling member has backup copy of that key but by default, map. get (key) will always read the value from the actual
owner of the key for consistency. It is possible to enable backup reads by changing the configuration. Enabling backup
reads will give you greater performance.

Distributed Data Structures

<hazel cast >

<map nane="defaul t">
<l--
Nunmber of backups. If 1 is set as the backup-count for exanple,
then all entries of the map will be copied to another JVM for

fail-safety. Valid nunbers are 0 (no backup), 1, 2, 3.
===

<backup- count >1</ backup- count >

<I--
Can we read the | ocal backup entries? Default value is false for
strong consi stency. Being able to read backup data will give you
greater performance.

===

<r ead- backup- dat a>f al se</r ead- backup- dat a>

</ map>
</ hazel cast >

Q. If I have only one backup-copy then, will | always lose data if two JVMs crash at the same time?

Not always. Cluster member list is the same on each member. Hazelcast will backup each member's data onto next
membersin the member list. Let say you have a cluster with members A, B, C, D, E, F, G and the backup-count is 1, then
Hazelcast will copy A's data onto B, B's data onto C... and G's dataonto A. If A and B crashes at the same time then you
will lose data because B was the backup of A. But A and C crashes at the same time, you won't lose any data because B
was the backup of A and D was the backup of C. So you will only losethat ifsequent i al - JVM cr ash- count >
backup- count.

2.3.2. Eviction

Hazel cast also supports policy based eviction for distributed map. Currently supported eviction policies are LRU (Least
Recently Used) and LFU (Least Frequently Used). This feature enables Hazel cast to be used as a distributed cache.
Ifti me-to-1ive-seconds isnotQthenentriesolderthanti me-t o-1i ve-seconds valuewill get evicted,
regardless of the eviction policy set. Here is a sample configuration for eviction:

Distributed Data Structures

<hazel cast >

<map nane="defaul t">

<l--
Nunber of backups. If 1 is set as the backup-count for exanple,
then all entries of the map will be copied to another JVM for
fail-safety. Valid nunbers are 0 (no backup), 1, 2, 3.

-->

<backup- count >1</ backup- count >

<l--
Maxi mum nunber of seconds for each entry to stay in the map. Entries that are
ol der than <tinme-to-live-seconds> and not updated for <tine-to-live-seconds>
will get automatically evicted fromthe map.
Any integer between 0 and Integer. MAX_ VALUE. O neans infinite. Default is O.
-->
<time-to-live-seconds>0</tine-to-|ive-seconds>

<I--
Maxi mum nunber of seconds for each entry to stay idle in the map. Entries that are
idl e(not touched) for nore than <max-idl e-seconds> will get
automatically evicted fromthe map.
Entry is touched if get, put or containsKey is called.
Any integer between O and | nteger. VAX VALUE.
0 neans infinite. Default is O.
-->

<max- i dl e- seconds>0</ max-i dl e- seconds>

<I--

Val id val ues are:

NONE (no extra eviction, <tinme-to-live-seconds> may still apply),

LRU (Least Recently Used),

LFU (Least Frequently Used).

NONE is the default.

Regardl ess of the eviction policy used, <tine-to-live-seconds> will still apply.
.,
<evi ction-policy>LRU</eviction-policy>

<I--
Maxi mum si ze of the map. Wen nmax size is reached,
map i s evicted based on the policy defined.
Any integer between 0 and |nteger. MAX_ VALUE. 0 neans
I nt eger. MVAX_VALUE. Default is O.

-->

<max- si ze>5000</ max- si ze>

<I--
When nmax. size is reached, specified percentage of
the map will be evicted. Any integer between 0 and 100.
If 25 is set for exanple, 25%of the entries will
get evi cted.
.,
<evi cti on- per cent age>25</ evi cti on- per cent age>
<I--
Speci fies when eviction will be started. Default value is 3.
So every 3 (+up to 5 for perfornmance reasons) seconds
eviction will be kicked of. Eviction is costly operation, setting
this nunber too | ow, can decrease the performance.
.,
<evi ction-del ay- seconds>3</ evi cti on-del ay- seconds>
</ map>
</ hazel cast >

2.3.3. Persistence

Hazel cast allows you to load and store the distributed map entries from/to a persistent datastore such as relational
database. If aloader implementation is provided, when get (key) iscaled, if the map entry doesn't exist in-memory
then Hazel cast will call your loader implementation to load the entry from a datastore. If a store implementation is
provided, when put (key, val ue) iscalled, Hazelcast will call your store implementation to store the entry into a

Distributed Data Structures

datastore. Hazelcast can call your implementation to store the entries synchronously (write-through) with no-delay or
asynchronously (write-behind) with delay and it is defined by thewr i t e- del ay- seconds value in the configuration.

If it iswrite-through, when the map. put (key, val ue) call returns, you can be sure that

* MapStore. store(key, val ue) issuccessfully called so the entry is persisted.

* In-Memory entry is updated

» In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than Q)
If it iswrite-behind, when the map. put (key, val ue) call returns, you can be sure that

e In-Memory entry is updated

» In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0)
e Theentry ismarked asdi rty sothat after wri t e- del ay- seconds, it can be persisted.

Same behavior goesfor ther enove(key and MapSt or e. del et e(key) . If MapSt or e throws an exception

then the exception will be propagated back to the original put or r enove call inthe form of Runt i neExcept i on.
When write-through is used, Hazelcast will call MapSt or e. st or e(key, val ue) and MapSt or e. del et e(key)
for each entry update. When write-behind is used, Hazelcast will callMapSt or e. st or e(nap) , and

MapSt or e. del et e(col | ecti on) todo all writesin asingle call. Also note that your MapStore or MaplL oader
implementation should not use Hazel cast Map/Queue/M ultiMap/List/Set operations. Y our implementation should only
work with your data store. Otherwise you may get into deadlock situations.

Hereis a sample configuration:

<hazel cast >
<map nanme="defaul t">

<map-store enabl ed="true">
<l--
Nane of the class inplenenting MapLoader and/or MapStore.
The cl ass shoul d i npl enent at | east of these interfaces and
contai n no-argunent constructor. Note that the inner classes are not supported.
-->
<cl ass- nanme>com hazel cast . exanpl es. Dummy St or e</ cl ass- name>
<l--
Nunmber of seconds to delay to call the MapStore. store(key, value).
If the value is zero then it is wite-through so MapStore. store(key, val ue)
will be called as soon as the entry is updated.
O herwise it is wite-behind so updates will be stored after wite-del ay-seconds
val ue by calling Hazel cast.storeAl |l (map). Default value is O.
-->
<write-del ay- seconds>0</write-del ay- seconds>
</ map- st or e>
</ map>
</ hazel cast >

Initialization on startup:

Asof 1.9.3 MapLoader hasthe new MapLoader . | oadAl | Keys API. It isused for pre-populating the in-memory
map when the map is first touched/used. If MapLoader . | oadAl | Keys returns NULL then nothing will be loaded.
Your MapLoader . | oadAl | Keys implementation can return all or some of the keys. Y ou may select and return only
thehot keys, for instance. Also note that this isthe fastest way of pre-populating the map as Hazel cast will optimize the
loading process by having each node loading owned portion of the entries.

Here is MapLoader initialization flow;

1. Whenget Map() first called from any node, initialization starts

Distributed Data Structures

2. Hazelcast will call MapLoader . | oadAl | Keys() to get all your keys on each node
3. Each node will figure out the list of keysit owns
4. Each node will load all its owned keys by calling MapLoader . | oadAl | (keys)

5. Each node putsits owned entries into the map by calling | Map. put Tr ansi ent (key, val ue)

2.3.4. Query

Hazelcast partitions your data and spreads across cluster of servers. You can surely iterate over the map entries and ook
for certain entries you are interested in but thisis not very efficient as you will have to bring entire entry set and iterate
locally. Instead, Hazelcast allows you to run distributed queries on your distributed map.

Let's say you have a"employee' map containing values of Enpl oyee objects:

inmport java.io.Serializable;

public class Enpl oyee inplenments Serializable {
private String nane;
private int age;
private bool ean acti ve;
private doubl e sal ary;

public Enmpl oyee(String nane, int age, boolean live, double price) {
this. name = nane;
this. age = age;
this.active = live;
this.salary = price;

}

publ i c Enmpl oyee() {
}

public String getName() {
return nane;

}
public int getAge() {
return age;

}

public doubl e getSalary() {
return sal ary;

}

public bool ean isActive() {
return active;

}
}

Now you are looking for the employees who are active and with age less than 30. Hazelcast allows you to find these
entries in two different ways:

Distributed SQL Query
Sql Pr edi cat e takesregular SQL where clause. Here is an example:

i nport com hazel cast. core. | Map;
i mport com hazel cast. query. Sqgl Predi cat e;

| Map map = Hazel cast . get Map(" enpl oyee");

Set <Enpl oyee> enpl oyees = (Set <Enpl oyee>) map. val ues(new Sgl Predi cate("active AND age < 30"));

Supported SQL syntax:

Distributed Data Structures

* AND/OR
e <expressi on> AND <expr essi on> AND <expressi on>. ..
e active AND age>30
« active=fal se OR age = 45 OR nane = ' Joe'

e« active AND (age >20 OR sal ary < 60000)

e <expression> = val ue
e age <= 30
* nane ="Joe"
e salary !'= 50000
« BETWEEN
e <attribute> [NOT] BETWEEN <val uel> AND <val ue2>
e« age BETWEEN 20 AND 33 (sane as age >=20 AND age<=33)
e age NOT BETVWEEN 30 AND 40 (sanme as age <30 OR age>40)
* LIKE
e <attribute> [NOT] LIKE 'expression'
%(percentage sign) is placeholder for many characters, _ (underscore) is placeholder for only one character.
e nane LIKE 'Jo% (truefor'Jo€, 'Josh’, "Joseph’ etc.)
e nane LIKE 'Jo_' (truefor'Joe; falsefor 'Josh’)
e nane NOT LIKE 'Jo_ ' (truefor 'Josh’; falsefor 'Joe)
e nane LIKE 'J_s% (truefor 'Josh’, 'Joseph’; false "John', 'Jo€)
* IN
e <attribute> [NOT] IN (vall, val2, ...)
« age IN (20, 30, 40)
e age NOT IN (60, 70)
Examples:
e active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))
« age IN (20, 30, 40) AND sal ary BETWEEN (50000, 80000)
Criteria API

If SQL is not enough or programmable queries are preferred then JPA criterialike API can be used. Here is an example:

10

Distributed Data Structures

import com hazel cast. core. | Map;

import com hazel cast. query. Predi cate;

import com hazel cast. query. Predi cat eBui | der;
import com hazel cast. query. EntryQbj ect ;

| Map map = Hazel cast . get Map("enpl oyee");

EntryCbj ect e = new PredicateBuilder().getEntryQoject();
Predi cate predicate = e.is("active").and(e.get("age").lessThan(30));

Set <Enpl oyee> enpl oyees = (Set <Enpl oyee>) nap. val ues(predicate);

Indexing

Hazelcast distributed queries will run on each member in parallel and only results will return the caller. When a query
runs on a member, Hazel cast will iterate through the entire owned entries and find the matching ones. Can we make this
even faster? Y es by indexing the mostly queried fields. Just like you would do for your database. Of course, indexing will
add overhead for each wr i t e operation but queries will be alot faster. If you are querying your map alot then make sure
to add indexes for most frequently queried fields. So if your act i ve and age < 30 query, for example, isused a
lot then make sure you add index for act i ve and age fields. Hereis how:

| Map i map = Hazel cast . get Map(" enpl oyees");
i map. addl ndex("age", true); /'l ordered, since we have ranged queries for this field
i map. addl ndex("active", false); /'l not ordered, because bool ean field cannot have range

APl | Map. addl ndex(fi el dNane, ordered) isused for adding index. For aeach indexed field, if you have -

ranged- queries such asage>30, age BETWEEN 40 AND 60 then or der ed parameter should bet r ue, otherwise set
it tof al se.

2.3.5. Near Cache
Map entries in Hazelcast are partitioned across the cluster. Imagine that you are reading key k so many timesand k is
owned by another member in your cluster. Each map. get (k) will be aremote operation; lots of network trips. If you
have amap that is read-mostly then you should consider creating aNear Cache for the map so that reads can be much
faster and consume less network traffic. All these benefits don't come free. When using near cache, you should consider
the following issues:
* VM will haveto hold extra cached data so it will increase the memory consumption.
« If invalidation isturned on and entries are updated frequently, then invalidations will be costly.
» Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. Here is a near-cache configuration for amap :

11

Distributed Data Structures

<hazel cast >
<map nane="ny-read-nost!y-map">

<near - cache>
<I--

Entries that

Maxi mum nunber of seconds for each entry to stay in the near cache.
ol der than <tine-to-live-seconds> will get automatically evicted fromthe near
Any integer between 0 and | nteger. MAX VALUE. O neans infinite. Default

===
<tinme-to-live-seconds>0</tinme-to-live-seconds>

<I--
Maxi mum nunber of seconds each entry can stay in the near cache as untouched (not-read).
Entries that are not read (touched) nore than <max-idl e-seconds> val ue will
fromthe near cache.
Any integer between 0 and |nteger. MAX_ VALUE. 0 neans
I nt eger. MVAX_VALUE. Default is O.
-->

<mex-i dl e- seconds>60</ max-i dl e- seconds>

<I--
Val id val ues are:
NONE (no extra eviction, <tine-to-live-seconds> nay still apply),
LRU (Least Recently Used),
LFU (Least Frequently Used).
NONE is the defaul t.

Regardl ess of the eviction policy used, <tine-to-live-seconds> will

===
<evi cti on-pol i cy>LRU</ evi cti on-policy>

<I--
Maxi mum si ze of the near cache. Wien nax size is reached,
cache is evicted based on the policy defined.
Any integer between 0 and |nteger. MAX_VALUE. 0 neans
I nteger. MVAX_VALUE. Default is O.
-->

<mex- si ze>5000</ max- si ze>

<I--

Shoul d the cached entries get evicted if the entries are changed (updated or

true of false. Default is true.
-->

<i nval i dat e- on- change>t rue</i nval i dat e- on- change>
</ near - cache>

</ map>
</ hazel cast >

2.3.6. Entry Statistics

Hazel cast keeps extra information about each map entry such as creationTime, lastUpdateTime, lastAccessTime, number
of hits, version, and this information is exposed to the developer vial Map. get MapEnt ry(key) cal. Hereisan

example:

i nport com hazel cast. core. Hazel cast;
i mport com hazel cast. core. MapEntry;

MapEntry entry = Hazel cast.get Map("quotes").get MapEntry("1");
Systemout.println ("size in nenory : " + entry.getCost();
Systemout.println ("creationTine " entry. getCreationTi me();
Systemout.println ("expirationTi me entry. get ExpirationTi me();
Systemout.println ("nunber of hits : " entry.getH ts();
Systemout.println ("l astAccessedTi ne: " entry. get Last AccessTi ne();
Systemout.println ("lastUpdateTi ne entry. get Last Updat eTi ne() ;
Systemout.println ("version entry. get Version();
Systemout.println ("isValid entry.isValid();
Systemout.println ("key entry. getKey();
Systemout.println ("val ue entry. get Val ue();
Systemout.println ("ol dval ue entry. set Val ue(newal ue) ;

+ 4+ + o+ o+ o+ o+ o+

12

Distributed Data Structures

Tolearn about wildcard configuration feature, see Wildcard Configuration page.

2.4. Distributed MultiMap

Mul ti Map isaspecialized map where you can associate a key with multiple values. Just like any other distributed data
structure implementation in Hazelcast, Mul t i Map is distributed/partitioned and thread-safe.

import com hazel cast. core. Mul ti Map;
import com hazel cast. core. Hazel cast;
inmport java.util.Collection;

/1 a multimap to hold <custonerld, Order> pairs

Ml ti Map<String, Order> mmCustoner Orders = Hazel cast.get Mul ti Map("custoner Orders");
mCust oner Orders. put ("1", new Order ("iPhone", 340));

mCust oner Orders. put ("1", new Order ("MacBook", 1200));

mCust oner Orders. put ("1", new Order ("iPod", 79));

/1 get orders of the custoner with custonerld 1.

Col | ecti on<Order> col Orders = mmCust oner Orders. get ("1");
for (Order order : col Orders) {

/'l process order

}

/'l renmove specific key/value pair
bool ean renpved = mmCust oner Orders. renove(" 1", new Order ("iPhone", 340));

2.5. Distributed Set

Distributed Set is distributed and concurrent implementation of j ava. uti | . Set . Set doesn't allow duplicate elements,
so elements in the set should have proper hashCode and equals methods.

i mport com hazel cast. core. Hazel cast;
import java.util. Set;
inmport java.util.lterator;

java.util.Set set = Hazel cast.getSet("|BM Quote-History");
set.add(new Price(10, tinmel));
set.add(new Price(11, tinme2));
set.add(new Price(12, tinme3));
set.add(new Price(11, tinmed));
.. ..
Iterator it = set.iterator();
while (it.hasNext()) {
Price price = (Price) it.next();
/[anal yze

2.6. Distributed List

Distributed List is very similar to distributed set, but it allows duplicate elements.

13

Distributed Data Structures

import com hazel cast. core. Hazel cast;
inmport java.util.List;
inmport java.util.lterator;

java.util.List list = Hazel cast.getList("|BM Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
l'ist.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

Il ...
Iterator it = list.iterator();
while (it.hasNext()) {
Price price = (Price) it.next();
/] anal yze

2.7. Distributed Lock

i mport com hazel cast. core. Hazel cast;
inmport java.util.concurrent.|ocks. Lock;

Lock | ock = Hazel cast . get Lock(nyLockedObj ect);
I ock. | ock();

try {
/1 do sonething here

} finally {
| ock. unl ock();
}

java.util.concurrent.|ocks. Lock.tryLock() withtimeoutisaso supported. All operations on
the Lock that Hazel cast . get Lock(Qbj ect obj) returns are cluster-wide and Lock behavesjust like
java.util.concurrent.| ock. Reentrant Lock.

if (lock.tryLock (5000, TimeUnit.M LLISECONDS)) ({

try {
/1 do sonme stuff here..

}
finally {

I ock. unl ock();
}

}

Locks are fail-safe. If amember holds alock and some of the members go down, cluster will keep your locks safe and
available. Moreover, when a member leaves the cluster, al the locks acquired by this dead member will be removed so
that these locks can be available for live membersimmediately.

2.8. Distributed Events

Hazelcast allows you to register for entry eventsto get notified when entries added, updated or removed. Listeners are
cluster-wide. When a member adds a listener, it is actually registering for events originated in any member in the cluster.
When anew member joins, events originated at the new member will also be delivered. All events are ordered, meaning,
listeners will receive and process the eventsin the order they are actually occurred.

14

Distributed Data Structures

nport java.util.Queue;

nport java.util. Mp;

nport java.util. Set;

nport com hazel cast. core. Hazel cast;
nport com hazel cast. core. |tenListener;
nport com hazel cast. core. EntrylLi st ener;
nport com hazel cast. core. EntryEvent;

public class Sanple inplenents ItenListener, EntrylListener {

public static void main(String[] args) {
Sanpl e sanpl e = new Sanpl e();
Queue queue = Hazel cast.get Queue ("default");
Map map = Hazel cast . get Map ("default");
Set set = Hazel cast . get Set ("default");
/llisten for all added/ updated/renoved entries
queue. addl t enli st ener (sanpl e, true);
set.addl tenli stener (sanple, true);
map. addEntryLi st ener (sanple, true);
/[llisten for an entry with specific key
map. addEntryLi st ener (sanple, "keyobj");

}

public void entryAdded(EntryEvent event) {
Systemout.println("Entry added key=" + event.getKey() + ", value=" + event.getValue());

}

public void entryRenoved(EntryEvent event) {
Systemout.println("Entry renoved key=" + event.getKey() + ", value=" + event.getValue());

}

public void entryUpdat ed(EntryEvent event) {
Systemout.println("Entry update key=" + event.getKey() + ", value=" + event.getValue());

}

public void entryEvi cted(EntryEvent event) {
Systemout.println("Entry evicted key=" + event.getKey() + ", value=" + event.getValue());

}

public void itemAdded(Cbject itenm {
Systemout.println("ltemadded =" + iten);
}

public void itenRenpved(Object item {
Systemout.println("ltemrenoved =" + item;
}

}

15

Chapter 3. Data Affinity

Co-location of related data and computation!

Hazelcast has a standard way of finding out which member owns/manages each key object. Following operations will be
routed to the same member, since all of them are operating based on the same key, "key1".

Hazel cast. get Map(" mapa"). put ("keyl", val ue);

Hazel cast. get Map(" mapb"). get ("keyl");

Hazel cast. get Map(" mapc").renove("keyl");

/1 since map nanmes are different, operation will be manipul ating
/1 different entries, but the operation will take place on the
/| same menber since the keys ("keyl") are the sane

Hazel cast. get Lock ("keyl").lock();
/'l lock operation will still execute on the sane nenber of the cluster
/1 since the key ("keyl") is sane

Hazel cast. get Execut or Servi ce() . execut e(new Di stribut edTask(runnable, "keyl"));
/] distributed execution will execute the 'runnable' on the sane nenber
/'l since "keyl" is passed as the key.

So when the keys are the same then entries are stored on the same node. But we sometimes want to have related entries
stored on the same node. Consider customer and his/her order entries. We would have customers map with customerid

as the key and orders map with orderld as the key. Since customerld and orderlds are different keys, customer and his/
her orders may fall into different members/nodes in your cluster. So how can we have them stored on the same node? The
trick hereisto create an affinity between customer and orders. If we can somehow make them part of the same partition
then these entries will be co-located. We achieve this by making orderldsPar ti t i onAwar e

public class OderKey inplenents Serializable, PartitionAware {
int custonerld,
int orderld;

public OrderKey(int orderld, int custonerld) {
this.custonerld = custonerld;
this.orderld = orderld;

}

public int getCustonerld() {
return custonerld;
}

public int getOrderld() {
return orderld;
}

public Object getPartitionKey() {
return custonerld;
}

@verride
public String toString() {
return "OrderKey{" +
"custonerld=" + custonerld +
", orderld=" + orderld +

B

Notice that OrderKey implementsPar ti ti onAwar e andget Parti ti onKey() returnsthecust oner | d. This
will make surethat Cust omrer entry and its Or der s are going to be stored on the same node.

16

Data Affinity

Map mapCust oners = Hazel cast. get Map("cust oners")
Map mapOrders = Hazel cast. get Map("orders")

/'l create the custoner entry with custoner id =1
mapCust oners. put (1, custoner);

/'l now create the orders for this custoner

mapOr der s. put (new OrderKey(21, 1), order);

mapOr der s. put (new OrderKey(22, 1), order);

mapOr der s. put (new OrderKey(23, 1), order);

Let say you have a customers map where cust oner | d isthe key and the customer object is the value. and customer
object contains the customer's orders. and let say you want to remove one of the orders of a customer and return the
number of remaining orders. Here is how you would normally do it:

public static int removeOrder(long custonerld, |ong orderld) throws Exception {
| Map<Long, Custoner> napCustoners = Hazel cast.get Map("custoners");
mapCust oners. | ock (custonerld);
Custonmer custonmer = mapCustoners. get(custonerld);
cust ormer. removeOrder (orderld);
mapCust oner s. put (custoner|d, custoner);
mapCust oner s. unl ock(cust oner | d);
return custoner. get O der Count ();

}

There are couple of things we should consider:

1. There are four distributed operations there.. lock, get, put, unlock.. Can we reduce the number of distributed
operations?

2. Customer object may not be that big but can we not have to pass that object through the wire? Notice that, we are
actually passing customer object through the wire twice; get and put.

So instead, why not moving the computation over to the member (JVM) where your customer data actualy is. Hereis
how you can do this with distributed executor service:

1. SendaPartiti onAwar e Cal | abl e task.
2. Cal | abl e doesthe deletion of the order right there and returns with the remaining order count.

3. Upon completion of the Cal | abl e task, return the result (remaining order count). Plus you do not have to wait until
the the task complete; since distributed executions are asynchronous, you can do other things in the meantime.

Here is a sample code:

17

Data Affinity

public static int renmoveOrder(long custonerld, |long orderld) throws Exception {
Execut or Servi ce es = Hazel cast. get Execut or Servi ce();
Or der Del eti onTask task = new OrderDel eti onTask(custonerld, orderld);
Future future = es.submt(task);
int remai ningOrders = future.get();
return renaini ngOrders;

}
public static class O derDel etionTask i npl enents Cal | abl e<lInteger>, PartitionAware, Serializable {

private | ong custonerld;
private |ong orderld;

public OrderDel etionTask() {

public OrderDel etionTask(long custonerld, |ong orderld) {
super () ;
this.custonerld = custonerld;
this.orderld = orderld;

public Integer call () {
| Map<Long, Custoner> mapCustoners = Hazel cast. get Map("custoners");
mapCust oners. | ock (custonerld);
Cust oner custoner = nmapCustoners. get(custonerld);
custoner.renmoveOrder (orderld);
mapCust oner s. put (cust oner | d, custoner);
mapCust oner s. unl ock(custonerl d);
return custoner.get O der Count ();

public Ooject getPartitionKey() {
return custonerld;

Benefits of doing the same operation with distributed Execut or Ser vi ce based on the key are:
* Only onedistributed execution (es. submni t (t ask)), instead of four.
» Lessdataissent over thewire.

» Since lock/update/unlock cycle is donelocally (local to the customer data), lock duration for the Cust onmer entry is
much less so enabling higher concurrency.

18

Chapter 4. Monitoring with JMX

» Add the following system properties to enable jmx agent [http://download.oracle.com/javase/1.5.0/docs/guide/
management/agent.html]

* -Dcom.sun.management.jmxremote

¢ -Dcom.sun.management.jmxremote.port=_portNo_ (to specify jmx port) optional

¢ -Dcom.sun.management.jmxremote.authenticate=fal se (to disable jmx auth) optional
» Enable Hazelcast property hazelcast.jmx

» using Hazelcast configuration (api, xml, spring)

 or set system property -Dhazel cast.jmx=true
» Usejconsole, jvisualvm (with mbean plugin) or another jmx-compliant monitoring tool.
Following attributes can be monitored:
* Cluster

e config

* group name

 count of members and their addresses (host:port)

e operations: restart, shutdown cluster
* Member

* inet address

* port

e super client state
o Statistics

* count of instances

* number of instances created, destroyed since startup

« max instances created, destroyed per second

AtomicNumber

* name

* actual value

« operations: add, set, compareAndSet, reset
o List, Set

e name

e size

* items (asstrings)

19

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

Monitoring with IMX

« operations: clear, reset statistics
. Map

e name

e size

e operations: clear
¢ Queue

* name

e size

¢ received and served items

» operations: clear, reset statistics
e Topic

e name

« number of messages dispatched since creation, in last second

« max messages dispatched per second

20

Chapter 5. Cluster Utilities

5.1. Cluster Interface

Hazelcast allows you to register for membership events to get notified when members added or removed. Y ou can also get
the set of cluster members.

import com hazel cast. core. *;

Cluster cluster = Hazel cast.getCluster();
cl ust er. addMenber shi pLi st ener (new Menber shi pLi st ener () {
public void nmenber Added(Menber shi pEvent menber si pEvent) {
System out . println("Menber Added " + nenbersi pEvent);

}

public void nenber Renoved(Menber shi pEvent nenber si pEvent) {
System out . println("Menber Renoved " + menbersi pEvent);

}
1)

Menmber | ocal Menber = cluster. getLocal Menber();
Systemout.println ("my inetAddress= " + | ocal Menber. getl net Address());

Set setMenbers = cluster. get Menbers();

for (Menber nmenber : setMenbers) {
Systemout.println ("isLocal Menber " + nmenber.| ocal Menber());
Systemout.println ("nmenber.inetaddress " + nenber.getlnet Address());
Systemout.println ("menber.port " + nenber.getPort());

}

5.2. Cluster-wide Id Generator

Hazelcast IdGenerator creates cluster-wide unique 1Ds. Generated 1Ds are long type primitive values between 0 and
Long. MAX_VALUE . Id generation occurs amost at the speed of At omi cLong. i ncr erent AndGet () . Generated
IDs are unique during the life cycle of the cluster. If the entire cluster isrestarted, 1Ds start from 0 again.

import com hazel cast. core. | dGenerat or;
import com hazel cast. core. Hazel cast;

| dGener at or idGenerator = Hazel cast. getldGenerator("custoner-ids");
long id = idGenerator.newd();

5.3. Super Client

Super Clients are members with no storage. If - Dhazel cast . super. cl i ent =t r ue VM parameter is set, then the
JVM will join the cluster as a 'super client' which will not be a'data partition' (no data on that node) but will have super
fast access to the cluster just like any regular member does.

21

Chapter 6. Transactions

6.1. Transaction Interface

Hazelcast can be used in transactional context. Basically start a transaction, work with queues, maps, sets and do other
things then commit/rollback in one shot.

inmport java.util.Queue;

inmport java.util. Mp;

inmport java.util. Set;

import com hazel cast. core. Hazel cast;
import com hazel cast. core. Transacti on;

Queue queue = Hazel cast. get Queue(" myqueue");
Map map = Hazel cast.getMap (" nymap");
Set set = Hazel cast.getSet ("nyset");

Transaction txn = Hazel cast. get Transacti on();

t xn. begi n();

try {
Obj ect obj = queue. poll ();
/| process obj
map. put ("1", "valuel");
set.add ("val ue");
/1 do ot her things..
txn.commit();

}catch (Throwable t) {
txn. rol | back();

}

Isolation is always READ_COVM TTED. If you are in atransaction, you can read the data in your transaction and the data
that is aready committed and if not in a transaction, you can only read the committed data. Implementation is different

for queue and map/set. For queue operations (offer,poll), offered and/or polled objects are copied to the next member in
order to safely commit/rollback. For map/set, Hazel cast first acquires the locks for the write operations (put, remove) and
holds the differences (what is added/removed/updated) locally for each transaction. When transaction is set to commit,
Hazelcast will release the locks and apply the differences. When rolling back, Hazel cast will simply releases the locks and
discard the differences. Transaction instance is attached to the current thread and each Hazelcast operation checks if the
current thread holds a transaction, if so, operation will be transaction aware. When transaction is committed, rolled back
or timed out, it will be detached from the thread holding it.

6.2. J2EE Integration

Hazelcast can be integrated into J2EE containers via Hazel cast Resource Adapter (hazel cast-rarar). After proper
configuration, Hazel cast can participate in standard J2EE transactions.

22

Transactions

<%cpage i nport="j avax.resource. Resour ceExcepti on" %
<%cpage inport="javax.transaction.*" %

<%cpage inport="javax.nam ng.*" %

<%cpage i nport="javax.resource.cci.*" %

<%page inport="java.util.*" %

<%page i nport="com hazel cast.core. Hazel cast" %

<%

User Transaction txn = nul | ;

Connection conn = null;

Queue queue = Hazel cast.get Queue ("default”

3)
Map map = Hazel cast . get Map ("default");
Set set = Hazel cast . get Set ("default");
List list = Hazel cast.getList ("default");
try {

Context context = new Initial Context();
txn = (User Transacti on) context.| ookup("java: conp/ User Tr ansacti on");
t xn. begi n();

Connecti onFactory cf = (ConnectionFactory) context.|lookup ("java:conp/env/ Hazel cast CF");
conn = cf.get Connection();

queue. of fer ("newi ten');
map. put ("1", "valuel");
set.add ("iteml");

list.add ("listitenl");

txn.commit();
} catch (Throwable e) {
if (txn !'=null) {
try {
txn. rol | back();
} catch (Exception ix) {ix.printStackTrace();};

}
e.printStackTrace();
} finally {
if (conn !=null) {
try {
conn. cl ose();
} catch (Exception ignored) {};
}
}
%

6.2.1. Resource Adapter Configuration
Deploying and configuring Hazel cast resource adapter is no different than any other resource adapter sinceit is a standard
JCA resource adapter but resource adapter installation and configuration is container specific, so please consult your J2EE
vendor documentation for details. Most common steps are:

1. Addthehazel cast . j ar to container's classpath. Usualy thereisalib directory that isloaded automatically by the
container on startup.

2. Deploy hazel cast -ra. rar. Usualy thereisasome kind of deploy directory. Name of the directory varies by
container.

3. Make container specific configurations when/after deploying hazel cast - r a. r ar . Besides container specific
configurations, JNDI name for Hazelcast resourceis set.

4. Configure your application to use the Hazel cast resource. Updating web. xm and/or ej b-j ar . xnl to let container
know that your application will use the Hazel cast resource and define the resource reference.

5. Make container specific application configuration to specify JNDI name used for the resource in the application.

23

Transactions

6.2.2. Sample Glassfish v3 Web Application Configuration

1

Placethe hazel cast - <ver si on>. j ar into G_LASSFI SH HOVE/ gl assfi sh/ domai ns/ dormai n1/1i b/
ext/ directory.

. Placethehazel cast - ra- <ver si on>. r ar into GLASSFI SH HOVE/ gl assfi sh/ domai ns/ domai nl1/

aut odepl oy/ directory

. Add the following linesto theweb. xm file.

<resource-ref>
<res-ref-nane>Hazel cast CF</res-r ef - nane>
<res-type>com hazel cast.j ca. Connecti onFact oryl npl </ res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

Notice that we didn't haveto put sun-r a. xm into the rar file because it comes with the hazel cast - r a-
<versi on>.r ar fileaready.

If Hazelcast resource is used from EJBs, you should configureej b-j ar . xm for resource reference and JNDI
definitions, just like we did for web. xni .

6.2.3. Sample JBoss Web Application Configuration

Placethehazel cast - <ver si on>. j ar into JBOSS_HOVE/ server/ depl oy/ def aul t/|i b directory.

Placethehazel cast -ra- <ver si on>. r ar into JBOSS_HOVE/ ser ver/ depl oy/ def aul t / depl oy
directory

Createahazel cast - ds. xm at JBOSS_HOMVE/ ser ver / depl oy/ def aul t / depl oy directory containing the
following content. Make sureto set ther ar - nanme element to hazel cast - ra- <versi on>. rar.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<I DOCTYPE connection-factories
PUBLI C "-//JBoss// DTD JBOSS JCA Config 1.5//EN
“http://ww.jboss.org/j2ee/dtd/jboss-ds_1 5.dtd">

<connection-factories>

<t x- connecti on-factory>
<l ocal -transaction/ >
<track-connecti on-by-tx>true</track-connection-by-tx>
<j ndi - nane>Hazel cast CF</j ndi - name>
<rar - name>hazel cast - ra- <versi on>. rar </ rar - nane>
<connecti on-definition>

j avax. resource. cci . Connecti onFact ory
</ connection-definition>
</t x-connection-factory>
</ connection-factories>

Add the following linesto theweb. xm file.

<resource-ref >
<res-ref-name>Hazel cast CF</ res-r ef - name>
<res-type>com hazel cast . ca. Connecti onFactoryl npl </ res-type>
<r es- aut h>Cont ai ner </ res- aut h>

</resource-ref>

Add thefollowing linesto thej boss- web. xnl file.

<resource-ref>
<res-ref-nanme>Hazel cast CF</r es-r ef - nanme>
<j ndi - name>j ava: Hazel cast CF</j ndi - name>
</resource-ref>

If Hazelcast resource is used from EJBs, you should configureej b-j ar. xm andj boss. xm for resource reference
and JNDI definitions.

24

Chapter 7. Distributed Executor Service

One of the coolest new futures of Java 1.5 is the Executor framework, which allows you to asynchronously execute
your tasks, logical units of works, such as database query, complex calculation, image rendering etc. So one nice
way of executing such tasks would be running them asynchronously and doing other things meanwhile. When ready,
get the result and move on. If execution of the task takes longer than expected, you may consider canceling the task
execution. In Java Executor framework, tasks areimplemented asj ava. uti | . concurrent. Cal | abl e and
java. util.Runnabl e.

inmport java.util.concurrent. Call abl e;
inmport java.io.Serializable;

public class Echo inplenents Callabl e<String> Serializable {
String input = null;

public Echo() {
}

public Echo(String input) {
this.input = input;
}

public String call () {
return Hazel cast.getCl uster().getlLocal Menber().toString() + ":"
+ i nput;

}

Echo callable above, for instance, initscal | () method, is returning the local member and the input passed in.
Remember that Hazel cast . get Cl uster (). get Local Menber () returnsthelocal member andt oSt ri ng()
returns the member'saddress (i p + port) in String form, just to see which member actually executed the code for our
example. Of course, call() method can do and return anything you like. Executing atask by using executor framework is
very straight forward. Simply obtain a Execut or Ser vi ce instance, generally viaExecut or s and submit the task
which returns a Fut ur e. After executing task, you don't have to wait for execution to complete, you can process other
things and when ready use the future object to retrieve the result as show in code below.

Execut or Servi ce execut or Servi ce = Execut or s. newSi ngl eThr eadExecut or () ;
Future<String> future = executor Service. submt (new Echo("nyinput"));
/[Iwhile it is executing, do sonme useful stuff

/I when ready, get the result of your execution

String result = future.get();

7.1. Distributed Execution

Distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It allows you to
execute your code in cluster. In this chapter, all the code samples are based on the Echo class above. Please note that Echo
classisSeri al i zabl e . You can ask Hazelcast to execute your code (Runnabl e, Cal | abl e):

 on aspecific cluster member you choose.

« on the member owning the key you choose.

* on the member Hazel cast will pick.

» onall or subset of the cluster members.

25

Distributed Executor Service

import com hazel cast. core. Menber ;

i mport com hazel cast. core. Hazel cast;

import com hazel cast. core. Mil ti Task;

import com hazel cast. core. Di stri but edTask;
inmport java.util.concurrent. ExecutorService;
inmport java.util.concurrent. FutureTask;
inmport java.util.concurrent. Future;

inmport java.util. Set;

public void echoOnTheMenber (String i nput, Menber nenber) throws Exception {
Fut ur eTask<Stri ng> task = new Di stributedTask<Stri ng>(new Echo(i nput), nenber);
Execut or Servi ce executor Servi ce = Hazel cast. get Execut or Servi ce();
execut or Servi ce. execut e(t ask) ;
String echoResult = task.get();

public void echoOnTheMenber Oani ngTheKey(String i nput, Cbject key) throws Exception {
Fut ur eTask<Stri ng> task = new Di stributedTask<Stri ng>(new Echo(i nput), key);
Execut or Servi ce executor Servi ce = Hazel cast. get Execut or Servi ce();
execut or Servi ce. execut e(t ask) ;
String echoResult = task.get();

public void echoOnSonewhere(String input) throws Exception {
Execut or Servi ce executor Servi ce = Hazel cast. get Execut or Servi ce();
Future<String> task = executor Service. subm t(new Echo(i nput));
String echoResult = task.get();

public void echoOnMenbers(String input, Set<Menber> nenbers) throws Exception {
Miul ti Task<String> task = new Mul ti Task<Stri ng>(new Echo(i nput), nenbers);
Execut or Servi ce executor Servi ce = Hazel cast. get Execut or Servi ce();
execut or Servi ce. execut e(t ask) ;
Col | ection<String> results = task.get();

}

Note that you can obtain the set of cluster membersviaHazel cast . get O ust er (). get Menber s() call. You can
also extendthe Mul t i Task classtooverrideset (V result), set Exception(Throwabl e exception),
done() methods for custom behaviour. Just likej ava. uti |l . concurrent. FutureTask. get () ,

Mul ti Task. get () will throwj ava. util.concurrent. Executi onExcepti on if any of the executions
throws exception.

7.2. Execution Cancellation

What if the code you execute in cluster takes longer than acceptable. If you cannot stop/cancel that task it will keep
eating your resources. Standard Java executor framework solves this problem with by introducing cancel () api and
‘encouraging' us to code and design for cancellations, which is highly ignored part of software development.

public class Fibonacci <Long> i npl enents Cal | abl e<Long>, Serializable {
int input = 0;

public Fibonacci () {
}

public Fibonacci (int input) {
this.input = input;
}

public Long call () {
return cal culate (input);
}

private long calculate (int n) {
if (Thread.currentThread().islnterrupted()) return O;
if (n<=1) return n;
el se return calculate(n-1) + cal culate(n-2);

26

Distributed Executor Service

The callable class above calculates the fibonacci number for a given number. In the cal culate method, we are checking

to seeif the current thread is interrupted so that code can be responsive to cancellations once the execution started.
Following f i b() method submits the Fibonacci calculation task for number 'n' and waits maximum 3 seconds for result.
If the execution doesn't complete in 3 seconds, f ut ur e. get () will throw Ti neout Except i on and upon catching it
we interruptibly cancel the execution for saving some CPU cycles.

long fib(int n) throws Exception {
Execut or Servi ce es = Hazel cast. get Execut or Servi ce();
Future future = es.subm t(new Fi bonacci(n));

try {
return future.get(3, TineUnit.SECONDS);

} catch (Ti meout Exception e) {
future. cancel (true);

}

return -1,

}

fi b(20) will probably will take lessthan 3 secondsbut f i b(50) will take way longer. (Thisis not the example

for writing better fibonacci calculation code but for showing how to cancel a running execution that takes too long.)
future.cancel (fal se) canonly cancel execution beforeit isrunning (executing) but f ut ur e. cancel (true)
can interrupt running executions if your code is able to handle the interruption. So if you are willing to be able to cancel
already running task then your task has to be designed to handleinterruption. If cal cul ate (i nt n) method didn't
haveif (Thr ead. current Thread().i sl nterrupted()) line then youwouldn't be able to cancel the execution
after it started.

7.3. Execution Callback

Execut i onCal | back allows you to asynchronously get notified when the execution is done. When implementing
Execut i onCal | back. done(Fut ur e) method, you can check if the task is already cancelled.

i mport com hazel cast. core. Hazel cast;

i mport com hazel cast. core. Executi onCal | back;
i mport com hazel cast. core. Di stri but edTask;
import java.util.concurrent. Executor Servi ce;
inmport java.util.concurrent. Future;

Execut or Servi ce es = Hazel cast. get Execut or Servi ce();
Di stri but edTask<String> task = new Di stri but edTask<Stri ng>(new Fi bonacci <Long>(10));
t ask. set Executi onCal | back(new Executi onCal | back<Long> () {
public void done (Future<Long> future) {
try {
if (! future.isCancelled()) {
System out. println("Fibonacci calculation result =" + future.get());

} catch (Exception e) {
e.printStackTrace();

}
}
1)

es. execut e(t ask);

Y ou could have achieved the same results by extending Di st ri but edTask and overriding the
Di stri but edTask. done() method.

27

Distributed Executor Service

import com hazel cast. core. Hazel cast;

import com hazel cast. core. Di stri but edTask;
inmport java.util.concurrent. ExecutorServi ce;
inmport java.util.concurrent. Future;

Execut or Servi ce es = Hazel cast. get Execut or Servi ce();
es. execut e(new Di stri but edTask<Stri ng>(new Fi bonacci <Long>(10)) {
public void done () {

try {
if (! isCancelled()) {

System out. println("Fibonacci calculation result =" + get());
} catch (Exception e) {
e.printStackTrace();

}
1)

28

Chapter 8. Http Session Clustering with HazelcastWM

Say you have more than one web servers (A, B, C) with aload balancer in front of them. If server A goes down then your
users on that server will be directed to one of the live servers (B or C) but their sessionswill be lost! So we have to have
all these sessions backed up somewhere if we don't want to |ose the sessions upon server crashes. Hazelcast WM allows
you to cluster user http sessions automatically. Followings are required for enabling Hazel cast Session Clustering:

» Target application or web server should support Java 1.5+

» Target application or web server should support Servlet 2.4+ spec

» Session objects that needs to be clustered have to be Seriaizable

Here are the steps to setup Hazel cast Session Clustering:

1. Putthehazel cast and hazel cast - wnjarsin your VEB- | NF/ | i b directory.

2. Put thefollowing xml into web. xnl file. Make sure Hazelcast filter is placed before al the other filtersif any; put it
at the top for example.

<filter>
<filter-name>hazel cast-filter</filter-name>
<filter-class>com hazel cast.web. WebFilter</filter-class>
<] oo
Nanme of the distributed map storing
your web session objects
==
<i nit-paranp
<par am nane>nap- nane</ par am nane>
<par am val ue>ny- sessi ons</ par am val ue>
</init-parank
<l--
How i s your | oad-bal ancer configured?
stick-session neans all requests of a session
is routed to the node where the session is first created.
This is excellent for performance.
If sticky-session is set to false, when a session is updated
on a node, entry for this session on all other nodes is invalidated.
You have to know how your | oad-bal ancer is configured before
setting this paraneter. Default is true.
->
<i nit-paranp
<par am nane>st i cky- sessi on</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paranr
<l--
Are you debuggi ng? Default is fal se.
==
<i nit-paranp
<par am nane>debug</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paranr
</[filter>
<filter-mppi ng>
<filter-name>hazel cast-filter</filter-name>
<url-pattern>/*</url -pattern>
<di spat cher >FORWARD</ di spat cher >
<di spat cher >l NCLUDE</ di spat cher >
<di spat cher >REQUEST</ di spat cher >
</filter-nmappi ng>

<listener>

<l i stener-class>com hazel cast. web. Sessi onLi stener</|i stener-cl ass>
</listener>

3. Package and deploy your war file as you would normally do.

29

Http Session Clustering with HazelcastWM

Itisthat easy! All http requests will go through Hazelcast WebFi | t er and it will put the session objects into Hazel cast
distributed map if needed.

30

Chapter 9. WAN Replication

There are cases where you would need to synchronize multiple clusters. Synchronization of clustersis named as WAN
(Wide Area Network) Replication because it is mainly used for replicating different clusters running on WAN. Imagine
having different clustersin New Y ork, London and Tokyo. Each cluster would be operating at very high speed in their
LAN (Local AreaNetwork) settings but you would want some or all parts of the data in these clusters replicating to each
other. So updates in Tokyo cluster goesto London and NY/, in the meantime updatesin New Y ork cluster is synchronized
to Tokyo and London.

Y ou can setup active-passive WAN Replication where only one active node replicating its updates on the passive one.
Y ou can also setup active-active replication where each cluster is actively updating and replication to the other cluster(s).

In the active-active replication setup, there might be cases where each node is updating the same entry in the same named
distributed map. Thus, conflicts will occur when merging. For those cases, conflict-resolution will be needed. Here is how
you can setup WAN Replication for London cluster for instance:

<hazel cast >
<wan-replicati on name="ny-wan-cl uster">
<target-cluster group-nane="tokyo" group-password="tokyo-pass">
<replication-inpl>com hazel cast.i npl.wan. WanNoDel ayRepl i cati on</replication-inpl >
<end- poi nt s>
<addr ess>10. 2. 1. 1: 5701</ addr ess>
<addr ess>10. 2. 1. 2: 5701</ addr ess>
</ end- poi nt s>
</target-cluster>
<target-cluster group-nane="|ondon" group-password="|ondon-pass">
<replication-inpl>com hazel cast.i npl.wan. WanNoDel ayRepl i cati on</replication-i npl >
<end- poi nt s>
<addr ess>10. 3. 5. 1: 5701</ addr ess>
<addr ess>10. 3. 5. 2: 5701</ addr ess>
</ end- poi nt s>
</target-cluster>
</wan-replication>

<net wor k>

é)ﬁetmork>
</ net wor k>
é)hazelcast>

This can be the configuration of the cluster running in N, replicating to Tokyo and London. Tokyo and London clusters
should have similar configurations if they are also active replicas.

If NY and London cluster configurations contain wan- r epl i cat i on element and Tokyo cluster doesn't then it means
NY and London are active endpoints and Tokyo is passive endpoint.

As noted earlier you can have Hazelcast replicate some or all of the datain your clusters. Y ou might have 5 different
distributed maps but you might want only one of these maps replicating across clusters. So you mark which mapsto
replicate by adding wan- r epl i cat i on-r ef element into map configuration.

31

WAN Replication

<hazel cast >
<wan-replicati on name="ny-wan-cl uster">

</wan-replication>
<net wor k>
</ net wor k>
<map nane="ny-shared- map" >
<wan-replication-ref nanme="ny-wan-cl uster">
<mer ge- pol i cy>hz. PASS_THROUGH</ ner ge- pol i cy>
</wan-replication-ref>
</ map>
</ net wor k>
</ hazel cast >

Here we have my- shar ed- map is configured to replicate itself to the cluster targets defined in the wan-
replication element.

Note that you will also need to defineaner ge pol i cy for merging replica entries and resolving conflicts during the
merge. Default merge policy ishz. PASS_THROUGH which will apply al in-coming updates asis.

32

Chapter 10. Encryption

Hazelcast allows you to encrypt entire socket level communication among all Hazel cast members. Encription is based on
Java Cryptography Architecture [http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html]
and both symmetric and asymmetric encryption are supported. In symmetric encryption, each node uses the same key, so
the key is shared. Here is a sample configuration for symmetric encryption:

<hazel cast >
<net wor k>
<l--
Make sure to set enabl ed=true
Make sure this configuration is exactly the sane on
al | nmenbers
-->
<symmetric-encryption enabl ed="true">
<Ih==
encryption al gorithm such as
DES/ ECB/ PKCS5Paddi ng
PBEW t hiMD5AndDES
Bl owf i sh,

DESede
>

<al gori t hm>PBEW t hMD5ANdDES</ al gori t hn»

<I-- salt value to use when generating the secret key -->
<sal t >t hesal t</sal t>

<l-- pass phrase to use when generating the secret key -->
<passwor d>t hepass</ passwor d>

<l-- iteration count to use when generating the secret key -->
<iteration-count>19</iteration-count>
</symmetric-encryption>
</ net wor k>

</ hazel cast >

In asymmetric encryption, public and private key pair is used. Data is encrypted with one of these keys and decrypted
with the other. The ideais that each node has to have its own private key and other trusted members public key. So that
means, for each member, we should do the followings:

* Pick aunique name for the member. We will use the name as the key alias. Let's name them as member1,
member2...memberN.

* Generate the keystore and the private key for the memberl. keyt ool -genkey -alias nenmberl -keyalg
RSA - keypass t hekeypass -keystore keystore -storetype JKS Remember all the parameters
you used here because you will need this information when you configure asymmetric-encryption in your hazel cast.xml
file.

 Create apublic certificate file so that we can add it to the other members keystorekeyt ool -export -ali as
nmenber 1 - keypass thekeypass -storepass thestorepass -keystore keystore -rfc -
file nmenberl. cer

* Now take all the other members' public certificates, and add (import) them into member1's keystore

keytool -inport -alias nenber2 -file nenber2.cer -keystore keystore -storepass thestorepass
keytool -inport -alias nenber3 -file nenber3.cer -keystore keystore -storepass thestorepass
keytool -inport -alias nenberN -file nenberN. cer -keystore keystore -storepass thestorepass

33

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

Encryption

Y ou should repeat these steps for each trusted member in your cluster. Here is a sample configuration for asymmetric
encryption:;

<hazel cast >

<net wor k>

<l--
Make sure to set enabl ed=true
->
<asymmetric-encryption enabl ed="true">
<l-- encryption algorithm-->
<al gori t hn>PRSA/ NONE/ PKCS1PADDI NG</ al gori t hm>
<I-- private key password -->
<keyPasswor d>t hekeypass</ keyPasswor d>
<I-- private key alias -->
<keyAl i as>nmenber 1</ keyAl i as>
<I-- key store type -->
<st or eType>JKS</ st or eType>
<!-- key store password -->
<st or ePasswor d>t hest or epass</ st or ePasswor d>
<I-- path to the key store -->

<st or ePat h>keyst or e</ st or ePat h>
</ asynmetri c-encrypti on>
</ net wor k>

</ hazel cast >

Chapter 11. Configuration

Hazelcast can be configured through xml or using configuration api or even mix of both.
1. Xml Configuration

If you are using default Hazelcast instance (Hazel cast . get Def aul t | nst ance()) or creating new Hazelcast
instance with passing nul | parameter (Hazel cast . newHazel cast | nst ance(nul |)), Hazelcast will look
into two places for the configuration file:

» System property: Hazelcast will first check if "hazel cast . confi g" system property is set to afile path.
Example: - Dhazel cast. confi g=C. / nyhazel cast. xnm .

» Classpath: If config fileis not set as a system property, Hazelcast will check classpath for hazel cast . xmi file.
If Hazelcast doesn't find any config file, it will happily start with default configuration (hazel cast -

defaul t.xm) locatedinhazel cast . j ar . (Before configuring Hazel cast, please try to work with default
configuration to see if it works for you. Default should be just fine for most of the users. If not, then consider custom
configuration for your environment.)

<hazel cast xsi:schemalLocati on="http://ww. hazel cast.com schenma/ confi g hazel cast - basi c. xsd"
xm ns="http://ww. hazel cast. conm schema/ confi g"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >
<gr oup>
<nane>dev</ nane>
<passwor d>dev- pass</ passwor d>
</ gr oup>
<net wor k>
<port auto-increnent="true">5701</port>
<j oi n>
<mul ti cast enabl ed="true">
<mul ti cast-group>224. 2. 2. 3</nmul ti cast-group>
<mul ti cast - port>54327</mul ti cast-port>
</mul ticast>
<tcp-ip enabl ed="fal se">
<interface>127.0.0.1</interface>
</tcp-ip>
<aws enabl ed="fal se">
<access- key>ny- access- key</ access- key>
<secr et - key>ny- secr et - key</ secr et - key>
<r egi on>us- east - 1</ r egi on>
</ aws>
</j oi n>
<interfaces enabl ed="fal se">
<interface>10.10.1.*</interface>
</interfaces>

35

Configuration

<symmetric-encrypti on enabl ed="fal se">

<I--
encryption al gorithm such as DES/ ECB/ PKCS5Paddi ng, PBEW t hMD5AndDES
AES/ CBC/ PKCS5Paddi ng, Bl owfish, DESede

=

<al gori t hm>PBEW t hMD5ANdDES</ al gori t hn>

<!-- salt value to use when generating the secret key -->

<sal t>thesalt</salt>

<!-- pass phrase to use when generating the secret key -->

<passwor d>t hepass</ passwor d>

<l-- jiteration count to use when generating the secret key -->

<iteration-count>19</iteration-count>
</ symmetric-encryption>
<asymmetric-encryption enabl ed="fal se">

<l-- encryption algorithm-->

<al gori t hn>RSA/ NONE/ PKCS1PADDI NG</ al gori t hm>
<l-- private key password -->
<keyPasswor d>t hekeypass</ keyPasswor d>

<l-- private key alias -->

<keyAl i as>| ocal </ keyAl i as>

<!-- key store type -->

<st or eType>JKS</ st or eType>

<!-- key store password -->

<st or ePasswor d>t hest or epass</ st or ePasswor d>
<!-- path to the key store -->

<st or ePat h>keyst or e</ st or ePat h>

</ asymmetric-encryption>
</ net wor k>
<executor-servi ce>

<cor e- pool - si ze>16</ cor e- pool - si ze>

<max- pool - si ze>64</ max- pool - si ze>

<keep- al i ve- seconds>60</ keep- al i ve- seconds>
</ execut or - servi ce>
<queue nane="defaul t">

<I--
Maxi mum si ze of the queue. Wien a JVMs |ocal queue size reaches the nmaxi num
all put/offer operations will get blocked until the queue size
of the JVM goes down bel ow t he nmaxi mum Any integer between 0 and | nteger. VAX VALUE
0 neans | nteger. VAX VALUE. Default is O

-->

<max- si ze- per - j vim>0</ max- si ze- per-j v

<l--
Nanme of the map configuration that will be used for the backing distributed
map for this queue

-->

<backi ng- map- r ef >def aul t </ backi ng- map-r ef >

</ queue>

36

Configuration

<map nane="defaul t">

<I--
Nunber of backups. If 1 is set as the backup-count for exanple, then all entries of
the map will be copied to another JVMfor fail-safety. O nmeans no backup.

-->

<backup- count >1</ backup- count >

<l--

Maxi mum nunber of seconds for each entry to stay in the map. Entries that are
ol der than <tinme-to-live-seconds> and not updated for <tine-to-live-seconds>

will get automatically evicted fromthe map.
Any integer between 0 and Integer. MAX_ VALUE. O neans infinite. Default is O.

S

<time-to-live-seconds>0</tine-to-|ive-seconds>

<l--

Maxi mum nunber of seconds for each entry to stay idle in the map. Entries that are
idl e(not touched) for nore than <max-idl e-seconds> will get

automatically evicted fromthe map. Entry is touched if get, put or containsKey is called.
Any integer between O and Integer. MVAX VALUE. 0 neans infinite. Default is O.

=
<max- i dl e- seconds>0</ max-i dl e- seconds>
<l--
Val id val ues are:
NONE (no eviction),
LRU (Least Recently Used),
LFU (Least Frequently Used).
NONE is the default.
=
<evi ction-pol i cy>NONE</ evi cti on- pol i cy>
<l--
Maxi mum si ze of the nap. Wien nax size is reached,
map is evicted based on the policy defined.
Any integer between 0 and |nteger. MAX_VALUE. 0 neans
I nt eger. MVAX_VALUE. Default is O.
=
<max- si ze policy="cluster_w de_nmap_si ze" >0</ max- si ze>
<l--
When nmax. size is reached, specified percentage of
the map will be evicted. Any integer between 0 and 100.
If 25 is set for exanple, 25%of the entries will
get evicted.
=
<evi cti on- per cent age>25</ evi cti on- per cent age>
<l--
Wil e recovering fromsplit-brain (network partitioning),
map entries in the small cluster will nerge into the bigger cluster
based on the policy set here. When an entry nerge into the
cluster, there mght an existing entry with the sane key al ready.
Val ues of these entries mght be different for that same key.
Wi ch val ue should be set for the key? Conflict is resolved by
the policy set here. Default policy is hz. ADD_NEW ENTRY
There are built-in nmerge policies such as
hz. NO_MERGE ; no entry will nerge.
hz. ADD_ NEW ENTRY ; entry will be added if the nerging entry's key
doesn't exist in the cluster.
hz. HGHER HHTS ; entry with the higher hits wi ns.
hz. LATEST_UPDATE ; entry with the | atest update wi ns.
=
<ner ge- pol i cy>hz. ADD_NEW ENTRY</ ner ge- pol i cy>
</ map>

</ hazel cast >

If you want to specify your own configuration file to create Conf i g, Hazelcast supports severa ways including
filesystem, classpath, InputStream, URL etc.:

» Config cfg = new Xm Confi gBuil der (xm Fi | eNare) . bui | d() ;

» Config cfg = new Xm Confi gBuil der (i nput Stream. buil d();

37

Configuration

e Config cfg = new O asspat hXm Confi g(xm Fi | eNane) ;

e Config cfg = new Fil eSyst enXm Confi g(confi gFil enane);
e Config cfg = new Url Xm Config(url);

e Config cfg = new | nMenoryXm Confi g(xm);

2. Programmatic Configuration

To configure Hazelcast programmatically, just instantiate a Conf i g object and set/change its properties/attributes due
to your needs.

Config cfg = new Config();
cfg.setPort (5900);
cfg. set Port Aut ol ncrenent (f al se);

Net wor kConfi g network = cfg. get Net workConfig();

Join join = network.getJoin();

join.getMilticastConfig().setEnabled(false);

j oi n. get Tcpl pConfig().addMenber ("10. 45.67. 32"). addMenber (" 10. 45. 67. 100")
. set Requi redMenber (" 192. 168. 10. 100") . set Enabl ed(true);

net wor k. get I nterfaces().set Enabl ed(true).addlnterface("10.45.67.*");

MapConfi g mapCfg = new MapConfi g();

mapCf g. set Name("t est Map") ;

mapCf g. set BackupCount (2) ;

mapCf g. get MaxSi zeConfi g() . set Si ze(10000) ;
mapCf g. set Ti meToLi veSeconds(300) ;

MapSt or eConfi g mapStoreCfg = new MapStoreConfig();

mapSt or eCf g. set O assNane(" com hazel cast. exanpl es. DunmySt ore") . set Enabl ed(true);
mapCf g. set MapSt or eConfi g(mapSt oreCf g) ;

Near CacheConfi g near CacheConfi g = new Near CacheConfig();

near CacheConfi g. set MaxSi ze(1000) . set Max| dl eSeconds(120) . set Ti meToLi veSeconds(300) ;
mapCf g. set Near CacheConf i g(near CacheConfi g) ;

cfg. addMapConfi g(mapCf g) ;

After creating Conf i g object, you can use it to initialize default Hazel cast instance or create a new Hazelcast instance.
 Hazelcast.init(cfg);

* Hazel cast. newHazel cast | nstance(cfqg);

11.1. Configuring Hazelcast for full TCP/IP cluster

If multicast is not prefered way of discovery for your environment, then you can configure Hazelcast for full TCP/IP
cluster. As configuration below shows, while enabl e attribute of mul ti cast issettofase t cp-i p hasto beset to
true. For the none-multicast option, al or subset of cluster members' hostnames and/or ip addreses must be listed. Note
that all of the cluster members don't have to be listed there but at least one of them has to be activein cluster when anew
member joins.

38

Configuration

<hazel cast >
<net wor k>
<port auto-increnent="true">5701</port>
<j oi n>
<mul ti cast enabl ed="fal se">
<mul ti cast-group>224. 2. 2. 3</mul ti cast-group>
<mul ti cast - port>54327</mul ti cast-port>
</mul ticast>
<tcp-ip enabl ed="true">
<host nane>machi nel</ host nane>
<host nane>machi ne2</ host nane>
<host name>nmachi ne3: 5799</ host nane>
<interface>192.168. 1. 0-7</interface>
<interface>192.168. 1. 21</interface>
</tcp-ip>
</j oi n>

</ net wor k>

</ hazel cast >

11.2. Configuring Hazelcast for EC2 Auto Discovery

Hazel cast supports EC2 Auto Discovery as of 1.9.4. It is useful when you don't want or can't provide the list of possible
| P addresses. Here is a sample configuration: Disable join over multicast and tcp/ip and enable aws. Also provide the
credentials.

<j oi n>

<mul ti cast enabl ed="fal se">
<mul ti cast-group>224. 2. 2. 3</nul ti cast - group>
<mul ti cast - port>54327</nul ti cast - port>

</mul ticast>

<tcp-ip enabl ed="fal se">
<interface>192. 168. 1. 2</interface>

</tcp-ip>

<aws enabl ed="true">
<access- key>ny- access- key</ access- key>
<secret - key>ny- secr et - key</ secr et - key>

<r egi on>us-west - 1</ r egi on> <I-- optional, default is us-east-1 --
<security-group- nane>hazel cast - sg</ security-group-nanme> <!-- optional -->
<t ag- key>t ype</t ag- key> <l-- optional -->
<t ag- val ue>hz- nodes</t ag- val ue> <l-- optional -->
</ aws>

</j oi n>

Y ou need to add hazel cast-cloud.jar dependency into your project. Note that it is also bundled inside hazelcast-all jar.
hazel cast-cloud module doesn't depend on any other third party modules.

11.3. Creating Separate Clusters

By specifying group-name and group-password, you can separate your clustersin asimple way; dev group, production
group, test group, app-a group €tc...

<hazel cast >
<gr oup>
<nanme>dev</ nanme>
<passwor d>dev- pass</ passwor d>
</ gr oup>

</ hazel cast >

Y ou can aso set the groupName with Conf i g API. VM can host multiple Hazel cast instances (hodes). Each node can
only participate in one group and it only joins to its own group, does not mess with others. Following code creates 3
separate Hazel cast nodes, hl belongsto appl cluster, while h2 and h3 are belong to app?2 cluster.

39

Configuration

<hazel cast >
Config configAppl = new Config();
confi gAppl. get G oupConfi g().set Nane("appl");

Config configApp2 = new Config();
confi gApp2. get G oupConfi g().set Nane("app2");

Hazel cast | nstance hl
Hazel cast | nst ance h2
Hazel cast | nst ance h3

Hazel cast. newHazel cast | nst ance(confi gAppl);
Hazel cast. newHazel cast | nst ance(confi gApp2) ;
Hazel cast. newHazel cast | nst ance(confi gApp2);

11.4. Specifying network interfaces

Y ou can a'so specify which network interfaces that Hazel cast should use. Servers mostly have more than one network
interface so you may want to list the valid IPs. Range characters (™' and '-") can be used for simplicity. So 10.3.10.*, for
instance, refersto 1Ps between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to | Ps between 10.3.10.4 and
10.3.10.18 (4 and 18 included). If network interface configuration is enabled (disabled by default) and if Hazelcast cannot
find an matching interface, then it will print a message on console and won't start on that node.

<hazel cast >

<net wor k>
<interfaces enabl ed="true">
<interface>10.3.16.*</interface>
<interface>10. 3. 10. 4-18</interface>
<interface>192.168.1.3</interface>

</interfaces>
</ net wor k>

</ hazel cast >

11.5. Network Partitioning (Split-Brain Syndrome)

Imagine that you have 10-node cluster and for some reason the network is divided into two in away that 4 servers cannot
see the other 6. As aresult you ended up having two separate clusters; 4-node cluster and 6-node cluster. Membersin
each sub-cluster are thinking that the other nodes are dead even though they are not. This situation is called Network
Partitioning (aka Split-Brain Syndrome).

Sinceit isanetwork failure, there is no way to avoid it programatically and your application will run as two separate
independent clusters but we should be able answer the following questions. "What will happen after the network failure
isfixed and connectivity is restored between these two clusters? Will these two clusters merge into one again? If they do,
how are the data conflicts resolved, because you might end up having two different values for the same key in the same
map?"

Here is how Hazelcast deals with it:

1. The oldest member of the cluster checks if there is another cluster with the same group-name and group-password in
the network.

2. If the oldest member founds such cluster, then figures out which cluster should merge to the other.
3. Each member of the merging cluster will do the followings

» pause (Hazel cast I nst ance. get Li fecycl eServi ce() . pause())

take locally owned map entries

close al its network connections (detach from its cluster)

join to the new cluster

» send merge request for each itslocally owned map entry

40

Configuration

» resume (Hazel cast | nstance. get Li fecycl eService().resune())

So each member of the merging cluster is actually rejoining to the new cluster and sending merge request for each its
locally owned map entry.

Q: Which

cluster will mergeinto the other?

A. Smaller cluster will merge into the bigger one. If they have equal number of members then a hashing algorithm
determines the merging cluster.

Q. Each cluster may have different versions of the same key in the same map. How is the conflict resolved?

A. Destination cluster will decide how to handle merging entry based on the Mer gePol i cy set for that map. There are
built-in merge policiessuch ashz. NO_ MERGE, hz. ADD _NEW ENTRY and hz. LATEST UPDATE but you can
develop your own merge policy by implementingcom hazel cast . ner ge. Mer gePol i cy. You should register your

custom merge policy in the configuration so that Hazelcast can find it by name.

public interface MergePolicy {

| **

*

Returns the value of the entry after the merge
of entries with the sane key. Returning val ue can be
You shoul d consider the case where existingEntry is null.

@ar am mapNane name of the map

@aram nergi ngEntry entry nerging into the destination cluster

@aram exi stingEntry existing entry in the destination cluster

@eturn final value of the entry. If returns null then no change on the entry.
/

Obj ect nmerge(String mapNanme, MapEntry mergi ngEntry, MapEntry existingEntry);

EE T

Hereis how merge policies are registered and specified per map.

<hazel cast >

<map nane="defaul t">

<backup- count >1</ backup- count >

<evi cti on- pol i cy>NONE</ evi cti on-pol i cy>

<max- si ze>0</ max-si ze>

<evi cti on- per cent age>25</ evi cti on- per cent age>

<l ==
Wil e recovering fromsplit-brain (network partitioning),
map entries in the small cluster will nerge into the bigger cluster
based on the policy set here. Wien an entry nerge into the
cluster, there mght an existing entry with the sanme key already.
Val ues of these entries mght be different for that sane key.
Wi ch val ue should be set for the key? Conflict is resolved by
the policy set here. Default policy is hz. ADD NEW ENTRY

There are built-in nerge policies such as
hz. NO_MERGE ; no entry will nerge.
hz. ADD NEW ENTRY ; entry will be added if the nerging entry's key
doesn't exist in the cluster.

hz. H GHER_HI TS ; entry with the higher hits w ns.
hz. LATEST_UPDATE ; entry with the | atest update w ns.

===

<mer ge- pol i cy>MY_MERGE_POLI CY</ ner ge- pol i cy>

</ map>

<ner ge- pol i ci es>
<map- ner ge- pol i cy nanme="MW_MERGE PCLI CY" >
<cl ass- nane>com acne. MyOmnMer gePol i cy</ cl ass- nanme>
</ map- ner ge- pol i cy>
</ mer ge-polici es>

</ hazel cast >

41

Configuration

11.6. Wildcard Configuration

Hazel cast supports wildcard configuration of Maps, Queues and Topics. Using an asterisk (*) character in the name,
different instances of Maps, Queues and Topics can be configured by a single configuration.

Note that, with alimitation of a single usage, asterisk (*) can be placed anywhere inside the configuration name.

For instance amap named 'com hazel cast . t est . mymap' can be configured using one of these configurations;

<map nane="com hazel cast.test.*">

</ map>

<map nanme="com hazel *">

</ map>

<map nanme="*.test.nymap">

</ map>

<map nanme="com *test.nymap">
</ map>

Or aqueue'com hazel cast .t est. nyqueue

<queue nane="*hazel cast.test. nyqueue">

</ queue>

<gueue nane="com hazel cast. *. nyqueue" >

</ queue>

11.7. Advanced Configuration Properties

There are some advanced configuration properties to tune some aspects of Hazelcast. These can be set as property name
and value pairs through configuration xml, configuration APl or VM system property.

e Configuration xml

<hazel cast xsi:schemalLocati on="http://ww. hazel cast.com schema/ confi g hazel cast-basi c. xsd"
xm ns="http://ww. hazel cast. conm schema/ confi g"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >

<properties>

<property name="hazel cast. property.foo">val ue</ property>
</ properties>
</ hazel cast >

42

Configuration

e Configuration API

Config cfg = ... ;
cfg.set Property("hazel cast. property.foo", "value");

* System Property

1. Using VM parameter: j ava - Dhazel cast. property. f oo=val ue

2. Using System class: Syst em set Property("hazel cast. property.foo", "value");
Table11.1. Properties Table
Property Name Description
hazel cast. nancent er. enabl ed Enable Hazel cast Manag
service
hazel cast. mentache. enabl ed Enable Memcache client
hazel cast.rest. enabl ed Enable REST client reqL
hazel cast. | oggi ng. type Name of logging framew
hazel cast. map. | oad. chunk. si ze Chunk size for MapL oac
hazel cast.in.thread.priority Hazelcast Input Thread |
hazel cast.out.thread.priority Hazelcast Output Threac
hazel cast.service.thread.priority Hazelcast Service Threa
hazel cast. nerge. first.run. del ay. seconds Inital run delay of split b
hazel cast. nerge. next. run. del ay. seconds Run interval of split brai
hazel cast.redo.wait.mllis Wait time before aredo
hazel cast. socket. bi nd. any Bind node socket addres
hazel cast. socket . receive. buffer.size Socket receive buffer siz
hazel cast. socket. send. buffer. size Socket send buffer sizei
hazel cast. socket. keep. al i ve Socket set keep alive
hazel cast. socket. no. del ay Socket set TCP no delay
hazel cast. shut downhook. enabl ed Enable Hazelcast shutdo
hazel cast.wait.seconds. before.join Wait time before join op
hazel cast. max. wai t. seconds. before.join Maximum wait time bef
hazel cast. heartbeat.interval .seconds Heartbeat send interval i
hazel cast. max. no. heart beat . seconds Max timeout of heartbea
hazel cast.icnp. enabl ed Enable ICMP ping
hazel cast.initial.mn.cluster.size Initial expected cluster s
hazel cast.initial.wait.seconds Inital time in seconds to
hazel cast.restart.on. max.idl e Restart node if serviceth
hazel cast . max. no.
hazel cast. map. partition. count Distributed map partitior
hazel cast . map. max. backup. count Maximum map backup r
hazel cast. map. renove. del ay. seconds Remove delay timein se
hazel cast. nap. cl eanup. del ay. seconds Cleanup process delay ti
hazel cast. executor. query. thread. count Query executor servicer

43

http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp

Configuration

Property Name

Description

hazel cast. executor. event .t hread. count Event executor servicen
hazel cast. executor. m gration.thread. count Migration executor servi
hazel cast. executor.client.thread. count Client executor servicer
hazel cast. executor.store.thread. count Map store executor servi

hazel cast.l og. state Log cluster debug state
Enable IMX agent

Enable detailed views or

hazel cast . nx

hazel cast.jnx. detail ed

hazel cast. nt. map. excl udes Comma seperated map n
[http://www.hazel cast.cc
hazel cast. nt. queue. excl udes Comma seperated queue
[http://www.hazel cast.cc
hazel cast. nt. t opi c. excl udes Comma seperated topic |
[http://www.hazel cast.cc
hazel cast . versi on. check. enabl ed Enable Hazel cast new ve

hazel cast.topic.flow control.enabl ed Enable waiting for the tc

hazel cast. nt. max. vi si bl e. i nst ance. count Management Center may

11.8. Logging Configuration

Hazelcast has a flexible logging configuration and doesn't depend on any logging framework except JDK logging. It has
in-built adaptors for a number of logging frameworks and al so supports custom loggers by providing logging interfaces.

To use built-in adaptors you should set hazel cast . | oggi ng. t ype property to one of predefined types below.
 jdk: JDK logging (default)

* log4j: Logdj

o df4j: SIf4j

» none: disablelogging

You canset hazel cast . | oggi ng. t ype through configuration xml, configuration APl or VM system property.

» Configuration xml

<hazel cast xsi:schemaLocati on="http://ww. hazel cast.com schena/ confi g hazel cast - basi c. xsd"
xm ns="htt p://ww. hazel cast. com schena/ confi g"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" >

<properties>
<property nanme="hazel cast.| oggi ng. t ype">j dk</ pr operty>

</ properties>
</ hazel cast >

» Configuration API

Config cfg = ... ;
cfg.set Property("hazel cast. | oggi ng.type", "log4j");

http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp

Configuration

e System Property
1. Using VM parameter: j ava - Dhazel cast. | oggi ng. t ype=sl f 4]
2. Using System class: Syst em set Property("hazel cast. | oggi ng.type", "none");

To use custom logging feature you should implement com hazel cast . | oggi ng. Logger Fact ory and
com hazel cast . | oggi ng. | Logger interfaces and set system property hazel cast . | oggi ng. cl ass to your
custom Logger Fact or y class name.

java -Dhazel cast. | oggi ng. cl ass=f 0o. bar. MyLoggi ngFact ory

You can aso listen logging events generated by Hazel cast runtime by registering LogLi st ener sto
Loggi ngSer vi ce.

LogLi stener |istener = new LogListener() {
public void | og(LogEvent |ogEvent) {
// do sonethi ng
}
}

Loggi ngServi ce | oggi ngServi ce = Hazel cast. get Loggi ngServi ce();
| oggi ngSer vi ce. addLogLi st ener (Level . I NFO, | i stener):

Through the Loggi ngSer vi ce you can get the current used I Logger implementation and log your own messages too.

45

Chapter 12. Hibernate Second Level Cache

Hazelcast provides distributed second level cache for your Hibernate entities, collections and queries. Hazel cast has two
implementations of Hibernate 2nd level cache, one for hibernate-pre-3.3 and one for hibernate-3.3.x versions. In your
Hibernate configuration file (ex: hibernate.cfg.xml), add these properties;

To enable use of second level cache

<property nanme="hi bernate. cache. use_second_| evel _cache">true</ property>

To enable use of query cache

<property nanme="hi bernate. cache. use_query_cache">true</ property>

And to force minimal putsinto cache

<property nanme="hi bernate. cache. use_ni ni nmal _put s">true</ property>

To configure Hazelcast for Hibernate, it is enough to put configuration file named hazel cast . xmi into root of your
classpath. If Hazelcast can not find hazel cast . xm thenit will use default configuration from hazelcast.jar.

Y ou can define custom named Hazelcast configuration xml file with one of these Hibernate configuration properties.
<property nanme="hi bernate. cache. provi der_configuration_file_resource_path">hazel cast-custom config.xmn </ pr
or

<property name="hi bernate. cache. hazel cast. configurati on_fil e_path">hazel cast-custom confi g. xm </ property>

Y ou can set up Hazel cast to connect cluster as Super Client. Super Client is a member of the cluster, it has socket
connection to every member in the cluster and it knows where the data, but does not contain any data.

<property nanme="hi bernate. cache. hazel cast. use_super _client">true</ property>

Y ou can set up Hazel cast to connect cluster as Native Client. Native client is not member and it connects to one of
the cluster members and delegates all cluster wide operationsto it. When the relied cluster member dies, client will
transparently switch to another live member. _(Native Client property takes precedence over Super Client property.)

<property nanme="hi bernate. cache. hazel cast.use_native_client">true</property>

To setup Native Client properly, you should add Hazel castgr oup-name, group-password and cluster member hosts
properties. Member hosts are comma-seperated addresses. Additionally you can add port number at the end of each
address.

<property name="hi bernate. cache. hazel cast. native_client_hosts">10. 34.22. 15, 127. 0. 0. 1: 5703</ pr operty>
<property nanme="hi bernate. cache. hazel cast. nati ve_cli ent_group">dev</ property>
<property name="hi bernate. cache. hazel cast. nati ve_cli ent_passwor d">dev- pass</ property>

To use Native Client you should add hazel cast - cl i ent - <ver si on>. j ar into your classpath.
Read more about NativeClient & SuperClient
If you are using one of Hibernate pre-3.3 version, add following property.

<property name="hi bernate. cache. provi der _cl ass">com hazel cast . hi ber nat e. provi der. Hazel cast CachePr ovi der </ p

If you are using Hibernate 3.3.x (or newer) version, you can choose to use either configuration property above
(Hibernate has a built-in bridge to use old-style cache implementations) or following property.

<property nanme="hi bernate. cache. region. factory_cl ass">com hazel cast . hi ber nat e. Hazel cast CacheRegi onFact ory<

46

Hibernate Second Level Cache

Hazelcast creates a seperate distributed map for each Hibernate cache region. So these regions can be configured easily
via Hazel cast map configuration. Y ou can define backup,eviction, TTL and Near Cache properties.

Backup Configuration
Eviction And TTL Configuration

Near Cache Configuration

Hibernate has 4 cache concurrency strategies:read-only,read-write, nonstrict-read-write andtransactional. But Hibernate
does not forces cache providers to support all strategies. And Hazel cast supports first three (read-only,read-write,
nonstrict-read-write) of these four strategies. Hazelcast has not support for transactional strategy yet.

If you are using xml based class configurations, you should add a cache element into your configuration with usage
attribute with one ofread-only,read-write, nonstrict-read-write.

<cl ass nane="eg. | nmut abl e" mnut abl e="fal se">
<cache usage="read-only"/>

</ cl ass>
<cl ass nane="eg.Cat" >

<cache usage="read-wite"/>

<set name="kittens" ... >
<cache usage="read-wite"/>

</ set>
</ cl ass>

If you are using Hibernate-Annotations then you can add class-cache or collection-cache element into your Hibernate
configuration file with usage attribute with one of read only,read/write, nonstrict read/write.

<cl ass- cache usage="read-onl y" cl ass="eg. | mutabl e"/>
<cl ass-cache usage="read-wite" class="eg.Cat"/>
<col | ection-cache col |l ecti on="eg. Cat.kittens" usage="read-wite"/>

OR

Alternatively, you can put Hibernate Annotation's @Cache annotation on your entities and collections.

@ache(usage = CacheConcurrencyStrat egy. READ_ WRI TE)
public class Cat inplenments Serializable {

}

Accessing underlying Hazel cast | nst ance ispossible by using Hazel cast Accessor.

Sessi onFactory sessionFactory = ...;
Hazel cast | nst ance hazel cast| nstance = Hazel cast Accessor. get Hazel cast | nst ance(sessi onFact ory)

And now last thing you should be aware of isto drop hazel cast - hi ber nat e- <ver si on>. j ar into your
classpath.

47

Chapter 13. Spring Integration

Y ou can declare Hazel cast beans for Spring context using beans namespace (default spring beans namespace) as well
to declare hazelcast maps, queues and others. Hazelcast-Spring integration requires either hazelcast-spring jar or
hazelcast-all jar in the classpath.

<bean i d="instance" cl ass="com hazel cast. core. Hazel cast" factory-nmethod="newHazel cast| nst ance">
<const ruct or - ar g>
<bean cl ass="com hazel cast. confi g. Confi g">
<property name="groupConfig">
<bean cl ass="com hazel cast. confi g. G oupConfi g">
<property nanme="nane" val ue="dev"/>
<property name="password" val ue="pwd"/>
</ bean>
</ property>
<!-- and so on ... -->
</ bean>
</ constructor-arg>
</ bean>

<bean i d="map" factory-bean="instance" factory-method="get Map">
<constructor-arg val ue="nmap"/>
</ bean>

Hazelcast has Spring integration (requires version 2.5 or greater) since 1.9.1 using hazelcast namespace.
* Add namespace xmins: hz="http://mww.hazel cast.com/schema/config” to beans tag in context file:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: hz="http://ww. hazel cast. com schena/ confi g"

Xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. hazel cast.com schema/ config
http://ww. hazel cast. com schenma/ confi g/ hazel cast - spri ng. xsd" >

 Use hz namespace shortcuts to declare cluster, itsitems and so on.
After that you can configure Hazel cast instance (node):

<hz: hazel cast id="instance">
<hz: confi g>
<hz: group nane="dev" password="password"/>
<hz: properties>
<hz: property name="hazel cast.nerge.first.run.del ay. seconds">5</hz: property>
<hz: property name="hazel cast. nerge. next.run. del ay. seconds" >5</ hz: property>
</ hz: properties>
<hz: network port="5701" port-auto-increment="fal se">
<hz:j oi n>
<hz: mul ti cast enabl ed="fal se"
mul ticast-group="224.2.2.3"
mul ticast-port="54327"/>
<hz:tcp-ip enabl ed="true">
<hz: menber s>10. 10. 1. 2, 10. 10. 1. 3</ hz: menber s>
</hz:tcp-ip>
</ hz:joi n>
</ hz: net wor k>
<hz: map nane="rmap'
backup- count =" 2"
max- si ze="0"
evi cti on- per cent age="30"
read- backup-dat a="tr ue"
cache-val ue="true"
evi ction-pol i cy="NONE"
mer ge- pol i cy="hz. ADD_NEW ENTRY"/ >
</ hz: config>
</ hz: hazel cast >

48

Spring Integration

As of version hazelcast 1.9.3, you can easily configure map-store and near-cache too. (For map-store you should set
either class-name or implementation attribute.)

<hz: confi g>
<hz: map nane="mapl">
<hz: near-cache tine-to-live-seconds="0" max-idl e-seconds="60"
evi ction-policy="LRU'" nmax-size="5000" invalidate-on-change="true"/>

<hz: map- store enabl ed="true" cl ass-nane="com f o0o. DunmySt or e"
write-del ay- seconds="0"/>
</ hz: map>

<hz: map nane="map2">
<hz: map- store enabl ed="true" inplenmentati on="dumyMapSt ore"
write-del ay- seconds="0"/>
</ hz: map>

<bean i d="dunmyMapSt ore" cl ass="com foo. DummySt ore" />
</ hz: config>

It's possible to use placeholdersinstead of concrete values. For instance, use property file app-default.properties for group
configuration:

<bean cl ass="org. spri ngfranmework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="| ocati ons">
<list>
<val ue>cl asspat h: / app- defaul t. properti es</val ue>
</list>
</ property>
</ bean>
<hz: hazel cast id="instance">
<hz: config>
<hz: group
name="$%{ cl uster. group. nanme}"
passwor d="${cl ust er. group. password}"/ >
<l-- ... -->
</ hz:config>
</ hz: hazel cast >

Similar for client

<hz:client id="client"
group- name="${cl ust er. group. nane}" group- passwor d="${cl ust er. group. passwor d} ">
<hz: menber s>10. 10. 1. 2: 5701, 10.10. 1. 3:5701</ hz: nenber s>

</ hz:client>

Y ou can declare beans for the following Hazel cast objects:
e map

o multiMap

* queue

* topic

e set

o list

* executorService

» idGenerator

atomicNumber

Example;

49

Spring Integration

<hz: map i d="nmap" instance-ref="instance" nane="map"/>

<hz:mul ti Map i d="nul ti Map" instance-ref="instance" nanme="nul ti vap"/>

<hz: queue i d="queue" instance-ref="instance" name="queue"/>

<hz:topic id="topic" instance-ref="instance" name="topic"/>

<hz:set id="set" instance-ref="instance" nane="set"/>

<hz:list id="list" instance-ref="instance" name="list"/>

<hz: execut or Servi ce i d="executor Servi ce" instance-ref="instance" nane="executor Service"/>
<hz:idGenerator id="idCGenerator" instance-ref="instance" name="idGenerator"/>

<hz: at om cNunber id="atom cNunber" instance-ref="instance" nane="atom cNunber"/>

If you are using Hibernate with Hazel cast as 2nd level cache provider, you can easily create CachePr ovi der or
Regi onFact or y instances within Spring configuration. That way it is possibleto use same Hazel cast | nst ance as
Hibernate L2 cache instance.

<hz: hi ber nat e- cache- provi der id="cacheProvi der" instance-ref="instance" />

<bean i d="sessi onFactory" class="org. springfranmework. orm hi ber nat e3. Local Sessi onFact or yBean" scope="sing
<property nanme="dat aSource" ref="dataSource"/>
<property nane="cacheProvi der" ref="cacheProvider" />

</ bean>

Or by Spring version 3.1

<hz: hi bernate-regi on-factory id="regi onFactory" instance-ref="instance" />

<bean i d="sessi onFactory" class="org. springfranmework. orm hi bernat e3. Local Sessi onFact or yBean" scope="si ng
<property name="dat aSour ce" ref="dataSource"/>
<property nanme="cacheRegi onFactory" ref="regi onFactory" />

</ bean>

50

Chapter 14. Clients

There are currently three ways to connect to arunning Hazel cast cluster:
1. Native Clients
2. Memcache Clients

3. REST Client

14.1. Native Client

Native Client enables you to do all Hazelcast operations without being a member of the cluster. It connects to one of
the cluster members and delegates all cluster wide operationsto it. When the relied cluster member dies, client will
transparently switch to another live member.

There can be hundreds, even thousands of clients connected to the cluster.

Imagine a trading application where all the trading data stored and managed in a 10 node Hazelcast cluster. Swing/Web
applications at traders desktops can use Native Java Client to access and modify the datain the Hazelcast cluster.

Currently Hazelcast has Native Java Client available. The next client implementation will be CSharp.
Super Client vs. Native Client

Super Client is a member of the cluster, it has socket connection to every member in the cluster and it knows where the
datais so it will get to the data much faster. But Super Client has the clustering overhead and it must be on the same data
center even on the same RAC. However Native client is not member and relies on one of the cluster members. Native
Clients can be anywherein the LAN or WAN. It scales much better and overhead is quite less. So if your clients are less
than Hazel cast nodes then Super client can be an option; otherwise definitely try Native Client. Asarule of thumb: Try
Native client first, if it doesn't perform well enough for you, then consider Super client.

The following picture describes the clients connecting to Hazelcast Cluster. Note the difference between Super Client and
Java Client

A

51

Clients

14.1.1. Java Client

Y ou can do amost all hazelcast operations with Java Client. It already implements the same interface. Y ou must include
hazel cast-client.jar into your classpath.

import com hazel cast. core. Hazel cast | nst ance;
import com hazel cast. client. Hazel castd i ent;

inmport java.util. Mp;
inmport java.util.Collection;

Hazel cast | nstance client = Hazel castd i ent.newHazel castdient("dev", "dev-pass",

/1Al Cluster Operations that you can do with ordi nary Hazel cast| nstance
Map<String, Custoner> mapCustoners = client.get Map("custoners");

mapCust oners. put ("1, new Custoner("Joe", "Smth"));
mapCust oners. put ("2, new Custoner("Ali", "Selan));
mapCust oner s. put ("3", new Custoner("Avi", "Noyan"));

Col | ecti on<Cust oner > col Cust oners = napCust oners. val ues();
for (Custonmer custoner : col Custoners) {

/| process custoner
}

14.1.2. CSharp Client

CSharp client is not available yet.

14.2. Memcache Client

A Memcache client written in any language can talk directly to Hazelcast cluster. No additional configuration is required.
Here isan example: Let's say your cluster's members are:

Menmbers [5] {

}

And you have a PHP application that uses PHP Memcache client to cache things in Hazelcast. All you needto dois

Menber [10.20.17. 1: 5701]
Menber [10.20.17.2: 5701]
Menber [10.20.17. 4: 5701]
Menber [10.20.17.3: 5701]
Menber [10.20.17.5: 5701]

"10.90.0.1",

"10.90.0.2

have your PHP memcache client connect to one of these members. It doesn't matter which member the client connects to
because Hazelcast cluster 1ooks as one giant machine (Single System Image). PHP client code sample:

<?php

?>

$nmentache = new Mentache;

$nencache- >connect (' 10.20.17. 1", 5701) or die ("Could not connect");
$nmenctache- >set (' keyl','val uel', 0, 3600);

$get _result = $nenctache->get (' keyl'); //retrieve your data

var _dunp($get _result); //show it

Notice that memcache client is connecting to 10. 20. 17. 1 and using port 5701. Java client code sample with
SpyMemcached client:

Mentachedd i ent client = new Mentachedd i ent (AddrUtil . get Addresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("keyl", 3600, "valuel");
Systemout.println(client.get("keyl"));

An entry written with a memcache client can be read by another memcache client written in another language.

14.3. Rest Client

Let's say your cluster's members are:

52

Clients

Menmbers [5] {
Menmber [10.20.17.1:5701]
Menber [10.20.17.2:5701]
Menmber [10.20.17. 4:5701]
Menber [10.20.17.3:5701]
Menber [10.20.17.5:5701]

}

And you have a distributed map named 'stocks'. Y ou can put anew key1/ val uel entry into this map by issuing
HTTP POST cadltohtt p://10.20.17. 1: 5701/ hazel cast/rest/ maps/ st ocks/ keyl URL. Your

http post call's content body should contain the value (valuel). Y ou can retrieve this entry viaHTTP CGET call to
http://10.20.17.1: 5701/ hazel cast/rest/ maps/ st ocks/ key1l. You can aso retrieve this entry from
another member suchasht t p: //10. 20. 17. 3: 5701/ hazel cast/rest/ maps/ st ocks/ key1l.

RESTful access is provided through any member of your cluster. So you can even put an HTTP load-balancer in-front of
your cluster members for |oad-balancing and fault-tolerance.

Now go ahead and install a REST plugin for your browser and explore further.

Hazelcast also stores the mime-type of your POST request if it contains any. So if, for example, you post binary of an
image file and set the mime-type of the HTTP POST request to i mage/ j peg then this mime-type will be part of the
response of your HTTP GET request for that entry.

Let's say you also have atask queue named 'tasks. Y ou can offer a new item into the queue viaHTTP POST and take and
item from the queue viaHTTP DELETE.

HTTP PCST http://10.20.17.1: 5701/ hazel cast/rest/ queues/tasks <CONTENT> means
Hazel cast . get Queue("t asks") . of f er (<CONTENT>) ;

and HTTP DELETE http://10.20.17. 1: 5701/ hazel cast/rest/ queues/t asks/ 3 means
Hazel cast. get Queue("tasks").poll (3, SECONDS);

Note that you will have to handle the failures on REST polls as thereis no transactional guarantee.

53

Chapter 15. Internals
15.1. Internals 1: Threads

In this section, we will go over the Hazelcast's internal threads, the client threads executing Hazelcast APl and how these
threads work together in Hazel cast. When devel oping Hazel cast, you should know which thread will execute your code,
which variables are local to that thread, and how you should interact with other threads.

1. Client Threads:

Client threads are your threads, user's application threads, and or user's application/web server's threads that are executing
Hazelcast API. User's threads that are client to Hazelcast. For example, Hazel cast . get Queue(" myqueue"),

map. put (key, value), set.size() calsareinitiated and finalized in the client threads. Serialization of

the objects also happens in the client threads. This also eliminates the problems associated with classloaders. Client
threadsinitiate the calls, serialize the objects into Hazelcast com hazel cast . ni 0. Dat a object which holds a

j ava. ni 0. Byt eBuf f er . Dat a object is the binary representation of the application objects (key, value, item, callable
objects). All Hazelcast threads such as Ser vi ceThr ead, | nThr ead and Qut Thr ead work with Dat a objects; they
don't know anything about the actual application objects. When the calls are finalized, if the return type is an object,

Dat a object isreturned to the client thread and client thread then will deserialize the Dat a (binary representation) back
to the application objects.

For each client thread, thereisacom hazel cast . i npl . Thr eadCont ext thread-local instance attached which
contains thread context information such as transaction.

2.Servi ceThr ead:

Servi ceThr ead, implemented at com hazel cast. i npl . O ust er Ser vi ce, isthe most significant thread in
Hazelcast. Almost all none-10 operations happensin thisthread. Ser vi ceThr ead servesto local client calls and the
calls from other members.

If you look at the Ol ust er Ser vi ce classyou will seeit is constantly dequeueing its queue and
processing local and remote events. Cl ust er Ser vi ce queue receives loca eventsin the form of

com hazel cast . i npl . BaseManager . Processabl e instances and remote events in the form of
com hazel cast . ni 0. Packet Queue. Packet instancesfrom| nThr ead.

All distributed data structures (queue, map, set) are eventually modified in this thread so there is -no- synchronization
needed when data structures are accessed/modified.

It isimportant to understand that client threads initiates/finalizes the calls, infout threads handles the socket read/writes
and Ser vi ceThr ead does the actually manipulation of the data structures. Thereis no other threads allowed to touch
the data structures (maps, queues) so that there is no need to protect the data structures from multithread access: no
synchronization when accessing data structures. It may sound inefficient to allow only one thread to do all data structure
updates but here is the logic behind it (Please note that numbers given here are not exact but should give you an idea.): If
there is only one member (no 10), Ser vi ceThr ead utilization will be about 95% and it will process between 30K and
120K operations per second, depending on the server. As the number of membersin the cluster increases, 10 Threads will
be using more CPU and eventually Ser vi ceThr ead will go down to 35% CPU utilization so Ser vi ceThr ead will
process between 10K and 40K operations per second. Ser vi ceThr ead CPU utilization will be at about 35% regardless
of the size of the cluster. (The only thing that can affect that would be the network utilization.) This also means that total
number of operations processed by the entire cluster will be between N* 10K and N*40K; N being the number of nodesin
the cluster. About half of these operations will be backup operations (assuming one backup) so client threads will realize
between N*5K and N* 20K operations per second in total. Since thereis only one thread accessing the data structures,
increase in the number of nodes doesn't create any contention so access to the data structures will be always at the same
speed. Thisis very important for Hazelcast's scal ability.

This also makes writing code super easy because significant portion of the code is actually single-threaded so it isless
error-prone and easily maintainable.

No synchronization or long running jobs are allowed in this thread. All operations running in this thread have to complete
in microseconds.

Internals

3.1 nThr ead and Cut Thr ead:

Hazel cast separates reads and writes by having two separate threads; one for reading, and the other for writing. Eache
10O thread usesits own NI Oselector instance. | nThr ead handles OP_ACCEPT and OP_READ socket operations while
Qut Thr ead handles OP_CONNECT and OP_WRI TE operations.

Each thread has its queue that they degueue to register these operations with their selectors so operation registrations and
operation processing happensin the same threads.

| nThr ead'srunnableisthecom hazel cast. ni 0. I nSel ect or and Qut Thr ead's runnable isthe
com hazel cast . ni 0. Qut Sel ect or . They both extends Sel ect or Base which constantly processesits
registration queue (‘sel ectorQueue’) and the selectedK eys.

Members are connected to each other via TCP/ | P. If there are N number of membersin the cluster then there will

be N* (N- 1) connection end point and (N* (N- 1)) / 2 connections. There can be only one connection between two
members, meaning, if m2 creates a connection to m1, m1 doesn't create another connection to m2 and the rule hereis that
new members connect to the older members.

If you look at thecom hazel cast. ni 0. Connect i on, you will seethat each connection is representing a socket
channel and hascom hazel cast . ni 0. ReadHandl er and Wi t eHandl er instances which are attached

to the socket channel's OP_READ and OP_\WRI TE operation selectionK eys respectively. When | nSel ect or

selects OP_READ selection key (when this operation is ready for the selector), | nSel ect or will get the attached
ReadHandl er instance from the selectionKey and call its ReadHand! er . handl e() method. Same for the

Qut Sel ect or . When Qut Sel ect or selects OP_\WRI TE selection key (when this operation is ready for the
selector), Qut Sel ect or will get the attached W i t eHandl er instance from the selectionKey and call its

W it eHandl er. handl e() method.

When Ser vi ceThr ead wants to send an Invocation instance to a member, it will

1. get the Connection for this member by calling
com hazel cast . ni 0. Connecti onManager . get (). get Connecti on(addr ess)

2. check if the connection is live; Connection.live()

3. if live, it will getthe W i t eHandl er instance of the Connection

4. enqueue the invocation into the W i t eHandl er 'squeue

5. and add registration task into Qut Sel ect or 's queue, if necessary

6. Qut Sel ect or processesthe OP_WRI TE operation registration with its selector

7. when the selector isready for the OP_WRI TE operation, Qut Sel ect or will gettheW i t eHandl er instance from
selectionKey and call itsW i t eHandl er . handl e()

seecom hazel cast . i npl . BaseManager . send(Packet, Address).

seecom hazel cast. ni 0. Sel ect or Base. run().

Connections are always registered/interested for OP_READ operations. When | nSel ect or isready for reading from
asocket channel, it will get the ReadHandl er instance from the selectionKey and call its handle() method. handle()
method will read Invocation instances from the underlying socket and when an Invocation instance is fully read, it will
engueue it into Ser vi ceThr ead's(Cl ust er Ser vi ce class) queue to be processed.

4. Mul ti cast Thr ead:

If multicast discovery is enabled (thisis the default), and node is the master (oldest member) in the cluster then

Mul ti cast Thr ead is started to listen for join requests from the new members. When it receives join request
(com hazel cast. ni 0. Mul ti cast Servi ce. Joi nl nf o class), it will check if the nodeisallowed tojain, if so,

55

Internals

it will send its address to the sender so that the sender node can create a TCP/ | P connection to the master and send a
Joi nRequest .

5. Executor Threads:

Each node employsalocal Execut or Ser vi ce threads which handle the event listener calls and distributed executions.
Number of core and max threads can be configured.

15.2. Internals 2: Serialization

All your distributed objects such as your key and value objects, objects you offer into distributed queue and your
distributed callable/runnable objectshaveto be Seri al i zabl e.

Hazelcast serializes all your objectsinto an instance of com hazel cast . ni o. Dat a. Dat a isthe binary
representation of an object and it holdslist of j ava. ni 0. Byt eBuf f er instances which are reused. When Hazel cast
serializes an object into Dat a, it first checks whether the object is an instance of well-known, optimizable object such
asString, Long, Integer, byte[], ByteBuffer, Date.lIfnot, itthen checkswhether the objectisan
instance of com hazel cast . ni 0. Dat aSeri al i zabl e. If not, Hazelcast uses standard java serialization to convert
the object into binary format. Seecom hazel cast. ni 0. Seri al i zer for details.

So for faster serialization, Hazelcast recommendstouseof Stri ng, Long, |nteger, byte[] objectsorto
implement com hazel cast . ni 0. Dat aSeri al i zabl e interface. Hereis an example of a classimplementing
com hazel cast. ni 0. Dat aSeri al i zabl e interface.

public class Address inplenents com hazel cast. ni o. DataSeri al i zabl e {
private String street;
private int zipCode;
private String city;
private String state;

public Address() {}
/lgetters setters..

public void witeData(DataQutput out) throws | OException {
out.writeUTF(street);

out.writelnt(zipCode);

out.witeUTF(city);

out.witeUTF(state);

}

public void readData (Datal nput in) throws | OException {
street = in.readUTF();
zi pCode = in.readlnt();
city = in.readUTF();
state = in.readUTF();
}
}

Letstake alook at another example which is encapsulating aDat aSeri al i zabl e field.

56

Internals

public class Enpl oyee inpl enments com hazel cast. ni o. Dat aSeri al i zabl e {
private String firstNang;
private String | ast Nang;
private int age;
private doubl e sal ary;
private Address address; //address itself is DataSerializable

public Enpl oyee() {}

/lgetters setters..

public void witeData(DataQutput out) throws | OException {
out.writeUTF(firstNane);

out.writeUTF(| ast Nane) ;

out.writelnt(age);

out.writeDoubl e (salary);

address. witeData (out);

}

public void readData (Datal nput in) throws | OException {
firstName = in.readUTF();

last Name = in.readUTF();

age = in.readlnt();

sal ary = in.readDoubl e();

addr ess = new Address();
/1 since Address is DataSerializable let it read its own internal state
address.readbData (in);
}
}

Asyou can see, sinceaddr ess fielditself isDat aSeri al i zabl e, itiscallingaddress. wi t eDat a(out) when
writing and addr ess. r eadDat a(i n) when reading.

Caution: Hazelcast serialization is done on the user thread and it assumes that there will be only one object serialization
at atime. So putting any Hazel cast operation that will require to serialize anything else will brake the serialization. For
Example: Putting

Hazel cast. get Map("anyMap") . put ("key", "dummy val ue");

linein readData or writeData methods will breake the serialization. If you have to perform such an operation, at least it
should be performed in another thread which will force the serialization to take on different thread.

15.3. Internals 3: Cluster Membership

It isimportant to note that Hazelcast is a peer to peer clustering so there is no 'master’ kind of server in Hazelcast. Every
member in the cluster is equal and has the same rights and responsibilities.

When a node starts up, it will check to seeif there is already a cluster in the network. There are two ways to find this out:

* Multicast discovery: If multicast discovery is enabled (that isthe defualt) then the node will send ajoin request in the
form of amulticast datagram packet.

» Unicast discovery: if multicast discovery is disabled and TCP/ | P join is enabled then the node will try to connect to he
IPs defined inthehazel cast . xm configuration file. If it can successfully connect to at least one node, then it will
send ajoin request through the TCP/ | P connection.

If there is no existing node, then the node will be the first member of the cluster. If multicast is enabled then it will start
amulticast listener so that it can respond to incoming join requests. Otherwise it will listen for join request coming via
TCP/ | P.

If there is an existing cluster already, then the oldest member in the cluster will receive the join request and check if the
request is for the right group. If so, the oldest member in the cluster will start the join process.

In the join process, the oldest member will:

» send the new member list to all members

57

Internals

« tell membersto sync datain order to balance the data load

Every member in the cluster has the same member list in the same order. First member is the oldest member so if the
oldest member dies, second member in the list becomes the first member in the list and the new oldest member.

Seecom hazel cast . i npl . Node andcom hazel cast. i npl . Cl ust er Manager for details.
Q. If, let say 50+, nodes are trying to join the cluster at the same time, are they going to join the cluster one by one?

No. As soon as the oldest member receives thefirst valid join request, it will wait 5 seconds for othersto join so that it
can join multiple membersin one shot. If there is no new node willing to join for the next 5 seconds, then oldest member
will start the join process. If a member |eaves the cluster though, because of a VM crash for example, cluster will
immediately take action and oldest member will start the data recovery process.

15.4. Internals 4: Distributed Map

Hazelcast distributed map is a peer to peer, partitioned implementation so entries put into the map will be almost evenly
partitioned onto the existing members. Entries are partitioned according to their keys.

Every key is owned by a member. So every key-aware operation, such asput, renove, get isrouted tothe member
owning the key.

Q. How does Hazelcast determine the owner of a key?

Hazelcast creates fixed number of virtual partitions (blocks). Partition count is set to 271 by default. Each key
fallsinto one of these partitions. Each partition is owned/managed by a member. Oldest member of the cluster
will assign the ownerships of the partitions and et every member know who owns which partitions. So at any
given time, each member knows the owner member of aeach partition. Hazel cast will convert your key object
tocom hazel cast . ni 0. Dat a then calculate the partition of the owner: parti ti on-of -t he-key =
hash(keyDat a) % PARTI TI ON_COUNT. Since each member(JVM) knows the owner of each partition, each
member can find out which member owns the key.

Q. Can | get the owner of akey?

Yes. Use Partition APl to get the partition that your key fallsinto and then get the owner of that partition. Note that owner
of the partition can change over time as new members join or existing members leave the cluster.

PartitionService partitionService = Hazel cast.getPartitionService();
Partition partition = partitionService.getPartition(key);
Menber owner Menber = partition.get Omer();

Locally owned entries can be obtained by caling map. | ocal KeySet () .
Q. What happenswhen a new member joins?

Just like any other member in the cluster, the oldest member also knows who owns which partition and what the oldest
member knows is always right. The oldest member is aso responsible for redistributing the partition ownerships when
anew member joins. Since there is new member, oldest member will take ownership of some of the partitions and
give them to the new member. It will try to move the least amount of data possible. New ownership information of all
partitions is then sent to all members.

Notice that the new ownership information may not reach each member at the same time and the cluster never stops
responding to user map operations even during joins so if a member routes the operation to awrong member, target
member will tell the caller to r e- do the operation.

If amember's partition is given to the new member, then the member will send al entries of that partition to the new
member (Migrating the entries). Eventually every member in the cluster will own almost same number of partitions, and
almost same number of entries. Also eventually every member will know the owner of each partition (and each key).

You can listen for migration events. M gr at i onEvent containsthepartiti onl d, ol dOmer, and newOnaner
information.

58

Internals

PartitionService partitionService = Hazel cast.getPartitionService();
partitionService.addM grati onLi stener(new M grationListener () {

public void migrationStarted(M grati onEvent m grati onEvent) {
System out. println(mgrati onEvent);

}

public void mgrationConpl eted(M grationEvent m grationEvent) {
System out. println(mgrati onEvent);
}
1)

Q. How about distributed set and list?

Both distributed set and list are implemented on top of distributed map. The underlying distributed map doesn't

hold value; it only knows the key. Items added to both list and set are treated as keys. Unlike distributed set,

since distributed list can have duplicate items, if an existing item is added again, copy Count of the entry

(com hazel cast . i mpl . Concurr ent MapManager . Recor d) isincremented. Also note that index based
methods of distributed list, such asLi st . get (i ndex) andLi st.i ndexOF (Obj ect), are not supported because it
istoo costly to keep distributed indexes of list items so it is not worth implementing.

Check out thecom hazel cast . i npl . Concur r ent MapManager classfor theimplementation. Asyou will see,
the implementation is lock-free because Concur r ent MapManager isasingleton and processed by only one thread, the

Servi ceThr ead.

59

Chapter 16. Miscellaneous

16.1. Common Gotchas

Hazelcast is the distributed implementation of several structures that exist in Java. Most of the time it behaves asyou
expect. However there are some design choices in Hazel cast that violate some contracts. This page will list those
violations.

1. equals() and hashCode() methods for the objects stored in Hazelcast

When you store akey, value in adistributed Map, Hazelcast serializes the key and value and stores the byte array
version of them in local ConcurrentHashMaps. And this ConcurrentHashM ap uses the equal's and hashCode methods
of byte array version of your key. So it does not take into account the actual equals and hashCode implementations of
your objects. So it isimportant that you choose your keys in a proper way. |mplementing the equals and hashCode is
not enough, it is also important that the object is always serialized into the same byte array. All primitive types, like;
String, Long, Integer and etc. are good candidates for keys to use in Hazelcast. An unsorted Set is an example of avery
bad candidate because Java Serialization may serialize the same unsorted set in two different byte arrays.

Note that the distributed Set and List storesits entries as the keys in a distributed Map. So the notes above apply to the
objectsyou store in Set and List.

16.2. Testing Cluster

Hazelcast allows you to create more than one member on the same JVM. Each member is called Hazel cast | nst ance
and each will have its own configuration, socket and threads, so you can treat them as totally separate members. This
enables usto write and run cluster unit tests on single VM. Asyou can use this feature for creating separate members
different applications running on the same JVM (imagine running multiple webapps on the same JV M), you can also use
this feature for testing Hazelcast cluster.

Let's say you want to test if two members have the same size of a map.

@est
public void test TwoMenber MapSi zes() {
/1 start the first nenber
Hazel cast | nstance hl = Hazel cast. newHazel cast| nstance(null);
/1 get the map and put 1000 entries
Map mapl = hl. get Map("testmap");
for (int i =0; i < 1000; i++) {
mapl. put (i, "value" + i);
}
/'l check the map size
assert Equal s(1000, mapl.size());
/] start the second nenber
Hazel cast | nstance h2 = Hazel cast. newHazel cast| nstance(null);
/1 get the sane map fromthe second nenber
Map map2 = h2.get Map("testmap");
/'l check the size of map2
assert Equal s(1000, map2.size());
/'l check the size of mapl again
assert Equal s(1000, mapl.size());

}

In the test above, everything happened in the same thread. When devel oping multi-threaded test, coordination of

the thread executions has to be carefully handled. Usage of Count DownLat ch for thread coordination is highly
recommended. Y ou can certainly use other things. Here is an example where we need to listen for messages and make
sure that we got these messages:

60

Miscellaneous

@est
public void testTopic() {
/] start two nenber cluster
Hazel cast | nstance hl = Hazel cast. newHazel cast| nstance(null);
Hazel cast | nstance h2 = Hazel cast. newHazel cast| nstance(null);
String topi cNanme = "Test Messages”;
/1l get a topic fromthe first nmenber and add a nessageli st ener
| Topi c<String> topicl = hl. get Topi c(topi cNane);
final CountDownLatch | atchl = new Count DownLatch(1);
topi cl. addMessageli st ener (new MessagelLi stener() {
public void onMessage(Cbj ect nsg) {
assert Equal s("Test1", nsQ);
I at chl. count Down() ;
}
});
/1l get a topic fromthe second nenber and add a nessageli st ener
| Topi c<String> topic2 = h2.get Topi c(topi cNane);
final CountDownLatch | atch2 = new Count DownLat ch(2);
topi c2. addMessageli st ener (new MessagelLi stener() {
public void onMessage(Cbj ect nsg) {
assert Equal s("Test1", nsQ);
| at ch2. count Down() ;
}
});
/'l publish the first nmessage, both should receive this
topicl. publish("Test1");
/'l shutdown the first nenber
h1. shut down() ;
/1 publish the second nessage, second nenber's topic should receive this
topi c2. publish("Test1");
try {
/'l assert that the first nmenber's topic got the nessage
assert True(l atchl. awai t (5, Ti nmeUnit.SECONDS)):;
/| assert that the second nenbers' topic got two nessages
assert True(l atch2. awai t (5, Ti meUnit.SECONDS));
} catch (InterruptedException ignored) {
}

You can surely start Hazel cast members with different configuration. Let's say we want to test if Hazel cast
Super d i ent can shutdown fine.

@est (ti meout = 60000)

public void shutdownSuperdient() {
/1 first config for normal cluster nenber
Config ¢l = new Xm Confi gBuilder().build();
cl. set Port Aut ol ncrenent (f al se);
cl.setPort(5709);
/'l second config for super client
Config c2 = new Xm ConfigBuilder().build();
c2. set Port Aut ol ncrenment (f al se);
c2.setPort(5710);
/'l make sure to super client = true
c2.setSuperCient(true);
/] start the normal nmenber with cl
Hazel cast | nstance hNornmal = Hazel cast.newHazel cast| nstance(cl);
/] start the super client with different configuration c2
Hazel cast | nst ance hSuper = Hazel cast.newHazel cast| nst ance(c2);
hNor mal . get Map("“defaul t"). put ("1", "first");
assert hSuper.get Map(“"defaul t").get("1").equal s("first");
hNor mal . shut down() ;
hSuper . shut down() ;

Also remember to call Hazel cast . shut downAl | () after each test case to make sure that there is no other running
member |eft from the previous tests.

61

Miscellaneous

@\fter
public void cleanup() throws Exception {
Hazel cast. shut downAl | ();
}

Need more info? Check out existing tests. [http://code.google.com/p/hazel cast/source/browse/trunk/hazel cast/src/test/javal
com/hazel cast/impl/ClusterTest.javal

16.3. Planned Features

Random order of planned features.

* Native C# Client

* Native C++ Client

* Ready-to-go Hazel cast Cache Server Image for Amazon EC2
» Symmetric Encryption support for Java Client

» Continuous query (events based on given criteria)

» Didtributedj ava. uti | . concurrent. Del ayQueue implementation.
 Cluster-wide receive ordering for topics.

e Security (JAAS).

* Distributed Tree implementation.

* Distributed Tuple implementation.

 Call interceptors for modifying the request or the response.

* Built-in file based storage.

History of existing featuresis available atRelease Notes.

16.4. Release Notes

Please see, Todo page for planned features.

194

* New WAN Replication (synchronization of separate active clusters)

» New Data Affinity (co-location of related entries) feature.

* New EC2 Auto Discovery for your Hazelcast cluster running on Amazon EC2 platform.

* New Distributed CountDownL atch implementation. [http://www.hazel cast.com/docs/1.9.4/javadoc/com/hazel cast/
core/l CountDownL atch.html]

* New Distributed Semaphore implementation. [http://www.hazel cast.com/docs/1.9.4/javadoc/com/hazel cast/core/
| Semaphore.html]

 Improvement: Distribution contains HTML and PDF documentation besides Javadoc.

* Improvement: Better TCP/IP and multicast join support. Handling more edge cases like multiple nodes starting at the
sametime.

« Improvement: Memcache protocol: Better integration between Java and Memcache clients. Put from memcache, get
from Java client.

62

http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html

Miscellaneous

Monitoring Tool is removed from the project.

200+ commits 25+ bug fixes and several other enhancements.

193

Re-implementation of distributed queue.

» Configurable backup-count and synchronous backup.

 Persistence support based on backing MapStore

* Auto-recovery from backing MapStore on startup.

Re-implementation of distributed list supporting index based operations.

New distributed semaphore implementation.

Optimized | Map. put Al | for much faster bulk writes.

New | Map. get Al | for bulk resdswhichiscalling MapLoader . | oadAl | if necessary.
New | Map. tryLockAndGet and | Map. put AndUnl ock API

New | Map. put Tr ansi ent API for storing only in-memory.

New | Map. addLocal EntryLi st ener () for listening locally owned entry events.
New | Map. f | ush() for flushing the dirty entriesinto MapStore.

New MapLoader . get Al | Keys API for auto-pre-populating the map when cluster starts.
Support for min. initial cluster size to enable equally partitioned start.

Graceful shutdown.

Faster dead-member detection.

19

Memcache interface support. Memcache clients written in any language can access Hazelcast cluster.
RESTful access support. htt p: // <i p>: 5701/ hazel cast/rest/ maps/ mymap/ keyl
Split-brain (network partitioning) handling

New LifecycleService API to restart, pause Hazel cast instances and listen for the lifecycle events.
New asynchronous put and get support for IMap vialMap.asyncPut() and IMap.asyncGet()

New AtomicNumber API; distributed implementation of java.util.concurrent.atomic.AtomicLong

So many bug fixes.

184

Significant performance gain for multi-core servers. Higher CPU utilization and lower latency.
Reduced the cost of map entries by 50%.
Better thread management. No more idle threads.

Queue Statistics API and the queue statistics panel on the Monitoring Tool.

63

Miscellaneous

Monitoring Tool enhancements. More responsive and robust.
Distribution contains hazel cast-all-<version>.jar to simplify jar dependency.

So many bug fixes.

183

Bug fixes

Sorted index optimization for map queries.

182

A mgjor bug fix

Minor optimizations

181

Hazelcast Cluster Monitoring Tool (see the hazel cast-monitor-1.8.1.war in the distro)
New Partition API. Partition and key owner, migration listeners.

New IMap.lockMap() API.

New Multicast+TCP/IP join feature. Try multicast first, if not found, try tcp/ip.

New Hazel cast.getExecutorService(name) API. Have separate named ExecutorServices. Do not let your big tasks
blocking your small ones.

New Logging API. Build your own logging. or simply use Log4j or get logs as LogEvents.
New MapStatistics API. Get statistics for your Map operations and entries.

Hazel castClient automatically updates the member list. no need to pass all members.
Ability to start the cluster members evenly partitioned. so no migration.

So many bug fixes and enhancements.

There are some minor Config API change. Just make sure to re-compile.

1.8

Java clients for accessing the cluster remotely. (C# is next)
Distributed Query for maps. Both Criteria APl and SQL support.
Near cache for distributed maps.

TTL (time-to-live) for each individual map entry.
IMap.put(key,value, ttl, timeunit)

IMap.putlfAbsent(key,value, ttl, timeunit)

Many bug fixes.

171

Multiple Hazel cast members on the same JVM. New Hazel cast | nst ance API.

Better APl based configuration support.

Miscellaneous

Many performance optimizations. Fastest Hazel cast ever!
Smoother data migration enables better response times during joins.

Many bug fixes.

1.7

Persistence via Loader/Store interface for distributed map.

Socket level encryption. Both symmetric and asymmetric encryption supported.
New JM X support. (many thanks to Marco)

New Hibernate second level cache provider (many thanksto Leo)

Instance events for getting notified when a data structure instance (map, queue, topic etc.) is created or destroyed.
Eviction listener. Ent ryLi st ener. entryEvi ct ed(EntryEvent)

Fully 'maven‘ized.

Modularized...

hazelcast (core library)

hazel cast-wm (http session clustering tool)

hazel cast-ra (JCA adaptor)

hazel cast-hibernate (hibernate cache provider)

16

Support for synchronous backups and configurable backup-count for maps.
Eviction support. Timed eviction for queues. LRU, LFU and time based eviction for maps.
Statisticsg/history for entries. create/update time, number of hits, cost. see | Map. get MapEnt ry(key)

Mul t i Map implementation. similar to google-collections and apache-common-collections Mul t i Map but distributed
and thread-safe.

Being ableto dest r oy() the data structures when not needed anymore.
Being able to Hazel cast.shutdown() the local member.

Get thelist of all data structure instancesviaHazel cast . get | nst ances().

15

Major internal refactoring

Full implementation ofj ava. uti | . concurrent. Bl ocki ngQueue. Now queues can have configurable capacity
limits.

Super Clients: Members with no storage. If - Dhazel cast . super. cli ent =t rue JVM parameter is set, that VM
will join the cluster as a 'super client' which will not be a'data partition' (no data on that node) but will have super fast
access to the cluster just like any regular member does.

Http Session sharing support for Hazelcast Web Manager. Different webapps can share the same sessions.

Ability to separate clusters by creating groups. ConfigGroup

65

Miscellaneous

e java. util .l oggi ng support.
14

» Add, remove and update events for queue, map, set and list

Distributed Topic for pub/sub messaging

Integration with J2EE transactions via JCA complaint resource adapter

ExecutionCallback interface for distributed tasks

* Cluster-wide unique id generator
13
» Transactional Distributed Queue, Map, Set and List

12

Distributed Executor Service

Multi member executions

» Key based execution routing

» Task cancellation support

11

 Session Clustering with Hazel cast Webapp Manager

» Full TCP/IP clustering support

10

* Distributed implementation of java.util.{ Queue,Map,Set,List}
 Distributed implementation of java.util.concurrency.L ock

 Cluster Membership Events

66

	Hazelcast Documentation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Distributed Data Structures
	2.1. Distributed Queue
	2.2. Distributed Topic
	2.3. Distributed Map
	2.3.1. Backups
	2.3.2. Eviction
	2.3.3. Persistence
	2.3.4. Query
	2.3.5. Near Cache
	2.3.6. Entry Statistics

	2.4. Distributed MultiMap
	2.5. Distributed Set
	2.6. Distributed List
	2.7. Distributed Lock
	2.8. Distributed Events

	Chapter 3. Data Affinity
	Chapter 4. Monitoring with JMX
	Chapter 5. Cluster Utilities
	5.1. Cluster Interface
	5.2. Cluster-wide Id Generator
	5.3. Super Client

	Chapter 6. Transactions
	6.1. Transaction Interface
	6.2. J2EE Integration
	6.2.1. Resource Adapter Configuration
	6.2.2. Sample Glassfish v3 Web Application Configuration
	6.2.3. Sample JBoss Web Application Configuration

	Chapter 7. Distributed Executor Service
	7.1. Distributed Execution
	7.2. Execution Cancellation
	7.3. Execution Callback

	Chapter 8. Http Session Clustering with HazelcastWM
	Chapter 9. WAN Replication
	Chapter 10. Encryption
	Chapter 11. Configuration
	11.1. Configuring Hazelcast for full TCP/IP cluster
	11.2. Configuring Hazelcast for EC2 Auto Discovery
	11.3. Creating Separate Clusters
	11.4. Specifying network interfaces
	11.5. Network Partitioning (Split-Brain Syndrome)
	11.6. Wildcard Configuration
	11.7. Advanced Configuration Properties
	11.8. Logging Configuration

	Chapter 12. Hibernate Second Level Cache
	Chapter 13. Spring Integration
	Chapter 14. Clients
	14.1. Native Client
	14.1.1. Java Client
	14.1.2. CSharp Client

	14.2. Memcache Client
	14.3. Rest Client

	Chapter 15. Internals
	15.1. Internals 1: Threads
	15.2. Internals 2: Serialization
	15.3. Internals 3: Cluster Membership
	15.4. Internals 4: Distributed Map

	Chapter 16. Miscellaneous
	16.1. Common Gotchas
	16.2. Testing Cluster
	16.3. Planned Features
	16.4. Release Notes

