
Hazelcast Documentation

version 1.9.4

Hazelcast Documentation: version 1.9.4

Publication date 6 September 2011
Copyright © 2011 Hazel Bilisim Ltd. Sti.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies.

iii

Table of Contents
1. Introduction ... 1
2. Distributed Data Structures .. 2

2.1. Distributed Queue .. 2
2.2. Distributed Topic ... 4
2.3. Distributed Map ... 4

2.3.1. Backups ... 5
2.3.2. Eviction ... 6
2.3.3. Persistence ... 7
2.3.4. Query .. 9
2.3.5. Near Cache ... 11
2.3.6. Entry Statistics .. 12

2.4. Distributed MultiMap .. 13
2.5. Distributed Set ... 13
2.6. Distributed List .. 13
2.7. Distributed Lock .. 14
2.8. Distributed Events .. 14

3. Data Affinity ... 16
4. Monitoring with JMX .. 19
5. Cluster Utilities .. 21

5.1. Cluster Interface ... 21
5.2. Cluster-wide Id Generator .. 21
5.3. Super Client .. 21

6. Transactions ... 22
6.1. Transaction Interface .. 22
6.2. J2EE Integration .. 22

6.2.1. Resource Adapter Configuration ... 23
6.2.2. Sample Glassfish v3 Web Application Configuration .. 24
6.2.3. Sample JBoss Web Application Configuration .. 24

7. Distributed Executor Service .. 25
7.1. Distributed Execution .. 25
7.2. Execution Cancellation .. 26
7.3. Execution Callback ... 27

8. Http Session Clustering with HazelcastWM ... 29
9. WAN Replication ... 31
10. Encryption ... 33
11. Configuration ... 35

11.1. Configuring Hazelcast for full TCP/IP cluster .. 38
11.2. Configuring Hazelcast for EC2 Auto Discovery ... 39
11.3. Creating Separate Clusters ... 39
11.4. Specifying network interfaces ... 40
11.5. Network Partitioning (Split-Brain Syndrome) ... 40
11.6. Wildcard Configuration ... 42
11.7. Advanced Configuration Properties .. 42
11.8. Logging Configuration .. 44

12. Hibernate Second Level Cache .. 46
13. Spring Integration ... 48
14. Clients .. 51

14.1. Native Client ... 51
14.1.1. Java Client .. 52
14.1.2. CSharp Client .. 52

14.2. Memcache Client .. 52
14.3. Rest Client .. 52

15. Internals .. 54
15.1. Internals 1: Threads .. 54
15.2. Internals 2: Serialization .. 56

Hazelcast Documentation

iv

15.3. Internals 3: Cluster Membership .. 57
15.4. Internals 4: Distributed Map ... 58

16. Miscellaneous ... 60
16.1. Common Gotchas ... 60
16.2. Testing Cluster ... 60
16.3. Planned Features .. 62
16.4. Release Notes .. 62

v

List of Tables
11.1. Properties Table ... 43

1

Chapter 1. Introduction
Hazelcast is a clustering and highly scalable data distribution platform for Java. Hazelcast helps architects and developers
to easily design and develop faster, highly scalable and reliable applications for their businesses.

• Distributed implementations of java.util.{Queue, Set, List, Map}

• Distributed implementation of java.util.concurrent.ExecutorService

• Distributed implementation of java.util.concurrency.locks.Lock

• Distributed Topic for publish/subscribe messaging

• Transaction support and J2EE container integration via JCA

• Distributed listeners and events

• Support for cluster info and membership events

• Dynamic HTTP session clustering

• Dynamic clustering

• Dynamic scaling to hundreds of servers

• Dynamic partitioning with backups

• Dynamic fail-over

• Super simple to use; include a single jar

• Super fast; thousands of operations per sec.

• Super small; less than a MB

• Super efficient; very nice to CPU and RAM

To install Hazelcast:

• Download hazelcast-_version_.zip from www.hazelcast.com [http://www.hazelcast.com]

• Unzip hazelcast-_version_.zip file

• Add hazelcast.jar file into your classpath

Hazelcast is pure Java. JVMs that are running Hazelcast will dynamically cluster. Although by default Hazelcast will use
multicast for discovery, it can also be configured to only use TCP/IP for environments where multicast is not available
or preferred (Click here for more info). Communication among cluster members is always TCP/IP with Java NIO
beauty. Default configuration comes with 1 backup so if one node fails, no data will be lost. It is as simple as using
java.util.{Queue, Set, List, Map}. Just add the hazelcast.jar into your classpath and start coding.

http://www.hazelcast.com
http://www.hazelcast.com

2

Chapter 2. Distributed Data Structures
Common Features of all Hazelcast Data Structures:

• Data in the cluster is almost evenly distributed (partitioned) across all nodes. So each node carries ~ (1/n * total-data) +
backups , n being the number of nodes in the cluster.

• If a member goes down, its backup replica that also holds the same data, will dynamically redistribute the data
including the ownership and locks on them to remaining live nodes. As a result, no data will get lost.

• When a new node joins the cluster, new node takes ownership(responsibility) and load of -some- of the entire data
in the cluster. Eventually the new node will carry almost (1/n * total-data) + backups and becomes the new partition
reducing the load on others.

• There is no single cluster master or something that can cause single point of failure. Every node in the cluster has equal
rights and responsibilities. No-one is superior. And no dependency on external 'server' or 'master' kind of concept.

Here is how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and how you can listen
for instance events to get notified when an instance is created or destroyed.

import java.util.Collection;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Instance;
import com.hazelcast.core.InstanceEvent;
import com.hazelcast.core.InstanceListener;

public class Sample implements InstanceListener {
 public static void main(String[] args) {
 Sample sample = new Sample();

 Hazelcast.addInstanceListener(sample);

 Collection<Instance> instances = Hazelcast.getInstances();
 for (Instance instance : instances) {
 System.out.println(instance.getInstanceType() + "," + instance.getId());
 }
 }

 public void instanceCreated(InstanceEvent event) {
 Instance instance = event.getInstance();
 System.out.println("Created " + instance.getInstanceType() + "," + instance.getId());
 }

 public void instanceDestroyed(InstanceEvent event) {
 Instance instance = event.getInstance();
 System.out.println("Destroyed " + instance.getInstanceType() + "," + instance.getId());
 }
}

2.1. Distributed Queue
Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

BlockingQueue<MyTask> q = Hazelcast.getQueue("tasks");
q.put(new MyTask());
MyTask task = q.take();

boolean offered = q.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = q.poll (5, TimeUnit.SECONDS);
if (task != null) {
 //process task
}

Distributed Data Structures

3

If you have 10 million tasks in your "tasks" queue and you are running that code over 10 JVMs (or servers), then each
server carries 1 million task objects (plus backups). FIFO ordering will apply to all queue operations cluster-wide. User
objects (such as MyTask in the example above), that are (en/de)queued have to be Serializable. Maximum capacity
per JVM and the TTL (Time to Live) for a queue can be configured as shown in the example below.

<hazelcast>
 ...
 <queue name="tasks">
 <!--
 Maximum size of the queue. When a JVM's local queue size reaches the maximum,
 all put/offer operations will get blocked until the queue size
 of the JVM goes down below the maximum.
 Any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Default is 0.
 -->
 <max-size-per-jvm>10000</max-size-per-jvm>

 <!--
 Maximum number of seconds for each item to stay in the queue. Items that are
 not consumed in <time-to-live-seconds> will get automatically evicted from the queue.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>
 </queue>
</hazelcast>

As of version 1.9.3, distributed queues are backed by distributed maps. Thus, queues can have custom backup counts and
persistent storage. Hazelcast will generate cluster-wide unique id for each element in the queue. Sample configuration:

<hazelcast>
 ...
 <queue name="tasks">
 <!--
 Maximum size of the queue. When a JVM's local queue size reaches the maximum,
 all put/offer operations will get blocked until the queue size
 of the JVM goes down below the maximum.
 Any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Default is 0.
 -->
 <max-size-per-jvm>10000</max-size-per-jvm>

 <!--
 Name of the map configuration that will be used for the backing distributed
 map for this queue.
 -->
 <backing-map-ref>queue-map</backing-map-ref>
 </queue>

 <map name="queue-map">

 <backup-count>1</backup-count>

 <map-store enabled="true">

 <class-name>com.your,company.storage.DBMapStore</class-name>

 <write-delay-seconds>0</write-delay-seconds>

 </map-store>

 ...

 </map>
</hazelcast>

If the backing map has no map-store defined then your distributed queue will be in-memory only. If the backing map
has a map-store defined then Hazelcast will call your MapStore implementation to persist queue elements. Even
if you reboot your cluster Hazelcast will rebuild the queue with its content. When implementing a MapStore for the
backing map, note that type of the key is always Long and values are the elements you place into the queue. So make
sure MapStore.loadAllKeys returns Set<Long> for instance.

Distributed Data Structures

4

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.2. Distributed Topic

Hazelcast provides distribution mechanism for publishing messages that are delivered to multiple subscribers which is
also known as publish/subscribe (pub/sub) messaging model. Publish and subscriptions are cluster-wide. When a member
subscribes for a topic, it is actually registering for messages published by any member in the cluster, including the new
members joined after you added the listener. Messages are ordered, meaning, listeners(subscribers) will process the
messages in the order they are actually published. If cluster member M publishes messages m1, m2, m3...mn to a topic T,
then Hazelcast makes sure that all of the subscribers of topic T will receive and process m1, m2, m3...mn in order.

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessageListener;

public class Sample implements MessageListener {

 public static void main(String[] args) {
 Sample sample = new Sample();
 Topic topic = Hazelcast.getTopic ("default");
 topic.addMessageListener(sample);
 topic.publish ("my-message-object");
 }

 public void onMessage(Object msg) {
 System.out.println("Message received = " + msg);
 }
}

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.3. Distributed Map

Just like queue and set, Hazelcast will partition your map entries; and almost evenly distribute onto all Hazelcast
members. Distributed maps have 1 backup (replica-count) by default so that if a member goes down, we don't lose data.
Backup operations are synchronous so when a map.put(key, value) returns, it is guaranteed that the entry is
replicated to one other node. For the reads, it is also guaranteed that map.get(key) returns the latest value of the entry.
Consistency is strictly enforced.

import com.hazelcast.core.Hazelcast;
import java.util.Map;
import java.util.Collection;

Map<String, Customer> mapCustomers = Hazelcast.getMap("customers");
mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));
mapCustomers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = mapCustomers.values();
for (Customer customer : colCustomers) {
 // process customer
}

Hazelcast.getMap() actually returns com.hazelcast.core.IMap which
extends java.util.concurrent.ConcurrentMap interface. So methods like
ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value) can be used on
distributed map as shown in the example below.

Distributed Data Structures

5

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.ConcurrentMap;

Customer getCustomer (String id) {
 ConcurrentMap<String, Customer> map = Hazelcast.getMap("customers");
 Customer customer = map.get(id);
 if (customer == null) {
 customer = new Customer (id);
 customer = map.putIfAbsent(id, customer);
 }
 return customer;
}

public boolean updateCustomer (Customer customer) {
 ConcurrentMap<String, Customer> map = Hazelcast.getMap("customers");
 return (map.replace(customer.getId(), customer) != null);
}

public boolean removeCustomer (Customer customer) {
 ConcurrentMap<String, Customer> map = Hazelcast.getMap("customers");
 return map.remove(customer.getId(), customer));
}

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread
in the local or remote JVM, but they will eventually return with success. ConcurrentMap operations never
throwjava.util.ConcurrentModificationException.

Also see:

• Distributed Map internals.

• Data Affinity.

• Map Configuration with wildcards..

2.3.1. Backups

Hazelcast will distribute map entries onto multiple JVMs (cluster members). Each JVM holds some portion of the data
but we don't want to lose data when a member JVM crashes. To provide data-safety, Hazelcast allows you to specify the
number of backup copies you want to have. That way data on a JVM will be synchronously copied onto other JVM(s).
By default, Hazelcast will have one backup copy. Backup operations aresynchronous. When a map.put(key,value)
call returns, it means entry is updated on the both owner and backup JVMs. If backup count >= 1, then each member
will carry both owned entries and backup copies of other member(s). So for the map.get(key) call, it is possible that
calling member has backup copy of that key but by default, map.get(key) will always read the value from the actual
owner of the key for consistency. It is possible to enable backup reads by changing the configuration. Enabling backup
reads will give you greater performance.

Distributed Data Structures

6

<hazelcast>
 ...
 <map name="default">
 <!--
 Number of backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2, 3.
 -->
 <backup-count>1</backup-count>

 <!--
 Can we read the local backup entries? Default value is false for
 strong consistency. Being able to read backup data will give you
 greater performance.
 -->
 <read-backup-data>false</read-backup-data>

 ...

 </map>
</hazelcast>

Q. If I have only one backup-copy then, will I always lose data if two JVMs crash at the same time?

Not always. Cluster member list is the same on each member. Hazelcast will backup each member's data onto next
members in the member list. Let say you have a cluster with members A, B, C, D, E, F, G and the backup-count is 1, then
Hazelcast will copy A's data onto B, B's data onto C... and G's data onto A. If A and B crashes at the same time then you
will lose data because B was the backup of A. But A and C crashes at the same time, you won't lose any data because B
was the backup of A and D was the backup of C. So you will only lose that ifsequential-JVM-crash-count >
backup-count.

2.3.2. Eviction

Hazelcast also supports policy based eviction for distributed map. Currently supported eviction policies are LRU (Least
Recently Used) and LFU (Least Frequently Used). This feature enables Hazelcast to be used as a distributed cache.
If time-to-live-seconds is not 0 then entries older than time-to-live-seconds value will get evicted,
regardless of the eviction policy set. Here is a sample configuration for eviction:

Distributed Data Structures

7

<hazelcast>
 ...
 <map name="default">
 <!--
 Number of backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2, 3.
 -->
 <backup-count>1</backup-count>

 <!--
 Maximum number of seconds for each entry to stay in the map. Entries that are
 older than <time-to-live-seconds> and not updated for <time-to-live-seconds>
 will get automatically evicted from the map.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>

 <!--
 Maximum number of seconds for each entry to stay idle in the map. Entries that are
 idle(not touched) for more than <max-idle-seconds> will get
 automatically evicted from the map.
 Entry is touched if get, put or containsKey is called.
 Any integer between 0 and Integer.MAX_VALUE.
 0 means infinite. Default is 0.
 -->
 <max-idle-seconds>0</max-idle-seconds>

 <!--
 Valid values are:
 NONE (no extra eviction, <time-to-live-seconds> may still apply),
 LRU (Least Recently Used),
 LFU (Least Frequently Used).
 NONE is the default.
 Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
 -->
 <eviction-policy>LRU</eviction-policy>

 <!--
 Maximum size of the map. When max size is reached,
 map is evicted based on the policy defined.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-size>5000</max-size>

 <!--
 When max. size is reached, specified percentage of
 the map will be evicted. Any integer between 0 and 100.
 If 25 is set for example, 25% of the entries will
 get evicted.
 -->
 <eviction-percentage>25</eviction-percentage>
 <!--
 Specifies when eviction will be started. Default value is 3.
 So every 3 (+up to 5 for performance reasons) seconds
 eviction will be kicked of. Eviction is costly operation, setting
 this number too low, can decrease the performance.
 -->
 <eviction-delay-seconds>3</eviction-delay-seconds>
 </map>
</hazelcast>

2.3.3. Persistence

Hazelcast allows you to load and store the distributed map entries from/to a persistent datastore such as relational
database. If a loader implementation is provided, when get(key) is called, if the map entry doesn't exist in-memory
then Hazelcast will call your loader implementation to load the entry from a datastore. If a store implementation is
provided, when put(key,value) is called, Hazelcast will call your store implementation to store the entry into a

Distributed Data Structures

8

datastore. Hazelcast can call your implementation to store the entries synchronously (write-through) with no-delay or
asynchronously (write-behind) with delay and it is defined by the write-delay-seconds value in the configuration.

If it is write-through, when the map.put(key,value) call returns, you can be sure that

• MapStore.store(key,value) is successfully called so the entry is persisted.

• In-Memory entry is updated

• In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0)

If it is write-behind, when the map.put(key,value) call returns, you can be sure that

• In-Memory entry is updated

• In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0)

• The entry is marked as dirty so that after write-delay-seconds, it can be persisted.

Same behavior goes for the remove(key and MapStore.delete(key). If MapStore throws an exception
then the exception will be propagated back to the original put or remove call in the form of RuntimeException.
When write-through is used, Hazelcast will call MapStore.store(key,value) and MapStore.delete(key)
for each entry update. When write-behind is used, Hazelcast will callMapStore.store(map), and
MapStore.delete(collection) to do all writes in a single call. Also note that your MapStore or MapLoader
implementation should not use Hazelcast Map/Queue/MultiMap/List/Set operations. Your implementation should only
work with your data store. Otherwise you may get into deadlock situations.

Here is a sample configuration:

<hazelcast>
 ...
 <map name="default">
 ...
 <map-store enabled="true">
 <!--
 Name of the class implementing MapLoader and/or MapStore.
 The class should implement at least of these interfaces and
 contain no-argument constructor. Note that the inner classes are not supported.
 -->
 <class-name>com.hazelcast.examples.DummyStore</class-name>
 <!--
 Number of seconds to delay to call the MapStore.store(key, value).
 If the value is zero then it is write-through so MapStore.store(key, value)
 will be called as soon as the entry is updated.
 Otherwise it is write-behind so updates will be stored after write-delay-seconds
 value by calling Hazelcast.storeAll(map). Default value is 0.
 -->
 <write-delay-seconds>0</write-delay-seconds>
 </map-store>
 </map>
</hazelcast>

Initialization on startup:

As of 1.9.3 MapLoader has the new MapLoader.loadAllKeys API. It is used for pre-populating the in-memory
map when the map is first touched/used. If MapLoader.loadAllKeys returns NULL then nothing will be loaded.
Your MapLoader.loadAllKeys implementation can return all or some of the keys. You may select and return only
the hot keys, for instance. Also note that this is the fastest way of pre-populating the map as Hazelcast will optimize the
loading process by having each node loading owned portion of the entries.

Here is MapLoader initialization flow;

1. When getMap() first called from any node, initialization starts

Distributed Data Structures

9

2. Hazelcast will call MapLoader.loadAllKeys() to get all your keys on each node

3. Each node will figure out the list of keys it owns

4. Each node will load all its owned keys by calling MapLoader.loadAll(keys)

5. Each node puts its owned entries into the map by calling IMap.putTransient(key,value)

2.3.4. Query

Hazelcast partitions your data and spreads across cluster of servers. You can surely iterate over the map entries and look
for certain entries you are interested in but this is not very efficient as you will have to bring entire entry set and iterate
locally. Instead, Hazelcast allows you to run distributed queries on your distributed map.

Let's say you have a "employee" map containing values of Employee objects:

import java.io.Serializable;

public class Employee implements Serializable {
 private String name;
 private int age;
 private boolean active;
 private double salary;

 public Employee(String name, int age, boolean live, double price) {
 this.name = name;
 this.age = age;
 this.active = live;
 this.salary = price;
 }

 public Employee() {
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 public double getSalary() {
 return salary;
 }

 public boolean isActive() {
 return active;
 }
}

Now you are looking for the employees who are active and with age less than 30. Hazelcast allows you to find these
entries in two different ways:

Distributed SQL Query

SqlPredicate takes regular SQL where clause. Here is an example:

import com.hazelcast.core.IMap;
import com.hazelcast.query.SqlPredicate;

IMap map = Hazelcast.getMap("employee");

Set<Employee> employees = (Set<Employee>) map.values(new SqlPredicate("active AND age < 30"));

Supported SQL syntax:

Distributed Data Structures

10

• AND/OR

• <expression> AND <expression> AND <expression>...

• active AND age>30

• active=false OR age = 45 OR name = 'Joe'

• active AND (age >20 OR salary < 60000)

• =, !=, <, <=, >, >=

• <expression> = value

• age <= 30

• name ="Joe"

• salary != 50000

• BETWEEN

• <attribute> [NOT] BETWEEN <value1> AND <value2>

• age BETWEEN 20 AND 33 (same as age >=20 AND age<=33)

• age NOT BETWEEN 30 AND 40 (same as age <30 OR age>40)

• LIKE

• <attribute> [NOT] LIKE 'expression'

% (percentage sign) is placeholder for many characters, _ (underscore) is placeholder for only one character.

• name LIKE 'Jo%' (true for 'Joe', 'Josh', 'Joseph' etc.)

• name LIKE 'Jo_' (true for 'Joe'; false for 'Josh')

• name NOT LIKE 'Jo_' (true for 'Josh'; false for 'Joe')

• name LIKE 'J_s%' (true for 'Josh', 'Joseph'; false 'John', 'Joe')

• IN

• <attribute> [NOT] IN (val1, val2, ...)

• age IN (20, 30, 40)

• age NOT IN (60, 70)

Examples:

• active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))

• age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

Criteria API

If SQL is not enough or programmable queries are preferred then JPA criteria like API can be used. Here is an example:

Distributed Data Structures

11

import com.hazelcast.core.IMap;
import com.hazelcast.query.Predicate;
import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;

IMap map = Hazelcast.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = (Set<Employee>) map.values(predicate);

Indexing

Hazelcast distributed queries will run on each member in parallel and only results will return the caller. When a query
runs on a member, Hazelcast will iterate through the entire owned entries and find the matching ones. Can we make this
even faster? Yes by indexing the mostly queried fields. Just like you would do for your database. Of course, indexing will
add overhead for each write operation but queries will be a lot faster. If you are querying your map a lot then make sure
to add indexes for most frequently queried fields. So if your active and age < 30 query, for example, is used a
lot then make sure you add index for active and age fields. Here is how:

IMap imap = Hazelcast.getMap("employees");
imap.addIndex("age", true); // ordered, since we have ranged queries for this field
imap.addIndex("active", false); // not ordered, because boolean field cannot have range

API IMap.addIndex(fieldName, ordered) is used for adding index. For a each indexed field, if you have -
ranged- queries such asage>30, age BETWEEN 40 AND 60 then ordered parameter should betrue, otherwise set
it tofalse.

2.3.5. Near Cache

Map entries in Hazelcast are partitioned across the cluster. Imagine that you are reading key k so many times and k is
owned by another member in your cluster. Each map.get(k) will be a remote operation; lots of network trips. If you
have a map that is read-mostly then you should consider creating a Near Cache for the map so that reads can be much
faster and consume less network traffic. All these benefits don't come free. When using near cache, you should consider
the following issues:

• JVM will have to hold extra cached data so it will increase the memory consumption.

• If invalidation is turned on and entries are updated frequently, then invalidations will be costly.

• Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. Here is a near-cache configuration for a map :

Distributed Data Structures

12

<hazelcast>
 ...
 <map name="my-read-mostly-map">
 ...
 <near-cache>
 <!--
 Maximum number of seconds for each entry to stay in the near cache. Entries that are
 older than <time-to-live-seconds> will get automatically evicted from the near cache.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>

 <!--
 Maximum number of seconds each entry can stay in the near cache as untouched (not-read).
 Entries that are not read (touched) more than <max-idle-seconds> value will get removed
 from the near cache.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-idle-seconds>60</max-idle-seconds>

 <!--
 Valid values are:
 NONE (no extra eviction, <time-to-live-seconds> may still apply),
 LRU (Least Recently Used),
 LFU (Least Frequently Used).
 NONE is the default.
 Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
 -->
 <eviction-policy>LRU</eviction-policy>

 <!--
 Maximum size of the near cache. When max size is reached,
 cache is evicted based on the policy defined.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-size>5000</max-size>

 <!--
 Should the cached entries get evicted if the entries are changed (updated or removed).
 true of false. Default is true.
 -->
 <invalidate-on-change>true</invalidate-on-change>

 </near-cache>
 </map>
</hazelcast>

2.3.6. Entry Statistics

Hazelcast keeps extra information about each map entry such as creationTime, lastUpdateTime, lastAccessTime, number
of hits, version, and this information is exposed to the developer via IMap.getMapEntry(key) call. Here is an
example:

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MapEntry;

MapEntry entry = Hazelcast.getMap("quotes").getMapEntry("1");
System.out.println ("size in memory : " + entry.getCost();
System.out.println ("creationTime : " + entry.getCreationTime();
System.out.println ("expirationTime : " + entry.getExpirationTime();
System.out.println ("number of hits : " + entry.getHits();
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime();
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime();
System.out.println ("version : " + entry.getVersion();
System.out.println ("isValid : " + entry.isValid();
System.out.println ("key : " + entry.getKey();
System.out.println ("value : " + entry.getValue();
System.out.println ("oldValue : " + entry.setValue(newValue);

Distributed Data Structures

13

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.4. Distributed MultiMap

MultiMap is a specialized map where you can associate a key with multiple values. Just like any other distributed data
structure implementation in Hazelcast, MultiMap is distributed/partitioned and thread-safe.

import com.hazelcast.core.MultiMap;
import com.hazelcast.core.Hazelcast;
import java.util.Collection;

// a multimap to hold <customerId, Order> pairs
MultiMap<String, Order> mmCustomerOrders = Hazelcast.getMultiMap("customerOrders");
mmCustomerOrders.put("1", new Order ("iPhone", 340));
mmCustomerOrders.put("1", new Order ("MacBook", 1200));
mmCustomerOrders.put("1", new Order ("iPod", 79));

// get orders of the customer with customerId 1.
Collection<Order> colOrders = mmCustomerOrders.get ("1");
for (Order order : colOrders) {
 // process order
}

// remove specific key/value pair
boolean removed = mmCustomerOrders.remove("1", new Order ("iPhone", 340));

2.5. Distributed Set

Distributed Set is distributed and concurrent implementation of java.util.Set. Set doesn't allow duplicate elements,
so elements in the set should have proper hashCode and equals methods.

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

java.util.Set set = Hazelcast.getSet("IBM-Quote-History");
set.add(new Price(10, time1));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, time4));
//....
Iterator it = set.iterator();
while (it.hasNext()) {
 Price price = (Price) it.next();
 //analyze
}

2.6. Distributed List

Distributed List is very similar to distributed set, but it allows duplicate elements.

Distributed Data Structures

14

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

java.util.List list = Hazelcast.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

//....
Iterator it = list.iterator();
while (it.hasNext()) {
 Price price = (Price) it.next();
 //analyze
}

2.7. Distributed Lock

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;

Lock lock = Hazelcast.getLock(myLockedObject);
lock.lock();
try {
 // do something here
} finally {
 lock.unlock();
}

java.util.concurrent.locks.Lock.tryLock() with timeout is also supported. All operations on
the Lock that Hazelcast.getLock(Object obj) returns are cluster-wide and Lock behaves just like
java.util.concurrent.lock.ReentrantLock.

if (lock.tryLock (5000, TimeUnit.MILLISECONDS)) {
 try {
 // do some stuff here..
 }
 finally {
 lock.unlock();
 }
}

Locks are fail-safe. If a member holds a lock and some of the members go down, cluster will keep your locks safe and
available. Moreover, when a member leaves the cluster, all the locks acquired by this dead member will be removed so
that these locks can be available for live members immediately.

2.8. Distributed Events

Hazelcast allows you to register for entry events to get notified when entries added, updated or removed. Listeners are
cluster-wide. When a member adds a listener, it is actually registering for events originated in any member in the cluster.
When a new member joins, events originated at the new member will also be delivered. All events are ordered, meaning,
listeners will receive and process the events in the order they are actually occurred.

Distributed Data Structures

15

import java.util.Queue;
import java.util.Map;
import java.util.Set;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ItemListener;
import com.hazelcast.core.EntryListener;
import com.hazelcast.core.EntryEvent;

public class Sample implements ItemListener, EntryListener {

 public static void main(String[] args) {
 Sample sample = new Sample();
 Queue queue = Hazelcast.getQueue ("default");
 Map map = Hazelcast.getMap ("default");
 Set set = Hazelcast.getSet ("default");
 //listen for all added/updated/removed entries
 queue.addItemListener(sample, true);
 set.addItemListener (sample, true);
 map.addEntryListener (sample, true);
 //listen for an entry with specific key
 map.addEntryListener (sample, "keyobj");
 }

 public void entryAdded(EntryEvent event) {
 System.out.println("Entry added key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryRemoved(EntryEvent event) {
 System.out.println("Entry removed key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryUpdated(EntryEvent event) {
 System.out.println("Entry update key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryEvicted(EntryEvent event) {
 System.out.println("Entry evicted key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void itemAdded(Object item) {
 System.out.println("Item added = " + item);
 }

 public void itemRemoved(Object item) {
 System.out.println("Item removed = " + item);
 }
}

16

Chapter 3. Data Affinity
Co-location of related data and computation!

Hazelcast has a standard way of finding out which member owns/manages each key object. Following operations will be
routed to the same member, since all of them are operating based on the same key, "key1".

Hazelcast.getMap("mapa").put("key1", value);
Hazelcast.getMap("mapb").get("key1");
Hazelcast.getMap("mapc").remove("key1");
// since map names are different, operation will be manipulating
// different entries, but the operation will take place on the
// same member since the keys ("key1") are the same

Hazelcast.getLock ("key1").lock();
// lock operation will still execute on the same member of the cluster
// since the key ("key1") is same

Hazelcast.getExecutorService().execute(new DistributedTask(runnable, "key1"));
// distributed execution will execute the 'runnable' on the same member
// since "key1" is passed as the key.

So when the keys are the same then entries are stored on the same node. But we sometimes want to have related entries
stored on the same node. Consider customer and his/her order entries. We would have customers map with customerId
as the key and orders map with orderId as the key. Since customerId and orderIds are different keys, customer and his/
her orders may fall into different members/nodes in your cluster. So how can we have them stored on the same node? The
trick here is to create an affinity between customer and orders. If we can somehow make them part of the same partition
then these entries will be co-located. We achieve this by making orderIds PartitionAware

public class OrderKey implements Serializable, PartitionAware {
 int customerId;
 int orderId;

 public OrderKey(int orderId, int customerId) {
 this.customerId = customerId;
 this.orderId = orderId;
 }

 public int getCustomerId() {
 return customerId;
 }

 public int getOrderId() {
 return orderId;
 }

 public Object getPartitionKey() {
 return customerId;
 }

 @Override
 public String toString() {
 return "OrderKey{" +
 "customerId=" + customerId +
 ", orderId=" + orderId +
 '}';
 }
}

Notice that OrderKey implements PartitionAware and getPartitionKey() returns the customerId. This
will make sure that Customer entry and its Orders are going to be stored on the same node.

Data Affinity

17

Map mapCustomers = Hazelcast.getMap("customers")
Map mapOrders = Hazelcast.getMap("orders")
// create the customer entry with customer id = 1
mapCustomers.put(1, customer);
// now create the orders for this customer
mapOrders.put(new OrderKey(21, 1), order);
mapOrders.put(new OrderKey(22, 1), order);
mapOrders.put(new OrderKey(23, 1), order);

Let say you have a customers map where customerId is the key and the customer object is the value. and customer
object contains the customer's orders. and let say you want to remove one of the orders of a customer and return the
number of remaining orders. Here is how you would normally do it:

public static int removeOrder(long customerId, long orderId) throws Exception {
 IMap<Long, Customer> mapCustomers = Hazelcast.getMap("customers");
 mapCustomers.lock (customerId);
 Customer customer = mapCustomers. get(customerId);
 customer.removeOrder (orderId);
 mapCustomers.put(customerId, customer);
 mapCustomers.unlock(customerId);
 return customer.getOrderCount();
}

There are couple of things we should consider:

1. There are four distributed operations there.. lock, get, put, unlock.. Can we reduce the number of distributed
operations?

2. Customer object may not be that big but can we not have to pass that object through the wire? Notice that, we are
actually passing customer object through the wire twice; get and put.

So instead, why not moving the computation over to the member (JVM) where your customer data actually is. Here is
how you can do this with distributed executor service:

1. Send a PartitionAware Callable task.

2. Callable does the deletion of the order right there and returns with the remaining order count.

3. Upon completion of the Callable task, return the result (remaining order count). Plus you do not have to wait until
the the task complete; since distributed executions are asynchronous, you can do other things in the meantime.

Here is a sample code:

Data Affinity

18

public static int removeOrder(long customerId, long orderId) throws Exception {
 ExecutorService es = Hazelcast.getExecutorService();
 OrderDeletionTask task = new OrderDeletionTask(customerId, orderId);
 Future future = es.submit(task);
 int remainingOrders = future.get();
 return remainingOrders;
}

public static class OrderDeletionTask implements Callable<Integer>, PartitionAware, Serializable {

 private long customerId;
 private long orderId;

 public OrderDeletionTask() {
 }
 public OrderDeletionTask(long customerId, long orderId) {
 super();
 this.customerId = customerId;
 this.orderId = orderId;
 }
 public Integer call () {
 IMap<Long, Customer> mapCustomers = Hazelcast.getMap("customers");
 mapCustomers.lock (customerId);
 Customer customer = mapCustomers. get(customerId);
 customer.removeOrder (orderId);
 mapCustomers.put(customerId, customer);
 mapCustomers.unlock(customerId);
 return customer.getOrderCount();
 }

 public Object getPartitionKey() {
 return customerId;
 }
}

Benefits of doing the same operation with distributed ExecutorService based on the key are:

• Only one distributed execution (es.submit(task)), instead of four.

• Less data is sent over the wire.

• Since lock/update/unlock cycle is done locally (local to the customer data), lock duration for the Customer entry is
much less so enabling higher concurrency.

19

Chapter 4. Monitoring with JMX
• Add the following system properties to enable jmx agent [http://download.oracle.com/javase/1.5.0/docs/guide/

management/agent.html]

• -Dcom.sun.management.jmxremote

• -Dcom.sun.management.jmxremote.port=_portNo_ (to specify jmx port) optional

• -Dcom.sun.management.jmxremote.authenticate=false (to disable jmx auth) optional

• Enable Hazelcast property hazelcast.jmx

• using Hazelcast configuration (api, xml, spring)

• or set system property -Dhazelcast.jmx=true

• Use jconsole, jvisualvm (with mbean plugin) or another jmx-compliant monitoring tool.

Following attributes can be monitored:

• Cluster

• config

• group name

• count of members and their addresses (host:port)

• operations: restart, shutdown cluster

• Member

• inet address

• port

• super client state

• Statistics

• count of instances

• number of instances created, destroyed since startup

• max instances created, destroyed per second

• AtomicNumber

• name

• actual value

• operations: add, set, compareAndSet, reset

• List, Set

• name

• size

• items (as strings)

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

Monitoring with JMX

20

• operations: clear, reset statistics

• Map

• name

• size

• operations: clear

• Queue

• name

• size

• received and served items

• operations: clear, reset statistics

• Topic

• name

• number of messages dispatched since creation, in last second

• max messages dispatched per second

21

Chapter 5. Cluster Utilities

5.1. Cluster Interface

Hazelcast allows you to register for membership events to get notified when members added or removed. You can also get
the set of cluster members.

import com.hazelcast.core.*;

Cluster cluster = Hazelcast.getCluster();
cluster.addMembershipListener(new MembershipListener(){
 public void memberAdded(MembershipEvent membersipEvent) {
 System.out.println("MemberAdded " + membersipEvent);
 }

 public void memberRemoved(MembershipEvent membersipEvent) {
 System.out.println("MemberRemoved " + membersipEvent);
 }
});

Member localMember = cluster.getLocalMember();
System.out.println ("my inetAddress= " + localMember.getInetAddress());

Set setMembers = cluster.getMembers();
for (Member member : setMembers) {
 System.out.println ("isLocalMember " + member.localMember());
 System.out.println ("member.inetaddress " + member.getInetAddress());
 System.out.println ("member.port " + member.getPort());
}

5.2. Cluster-wide Id Generator

Hazelcast IdGenerator creates cluster-wide unique IDs. Generated IDs are long type primitive values between 0 and
Long.MAX_VALUE . Id generation occurs almost at the speed of AtomicLong.incrementAndGet() . Generated
IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs start from 0 again.

import com.hazelcast.core.IdGenerator;
import com.hazelcast.core.Hazelcast;

IdGenerator idGenerator = Hazelcast.getIdGenerator("customer-ids");
long id = idGenerator.newId();

5.3. Super Client

Super Clients are members with no storage. If -Dhazelcast.super.client=true JVM parameter is set, then the
JVM will join the cluster as a 'super client' which will not be a 'data partition' (no data on that node) but will have super
fast access to the cluster just like any regular member does.

22

Chapter 6. Transactions

6.1. Transaction Interface

Hazelcast can be used in transactional context. Basically start a transaction, work with queues, maps, sets and do other
things then commit/rollback in one shot.

import java.util.Queue;
import java.util.Map;
import java.util.Set;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

Queue queue = Hazelcast.getQueue("myqueue");
Map map = Hazelcast.getMap ("mymap");
Set set = Hazelcast.getSet ("myset");

Transaction txn = Hazelcast.getTransaction();
txn.begin();
try {
 Object obj = queue.poll();
 //process obj
 map.put ("1", "value1");
 set.add ("value");
 //do other things..
 txn.commit();
}catch (Throwable t) {
 txn.rollback();
}

Isolation is always READ_COMMITTED . If you are in a transaction, you can read the data in your transaction and the data
that is already committed and if not in a transaction, you can only read the committed data. Implementation is different
for queue and map/set. For queue operations (offer,poll), offered and/or polled objects are copied to the next member in
order to safely commit/rollback. For map/set, Hazelcast first acquires the locks for the write operations (put, remove) and
holds the differences (what is added/removed/updated) locally for each transaction. When transaction is set to commit,
Hazelcast will release the locks and apply the differences. When rolling back, Hazelcast will simply releases the locks and
discard the differences. Transaction instance is attached to the current thread and each Hazelcast operation checks if the
current thread holds a transaction, if so, operation will be transaction aware. When transaction is committed, rolled back
or timed out, it will be detached from the thread holding it.

6.2. J2EE Integration

Hazelcast can be integrated into J2EE containers via Hazelcast Resource Adapter (hazelcast-ra.rar). After proper
configuration, Hazelcast can participate in standard J2EE transactions.

Transactions

23

<%@page import="javax.resource.ResourceException" %>
<%@page import="javax.transaction.*" %>
<%@page import="javax.naming.*" %>
<%@page import="javax.resource.cci.*" %>
<%@page import="java.util.*" %>
<%@page import="com.hazelcast.core.Hazelcast" %>

<%
UserTransaction txn = null;
Connection conn = null;
Queue queue = Hazelcast.getQueue ("default");
Map map = Hazelcast.getMap ("default");
Set set = Hazelcast.getSet ("default");
List list = Hazelcast.getList ("default");

try {
 Context context = new InitialContext();
 txn = (UserTransaction) context.lookup("java:comp/UserTransaction");
 txn.begin();

 ConnectionFactory cf = (ConnectionFactory) context.lookup ("java:comp/env/HazelcastCF");
 conn = cf.getConnection();

 queue.offer("newitem");
 map.put ("1", "value1");
 set.add ("item1");
 list.add ("listitem1");

 txn.commit();
} catch (Throwable e) {
 if (txn != null) {
 try {
 txn.rollback();
 } catch (Exception ix) {ix.printStackTrace();};
 }
 e.printStackTrace();
} finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (Exception ignored) {};
 }
}
%>

6.2.1. Resource Adapter Configuration

Deploying and configuring Hazelcast resource adapter is no different than any other resource adapter since it is a standard
JCA resource adapter but resource adapter installation and configuration is container specific, so please consult your J2EE
vendor documentation for details. Most common steps are:

1. Add the hazelcast.jar to container's classpath. Usually there is a lib directory that is loaded automatically by the
container on startup.

2. Deploy hazelcast-ra.rar. Usually there is a some kind of deploy directory. Name of the directory varies by
container.

3. Make container specific configurations when/after deploying hazelcast-ra.rar. Besides container specific
configurations, JNDI name for Hazelcast resource is set.

4. Configure your application to use the Hazelcast resource. Updating web.xml and/or ejb-jar.xml to let container
know that your application will use the Hazelcast resource and define the resource reference.

5. Make container specific application configuration to specify JNDI name used for the resource in the application.

Transactions

24

6.2.2. Sample Glassfish v3 Web Application Configuration

1. Place the hazelcast-<version>.jar into GLASSFISH_HOME/glassfish/domains/domain1/lib/
ext/ directory.

2. Place the hazelcast-ra-<version>.rar into GLASSFISH_HOME/glassfish/domains/domain1/
autodeploy/ directory

3. Add the following lines to the web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Notice that we didn't have to put sun-ra.xml into the rar file because it comes with the hazelcast-ra-
<version>.rar file already.

If Hazelcast resource is used from EJBs, you should configure ejb-jar.xml for resource reference and JNDI
definitions, just like we did for web.xml.

6.2.3. Sample JBoss Web Application Configuration

• Place the hazelcast-<version>.jar into JBOSS_HOME/server/deploy/default/lib directory.

• Place the hazelcast-ra-<version>.rar into JBOSS_HOME/server/deploy/default/deploy
directory

• Create a hazelcast-ds.xml at JBOSS_HOME/server/deploy/default/deploy directory containing the
following content. Make sure to set the rar-name element to hazelcast-ra-<version>.rar.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connection-factories
 PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>
 <tx-connection-factory>
 <local-transaction/>
 <track-connection-by-tx>true</track-connection-by-tx>
 <jndi-name>HazelcastCF</jndi-name>
 <rar-name>hazelcast-ra-<version>.rar</rar-name>
 <connection-definition>
 javax.resource.cci.ConnectionFactory
 </connection-definition>
 </tx-connection-factory>
</connection-factories>

• Add the following lines to the web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

• Add the following lines to the jboss-web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <jndi-name>java:HazelcastCF</jndi-name>
</resource-ref>

If Hazelcast resource is used from EJBs, you should configure ejb-jar.xml and jboss.xml for resource reference
and JNDI definitions.

25

Chapter 7. Distributed Executor Service
One of the coolest new futures of Java 1.5 is the Executor framework, which allows you to asynchronously execute
your tasks, logical units of works, such as database query, complex calculation, image rendering etc. So one nice
way of executing such tasks would be running them asynchronously and doing other things meanwhile. When ready,
get the result and move on. If execution of the task takes longer than expected, you may consider canceling the task
execution. In Java Executor framework, tasks are implemented as java.util.concurrent.Callable and
java.util.Runnable.

import java.util.concurrent.Callable;
import java.io.Serializable;

public class Echo implements Callable<String>, Serializable {
 String input = null;

 public Echo() {
 }

 public Echo(String input) {
 this.input = input;
 }

 public String call() {
 return Hazelcast.getCluster().getLocalMember().toString() + ":"
 + input;
 }
}

Echo callable above, for instance, in its call() method, is returning the local member and the input passed in.
Remember that Hazelcast.getCluster().getLocalMember() returns the local member and toString()
returns the member's address (ip + port) in String form, just to see which member actually executed the code for our
example. Of course, call() method can do and return anything you like. Executing a task by using executor framework is
very straight forward. Simply obtain a ExecutorService instance, generally via Executors and submit the task
which returns a Future. After executing task, you don't have to wait for execution to complete, you can process other
things and when ready use the future object to retrieve the result as show in code below.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit (new Echo("myinput"));
//while it is executing, do some useful stuff
//when ready, get the result of your execution
String result = future.get();

7.1. Distributed Execution

Distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It allows you to
execute your code in cluster. In this chapter, all the code samples are based on the Echo class above. Please note that Echo
class is Serializable . You can ask Hazelcast to execute your code (Runnable, Callable):

• on a specific cluster member you choose.

• on the member owning the key you choose.

• on the member Hazelcast will pick.

• on all or subset of the cluster members.

Distributed Executor Service

26

import com.hazelcast.core.Member;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MultiTask;
import com.hazelcast.core.DistributedTask;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.FutureTask;
import java.util.concurrent.Future;
import java.util.Set;

public void echoOnTheMember(String input, Member member) throws Exception {
 FutureTask<String> task = new DistributedTask<String>(new Echo(input), member);
 ExecutorService executorService = Hazelcast.getExecutorService();
 executorService.execute(task);
 String echoResult = task.get();
}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
 FutureTask<String> task = new DistributedTask<String>(new Echo(input), key);
 ExecutorService executorService = Hazelcast.getExecutorService();
 executorService.execute(task);
 String echoResult = task.get();
}

public void echoOnSomewhere(String input) throws Exception {
 ExecutorService executorService = Hazelcast.getExecutorService();
 Future<String> task = executorService.submit(new Echo(input));
 String echoResult = task.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
 MultiTask<String> task = new MultiTask<String>(new Echo(input), members);
 ExecutorService executorService = Hazelcast.getExecutorService();
 executorService.execute(task);
 Collection<String> results = task.get();
}

Note that you can obtain the set of cluster members via Hazelcast.getCluster().getMembers() call. You can
also extend the MultiTask class to override set(V result), setException(Throwable exception),
done() methods for custom behaviour. Just like java.util.concurrent.FutureTask.get() ,
MultiTask.get() will throw java.util.concurrent.ExecutionException if any of the executions
throws exception.

7.2. Execution Cancellation

What if the code you execute in cluster takes longer than acceptable. If you cannot stop/cancel that task it will keep
eating your resources. Standard Java executor framework solves this problem with by introducing cancel() api and
'encouraging' us to code and design for cancellations, which is highly ignored part of software development.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
 int input = 0;

 public Fibonacci() {
 }

 public Fibonacci(int input) {
 this.input = input;
 }

 public Long call() {
 return calculate (input);
 }

 private long calculate (int n) {
 if (Thread.currentThread().isInterrupted()) return 0;
 if (n <= 1) return n;
 else return calculate(n-1) + calculate(n-2);
 }
}

Distributed Executor Service

27

The callable class above calculates the fibonacci number for a given number. In the calculate method, we are checking
to see if the current thread is interrupted so that code can be responsive to cancellations once the execution started.
Following fib() method submits the Fibonacci calculation task for number 'n' and waits maximum 3 seconds for result.
If the execution doesn't complete in 3 seconds, future.get() will throw TimeoutException and upon catching it
we interruptibly cancel the execution for saving some CPU cycles.

long fib(int n) throws Exception {
 ExecutorService es = Hazelcast.getExecutorService();
 Future future = es.submit(new Fibonacci(n));
 try {
 return future.get(3, TimeUnit.SECONDS);
 } catch (TimeoutException e) {
 future.cancel(true);
 }
 return -1;
}

fib(20) will probably will take less than 3 seconds but fib(50) will take way longer. (This is not the example
for writing better fibonacci calculation code but for showing how to cancel a running execution that takes too long.)
future.cancel(false) can only cancel execution before it is running (executing) but future.cancel(true)
can interrupt running executions if your code is able to handle the interruption. So if you are willing to be able to cancel
already running task then your task has to be designed to handle interruption. If calculate (int n) method didn't
have if (Thread.currentThread().isInterrupted()) line, then you wouldn't be able to cancel the execution
after it started.

7.3. Execution Callback

ExecutionCallback allows you to asynchronously get notified when the execution is done. When implementing
ExecutionCallback.done(Future) method, you can check if the task is already cancelled.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.DistributedTask;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

ExecutorService es = Hazelcast.getExecutorService();
DistributedTask<String> task = new DistributedTask<String>(new Fibonacci<Long>(10));
task.setExecutionCallback(new ExecutionCallback<Long> () {
 public void done (Future<Long> future) {
 try {
 if (! future.isCancelled()) {
 System.out.println("Fibonacci calculation result = " + future.get());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
});
es.execute(task);

You could have achieved the same results by extending DistributedTask and overriding the
DistributedTask.done() method.

Distributed Executor Service

28

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.DistributedTask;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

ExecutorService es = Hazelcast.getExecutorService();
es.execute(new DistributedTask<String>(new Fibonacci<Long>(10)) {
 public void done () {
 try {
 if (! isCancelled()) {
 System.out.println("Fibonacci calculation result = " + get());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
});

29

Chapter 8. Http Session Clustering with HazelcastWM
Say you have more than one web servers (A, B, C) with a load balancer in front of them. If server A goes down then your
users on that server will be directed to one of the live servers (B or C) but their sessions will be lost! So we have to have
all these sessions backed up somewhere if we don't want to lose the sessions upon server crashes. Hazelcast WM allows
you to cluster user http sessions automatically. Followings are required for enabling Hazelcast Session Clustering:

• Target application or web server should support Java 1.5+

• Target application or web server should support Servlet 2.4+ spec

• Session objects that needs to be clustered have to be Serializable

Here are the steps to setup Hazelcast Session Clustering:

1. Put the hazelcast and hazelcast-wm jars in your WEB-INF/lib directory.

2. Put the following xml into web.xml file. Make sure Hazelcast filter is placed before all the other filters if any; put it
at the top for example.

 <filter>
 <filter-name>hazelcast-filter</filter-name>
 <filter-class>com.hazelcast.web.WebFilter</filter-class>
 <!--
 Name of the distributed map storing
 your web session objects
 -->
 <init-param>
 <param-name>map-name</param-name>
 <param-value>my-sessions</param-value>
 </init-param>
 <!--
 How is your load-balancer configured?
 stick-session means all requests of a session
 is routed to the node where the session is first created.
 This is excellent for performance.
 If sticky-session is set to false, when a session is updated
 on a node, entry for this session on all other nodes is invalidated.
 You have to know how your load-balancer is configured before
 setting this parameter. Default is true.
 -->
 <init-param>
 <param-name>sticky-session</param-name>
 <param-value>true</param-value>
 </init-param>
 <!--
 Are you debugging? Default is false.
 -->
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>hazelcast-filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

 <listener>
 <listener-class>com.hazelcast.web.SessionListener</listener-class>
 </listener>

3. Package and deploy your war file as you would normally do.

Http Session Clustering with HazelcastWM

30

It is that easy! All http requests will go through Hazelcast WebFilter and it will put the session objects into Hazelcast
distributed map if needed.

31

Chapter 9. WAN Replication
There are cases where you would need to synchronize multiple clusters. Synchronization of clusters is named as WAN
(Wide Area Network) Replication because it is mainly used for replicating different clusters running on WAN. Imagine
having different clusters in New York, London and Tokyo. Each cluster would be operating at very high speed in their
LAN (Local Area Network) settings but you would want some or all parts of the data in these clusters replicating to each
other. So updates in Tokyo cluster goes to London and NY, in the meantime updates in New York cluster is synchronized
to Tokyo and London.

You can setup active-passive WAN Replication where only one active node replicating its updates on the passive one.
You can also setup active-active replication where each cluster is actively updating and replication to the other cluster(s).

In the active-active replication setup, there might be cases where each node is updating the same entry in the same named
distributed map. Thus, conflicts will occur when merging. For those cases, conflict-resolution will be needed. Here is how
you can setup WAN Replication for London cluster for instance:

<hazelcast>
 <wan-replication name="my-wan-cluster">
 <target-cluster group-name="tokyo" group-password="tokyo-pass">
 <replication-impl>com.hazelcast.impl.wan.WanNoDelayReplication</replication-impl>
 <end-points>
 <address>10.2.1.1:5701</address>
 <address>10.2.1.2:5701</address>
 </end-points>
 </target-cluster>
 <target-cluster group-name="london" group-password="london-pass">
 <replication-impl>com.hazelcast.impl.wan.WanNoDelayReplication</replication-impl>
 <end-points>
 <address>10.3.5.1:5701</address>
 <address>10.3.5.2:5701</address>
 </end-points>
 </target-cluster>
 </wan-replication>

 <network>
 ...
 </network>

</network>
...
</hazelcast>

This can be the configuration of the cluster running in NY, replicating to Tokyo and London. Tokyo and London clusters
should have similar configurations if they are also active replicas.

If NY and London cluster configurations contain wan-replication element and Tokyo cluster doesn't then it means
NY and London are active endpoints and Tokyo is passive endpoint.

As noted earlier you can have Hazelcast replicate some or all of the data in your clusters. You might have 5 different
distributed maps but you might want only one of these maps replicating across clusters. So you mark which maps to
replicate by adding wan-replication-ref element into map configuration.

WAN Replication

32

<hazelcast>
 <wan-replication name="my-wan-cluster">
 ...
 </wan-replication>

 <network>
 ...
 </network>
 <map name="my-shared-map">
 ...
 <wan-replication-ref name="my-wan-cluster">
 <merge-policy>hz.PASS_THROUGH</merge-policy>
 </wan-replication-ref>
 </map>
</network>
...
</hazelcast>

Here we have my-shared-map is configured to replicate itself to the cluster targets defined in the wan-
replication element.

Note that you will also need to define a merge policy for merging replica entries and resolving conflicts during the
merge. Default merge policy is hz.PASS_THROUGH which will apply all in-coming updates as is.

33

Chapter 10. Encryption
Hazelcast allows you to encrypt entire socket level communication among all Hazelcast members. Encription is based on
Java Cryptography Architecture [http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html]
and both symmetric and asymmetric encryption are supported. In symmetric encryption, each node uses the same key, so
the key is shared. Here is a sample configuration for symmetric encryption:

<hazelcast>
 ...
 <network>
 ...
 <!--
 Make sure to set enabled=true
 Make sure this configuration is exactly the same on
 all members
 -->
 <symmetric-encryption enabled="true">
 <!--
 encryption algorithm such as
 DES/ECB/PKCS5Padding,
 PBEWithMD5AndDES,
 Blowfish,
 DESede
 -->
 <algorithm>PBEWithMD5AndDES</algorithm>

 <!-- salt value to use when generating the secret key -->
 <salt>thesalt</salt>

 <!-- pass phrase to use when generating the secret key -->
 <password>thepass</password>

 <!-- iteration count to use when generating the secret key -->
 <iteration-count>19</iteration-count>
 </symmetric-encryption>
 </network>
 ...
</hazelcast>

In asymmetric encryption, public and private key pair is used. Data is encrypted with one of these keys and decrypted
with the other. The idea is that each node has to have its own private key and other trusted members' public key. So that
means, for each member, we should do the followings:

• Pick a unique name for the member. We will use the name as the key alias. Let's name them as member1,
member2...memberN.

• Generate the keystore and the private key for the member1. keytool -genkey -alias member1 -keyalg
RSA -keypass thekeypass -keystore keystore -storetype JKS Remember all the parameters
you used here because you will need this information when you configure asymmetric-encryption in your hazelcast.xml
file.

• Create a public certificate file so that we can add it to the other members' keystore keytool -export -alias
member1 -keypass thekeypass -storepass thestorepass -keystore keystore -rfc -
file member1.cer

• Now take all the other members' public certificates, and add (import) them into member1's keystore

 keytool -import -alias member2 -file member2.cer -keystore keystore -storepass thestorepass

 keytool -import -alias member3 -file member3.cer -keystore keystore -storepass thestorepass

 ...

 keytool -import -alias memberN -file memberN.cer -keystore keystore -storepass thestorepass

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

Encryption

34

You should repeat these steps for each trusted member in your cluster. Here is a sample configuration for asymmetric
encryption:

<hazelcast>
 ...
 <network>
 ...
 <!--
 Make sure to set enabled=true
 -->
 <asymmetric-encryption enabled="true">
 <!-- encryption algorithm -->
 <algorithm>RSA/NONE/PKCS1PADDING</algorithm>
 <!-- private key password -->
 <keyPassword>thekeypass</keyPassword>
 <!-- private key alias -->
 <keyAlias>member1</keyAlias>
 <!-- key store type -->
 <storeType>JKS</storeType>
 <!-- key store password -->
 <storePassword>thestorepass</storePassword>
 <!-- path to the key store -->
 <storePath>keystore</storePath>
 </asymmetric-encryption>
 </network>
 ...
</hazelcast>

35

Chapter 11. Configuration
Hazelcast can be configured through xml or using configuration api or even mix of both.

1. Xml Configuration

If you are using default Hazelcast instance (Hazelcast.getDefaultInstance()) or creating new Hazelcast
instance with passing null parameter (Hazelcast.newHazelcastInstance(null)), Hazelcast will look
into two places for the configuration file:

• System property: Hazelcast will first check if "hazelcast.config" system property is set to a file path.
Example: -Dhazelcast.config=C:/myhazelcast.xml.

• Classpath: If config file is not set as a system property, Hazelcast will check classpath for hazelcast.xml file.
If Hazelcast doesn't find any config file, it will happily start with default configuration (hazelcast-
default.xml) located in hazelcast.jar. (Before configuring Hazelcast, please try to work with default
configuration to see if it works for you. Default should be just fine for most of the users. If not, then consider custom
configuration for your environment.)

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config hazelcast-basic.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="true">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="false">
 <interface>127.0.0.1</interface>
 </tcp-ip>
 <aws enabled="false">
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-east-1</region>
 </aws>
 </join>
 <interfaces enabled="false">
 <interface>10.10.1.*</interface>
 </interfaces>

Configuration

36

 <symmetric-encryption enabled="false">
 <!--
 encryption algorithm such as DES/ECB/PKCS5Padding, PBEWithMD5AndDES,
 AES/CBC/PKCS5Padding, Blowfish, DESede
 -->
 <algorithm>PBEWithMD5AndDES</algorithm>
 <!-- salt value to use when generating the secret key -->
 <salt>thesalt</salt>
 <!-- pass phrase to use when generating the secret key -->
 <password>thepass</password>
 <!-- iteration count to use when generating the secret key -->
 <iteration-count>19</iteration-count>
 </symmetric-encryption>
 <asymmetric-encryption enabled="false">
 <!-- encryption algorithm -->
 <algorithm>RSA/NONE/PKCS1PADDING</algorithm>
 <!-- private key password -->
 <keyPassword>thekeypass</keyPassword>
 <!-- private key alias -->
 <keyAlias>local</keyAlias>
 <!-- key store type -->
 <storeType>JKS</storeType>
 <!-- key store password -->
 <storePassword>thestorepass</storePassword>
 <!-- path to the key store -->
 <storePath>keystore</storePath>
 </asymmetric-encryption>
 </network>
 <executor-service>
 <core-pool-size>16</core-pool-size>
 <max-pool-size>64</max-pool-size>
 <keep-alive-seconds>60</keep-alive-seconds>
 </executor-service>
 <queue name="default">
 <!--
 Maximum size of the queue. When a JVM's local queue size reaches the maximum,
 all put/offer operations will get blocked until the queue size
 of the JVM goes down below the maximum. Any integer between 0 and Integer.MAX_VALUE
 0 means Integer.MAX_VALUE. Default is 0.
 -->
 <max-size-per-jvm>0</max-size-per-jvm>
 <!--
 Name of the map configuration that will be used for the backing distributed
 map for this queue.
 -->
 <backing-map-ref>default</backing-map-ref>
 </queue>

Configuration

37

 <map name="default">
 <!--
 Number of backups. If 1 is set as the backup-count for example, then all entries of
 the map will be copied to another JVM for fail-safety. 0 means no backup.
 -->
 <backup-count>1</backup-count>
 <!--
 Maximum number of seconds for each entry to stay in the map. Entries that are
 older than <time-to-live-seconds> and not updated for <time-to-live-seconds>
 will get automatically evicted from the map.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>
 <!--
 Maximum number of seconds for each entry to stay idle in the map. Entries that are
 idle(not touched) for more than <max-idle-seconds> will get
 automatically evicted from the map. Entry is touched if get, put or containsKey is called.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <max-idle-seconds>0</max-idle-seconds>
 <!--
 Valid values are:
 NONE (no eviction),
 LRU (Least Recently Used),
 LFU (Least Frequently Used).
 NONE is the default.
 -->
 <eviction-policy>NONE</eviction-policy>
 <!--
 Maximum size of the map. When max size is reached,
 map is evicted based on the policy defined.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-size policy="cluster_wide_map_size">0</max-size>
 <!--
 When max. size is reached, specified percentage of
 the map will be evicted. Any integer between 0 and 100.
 If 25 is set for example, 25% of the entries will
 get evicted.
 -->
 <eviction-percentage>25</eviction-percentage>
 <!--
 While recovering from split-brain (network partitioning),
 map entries in the small cluster will merge into the bigger cluster
 based on the policy set here. When an entry merge into the
 cluster, there might an existing entry with the same key already.
 Values of these entries might be different for that same key.
 Which value should be set for the key? Conflict is resolved by
 the policy set here. Default policy is hz.ADD_NEW_ENTRY

 There are built-in merge policies such as
 hz.NO_MERGE ; no entry will merge.
 hz.ADD_NEW_ENTRY ; entry will be added if the merging entry's key
 doesn't exist in the cluster.
 hz.HIGHER_HITS ; entry with the higher hits wins.
 hz.LATEST_UPDATE ; entry with the latest update wins.
 -->
 <merge-policy>hz.ADD_NEW_ENTRY</merge-policy>
 </map>
</hazelcast>

If you want to specify your own configuration file to create Config, Hazelcast supports several ways including
filesystem, classpath, InputStream, URL etc.:

• Config cfg = new XmlConfigBuilder(xmlFileName).build();

• Config cfg = new XmlConfigBuilder(inputStream).build();

Configuration

38

• Config cfg = new ClasspathXmlConfig(xmlFileName);

• Config cfg = new FileSystemXmlConfig(configFilename);

• Config cfg = new UrlXmlConfig(url);

• Config cfg = new InMemoryXmlConfig(xml);

2. Programmatic Configuration

To configure Hazelcast programmatically, just instantiate a Config object and set/change its properties/attributes due
to your needs.

Config cfg = new Config();
cfg.setPort(5900);
cfg.setPortAutoIncrement(false);

NetworkConfig network = cfg.getNetworkConfig();
Join join = network.getJoin();
join.getMulticastConfig().setEnabled(false);
join.getTcpIpConfig().addMember("10.45.67.32").addMember("10.45.67.100")
 .setRequiredMember("192.168.10.100").setEnabled(true);
network.getInterfaces().setEnabled(true).addInterface("10.45.67.*");

MapConfig mapCfg = new MapConfig();
mapCfg.setName("testMap");
mapCfg.setBackupCount(2);
mapCfg.getMaxSizeConfig().setSize(10000);
mapCfg.setTimeToLiveSeconds(300);

MapStoreConfig mapStoreCfg = new MapStoreConfig();
mapStoreCfg.setClassName("com.hazelcast.examples.DummyStore").setEnabled(true);
mapCfg.setMapStoreConfig(mapStoreCfg);

NearCacheConfig nearCacheConfig = new NearCacheConfig();
nearCacheConfig.setMaxSize(1000).setMaxIdleSeconds(120).setTimeToLiveSeconds(300);
mapCfg.setNearCacheConfig(nearCacheConfig);

cfg.addMapConfig(mapCfg);

After creating Config object, you can use it to initialize default Hazelcast instance or create a new Hazelcast instance.

• Hazelcast.init(cfg);

• Hazelcast.newHazelcastInstance(cfg);

11.1. Configuring Hazelcast for full TCP/IP cluster

If multicast is not prefered way of discovery for your environment, then you can configure Hazelcast for full TCP/IP
cluster. As configuration below shows, while enable attribute of multicast is set to false, tcp-ip has to be set to
true. For the none-multicast option, all or subset of cluster members' hostnames and/or ip addreses must be listed. Note
that all of the cluster members don't have to be listed there but at least one of them has to be active in cluster when a new
member joins.

Configuration

39

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <hostname>machine1</hostname>
 <hostname>machine2</hostname>
 <hostname>machine3:5799</hostname>
 <interface>192.168.1.0-7</interface>
 <interface>192.168.1.21</interface>
 </tcp-ip>
 </join>
 ...
 </network>
 ...
</hazelcast>

11.2. Configuring Hazelcast for EC2 Auto Discovery

Hazelcast supports EC2 Auto Discovery as of 1.9.4. It is useful when you don't want or can't provide the list of possible
IP addresses. Here is a sample configuration: Disable join over multicast and tcp/ip and enable aws. Also provide the
credentials.

<join>
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="false">
 <interface>192.168.1.2</interface>
 </tcp-ip>
 <aws enabled="true">
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-west-1</region> <!-- optional, default is us-east-1 -->
 <security-group-name>hazelcast-sg</security-group-name> <!-- optional -->
 <tag-key>type</tag-key> <!-- optional -->
 <tag-value>hz-nodes</tag-value> <!-- optional -->
 </aws>
</join>

You need to add hazelcast-cloud.jar dependency into your project. Note that it is also bundled inside hazelcast-all.jar.
hazelcast-cloud module doesn't depend on any other third party modules.

11.3. Creating Separate Clusters

By specifying group-name and group-password, you can separate your clusters in a simple way; dev group, production
group, test group, app-a group etc...

<hazelcast>
 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>
 ...

</hazelcast>

You can also set the groupName with Config API. JVM can host multiple Hazelcast instances (nodes). Each node can
only participate in one group and it only joins to its own group, does not mess with others. Following code creates 3
separate Hazelcast nodes, h1 belongs to app1 cluster, while h2 and h3 are belong to app2 cluster.

Configuration

40

<hazelcast>
 Config configApp1 = new Config();
 configApp1.getGroupConfig().setName("app1");

 Config configApp2 = new Config();
 configApp2.getGroupConfig().setName("app2");

 HazelcastInstance h1 = Hazelcast.newHazelcastInstance(configApp1);
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configApp2);
 HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

11.4. Specifying network interfaces
You can also specify which network interfaces that Hazelcast should use. Servers mostly have more than one network
interface so you may want to list the valid IPs. Range characters ('*' and '-') can be used for simplicity. So 10.3.10.*, for
instance, refers to IPs between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to IPs between 10.3.10.4 and
10.3.10.18 (4 and 18 included). If network interface configuration is enabled (disabled by default) and if Hazelcast cannot
find an matching interface, then it will print a message on console and won't start on that node.

<hazelcast>
 ...
 <network>

 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>192.168.1.3</interface>
 </interfaces>
 </network>
 ...
</hazelcast>

11.5. Network Partitioning (Split-Brain Syndrome)
Imagine that you have 10-node cluster and for some reason the network is divided into two in a way that 4 servers cannot
see the other 6. As a result you ended up having two separate clusters; 4-node cluster and 6-node cluster. Members in
each sub-cluster are thinking that the other nodes are dead even though they are not. This situation is called Network
Partitioning (aka Split-Brain Syndrome).

Since it is a network failure, there is no way to avoid it programatically and your application will run as two separate
independent clusters but we should be able answer the following questions: "What will happen after the network failure
is fixed and connectivity is restored between these two clusters? Will these two clusters merge into one again? If they do,
how are the data conflicts resolved, because you might end up having two different values for the same key in the same
map?"

Here is how Hazelcast deals with it:

1. The oldest member of the cluster checks if there is another cluster with the same group-name and group-password in
the network.

2. If the oldest member founds such cluster, then figures out which cluster should merge to the other.

3. Each member of the merging cluster will do the followings

• pause (HazelcastInstance.getLifecycleService().pause())

• take locally owned map entries

• close all its network connections (detach from its cluster)

• join to the new cluster

• send merge request for each its locally owned map entry

Configuration

41

• resume (HazelcastInstance.getLifecycleService().resume())

So each member of the merging cluster is actually rejoining to the new cluster and sending merge request for each its
locally owned map entry.

Q: Which cluster will merge into the other?

A. Smaller cluster will merge into the bigger one. If they have equal number of members then a hashing algorithm
determines the merging cluster.

Q. Each cluster may have different versions of the same key in the same map. How is the conflict resolved?

A. Destination cluster will decide how to handle merging entry based on the MergePolicy set for that map. There are
built-in merge policies such as hz.NO_MERGE, hz.ADD_NEW_ENTRY and hz.LATEST_UPDATE but you can
develop your own merge policy by implementingcom.hazelcast.merge.MergePolicy. You should register your
custom merge policy in the configuration so that Hazelcast can find it by name.

 public interface MergePolicy {
 /**
 * Returns the value of the entry after the merge
 * of entries with the same key. Returning value can be
 * You should consider the case where existingEntry is null.
 *
 * @param mapName name of the map
 * @param mergingEntry entry merging into the destination cluster
 * @param existingEntry existing entry in the destination cluster
 * @return final value of the entry. If returns null then no change on the entry.
 */
 Object merge(String mapName, MapEntry mergingEntry, MapEntry existingEntry);
 }

Here is how merge policies are registered and specified per map.

<hazelcast>
 ...
 <map name="default">
 <backup-count>1</backup-count>
 <eviction-policy>NONE</eviction-policy>
 <max-size>0</max-size>
 <eviction-percentage>25</eviction-percentage>
 <!--
 While recovering from split-brain (network partitioning),
 map entries in the small cluster will merge into the bigger cluster
 based on the policy set here. When an entry merge into the
 cluster, there might an existing entry with the same key already.
 Values of these entries might be different for that same key.
 Which value should be set for the key? Conflict is resolved by
 the policy set here. Default policy is hz.ADD_NEW_ENTRY

 There are built-in merge policies such as
 hz.NO_MERGE ; no entry will merge.
 hz.ADD_NEW_ENTRY ; entry will be added if the merging entry's key
 doesn't exist in the cluster.
 hz.HIGHER_HITS ; entry with the higher hits wins.
 hz.LATEST_UPDATE ; entry with the latest update wins.
 -->
 <merge-policy>MY_MERGE_POLICY</merge-policy>
 </map>

 <merge-policies>
 <map-merge-policy name="MY_MERGE_POLICY">
 <class-name>com.acme.MyOwnMergePolicy</class-name>
 </map-merge-policy>
 </merge-policies>
 ...
</hazelcast>

Configuration

42

11.6. Wildcard Configuration
Hazelcast supports wildcard configuration of Maps, Queues and Topics. Using an asterisk (*) character in the name,
different instances of Maps, Queues and Topics can be configured by a single configuration.

Note that, with a limitation of a single usage, asterisk (*) can be placed anywhere inside the configuration name.

For instance a map named 'com.hazelcast.test.mymap' can be configured using one of these configurations;

<map name="com.hazelcast.test.*">
...
</map>

<map name="com.hazel*">
...
</map>

<map name="*.test.mymap">
...
</map>

<map name="com.*test.mymap">
...
</map>

Or a queue 'com.hazelcast.test.myqueue'

<queue name="*hazelcast.test.myqueue">
...
</queue>

<queue name="com.hazelcast.*.myqueue">
...
</queue>

11.7. Advanced Configuration Properties
There are some advanced configuration properties to tune some aspects of Hazelcast. These can be set as property name
and value pairs through configuration xml, configuration API or JVM system property.

• Configuration xml

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config hazelcast-basic.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <properties>
 <property name="hazelcast.property.foo">value</property>

 </properties>
</hazelcast>

Configuration

43

• Configuration API

Config cfg = ... ;
cfg.setProperty("hazelcast.property.foo", "value");

• System Property

1. Using JVM parameter: java -Dhazelcast.property.foo=value

2. Using System class: System.setProperty("hazelcast.property.foo", "value");

Table 11.1. Properties Table

Property Name Description Value Type Default

hazelcast.mancenter.enabled Enable Hazelcast Management Center [http://www.hazelcast.com/mancenter.jsp]
service

boolean true

hazelcast.memcache.enabled Enable Memcache client request listener service boolean true

hazelcast.rest.enabled Enable REST client request listener service boolean true

hazelcast.logging.type Name of logging framework type to send logging events. enum jdk

hazelcast.map.load.chunk.size Chunk size for MapLoader 's map initialization process (MapLoder.loadAllKeys()) integer 1000

hazelcast.in.thread.priority Hazelcast Input Thread priority integer 7

hazelcast.out.thread.priority Hazelcast Output Thread priority integer 7

hazelcast.service.thread.priority Hazelcast Service Thread priority integer 8

hazelcast.merge.first.run.delay.seconds Inital run delay of split brain/merge process in seconds integer 300

hazelcast.merge.next.run.delay.seconds Run interval of split brain/merge process in seconds integer 120

hazelcast.redo.wait.millis Wait time before a redo operation in milliseconds integer 500

hazelcast.socket.bind.any Bind node socket address to any local address boolean true

hazelcast.socket.receive.buffer.size Socket receive buffer size in KB integer 32

hazelcast.socket.send.buffer.size Socket send buffer size in KB integer 32

hazelcast.socket.keep.alive Socket set keep alive boolean true

hazelcast.socket.no.delay Socket set TCP no delay boolean true

hazelcast.shutdownhook.enabled Enable Hazelcast shutdownhook thread boolean true

hazelcast.wait.seconds.before.join Wait time before join operation integer 5

hazelcast.max.wait.seconds.before.join Maximum wait time before join operation integer 20

hazelcast.heartbeat.interval.seconds Heartbeat send interval in seconds integer 1

hazelcast.max.no.heartbeat.seconds Max timeout of heartbeat in seconds for a node to assume it is dead integer 300

hazelcast.icmp.enabled Enable ICMP ping boolean false

hazelcast.initial.min.cluster.size Initial expected cluster size to wait before node to start completely integer 0

hazelcast.initial.wait.seconds Inital time in seconds to wait before node to start completely integer 0

hazelcast.restart.on.max.idle Restart node if service thread blocked for
hazelcast.max.no.heartbeat.seconds

boolean false

hazelcast.map.partition.count Distributed map partition count integer 271

hazelcast.map.max.backup.count Maximum map backup node count integer 5

hazelcast.map.remove.delay.seconds Remove delay time in seconds for dirty records integer 5

hazelcast.map.cleanup.delay.seconds Cleanup process delay time in seconds integer 10

hazelcast.executor.query.thread.count Query executor service max thread count integer 8

http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp

Configuration

44

Property Name Description Value Type Default

hazelcast.executor.event.thread.count Event executor service max thread count integer 16

hazelcast.executor.migration.thread.count Migration executor service max thread count integer 20

hazelcast.executor.client.thread.count Client executor service max thread count integer 40

hazelcast.executor.store.thread.count Map store executor service max thread count integer 16

hazelcast.log.state Log cluster debug state periodically boolean false

hazelcast.jmx Enable JMX agent boolean false

hazelcast.jmx.detailed Enable detailed views on JMX boolean false

hazelcast.mc.map.excludes Comma seperated map names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

hazelcast.mc.queue.excludes Comma seperated queue names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

hazelcast.mc.topic.excludes Comma seperated topic names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

hazelcast.version.check.enabled Enable Hazelcast new version check on startup boolean true

hazelcast.topic.flow.control.enabled Enable waiting for the topic publish until messages are written through the sockets boolean true

hazelcast.mc.max.visible.instance.count Management Center maximum visible instance count integer 100

11.8. Logging Configuration

Hazelcast has a flexible logging configuration and doesn't depend on any logging framework except JDK logging. It has
in-built adaptors for a number of logging frameworks and also supports custom loggers by providing logging interfaces.

To use built-in adaptors you should set hazelcast.logging.type property to one of predefined types below.

• jdk: JDK logging (default)

• log4j: Log4j

• slf4j: Slf4j

• none: disable logging

You can set hazelcast.logging.type through configuration xml, configuration API or JVM system property.

• Configuration xml

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config hazelcast-basic.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <properties>
 <property name="hazelcast.logging.type">jdk</property>

 </properties>
</hazelcast>

• Configuration API

Config cfg = ... ;
cfg.setProperty("hazelcast.logging.type", "log4j");

http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp

Configuration

45

• System Property

1. Using JVM parameter: java -Dhazelcast.logging.type=slf4j

2. Using System class: System.setProperty("hazelcast.logging.type", "none");

To use custom logging feature you should implement com.hazelcast.logging.LoggerFactory and
com.hazelcast.logging.ILogger interfaces and set system property hazelcast.logging.class to your
custom LoggerFactory class name.

 java -Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

 LogListener listener = new LogListener() {
 public void log(LogEvent logEvent) {
 // do something
 }
 }

 LoggingService loggingService = Hazelcast.getLoggingService();
 loggingService.addLogListener(Level.INFO, listener):

Through the LoggingService you can get the current used ILogger implementation and log your own messages too.

46

Chapter 12. Hibernate Second Level Cache
Hazelcast provides distributed second level cache for your Hibernate entities, collections and queries. Hazelcast has two
implementations of Hibernate 2nd level cache, one for hibernate-pre-3.3 and one for hibernate-3.3.x versions. In your
Hibernate configuration file (ex: hibernate.cfg.xml), add these properties;

• To enable use of second level cache

<property name="hibernate.cache.use_second_level_cache">true</property>

• To enable use of query cache

<property name="hibernate.cache.use_query_cache">true</property>

• And to force minimal puts into cache

<property name="hibernate.cache.use_minimal_puts">true</property>

• To configure Hazelcast for Hibernate, it is enough to put configuration file named hazelcast.xml into root of your
classpath. If Hazelcast can not find hazelcast.xml then it will use default configuration from hazelcast.jar.

• You can define custom named Hazelcast configuration xml file with one of these Hibernate configuration properties.

<property name="hibernate.cache.provider_configuration_file_resource_path">hazelcast-custom-config.xml</property>

or

<property name="hibernate.cache.hazelcast.configuration_file_path">hazelcast-custom-config.xml</property>

• You can set up Hazelcast to connect cluster as Super Client. Super Client is a member of the cluster, it has socket
connection to every member in the cluster and it knows where the data, but does not contain any data.

<property name="hibernate.cache.hazelcast.use_super_client">true</property>

• You can set up Hazelcast to connect cluster as Native Client. Native client is not member and it connects to one of
the cluster members and delegates all cluster wide operations to it. When the relied cluster member dies, client will
transparently switch to another live member. _(Native Client property takes precedence over Super Client property.)_

<property name="hibernate.cache.hazelcast.use_native_client">true</property>

To setup Native Client properly, you should add Hazelcastgroup-name, group-password and cluster member hosts
properties. Member hosts are comma-seperated addresses. Additionally you can add port number at the end of each
address.

<property name="hibernate.cache.hazelcast.native_client_hosts">10.34.22.15,127.0.0.1:5703</property>
<property name="hibernate.cache.hazelcast.native_client_group">dev</property>
<property name="hibernate.cache.hazelcast.native_client_password">dev-pass</property>

To use Native Client you should add hazelcast-client-<version>.jar into your classpath.

Read more about NativeClient & SuperClient

• If you are using one of Hibernate pre-3.3 version, add following property.

<property name="hibernate.cache.provider_class">com.hazelcast.hibernate.provider.HazelcastCacheProvider</property>

• If you are using Hibernate 3.3.x (or newer) version, you can choose to use either configuration property above
(Hibernate has a built-in bridge to use old-style cache implementations) or following property.

<property name="hibernate.cache.region.factory_class">com.hazelcast.hibernate.HazelcastCacheRegionFactory</property>

Hibernate Second Level Cache

47

Hazelcast creates a seperate distributed map for each Hibernate cache region. So these regions can be configured easily
via Hazelcast map configuration. You can define backup,eviction, TTL and Near Cache properties.

• Backup Configuration

• Eviction And TTL Configuration

• Near Cache Configuration

Hibernate has 4 cache concurrency strategies:read-only,read-write, nonstrict-read-write andtransactional. But Hibernate
does not forces cache providers to support all strategies. And Hazelcast supports first three (read-only,read-write,
nonstrict-read-write) of these four strategies. Hazelcast has not support for transactional strategy yet.

• If you are using xml based class configurations, you should add a cache element into your configuration with usage
attribute with one ofread-only,read-write, nonstrict-read-write.

<class name="eg.Immutable" mutable="false">
 <cache usage="read-only"/>

</class>

<class name="eg.Cat" >
 <cache usage="read-write"/>

 <set name="kittens" ... >
 <cache usage="read-write"/>

 </set>
</class>

• If you are using Hibernate-Annotations then you can add class-cache or collection-cache element into your Hibernate
configuration file with usage attribute with one of read only,read/write, nonstrict read/write.

<class-cache usage="read-only" class="eg.Immutable"/>
 <class-cache usage="read-write" class="eg.Cat"/>
 <collection-cache collection="eg.Cat.kittens" usage="read-write"/>

OR

• Alternatively, you can put Hibernate Annotation's @Cache annotation on your entities and collections.

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Cat implements Serializable {
 ...
}

Accessing underlying HazelcastInstance is possible by using HazelcastAccessor.

 SessionFactory sessionFactory = ...;
 HazelcastInstance hazelcastInstance = HazelcastAccessor.getHazelcastInstance(sessionFactory);

And now last thing you should be aware of is to drop hazelcast-hibernate-<version>.jar into your
classpath.

48

Chapter 13. Spring Integration
You can declare Hazelcast beans for Spring context using beans namespace (default spring beans namespace) as well
to declare hazelcast maps, queues and others. Hazelcast-Spring integration requires either hazelcast-spring jar or
hazelcast-all jar in the classpath.

<bean id="instance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
 <constructor-arg>
 <bean class="com.hazelcast.config.Config">
 <property name="groupConfig">
 <bean class="com.hazelcast.config.GroupConfig">
 <property name="name" value="dev"/>
 <property name="password" value="pwd"/>
 </bean>
 </property>
 <!-- and so on ... -->
 </bean>
 </constructor-arg>
</bean>

<bean id="map" factory-bean="instance" factory-method="getMap">
 <constructor-arg value="map"/>
</bean>

Hazelcast has Spring integration (requires version 2.5 or greater) since 1.9.1 using hazelcast namespace.

• Add namespace xmlns:hz="http://www.hazelcast.com/schema/config" to beans tag in context file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hz="http://www.hazelcast.com/schema/config"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-spring.xsd">

• Use hz namespace shortcuts to declare cluster, its items and so on.

After that you can configure Hazelcast instance (node):

<hz:hazelcast id="instance">
 <hz:config>
 <hz:group name="dev" password="password"/>
 <hz:properties>
 <hz:property name="hazelcast.merge.first.run.delay.seconds">5</hz:property>
 <hz:property name="hazelcast.merge.next.run.delay.seconds">5</hz:property>
 </hz:properties>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false"
 multicast-group="224.2.2.3"
 multicast-port="54327"/>
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 <hz:map name="map"
 backup-count="2"
 max-size="0"
 eviction-percentage="30"
 read-backup-data="true"
 cache-value="true"
 eviction-policy="NONE"
 merge-policy="hz.ADD_NEW_ENTRY"/>
 </hz:config>
</hz:hazelcast>

Spring Integration

49

As of version hazelcast 1.9.3, you can easily configure map-store and near-cache too. (For map-store you should set
either class-name or implementation attribute.)

<hz:config>
 <hz:map name="map1">
 <hz:near-cache time-to-live-seconds="0" max-idle-seconds="60"
 eviction-policy="LRU" max-size="5000" invalidate-on-change="true"/>

 <hz:map-store enabled="true" class-name="com.foo.DummyStore"
 write-delay-seconds="0"/>
 </hz:map>

 <hz:map name="map2">
 <hz:map-store enabled="true" implementation="dummyMapStore"
 write-delay-seconds="0"/>
 </hz:map>

 <bean id="dummyMapStore" class="com.foo.DummyStore" />
</hz:config>

It's possible to use placeholders instead of concrete values. For instance, use property file app-default.properties for group
configuration:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>classpath:/app-default.properties</value>
 </list>
 </property>
</bean>

<hz:hazelcast id="instance">
 <hz:config>
 <hz:group
 name="${cluster.group.name}"
 password="${cluster.group.password}"/>
 <!-- ... -->
 </hz:config>
</hz:hazelcast>

Similar for client

<hz:client id="client"
 group-name="${cluster.group.name}" group-password="${cluster.group.password}">
 <hz:members>10.10.1.2:5701, 10.10.1.3:5701</hz:members>
</hz:client>

You can declare beans for the following Hazelcast objects:

• map

• multiMap

• queue

• topic

• set

• list

• executorService

• idGenerator

• atomicNumber

Example:

Spring Integration

50

 <hz:map id="map" instance-ref="instance" name="map"/>
 <hz:multiMap id="multiMap" instance-ref="instance" name="multiMap"/>
 <hz:queue id="queue" instance-ref="instance" name="queue"/>
 <hz:topic id="topic" instance-ref="instance" name="topic"/>
 <hz:set id="set" instance-ref="instance" name="set"/>
 <hz:list id="list" instance-ref="instance" name="list"/>
 <hz:executorService id="executorService" instance-ref="instance" name="executorService"/>
 <hz:idGenerator id="idGenerator" instance-ref="instance" name="idGenerator"/>
 <hz:atomicNumber id="atomicNumber" instance-ref="instance" name="atomicNumber"/>

If you are using Hibernate with Hazelcast as 2nd level cache provider, you can easily create CacheProvider or
RegionFactory instances within Spring configuration. That way it is possible to use same HazelcastInstance as
Hibernate L2 cache instance.

 <hz:hibernate-cache-provider id="cacheProvider" instance-ref="instance" />

 ...

 <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean" scope="singleton">
 <property name="dataSource" ref="dataSource"/>
 <property name="cacheProvider" ref="cacheProvider" />
 ...
 </bean>

Or by Spring version 3.1

 <hz:hibernate-region-factory id="regionFactory" instance-ref="instance" />

 ...

 <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean" scope="singleton">
 <property name="dataSource" ref="dataSource"/>
 <property name="cacheRegionFactory" ref="regionFactory" />
 ...
 </bean>

51

Chapter 14. Clients
There are currently three ways to connect to a running Hazelcast cluster:

1. Native Clients

2. Memcache Clients

3. REST Client

14.1. Native Client
Native Client enables you to do all Hazelcast operations without being a member of the cluster. It connects to one of
the cluster members and delegates all cluster wide operations to it. When the relied cluster member dies, client will
transparently switch to another live member.

There can be hundreds, even thousands of clients connected to the cluster.

Imagine a trading application where all the trading data stored and managed in a 10 node Hazelcast cluster. Swing/Web
applications at traders' desktops can use Native Java Client to access and modify the data in the Hazelcast cluster.

Currently Hazelcast has Native Java Client available. The next client implementation will be CSharp.

Super Client vs. Native Client

Super Client is a member of the cluster, it has socket connection to every member in the cluster and it knows where the
data is so it will get to the data much faster. But Super Client has the clustering overhead and it must be on the same data
center even on the same RAC. However Native client is not member and relies on one of the cluster members. Native
Clients can be anywhere in the LAN or WAN. It scales much better and overhead is quite less. So if your clients are less
than Hazelcast nodes then Super client can be an option; otherwise definitely try Native Client. As a rule of thumb: Try
Native client first, if it doesn't perform well enough for you, then consider Super client.

The following picture describes the clients connecting to Hazelcast Cluster. Note the difference between Super Client and
Java Client

Clients

52

14.1.1. Java Client

You can do almost all hazelcast operations with Java Client. It already implements the same interface. You must include
hazelcast-client.jar into your classpath.

 import com.hazelcast.core.HazelcastInstance;
 import com.hazelcast.client.HazelcastClient;

 import java.util.Map;
 import java.util.Collection;

 HazelcastInstance client = HazelcastClient.newHazelcastClient("dev", "dev-pass", "10.90.0.1", "10.90.0.2:5702");
 //All Cluster Operations that you can do with ordinary HazelcastInstance
 Map<String, Customer> mapCustomers = client.getMap("customers");
 mapCustomers.put("1", new Customer("Joe", "Smith"));
 mapCustomers.put("2", new Customer("Ali", "Selam"));
 mapCustomers.put("3", new Customer("Avi", "Noyan"));

 Collection<Customer> colCustomers = mapCustomers.values();
 for (Customer customer : colCustomers) {
 // process customer
 }

14.1.2. CSharp Client

CSharp client is not available yet.

14.2. Memcache Client
A Memcache client written in any language can talk directly to Hazelcast cluster. No additional configuration is required.
Here is an example: Let's say your cluster's members are:

Members [5] {
 Member [10.20.17.1:5701]
 Member [10.20.17.2:5701]
 Member [10.20.17.4:5701]
 Member [10.20.17.3:5701]
 Member [10.20.17.5:5701]
 }

And you have a PHP application that uses PHP Memcache client to cache things in Hazelcast. All you need to do is
have your PHP memcache client connect to one of these members. It doesn't matter which member the client connects to
because Hazelcast cluster looks as one giant machine (Single System Image). PHP client code sample:

<?php
 $memcache = new Memcache;
 $memcache->connect('10.20.17.1', 5701) or die ("Could not connect");
 $memcache->set('key1','value1',0,3600);
 $get_result = $memcache->get('key1'); //retrieve your data
 var_dump($get_result); //show it
?>

Notice that memcache client is connecting to 10.20.17.1 and using port 5701. Java client code sample with
SpyMemcached client:

MemcachedClient client = new MemcachedClient(AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("key1", 3600, "value1");
System.out.println(client.get("key1"));

An entry written with a memcache client can be read by another memcache client written in another language.

14.3. Rest Client
Let's say your cluster's members are:

Clients

53

Members [5] {
 Member [10.20.17.1:5701]
 Member [10.20.17.2:5701]
 Member [10.20.17.4:5701]
 Member [10.20.17.3:5701]
 Member [10.20.17.5:5701]
 }

And you have a distributed map named 'stocks'. You can put a new key1/value1 entry into this map by issuing
HTTP POST call to http://10.20.17.1:5701/hazelcast/rest/maps/stocks/key1 URL. Your
http post call's content body should contain the value (value1). You can retrieve this entry via HTTP GET call to
http://10.20.17.1:5701/hazelcast/rest/maps/stocks/key1. You can also retrieve this entry from
another member such as http://10.20.17.3:5701/hazelcast/rest/maps/stocks/key1.

RESTful access is provided through any member of your cluster. So you can even put an HTTP load-balancer in-front of
your cluster members for load-balancing and fault-tolerance.

Now go ahead and install a REST plugin for your browser and explore further.

Hazelcast also stores the mime-type of your POST request if it contains any. So if, for example, you post binary of an
image file and set the mime-type of the HTTP POST request to image/jpeg then this mime-type will be part of the
response of your HTTP GET request for that entry.

Let's say you also have a task queue named 'tasks'. You can offer a new item into the queue via HTTP POST and take and
item from the queue via HTTP DELETE.

HTTP POST http://10.20.17.1:5701/hazelcast/rest/queues/tasks <CONTENT> means

Hazelcast.getQueue("tasks").offer(<CONTENT>);

and HTTP DELETE http://10.20.17.1:5701/hazelcast/rest/queues/tasks/3 means

Hazelcast.getQueue("tasks").poll(3, SECONDS);

Note that you will have to handle the failures on REST polls as there is no transactional guarantee.

54

Chapter 15. Internals

15.1. Internals 1: Threads
In this section, we will go over the Hazelcast's internal threads, the client threads executing Hazelcast API and how these
threads work together in Hazelcast. When developing Hazelcast, you should know which thread will execute your code,
which variables are local to that thread, and how you should interact with other threads.

1. Client Threads:

Client threads are your threads, user's application threads, and or user's application/web server's threads that are executing
Hazelcast API. User's threads that are client to Hazelcast. For example, Hazelcast.getQueue("myqueue"),
map.put(key, value), set.size() calls are initiated and finalized in the client threads. Serialization of
the objects also happens in the client threads. This also eliminates the problems associated with classloaders. Client
threads initiate the calls, serialize the objects into Hazelcast com.hazelcast.nio.Data object which holds a
java.nio.ByteBuffer. Data object is the binary representation of the application objects (key, value, item, callable
objects). All Hazelcast threads such as ServiceThread, InThread and OutThread work with Data objects; they
don't know anything about the actual application objects. When the calls are finalized, if the return type is an object,
Data object is returned to the client thread and client thread then will deserialize the Data (binary representation) back
to the application objects.

For each client thread, there is a com.hazelcast.impl.ThreadContext thread-local instance attached which
contains thread context information such as transaction.

2. ServiceThread:

ServiceThread, implemented at com.hazelcast.impl.ClusterService, is the most significant thread in
Hazelcast. Almost all none-IO operations happens in this thread. ServiceThread serves to local client calls and the
calls from other members.

If you look at the ClusterService class you will see it is constantly dequeueing its queue and
processing local and remote events. ClusterService queue receives local events in the form of
com.hazelcast.impl.BaseManager.Processable instances and remote events in the form of
com.hazelcast.nio.PacketQueue.Packet instances from InThread.

All distributed data structures (queue, map, set) are eventually modified in this thread so there is -no- synchronization
needed when data structures are accessed/modified.

It is important to understand that client threads initiates/finalizes the calls, in/out threads handles the socket read/writes
and ServiceThread does the actually manipulation of the data structures. There is no other threads allowed to touch
the data structures (maps, queues) so that there is no need to protect the data structures from multithread access: no
synchronization when accessing data structures. It may sound inefficient to allow only one thread to do all data structure
updates but here is the logic behind it (Please note that numbers given here are not exact but should give you an idea.): If
there is only one member (no IO), ServiceThread utilization will be about 95% and it will process between 30K and
120K operations per second, depending on the server. As the number of members in the cluster increases, IO Threads will
be using more CPU and eventually ServiceThread will go down to 35% CPU utilization so ServiceThread will
process between 10K and 40K operations per second. ServiceThread CPU utilization will be at about 35% regardless
of the size of the cluster. (The only thing that can affect that would be the network utilization.) This also means that total
number of operations processed by the entire cluster will be between N*10K and N*40K; N being the number of nodes in
the cluster. About half of these operations will be backup operations (assuming one backup) so client threads will realize
between N*5K and N*20K operations per second in total. Since there is only one thread accessing the data structures,
increase in the number of nodes doesn't create any contention so access to the data structures will be always at the same
speed. This is very important for Hazelcast's scalability.

This also makes writing code super easy because significant portion of the code is actually single-threaded so it is less
error-prone and easily maintainable.

No synchronization or long running jobs are allowed in this thread. All operations running in this thread have to complete
in microseconds.

Internals

55

3. InThread and OutThread:

Hazelcast separates reads and writes by having two separate threads; one for reading, and the other for writing. Eache
IO thread uses its own NIO selector instance. InThread handles OP_ACCEPT and OP_READ socket operations while
OutThread handles OP_CONNECT and OP_WRITE operations.

Each thread has its queue that they dequeue to register these operations with their selectors so operation registrations and
operation processing happens in the same threads.

InThread's runnable is the com.hazelcast.nio.InSelector and OutThread's runnable is the
com.hazelcast.nio.OutSelector. They both extends SelectorBase which constantly processes its
registration queue ('selectorQueue') and the selectedKeys.

Members are connected to each other via TCP/IP. If there are N number of members in the cluster then there will
be N*(N-1) connection end point and (N*(N-1))/2 connections. There can be only one connection between two
members, meaning, if m2 creates a connection to m1, m1 doesn't create another connection to m2 and the rule here is that
new members connect to the older members.

If you look at the com.hazelcast.nio.Connection, you will see that each connection is representing a socket
channel and has com.hazelcast.nio.ReadHandler and WriteHandler instances which are attached
to the socket channel's OP_READ and OP_WRITE operation selectionKeys respectively. When InSelector
selects OP_READ selection key (when this operation is ready for the selector), InSelector will get the attached
ReadHandler instance from the selectionKey and call its ReadHandler.handle() method. Same for the
OutSelector. When OutSelector selects OP_WRITE selection key (when this operation is ready for the
selector), OutSelector will get the attached WriteHandler instance from the selectionKey and call its
WriteHandler.handle() method.

When ServiceThread wants to send an Invocation instance to a member, it will

1. get the Connection for this member by calling
com.hazelcast.nio.ConnectionManager.get().getConnection(address)

2. check if the connection is live; Connection.live()

3. if live, it will get the WriteHandler instance of the Connection

4. enqueue the invocation into the WriteHandler's queue

5. and add registration task into OutSelector's queue, if necessary

6. OutSelector processes the OP_WRITE operation registration with its selector

7. when the selector is ready for the OP_WRITE operation, OutSelector will get the WriteHandler instance from
selectionKey and call its WriteHandler.handle()

see com.hazelcast.impl.BaseManager.send(Packet, Address).

see com.hazelcast.nio.SelectorBase.run().

Connections are always registered/interested for OP_READ operations. When InSelector is ready for reading from
a socket channel, it will get the ReadHandler instance from the selectionKey and call its handle() method. handle()
method will read Invocation instances from the underlying socket and when an Invocation instance is fully read, it will
enqueue it into ServiceThread's (ClusterService class) queue to be processed.

4. MulticastThread:

If multicast discovery is enabled (this is the default), and node is the master (oldest member) in the cluster then
MulticastThread is started to listen for join requests from the new members. When it receives join request
(com.hazelcast.nio.MulticastService.JoinInfo class), it will check if the node is allowed to join, if so,

Internals

56

it will send its address to the sender so that the sender node can create a TCP/IP connection to the master and send a
JoinRequest.

5. Executor Threads:

Each node employs a local ExecutorService threads which handle the event listener calls and distributed executions.
Number of core and max threads can be configured.

15.2. Internals 2: Serialization

All your distributed objects such as your key and value objects, objects you offer into distributed queue and your
distributed callable/runnable objects have to be Serializable.

Hazelcast serializes all your objects into an instance of com.hazelcast.nio.Data. Data is the binary
representation of an object and it holds list of java.nio.ByteBuffer instances which are reused. When Hazelcast
serializes an object into Data, it first checks whether the object is an instance of well-known, optimizable object such
as String, Long, Integer, byte[], ByteBuffer, Date. If not, it then checks whether the object is an
instance of com.hazelcast.nio.DataSerializable. If not, Hazelcast uses standard java serialization to convert
the object into binary format. See com.hazelcast.nio.Serializer for details.

So for faster serialization, Hazelcast recommends to use of String, Long, Integer, byte[] objects or to
implement com.hazelcast.nio.DataSerializable interface. Here is an example of a class implementing
com.hazelcast.nio.DataSerializable interface.

public class Address implements com.hazelcast.nio.DataSerializable {
 private String street;
 private int zipCode;
 private String city;
 private String state;

 public Address() {}

 //getters setters..

 public void writeData(DataOutput out) throws IOException {
 out.writeUTF(street);
 out.writeInt(zipCode);
 out.writeUTF(city);
 out.writeUTF(state);
 }

 public void readData (DataInput in) throws IOException {
 street = in.readUTF();
 zipCode = in.readInt();
 city = in.readUTF();
 state = in.readUTF();
 }
}

Lets take a look at another example which is encapsulating a DataSerializable field.

Internals

57

public class Employee implements com.hazelcast.nio.DataSerializable {
 private String firstName;
 private String lastName;
 private int age;
 private double salary;
 private Address address; //address itself is DataSerializable

 public Employee() {}

 //getters setters..

 public void writeData(DataOutput out) throws IOException {
 out.writeUTF(firstName);
 out.writeUTF(lastName);
 out.writeInt(age);
 out.writeDouble (salary);
 address.writeData (out);
 }

 public void readData (DataInput in) throws IOException {
 firstName = in.readUTF();
 lastName = in.readUTF();
 age = in.readInt();
 salary = in.readDouble();
 address = new Address();
 // since Address is DataSerializable let it read its own internal state
 address.readData (in);
 }
}

As you can see, since address field itself is DataSerializable, it is calling address.writeData(out) when
writing and address.readData(in) when reading.

Caution: Hazelcast serialization is done on the user thread and it assumes that there will be only one object serialization
at a time. So putting any Hazelcast operation that will require to serialize anything else will brake the serialization. For
Example: Putting

Hazelcast.getMap("anyMap").put("key", "dummy value");

line in readData or writeData methods will breake the serialization. If you have to perform such an operation, at least it
should be performed in another thread which will force the serialization to take on different thread.

15.3. Internals 3: Cluster Membership
It is important to note that Hazelcast is a peer to peer clustering so there is no 'master' kind of server in Hazelcast. Every
member in the cluster is equal and has the same rights and responsibilities.

When a node starts up, it will check to see if there is already a cluster in the network. There are two ways to find this out:

• Multicast discovery: If multicast discovery is enabled (that is the defualt) then the node will send a join request in the
form of a multicast datagram packet.

• Unicast discovery: if multicast discovery is disabled and TCP/IP join is enabled then the node will try to connect to he
IPs defined in the hazelcast.xml configuration file. If it can successfully connect to at least one node, then it will
send a join request through the TCP/IP connection.

If there is no existing node, then the node will be the first member of the cluster. If multicast is enabled then it will start
a multicast listener so that it can respond to incoming join requests. Otherwise it will listen for join request coming via
TCP/IP.

If there is an existing cluster already, then the oldest member in the cluster will receive the join request and check if the
request is for the right group. If so, the oldest member in the cluster will start the join process.

In the join process, the oldest member will:

• send the new member list to all members

Internals

58

• tell members to sync data in order to balance the data load

Every member in the cluster has the same member list in the same order. First member is the oldest member so if the
oldest member dies, second member in the list becomes the first member in the list and the new oldest member.

See com.hazelcast.impl.Node and com.hazelcast.impl.ClusterManager for details.

Q. If, let say 50+, nodes are trying to join the cluster at the same time, are they going to join the cluster one by one?

No. As soon as the oldest member receives the first valid join request, it will wait 5 seconds for others to join so that it
can join multiple members in one shot. If there is no new node willing to join for the next 5 seconds, then oldest member
will start the join process. If a member leaves the cluster though, because of a JVM crash for example, cluster will
immediately take action and oldest member will start the data recovery process.

15.4. Internals 4: Distributed Map
Hazelcast distributed map is a peer to peer, partitioned implementation so entries put into the map will be almost evenly
partitioned onto the existing members. Entries are partitioned according to their keys.

Every key is owned by a member. So every key-aware operation, such as put, remove, get is routed to the member
owning the key.

Q. How does Hazelcast determine the owner of a key?

Hazelcast creates fixed number of virtual partitions (blocks). Partition count is set to 271 by default. Each key
falls into one of these partitions. Each partition is owned/managed by a member. Oldest member of the cluster
will assign the ownerships of the partitions and let every member know who owns which partitions. So at any
given time, each member knows the owner member of a each partition. Hazelcast will convert your key object
to com.hazelcast.nio.Data then calculate the partition of the owner: partition-of-the-key =
hash(keyData) % PARTITION_COUNT. Since each member(JVM) knows the owner of each partition, each
member can find out which member owns the key.

Q. Can I get the owner of a key?

Yes. Use Partition API to get the partition that your key falls into and then get the owner of that partition. Note that owner
of the partition can change over time as new members join or existing members leave the cluster.

PartitionService partitionService = Hazelcast.getPartitionService();
Partition partition = partitionService.getPartition(key);
Member ownerMember = partition.getOwner();

Locally owned entries can be obtained by calling map.localKeySet().

Q. What happens when a new member joins?

Just like any other member in the cluster, the oldest member also knows who owns which partition and what the oldest
member knows is always right. The oldest member is also responsible for redistributing the partition ownerships when
a new member joins. Since there is new member, oldest member will take ownership of some of the partitions and
give them to the new member. It will try to move the least amount of data possible. New ownership information of all
partitions is then sent to all members.

Notice that the new ownership information may not reach each member at the same time and the cluster never stops
responding to user map operations even during joins so if a member routes the operation to a wrong member, target
member will tell the caller to re-do the operation.

If a member's partition is given to the new member, then the member will send all entries of that partition to the new
member (Migrating the entries). Eventually every member in the cluster will own almost same number of partitions, and
almost same number of entries. Also eventually every member will know the owner of each partition (and each key).

You can listen for migration events. MigrationEvent contains the partitionId, oldOwner, and newOwner
information.

Internals

59

PartitionService partitionService = Hazelcast.getPartitionService();
partitionService.addMigrationListener(new MigrationListener () {

 public void migrationStarted(MigrationEvent migrationEvent) {
 System.out.println(migrationEvent);
 }

 public void migrationCompleted(MigrationEvent migrationEvent) {
 System.out.println(migrationEvent);
 }
});

Q. How about distributed set and list?

Both distributed set and list are implemented on top of distributed map. The underlying distributed map doesn't
hold value; it only knows the key. Items added to both list and set are treated as keys. Unlike distributed set,
since distributed list can have duplicate items, if an existing item is added again, copyCount of the entry
(com.hazelcast.impl.ConcurrentMapManager.Record) is incremented. Also note that index based
methods of distributed list, such as List.get(index) and List.indexOf(Object), are not supported because it
is too costly to keep distributed indexes of list items so it is not worth implementing.

Check out the com.hazelcast.impl.ConcurrentMapManager class for the implementation. As you will see,
the implementation is lock-free because ConcurrentMapManager is a singleton and processed by only one thread, the
ServiceThread.

60

Chapter 16. Miscellaneous

16.1. Common Gotchas

Hazelcast is the distributed implementation of several structures that exist in Java. Most of the time it behaves as you
expect. However there are some design choices in Hazelcast that violate some contracts. This page will list those
violations.

1. equals() and hashCode() methods for the objects stored in Hazelcast

When you store a key, value in a distributed Map, Hazelcast serializes the key and value and stores the byte array
version of them in local ConcurrentHashMaps. And this ConcurrentHashMap uses the equals and hashCode methods
of byte array version of your key. So it does not take into account the actual equals and hashCode implementations of
your objects. So it is important that you choose your keys in a proper way. Implementing the equals and hashCode is
not enough, it is also important that the object is always serialized into the same byte array. All primitive types, like;
String, Long, Integer and etc. are good candidates for keys to use in Hazelcast. An unsorted Set is an example of a very
bad candidate because Java Serialization may serialize the same unsorted set in two different byte arrays.

Note that the distributed Set and List stores its entries as the keys in a distributed Map. So the notes above apply to the
objects you store in Set and List.

16.2. Testing Cluster

Hazelcast allows you to create more than one member on the same JVM. Each member is called HazelcastInstance
and each will have its own configuration, socket and threads, so you can treat them as totally separate members. This
enables us to write and run cluster unit tests on single JVM. As you can use this feature for creating separate members
different applications running on the same JVM (imagine running multiple webapps on the same JVM), you can also use
this feature for testing Hazelcast cluster.

Let's say you want to test if two members have the same size of a map.

 @Test
 public void testTwoMemberMapSizes() {
 // start the first member
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance(null);
 // get the map and put 1000 entries
 Map map1 = h1.getMap("testmap");
 for (int i = 0; i < 1000; i++) {
 map1.put(i, "value" + i);
 }
 // check the map size
 assertEquals(1000, map1.size());
 // start the second member
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance(null);
 // get the same map from the second member
 Map map2 = h2.getMap("testmap");
 // check the size of map2
 assertEquals(1000, map2.size());
 // check the size of map1 again
 assertEquals(1000, map1.size());
 }

In the test above, everything happened in the same thread. When developing multi-threaded test, coordination of
the thread executions has to be carefully handled. Usage of CountDownLatch for thread coordination is highly
recommended. You can certainly use other things. Here is an example where we need to listen for messages and make
sure that we got these messages:

Miscellaneous

61

 @Test
 public void testTopic() {
 // start two member cluster
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance(null);
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance(null);
 String topicName = "TestMessages";
 // get a topic from the first member and add a messageListener
 ITopic<String> topic1 = h1.getTopic(topicName);
 final CountDownLatch latch1 = new CountDownLatch(1);
 topic1.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch1.countDown();
 }
 });
 // get a topic from the second member and add a messageListener
 ITopic<String> topic2 = h2.getTopic(topicName);
 final CountDownLatch latch2 = new CountDownLatch(2);
 topic2.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch2.countDown();
 }
 });
 // publish the first message, both should receive this
 topic1.publish("Test1");
 // shutdown the first member
 h1.shutdown();
 // publish the second message, second member's topic should receive this
 topic2.publish("Test1");
 try {
 // assert that the first member's topic got the message
 assertTrue(latch1.await(5, TimeUnit.SECONDS));
 // assert that the second members' topic got two messages
 assertTrue(latch2.await(5, TimeUnit.SECONDS));
 } catch (InterruptedException ignored) {
 }
 }

You can surely start Hazelcast members with different configuration. Let's say we want to test if Hazelcast
SuperClient can shutdown fine.

 @Test(timeout = 60000)
 public void shutdownSuperClient() {
 // first config for normal cluster member
 Config c1 = new XmlConfigBuilder().build();
 c1.setPortAutoIncrement(false);
 c1.setPort(5709);
 // second config for super client
 Config c2 = new XmlConfigBuilder().build();
 c2.setPortAutoIncrement(false);
 c2.setPort(5710);
 // make sure to super client = true
 c2.setSuperClient(true);
 // start the normal member with c1
 HazelcastInstance hNormal = Hazelcast.newHazelcastInstance(c1);
 // start the super client with different configuration c2
 HazelcastInstance hSuper = Hazelcast.newHazelcastInstance(c2);
 hNormal.getMap("default").put("1", "first");
 assert hSuper.getMap("default").get("1").equals("first");
 hNormal.shutdown();
 hSuper.shutdown();
 }

Also remember to call Hazelcast.shutdownAll() after each test case to make sure that there is no other running
member left from the previous tests.

Miscellaneous

62

 @After
 public void cleanup() throws Exception {
 Hazelcast.shutdownAll();
 }

Need more info? Check out existing tests. [http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/
com/hazelcast/impl/ClusterTest.java]

16.3. Planned Features
Random order of planned features.

• Native C# Client

• Native C++ Client

• Ready-to-go Hazelcast Cache Server Image for Amazon EC2

• Symmetric Encryption support for Java Client

• Continuous query (events based on given criteria)

• Distributed java.util.concurrent.DelayQueue implementation.

• Cluster-wide receive ordering for topics.

• Security (JAAS).

• Distributed Tree implementation.

• Distributed Tuple implementation.

• Call interceptors for modifying the request or the response.

• Built-in file based storage.

History of existing features is available atRelease Notes.

16.4. Release Notes
Please see, Todo page for planned features.

1.9.4

• New WAN Replication (synchronization of separate active clusters)

• New Data Affinity (co-location of related entries) feature.

• New EC2 Auto Discovery for your Hazelcast cluster running on Amazon EC2 platform.

• New Distributed CountDownLatch implementation. [http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/
core/ICountDownLatch.html]

• New Distributed Semaphore implementation. [http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/
ISemaphore.html]

• Improvement: Distribution contains HTML and PDF documentation besides Javadoc.

• Improvement: Better TCP/IP and multicast join support. Handling more edge cases like multiple nodes starting at the
same time.

• Improvement: Memcache protocol: Better integration between Java and Memcache clients. Put from memcache, get
from Java client.

http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://code.google.com/p/hazelcast/source/browse/trunk/hazelcast/src/test/java/com/hazelcast/impl/ClusterTest.java
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ICountDownLatch.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html
http://www.hazelcast.com/docs/1.9.4/javadoc/com/hazelcast/core/ISemaphore.html

Miscellaneous

63

• Monitoring Tool is removed from the project.

• 200+ commits 25+ bug fixes and several other enhancements.

1.9.3

• Re-implementation of distributed queue.

• Configurable backup-count and synchronous backup.

• Persistence support based on backing MapStore

• Auto-recovery from backing MapStore on startup.

• Re-implementation of distributed list supporting index based operations.

• New distributed semaphore implementation.

• Optimized IMap.putAll for much faster bulk writes.

• New IMap.getAll for bulk reads which is calling MapLoader.loadAll if necessary.

• New IMap.tryLockAndGet and IMap.putAndUnlock API

• New IMap.putTransient API for storing only in-memory.

• New IMap.addLocalEntryListener() for listening locally owned entry events.

• New IMap.flush() for flushing the dirty entries into MapStore.

• New MapLoader.getAllKeys API for auto-pre-populating the map when cluster starts.

• Support for min. initial cluster size to enable equally partitioned start.

• Graceful shutdown.

• Faster dead-member detection.

1.9

• Memcache interface support. Memcache clients written in any language can access Hazelcast cluster.

• RESTful access support. http://<ip>:5701/hazelcast/rest/maps/mymap/key1

• Split-brain (network partitioning) handling

• New LifecycleService API to restart, pause Hazelcast instances and listen for the lifecycle events.

• New asynchronous put and get support for IMap via IMap.asyncPut() and IMap.asyncGet()

• New AtomicNumber API; distributed implementation of java.util.concurrent.atomic.AtomicLong

• So many bug fixes.

1.8.4

• Significant performance gain for multi-core servers. Higher CPU utilization and lower latency.

• Reduced the cost of map entries by 50%.

• Better thread management. No more idle threads.

• Queue Statistics API and the queue statistics panel on the Monitoring Tool.

Miscellaneous

64

• Monitoring Tool enhancements. More responsive and robust.

• Distribution contains hazelcast-all-<version>.jar to simplify jar dependency.

• So many bug fixes.

1.8.3

• Bug fixes

• Sorted index optimization for map queries.

1.8.2

• A major bug fix

• Minor optimizations

1.8.1

• Hazelcast Cluster Monitoring Tool (see the hazelcast-monitor-1.8.1.war in the distro)

• New Partition API. Partition and key owner, migration listeners.

• New IMap.lockMap() API.

• New Multicast+TCP/IP join feature. Try multicast first, if not found, try tcp/ip.

• New Hazelcast.getExecutorService(name) API. Have separate named ExecutorServices. Do not let your big tasks
blocking your small ones.

• New Logging API. Build your own logging. or simply use Log4j or get logs as LogEvents.

• New MapStatistics API. Get statistics for your Map operations and entries.

• HazelcastClient automatically updates the member list. no need to pass all members.

• Ability to start the cluster members evenly partitioned. so no migration.

• So many bug fixes and enhancements.

• There are some minor Config API change. Just make sure to re-compile.

1.8

• Java clients for accessing the cluster remotely. (C# is next)

• Distributed Query for maps. Both Criteria API and SQL support.

• Near cache for distributed maps.

• TTL (time-to-live) for each individual map entry.

• IMap.put(key,value, ttl, timeunit)

• IMap.putIfAbsent(key,value, ttl, timeunit)

• Many bug fixes.

1.7.1

• Multiple Hazelcast members on the same JVM. New HazelcastInstance API.

• Better API based configuration support.

Miscellaneous

65

• Many performance optimizations. Fastest Hazelcast ever!

• Smoother data migration enables better response times during joins.

• Many bug fixes.

1.7

• Persistence via Loader/Store interface for distributed map.

• Socket level encryption. Both symmetric and asymmetric encryption supported.

• New JMX support. (many thanks to Marco)

• New Hibernate second level cache provider (many thanks to Leo)

• Instance events for getting notified when a data structure instance (map, queue, topic etc.) is created or destroyed.

• Eviction listener. EntryListener.entryEvicted(EntryEvent)

• Fully 'maven'ized.

• Modularized...

• hazelcast (core library)

• hazelcast-wm (http session clustering tool)

• hazelcast-ra (JCA adaptor)

• hazelcast-hibernate (hibernate cache provider)

1.6

• Support for synchronous backups and configurable backup-count for maps.

• Eviction support. Timed eviction for queues. LRU, LFU and time based eviction for maps.

• Statistics/history for entries. create/update time, number of hits, cost. see IMap.getMapEntry(key)

• MultiMap implementation. similar to google-collections and apache-common-collections MultiMap but distributed
and thread-safe.

• Being able to destroy() the data structures when not needed anymore.

• Being able to Hazelcast.shutdown() the local member.

• Get the list of all data structure instances viaHazelcast.getInstances().

1.5

• Major internal refactoring

• Full implementation ofjava.util.concurrent.BlockingQueue. Now queues can have configurable capacity
limits.

• Super Clients: Members with no storage. If -Dhazelcast.super.client=true JVM parameter is set, that JVM
will join the cluster as a 'super client' which will not be a 'data partition' (no data on that node) but will have super fast
access to the cluster just like any regular member does.

• Http Session sharing support for Hazelcast Web Manager. Different webapps can share the same sessions.

• Ability to separate clusters by creating groups. ConfigGroup

Miscellaneous

66

• java.util.logging support.

1.4

• Add, remove and update events for queue, map, set and list

• Distributed Topic for pub/sub messaging

• Integration with J2EE transactions via JCA complaint resource adapter

• ExecutionCallback interface for distributed tasks

• Cluster-wide unique id generator

1.3

• Transactional Distributed Queue, Map, Set and List

1.2

• Distributed Executor Service

• Multi member executions

• Key based execution routing

• Task cancellation support

1.1

• Session Clustering with Hazelcast Webapp Manager

• Full TCP/IP clustering support

1.0

• Distributed implementation of java.util.{Queue,Map,Set,List}

• Distributed implementation of java.util.concurrency.Lock

• Cluster Membership Events

	Hazelcast Documentation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Distributed Data Structures
	2.1. Distributed Queue
	2.2. Distributed Topic
	2.3. Distributed Map
	2.3.1. Backups
	2.3.2. Eviction
	2.3.3. Persistence
	2.3.4. Query
	2.3.5. Near Cache
	2.3.6. Entry Statistics

	2.4. Distributed MultiMap
	2.5. Distributed Set
	2.6. Distributed List
	2.7. Distributed Lock
	2.8. Distributed Events

	Chapter 3. Data Affinity
	Chapter 4. Monitoring with JMX
	Chapter 5. Cluster Utilities
	5.1. Cluster Interface
	5.2. Cluster-wide Id Generator
	5.3. Super Client

	Chapter 6. Transactions
	6.1. Transaction Interface
	6.2. J2EE Integration
	6.2.1. Resource Adapter Configuration
	6.2.2. Sample Glassfish v3 Web Application Configuration
	6.2.3. Sample JBoss Web Application Configuration

	Chapter 7. Distributed Executor Service
	7.1. Distributed Execution
	7.2. Execution Cancellation
	7.3. Execution Callback

	Chapter 8. Http Session Clustering with HazelcastWM
	Chapter 9. WAN Replication
	Chapter 10. Encryption
	Chapter 11. Configuration
	11.1. Configuring Hazelcast for full TCP/IP cluster
	11.2. Configuring Hazelcast for EC2 Auto Discovery
	11.3. Creating Separate Clusters
	11.4. Specifying network interfaces
	11.5. Network Partitioning (Split-Brain Syndrome)
	11.6. Wildcard Configuration
	11.7. Advanced Configuration Properties
	11.8. Logging Configuration

	Chapter 12. Hibernate Second Level Cache
	Chapter 13. Spring Integration
	Chapter 14. Clients
	14.1. Native Client
	14.1.1. Java Client
	14.1.2. CSharp Client

	14.2. Memcache Client
	14.3. Rest Client

	Chapter 15. Internals
	15.1. Internals 1: Threads
	15.2. Internals 2: Serialization
	15.3. Internals 3: Cluster Membership
	15.4. Internals 4: Distributed Map

	Chapter 16. Miscellaneous
	16.1. Common Gotchas
	16.2. Testing Cluster
	16.3. Planned Features
	16.4. Release Notes

