
In-Memory Data Grid -
Hazelcast | Documentation

version 3.1.9

In-Memory Data Grid - Hazelcast | Documentation: version 3.1.9

Publication date 25 January 2017
Copyright © 2013 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies.

iii

Table of Contents
1. Introduction ... 1

1.1. What's new in 3.1? .. 1
1.2. What's new in 3.0? .. 3
1.3. Upgrading from 2.x versions .. 4
1.4. Getting Started (Tutorial) .. 6

2. Distributed Data Structures .. 8
2.1. Distributed Map ... 8

2.1.1. Backups ... 9
2.1.2. Eviction ... 10
2.1.3. Persistence .. 12
2.1.4. Query .. 13
2.1.5. Indexing ... 15
2.1.6. Continuous Query .. 16
2.1.7. Entry Processor ... 16
2.1.8. Interceptors ... 18
2.1.9. Near Cache ... 21
2.1.10. Entry Statistics .. 21
2.1.11. In Memory Format ... 22

2.2. Distributed Queue .. 22
2.2.1. Persistence .. 23

2.3. Distributed MultiMap .. 24
2.4. Distributed Topic ... 24
2.5. Distributed Set ... 25
2.6. Distributed List .. 25
2.7. Distributed Lock .. 26
2.8. Distributed Events .. 26

3. Serialization ... 28
3.1. Data Serializable .. 28
3.2. Portable Serialization .. 29
3.3. Custom Serialization ... 31

4. Elastic Memory (Enterprise Extensions Only) .. 33
5. Security (Enterprise Extensions Only) .. 34

5.1. Credentials .. 34
5.2. ClusterLoginModule ... 35
5.3. Cluster Member Security ... 36
5.4. Native Client Security ... 37

5.4.1. Authentication ... 37
5.4.2. Authorization .. 37
5.4.3. Permissions ... 39

6. Data Affinity ... 43
7. Monitoring with JMX .. 46
8. Cluster Utilities .. 48

8.1. Cluster Interface ... 48
8.2. Cluster-wide Id Generator .. 48

9. Transactions ... 49
9.1. Transaction Interface .. 49
9.2. J2EE Integration .. 49

9.2.1. Resource Adapter Configuration ... 50
9.2.2. Sample Glassfish v3 Web Application Configuration .. 50
9.2.3. Sample JBoss Web Application Configuration .. 51

10. Distributed Executor Service ... 52
10.1. Distributed Execution .. 52
10.2. Execution Cancellation .. 53
10.3. Execution Callback ... 54

11. Http Session Clustering with HazelcastWM ... 56

In-Memory Data Grid -
Hazelcast | Documentation

iv

12. WAN Replication .. 59
13. Service Provider Interface .. 61
14. Configuration ... 62

14.1. Creating Separate Clusters ... 63
14.2. Network Configuration .. 64

14.2.1. Configuring TCP/IP Cluster ... 64
14.2.2. Specifying Network Interfaces .. 64
14.2.3. EC2 Auto Discovery ... 65
14.2.4. Network Partitioning (Split-Brain Syndrome) .. 65
14.2.5. SSL ... 67
14.2.6. Encryption .. 68
14.2.7. Socket Interceptor .. 69
14.2.8. IPv6 Support ... 69
14.2.9. Restricting Outbound Ports .. 70

14.3. Partition Group Configuration ... 71
14.4. Listener Configurations .. 72
14.5. Wildcard Configuration ... 76
14.6. Advanced Configuration Properties .. 76
14.7. Logging Configuration .. 78
14.8. Setting License Key (Enterprise Extensions Only) .. 79

15. Hibernate Second Level Cache .. 80
16. Spring Integration ... 83

16.1. Configuration ... 83
16.2. Spring Managed Context .. 86
16.3. Spring Cache ... 88
16.4. Hibernate 2nd Level Cache Config .. 88
16.5. Spring Data - JPA .. 88
16.6. Spring Data - MongoDB .. 89

17. Clients .. 91
17.1. Native Client ... 91

17.1.1. Java Client .. 91
17.1.2. CSharp Client (Enterprise Extensions Only) ... 91

17.2. Memcache Client .. 91
17.3. Rest Client .. 92

18. Management Center ... 94
18.1. Introduction ... 94

18.1.1. Installation .. 94
18.1.2. User Administration ... 94
18.1.3. Tool Overview .. 95

18.2. Maps .. 95
18.2.1. Monitoring Maps ... 95
18.2.2. Map Browser .. 96
18.2.3. Map Configuration ... 96

18.3. Queues ... 96
18.4. Topics .. 97
18.5. Members ... 97

18.5.1. Monitoring .. 98
18.5.2. Operations .. 98

18.6. System Logs .. 98
18.7. Scripting ... 99
18.8. Time Travel ... 99
18.9. Console .. 99

19. Miscellaneous ... 103
19.1. Common Gotchas ... 103
19.2. Testing Cluster ... 103
19.3. Planned Features ... 105

v

List of Tables
14.1. Properties Table ... 77

1

Chapter 1. Introduction
Hazelcast is a clustering and highly scalable data distribution platform for Java. Hazelcast helps architects and developers
to easily design and develop faster, highly scalable and reliable applications for their businesses.

• Distributed implementations of java.util.{Queue, Set, List, Map}

• Distributed implementation of java.util.concurrent.ExecutorService

• Distributed implementation of java.util.concurrency.locks.Lock

• Distributed Topic for publish/subscribe messaging

• Transaction support and J2EE container integration via JCA

• Distributed listeners and events

• Support for cluster info and membership events

• Dynamic HTTP session clustering

• Dynamic clustering

• Dynamic scaling to hundreds of servers

• Dynamic partitioning with backups

• Dynamic fail-over

• Super simple to use; include a single jar

• Super fast; thousands of operations per sec.

• Super small; less than a MB

• Super efficient; very nice to CPU and RAM

To install Hazelcast:

• Download hazelcast-_version_.zip from www.hazelcast.com [http://www.hazelcast.com]

• Unzip hazelcast-_version_.zip file

• Add hazelcast-_version_.jar file into your classpath

Hazelcast is pure Java. JVMs that are running Hazelcast will dynamically cluster. Although by default Hazelcast will use
multicast for discovery, it can also be configured to only use TCP/IP for environments where multicast is not available or
preferred (Click here for more info). Communication among cluster members is always TCP/IP with Java NIO beauty.
Default configuration comes with 1 backup so if one node fails, no data will be lost. It is as simple as usingjava.util.
{Queue, Set, List, Map}. Just add the hazelcast.jar into your classpath and start coding.

1.1. What's new in 3.1?

Elastic Memory(Enterprise Extensions Only)

• Elastic Memory is now available. For additional info see Elastic Memory section.

Security(Enterprise Extensions Only)

http://www.hazelcast.com
http://www.hazelcast.com

Introduction

2

• Hazelcast Security is now available. For additional info see Security section.

JCA

• Hazelcast JCA integration is back. For additional info see J2EE Integration section.

Controlled Partitioning

• Controlled Partitioning is the ability to control the partition of certain DistributedObjects like the IQueue, IAtomicLong
or ILock. This will make collocating related data easier. For additional info see our blog post: Controlled Partitioning
[http://blog.hazelcast.com/blog/2013/08/25/controlled-partitioning/]

• Hazelcast map also supports custom partitioning strategies. A PartitioningStrategy can be defined in map
configuration.

Map

• TransactionalMap now supports keySet(), keySet(predicate), values() and
values(predicate) methods.

• Eviction based on USED_HEAP_PERCENTAGE or USED_HEAP_SIZE now takes account real heap memory size
consumed by map.

• SqlPredicate now supports '\' as escape character. See MapQuery section for more info.

• SqlPredicate now supports regular expressions using REGEX keyword. For example; map.values(new
SqlPredicate("name REGEX .*earl$")) See MapQuery section for more info.

Queue

• Hazelcast queue now supports QueueStoreFactory that will be used to create custom QueueStores for
persistent queues. QueueStoreFactory is similar to map's MapStoreFactory.

• TransactionalQueue now supports peek() and peek(timeout, timeunit) methods.

Client

• Client now has SSL support. See SSL section.

• Client also supports custom socket implementations using SocketFactory API. A custom socket factory can be
defined in ClientConfig;
clientConfig.getSocketOptions().setSocketFactory(socketFactory).

Other Features

• Hazelcast IList and ISet now have their own configurations. They can be configured using config API, xml and
Spring. See ListConfig and SetConfig classes.

• HazelcastInstance.shutdown() method added back.

• OSGI compatibility is improved significantly.

Fixed Issues

• Version 3.1 [https://github.com/hazelcast/hazelcast/issues?milestone=23&state=closed]

• Version 3.1.1 [https://github.com/hazelcast/hazelcast/issues?milestone=30&state=closed]

• Version 3.1.2 [https://github.com/hazelcast/hazelcast/issues?milestone=33&state=closed]

http://blog.hazelcast.com/blog/2013/08/25/controlled-partitioning/
http://blog.hazelcast.com/blog/2013/08/25/controlled-partitioning/
https://github.com/hazelcast/hazelcast/issues?milestone=23&state=closed
https://github.com/hazelcast/hazelcast/issues?milestone=23&state=closed
https://github.com/hazelcast/hazelcast/issues?milestone=30&state=closed
https://github.com/hazelcast/hazelcast/issues?milestone=30&state=closed
https://github.com/hazelcast/hazelcast/issues?milestone=33&state=closed
https://github.com/hazelcast/hazelcast/issues?milestone=33&state=closed

Introduction

3

1.2. What's new in 3.0?

Core architecture:

• Multi-thread execution: Operations are now executed by multiple threads (by factor of processor cores). With Hazelcast
2, there was a only single thread.

• SPI: Service Programming Interface for developing new partitioned services, data structures. All Hazelcast data
structures like Map, Queue are reimplemented with SPI.

Serialization

• IdentifiedDataSerializable: A slightly optimized version of DataSerializable that doesn't use class name and reflection
for de-serialization.

• Portable Serialization: Another Serialization interface that doesn't use reflection and can navigate through binary data
and fetch/query/index individual field without having any reflection or whole object de-serialization.

• Custom Serialization: Support for custom serialization that can be plugged into Hazelcast.

Map

• Entry Processor : Executing an EntryProcessor on the key or on all entries. Hazelcast implicitly locks the entree and
guarantees no migration while the execution of the Processor.

• In Memory Format : Support for storing entries in Binary, Object and Cached format.

• Continuous Query : Support for listeners that register with a query and are notified when there is a change on the Map
that matches the Query.

• Interceptors : Ability to intercept the Map operation before/after it is actually executed.

• Lazy Indexing :Ability to index existing items in the map. No need to add indexes at the very beginning.

Queue

• No more dependency on the distributed map

• Scales really well as you have thousands of separate queues.

• Persistence Support for persistence with QueueStore.

Multimap

• Values can be Set/List/Queue.

Topic

• Total Ordering : Support for global ordering where all Nodes receive all messages in the same order.

Transactions

• Distributed Transaction : Support for both 1-phase (local) and 2 phase transactions with a totally new API.

Client

• New Binary Protocol: A new binary protocol based on portable serialization. The same protocol is used for Java/C/C#
and other client

Introduction

4

• Smart client: Support for dummy and smart client. Where a dummy client will maintain a connection to only one
member, whereas the smart client can route the operations to the Node that owns the data.

1.3. Upgrading from 2.x versions
In this section, we list the changes what users should take into account before upgrading to Hazelcast 3.1 from earlier
versions of Hazelcast.

• Removal of deprecated static methods:

The static methods of Hazelcast class reaching hazelcast data components have been removed. The functionality of
these methods can be reached from HazelcastInstance interface. Namely you should replace following:

Map<Integer, String> mapCustomers = Hazelcast.getMap("customers");

with

HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
// or if you already started an instance
// HazelcastInstance instance = Hazelcast.getHazelcastInstanceByName("instance1");
Map<Integer, String> mapCustomers = instance.getMap("customers");

• Removal of lite members:

With 3.0 there will be no member type as lite member. As 3.0 clients are smart client that they know in which node the
data is located, you can replace your lite members with native clients.

• Renaming "instance" to "distributed object":

Before 3.0 there was a confusion for the term "instance". It was used for both the cluster members and the distributed
objects (map, queue, topic etc. instances). Starting 3.0, the term instance will be only used for hazelcast instances,
namely cluster members. We will use the term "distributed object" for map, queue etc. instances. So you should replace
the related methods with the new renamed ones: As 3.0 clients are smart client that they know in which node the data is
located, you can replace your lite members with native clients.

public static void main(String[] args) throws InterruptedException {
 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 IMap map = hz.getMap("test");
 Collection<Instance> instances = hz.getInstances();
 for (Instance instance : instances) {
 if(instance.getInstanceType() == Instance.InstanceType.MAP) {
 System.out.println("there is a map with name:"+instance.getId());
 }
 }
}

with

public static void main(String[] args) throws InterruptedException {
 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 IMap map = hz.getMap("test");
 Collection<DistributedObject> distributedObjects = hz.getDistributedObjects();
 for (DistributedObject distributedObject : distributedObjects) {
 if(distributedObject instanceof IMap)
 System.out.println("there is a map with name:"+distributedObject.getName());
 }
}

Introduction

5

• Package structure change:

PartitionService has been moved to package "com.hazelcast.core" from "com.hazelcast.partition"

• Listener API change:

Before 3.0, you can removeListener methods was taking the Listener object as parameter. But it causes confusion as
same listener object may be used as parameter for different listener registrations. So we have changed the listener API.
Anymore, addListener methods return you an unique id and you can remove listener by using this id. So you should do
following replacement if needed:

IMap map = instance.getMap("map");
map.addEntryListener(listener,true);
map.removeEntryListener(listener);

with

IMap map = instance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

• IMap changes:

• tryRemove(K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is successful.

• tryLockAndGet(K key, long time, TimeUnit timeunit) is removed.

• putAndUnlock(K key, V value) is removed.

• lockMap(long time, TimeUnit timeunit) and unlockMap() are removed

• getMapEntry(K key) is renamed as getEntryView(K key). The returned object's type, MapEntry class is renamed as
EntryView.

• There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented
merge() method causes the existing entry to be removed.

• IQueue changes:

There is no change on IQueue API but there are changes on how IQueue is configured. With Hazelcast 3.0 there will
not be backing map configuration for queue. Settings like backup count will be directly configured on queue config.
For queue configuration details, see Distributed Queue page.

• Transaction API change:

In Hazelcast 3.0, transaction API is completely different. See transactions part for the new API: Distributed
Transactions

• ExecutorService API change:

Classes MultiTask and DistributedTask have been removed. All the functionality is supported by the newly presented
interface IExecutorService. See distributed execution part for detailed usage example: Distributed Execution

Introduction

6

• LifeCycleService API has been simplified. pause(), resume(), restart() methods have been removed.

• AtomicNumber class has been renamed to IAtomicLong.

• ICountDownLatch await() operation has been removed. We expect users to use await method with timeout parameters.

• ISemaphore API has been substantially changed. attach(), detach() methods have been removed.

1.4. Getting Started (Tutorial)
In this short tutorial, we will create simple Java application using Hazelcast distributed map and queue. Then we will run
our application twice to have two nodes (JVMs) clustered and finalize this tutorial with connecting to our cluster from
another Java application by using Hazelcast Native Java Client API.

• Download the latest Hazelcast zip [http://www.hazelcast.com/downloads.jsp].

• Unzip it and add the lib/hazelcast.jar to your class path.

• Create a Java class and import Hazelcast libraries.

• Following code will start the first node and create and use customers map and queue.

import com.hazelcast.config.Config;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {

 public static void main(String[] args) {
 Config cfg = new Config();
 HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
 Map<Integer, String> mapCustomers = instance.getMap("customers");
 mapCustomers.put(1, "Joe");
 mapCustomers.put(2, "Ali");
 mapCustomers.put(3, "Avi");

 System.out.println("Customer with key 1: "+ mapCustomers.get(1));
 System.out.println("Map Size:" + mapCustomers.size());

 Queue<String> queueCustomers = instance.getQueue("customers");
 queueCustomers.offer("Tom");
 queueCustomers.offer("Mary");
 queueCustomers.offer("Jane");
 System.out.println("First customer: " + queueCustomers.poll());
 System.out.println("Second customer: "+ queueCustomers.peek());
 System.out.println("Queue size: " + queueCustomers.size());
 }
}

• Run this class second time to get the second node started.

• Have you seen they formed a cluster? You should see something like this:

Members [2] {
 Member [127.0.0.1:5701]
 Member [127.0.0.1:5702] this
}

Connecting Hazelcast Cluster with Java Client API

• Besides hazelcast.jar you should also add hazelcast-client.jar to your classpath.

http://www.hazelcast.com/downloads.jsp
http://www.hazelcast.com/downloads.jsp

Introduction

7

• Following code will start a Hazelcast Client, connect to our two node cluster and print the size of our customers
map.

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {

 public static void main(String[] args) {
 ClientConfig clientConfig = new ClientConfig();
 clientConfig.addAddress("127.0.0.1:5701");
 HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
 IMap map = client.getMap("customers");
 System.out.println("Map Size:" + map.size());
 }
}

• When you run it, you will see the client properly connects to the cluster and print the map size as 3.

What is Next?

• You can browse documentation [http://www.hazelcast.com/docs.jsp] and resources for detailed features and examples.

• You can email your questions to Hazelcast mail group [http://groups.google.com/group/hazelcast].

• You can browse Hazelcast source code [https://github.com/hazelcast/hazelcast].

http://www.hazelcast.com/docs.jsp
http://www.hazelcast.com/docs.jsp
http://groups.google.com/group/hazelcast
http://groups.google.com/group/hazelcast
https://github.com/hazelcast/hazelcast
https://github.com/hazelcast/hazelcast

8

Chapter 2. Distributed Data Structures
Common Features of all Hazelcast Data Structures:

• Data in the cluster is almost evenly distributed (partitioned) across all nodes. So each node carries ~ (1/n * total-data) +
backups , n being the number of nodes in the cluster.

• If a member goes down, its backup replica that also holds the same data, will dynamically redistribute the data
including the ownership and locks on them to remaining live nodes. As a result, no data will get lost.

• When a new node joins the cluster, new node takes ownership(responsibility) and load of -some- of the entire data
in the cluster. Eventually the new node will carry almost (1/n * total-data) + backups and becomes the new partition
reducing the load on others.

• There is no single cluster master or something that can cause single point of failure. Every node in the cluster has equal
rights and responsibilities. No-one is superior. And no dependency on external 'server' or 'master' kind of concept.

• Hazelcast will synchronize the state of Distributed Data Structures, but not the content of it. Example: if you have an
IMap < String, Employee > and one node fires an employee by calling employees.get(“John”).setFired(true); then the
state of Employee will not be synchronized. This is because employees.get("John") will create a copy of the existing
employee. You need to put it back by calling employees.put("John", employee) in order for the state to be reflected in
Hazelcast. As a rule of thumb you should treat everything stored in Hazelcast as immutable objects.

Here is how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and how you can listen
for instance events to get notified when an instance is created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.*;

public class Sample implements DistributedObjectListener {
 public static void main(String[] args) {
 Sample sample = new Sample();

 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 hz.addDistributedObjectListener(sample);

 Collection<DistributedObject> distributedObjects = hz.getDistributedObjects();

 for (DistributedObject distributedObject : distributedObjects) {
 System.out.println(distributedObject.getName() + "," + distributedObject.getId());
 }
 }

 @Override
 public void distributedObjectCreated(DistributedObjectEvent event) {
 DistributedObject instance = event.getDistributedObject();
 System.out.println("Created " + instance.getName() + "," + instance.getId());
 }

 @Override
 public void distributedObjectDestroyed(DistributedObjectEvent event) {
 DistributedObject instance = event.getDistributedObject();
 System.out.println("Destroyed " + instance.getName() + "," + instance.getId());

 }
}

2.1. Distributed Map

Hazelcast will partition your map entries; and almost evenly distribute onto all Hazelcast members. Distributed maps have
1 backup by default so that if a member goes down, we don't lose data. Backup operations are synchronous so when a

Distributed Data Structures

9

map.put(key, value) returns, it is guaranteed that the entry is replicated to one other node. For the reads, it is also
guaranteed that map.get(key) returns the latest value of the entry. Consistency is strictly enforced.

import com.hazelcast.core.Hazelcast;
import java.util.Map;
import java.util.Collection;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
Map<String, Customer> mapCustomers = hz.getMap("customers");
mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));
mapCustomers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = mapCustomers.values();
for (Customer customer : colCustomers) {
 // process customer
}

HazelcastInstance.getMap() actually returns com.hazelcast.core.IMap
which extends java.util.concurrent.ConcurrentMap interface. So methods like
ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value) can be used on
distributed map as shown in the example below.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.ConcurrentMap;

Customer getCustomer (String id) {
 ConcurrentMap<String, Customer> map = hz.getMap("customers");
 Customer customer = map.get(id);
 if (customer == null) {
 customer = new Customer (id);
 customer = map.putIfAbsent(id, customer);
 }
 return customer;
}

public boolean updateCustomer (Customer customer) {
 ConcurrentMap<String, Customer> map = hz.getMap("customers");
 return (map.replace(customer.getId(), customer) != null);
}

public boolean removeCustomer (Customer customer) {
 ConcurrentMap<String, Customer> map = hz.getMap("customers");
 return map.remove(customer.getId(), customer));
}

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread
in the local or remote JVM, but they will eventually return with success. ConcurrentMap operations never
throwjava.util.ConcurrentModificationException.

Also see:

• Distributed Map internals.

• Data Affinity.

• Map Configuration with wildcards..

2.1.1. Backups

Hazelcast will distribute map entries onto multiple JVMs (cluster members). Each JVM holds some portion of the data
but we don't want to lose data when a member JVM crashes. To provide data-safety, Hazelcast allows you to specify
the number of backup copies you want to have. That way data on a JVM will be copied onto other JVM(s). Hazelcast

Distributed Data Structures

10

supports both sync and async backups. Sync backups block operations until backups are successfully copied to
backups nodes (or deleted from backup nodes in case of remove) and acknowledgements are received. In contrast, async
backups do not block operations, they are fire & forget and do not require acknowledgements. By default, Hazelcast will
have one sync backup copy. If backup count >= 1, then each member will carry both owned entries and backup copies of
other member(s). So for the map.get(key) call, it is possible that calling member has backup copy of that key but by
default, map.get(key) will always read the value from the actual owner of the key for consistency. It is possible to
enable backup reads by changing the configuration. Enabling backup reads will give you greater performance.

<hazelcast>
 ...
 <map name="default">
 <!--
 Number of sync-backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2, 3.
 -->
 <backup-count>1</backup-count>

 <!--
 Number of async-backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2, 3.
 -->
 <async-backup-count>1</async-backup-count>

 <!--
 Can we read the local backup entries? Default value is false for
 strong consistency. Being able to read backup data will give you
 greater performance.
 -->
 <read-backup-data>false</read-backup-data>

 ...
 </map>
</hazelcast>

2.1.2. Eviction

Hazelcast also supports policy based eviction for distributed map. Currently supported eviction policies are LRU (Least
Recently Used) and LFU (Least Frequently Used). This feature enables Hazelcast to be used as a distributed cache.
If time-to-live-seconds is not 0 then entries older than time-to-live-seconds value will get evicted,
regardless of the eviction policy set. Here is a sample configuration for eviction:

Distributed Data Structures

11

<hazelcast>
 ...
 <map name="default">
 <!--
 Number of backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2, 3.
 -->
 <backup-count>1</backup-count>

 <!--
 Maximum number of seconds for each entry to stay in the map. Entries that are
 older than <time-to-live-seconds> and not updated for <time-to-live-seconds>
 will get automatically evicted from the map.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>

 <!--
 Maximum number of seconds for each entry to stay idle in the map. Entries that are
 idle(not touched) for more than <max-idle-seconds> will get
 automatically evicted from the map.
 Entry is touched if get, put or containsKey is called.
 Any integer between 0 and Integer.MAX_VALUE.
 0 means infinite. Default is 0.
 -->
 <max-idle-seconds>0</max-idle-seconds>

 <!--
 Valid values are:
 NONE (no extra eviction, <time-to-live-seconds> may still apply),
 LRU (Least Recently Used),
 LFU (Least Frequently Used).
 NONE is the default.
 Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
 -->
 <eviction-policy>LRU</eviction-policy>

 <!--
 Maximum size of the map. When max size is reached,
 map is evicted based on the policy defined.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-size policy="PER_NODE">5000</max-size>

 <!--
 When max. size is reached, specified percentage of
 the map will be evicted. Any integer between 0 and 100.
 If 25 is set for example, 25% of the entries will
 get evicted.
 -->
 <eviction-percentage>25</eviction-percentage>
 </map>
</hazelcast>

Max-Size Policies

There are 4 defined policies can be used in max-size configuration.

1. PER_NODE: Max map size per instance.

<max-size policy="PER_NODE">5000</max-size>

2. PER_PARTITION: Max map size per each partition.

<max-size policy="PER_PARTITION">27100</max-size>

3. USED_HEAP_SIZE: Max used heap size in MB (mega-bytes) per JVM.

Distributed Data Structures

12

<max-size policy="USED_HEAP_SIZE">4096</max-size>

4. USED_HEAP_PERCENTAGE: Max used heap size percentage per JVM.

<max-size policy="USED_HEAP_PERCENTAGE">75</max-size>

2.1.3. Persistence

Hazelcast allows you to load and store the distributed map entries from/to a persistent datastore such as relational
database. If a loader implementation is provided, when get(key) is called, if the map entry doesn't exist in-memory
then Hazelcast will call your loader implementation to load the entry from a datastore. If a store implementation is
provided, when put(key,value) is called, Hazelcast will call your store implementation to store the entry into a
datastore. Hazelcast can call your implementation to store the entries synchronously (write-through) with no-delay or
asynchronously (write-behind) with delay and it is defined by the write-delay-seconds value in the configuration.

If it is write-through, when the map.put(key,value) call returns, you can be sure that

• MapStore.store(key,value) is successfully called so the entry is persisted.

• In-Memory entry is updated

• In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0)

If it is write-behind, when the map.put(key,value) call returns, you can be sure that

• In-Memory entry is updated

• In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0)

• The entry is marked as dirty so that after write-delay-seconds, it can be persisted.

Same behavior goes for the remove(key and MapStore.delete(key). If MapStore throws an exception
then the exception will be propagated back to the original put or remove call in the form of RuntimeException.
When write-through is used, Hazelcast will call MapStore.store(key,value) and MapStore.delete(key)
for each entry update. When write-behind is used, Hazelcast will callMapStore.store(map), and
MapStore.delete(collection) to do all writes in a single call. Also note that your MapStore or MapLoader
implementation should not use Hazelcast Map/Queue/MultiMap/List/Set operations. Your implementation should only
work with your data store. Otherwise you may get into deadlock situations.

Here is a sample configuration:

<hazelcast>
 ...
 <map name="default">
 ...
 <map-store enabled="true">
 <!--
 Name of the class implementing MapLoader and/or MapStore.
 The class should implement at least of these interfaces and
 contain no-argument constructor. Note that the inner classes are not supported.
 -->
 <class-name>com.hazelcast.examples.DummyStore</class-name>
 <!--
 Number of seconds to delay to call the MapStore.store(key, value).
 If the value is zero then it is write-through so MapStore.store(key, value)
 will be called as soon as the entry is updated.
 Otherwise it is write-behind so updates will be stored after write-delay-seconds
 value by calling Hazelcast.storeAll(map). Default value is 0.
 -->
 <write-delay-seconds>0</write-delay-seconds>
 </map-store>
 </map>
</hazelcast>

Distributed Data Structures

13

Initialization on startup:

MapLoader.loadAllKeys API is used for pre-populating the in-memory map when the map is first touched/used.
If MapLoader.loadAllKeys returns NULL then nothing will be loaded. Your MapLoader.loadAllKeys
implementation can return all or some of the keys. You may select and return only the hot keys, for instance. Also note
that this is the fastest way of pre-populating the map as Hazelcast will optimize the loading process by having each node
loading owned portion of the entries.

Here is MapLoader initialization flow;

1. When getMap() first called from any node, initialization starts

2. Hazelcast will call MapLoader.loadAllKeys() to get all your keys on each node

3. Each node will figure out the list of keys it owns

4. Each node will load all its owned keys by calling MapLoader.loadAll(keys)

5. Each node puts its owned entries into the map by calling IMap.putTransient(key,value)

2.1.4. Query

Hazelcast partitions your data and spreads across cluster of servers. You can surely iterate over the map entries and look
for certain entries you are interested in but this is not very efficient as you will have to bring entire entry set and iterate
locally. Instead, Hazelcast allows you to run distributed queries on your distributed map.

Let's say you have a "employee" map containing values of Employee objects:

import java.io.Serializable;

public class Employee implements Serializable {
private String name;
private int age;
private boolean active;
private double salary;

public Employee(String name, int age, boolean live, double price) {
 this.name = name;
 this.age = age;
 this.active = live;
 this.salary = price;
}

public Employee() {
}

public String getName() {
 return name;
}

public int getAge() {
 return age;
}

public double getSalary() {
 return salary;
}

public boolean isActive() {
 return active;
}
}

Now you are looking for the employees who are active and with age less than 30. Hazelcast allows you to find these
entries in two different ways:

Distributed SQL Query

Distributed Data Structures

14

SqlPredicate takes regular SQL where clause. Here is an example:

import com.hazelcast.core.IMap;
import com.hazelcast.query.SqlPredicate;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
IMap map = hz.getMap("employee");

Set<Employee> employees = (Set<Employee>) map.values(new SqlPredicate("active AND age < 30"));

Supported SQL syntax:

• AND/OR

• <expression> AND <expression> AND <expression>...

• active AND age>30

• active=false OR age = 45 OR name = 'Joe'

• active AND (age >20 OR salary < 60000)

• =, !=, <, <=, >, >=

• <expression> = value

• age <= 30

• name ='Joe'

• salary != 50000

• BETWEEN

• <attribute> [NOT] BETWEEN <value1> AND <value2>

• age BETWEEN 20 AND 33 (same as age >=20 AND age<=33)

• age NOT BETWEEN 30 AND 40 (same as age <30 OR age>40)

• LIKE

• <attribute> [NOT] LIKE 'expression'

% (percentage sign) is placeholder for many characters, _ (underscore) is placeholder for only one character.
\(Backslash) is used to escape these characters

• name LIKE 'Jo%' (true for 'Joe', 'Josh', 'Joseph' etc.)

• name LIKE 'Jo_' (true for 'Joe'; false for 'Josh')

• name NOT LIKE 'Jo_' (true for 'Josh'; false for 'Joe')

• name LIKE 'J_s%' (true for 'Josh', 'Joseph'; false 'John', 'Joe')

• name LIKE 'J\%' (true for 'J%')

• IN

• <attribute> [NOT] IN (val1, val2, ...)

• age IN (20, 30, 40)

• age NOT IN (60, 70)

Distributed Data Structures

15

• Please note that single quote character should be escaped using two consecutive quotes in a quoted string , example:
"text = 'name''s'" , "adv = 'He''s brave, I''m strong'"

Examples:

• active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))

• age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

Criteria API

If SQL is not enough or programmable queries are preferred then JPA criteria like API can be used. Here is an example:

import com.hazelcast.core.IMap;
import com.hazelcast.query.Predicate;
import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
IMap map = hz.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = (Set<Employee>) map.values(predicate);

2.1.5. Indexing

Hazelcast distributed queries will run on each member in parallel and only results will return the conn. When a query runs
on a member, Hazelcast will iterate through the entire owned entries and find the matching ones. Can we make this even
faster? Yes by indexing the mostly queried fields. Just like you would do for your database. Of course, indexing will add
overhead for each write operation but queries will be a lot faster. If you are querying your map a lot then make sure to
add indexes for most frequently queried fields. So if your active and age < 30 query, for example, is used a lot
then make sure you add index for active and age fields. Here is how:

IMap imap = Hazelcast.getMap("employees");
imap.addIndex("age", true); // ordered, since we have ranged queries for this field
imap.addIndex("active", false); // not ordered, because boolean field cannot have range

API IMap.addIndex(fieldName, ordered) is used for adding index. For a each indexed field, if you have -
ranged- queries such asage>30, age BETWEEN 40 AND 60 then ordered parameter should betrue, otherwise set
it tofalse.

Also you can define IMap indexes in configuration.

• Hazelcast XML configuration

<map name="default">
 ...
 <indexes>
 <index ordered="false">name</index>
 <index ordered="true">age</index>
 </indexes>
</map>

• Config API

mapConfig.addMapIndexConfig(new MapIndexConfig("name", false));
mapConfig.addMapIndexConfig(new MapIndexConfig("age", true));

Distributed Data Structures

16

• Spring XML configuration

<hz:map name="default">
 <hz:indexes>
 <hz:index attribute="name"/>
 <hz:index attribute="age" ordered="true"/>
 </hz:indexes>
</hz:map>

2.1.6. Continuous Query

One of the new features of version 3.0 is the continuous query. You can listen map entry events providing a predicate and
so event will be fired for each entry validated by your query. IMap has a single method for listening map providing query.

 /**
 * Adds an continuous entry listener for this map. Listener will get notified
 * for map add/remove/update/evict events filtered by given predicate.
 *
 * @param listener entry listener
 * @param predicate predicate for filtering entries
 */
 void addEntryListener(EntryListener<K, V> listener, Predicate<K, V> predicate, K key, boolean includeValue);

2.1.7. Entry Processor

Starting with version 3.0, Hazelcast supports entry processing. The interface EntryProcessor gives you the ability to
execute your code on an entry in an atomic way. You do not need any explicit lock on entry. Practically, hazelcast locks
the entry runs the EntryProcessor, then unlocks the entry. If entry processing is the major operation for a map and the map
consists of complex objects then using Object type as in-memory-format is recommended to minimize serialization cost.

There are two methods in IMap interface for entry processing:

/**
 * Applies the user defined EntryProcessor to the entry mapped by the key.
 * Returns the the object which is result of the process() method of EntryProcessor.
 * <p/>
 *
 * @return result of entry process.
 */
 Object executeOnKey(K key, EntryProcessor entryProcessor);

 /**
 * Applies the user defined EntryProcessor to the all entries in the map.
 * Returns the results mapped by each key in the map.
 * <p/>
 *
 */
 Map<K,Object> executeOnAllKeys(EntryProcessor entryProcessor);

Using executeOnEntries method, if the number of entries is high and you do need the results then returing null in
process(..) method is a good practice.

Here EntryProcessor interface:

public interface EntryProcessor<K, V> extends Serializable {

 Object process(Map.Entry<K, V> entry);

 EntryBackupProcessor<K, V> getBackupProcessor();
}

If your code is modifying the data then you should also provide a processor for backup entries:

Distributed Data Structures

17

public interface EntryBackupProcessor<K, V> extends Serializable {

 void processBackup(Map.Entry<K, V> entry);
}

Also you can remove entry while processing in entry processor. You should just set null for the processed entry's value.

Example Usage:

public class EntryProcessorTest {

 @Test
 public void testMapEntryProcessor() throws InterruptedException {
 Config cfg = new Config();
 cfg.getMapConfig("default").setInMemoryFormat(MapConfig.InMemoryFormat.OBJECT);
 HazelcastInstance instance1 = Hazelcast.newHazelcastInstance(cfg);
 HazelcastInstance instance2 = Hazelcast.newHazelcastInstance(cfg);
 IMap<Integer, Integer> map = instance1.getMap("testMapEntryProcessor");
 map.put(1, 1);
 EntryProcessor entryProcessor = new IncrementorEntryProcessor();
 map.executeOnKey(1, entryProcessor);
 assertEquals(map.get(1), (Object) 2);
 instance1.getLifecycleService().shutdown();
 instance2.getLifecycleService().shutdown();
 }

 @Test
 public void testMapEntryProcessorAllKeys() throws InterruptedException {
 StaticNodeFactory nodeFactory = new StaticNodeFactory(2);
 Config cfg = new Config();
 cfg.getMapConfig("default").setInMemoryFormat(MapConfig.InMemoryFormat.OBJECT);
 HazelcastInstance instance1 = nodeFactory.newHazelcastInstance(cfg);
 HazelcastInstance instance2 = nodeFactory.newHazelcastInstance(cfg);
 IMap<Integer, Integer> map = instance1.getMap("testMapEntryProcessorAllKeys");
 int size = 100;
 for (int i = 0; i < size; i++) {
 map.put(i, i);
 }
 EntryProcessor entryProcessor = new IncrementorEntryProcessor();
 Map<Integer, Object> res = map.executeOnAllKeys(entryProcessor);
 for (int i = 0; i < size; i++) {
 assertEquals(map.get(i), (Object) (i+1));
 }
 for (int i = 0; i < size; i++) {
 assertEquals(map.get(i)+1, res.get(i));
 }
 instance1.getLifecycleService().shutdown();
 instance2.getLifecycleService().shutdown();
 }

 static class IncrementorEntryProcessor implements EntryProcessor, EntryBackupProcessor, Serializable {
 public Object process(Map.Entry entry) {
 Integer value = (Integer) entry.getValue();
 entry.setValue(value + 1);
 return value + 1;
 }

 public EntryBackupProcessor getBackupProcessor() {
 return IncrementorEntryProcessor.this;
 }

 public void processBackup(Map.Entry entry) {
 entry.setValue((Integer) entry.getValue() + 1);
 }
 }

}

Distributed Data Structures

18

2.1.8. Interceptors

Another new feature with version 3.0 is the interceptors. You can add intercept operations and execute your own business
logic synchronously blocking the operation. You can change the returned value from a get operation, change the value to
be put or cancel operations by throwing exception.

Interceptors are different from listeners as with listeners you just take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behaviour of operation, change the values or totally cancel it.

IMap API has two method for adding and removing interceptor to the map.

 /**
 * Adds an interceptor for this map. Added interceptor will intercept operations
 * and execute user defined methods and will cancel operations if user defined method throw exception.
 * <p/>
 *
 * @param interceptor map interceptor
 * @return id of registered interceptor
 */
 String addInterceptor(MapInterceptor interceptor);

 /**
 * Removes the given interceptor for this map. So it will not intercept operations anymore.
 * <p/>
 *
 * @param id registration id of map interceptor
 */
 void removeInterceptor(String id);

Here MapInterceptor interface:

Distributed Data Structures

19

public interface MapInterceptor extends Serializable {

 /**
 * Intercept get operation before returning value.
 * Return another object to change the return value of get(..)
 * Returning null will cause the get(..) operation return original value, namely return null if you do not want to change anything.
 * <p/>
 *
 * @param value the original value to be returned as the result of get(..) operation
 * @return the new value that will be returned by get(..) operation
 */
 Object interceptGet(Object value);

 /**
 * Called after get(..) operation is completed.
 * <p/>
 *
 * @param value the value returned as the result of get(..) operation
 */
 void afterGet(Object value);

 /**
 * Intercept put operation before modifying map data.
 * Return the object to be put into the map.
 * Returning null will cause the put(..) operation to operate as expected, namely no interception.
 * Throwing an exception will cancel the put operation.
 * <p/>
 *
 * @param oldValue the value currently in map
 * @param newValue the new value to be put
 * @return new value after intercept operation
 */
 Object interceptPut(Object oldValue, Object newValue);

 /**
 * Called after put(..) operation is completed.
 * <p/>
 *
 * @param value the value returned as the result of put(..) operation
 */
 void afterPut(Object value);

 /**
 * Intercept remove operation before removing the data.
 * Return the object to be returned as the result of remove operation.
 * Throwing an exception will cancel the remove operation.
 * <p/>
 *
 * @param removedValue the existing value to be removed
 * @return the value to be returned as the result of remove operation
 */
 Object interceptRemove(Object removedValue);

 /**
 * Called after remove(..) operation is completed.
 * <p/>
 *
 * @param value the value returned as the result of remove(..) operation
 */
 void afterRemove(Object value);

}

Example Usage:

Distributed Data Structures

20

public class InterceptorTest {
 final String mapName = "map";

 @Test
 public void testMapInterceptor() throws InterruptedException {
 Config cfg = new Config();
 HazelcastInstance instance1 = Hazelcast.newHazelcastInstance(cfg);
 HazelcastInstance instance2 = Hazelcast.newHazelcastInstance(cfg);
 final IMap<Object, Object> map = instance1.getMap("testMapInterceptor");
 SimpleInterceptor interceptor = new SimpleInterceptor();
 map.addInterceptor(interceptor);
 map.put(1, "New York");
 map.put(2, "Istanbul");
 map.put(3, "Tokyo");
 map.put(4, "London");
 map.put(5, "Paris");
 map.put(6, "Cairo");
 map.put(7, "Hong Kong");

 try {
 map.remove(1);
 } catch (Exception ignore) {
 }
 try {
 map.remove(2);
 } catch (Exception ignore) {
 }

 assertEquals(map.size(), 6);

 assertEquals(map.get(1), null);
 assertEquals(map.get(2), "ISTANBUL:");
 assertEquals(map.get(3), "TOKYO:");
 assertEquals(map.get(4), "LONDON:");
 assertEquals(map.get(5), "PARIS:");
 assertEquals(map.get(6), "CAIRO:");
 assertEquals(map.get(7), "HONG KONG:");

 map.removeInterceptor(interceptor);
 map.put(8, "Moscow");

 assertEquals(map.get(8), "Moscow");
 assertEquals(map.get(1), null);
 assertEquals(map.get(2), "ISTANBUL");
 assertEquals(map.get(3), "TOKYO");
 assertEquals(map.get(4), "LONDON");
 assertEquals(map.get(5), "PARIS");
 assertEquals(map.get(6), "CAIRO");
 assertEquals(map.get(7), "HONG KONG");

 }

 static class SimpleInterceptor implements MapInterceptor, Serializable {

 @Override
 public Object interceptGet(Object value) {
 if(value == null)
 return null;
 return value + ":";
 }

 @Override
 public void afterGet(Object value) {
 }

 @Override
 public Object interceptPut(Object oldValue, Object newValue) {
 return newValue.toString().toUpperCase();
 }

 @Override
 public void afterPut(Object value) {
 }

 @Override
 public Object interceptRemove(Object removedValue) {
 if(removedValue.equals("ISTANBUL"))
 throw new RuntimeException("you can not remove this");
 return removedValue;
 }

 @Override
 public void afterRemove(Object value) {
 // do something
 }
 }
}

Distributed Data Structures

21

2.1.9. Near Cache

Map entries in Hazelcast are partitioned across the cluster. Imagine that you are reading key k so many times and k is
owned by another member in your cluster. Each map.get(k) will be a remote operation; lots of network trips. If you
have a map that is read-mostly then you should consider creating a Near Cache for the map so that reads can be much
faster and consume less network traffic. All these benefits don't come free. When using near cache, you should consider
the following issues:

• JVM will have to hold extra cached data so it will increase the memory consumption.

• If invalidation is turned on and entries are updated frequently, then invalidations will be costly.

• Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. Here is a near-cache configuration for a map :

<hazelcast>
 ...
 <map name="my-read-mostly-map">
 ...
 <near-cache>
 <!--
 Maximum size of the near cache. When max size is reached,
 cache is evicted based on the policy defined.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-size>5000</max-size>
 <!--
 Maximum number of seconds for each entry to stay in the near cache. Entries that are
 older than <time-to-live-seconds> will get automatically evicted from the near cache.
 Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
 -->
 <time-to-live-seconds>0</time-to-live-seconds>

 <!--
 Maximum number of seconds each entry can stay in the near cache as untouched (not-read).
 Entries that are not read (touched) more than <max-idle-seconds> value will get removed
 from the near cache.
 Any integer between 0 and Integer.MAX_VALUE. 0 means
 Integer.MAX_VALUE. Default is 0.
 -->
 <max-idle-seconds>60</max-idle-seconds>

 <!--
 Valid values are:
 NONE (no extra eviction, <time-to-live-seconds> may still apply),
 LRU (Least Recently Used),
 LFU (Least Frequently Used).
 NONE is the default.
 Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
 -->
 <eviction-policy>LRU</eviction-policy>

 <!--
 Should the cached entries get evicted if the entries are changed (updated or removed).
 true of false. Default is true.
 -->
 <invalidate-on-change>true</invalidate-on-change>

 </near-cache>
 </map>
</hazelcast>

2.1.10. Entry Statistics

Hazelcast keeps extra information about each map entry such as creationTime, lastUpdateTime, lastAccessTime, number
of hits, version, and this information is exposed to the developer via IMap.getMapEntry(key) call. Here is an
example:

Distributed Data Structures

22

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory : " + entry.getCost();
System.out.println ("creationTime : " + entry.getCreationTime();
System.out.println ("expirationTime : " + entry.getExpirationTime();
System.out.println ("number of hits : " + entry.getHits();
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime();
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime();
System.out.println ("version : " + entry.getVersion();
System.out.println ("key : " + entry.getKey();
System.out.println ("value : " + entry.getValue();

2.1.11. In Memory Format

With version 3.0, in-memory-format configuration option has been added to distributed map. By default Hazelcast stores
data into memory in binary (serialized) format. But sometimes it can be efficient to store the entries in their objects form
especially in cases of local processing like entry processor and queries. Setting in-memory-format in map's configuration,
you can decide how the data will be store in memory. There are three options.

• BINARY (default):This is the default option. Data will be stored in serialized binary format.

• OBJECT:Data will be stored in de-serialized form. This configuration is good for maps where entry processing and
queries form the majority of all operations and the objects are complex ones so serialization cost is respectively high.
By storing objects, entry processing will not contain the de-serialization cost.

• OFFHEAP:Data will be stored in non-heap region of JVM to avoid GC pauses. This option is available only for
Enterprise Extensions.

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.2. Distributed Queue

Hazelcast distributed queue is an implementation ofjava.util.concurrent.BlockingQueue.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
BlockingQueue<MyTask> q = hz.getQueue("tasks");
q.put(new MyTask());
MyTask task = q.take();

boolean offered = q.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = q.poll (5, TimeUnit.SECONDS);
if (task != null) {
 //process task
}

FIFO ordering will apply to all queue operations cluster-wide. User objects (such as MyTask in the example above), that
are (en/de)queued have to be Serializable. By configuring max-size for queue one can obtain a bounded queue.

Sample configuration:

Distributed Data Structures

23

<hazelcast>
 ...
 <queue name="tasks">
 <!--
 Maximum size of the queue. When queue size reaches the maximum,
 all put operations will get blocked until the queue size
 goes down below the maximum.
 Any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Default is 0.
 -->
 <max-size>10000</max-size>

 <!--
 Number of backups. If 1 is set as the backup-count for example,
 then all entries of the map will be copied to another JVM for
 fail-safety. Valid numbers are 0 (no backup), 1, 2 ... 6.
 Default is 1.
 -->
 <backup-count>1</backup-count>

 <!--
 Number of async backups. 0 means no backup.
 -->
 <async-backup-count>0</async-backup-count>

 <!--
 QueueStore implementation to persist items.
 'binary' property indicates that storing items will be in binary format
 'memory-limit' property enables 'overflow to store' after reaching limit
 'bulk-load' property enables bulk-loading from store
 -->
 <queue-store>
 <class-name>com.hazelcast.QueueStore</class-name>
 <properties>
 <property name="binary">false</property>
 <property name="memory-limit">1000</property>
 <property name="bulk-load">250</property>
 </properties>
 </queue-store>
 </queue>
</hazelcast>

2.2.1. Persistence

Hazelcast allows you to load and store the distributed queue entries from/to a persistent datastore such as relational
database via a queue-store. If queue store is enabled then each entry added to queue will also be stored to configured
queue store. When the number of items in queue exceed the memory limit, items will only persisted to queue store, they
will not stored in queue memory. Here the queue store configuration options:

• Binary: By default Hazelcast stores queue items in serialized form in memory and before inserting into datastore
deserializes them. But if you will not reach the queue store from an external application you can prefer the items to be
inserted in binary form. So you get rid of de-serialization step that is a performance optimization. By default binary
feature is not enabled.

• Memory Limit: This is the number of items after which Hazelcast will just store items to datastore. For example if
memory limit is 1000, then 1001st item will be just put into datastore. This feature is useful when you want to avoid
out-of-memory conditions. Default number for memory limit is 1000. If you want to always use memory you can set it
to Integer.MAX_VALUE.

• Bulk Load: At initialization of queue, items are loaded from QueueStore in bulks. Bulk load is the size these bulks. By
default it is 250.

Here an example queue store configuration:

Distributed Data Structures

24

 <queue-store>
 <class-name>com.hazelcast.QueueStoreImpl</class-name>
 <properties>
 <property name="binary">false</property>
 <property name="memory-limit">10000</property>
 <property name="bulk-load">500</property>
 </properties>
 </queue-store>
 </queue>

</hazelcast>

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.3. Distributed MultiMap

MultiMap is a specialized map where you can associate a key with multiple values. Just like any other distributed data
structure implementation in Hazelcast, MultiMap is distributed/partitioned and thread-safe.

import com.hazelcast.core.MultiMap;
import com.hazelcast.core.Hazelcast;
import java.util.Collection;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);

// a multimap to hold <customerId, Order> pairs
MultiMap<String, Order> mmCustomerOrders = hz.getMultiMap("customerOrders");
mmCustomerOrders.put("1", new Order ("iPhone", 340));
mmCustomerOrders.put("1", new Order ("MacBook", 1200));
mmCustomerOrders.put("1", new Order ("iPod", 79));

// get orders of the customer with customerId 1.
Collection<Order> colOrders = mmCustomerOrders.get ("1");
for (Order order : colOrders) {
 // process order
}

// remove specific key/value pair
boolean removed = mmCustomerOrders.remove("1", new Order ("iPhone", 340));

2.4. Distributed Topic

Hazelcast provides distribution mechanism for publishing messages that are delivered to multiple subscribers which is
also known as publish/subscribe (pub/sub) messaging model. Publish and subscriptions are cluster-wide. When a member
subscribes for a topic, it is actually registering for messages published by any member in the cluster, including the new
members joined after you added the listener. Messages are ordered, meaning, listeners(subscribers) will process the
messages in the order they are actually published. If cluster member M publishes messages m1, m2, m3...mn to a topic
T, then Hazelcast makes sure that all of the subscribers of topic T will receive and process m1, m2, m3...mn in order.
Therefore there is only single thread invoking onMessage. There is also globalOrderEnabled option in topic configuration,
which is disabled by default. When enabled, it guarantees all nodes listening the same topic will get messages in same
order. The user shouldn't keep the thread busy and preferably dispatch it via an Executor.

Distributed Data Structures

25

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessageListener;
import com.hazelcast.config.Config;

public class Sample implements MessageListener<MyEvent> {

 public static void main(String[] args) {
 Sample sample = new Sample();
 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 ITopic topic = hz.getTopic ("default");
 topic.addMessageListener(sample);
 topic.publish (new MyEvent());
 }

 public void onMessage(Message<MyEvent> message) {
 MyEvent myEvent = message.getMessageObject();
 System.out.println("Message received = " + myEvent.toString());
 if (myEvent.isHeavyweight()) {
 messageExecutor.execute(new Runnable() {
 public void run() {
 doHeavyweightStuff(myEvent);
 }
 });
 }
 }

 // ...

 private static final Executor messageExecutor = Executors.newSingleThreadExecutor();
}

To learn about wildcard configuration feature, see Wildcard Configuration page.

2.5. Distributed Set

Distributed Set is distributed and concurrent implementation ofjava.util.Set. Set doesn't allow duplicate elements,
so elements in the set should have proper hashCode and equals methods.

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);

java.util.Set set = hz.getSet("IBM-Quote-History");
set.add(new Price(10, time1));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, time4));
//....
Iterator it = set.iterator();
while (it.hasNext()) {
 Price price = (Price) it.next();
 //analyze
}

2.6. Distributed List

Distributed List is very similar to distributed set, but it allows duplicate elements.

Distributed Data Structures

26

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);

java.util.List list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

//....
Iterator it = list.iterator();
while (it.hasNext()) {
 Price price = (Price) it.next();
 //analyze
}

2.7. Distributed Lock

import com.hazelcast.core.Hazelcast;
import com.hazelcast.config.Config;
import java.util.concurrent.locks.Lock;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
Lock lock = hz.getLock(myLockedObject);
lock.lock();
try {
 // do something here
} finally {
 lock.unlock();
}

java.util.concurrent.locks.Lock.tryLock() with timeout is also supported. All operations on
the Lock that Hazelcast.getLock(Object obj) returns are cluster-wide and Lock behaves just like
java.util.concurrent.lock.ReentrantLock.

if (lock.tryLock (5000, TimeUnit.MILLISECONDS)) {
 try {
 // do some stuff here..
 }
 finally {
 lock.unlock();
 }
}

Locks are fail-safe. If a member holds a lock and some of the members go down, cluster will keep your locks safe and
available. Moreover, when a member leaves the cluster, all the locks acquired by this dead member will be removed so
that these locks can be available for live members immediately.

2.8. Distributed Events

Hazelcast allows you to register for entry events to get notified when entries added, updated or removed. Listeners are
cluster-wide. When a member adds a listener, it is actually registering for events originated in any member in the cluster.
When a new member joins, events originated at the new member will also be delivered. All events are ordered, meaning,
listeners will receive and process the events in the order they are actually occurred.

Distributed Data Structures

27

import java.util.Queue;
import java.util.Map;
import java.util.Set;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ItemListener;
import com.hazelcast.core.EntryListener;
import com.hazelcast.core.EntryEvent;
import com.hazelcast.config.Config;

public class Sample implements ItemListener, EntryListener {

 public static void main(String[] args) {
 Sample sample = new Sample();
 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 IQueue queue = hz.getQueue ("default");
 IMap map = hz.getMap ("default");
 ISet set = hz.getSet ("default");
 //listen for all added/updated/removed entries
 queue.addItemListener(sample, true);
 set.addItemListener (sample, true);
 map.addEntryListener (sample, true);
 //listen for an entry with specific key
 map.addEntryListener (sample, "keyobj");
 }

 public void entryAdded(EntryEvent event) {
 System.out.println("Entry added key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryRemoved(EntryEvent event) {
 System.out.println("Entry removed key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryUpdated(EntryEvent event) {
 System.out.println("Entry update key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void entryEvicted(EntryEvent event) {
 System.out.println("Entry evicted key=" + event.getKey() + ", value=" + event.getValue());
 }

 public void itemAdded(Object item) {
 System.out.println("Item added = " + item);
 }

 public void itemRemoved(Object item) {
 System.out.println("Item removed = " + item);
 }
}

28

Chapter 3. Serialization
All your distributed objects such as your key and value objects, objects you offer into distributed queue and your
distributed callable/runnable objects have to beSerializable.

Hazelcast serializes all your objects into an instance ofcom.hazelcast.nio.serialization.Data. Data is
the binary representation of an object. When Hazelcast serializes an object intoData, it first checks whether the object
is an instance of com.hazelcast.nio.serialization.DataSerializable, if not it checks if it is an
instance of com.hazelcast.nio.serialization.Portable and serializes it accordingly. For the following
types Hazelcast optimizes the serialization a user can not override this behaviour. Byte, Boolean, Character,
Short, Integer, Long, Float, Double, byte[], char[], short[], int[], long[], float[], double[],
String, Hazelcast also optimizes the following types, however you can override them by creating a custom serializer
and registering it. See Custom Serialization for more information.

• Date

• BigInteger

• BigDecimal

• Class

• Externalizable

• Serializable

Not that if the object is not instance of any explicit type, Hazelcast uses Java Serialization for Serializable and
Externalizable objects. The default behaviour can be changed using a Custom Serialization.

3.1. Data Serializable
For a faster serialization of objects, Hazelcast recommends to implement
com.hazelcast.nio.serialization.IdentifiedDataSerializable which is slightly better version of
com.hazelcast.nio.serialization.DataSerializable.

Here is an example of a class implementing com.hazelcast.nio.serialization.DataSerializable
interface.

public class Address implements com.hazelcast.nio.serialization.DataSerializable {
 private String street;
 private int zipCode;
 private String city;
 private String state;

 public Address() {}

 //getters setters..

 public void writeData(ObjectDataOutput out) throws IOException {
 out.writeUTF(street);
 out.writeInt(zipCode);
 out.writeUTF(city);
 out.writeUTF(state);
 }

 public void readData(ObjectDataInput in) throws IOException {
 street = in.readUTF();
 zipCode = in.readInt();
 city = in.readUTF();
 state = in.readUTF();
 }
}

Lets take a look at another example which is encapsulating a DataSerializable field.

Serialization

29

public class Employee implements com.hazelcast.nio.serialization.DataSerializable {
 private String firstName;
 private String lastName;
 private int age;
 private double salary;
 private Address address; //address itself is DataSerializable

 public Employee() {}

 //getters setters..

 public void writeData(ObjectDataOutput out) throws IOException {
 out.writeUTF(firstName);
 out.writeUTF(lastName);
 out.writeInt(age);
 out.writeDouble (salary);
 address.writeData (out);
 }

 public void readData (ObjectDataInput in) throws IOException {
 firstName = in.readUTF();
 lastName = in.readUTF();
 age = in.readInt();
 salary = in.readDouble();
 address = new Address();
 // since Address is DataSerializable let it read its own internal state
 address.readData (in);
 }
}

As you can see, since address field itself isDataSerializable, it is calling address.writeData(out)
when writing and address.readData(in) when reading. Also note that the order of writing and reading fields
should be the same. While Hazelcast serializes a DataSerializable it writes the className first and when de-serializes
it, className is used to instantiate the object using reflection. IdentifiedDataSerializable To avoid the reflection
and long class names IdentifiedDataSerializable can be used instead ofDataSerializable. Note that
IdentifiedDataSerializable extends DataSerializable and introduces two new methods.

• int getId();

• int getFactoryId();

IdentifiedDataSerializable uses getId() instead of className and uses getFactoryId() to load the class given the Id.
To complete the implementation a com.hazelcast.nio.serialization.DataSerializableFactory
should also be implemented and registered into SerializationConfig which can be accessed from
Config.getSerializationConfig(). The Factories responsibility is to return an instance of the right
IdentifiedDataSerializable object, given the id. So far this is the most efficient way of Serialization that
Hazelcast supports of the shelf.

3.2. Portable Serialization
As an alternative to the existing serialization methods, Hazelcast offers a Portable serialization that have the following
advantages

• Support multiversion of the same object type.

• Fetching individual fields without having to rely on reflection

• Querying and indexing support without de-serialization and/or reflection

In order to support these features, a serialized Portable object contains meta information like the version and the concrete
location of the each field in the binary data. This way Hazelcast is able to navigate in the byte[] and de-serialize only the
required field without actually de-serializing the whole object which improves the Query performance.

With multiversion support, you can have two nodes where each of them having different versions of the same Object and
Hazelcast will store both meta information and use the correct one to serialize and de-serialize Portable objects depending
on the node. This is very helpful when you are doing a rolling upgrade without shutting down the cluster.

Serialization

30

Also note that Portable serialization is totally language independent and is used as the binary protocol between Hazelcast
server and clients.

A sample Portable implementation of a Foo class will look like the following.

public class Foo implements Portable{
 final static int ID = 5;

 private String foo;

 public String getFoo() {
 return foo;
 }

 public void setFoo(String foo) {
 this.foo = foo;
 }

 @Override
 public int getFactoryId() {
 return 1;
 }

 @Override
 public int getClassId() {
 return ID;
 }

 @Override
 public void writePortable(PortableWriter writer) throws IOException {
 writer.writeUTF("foo", foo);
 }

 @Override
 public void readPortable(PortableReader reader) throws IOException {
 foo = reader.readUTF("foo");
 }
}

Similar to IdentifiedDataSerializable, a Portable Class must provide classId andfactoryId. The
Factory object will be used to create the Portable object given the classId.

A sample Factory could be implemented as following:

public class MyPortableFactory implements PortableFactory {

 @Override
 public Portable create(int classId) {
 if (Foo.ID == classId)
 return new Foo();
 else return null;
 }
}

The last step is to register the Factory to the SerializationConfig.

Programmatic Configuration

Config config = new Config();
config.getSerializationConfig().addPortableFactory(1, new MyPortableFactory());

XML Configuration

Serialization

31

<hazelcast>
 <serialization>
 <portable-version>0</portable-version>
 <portable-factories>
 <portable-factory factory-id="1">com.hazelcast.nio.serialization.MyPortableFactory</portable-factory>
 </portable-factories>
 </serialization>
</hazelcast>

Note that the id that is passed to the SerializationConfig is same as the factoryId that Foo class returns.

TODO: ClassDefinitionBuilder...

3.3. Custom Serialization

Hazelcast lets you to plug a custom serializer to be used for serialization of objects.
Let's say you have a class Foo and you would like to customize the serialization. The reasons could be Foo is not
Serializable or you are not happy with the default serialization.

public class Foo {
 private String foo;
 public String getFoo() {
 return foo;
 }
 public void setFoo(String foo) {
 this.foo = foo;
 }
}

Let's say our custom serialization will serialize Foo into XML. First we need to implement a
com.hazelcast.nio.serialization.StreamSerializer. A very simple one that uses XMLEncoder and
XMLDecoder, would look like the following:

public static class FooXmlSerializer implements StreamSerializer<Foo> {

 @Override
 public int getTypeId() {
 return 10;
 }

 @Override
 public void write(ObjectDataOutput out, Foo object) throws IOException {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 XMLEncoder encoder = new XMLEncoder(bos);
 encoder.writeObject(object);
 encoder.close();
 out.write(bos.toByteArray());
 }

 @Override
 public Foo read(ObjectDataInput in) throws IOException {
 final InputStream inputStream = (InputStream) in;
 XMLDecoder decoder = new XMLDecoder(inputStream);
 return (Foo) decoder.readObject();
 }

 @Override
 public void destroy() {
 }
}

Serialization

32

Note that the typeId must be unique as Hazelcast will use it to lookup the StreamSerializer while it de-serializes the
object. Now the last required step is to register the StreamSerializer to the Configuration

Programmatic Configuration

SerializerConfig sc = new SerializerConfig().
 setImplementation(new FooXmlSerializer()).
 setTypeClass(Foo.class);
Config config = new Config();
config.getSerializationConfig().addSerializerConfig(sc);

XML Configuration

<hazelcast>
 <serialization>
 <serializers>
 <serializer type-class="com.www.Foo">com.www.FooXmlSerializer</serializer>
 </serializers>
 </serialization>
</hazelcast>

From now on, Hazelcast will use FooXmlSerializer to serialize Foo objects. This way one can write an adapter
(StreamSerializer) for any Serialization framework and plug it into Hazelcast.

33

Chapter 4. Elastic Memory (Enterprise Extensions Only)

By default, Hazelcast stores your distributed data (map entries, queue items) into Java heap which is subject to garbage
collection. As your heap gets bigger, garbage collection might cause your application to pause tens of seconds, badly
effecting your application performance and response times. Elastic Memory is Hazelcast with off-heap (direct) memory
storage to avoid GC pauses. Even if you have terabytes of cache in-memory with lots of updates, GC will have almost no
effect; resulting in more predictable latency and throughput.

Here are the steps to enable Elastic Memory:

• Set the maximum direct memory JVM can allocate. Example java -XX:MaxDirectMemorySize=60G ...

• Enable Elastic Memory by setting hazelcast.elastic.memory.enabled Hazelcast Config Property to true.

• Set the total direct memory size for HazelcastInstance by setting hazelcast.elastic.memory.total.size
Hazelcast Config Property. Size can be in MB or GB and abbreviation can be used, such as 60G and 500M.

• Set the chunk size by setting hazelcast.elastic.memory.chunk.size Hazelcast Config Property. Hazelcast
will partition the entire offheap memory into chunks. Default chunk size is 1K.

• You can enable sun.misc.Unsafe based off-heap storage implementation instead of
java.nio.DirectByteBuffer based one by setting hazelcast.elastic.memory.unsafe.enabled
property to true. Default value is false.

• Configure maps you want them to use Elastic Memory by setting StorageFormat toOFFHEAP. Default value
isBINARY.

Using XML configuration:

<hazelcast>
 ...
 <map name="default">
 ...
 <in-memory-format>OFFHEAP</in-memory-format>
 </map>
</hazelcast>

Using Config API:

MapConfig mapConfig = new MapConfig();
mapConfig.setStorageFormat(StorageFormat.OFFHEAP);

Also see how to configure license key.

34

Chapter 5. Security (Enterprise Extensions Only)

Hazelcast has an extensible, JAAS based security feature which can be used to authenticate both cluster members and
clients and to do access control checks on client operations. Access control can be done according to endpoint principal
and/or endpoint address. Security can be enabled and configured either in configuration xml or using Config api.

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-3.1.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 ...
 <security enabled="true">
 ...
 </security>
</hazelcast>

Config cfg = new Config();
SecurityConfig securityCfg = cfg.getSecurityConfig();
securityCfg.setEnabled(true);

Also see how to configure license key.

5.1. Credentials
One of the key elements in Hazelcast security is Credentials object. It is used to carry all credentials of an
endpoint (member or client). Credentials is an interface which extends Serializable and has three methods
to be implemented. Users, according to their needs, can either implement Credentials interface or extend
AbstractCredentials class which is an abstract implementation of Credentials.

package com.hazelcast.security;
...
public interface Credentials extends Serializable {

 String getEndpoint();

 void setEndpoint(String endpoint) ;

 String getPrincipal() ;
}

Credentials.setEndpoint() method is called by Hazelcast when auth request arrives to node before
authentication takes place.

package com.hazelcast.security;
...
public abstract class AbstractCredentials implements Credentials, DataSerializable {
 private transient String endpoint;
 private String principal;

 ...
}

UsernamePasswordCredentials, a custom implementation of Credentials can be found in Hazelcast
com.hazelcast.security package. It is used by default configuration during authentication process of both
members and clients.

package com.hazelcast.security;
...
public class UsernamePasswordCredentials extends Credentials {
 private byte[] password;
 ...
}

Security (Enterprise Extensions Only)

35

5.2. ClusterLoginModule

All security attributes are carried in Credentials object and Credentials is used by LoginModule [http://
download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html] s during authentication process.
Accessing user supplied attributes from LoginModule [http://download.oracle.com/javase/1.5.0/docs/api/javax/
security/auth/spi/LoginModule.html] s is done by CallbackHandler [http://download.oracle.com/javase/1.5.0/
docs/api/javax/security/auth/callback/CallbackHandler.html] s. To provide access to Credentials object, Hazelcast
uses its own specialized CallbackHandler. During initialization of LoginModules Hazelcast will pass this special
CallbackHandlerinto LoginModule.initialize() method.

LoginModule implementations should create an instance of
com.hazelcast.security.CredentialsCallback and call handle(Callback[] callbacks) method
of CallbackHandler during login process. CredentialsCallback.getCredentials() will return supplied
Credentials object.

public class CustomLoginModule implements LoginModule {
 CallbackHandler callbackHandler;
 Subject subject;

 public final void initialize(Subject subject, CallbackHandler callbackHandler,
 Map<String, ?> sharedState, Map<String, ?> options) {
 this.subject = subject;
 this.callbackHandler = callbackHandler;
 }

 public final boolean login() throws LoginException {
 CredentialsCallback callback = new CredentialsCallback();
 try {
 callbackHandler.handle(new Callback[]{callback});
 credentials = cb.getCredentials();
 } catch (Exception e) {
 throw new LoginException(e.getMessage());
 }
 ...
 }
...
}

* To use default Hazelcast permission policy, an instance of com.hazelcast.security.ClusterPrincipal
that holding Credentials object must be created and added to Subject.principals
onLoginModule.commit().

public class MyCustomLoginModule implements LoginModule {
...
 public boolean commit() throws LoginException {
 ...
 final Principal principal = new ClusterPrincipal(credentials);
 subject.getPrincipals().add(principal);

 return true;
 }
 ...
}

Hazelcast also has an abstract implementation of LoginModule that does callback and cleanup operations and holds
resulting Credentials instance. LoginModules extending ClusterLoginModule can accessCredentials,
Subject, LoginModule instances and options and sharedState maps. Extending ClusterLoginModule is
recommended instead of implementing all required stuff.

http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/spi/LoginModule.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/callback/CallbackHandler.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/callback/CallbackHandler.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/security/auth/callback/CallbackHandler.html

Security (Enterprise Extensions Only)

36

package com.hazelcast.security;
...
public abstract class ClusterLoginModule implements LoginModule {

 protected abstract boolean onLogin() throws LoginException;
 protected abstract boolean onCommit() throws LoginException;
 protected abstract boolean onAbort() throws LoginException;
 protected abstract boolean onLogout() throws LoginException;

}

5.3. Cluster Member Security

Hazelcast supports standard Java Security (JAAS) based authentication between cluster members. You should configure
one or moreLoginModules and an instance of com.hazelcast.security.ICredentialsFactory.
Although Hazelcast has default implementations using cluster group and group-password and
UsernamePasswordCredentials on authentication, it is advised to implement these according to specific needs
and environment.

<security enabled="true">
 <member-credentials-factory class-name="com.hazelcast.examples.MyCredentialsFactory">
 <properties>
 <property name="property1">value1</property>
 <property name="property2">value2</property>
 </properties>
 </member-credentials-factory>
 <member-login-modules>
 <login-module class-name="com.hazelcast.examples.MyRequiredLoginModule" usage="required">
 <properties>
 <property name="property3">value3</property>
 </properties>
 </login-module>
 <login-module class-name="com.hazelcast.examples.MySufficientLoginModule" usage="sufficient">
 <properties>
 <property name="property4">value4</property>
 </properties>
 </login-module>
 <login-module class-name="com.hazelcast.examples.MyOptionalLoginModule" usage="optional">
 <properties>
 <property name="property5">value5</property>
 </properties>
 </login-module>
 </member-login-modules>
 ...
</security>

You can define as many asLoginModules you wanted in configuration. Those are executed in
given order. Usage attribute has 4 values; 'required', 'requisite', 'sufficient' and 'optional' as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

package com.hazelcast.security;
/**
 * ICredentialsFactory is used to create Credentials objects to be used
 * during node authentication before connection accepted by master node.
 */
public interface ICredentialsFactory {

 void configure(GroupConfig groupConfig, Properties properties);

 Credentials newCredentials();

 void destroy();
}

Security (Enterprise Extensions Only)

37

Properties defined in configuration are passed to ICredentialsFactory.configure() method as
java.util.Properties and to LoginModule.initialize() method asjava.util.Map.

5.4. Native Client Security

Hazelcast's Client security includes both authentication and authorization.

5.4.1. Authentication

Authentication mechanism just works the same as cluster member authentication. Implementation of client authentication
requires a Credentials and one or more LoginModule(s). Client side does not have/need a factory object to create
Credentials objects likeICredentialsFactory. Credentials must be created at client side and sent to
connected node during connection process.

<security enabled="true">
 <client-login-modules>
 <login-module class-name="com.hazelcast.examples.MyRequiredClientLoginModule" usage="required">
 <properties>
 <property name="property3">value3</property>
 </properties>
 </login-module>
 <login-module class-name="com.hazelcast.examples.MySufficientClientLoginModule" usage="sufficient">
 <properties>
 <property name="property4">value4</property>
 </properties>
 </login-module>
 <login-module class-name="com.hazelcast.examples.MyOptionalClientLoginModule" usage="optional">
 <properties>
 <property name="property5">value5</property>
 </properties>
 </login-module>
 </client-login-modules>
 ...
</security>

You can define as many asLoginModules you wanted in configuration. Those are executed in
given order. Usage attribute has 4 values; 'required', 'requisite', 'sufficient' and 'optional' as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

final Credentials credentials = new UsernamePasswordCredentials("dev", "dev-pass");
HazelcastInstance client = HazelcastClient.newHazelcastClient(credentials, "localhost");

5.4.2. Authorization

Hazelcast client authorization is configured by a client permission policy. Hazelcast has a default permission policy
implementation that uses permission configurations defined in Hazelcast security configuration. Default policy permission
checks are done against instance types (map, queue...), instance names (map, queue etc. name), instance actions (put,
read, remove, add...), client endpoint addresses and client principal defined by Credentials object. Instance and
principal names and endpoint addresses can be defined as wildcards(*). Take a look at Wildcard Name Configuration
and Newtwork Configuration pages.

Security (Enterprise Extensions Only)

38

<security enabled="true">
 <client-permissions>
 <!-- Principal 'admin' from endpoint '127.0.0.1' has all permissions. -->
 <all-permissions principal="admin">
 <endpoints>
 <endpoint>127.0.0.1</endpoint>
 </endpoints>
 </all-permissions>

 <!-- Principals named 'dev' from all endpoints have 'create', 'destroy',
 'put', 'read' permissions for map named 'default'. -->
 <map-permission name="default" principal="dev">
 <actions>
 <action>create</action>
 <action>destroy</action>
 <action>put</action>
 <action>read</action>
 </actions>
 </map-permission>

 <!-- All principals from endpoints '127.0.0.1' or matching to '10.10.*.*'
 have 'put', 'read', 'remove' permissions for map
 whose name matches to 'com.foo.entity.*'. -->
 <map-permission name="com.foo.entity.*">
 <endpoints>
 <endpoint>10.10.*.*</endpoint>
 <endpoint>127.0.0.1</endpoint>
 </endpoints>
 <actions>
 <action>put</action>
 <action>read</action>
 <action>remove</action>
 </actions>
 </map-permission>

 <!-- Principals named 'dev' from endpoints matching to either
 '192.168.1.1-100' or '192.168.2.*'
 have 'create', 'add', 'remove' permissions for all queues. -->
 <queue-permission name="*" principal="dev">
 <endpoints>
 <endpoint>192.168.1.1-100</endpoint>
 <endpoint>192.168.2.*</endpoint>
 </endpoints>
 <actions>
 <action>create</action>
 <action>add</action>
 <action>remove</action>
 </actions>
 </queue-permission>

 <!-- All principals from all endpoints have transaction permission.-->
 <transaction-permission />
 </client-permissions>
</security>

Users also can define their own policy by implementing com.hazelcast.security.IPermissionPolicy.

Security (Enterprise Extensions Only)

39

package com.hazelcast.security;
/**
 * IPermissionPolicy is used to determine any Subject's
 * permissions to perform a security sensitive Hazelcast operation.
 *
 */
public interface IPermissionPolicy {
 void configure(SecurityConfig securityConfig, Properties properties);

 PermissionCollection getPermissions(Subject subject, Class<? extends Permission> type);

 void destroy();
}

Permission policy implementations can access client-permissions in configuration by using
SecurityConfig.getClientPermissionConfigs() during configure(SecurityConfig
securityConfig, Properties properties) method is called by Hazelcast.
IPermissionPolicy.getPermissions(Subject subject, Class<? extends Permission>
type) method is used to determine a client request has been granted permission to do a security-sensitive
operation. Permission policy should return a PermissionCollection containing permissions of given type for
givenSubject. Hazelcast access controller will call PermissionCollection.implies(Permission)
on returning PermissionCollection and will decide if current Subject has permitted to access to requested
resources or not.

5.4.3. Permissions

1. All Permission

<all-permissions principal="principal">
 <endpoints>
 ...
 </endpoints>
</all-permissions>

2. Map Permission

<map-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</map-permission>

Actions: all, create, destroy, put, read, remove, lock, intercept, index, listen

3. Queue Permission

<queue-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</queue-permission>

Actions: all, create, destroy, add, remove, read, listen

4. Multimap Permission

Security (Enterprise Extensions Only)

40

<multimap-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</multimap-permission>

Actions: all, create, destroy, put, read, remove, listen, lock

5. Topic Permission

<topic-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</topic-permission>

Actions: create, destroy, publish, listen

6. List Permission

<list-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</list-permission>

Actions: all, create, destroy, add, read, remove, listen

7. Set Permission

<set-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</set-permission>

Actions: all, create, destroy, add, read, remove, listen

8. Lock Permission

<lock-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</lock-permission>

Security (Enterprise Extensions Only)

41

Actions: all, create, destroy, lock, read

9. AtomicLong Permission

<atomic-long-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</atomic-long-permission>

Actions: all, create, destroy, read, modify

10.CountDownLatch Permission

<countdown-latch-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</countdown-latch-permission>

Actions: all, create, destroy, modify, read

11.Semaphore Permission

<semaphore-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</semaphore-permission>

Actions: all, create, destroy, acquire, release, read

12.Executor Service Permission

<executor-service-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</executor-service-permission>

Actions: all, create, destroy

13.Transaction Permission

Security (Enterprise Extensions Only)

42

<transaction-permission principal="principal">
 <endpoints>
 ...
 </endpoints>
</transaction-permission>

43

Chapter 6. Data Affinity
Co-location of related data and computation!

Hazelcast has a standard way of finding out which member owns/manages each key object. Following operations will be
routed to the same member, since all of them are operating based on the same key, "key1".

Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
Map mapa = instance.getMap("mapa");
Map mapb = instance.getMap("mapb");
Map mapc = instance.getMap("mapc");
mapa.put("key1", value);
mapb.get("key1");
mapc.remove("key1");
// since map names are different, operation will be manipulating
// different entries, but the operation will take place on the
// same member since the keys ("key1") are the same

instance.getLock ("key1").lock();
// lock operation will still execute on the same member of the cluster
// since the key ("key1") is same

instance.getExecutorService().executeOnKeyOwner(runnable, "key1");
// distributed execution will execute the 'runnable' on the same member
// since "key1" is passed as the key.

So when the keys are the same then entries are stored on the same node. But we sometimes want to have related entries
stored on the same node. Consider customer and his/her order entries. We would have customers map with customerId
as the key and orders map with orderId as the key. Since customerId and orderIds are different keys, customer and his/
her orders may fall into different members/nodes in your cluster. So how can we have them stored on the same node? The
trick here is to create an affinity between customer and orders. If we can somehow make them part of the same partition
then these entries will be co-located. We achieve this by making orderIds PartitionAware

public class OrderKey implements Serializable, PartitionAware {
 int customerId;
 int orderId;

 public OrderKey(int orderId, int customerId) {
 this.customerId = customerId;
 this.orderId = orderId;
 }

 public int getCustomerId() {
 return customerId;
 }

 public int getOrderId() {
 return orderId;
 }

 public Object getPartitionKey() {
 return customerId;
 }

 @Override
 public String toString() {
 return "OrderKey{" +
 "customerId=" + customerId +
 ", orderId=" + orderId +
 '}';
 }
}

Data Affinity

44

Notice that OrderKey implements PartitionAware and getPartitionKey() returns the customerId. This
will make sure that Customer entry and its Orders are going to be stored on the same node.

Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
Map mapCustomers = instance.getMap("customers")
Map mapOrders = instance.getMap("orders")
// create the customer entry with customer id = 1
mapCustomers.put(1, customer);
// now create the orders for this customer
mapOrders.put(new OrderKey(21, 1), order);
mapOrders.put(new OrderKey(22, 1), order);
mapOrders.put(new OrderKey(23, 1), order);

Let say you have a customers map where customerId is the key, the customer object is the value, customer object
contains the customer's orders and you want to remove one of the orders of a customer and return the number of
remaining orders. Here is how you would normally do it:

public static int removeOrder(long customerId, long orderId) throws Exception {
 IMap<Long, Customer> mapCustomers = instance.getMap("customers");
 mapCustomers.lock (customerId);
 Customer customer = mapCustomers. get(customerId);
 customer.removeOrder (orderId);
 mapCustomers.put(customerId, customer);
 mapCustomers.unlock(customerId);
 return customer.getOrderCount();
}

There are couple of things we should consider:

1. There are four distributed operations there.. lock, get, put, unlock.. Can we reduce the number of distributed
operations?

2. Customer object may not be that big but can we not have to pass that object through the wire? Notice that, we are
actually passing customer object through the wire twice; get and put.

So instead, why not moving the computation over to the member (JVM) where your customer data actually is. Here is
how you can do this with distributed executor service:

1. Send a PartitionAware Callable task.

2. Callable does the deletion of the order right there and returns with the remaining order count.

3. Upon completion of the Callable task, return the result (remaining order count). Plus you do not have to wait until
the the task complete; since distributed executions are asynchronous, you can do other things in the meantime.

Here is a sample code:

Data Affinity

45

public static int removeOrder(long customerId, long orderId) throws Exception {
 ExecutorService es = instance.getExecutorService("orderexecutor");
 OrderDeletionTask task = new OrderDeletionTask(customerId, orderId);
 Future future = es.submit(task);
 int remainingOrders = future.get();
 return remainingOrders;
}

public static class OrderDeletionTask
 implements Callable<Integer>, PartitionAware, Serializable, HazelcastInstanceAware {

 private long customerId;
 private long orderId;
 private transient HazelcastInstance hz;

 public OrderDeletionTask() {
 }
 public OrderDeletionTask(long customerId, long orderId) {
 super();
 this.customerId = customerId;
 this.orderId = orderId;
 }
 public Integer call () {
 IMap<Long, Customer> mapCustomers = hz.getMap("customers");
 mapCustomers.lock (customerId);
 Customer customer = mapCustomers. get(customerId);
 customer.removeOrder (orderId);
 mapCustomers.put(customerId, customer);
 mapCustomers.unlock(customerId);
 return customer.getOrderCount();
 }
 public void setHazelcastInstance(HazelcastInstance hz) {
 this.hz = hz;
 }
 public Object getPartitionKey() {
 return customerId;
 }
}

Benefits of doing the same operation with distributed ExecutorService based on the key are:

• Only one distributed execution (es.submit(task)), instead of four.

• Less data is sent over the wire.

• Since lock/update/unlock cycle is done locally (local to the customer data), lock duration for the Customer entry is
much less so enabling higher concurrency.

46

Chapter 7. Monitoring with JMX
• Add the following system properties to enable jmx agent [http://download.oracle.com/javase/1.5.0/docs/guide/

management/agent.html]

• -Dcom.sun.management.jmxremote

• -Dcom.sun.management.jmxremote.port=_portNo_ (to specify jmx port) optional

• -Dcom.sun.management.jmxremote.authenticate=false (to disable jmx auth) optional

• Enable Hazelcast property hazelcast.jmx

• using Hazelcast configuration (api, xml, spring)

• or set system property -Dhazelcast.jmx=true

• Use jconsole, jvisualvm (with mbean plugin) or another jmx-compliant monitoring tool.

Following attributes can be monitored:

• Cluster

• config

• group name

• count of members and their addresses (host:port)

• operations: restart, shutdown cluster

• Member

• inet address

• port

• Statistics

• count of instances

• number of instances created, destroyed since startup

• max instances created, destroyed per second

• AtomicLong

• name

• actual value

• operations: add, set, compareAndSet, reset

• List, Set

• name

• size

• items (as strings)

• operations: clear, reset statistics

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

Monitoring with JMX

47

• Map

• name

• size

• operations: clear

• Queue

• name

• size

• received and served items

• operations: clear, reset statistics

• Topic

• name

• number of messages dispatched since creation, in last second

• max messages dispatched per second

48

Chapter 8. Cluster Utilities

8.1. Cluster Interface

Hazelcast allows you to register for membership events to get notified when members added or removed. You can also get
the set of cluster members.

import com.hazelcast.core.*;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
Cluster cluster = hz.getCluster();
cluster.addMembershipListener(new MembershipListener(){
 public void memberAdded(MembershipEvent membersipEvent) {
 System.out.println("MemberAdded " + membersipEvent);
 }

 public void memberRemoved(MembershipEvent membersipEvent) {
 System.out.println("MemberRemoved " + membersipEvent);
 }
});

Member localMember = cluster.getLocalMember();
System.out.println ("my inetAddress= " + localMember.getInetAddress());

Set setMembers = cluster.getMembers();
for (Member member : setMembers) {
 System.out.println ("isLocalMember " + member.localMember());
 System.out.println ("member.inetaddress " + member.getInetAddress());
 System.out.println ("member.port " + member.getPort());
}

8.2. Cluster-wide Id Generator

Hazelcast IdGenerator creates cluster-wide unique IDs. Generated IDs are long type primitive values between 0 and
Long.MAX_VALUE . Id generation occurs almost at the speed of AtomicLong.incrementAndGet() . Generated
IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs start from 0 again or you can
initialize to a value.

import com.hazelcast.core.IdGenerator;
import com.hazelcast.core.Hazelcast;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
IdGenerator idGenerator = hz.getIdGenerator("customer-ids");
idGenerator.init(123L); //Optional
long id = idGenerator.newId();

49

Chapter 9. Transactions

9.1. Transaction Interface

Hazelcast can be used in transactional context. Basically create a TransactionContext which can be used to
begin, commit, rollback transaction. Obtain transaction aware instances of queues, maps, sets, lists, multimaps via
TransactionContext, work with them and commit/rollback in one shot. Hazelcast supports LOCAL(One Phase) and
TWO_PHASE transactions. Default behaviour is TWO_PHASE.

import java.util.Queue;
import java.util.Map;
import java.util.Set;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);

TransactionOptions options = new TransactionOptions().setTransactionType(TransactionType.LOCAL);
TransactionContext context = hz.newTransactionContext()
context.beginTransaction();

TransactionalQueue queue = context.getQueue("myqueue");
TransactionalMap map = context.getMap ("mymap");
TransactionalSet set = context.getSet ("myset");

try {
 Object obj = queue.poll();
 //process obj
 map.put ("1", "value1");
 set.add ("value");
 //do other things..
 context.commitTransaction();
}catch (Throwable t) {
 context.rollbackTransaction();
}

Isolation is always REPEATABLE_READ . If you are in a transaction, you can read the data in your transaction and
the data that is already committed and if not in a transaction, you can only read the committed data. Implementation is
different for queue and map/set. For queue operations (offer,poll), offered and/or polled objects are copied to the owner
member in order to safely commit/rollback. For map/set, Hazelcast first acquires the locks for the write operations (put,
remove) and holds the differences (what is added/removed/updated) locally for each transaction. When transaction is set
to commit, Hazelcast will release the locks and apply the differences. When rolling back, Hazelcast will simply releases
the locks and discard the differences.

9.2. J2EE Integration

Hazelcast can be integrated into J2EE containers via Hazelcast Resource Adapter (hazelcast-ra.rar). After proper
configuration, Hazelcast can participate in standard J2EE transactions.

Transactions

50

<%@page import="javax.resource.ResourceException" %>
<%@page import="javax.transaction.*" %>
<%@page import="javax.naming.*" %>
<%@page import="javax.resource.cci.*" %>
<%@page import="java.util.*" %>
<%@page import="com.hazelcast.core.*" %>
<%@page import="com.hazelcast.jca.*" %>

<%
UserTransaction txn = null;
HazelcastConnection conn = null;
Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);

try {
 Context context = new InitialContext();
 txn = (UserTransaction) context.lookup("java:comp/UserTransaction");
 txn.begin();

 HazelcastConnectionFactory cf = (HazelcastConnectionFactory) context.lookup ("java:comp/env/HazelcastCF");
 conn = cf.getConnection();

 TransactionalMap<String, String> txMap = conn.getTransactionalMap("default");
 txMap.put("key", "value");

 txn.commit();
} catch (Throwable e) {
 if (txn != null) {
 try {
 txn.rollback();
 } catch (Exception ix) {ix.printStackTrace();};
 }
 e.printStackTrace();
} finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (Exception ignored) {};
 }
}
%>

9.2.1. Resource Adapter Configuration

Deploying and configuring Hazelcast resource adapter is no different than any other resource adapter since it is a standard
JCA resource adapter but resource adapter installation and configuration is container specific, so please consult your J2EE
vendor documentation for details. Most common steps are:

1. Add the hazelcast.jar to container's classpath. Usually there is a lib directory that is loaded automatically by the
container on startup.

2. Deployhazelcast-ra.rar. Usually there is a some kind of deploy directory. Name of the directory varies by
container.

3. Make container specific configurations when/after deployinghazelcast-ra.rar. Besides container specific
configurations, JNDI name for Hazelcast resource is set.

4. Configure your application to use the Hazelcast resource. Updating web.xml and/or ejb-jar.xml to let container
know that your application will use the Hazelcast resource and define the resource reference.

5. Make container specific application configuration to specify JNDI name used for the resource in the application.

9.2.2. Sample Glassfish v3 Web Application Configuration

1. Place the hazelcast-<version>.jar into GLASSFISH_HOME/glassfish/domains/domain1/lib/
ext/ directory.

Transactions

51

2. Place the hazelcast-ra-<version>.rar into GLASSFISH_HOME/glassfish/domains/domain1/
autodeploy/ directory

3. Add the following lines to the web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Notice that we didn't have to put sun-ra.xml into the rar file because it comes with the hazelcast-ra-
<version>.rar file already.

If Hazelcast resource is used from EJBs, you should configure ejb-jar.xml for resource reference and JNDI
definitions, just like we did forweb.xml.

9.2.3. Sample JBoss Web Application Configuration

• Place the hazelcast-<version>.jar into JBOSS_HOME/server/deploy/default/lib directory.

• Place the hazelcast-ra-<version>.rar into JBOSS_HOME/server/deploy/default/deploy
directory

• Create a hazelcast-ds.xml at JBOSS_HOME/server/deploy/default/deploy directory containing the
following content. Make sure to set the rar-name element tohazelcast-ra-<version>.rar.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connection-factories
 PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>
 <tx-connection-factory>
 <local-transaction/>
 <track-connection-by-tx>true</track-connection-by-tx>
 <jndi-name>HazelcastCF</jndi-name>
 <rar-name>hazelcast-ra-<version>.rar</rar-name>
 <connection-definition>
 javax.resource.cci.ConnectionFactory
 </connection-definition>
 </tx-connection-factory>
</connection-factories>

• Add the following lines to the web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <res-type>com.hazelcast.jca.ConnectionFactoryImpl</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

• Add the following lines to the jboss-web.xml file.

<resource-ref>
 <res-ref-name>HazelcastCF</res-ref-name>
 <jndi-name>java:HazelcastCF</jndi-name>
</resource-ref>

If Hazelcast resource is used from EJBs, you should configure ejb-jar.xml and jboss.xml for resource reference
and JNDI definitions.

52

Chapter 10. Distributed Executor Service
One of the coolest features of Java 1.5 is the Executor framework, which allows you to asynchronously execute your
tasks, logical units of works, such as database query, complex calculation, image rendering etc. So one nice way of
executing such tasks would be running them asynchronously and doing other things meanwhile. When ready, get
the result and move on. If execution of the task takes longer than expected, you may consider canceling the task
execution. In Java Executor framework, tasks are implemented as java.util.concurrent.Callable and
java.util.Runnable.

import java.util.concurrent.Callable;
import java.io.Serializable;

public class Echo implements Callable<String>, Serializable {
 String input = null;

 public Echo() {
 }

 public Echo(String input) {
 this.input = input;
 }

 public String call() {
 return Hazelcast.getCluster().getLocalMember().toString() + ":" + input;
 }
}

Echo callable above, for instance, in its call() method, is returning the local member and the input passed in.
Remember that Hazelcast.getCluster().getLocalMember() returns the local member and toString()
returns the member's address (ip + port) in String form, just to see which member actually executed the code for our
example. Of course, call() method can do and return anything you like. Executing a task by using executor framework is
very straight forward. Simply obtain a ExecutorService instance, generally via Executors and submit the task
which returns a Future. After executing task, you don't have to wait for execution to complete, you can process other
things and when ready use the future object to retrieve the result as show in code below.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit (new Echo("myinput"));
//while it is executing, do some useful stuff
//when ready, get the result of your execution
String result = future.get();

10.1. Distributed Execution

Distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It allows you to
execute your code in cluster. In this chapter, all the code samples are based on the Echo class above. Please note that Echo
class is Serializable . You can ask Hazelcast to execute your code (Runnable, Callable):

• on a specific cluster member you choose.

• on the member owning the key you choose.

• on the member Hazelcast will pick.

• on all or subset of the cluster members.

Distributed Executor Service

53

import com.hazelcast.core.Member;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.Set;
import com.hazelcast.config.Config;

public void echoOnTheMember(String input, Member member) throws Exception {
 Callable<String> task = new Echo(input);
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IExecutorService executorService = hz.getExecutorService("default");
 Future<String> future = executorService.submitToMember(task, member);
 String echoResult = future.get();
}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
 Callable<String> task = new Echo(input);
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IExecutorService executorService = hz.getExecutorService("default");
 Future<String> future = executorService.submitToKeyOwner(task, key);
 String echoResult = future.get();
}

public void echoOnSomewhere(String input) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IExecutorService executorService = hz.getExecutorService("default");
 Future<String> future = executorService.submit(new Echo(input));
 String echoResult = future.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IExecutorService executorService = hz.getExecutorService("default");
 Map<Member, Future<String>> futures = executorService.submitToMembers(new Echo(input), members);
 for (Future<String> future : futures.values()) {
 String echoResult = future.get();
 // ...
 }
}

Note that you can obtain the set of cluster members via Hazelcast.getCluster().getMembers() call.

10.2. Execution Cancellation
What if the code you execute in cluster takes longer than acceptable. If you cannot stop/cancel that task it will keep
eating your resources. Standard Java executor framework solves this problem with by introducing cancel() api and
'encouraging' us to code and design for cancellations, which is highly ignored part of software development.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
 int input = 0;

 public Fibonacci() {
 }

 public Fibonacci(int input) {
 this.input = input;
 }

 public Long call() {
 return calculate (input);
 }

 private long calculate (int n) {
 if (Thread.currentThread().isInterrupted()) return 0;
 if (n <= 1) return n;
 else return calculate(n-1) + calculate(n-2);
 }
}

Distributed Executor Service

54

The callable class above calculates the fibonacci number for a given number. In the calculate method, we are checking
to see if the current thread is interrupted so that code can be responsive to cancellations once the execution started.
Following fib() method submits the Fibonacci calculation task for number 'n' and waits maximum 3 seconds for result.
If the execution doesn't complete in 3 seconds, future.get() will throw TimeoutException and upon catching it
we interruptibly cancel the execution for saving some CPU cycles.

long fib(int n) throws Exception {
 Config cfg = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
 IExecutorService es = hz.getExecutorService();
 Future future = es.submit(new Fibonacci(n));
 try {
 return future.get(3, TimeUnit.SECONDS);
 } catch (TimeoutException e) {
 future.cancel(true);
 }
 return -1;
}

fib(20) will probably will take less than 3 seconds but fib(50) will take way longer. (This is not the example
for writing better fibonacci calculation code but for showing how to cancel a running execution that takes too long.)
future.cancel(false) can only cancel execution before it is running (executing) but future.cancel(true)
can interrupt running executions if your code is able to handle the interruption. So if you are willing to be able to cancel
already running task then your task has to be designed to handle interruption. If calculate (int n) method didn't
have if (Thread.currentThread().isInterrupted()) line, then you wouldn't be able to cancel the execution
after it started.

10.3. Execution Callback

ExecutionCallback allows you to asynchronously get notified when the execution is done.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
 int input = 0;

 public Fibonacci() {
 }

 public Fibonacci(int input) {
 this.input = input;
 }

 public Long call() {
 return calculate (input);
 }

 private long calculate (int n) {
 if (n <= 1) return n;
 else return calculate(n-1) + calculate(n-2);
 }
}

Distributed Executor Service

55

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Future;
import com.hazelcast.config.Config;

Config cfg = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(cfg);
IExecutorService es = hz.getExecutorService();
Callable<Long> task = new Fibonacci(10);

es.submit(task, new ExecutionCallback<Long> () {

 public void onResponse(Long response) {
 System.out.println("Fibonacci calculation result = " + response);
 }

 public void onFailure(Throwable t) {
 t.printStackTrace();
 }

});

56

Chapter 11. Http Session Clustering with HazelcastWM
Say you have more than one web servers (A, B, C) with a load balancer in front of them. If server A goes down then your
users on that server will be directed to one of the live servers (B or C) but their sessions will be lost! So we have to have
all these sessions backed up somewhere if we don't want to lose the sessions upon server crashes. Hazelcast WM allows
you to cluster user http sessions automatically. The following are required for enabling Hazelcast Session Clustering:

• Target application or web server should support Java 1.5+

• Target application or web server should support Servlet 2.4+ spec

• Session objects that needs to be clustered have to be Serializable

Here are the steps to setup Hazelcast Session Clustering:

1. Put the hazelcast and hazelcast-wm jars in your WEB-INF/lib directory. Optionally if you wish to connect
to a cluster as a client add hazelcast-client as well.

2. Put the following xml into web.xml file. Make sure Hazelcast filter is placed before all the other filters if any; put it
at the top for example.

Http Session Clustering with HazelcastWM

57

<filter>
 <filter-name>hazelcast-filter</filter-name>
 <filter-class>com.hazelcast.web.WebFilter</filter-class>
 <!--
 Name of the distributed map storing
 your web session objects
 -->
 <init-param>
 <param-name>map-name</param-name>
 <param-value>my-sessions</param-value>
 </init-param>
 <!--
 How is your load-balancer configured?
 stick-session means all requests of a session
 is routed to the node where the session is first created.
 This is excellent for performance.
 If sticky-session is set to false, when a session is updated
 on a node, entry for this session on all other nodes is invalidated.
 You have to know how your load-balancer is configured before
 setting this parameter. Default is true.
 -->
 <init-param>
 <param-name>sticky-session</param-name>
 <param-value>true</param-value>
 </init-param>
 <!--
 Name of session id cookie
 -->
 <init-param>
 <param-name>cookie-name</param-name>
 <param-value>hazelcast.sessionId</param-value>
 </init-param>
 <!--
 Domain of session id cookie. Default is based on incoming request.
 -->
 <init-param>
 <param-name>cookie-domain</param-name>
 <param-value>.mywebsite.com</param-value>
 </init-param>
 <!--
 Should cookie only be sent using a secure protocol? Default is false.
 -->
 <init-param>
 <param-name>cookie-secure</param-name>
 <param-value>false</param-value>
 </init-param>
 <!--
 Should HttpOnly attribute be set on cookie ? Default is false.
 -->
 <init-param>
 <param-name>cookie-http-only</param-name>
 <param-value>false</param-value>
 </init-param>
 <!--
 Are you debugging? Default is false.
 -->
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 <!--
 Configuration xml location;
 * as servlet resource OR
 * as classpath resource OR
 * as URL
 Default is one of hazelcast-default.xml
 or hazelcast.xml in classpath.
 -->
 <init-param>
 <param-name>config-location</param-name>
 <param-value>/WEB-INF/hazelcast.xml</param-value>
 </init-param>
 <!--
 Do you want to use an existing HazelcastInstance?
 Default is null.
 -->
 <init-param>
 <param-name>instance-name</param-name>
 <param-value>default</param-value>
 </init-param>

Http Session Clustering with HazelcastWM

58

 <!--
 Do you want to connect as a client to an existing cluster?
 Default is false.
 -->
 <init-param>
 <param-name>use-client</param-name>
 <param-value>false</param-value>
 </init-param>
 <!--
 Client configuration location;
 * as servlet resource OR
 * as classpath resource OR
 * as URL
 Default is null.
 -->
 <init-param>
 <param-name>client-config-location</param-name>
 <param-value>/WEB-INF/hazelcast-client.properties</param-value>
 </init-param>
 <!--
 Do you want to shutdown HazelcastInstance during
 web application undeploy process?
 Default is true.
 -->
 <init-param>
 <param-name>shutdown-on-destroy</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>hazelcast-filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

<listener>
 <listener-class>com.hazelcast.web.SessionListener</listener-class>
</listener>

3. Package and deploy your war file as you would normally do.

It is that easy! All http requests will go through Hazelcast WebFilter and it will put the session objects into Hazelcast
distributed map if needed.

Info about sticky-sessions:

Hazelcast holds whole session attributes in a distributed map and in local http session. Local session is required for fast
access to data and distributed map is needed for fail-safety.

• If sticky-session is not used, whenever a session attribute is updated in a node (in both node local session and clustered
cache), that attribute should be invalidated in all other nodes' local sessions, because now they have dirty value. So
when a request arrives one of those other nodes that attribute value is fetched from clustered cache.

• To overcome performance penalty of sending invalidation messages during updates, sticky-sessions can be used. If
Hazelcast knows sessions are sticky, invalidation will not be send, because Hazelcast assumes there is no other local
session at the moment. When a server is down, requests belonging to a session hold in that server will routed to other
one and that server will fetch session data from clustered cache. That means using sticky-sessions, one will not suffer
performance penalty of accessing clustered data and can benefit recover from a server failure.

59

Chapter 12. WAN Replication
There are cases where you would need to synchronize multiple clusters. Synchronization of clusters is named as WAN
(Wide Area Network) Replication because it is mainly used for replicating different clusters running on WAN. Imagine
having different clusters in New York, London and Tokyo. Each cluster would be operating at very high speed in their
LAN (Local Area Network) settings but you would want some or all parts of the data in these clusters replicating to each
other. So updates in Tokyo cluster goes to London and NY, in the meantime updates in New York cluster is synchronized
to Tokyo and London.

You can setup active-passive WAN Replication where only one active node replicating its updates on the passive one.
You can also setup active-active replication where each cluster is actively updating and replication to the other cluster(s).

In the active-active replication setup, there might be cases where each node is updating the same entry in the same named
distributed map. Thus, conflicts will occur when merging. For those cases, conflict-resolution will be needed. Here is how
you can setup WAN Replication for London cluster for instance:

<hazelcast>
 <wan-replication name="my-wan-cluster">
 <target-cluster group-name="tokyo" group-password="tokyo-pass">
 <replication-impl>com.hazelcast.wan.WanNoDelayReplication</replication-impl>
 <end-points>
 <address>10.2.1.1:5701</address>
 <address>10.2.1.2:5701</address>
 </end-points>
 </target-cluster>
 <target-cluster group-name="london" group-password="london-pass">
 <replication-icom.hazelcast.wan.wan.WanNoDelayReplication</replication-impl>
 <end-points>
 <address>10.3.5.1:5701</address>
 <address>10.3.5.2:5701</address>
 </end-points>
 </target-cluster>
 </wan-replication>

 <network>
 ...
 </network>

</network>
...
</hazelcast>

This can be the configuration of the cluster running in NY, replicating to Tokyo and London. Tokyo and London clusters
should have similar configurations if they are also active replicas.

If NY and London cluster configurations contain wan-replication element and Tokyo cluster doesn't then it means
NY and London are active endpoints and Tokyo is passive endpoint.

As noted earlier you can have Hazelcast replicate some or all of the data in your clusters. You might have 5 different
distributed maps but you might want only one of these maps replicating across clusters. So you mark which maps to
replicate by adding wan-replication-ref element into map configuration.

WAN Replication

60

<hazelcast>
 <wan-replication name="my-wan-cluster">
 ...
 </wan-replication>

 <network>
 ...
 </network>
 <map name="my-shared-map">
 ...
 <wan-replication-ref name="my-wan-cluster">
 <merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>
 </wan-replication-ref>
 </map>
</network>
...
</hazelcast>

Here we have my-shared-map is configured to replicate itself to the cluster targets defined in the wan-
replication element.

Note that you will also need to define a merge policy for merging replica entries and resolving conflicts during the
merge.

61

Chapter 13. Service Provider Interface
TODO: Will be added later.

62

Chapter 14. Configuration
Hazelcast can be configured through xml or using configuration api or even mix of both.

1. Xml Configuration

If you are creating new Hazelcast instance with passing null parameter to
Hazelcast.newHazelcastInstance(null) or just using empty factory method
Hazelcast.newHazelcastInstance(), Hazelcast will look into two places for the configuration file:

• System property: Hazelcast will first check if "hazelcast.config" system property is set to a file path.
Example: -Dhazelcast.config=C:/myhazelcast.xml.

• Classpath: If config file is not set as a system property, Hazelcast will check classpath for hazelcast.xml file.
If Hazelcast doesn't find any config file, it will happily start with default configuration (hazelcast-
default.xml) located in hazelcast.jar. (Before configuring Hazelcast, please try to work with default
configuration to see if it works for you. Default should be just fine for most of the users. If not, then consider custom
configuration for your environment.)

If you want to specify your own configuration file to create Config, Hazelcast supports several ways including
filesystem, classpath, InputStream, URL etc.:

• Config cfg = new XmlConfigBuilder(xmlFileName).build();

• Config cfg = new XmlConfigBuilder(inputStream).build();

• Config cfg = new ClasspathXmlConfig(xmlFileName);

• Config cfg = new FileSystemXmlConfig(configFilename);

• Config cfg = new UrlXmlConfig(url);

• Config cfg = new InMemoryXmlConfig(xml);

2. Programmatic Configuration

To configure Hazelcast programatically, just instantiate a Config object and set/change its properties/attributes due to
your needs.

Configuration

63

Config cfg = new Config();
cfg.setPort(5900);
cfg.setPortAutoIncrement(false);

NetworkConfig network = cfg.getNetworkConfig();
JoinConfig join = network.getJoin();
join.getMulticastConfig().setEnabled(false);
join.getTcpIpConfig().addMember("10.45.67.32").addMember("10.45.67.100")
 .setRequiredMember("192.168.10.100").setEnabled(true);
network.getInterfaces().setEnabled(true).addInterface("10.45.67.*");

MapConfig mapCfg = new MapConfig();
mapCfg.setName("testMap");
mapCfg.setBackupCount(2);
mapCfg.getMaxSizeConfig().setSize(10000);
mapCfg.setTimeToLiveSeconds(300);

MapStoreConfig mapStoreCfg = new MapStoreConfig();
mapStoreCfg.setClassName("com.hazelcast.examples.DummyStore").setEnabled(true);
mapCfg.setMapStoreConfig(mapStoreCfg);

NearCacheConfig nearCacheConfig = new NearCacheConfig();
nearCacheConfig.setMaxSize(1000).setMaxIdleSeconds(120).setTimeToLiveSeconds(300);
mapCfg.setNearCacheConfig(nearCacheConfig);

cfg.addMapConfig(mapCfg);

After creating Config object, you can use it to create a new Hazelcast instance.

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(cfg);
...

HazelcastInstance with a name:

• To create a named HazelcastInstance you should set instanceName of Config object.

Config cfg = new Config();
config.setInstanceName('my-instance');
Hazelcast.newHazelcastInstance(config);

• To retrieve an existing HazelcastInstance using its name, use;

Hazelcast.getHazelcastInstanceByName('my-instance');

• To retrieve all existingHazelcastInstances, use;

Hazelcast.getAllHazelcastInstances();

14.1. Creating Separate Clusters

By specifying group-name and group-password, you can separate your clusters in a simple way; dev group, production
group, test group, app-a group etc...

<hazelcast>
 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>
 ...
</hazelcast>

Configuration

64

You can also set the groupName with Config API. JVM can host multiple Hazelcast instances (nodes). Each node can
only participate in one group and it only joins to its own group, does not mess with others. Following code creates 3
separate Hazelcast nodes, h1 belongs to app1 cluster, while h2 and h3 are belong to app2 cluster.

Config configApp1 = new Config();
configApp1.getGroupConfig().setName("app1");

Config configApp2 = new Config();
configApp2.getGroupConfig().setName("app2");

HazelcastInstance h1 = Hazelcast.newHazelcastInstance(configApp1);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

14.2. Network Configuration

14.2.1. Configuring TCP/IP Cluster

If multicast is not preferred way of discovery for your environment, then you can configure Hazelcast for full TCP/IP
cluster. As configuration below shows, while enable attribute of multicast is set to false, tcp-ip has to be set to
true. For the none-multicast option, all or subset of cluster members' hostnames and/or ip addresses must be listed. Note
that all of the cluster members don't have to be listed there but at least one of them has to be active in cluster when a new
member joins. The tcp-ip tag accepts an attribute called "connection-timeout-seconds". The default value is 5. Increasing
this value is recommended if you have many IP's listed and members can not properly build up the cluster.

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <member>machine1</member>
 <member>machine2</member>
 <member>machine3:5799</member>
 <member>192.168.1.0-7</member>
 <member>192.168.1.21</member>
 </tcp-ip>
 </join>
 ...
 </network>
 ...
</hazelcast>

14.2.2. Specifying Network Interfaces

You can also specify which network interfaces that Hazelcast should use. Servers mostly have more than one network
interface so you may want to list the valid IPs. Range characters ('*' and '-') can be used for simplicity. So 10.3.10.*, for
instance, refers to IPs between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to IPs between 10.3.10.4 and
10.3.10.18 (4 and 18 included). If network interface configuration is enabled (disabled by default) and if Hazelcast cannot
find an matching interface, then it will print a message on console and won't start on that node.

Configuration

65

<hazelcast>
 ...
 <network>

 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>192.168.1.3</interface>
 </interfaces>
 </network>
 ...
</hazelcast>

14.2.3. EC2 Auto Discovery

Hazelcast supports EC2 Auto Discovery as of 1.9.4. It is useful when you don't want or can't provide the list of possible
IP addresses. Here is a sample configuration: Disable join over multicast and tcp/ip and enable aws. Also provide the
credentials. The aws tag accepts an attribute called "connection-timeout-seconds". The default value is 5. Increasing this
value is recommended if you have many IP's listed and members can not properly build up the cluster.

<join>
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="false">
 <interface>192.168.1.2</interface>
 </tcp-ip>
 <aws enabled="true">
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-west-1</region> <!-- optional, default is us-east-1 -->
 <host-header>ec2.amazonaws.com</host-header> <!-- optional, default is ec2.amazonaws.com.
 If set, region shouldn't be set as it will override this property -->
 <security-group-name>hazelcast-sg</security-group-name> <!-- optional -->
 <tag-key>type</tag-key> <!-- optional -->
 <tag-value>hz-nodes</tag-value> <!-- optional -->
 </aws>
</join>

You need to add hazelcast-cloud.jar dependency into your project. Note that it is also bundled inside hazelcast-all.jar.
hazelcast-cloud module doesn't depend on any other third party modules.

14.2.4. Network Partitioning (Split-Brain Syndrome)

Imagine that you have 10-node cluster and for some reason the network is divided into two in a way that 4 servers cannot
see the other 6. As a result you ended up having two separate clusters; 4-node cluster and 6-node cluster. Members in
each sub-cluster are thinking that the other nodes are dead even though they are not. This situation is called Network
Partitioning (aka Split-Brain Syndrome).

Since it is a network failure, there is no way to avoid it programatically and your application will run as two separate
independent clusters but we should be able to answer the following questions: "What will happen after the network failure
is fixed and connectivity is restored between these two clusters? Will these two clusters merge into one again? If they do,
how are the data conflicts resolved, because you might end up having two different values for the same key in the same
map?"

Here is how Hazelcast deals with it:

1. The oldest member of the cluster checks if there is another cluster with the same group-name and group-password in
the network.

2. If the oldest member founds such cluster, then figures out which cluster should merge to the other.

3. Each member of the merging cluster will do the following:

Configuration

66

• pause

• take locally owned map entries

• close all its network connections (detach from its cluster)

• join to the new cluster

• send merge request for each its locally owned map entry

• resume

So each member of the merging cluster is actually rejoining to the new cluster and sending merge request for each its
locally owned map entry.

Q: Which cluster will merge into the other?

A. Smaller cluster will merge into the bigger one. If they have equal number of members then a hashing algorithm
determines the merging cluster.

Q. Each cluster may have different versions of the same key in the same map. How is the conflict resolved?

A. Destination cluster will decide how to handle merging entry based on the MergePolicy set for that map.
There are built-in merge policies such as PassThroughMergePolicy, PutIfAbsentMapMergePolicy,
HigherHitsMapMergePolicy and LatestUpdateMapMergePolicy but you can develop your own merge
policy by implementing com.hazelcast.map.merge.MapMergePolicy. You should set the full class name of
your implementation to the merge-policy configuration.

public interface MergePolicy {
 /**
 * Returns the value of the entry after the merge
 * of entries with the same key. Returning value can be
 * You should consider the case where existingEntry is null.
 *
 * @param mapName name of the map
 * @param mergingEntry entry merging into the destination cluster
 * @param existingEntry existing entry in the destination cluster
 * @return final value of the entry. If returns null then entry will be removed.
 */
 Object merge(String mapName, EntryView mergingEntry, EntryView existingEntry);
}

Here is how merge policies are specified per map.

Configuration

67

<hazelcast>
 ...
 <map name="default">
 <backup-count>1</backup-count>
 <eviction-policy>NONE</eviction-policy>
 <max-size>0</max-size>
 <eviction-percentage>25</eviction-percentage>
 <!--
 While recovering from split-brain (network partitioning),
 map entries in the small cluster will merge into the bigger cluster
 based on the policy set here. When an entry merge into the
 cluster, there might an existing entry with the same key already.
 Values of these entries might be different for that same key.
 Which value should be set for the key? Conflict is resolved by
 the policy set here. Default policy is hz.ADD_NEW_ENTRY

 There are built-in merge policies such as
 There are built-in merge policies such as
 com.hazelcast.map.merge.PassThroughMergePolicy; entry will be added if there is no existing entry for the key.
 com.hazelcast.map.merge.PutIfAbsentMapMergePolicy ; entry will be added if the merging entry doesn't exist in the cluster.
 com.hazelcast.map.merge.HigherHitsMapMergePolicy ; entry with the higher hits wins.
 com.hazelcast.map.merge.LatestUpdateMapMergePolicy ; entry with the latest update wins.
 -->
 <merge-policy>MY_MERGE_POLICY_CLASS</merge-policy>
 </map>

 ...
</hazelcast>

14.2.5. SSL

Hazelcast allows you to use SSL socket communication among all Hazelcast members. You need to implement
com.hazelcast.nio.ssl.SSLContextFactory and configure SSL section in network configuration.

public class MySSLContextFactory implements SSLContextFactory {
 public void init(Properties properties) throws Exception {
 }

 public SSLContext getSSLContext() {
 ...
 SSLContext sslCtx = SSLContext.getInstance(protocol);
 return sslCtx;
 }
}

<hazelcast>
 ...
 <network>
 ...
 <ssl enabled="true">
 <factory-class-name>com.hazelcast.examples.MySSLContextFactory</factory-class-name>
 <properties>
 <property name="foo">bar</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

Hazelcast provides a default SSLContextFactory; com.hazelcast.nio.ssl.BasicSSLContextFactory
which uses configured keystore to initialize SSLContext. All required is to define keyStore
and keyStorePassword. Also you can set keyManagerAlgorithm (default SunX509),
trustManagerAlgorithm (default SunX509) and protocol (default TLS).

Configuration

68

<hazelcast>
 ...
 <network>
 ...
 <ssl enabled="true">
 <factory-class-name>com.hazelcast.nio.ssl.BasicSSLContextFactory</factory-class-name>
 <properties>
 <property name="keyStore">keyStore</property>
 <property name="keyStorePassword">keyStorePassword</property>
 <property name="keyManagerAlgorithm">SunX509</property>
 <property name="trustManagerAlgorithm">SunX509</property>
 <property name="protocol">TLS</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

By version 3.1, Hazelcast client has SSL support too. Client SSL configuration can be defined using config API.

Properties props = new Properties();
...
ClientConfig config = new ClientConfig();
config.getSocketOptions().setSocketFactory(new SSLSocketFactory(props));

You can also set keyStore and keyStorePassword through javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword system properties. Note that, you can not use SSL when Hazelcast
Encryption is enabled.

14.2.6. Encryption

Hazelcast allows you to encrypt entire socket level communication among all Hazelcast members. Encryption is based on
Java Cryptography Architecture [http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html] In
symmetric encryption, each node uses the same key, so the key is shared. Here is a sample configuration for symmetric
encryption:

<hazelcast>
 ...
 <network>
 ...
 <!--
 Make sure to set enabled=true
 Make sure this configuration is exactly the same on
 all members
 -->
 <symmetric-encryption enabled="true">
 <!--
 encryption algorithm such as
 DES/ECB/PKCS5Padding,
 PBEWithMD5AndDES,
 Blowfish,
 DESede
 -->
 <algorithm>PBEWithMD5AndDES</algorithm>

 <!-- salt value to use when generating the secret key -->
 <salt>thesalt</salt>

 <!-- pass phrase to use when generating the secret key -->
 <password>thepass</password>

 <!-- iteration count to use when generating the secret key -->
 <iteration-count>19</iteration-count>
 </symmetric-encryption>
 </network>
 ...
</hazelcast>

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

Configuration

69

Also see SSL Encryption.

14.2.7. Socket Interceptor

Hazelcast allows you to intercept socket connections before a node joins to cluster or a client connects to a node.
This provides ability to add custom hooks to join/connection procedure (like identity checking using Kerberos,
etc.). You should implement com.hazelcast.nio.MemberSocketInterceptor for members and
com.hazelcast.nio.SocketInterceptor for clients.

public class MySocketInterceptor implements MemberSocketInterceptor {
 public void init(SocketInterceptorConfig socketInterceptorConfig) {
 // initialize interceptor
 }

 public void onConnect(Socket connectedSocket) throws IOException {
 // do something meaningful when connected
 }

 public void onAccept(Socket acceptedSocket) throws IOException {
 // do something meaningful when accepted a connection
 }
}

<hazelcast>
 ...
 <network>
 ...
 <socket-interceptor enabled="true">
 <class-name>com.hazelcast.examples.MySocketInterceptor</class-name>
 <properties>
 <property name="kerberos-host">kerb-host-name</property>
 <property name="kerberos-config-file">kerb.conf</property>
 </properties>
 </socket-interceptor>
 </network>
 ...
</hazelcast>

public class MyClientSocketInterceptor implements SocketInterceptor {
 public void onConnect(Socket connectedSocket) throws IOException {
 // do something meaningful when connected
 }
}

ClientConfig clientConfig = new ClientConfig();
clientConfig.setGroupConfig(new GroupConfig("dev","dev-pass")).addAddress("10.10.3.4");

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();
clientConfig.setSocketInterceptor(myClientSocketInterceptor);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

14.2.8. IPv6 Support

Hazelcast supports IPv6 addresses seamlessly. [IPv6 support has been switched off by default. See note below] All you
need is to define IPv6 addresses or interfaces in network configuration. Only limitation at the moment is you can not
define wildcard IPv6 addresses in TCP-IP join configuration. Interfaces section does not have this limitation, you can
configure wildcard IPv6 interfaces same as IPv4 interfaces.

Configuration

70

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <member>[fe80::223:6cff:fe93:7c7e]:5701</member>
 <interface>192.168.1.0-7</interface>
 <interface>192.168.1.*</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:493a</interface>
 </tcp-ip>
 </join>
 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:*</interface>
 <interface>fe80::223:6cff:fe93:0-5555</interface>
 </interfaces>
 ...
 </network>

JVM has two system properties for setting the preferred protocol stack —IPv4 or IPv6— as well as the preferred address
family types —inet4 or inet6. On a dual stack machine IPv6 stack is preferred by default, this can be changed through
java.net.preferIPv4Stack=<true|false> system property. And when querying name services JVM
prefers IPv4 addressed over IPv6 addresses and will return an IPv4 address if possible. This can be changed through
java.net.preferIPv6Addresses=<true|false> system property.

Also see additional details on IPv6 support in Java [http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/
query.html#details].

Note:

IPv6 support has been switched off by default, since some platforms have issues in use of IPv6 stack. And some
other platforms such as Amazon AWS have no support at all. To enable IPv6 support, just set configuration property
hazelcast.prefer.ipv4.stack to false. See Configuration Properties.

14.2.9. Restricting Outbound Ports

By default Hazelcast lets the system to pick up an ephemeral port during socket bind operation. But security policies/
firewalls may require to restrict outbound ports to be used by Hazelcast enabled applications. To fulfill this requirement,
you can configure Hazelcast to use only defined outbound ports.

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <outbound-ports>
 <ports>33000-35000</ports> <!-- ports between 33000 and 35000 -->
 <ports>37000,37001,37002,37003</ports> <!-- comma separated ports -->
 <ports>38000,38500-38600</ports>
 </outbound-ports>
 ...
 </network>
 ...
</hazelcast>

http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/query.html#details
http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/query.html#details
http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/query.html#details

Configuration

71

 ...

 NetworkConfig networkConfig = config.getNetworkConfig();
 networkConfig.addOutboundPortDefinition("35000-35100"); // ports between 35000 and 35100
 networkConfig.addOutboundPortDefinition("36001, 36002, 36003"); // comma separated ports
 networkConfig.addOutboundPort(37000);
 networkConfig.addOutboundPort(37001);
 ...

* You can use port ranges and/or comma separated ports.

14.3. Partition Group Configuration

Hazelcast distributes key objects into partitions (blocks) using a consistent hashing algorithm and those
partitions are assigned to nodes. That means an entry is stored in a node which is owner of partition to that
entry's key is assigned. Number of total partitions is default 271 and can be changed with configuration property
hazelcast.map.partition.count. Along with those partitions, there are also copies of them as backups. Backup
partitions can have multiple copies due to backup count defined in configuration, such as first backup partition, second
backup partition etc. As a rule, a node can not hold more than one copy of a partition (ownership or backup). By default
Hazelcast distributes partitions and their backup copies randomly and equally among cluster nodes assuming all nodes in
the cluster are identical.

What if some nodes share same JVM or physical machine or chassis and you want backups of these nodes to be assigned
to nodes in another machine or chassis? What if processing or memory capacities of some nodes are different and you do
not want equal number of partitions to be assigned to all nodes?

You can group nodes in the same JVM (or physical machine) or nodes located in the same chassis. Or you can group
nodes to create identical capacity. We call these groups partition groups. This way partitions are assigned to those
partition groups instead of single nodes. And backups of these partitions are located in another partition group.

When you enable partition grouping, Hazelcast presents three choices to configure partition groups at the moments.

• First one is to group nodes automatically using IP addresses of nodes, so nodes sharing same network interface will be
grouped together.

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true).setGroupType(MemberGroupType.HOST_AWARE);

• Second one is custom grouping using Hazelcast's interface matching configuration. This way, you can add different and
multiple interfaces to a group. You can also use wildcards in interface addresses.

<partition-group enabled="true" group-type="CUSTOM">
 <member-group>
 <interface>10.10.0.*</interface>
 <interface>10.10.3.*</interface>
 <interface>10.10.5.*</interface>
 </member-group>
 <member-group>
 <interface>10.10.10.10-100</interface>
 <interface>10.10.1.*</interface>
 <interface>10.10.2.*</interface>
 </member-group
</partition-group>

Configuration

72

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true).setGroupType(MemberGroupType.CUSTOM);

MemberGroupConfig memberGroupConfig = new MemberGroupConfig();
memberGroupConfig.addInterface("10.10.0.*")
 .addInterface("10.10.3.*").addInterface("10.10.5.*");

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface("10.10.10.10-100")
 .addInterface("10.10.1.*").addInterface("10.10.2.*");

partitionGroupConfig.addMemberGroupConfig(memberGroupConfig);
partitionGroupConfig.addMemberGroupConfig(memberGroupConfig2);

• Third one is to give every member their own group. This gives the least amount of protection and is the default
configuration for a Hazelcast cluster.

<partition-group enabled="true" group-type="PER_MEMBER" />

 Config config = ...;
 PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
 partitionGroupConfig.setEnabled(true).setGroupType(MemberGroupType.PER_MEMBER);

14.4. Listener Configurations
Hazelcast provides various event listener extensions to receive specific event types. These are:

• MembershipListener for cluster membership events

• DistributedObjectListener for distributed object creation and destroy events

• MigrationListener for partition migration start and complete events

• LifecycleListener for HazelcastInstance lifecycle events

• EntryListener for IMap and MultiMap entry events

• ItemListener for IQueue, ISet and IList item events

• MessageListener for ITopic message events

These listeners can be added to and removed from related object using Hazelcast API. Such as

MembershipListener listener = new MyMembershipListener();
hazelcastInstance.getCluster().addMembershipListener(listener);
hazelcastInstance.getCluster().removeMembershipListener(listener);

EntryListener listener = new MyEntryListener();
IMap map = hazelcastInstance.getMap("default");
String id =map.addEntryListener(listener, true);
map.removeEntryListener(id);

ItemListener listener = new MyItemListener();
IQueue queue = hazelcastInstance.getQueue("default");
queue.addItemListener(listener, true);
queue.removeItemListener(listener);

Downside of attaching listeners using API is possibility of missing events between creation of object and registering
listener. To overcome this race condition Hazelcast introduces registration of listeners in configuration. Listeners can be
registered using either Hazelcast XML configuration, Config API or Spring configuration.

• MembershipListener

Configuration

73

Hazelcast XML configuration

<listeners>
 <listener>com.hazelcast.examples.MembershipListener</listener>
</listeners>

Config API

config.addListenerConfig(new ListenerConfig("com.hazelcast.examples.MembershipListener"));

Spring XML configuration

<hz:listeners>
 <hz:listener class-name="com.hazelcast.spring.DummyMembershipListener"/>
 <hz:listener implementation="dummyMembershipListener"/>
</hz:listeners>

• DistributedObjectListener

Hazelcast XML configuration

<listeners>
 <listener>com.hazelcast.examples.DistributedObjectListener</listener>
</listeners>

Config API

config.addListenerConfig(new ListenerConfig("com.hazelcast.examples.DistributedObjectListener"));

Spring XML configuration

<hz:listeners>
 <hz:listener class-name="com.hazelcast.spring.DummyDistributedObjectListener"/>
 <hz:listener implementation="dummyDistributedObjectListener"/>
</hz:listeners>

• MigrationListener

Hazelcast XML configuration

<listeners>
 <listener>com.hazelcast.examples.MigrationListener</listener>
</listeners>

Config API

config.addListenerConfig(new ListenerConfig("com.hazelcast.examples.MigrationListener"));

Spring XML configuration

<hz:listeners>
 <hz:listener class-name="com.hazelcast.spring.DummyMigrationListener"/>
 <hz:listener implementation="dummyMigrationListener"/>
</hz:listeners>

Configuration

74

• LifecycleListener

Hazelcast XML configuration

<listeners>
 <listener>com.hazelcast.examples.LifecycleListener</listener>
</listeners>

Config API

config.addListenerConfig(new ListenerConfig("com.hazelcast.examples.LifecycleListener"));

Spring XML configuration

<hz:listeners>
 <hz:listener class-name="com.hazelcast.spring.DummyLifecycleListener"/>
 <hz:listener implementation="dummyLifecycleListener"/>
</hz:listeners>

• EntryListener for IMap

Hazelcast XML configuration

<map name="default">
 ...
 <entry-listeners>
 <entry-listener include-value="true" local="false">com.hazelcast.examples.EntryListener</entry-listener>
 </entry-listeners>
</map>

Config API

mapConfig.addEntryListenerConfig(new EntryListenerConfig("com.hazelcast.examples.EntryListener", false, false));

Spring XML configuration

<hz:map name="default">
 <hz:entry-listeners>
 <hz:entry-listener class-name="com.hazelcast.spring.DummyEntryListener" include-value="true"/>
 <hz:entry-listener implementation="dummyEntryListener" local="true"/>
 </hz:entry-listeners>
</hz:map>

• EntryListener for MultiMap

Hazelcast XML configuration

<multimap name="default">
 <value-collection-type>SET</value-collection-type>
 <entry-listeners>
 <entry-listener include-value="true" local="false">com.hazelcast.examples.EntryListener</entry-listener>
 </entry-listeners>
</multimap>

Config API

multiMapConfig.addEntryListenerConfig(new EntryListenerConfig("com.hazelcast.examples.EntryListener", false, false));

Configuration

75

Spring XML configuration

<hz:multimap name="default" value-collection-type="LIST">
 <hz:entry-listeners>
 <hz:entry-listener class-name="com.hazelcast.spring.DummyEntryListener" include-value="true"/>
 <hz:entry-listener implementation="dummyEntryListener" local="true"/>
 </hz:entry-listeners>
</hz:multimap>

• ItemListener for IQueue

Hazelcast XML configuration

<queue name="default">
 ...
 <item-listeners>
 <item-listener include-value="true">com.hazelcast.examples.ItemListener</item-listener>
 </item-listeners>
</queue>

Config API

queueConfig.addItemListenerConfig(new ItemListenerConfig("com.hazelcast.examples.ItemListener", true));

Spring XML configuration

<hz:queue name="default" >
 <hz:item-listeners>
 <hz:item-listener class-name="com.hazelcast.spring.DummyItemListener" include-value="true"/>
 </hz:item-listeners>
</hz:queue>

• MessageListener for ITopic

Hazelcast XML configuration

<topic name="default">
 <message-listeners>
 <message-listener>com.hazelcast.examples.MessageListener</message-listener>
 </message-listeners>
</topic>

Config API

topicConfig.addMessageListenerConfig(new ListenerConfig("com.hazelcast.examples.MessageListener"));

Spring XML configuration

<hz:topic name="default">
 <hz:message-listeners>
 <hz:message-listener class-name="com.hazelcast.spring.DummyMessageListener"/>
 </hz:message-listeners>
</hz:topic>

Configuration

76

14.5. Wildcard Configuration
Hazelcast supports wildcard configuration of Maps, Queues and Topics. Using an asterisk (*) character in the name,
different instances of Maps, Queues and Topics can be configured by a single configuration.

Note that, with a limitation of a single usage, asterisk (*) can be placed anywhere inside the configuration name.

For instance a map named 'com.hazelcast.test.mymap' can be configured using one of these configurations;

<map name="com.hazelcast.test.*">
...
</map>

<map name="com.hazel*">
...
</map>

<map name="*.test.mymap">
...
</map>

<map name="com.*test.mymap">
...
</map>

Or a queue 'com.hazelcast.test.myqueue'

<queue name="*hazelcast.test.myqueue">
...
</queue>

<queue name="com.hazelcast.*.myqueue">
...
</queue>

14.6. Advanced Configuration Properties
There are some advanced configuration properties to tune some aspects of Hazelcast. These can be set as property name
and value pairs through configuration xml, configuration API or JVM system property.

• Configuration xml

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-3.1.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <properties>
 <property name="hazelcast.property.foo">value</property>

 </properties>
</hazelcast>

• Configuration API

Config cfg = new Config() ;
cfg.setProperty("hazelcast.property.foo", "value");

• System Property

1. Using JVM parameter: java -Dhazelcast.property.foo=value

Configuration

77

2. Using System class: System.setProperty("hazelcast.property.foo", "value");

Table 14.1. Properties Table

Property Name Description Value Type Default

hazelcast.memcache.enabled Enable Memcache client request listener service boolean true

hazelcast.rest.enabled Enable REST client request listener service boolean true

hazelcast.logging.type Name of logging framework type to send logging events. enum jdk

hazelcast.map.load.chunk.size Chunk size for MapLoader 's map initialization process (MapLoder.loadAllKeys()) integer 1000

hazelcast.merge.first.run.delay.seconds Inital run delay of split brain/merge process in seconds integer 300

hazelcast.merge.next.run.delay.seconds Run interval of split brain/merge process in seconds integer 120

hazelcast.socket.bind.any Bind both server-socket and client-sockets to any local interface boolean true

hazelcast.socket.server.bind.any Bind server-socket to any local interface. If not set,
hazelcast.socket.bind.any will be used as default.

boolean true

hazelcast.socket.client.bind.any Bind client-sockets to any local interface. If not set,
hazelcast.socket.bind.any will be used as default.

boolean true

hazelcast.socket.receive.buffer.size Socket receive buffer size in KB integer 32

hazelcast.socket.send.buffer.size Socket send buffer size in KB integer 32

hazelcast.socket.keep.alive Socket set keep alive boolean true

hazelcast.socket.no.delay Socket set TCP no delay boolean true

hazelcast.prefer.ipv4.stack Prefer Ipv4 network interface when picking a local address. boolean true

hazelcast.shutdownhook.enabled Enable Hazelcast shutdownhook thread boolean true

hazelcast.wait.seconds.before.join Wait time before join operation integer 5

hazelcast.max.wait.seconds.before.join Maximum wait time before join operation integer 20

hazelcast.heartbeat.interval.seconds Heartbeat send interval in seconds integer 1

hazelcast.max.no.heartbeat.seconds Max timeout of heartbeat in seconds for a node to assume it is dead integer 300

hazelcast.icmp.enabled Enable ICMP ping boolean false

hazelcast.icmp.timeout ICMP timeout in ms int 1000

hazelcast.icmp.ttl ICMP TTL (maximum numbers of hops to try) int 0

hazelcast.master.confirmation.interval.seconds Interval at which nodes send master confirmation integer 30

hazelcast.max.no.master.confirmation.seconds Max timeout of master confirmation from other nodes integer 450

hazelcast.member.list.publish.interval.seconds Interval at which master node publishes a member list integer 600

hazelcast.prefer.ipv4.stack Prefer IPv4 Stack, don't use IPv6. See IPv6 doc. boolean true

hazelcast.initial.min.cluster.size Initial expected cluster size to wait before node to start completely integer 0

hazelcast.initial.wait.seconds Inital time in seconds to wait before node to start completely integer 0

hazelcast.partition.count Total partition count integer 271

hazelcast.jmx Enable JMX agent boolean false

hazelcast.jmx.detailed Enable detailed views on JMX boolean false

hazelcast.mc.map.excludes Comma seperated map names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

hazelcast.mc.queue.excludes Comma seperated queue names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

hazelcast.mc.topic.excludes Comma seperated topic names to exclude from Hazelcast Management Center
[http://www.hazelcast.com/mancenter.jsp]

CSV null

http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp
http://www.hazelcast.com/mancenter.jsp

Configuration

78

Property Name Description Value Type Default

hazelcast.version.check.enabled Enable Hazelcast new version check on startup boolean true

hazelcast.mc.max.visible.instance.count Management Center maximum visible instance count integer 100

hazelcast.connection.monitor.interval Minimum interval to consider a connection error as critical in milliseconds. integer 100

hazelcast.connection.monitor.max.faults Maximum IO error count before disconnecting from a node. integer 3

hazelcast.partition.migration.interval Interval to run partition migration tasks in seconds. integer 0

hazelcast.partition.migration.timeout Timeout for partition migration tasks in seconds. integer 300

hazelcast.graceful.shutdown.max.wait Maximum wait seconds during graceful shutdown. integer 600

hazelcast.mc.url.change.enabled Management Center changing server url is enabled boolean true

hazelcast.elastic.memory.enabled Enable Hazelcast Elastic Memory off-heap storage boolean false

hazelcast.elastic.memory.total.size Hazelcast Elastic Memory storage total size in MB integer 128

hazelcast.elastic.memory.chunk.size Hazelcast Elastic Memory storage chunk size in KB integer 1

hazelcast.elastic.memory.shared.storage Enable Hazelcast Elastic Memory shared storage boolean false

hazelcast.enterprise.license.key Enterprise Extensions Pack [http://www.hazelcast.com/products.jsp] license key string null

hazelcast.system.log.enabled Enable system logs boolean true

14.7. Logging Configuration
Hazelcast has a flexible logging configuration and doesn't depend on any logging framework except JDK logging. It has
in-built adaptors for a number of logging frameworks and also supports custom loggers by providing logging interfaces.

To use built-in adaptors you should set hazelcast.logging.type property to one of predefined types below.

• jdk:JDK logging (default)

• log4j:Log4j

• slf4j:Slf4j

• none:disable logging

You can set hazelcast.logging.type through configuration xml, configuration API or JVM system property.

• Configuration xml

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-3.1.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <properties>
 <property name="hazelcast.logging.type">jdk</property>

 </properties>
</hazelcast>

• Configuration API

Config cfg = new Config() ;
cfg.setProperty("hazelcast.logging.type", "log4j");

• System Property

http://www.hazelcast.com/products.jsp
http://www.hazelcast.com/products.jsp

Configuration

79

1. Using JVM parameter: java -Dhazelcast.logging.type=slf4j

2. Using System class: System.setProperty("hazelcast.logging.type", "none");

To use custom logging feature you should implement com.hazelcast.logging.LoggerFactory and
com.hazelcast.logging.ILogger interfaces and set system property hazelcast.logging.class to your
custom LoggerFactory class name.

java -Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners
toLoggingService.

LogListener listener = new LogListener() {
 public void log(LogEvent logEvent) {
 // do something
 }
}
LoggingService loggingService = Hazelcast.getLoggingService();
loggingService.addLogListener(Level.INFO, listener):

Through the LoggingService you can get the current used ILogger implementation and log your own messages too.

14.8. Setting License Key (Enterprise Extensions Only)

To be able to use Enterprise Extensions, you need to set license key in configuration.

• Hazelcast XML Configuration

<hazelcast>
 ...
 <license-key>HAZELCAST_ENTERPRISE_LICENSE_KEY</license-key>
 ...
</hazelcast>

• Hazelcast Config API

Config config = new Config();
config.setLicenseKey("HAZELCAST_ENTERPRISE_LICENSE_KEY");

• Spring XML Configuration

<hz:config>
 ...
 <hz:license-key>HAZELCAST_ENTERPRISE_LICENSE_KEY</hz:license-key>
 ...
</hazelcast>

• JVM System Property

-Dhazelcast.enterprise.license.key=HAZELCAST_ENTERPRISE_LICENSE_KEY

80

Chapter 15. Hibernate Second Level Cache
Hazelcast provides distributed second level cache for your Hibernate entities, collections and queries. Hazelcast has two
implementations of Hibernate 2nd level cache, one for hibernate-pre-3.3 and one for hibernate-3.3.x versions. In your
Hibernate configuration file (ex: hibernate.cfg.xml), add these properties:

• To enable use of second level cache

<property name="hibernate.cache.use_second_level_cache">true</property>

• To enable use of query cache

<property name="hibernate.cache.use_query_cache">true</property>

• And to force minimal puts into cache

<property name="hibernate.cache.use_minimal_puts">true</property>

• To configure Hazelcast for Hibernate, it is enough to put configuration file named hazelcast.xml into root of your
classpath. If Hazelcast can not find hazelcast.xml then it will use default configuration from hazelcast.jar.

• You can define custom named Hazelcast configuration xml file with one of these Hibernate configuration properties.

<property name="hibernate.cache.provider_configuration_file_resource_path">
 hazelcast-custom-config.xml
</property>

or

<property name="hibernate.cache.hazelcast.configuration_file_path">
 hazelcast-custom-config.xml
</property>

• You can set up Hazelcast to connect cluster as Native Client. Native client is not member and it connects to one of
the cluster members and delegates all cluster wide operations to it. When the relied cluster member dies, client will
transparently switch to another live member.

<property name="hibernate.cache.hazelcast.use_native_client">true</property>

To setup Native Client properly, you should add Hazelcast group-name, group-password and cluster member
address properties. Native Client will connect to defined member and will get addresses of all members in the cluster.
If the connected member will die or leave the cluster, client will automatically switch to another member in the cluster.

<property name="hibernate.cache.hazelcast.native_client_address">10.34.22.15</property>
<property name="hibernate.cache.hazelcast.native_client_group">dev</property>
<property name="hibernate.cache.hazelcast.native_client_password">dev-pass</property>

To use Native Client you should add hazelcast-client-<version>.jar into your classpath.

Read more about NativeClient

• To define Hibernate RegionFacyory, add following property.

<property name="hibernate.cache.region.factory_class">
 com.hazelcast.hibernate.HazelcastCacheRegionFactory
</property>

Hibernate Second Level Cache

81

Or as an alternative you can use HazelcastLocalCacheRegionFactory which stores data in local node and
sends invalidation messages when an entry is updated on local.

<property name="hibernate.cache.region.factory_class">
 com.hazelcast.hibernate.HazelcastLocalCacheRegionFactory
</property>

Hazelcast creates a separate distributed map for each Hibernate cache region. So these regions can be configured easily
via Hazelcast map configuration. You can define backup, eviction, TTL and Near Cache properties.

• Backup Configuration

• Eviction And TTL Configuration

• Near Cache Configuration

Hibernate has four cache concurrency strategies: read-only, read-write, nonstrict-read-write and transactional. But
Hibernate does not forces cache providers to support all strategies. And Hazelcast supports first three (read-only, read-
write, nonstrict-read-write) of these four strategies. Hazelcast has no support for transactional strategy yet.

• If you are using xml based class configurations, you should add a cache element into your configuration with usage
attribute with one of read-only, read-write, nonstrict-read-write.

<class name="eg.Immutable" mutable="false">
 <cache usage="read-only"/>

</class>

<class name="eg.Cat" >
 <cache usage="read-write"/>

 <set name="kittens" ... >
 <cache usage="read-write"/>

 </set>
</class>

• If you are using Hibernate-Annotations then you can add class-cache or collection-cache element into your Hibernate
configuration file with usage attribute with one of read only, read/write, nonstrict read/write.

<class-cache usage="read-only" class="eg.Immutable"/>
<class-cache usage="read-write" class="eg.Cat"/>
<collection-cache collection="eg.Cat.kittens" usage="read-write"/>

OR

• Alternatively, you can put Hibernate Annotation's @Cache annotation on your entities and collections.

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Cat implements Serializable {
 ...
}

The last thing you should be aware of is to drop hazelcast-hibernate-<version>.jar into your classpath.

Additional Properties:

• Accessing underlying HazelcastInstance

Using com.hazelcast.hibernate.instance.HazelcastAccessor you can access the underlying
HazelcastInstance used by Hibernate SessionFactory.

Hibernate Second Level Cache

82

SessionFactory sessionFactory = ...;
HazelcastInstance hazelcastInstance = HazelcastAccessor.getHazelcastInstance(sessionFactory);

• Changing/setting lock timeout value of read-write strategy

Lock timeout value can be set using hibernate.cache.hazelcast.lock_timeout_in_seconds
Hibernate property. Value should be in seconds and default value is 300 seconds.

• Using named HazelcastInstance

Instead of creating a new HazelcastInstance for each SessionFactory, an existing instance can be used by
setting hibernate.cache.hazelcast.instance_name Hibernate property to HazelcastInstance's
name. For more information see Named HazelcastInstance.

• Disabling shutdown during SessionFactory.close()

Shutting down HazelcastInstance can be disabled during SessionFactory.close() by setting
hibernate.cache.hazelcast.shutdown_on_session_factory_close Hibernate property to false.
(In this case Hazelcast property hazelcast.shutdownhook.enabled should not be set to false.) Default value
is true.

83

Chapter 16. Spring Integration
16.1. Configuration

You can declare Hazelcast beans for Spring context using beans namespace (default spring beans namespace) as well
to declare hazelcast maps, queues and others. Hazelcast-Spring integration requires either hazelcast-spring jar or
hazelcast-all jar in the classpath.

<bean id="instance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
 <constructor-arg>
 <bean class="com.hazelcast.config.Config">
 <property name="groupConfig">
 <bean class="com.hazelcast.config.GroupConfig">
 <property name="name" value="dev"/>
 <property name="password" value="pwd"/>
 </bean>
 </property>
 <!-- and so on ... -->
 </bean>
 </constructor-arg>
</bean>

<bean id="map" factory-bean="instance" factory-method="getMap">
 <constructor-arg value="map"/>
</bean>

Hazelcast has Spring integration (requires version 2.5 or greater) since 1.9.1 using hazelcast namespace.

• Add namespace xmlns:hz="http://www.hazelcast.com/schema/spring" to beans tag in context file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring-3.0.xsd">

• Use hz namespace shortcuts to declare cluster, its items and so on.

After that you can configure Hazelcast instance (node):

<hz:hazelcast id="instance">
 <hz:config>
 <hz:group name="dev" password="password"/>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false"
 multicast-group="224.2.2.3"
 multicast-port="54327"/>
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 <hz:map name="map"
 backup-count="2"
 max-size="0"
 eviction-percentage="30"
 read-backup-data="true"
 cache-value="true"
 eviction-policy="NONE"
 merge-policy="com.hazelcast.map.merge.PassThroughMergePolicy"/>
 </hz:config>
</hz:hazelcast>

You can easily configure map-store and near-cache too. (For map-store you should set either class-name or
implementation attribute.)

Spring Integration

84

<hz:config>
 <hz:map name="map1">
 <hz:near-cache time-to-live-seconds="0" max-idle-seconds="60"
 eviction-policy="LRU" max-size="5000" invalidate-on-change="true"/>

 <hz:map-store enabled="true" class-name="com.foo.DummyStore"
 write-delay-seconds="0"/>
 </hz:map>

 <hz:map name="map2">
 <hz:map-store enabled="true" implementation="dummyMapStore"
 write-delay-seconds="0"/>
 </hz:map>

 <bean id="dummyMapStore" class="com.foo.DummyStore" />
</hz:config>

It's possible to use placeholders instead of concrete values. For instance, use property file app-default.properties for group
configuration:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>classpath:/app-default.properties</value>
 </list>
 </property>
</bean>

<hz:hazelcast id="instance">
 <hz:config>
 <hz:group
 name="${cluster.group.name}"
 password="${cluster.group.password}"/>
 <!-- ... -->
 </hz:config>
</hz:hazelcast>

Similar for client

<hz:client id="client">
 <hz:group name="${cluster.group.name}" password="${cluster.group.password}"/>
 <hz:network>
 <hz:member>10.10.1.2:5701</hz:member>
 <hz:member>10.10.1.3:5701</hz:member>
 </hz:network>
 </hz:client>

Hazelcast also supports lazy-init, scope and depends-on bean attributes.

<hz:hazelcast id="instance" lazy-init="true" scope="singleton">
 ...
</hz:hazelcast>

<hz:client id="client" scope="prototype" depends-on="instance">
 ...
</hz:client>

You can declare beans for the following Hazelcast objects:

• map

• multiMap

• queue

• topic

Spring Integration

85

• set

• list

• executorService

• idGenerator

• atomicLong

• semaphore

• countDownLatch

• lock

Example:

<hz:map id="map" instance-ref="client" name="map" lazy-init="true" />
<hz:multiMap id="multiMap" instance-ref="instance" name="multiMap" lazy-init="false" />
<hz:queue id="queue" instance-ref="client" name="queue" lazy-init="true" depends-on="instance"/>
<hz:topic id="topic" instance-ref="instance" name="topic" depends-on="instance, client"/>
<hz:set id="set" instance-ref="instance" name="set" />
<hz:list id="list" instance-ref="instance" name="list"/>
<hz:executorService id="executorService" instance-ref="client" name="executorService"/>
<hz:idGenerator id="idGenerator" instance-ref="instance" name="idGenerator"/>
<hz:atomicLong id="atomicLong" instance-ref="instance" name="atomicLong"/>
<hz:semaphore id="semaphore" instance-ref="instance" name="semaphore"/>
<hz:countDownLatch id="countDownLatch" instance-ref="instance" name="countDownLatch"/>
<hz:lock id="lock" instance-ref="instance" name="lock"/>

Injecting Typed Collections/Maps

Spring tries to create a new Map/Collection instance and fill the new instance by iterating and converting values of
the original Map/Collection (IMap, IQueue etc.) to required types when generic type parameters of the original
Map/Collection and the target property/attribute do not match.

Since Hazelcast Maps/Collections are designed to hold very large data which a single machine can not carry, iterating
through whole values can cause out of memory errors.

To avoid this issue either target property/attribute can be declared as un-typed Map/Collection

public class SomeBean {
 @Autowired
 IMap map; // instead of IMap<K, V> map

 @Autowired
 IQueue queue; // instead of IQueue<E> queue

 ...
}

or parameters of injection methods (constructor, setter) can be un-typed.

Spring Integration

86

public class SomeBean {

 IMap<K, V> map;

 IQueue<E> queue;

 public SomeBean(IMap map) { // instead of IMap<K, V> map
 this.map = map;
 }

 ...

 public void setQueue(IQueue queue) { // instead of IQueue<E> queue
 this.queue = queue;
 }
 ...
}

For more info see Spring issue-3407 [https://jira.springsource.org/browse/SPR-3407].

16.2. Spring Managed Context

It's often desired to access Spring managed beans, to apply bean properties or to apply factory callbacks such as
ApplicationContextAware, BeanNameAware or to apply bean post-processing such as InitializingBean,
@PostConstruct like annotations while using Hazelcast distributed ExecutorService or more generally any
Hazelcast managed object. Achieving those features are as simple as adding @SpringAware annotation to your
distributed object types. Once you have configured HazelcastInstance as explained in Spring configuration, just mark any
distributed type with @SpringAware annotation.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring-3.0.xsd">

 <context:annotation-config />

 <hz:hazelcast id="instance">
 <hz:config>
 <hz:group name="dev" password="password"/>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false" />
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 ...
 </hz:config>
 </hz:hazelcast>

 <bean id="someBean" class="com.hazelcast.examples.spring.SomeBean" scope="singleton" />
 ...
</beans>

ExecutorService example:

https://jira.springsource.org/browse/SPR-3407
https://jira.springsource.org/browse/SPR-3407

Spring Integration

87

@SpringAware
public class SomeTask implements Callable<Long>, ApplicationContextAware, Serializable {

 private transient ApplicationContext context;

 private transient SomeBean someBean;

 public Long call() throws Exception {
 return someBean.value;
 }

 public void setApplicationContext(final ApplicationContext applicationContext)
 throws BeansException {
 context = applicationContext;
 }

 @Autowired
 public void setSomeBean(final SomeBean someBean) {
 this.someBean = someBean;
 }
}

HazelcastInstance hazelcast = (HazelcastInstance) context.getBean("hazelcast");
SomeBean bean = (SomeBean) context.getBean("someBean");

Future<Long> f = hazelcast.getExecutorService().submit(new SomeTask());
Assert.assertEquals(bean.value, f.get().longValue());

// choose a member
Member member = hazelcast.getCluster().getMembers().iterator().next();

Future<Long> f2 = (Future<Long>) hazelcast.getExecutorService()
 .submitToMember(new SomeTask(), member);
Assert.assertEquals(bean.value, f2.get().longValue());

Distributed Map value example:

@SpringAware
@Component("someValue")
@Scope("prototype")
public class SomeValue implements Serializable, ApplicationContextAware {

 transient ApplicationContext context;

 transient SomeBean someBean;

 transient boolean init = false;

 public void setApplicationContext(final ApplicationContext applicationContext)
 throws BeansException {
 context = applicationContext;
 }

 @Autowired
 public void setSomeBean(final SomeBean someBean) {
 this.someBean = someBean;
 }

 @PostConstruct
 public void init() {
 someBean.doSomethingUseful();
 init = true;
 }
 ...
}

On Node-1;

Spring Integration

88

HazelcastInstance hazelcast = (HazelcastInstance) context.getBean("hazelcast");
SomeValue value = (SomeValue) context.getBean("someValue")
IMap<String, SomeValue> map = hazelcast.getMap("values");
map.put("key", value);

On Node-2;

HazelcastInstance hazelcast = (HazelcastInstance) context.getBean("hazelcast");
IMap<String, SomeValue> map = hazelcast.getMap("values");
SomeValue value = map.get("key");
Assert.assertTrue(value.init);

Note that, Spring managed properties/fields are marked as transient.

16.3. Spring Cache
As of version 3.1, Spring Framework provides support for adding caching into an existing
Spring application. To use Hazelcast as Spring cache provider, you should just define a
com.hazelcast.spring.cache.HazelcastCacheManager bean and register it as Spring cache manager.

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="hazelcast">
 ...
</hz:hazelcast>

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="instance"/>
</bean>

For more info see Spring Cache Abstraction [http://static.springsource.org/spring/docs/3.1.x/spring-framework-
reference/html/cache.html].

16.4. Hibernate 2nd Level Cache Config
If you are using Hibernate with Hazelcast as 2nd level cache provider, you can easily create RegionFactory instances
within Spring configuration (by Spring version 3.1). That way it is possible to use same HazelcastInstance as
Hibernate L2 cache instance.

<hz:hibernate-region-factory id="regionFactory" instance-ref="instance" />
...
<bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean" scope="singleton">
 <property name="dataSource" ref="dataSource"/>
 <property name="cacheRegionFactory" ref="regionFactory" />
 ...
</bean>

16.5. Spring Data - JPA
Hazelcast supports JPA persistence integrated with Spring Data-JPA [http://www.springsource.org/spring-data/jpa]
module. Your POJOs are mapped and persisted to your relational database. To use JPA persistence first you should create
a Repository interface extending CrudRepository class with object type that you want to persist..

package com.hazelcast.jpa.repository;

import com.hazelcast.jpa.Product;
import org.springframework.data.repository.CrudRepository;

public interface ProductRepository extends CrudRepository<Product, Long> {

}

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
http://www.springsource.org/spring-data/jpa
http://www.springsource.org/spring-data/jpa

Spring Integration

89

Then you should add your data source and repository definition to you Spring configuration,

<jpa:repositories
 base-package="com.hazelcast.jpa.repository" />

 <bean class="com.hazelcast.jpa.SpringJPAMapStore" id="jpamapstore">
 <property name="crudRepository" ref="productRepository" />
 </bean>

 <bean class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" id="dataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/YOUR_DB"/>
 <property name="username" value="YOUR_USERNAME"/>
 <property name="password" value="YOUR_PASSWORD"/>
 </bean>

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="jpaVendorAdapter">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">
 <property name="generateDdl" value="true" />
 <property name="database" value="MYSQL" />
 </bean>
 </property>
 <property name="persistenceUnitName" value="jpa.sample" />
 </bean>

 <bean class="org.springframework.orm.jpa.JpaTransactionManager"
 id="transactionManager">
 <property name="entityManagerFactory"
 ref="entityManagerFactory" />
 <property name="jpaDialect">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaDialect" />
 </property>
 </bean>

In the example configuration above, Hibernate and MYSQL is configured, you change them according your ORM and
database selection. Also you should define your persistence unit with persistence.xml under META-INF directory.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="jpa.sample" />
</persistence>

By default, the key is expected to be the same with id of the JPA object. You can change this behaviour and customize
MapStore implementation extending SpringJPAMapStore class. For more info see Spring Data JPA Reference [http://
static.springsource.org/spring-data/data-jpa/docs/current/reference/html/].

16.6. Spring Data - MongoDB

With version 2.1, Hazelcast will support MongoDB persistence integrated with Spring Data-MongoDB [http://
www.springsource.org/spring-data/mongodb] module. Spring MongoDB module maps your objects to equivalent
MongoDB objects. To persist your objects into MongoDB you should define MongoDB mapstore in your Spring
configuration as follows:

http://static.springsource.org/spring-data/data-jpa/docs/current/reference/html/
http://static.springsource.org/spring-data/data-jpa/docs/current/reference/html/
http://static.springsource.org/spring-data/data-jpa/docs/current/reference/html/
http://www.springsource.org/spring-data/mongodb
http://www.springsource.org/spring-data/mongodb
http://www.springsource.org/spring-data/mongodb

Spring Integration

90

<mongo:mongo id="mongo" host="localhost" port="27017"/>

<bean id="mongoTemplate"
 class="org.springframework.data.mongodb.core.MongoTemplate">
 <constructor-arg ref="mongo"/>
 <constructor-arg name="databaseName" value="test"/>
</bean>

<bean class="com.hazelcast.spring.mongodb.MongoMapStore" id="mongomapstore">
 <property name="mongoTemplate" ref="mongoTemplate" />
</bean>

Then you can set this as mapstore for maps that you want to persist into MongoDB.

<hz:map name="user">
 <hz:map-store enabled="true" implementation="mongomapstore"
 write-delay-seconds="0">
 </hz:map-store>
</hz:map>

By default, the key is set as id of the MongoDB object. You can override MongoMapStore class for you custom needs.
For more info see Spring Data MongoDB Reference [http://static.springsource.org/spring-data/data-mongodb/docs/
current/reference/html/].

http://static.springsource.org/spring-data/data-mongodb/docs/current/reference/html/
http://static.springsource.org/spring-data/data-mongodb/docs/current/reference/html/
http://static.springsource.org/spring-data/data-mongodb/docs/current/reference/html/

91

Chapter 17. Clients
There are currently three ways to connect to a running Hazelcast cluster:

1. Native Clients

2. Memcache Clients

3. REST Client

17.1. Native Client

Native Client enables you to do almost all Hazelcast operations without being a member of the cluster. It connects to one
of the cluster members and delegates all cluster wide operations to it or connects to all of them and delegate operations
smartly. When the relied cluster member dies, client will transparently switch to another live member.

There can be hundreds, even thousands of clients connected to the cluster. But by default there is 40 threads on server
side that will handle all the requests. You may want to increase hazelcast.executor.client.thread.count property for better
performance.

Imagine a trading application where all the trading data stored and managed in a 10 node Hazelcast cluster. Swing/Web
applications at traders' desktops can use Native Java Client to access and modify the data in the Hazelcast cluster.

Currently Hazelcast has Native Java and C# Client available. C# Client implementation has not yet finished as of version
3.

17.1.1. Java Client

You can do almost all hazelcast operations with Java Client. It already implements the same interface. You must include
hazelcast-client.jar into your classpath.

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.client.HazelcastClient;

import java.util.Map;
import java.util.Collection;

ClientConfig clientConfig = new ClientConfig();
clientConfig.getGroupConfig().setName("dev").setPassword("dev-pass");
clientConfig.addAddress("10.90.0.1", "10.90.0.2:5702");

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
//All cluster operations that you can do with ordinary HazelcastInstance
Map<String, Customer> mapCustomers = client.getMap("customers");
mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));
mapCustomers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = mapCustomers.values();
for (Customer customer : colCustomers) {
 // process customer
}

17.1.2. CSharp Client (Enterprise Extensions Only)

Not yet implemented as of version 3

17.2. Memcache Client

A Memcache client written in any language can talk directly to Hazelcast cluster. No additional configuration is required.
Here is an example: Let's say your cluster's members are:

Clients

92

Members [5] {
 Member [10.20.17.1:5701]
 Member [10.20.17.2:5701]
 Member [10.20.17.4:5701]
 Member [10.20.17.3:5701]
 Member [10.20.17.5:5701]
 }

And you have a PHP application that uses PHP Memcache client to cache things in Hazelcast. All you need to do is
have your PHP memcache client connect to one of these members. It doesn't matter which member the client connects to
because Hazelcast cluster looks as one giant machine (Single System Image). PHP client code sample:

<?php
 $memcache = new Memcache;
 $memcache->connect('10.20.17.1', 5701) or die ("Could not connect");
 $memcache->set('key1','value1',0,3600);
 $get_result = $memcache->get('key1'); //retrieve your data
 var_dump($get_result); //show it
?>

Notice that memcache client is connecting to 10.20.17.1 and using port5701. Java client code sample with
SpyMemcached client:

MemcachedClient client = new MemcachedClient(AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("key1", 3600, "value1");
System.out.println(client.get("key1"));

If you want your data to be stored in different maps(e.g to utilize per map configuration), you can do that with a map
name prefix as following:

MemcachedClient client = new MemcachedClient(AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("map1:key1", 3600, "value1"); // store to *hz_memcache_map1
client.set("map2:key1", 3600, "value1"); // store to hz_memcache_map2
System.out.println(client.get("key1")); //get from hz_memcache_map1
System.out.println(client.get("key2")); //get from hz_memcache_map2

hz_memcache prefix is to separate memcache maps from hazelcast maps.

An entry written with a memcache client can be read by another memcache client written in another language.

17.3. Rest Client

Let's say your cluster's members are:

Members [5] {
 Member [10.20.17.1:5701]
 Member [10.20.17.2:5701]
 Member [10.20.17.4:5701]
 Member [10.20.17.3:5701]
 Member [10.20.17.5:5701]
 }

And you have a distributed map named 'stocks'. You can put a new key1/value1 entry into this map by issuing
HTTP POST call to http://10.20.17.1:5701/hazelcast/rest/maps/stocks/key1 URL. Your
http post call's content body should contain the value (value1). You can retrieve this entry via HTTP GET call to
http://10.20.17.1:5701/hazelcast/rest/maps/stocks/key1. You can also retrieve this entry from
another member such as http://10.20.17.3:5701/hazelcast/rest/maps/stocks/key1.

RESTful access is provided through any member of your cluster. So you can even put an HTTP load-balancer in-front of
your cluster members for load-balancing and fault-tolerance.

Now go ahead and install a REST plugin for your browser and explore further.

Clients

93

Hazelcast also stores the mime-type of your POST request if it contains any. So if, for example, you post binary of an
image file and set the mime-type of the HTTP POST request to image/jpeg then this mime-type will be part of the
response of your HTTP GET request for that entry.

Let's say you also have a task queue named 'tasks'. You can offer a new item into the queue via HTTP POST and take and
item from the queue via HTTP DELETE.

HTTP POST http://10.20.17.1:5701/hazelcast/rest/queues/tasks <CONTENT> means

Hazelcast.getQueue("tasks").offer(<CONTENT>);

and HTTP DELETE http://10.20.17.1:5701/hazelcast/rest/queues/tasks/3 means

Hazelcast.getQueue("tasks").poll(3, SECONDS);

Note that you will have to handle the failures on REST polls as there is no transactional guarantee.

94

Chapter 18. Management Center

18.1. Introduction

Hazelcast Management Center enables you to monitor and manage your servers running hazelcast. With Management
Center, in addition to monitoring overall state of your clusters, you can also analyze and browse your data structures in
details. You can also update map configurations and take thread dump from nodes. With its scripting module, you can run
scritps (JavaScript, Groovy etc.) on your servers. Version 2.0 is a web based tool so you can deploy it into your internal
server and serve your users.

18.1.1. Installation

It is important to understand how it actually works. Basically you will deploy mancenter-_version_.war
application into your Java web server and then tell Hazelcast nodes to talk to that web application. That means, your
Hazelcast nodes should know the URL of mancenter application before they start.

Here are the steps:

• Download the latest Hazelcast zip from hazelcast.com [http://www.hazelcast.com/downloads.jsp]

• Zip contains mancenter-_version_.war file. Deploy it to your web server (Tomcat, Jetty etc.) Let's say it is
running at http://localhost:8080/mancenter-_version_.

• Start your web server and make sure http://localhost:8080/mancenter-_version_ is up.

• Configure your Hazelcast nodes by adding the URL of your web app to your hazelcast.xml. Hazelcast nodes
will send their states to this URL.

<management-center enabled="true">http://localhost:8080/mancenter-_version_</management-center>

• Start your hazelcast cluster.

• Browse to http://localhost:8080/mancenter-_version_ and login. Initial login username/passwords
is admin/admin

Management Center creates a directory with name "mancenter" under your "user/home" directory to save data files. You
can change the data directory setting "hazelcast.mancenter.home" system property.

18.1.2. User Administration

Default credentials are for the admin user. In the Administration tab, Admin can add/remove/update users and
control user read/write permissions.

http://www.hazelcast.com/downloads.jsp
http://www.hazelcast.com/downloads.jsp

Management Center

95

18.1.3. Tool Overview

The starter page of the tool is Cluster Home. Here you can see cluster's main properties such as uptime, memory.
Also with pie chart, you can see the distribution of partitions over cluster members. You can come back to this page,
by clicking the Home icon on the top-right toolbar. On the left panel you see the Map/Queue/Topic instances in the
cluster. At the bottom-left corner, members of the cluster are listed. On top menu bar, you can change the current tab to
Scripting, Docs, userAdministration. Note that Administration tab is viewable only for admin users. Also
Scripting page is disabled for users with read-only credential.

18.2. Maps
Map instances are listed on the left panel. When you click on a map, a new tab for monitoring this map instance is opened
on the right. In this tab, you can monitor metrics also re-configure the map.

18.2.1. Monitoring Maps

In map page you can monitor instance metrics by 2 charts and 2 datatables. First data table "Memory Data Table"
gives the memory metrics distributed over members. "Throughput Data Table" gives information about the operations
performed on instance (get, put, remove) Each chart monitors a type data of the instance on cluster. You can change the
type by clicking on chart. The possible ones are: Size, Throughput, Memory, Backup Size, Backup Memory, Hits, Locked
Entries, Puts, Gets, Removes...

Management Center

96

18.2.2. Map Browser

You can open "Map Browser" tool by clicking "Browse" button on map tab page. Using map browser, you can reach
map's entries by keys. Besides its value, extra informations such as entry's cost, expiration time is provided.

 [images/mapbrowse.jpg]

18.2.3. Map Configuration

You can open "Map Configuration" tool by clicking "Config" button on map tab page. This button is disabled for users
with Read-Only permission. Using map config tool you can adjust map's setting. You can change backup count, max size,
max idle(seconds), eviction policy, cache value, read backup data, backup count of the map.

18.3. Queues
Queues is the second data structure that you can monitor in management center. You can activate the Queue Tab by
clicking the instance name listed on the left panel under queues part. The queue page consists of the charts monitoring

images/mapbrowse.jpg
images/mapbrowse.jpg

Management Center

97

data about the queue. You can change the data to be monitored by clicking on the chart. Available options are Size, Polls,
Offers.

18.4. Topics
You can monitor your topics' metrics by clicking the topic name listed on the left panel under topics part. There are two
charts which reflects live data, and a datatable lists the live data distributed among members.

18.5. Members
The current members in the cluster are listed on the bottom side of the left panel. You can monitor each member on tab
page displayed by clicking on member items.

Management Center

98

18.5.1. Monitoring

In members page there are 4 inner tab pages to monitor member's state and properties. Runtime: Runtime properties about
memory, threads are given. This data updates dynamically. Properties: System properties are displayed. Configuration:
Configuration xml initially set can be viewed here. Partitions: The partitions belongs to this member are listed.

18.5.2. Operations

Besides monitoring you can perform certain actions on members. You can take thread dump of the member and you can
perform garbage collection on the selected member.

18.6. System Logs

System logs part helps you track internal operations and detect problems. To see system logs first you should set a Log
level other than "None". In left menu there are inputs by which you can filter the displayed logs dynamically. Also you
can Export your logs and send the file to Hazelcast support team, so they can analyze and help you solving your problem.

Management Center

99

18.7. Scripting

In scripting part, you can execute your own code on your cluster. In the left part you can select members, on which the
code will be executed. Also you can select over scripting languages: Javascript, Groovy, JRuby, BeanShell. This part is
only enabled for users with read/write permissions for current cluster.

18.8. Time Travel

Time Travel mode is activated by clicking clock icon on top right toolbar. In time travel mode, the time is paused and the
full state of the cluster is displayed according the time selected on time slider. You can change time either by Prev/Next
buttons or sliding the slider. Also you can change the day by clicking calendar icon. Management center stores the states
in you local disk, while your web server is alive. So if you slide to a time when you do not have data, the reports will be
seen as empty.

18.9. Console

The console tool enables you execute commands on the cluster. You can read or write on instances but first you should set
namespace. For example if you have a map with name "mapCustomers". To get a customer with key "Jack" you should

Management Center

100

first set the namespace with command "ns mapCustomers". Then you can take the object by "m.get Jack" Here is the
command list:

Management Center

101

-- General commands
echo true|false //turns on/off echo of commands (default false)
silent true|false //turns on/off silent of command output (default false)
#<number> <command> //repeats <number> time <command>, replace $i in <command> with current iteration (0..<number-1>)
&<number> <command> //forks <number> threads to execute <command>, replace $t in <command> with current thread number (0..<number-1>
 When using #x or &x, is is advised to use silent true as well.
 When using &x with m.putmany and m.removemany, each thread will get a different share of keys unless a start key index is specified
jvm //displays info about the runtime
who //displays info about the cluster
whoami //displays info about this cluster member
ns <string> //switch the namespace for using the distributed queue/map/set/list <string> (defaults to "default"
@<file> //executes the given <file> script. Use '//' for comments in the script

-- Queue commands
q.offer <string> //adds a string object to the queue
q.poll //takes an object from the queue
q.offermany <number> [<size>] //adds indicated number of string objects to the queue ('obj<i>' or byte[<size>])
q.pollmany <number> //takes indicated number of objects from the queue
q.iterator [remove] //iterates the queue, remove if specified
q.size //size of the queue
q.clear //clears the queue

-- Set commands
s.add <string> //adds a string object to the set
s.remove <string> //removes the string object from the set
s.addmany <number> //adds indicated number of string objects to the set ('obj<i>')
s.removemany <number> //takes indicated number of objects from the set
s.iterator [remove] //iterates the set, removes if specified
s.size //size of the set
s.clear //clears the set

-- Lock commands
lock <key> //same as Hazelcast.getLock(key).lock()
tryLock <key> //same as Hazelcast.getLock(key).tryLock()
tryLock <key> <time> //same as tryLock <key> with timeout in seconds
unlock <key> //same as Hazelcast.getLock(key).unlock()

-- Map commands
m.put <key> <value> //puts an entry to the map
m.remove <key> //removes the entry of given key from the map
m.get <key> //returns the value of given key from the map
m.putmany <number> [<size>] [<index>]//puts indicated number of entries to the map ('key<i>':byte[<size>], <index>+(0..<number>)
m.removemany <number> [<index>] //removes indicated number of entries from the map ('key<i>', <index>+(0..<number>)
 When using &x with m.putmany and m.removemany, each thread will get a different share of keys unless a start key <index> is specified
m.keys //iterates the keys of the map
m.values //iterates the values of the map
m.entries //iterates the entries of the map
m.iterator [remove] //iterates the keys of the map, remove if specified
m.size //size of the map
m.clear //clears the map
m.destroy //destroys the map
m.lock <key> //locks the key
m.tryLock <key> //tries to lock the key and returns immediately
m.tryLock <key> <time> //tries to lock the key within given seconds
m.unlock <key> //unlocks the key

-- List commands:
l.add <string>
l.add <index> <string>
l.contains <string>
l.remove <string>
l.remove <index>
l.set <index> <string>
l.iterator [remove]
l.size
l.clear
-- IAtomicLong commands:
a.get
a.set <long>
a.inc
a.dec
-- Executor Service commands:
execute <echo-input> //executes an echo task on random member
execute0nKey <echo-input> <key> //executes an echo task on the member that owns the given key
execute0nMember <echo-input> <key> //executes an echo task on the member with given index
execute0nMembers <echo-input> //executes an echo task on all of the members

Management Center

102

103

Chapter 19. Miscellaneous

19.1. Common Gotchas
Hazelcast is the distributed implementation of several structures that exist in Java. Most of the time it behaves as you
expect. However there are some design choices in Hazelcast that violate some contracts. This page will list those
violations.

1. equals() and hashCode() methods for the objects stored in Hazelcast

When you store a key, value in a distributed Map, Hazelcast serializes the key and value and stores the byte array
version of them in local ConcurrentHashMaps. And this ConcurrentHashMap uses the equals and hashCode methods
of byte array version of your key. So it does not take into account the actual equals and hashCode implementations of
your objects. So it is important that you choose your keys in a proper way. Implementing the equals and hashCode is
not enough, it is also important that the object is always serialized into the same byte array. All primitive types, like;
String, Long, Integer and etc. are good candidates for keys to use in Hazelcast. An unsorted Set is an example of a very
bad candidate because Java Serialization may serialize the same unsorted set in two different byte arrays.

Note that the distributed Set and List stores its entries as the keys in a distributed Map. So the notes above apply to the
objects you store in Set and List.

2. Hazelcast always return a clone copy of a value. Modifying the returned value does not change the actual value in the
map (or multimap or list or set). You should put modified value back to make changes visible to all nodes.

V value = map.get(key);
value.updateSomeProperty();
map.put(key, value);

If cache-value is true (default is true), Hazelcast caches that returned value for fast access in local node.
Modifications done to this cached value without putting it back to map will be visible to only local node, successive
get calls will return the same cached value. To reflect modifications to distributed map, you should put modified
value back into map.

3. Collections which return values of methods such as IMap.keySet, IMap.values, IMap.entrySet,
MultiMap.get, MultiMap.remove, IMap.keySet, IMap.values, contain cloned values. These collections
are NOT backup by related Hazelcast objects. So changes to the these are NOT reflected in the originals, and vice-
versa.

4. Most of the Hazelcast operations throw an RuntimeInterruptedException (which is unchecked
version of InterruptedException) if a user thread is interrupted while waiting a response. Hazelcast uses
RuntimeInterruptedException to pass InterruptedException up through interfaces that don't have InterruptedException
in their signatures. Users should be able to catch and handle RuntimeInterruptedException in such cases as if
their threads are interrupted on a blocking operation.

5. Some of Hazelcast operations can throw ConcurrentModificationException under transaction
while trying to acquire a resource, although operation signatures don't define such an exception. Exception
is thrown if resource can not be acquired in a specific time. Users should be able to catch and handle
ConcurrentModificationException while they are using Hazelcast transactions.

19.2. Testing Cluster
Hazelcast allows you to create more than one member on the same JVM. Each member is called HazelcastInstance
and each will have its own configuration, socket and threads, so you can treat them as totally separate members. This
enables us to write and run cluster unit tests on single JVM. As you can use this feature for creating separate members
different applications running on the same JVM (imagine running multiple webapps on the same JVM), you can also use
this feature for testing Hazelcast cluster.

Let's say you want to test if two members have the same size of a map.

Miscellaneous

104

@Test
public void testTwoMemberMapSizes() {
 // start the first member
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance(null);
 // get the map and put 1000 entries
 Map map1 = h1.getMap("testmap");
 for (int i = 0; i < 1000; i++) {
 map1.put(i, "value" + i);
 }
 // check the map size
 assertEquals(1000, map1.size());
 // start the second member
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance(null);
 // get the same map from the second member
 Map map2 = h2.getMap("testmap");
 // check the size of map2
 assertEquals(1000, map2.size());
 // check the size of map1 again
 assertEquals(1000, map1.size());
}

In the test above, everything happened in the same thread. When developing multi-threaded test, coordination of
the thread executions has to be carefully handled. Usage of CountDownLatch for thread coordination is highly
recommended. You can certainly use other things. Here is an example where we need to listen for messages and make
sure that we got these messages:

@Test
public void testTopic() {
 // start two member cluster
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance(null);
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance(null);
 String topicName = "TestMessages";
 // get a topic from the first member and add a messageListener
 ITopic<String> topic1 = h1.getTopic(topicName);
 final CountDownLatch latch1 = new CountDownLatch(1);
 topic1.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch1.countDown();
 }
 });
 // get a topic from the second member and add a messageListener
 ITopic<String> topic2 = h2.getTopic(topicName);
 final CountDownLatch latch2 = new CountDownLatch(2);
 topic2.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch2.countDown();
 }
 });
 // publish the first message, both should receive this
 topic1.publish("Test1");
 // shutdown the first member
 h1.shutdown();
 // publish the second message, second member's topic should receive this
 topic2.publish("Test1");
 try {
 // assert that the first member's topic got the message
 assertTrue(latch1.await(5, TimeUnit.SECONDS));
 // assert that the second members' topic got two messages
 assertTrue(latch2.await(5, TimeUnit.SECONDS));
 } catch (InterruptedException ignored) {
 }
}

Also remember to call Hazelcast.shutdownAll() after each test case to make sure that there is no other running
member left from the previous tests.

Miscellaneous

105

@After
public void cleanup() throws Exception {
 Hazelcast.shutdownAll();
}

Need more info? Check out existing tests. [https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/test/java/com/
hazelcast/cluster]

19.3. Planned Features

Random order of planned features.

• Native C++ Client

• Ready-to-go Hazelcast Cache Server Image for Amazon EC2

• Symmetric Encryption for Java Client

• Distributed java.util.concurrent.DelayQueue implementation.

• Distributed Tree implementation.

• Distributed Tuple implementation.

• Built-in file based storage.

https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/test/java/com/hazelcast/cluster
https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/test/java/com/hazelcast/cluster
https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/test/java/com/hazelcast/cluster

	In-Memory Data Grid - Hazelcast | Documentation
	Table of Contents
	Chapter 1. Introduction
	1.1. What's new in 3.1?
	1.2. What's new in 3.0?
	1.3. Upgrading from 2.x versions
	1.4. Getting Started (Tutorial)

	Chapter 2. Distributed Data Structures
	2.1. Distributed Map
	2.1.1. Backups
	2.1.2. Eviction
	2.1.3. Persistence
	2.1.4. Query
	2.1.5. Indexing
	2.1.6. Continuous Query
	2.1.7. Entry Processor
	2.1.8. Interceptors
	2.1.9. Near Cache
	2.1.10. Entry Statistics
	2.1.11. In Memory Format

	2.2. Distributed Queue
	2.2.1. Persistence

	2.3. Distributed MultiMap
	2.4. Distributed Topic
	2.5. Distributed Set
	2.6. Distributed List
	2.7. Distributed Lock
	2.8. Distributed Events

	Chapter 3. Serialization
	3.1. Data Serializable
	3.2. Portable Serialization
	3.3. Custom Serialization

	Chapter 4. Elastic Memory (Enterprise Extensions Only)
	Chapter 5. Security (Enterprise Extensions Only)
	5.1. Credentials
	5.2. ClusterLoginModule
	5.3. Cluster Member Security
	5.4. Native Client Security
	5.4.1. Authentication
	5.4.2. Authorization
	5.4.3. Permissions

	Chapter 6. Data Affinity
	Chapter 7. Monitoring with JMX
	Chapter 8. Cluster Utilities
	8.1. Cluster Interface
	8.2. Cluster-wide Id Generator

	Chapter 9. Transactions
	9.1. Transaction Interface
	9.2. J2EE Integration
	9.2.1. Resource Adapter Configuration
	9.2.2. Sample Glassfish v3 Web Application Configuration
	9.2.3. Sample JBoss Web Application Configuration

	Chapter 10. Distributed Executor Service
	10.1. Distributed Execution
	10.2. Execution Cancellation
	10.3. Execution Callback

	Chapter 11. Http Session Clustering with HazelcastWM
	Chapter 12. WAN Replication
	Chapter 13. Service Provider Interface
	Chapter 14. Configuration
	14.1. Creating Separate Clusters
	14.2. Network Configuration
	14.2.1. Configuring TCP/IP Cluster
	14.2.2. Specifying Network Interfaces
	14.2.3. EC2 Auto Discovery
	14.2.4. Network Partitioning (Split-Brain Syndrome)
	14.2.5. SSL
	14.2.6. Encryption
	14.2.7. Socket Interceptor
	14.2.8. IPv6 Support
	14.2.9. Restricting Outbound Ports

	14.3. Partition Group Configuration
	14.4. Listener Configurations
	14.5. Wildcard Configuration
	14.6. Advanced Configuration Properties
	14.7. Logging Configuration
	14.8. Setting License Key (Enterprise Extensions Only)

	Chapter 15. Hibernate Second Level Cache
	Chapter 16. Spring Integration
	16.1. Configuration
	16.2. Spring Managed Context
	16.3. Spring Cache
	16.4. Hibernate 2nd Level Cache Config
	16.5. Spring Data - JPA
	16.6. Spring Data - MongoDB

	Chapter 17. Clients
	17.1. Native Client
	17.1.1. Java Client
	17.1.2. CSharp Client (Enterprise Extensions Only)

	17.2. Memcache Client
	17.3. Rest Client

	Chapter 18. Management Center
	18.1. Introduction
	18.1.1. Installation
	18.1.2. User Administration
	18.1.3. Tool Overview

	18.2. Maps
	18.2.1. Monitoring Maps
	18.2.2. Map Browser
	18.2.3. Map Configuration

	18.3. Queues
	18.4. Topics
	18.5. Members
	18.5.1. Monitoring
	18.5.2. Operations

	18.6. System Logs
	18.7. Scripting
	18.8. Time Travel
	18.9. Console

	Chapter 19. Miscellaneous
	19.1. Common Gotchas
	19.2. Testing Cluster
	19.3. Planned Features

