Hazelcast IMDG 3.12.6 Reference Manual

Hazelcast IMDG Reference Manual
Preface

Hazelcast IMDG Editions
Hazelcast IMDG Architecture
Hazelcast IMDG Plugins
Licensing

Trademarks

Customer Support

Release Notes

Contributing to Hazelcast IMDG
Partners

Phone Home

1. Document Revision History
2. Getting Started

2.1. Installation
2.1.1. Installing Hazelcast IMDG
2.1.2. Installing Hazelcast IMDG Enterprise
2.1.3. Setting the License Key
License Key Format
2.1.4. License Information
JMX
REST
Logs
2.2. Supported Java Virtual Machines
2.3. Running in Modular Java
2.4. Starting the Member and Client
2.5. Using the Scripts In The Package
2.6. Deploying using Hazelcast Cloud - BETA
2.7. Deploying On Amazon EC2
2.8. Deploying On Microsoft Azure
2.9. Deploying On Pivotal Cloud Foundry
2.10. Deploying using Docker

3. Hazelcast Overview

3.1. Sharding in Hazelcast
3.2. Hazelcast Topology
3.3. Why Hazelcast?
3.4. Data Partitioning
3.4.1. How the Data is Partitioned

© 00 N N9 N9 0 U1 W w W ww o w NN R R R e

NN NN N R B R R R Rl | |, |l |l | ) s s
O RN O O ©W W W 0 00 00 1 Ul b W N O o o



3.4.2. Partition Table
3.4.3. Repartitioning
3.5. Use Cases

3.6. Resources

4. Understanding Configuration

4.1. Configuring Declaratively
4.1.1. Composing Declarative Configuration
4.1.2. Configuring Declaratively with YAML
4.2. Configuring Programmatically
4.3. Configuring with System Properties
4.4. Configuring within Spring Context
4.5. Dynamically Adding Data Structure Configuration on a Cluster
4.5.1. Handling Configuration Conflicts
4.5.2. Dynamic Data Structure Configuration and User Customizations
4.6. Checking Configuration
4.7. Configuration Pattern Matcher
4.8. Using Wildcards
4.9. Using Variables
4.10. Variable Replacers
4.10.1. EncryptionReplacer
4.10.2. PropertyReplacer

4.10.3. Implementing Custom Replacers

5. Setting Up Clusters

5.1. Discovery Mechanisms
5.1.1. TCP
5.1.2. Multicast
5.1.3. AWS Cloud Discovery
5.1.4. GCP Cloud Discovery
5.1.5. Apache jclouds® Cloud Discovery
5.1.6. Azure Cloud Discovery
5.1.7. Zookeeper Cloud Discovery
5.1.8. Consul Cloud Discovery
5.1.9. etcd Cloud Discovery
5.1.10. Hazelcast for PCF
5.1.11. Hazelcast OpenShift Integration
5.1.12. Eureka Cloud Discovery
5.1.13. Heroku Cloud Discovery
5.1.14. Kubernetes Cloud Discovery
5.2. Discovering Members by TCP
5.3. Discovering Members by Multicast

5.4. Discovering Native Clients

26
26
26
27
27
28
30
34
37
38
39
40
41
42
42
43
44
45
46
48
49
50
50
50
50
50
51
51
51
51
51
51
51
52
52
52
52
52
53
54
35



5.5. Creating Cluster Groups
5.5.1. Cluster Groups before Hazelcast 3.8.2
5.6. Deploying User Codes on the Member
5.6.1. Configuring User Code Deployment
5.6.2. Example for Filtering Members
5.7. Deploying User Codes on Clients
5.7.1. Configuring Client User Code Deployment
Important to Know
5.7.2. Adding User Library to CLASSPATH
5.8. Partition Group Configuration
5.8.1. Grouping Types
HOST_AWARE
CUSTOM
PER_MEMBER
ZONE_AWARE
SPI
5.9. Logging Configuration
5.9.1. Example Log4j2 Configuration
5.9.2. Example Log4j Configuration
5.10. Other Network Configurations
5.10.1. Public Address
5.10.2. Port
5.10.3. Outbound Ports
5.10.4. Reuse Address
5.10.5. Join
multicast element
tcp-ip element
aws element
discovery-strategies element
5.10.6. AWSClient Configuration
5.10.7. Interfaces
5.10.8. IPv6 Support
5.10.9. Member Address Provider SPI
5.11. Failure Detector Configuration
5.11.1. Deadline Failure Detector
5.11.2. Phi Accrual Failure Detector
5.11.3. Ping Failure Detector
Requirements and Linux/Unix Configuration
5.12. Advanced Network Configuration
5.12.1. Setting Up Cluster Members for Advanced Network Configuration

5.12.2. Server Socket Endpoint Configuration

56
57
57
58
39
60
60
61
62
64
64
64
65
66
66
67
68
70
71
72
72
73
74
75
75
77
77
78
78
78
79
80
81
82
83
84
85
86
88
89
90



5.12.3. Setting Up REST Server Socket Endpoint Configuration
5.12.4. Setting Up WAN Endpoints Configuration
Configuring the WAN Active Side
Configuring the WAN Passive Side
5.12.5. Advanced Network Configuration FAQ
6. Rolling Member Upgrades
6.1. Terminology
6.2. Hazelcast Members Compatibility Guarantees
6.3. Rolling Upgrade Procedure
6.4. Upgrading Cluster Version
6.5. Enabling Auto-Upgrading
6.6. Network Partitions and Rolling Upgrades
6.7. Rolling Upgrade FAQ
7. Distributed Data Structures
7.1. Overview of Hazelcast Distributed Objects
7.1.1. Loading and Destroying a Distributed Object
7.1.2. Controlling Partitions
7.1.3. Common Features of all Hazelcast Data Structures
7.1.4. Example Distributed Object Code
7.2. Map
7.2.1. Getting a Map and Putting an Entry
7.2.2. Creating A Member for Map Backup
7.2.3. Backing Up Maps
Creating Sync Backups
Creating Async Backups
Enabling Backup Reads
7.2.4. Map Eviction
Understanding Map Eviction
Configuring Map Eviction
Example Eviction Configurations
Evicting Specific Entries
Evicting All Entries
Forced Eviction
Custom Eviction Policy
7.2.5. Setting In-Memory Format
7.2.6. Using High-Density Memory Store with Map
Required configuration changes when using NATIVE
7.2.7. Metadata Policy
7.2.8. Loading and Storing Persistent Data
Using Read-Through Persistence
Setting Write-Through Persistence

92
93
93
94
95
96
96
96
96
97
98
99
99
100
101
102
103
104
104
104
105
106
107
108
108
109
109
109
110
113
114
114
115
116
117
118
119
120
121
123
123



Setting Write-Behind Persistence 123

Storing Entries to Multiple Maps 125
Initializing Map on Startup 126
Loading Keys Incrementally 127
Forcing All Keys To Be Loaded 127
Post-Processing Objects in Map Store 128
Accessing a Database Using Properties 128
MapStore and MapLoader Methods Triggered by IMap Operations 129
7.2.9. Creating Near Cache for Map 131
7.2.10. Locking Maps 131
Pessimistic Locking 132
Optimistic Locking 132
Pessimistic vs. Optimistic Locking 134
Solving the ABA Problem 134
Lock Split-Brain Protection with Pessimistic Locking 134
7.2.11. Accessing Map and Entry Statistics 135
7.2.12. Map Listener 136
7.2.13. Listening to Map Entries with Predicates 136
7.2.14. Removing Map Entries in Bulk with Predicates 139
7.2.15. Adding Interceptors 139
7.2.16. Preventing Out of Memory Exceptions 141
Setting Query Result Size Limit 142
Local Pre-check 142
Scope of Result Size Limit 142
Configuring Query Result Size 143
7.3. Queue 143
7.3.1. Getting a Queue and Putting Items 143
7.3.2. Creating an Example Queue 144
Putting Items on the Queue 144
Taking Items off the Queue 145
Balancing the Queue Operations 145
ItemIDs When Offering Items 146
7.3.3. Setting a Bounded Queue 146
7.3.4. Queueing with Persistent Datastore 147
7.3.5. Split-Brain Protection for Queue 149
7.3.6. Configuring Queue 150
7.4. MultiMap 152
7.4.1. Getting a MultiMap and Putting an Entry 152
7.4.2. Configuring MultiMap 153
7.4.3. Split-Brain Protection for MultiMap and TransactionalMultiMap 154

7.5. Set 155



7.5.1. Getting a Set and Putting Items
7.5.2. Configuring Set

7.5.3. Split-Brain Protection for ISet and TransactionalSet
7.6. List

7.6.1. Getting a List and Putting Items
7.6.2. Configuring List

7.6.3. Split-Brain Protection for IList and TransactionalList
7.7. Ringbuffer

7.7.1. Getting a Ringbuffer and Reading Items
7.7.2. Adding Items to a Ringbuffer

7.7.3. 1Queue vs. Ringbuffer

7.7.4. Configuring Ringbuffer Capacity

7.7.5. Backing Up Ringbuffer

7.7.6. Configuring Ringbuffer Time-To-Live

7.7.7. Setting Ringbuffer Overflow Policy

7.7.8. Ringbuffer with Persistent Datastore

7.7.9. Configuring Ringbuffer In-Memory Format
7.7.10. Configuring Split-Brain Protection for Ringbuffer
7.7.11. Adding Batched Items

7.7.12. Reading Batched Items

7.7.13. Using Async Methods

7.7.14. Ringbuffer Configuration Examples

7.8. Topic

7.8.1. Getting a Topic and Publishing Messages
7.8.2. Getting Topic Statistics
7.8.3. Understanding Topic Behavior
Ordering Messages as Published
Ordering Messages for Members
Keeping Generated and Published Order the Same
7.8.4. Configuring Topic

7.9. Reliable Topic

7.9.1. Slow Consumers

7.9.2. Configuring Reliable Topic

7.10. Lock

7.10.1. Using Try-Catch Blocks with Locks
7.10.2. Releasing Locks with tryLock Timeout
7.10.3. Understanding Lock Behavior

7.11. IAtomicLong

7.11.1. Sending Functions to IAtomicLong
7.11.2. Executing Functions on IAtomicLong

7.11.3. Reasons to Use Functions with IAtomicLong

156
156
157
158
158
159
160
161
161
162
162
162
163
163
163
164
166
166
167
168
169
170
171
171
172
172
173
173
174
174
175
177
177
178
179
179
179
180
180
181
182



7.12. ISemaphore
7.12.1. Controlling Thread Counts with Permits
7.12.2. Example Semaphore Code
7.13. IAtomicReference
7.13.1. Sending Functions to IAtomicReference
7.13.2. Using IAtomicReference
7.14. ICountDownLatch
7.14.1. Gate-Keeping Concurrent Activities
7.14.2. Recovering From Failure
7.14.3. Using ICountDownLatch
7.15. PN Counter
7.15.1. Configuring PN Counter
7.15.2. Configuring the CRDT Replication Mechanism
7.16. IdGenerator
7.16.1. Generating Cluster-Wide IDs
7.16.2. Unique IDs and Duplicate IDs
7.16.3. Migrating to FlakeIdGenerator
7.17. Flake ID Generator
7.17.1. Generating Cluster-Wide IDs
7.17.2. Performance
7.17.3. Example
7.17.4. Node ID Assignment
Node ID Overflow
7.17.5. Configuring Flake ID Generator
7.18. Replicated Map
7.18.1. Replicating Instead of Partitioning
7.18.2. Example Replicated Map Code
7.18.3. Considerations for Replicated Map
7.18.4. Configuration Design for Replicated Map
7.18.5. Configuring Replicated Map
In-Memory Format on Replicated Map
7.18.6. Using EntryListener on Replicated Map
Difference in EntryListener on Replicated Map
Example of Replicated Map EntryListener
7.18.7. Split-Brain Protection for Replicated Map

7.19. Cardinality Estimator Service

7.19.1. Split-Brain Protection for Cardinality Estimator

7.20. Event Journal

7.20.1. Interaction with Evictions and Expiration for IMap

7.20.2. Configuring Event Journal Capacity

7.20.3. Event Journal Partitioning

182
182
182
183
184
184
185
185
186
186
186
187
188
189
189
190
191
191
191
191
191
192
192
192
193
194
194
195
196
196
197
198
198
198
199
200
201
203
203
203
205



7.20.4. Configuring Event Journal time-to-live
8. Distributed Events
8.1. Cluster Events
8.1.1. Listening for Member Events
Registering Membership Listeners
8.1.2. Listening for Distributed Object Events
Registering Distributed Object Listeners
8.1.3. Listening for Migration Events
Registering Migration Listeners
8.1.4. Listening for Partition Lost Events
Writing a Partition Lost Listener Class
Registering Partition Lost Listeners
8.1.5. Listening for Lifecycle Events
Registering Lifecycle Listeners
8.1.6. Listening for Clients
8.2. Distributed Object Events
8.2.1. Listening for Map Events
Catching a Map Event
8.2.2. Listening for Lost Map Partitions
Registering Map Listeners
Map Listener Attributes
8.2.3. Listening for MultiMap Events
Registering MultiMap Listeners
MultiMap Listener Attributes
8.2.4. Listening for Item Events
Registering Item Listeners
Item Listener Attributes
8.2.5. Listening for Topic Messages
Registering Message Listeners
8.3. Event Listeners for Hazelcast Clients
8.4. Global Event Configuration
9. Hazelcast Jet
9.1. Overview
9.1.1. How You Can Use It
9.1.2. Where You Can Use It
9.1.3. Data Processing Styles
9.2. Relationship with Hazelcast IMDG
9.3. Hazelcast IMDG Computing vs. Hazelcast Jet
10. Distributed Computing
10.1. Executor Service

10.1.1. Implementing a Callable Task

205
205
206
206
207
208
209
209
210
211
211
212
212
213
214
215
215
215
217
218
219
219
220
221
221
222
223
223
224
225
225
225
226
226
226
227
227
228
228
228
229



Executing a Callable Task
10.1.2. Implementing a Runnable Task
Executing a Runnable Task
10.1.3. Scaling The Executor Service
10.1.4. Executing Code in the Cluster
10.1.5. Canceling an Executing Task
Example Task to Cancel
Example Method to Execute and Cancel the Task
10.1.6. Callback When Task Completes
Example Task to Callback
Example Method to Callback the Task
10.1.7. Selecting Members for Task Execution
10.1.8. Configuring Executor Service

10.1.9. Split-Brain Protection for IExecutorService

10.2. Durable Executor Service

10.2.1. Configuring Durable Executor Service

10.2.2. Split-Brain Protection for Durable Executor Service

10.3. Scheduled Executor Service

10.3.1. Configuring Scheduled Executor Service
10.3.2. Examples

10.3.3. Split-Brain Protection for IScheduled Executor Service

10.4. Entry Processor

10.4.1. Performing Fast In-Memory Map Operations
Using Indexes
Using OBJECT In-Memory Format
Processing Entries
Respecting Locks on Single Keys
Processing Backup Entries
10.4.2. Creating an Entry Processor
10.4.3. Abstract Entry Processor
10.4.4. Entry Processor Performance Optimizations
Offloadable Entry Processor
ReadOnly Entry Processor
ReadOnly and Offloadable Entry Processor

11. Distributed Query
11.1. How Distributed Query Works

11.1.1. Employee Map Query Example
11.1.2. Querying with Criteria API
Predicates Class Operators
Combining Predicates with AND, OR, NOT
Simplifying with PredicateBuilder

231
231
232
232
233
234
234
235
236
236
236
237
238
238
239
240
241
242
243
244
245
246
247
247
247
247
248
248
248
249
250
250
251
252
253
253
253
254
255
255
256



11.1.3. Querying with SQL 256

Supported SQL Syntax 256
Querying Entry Keys with Predicates 257
11.1.4. Querying JSON Strings 258
Metadata Creation for JSON Querying 259
11.1.5. Filtering with Paging Predicates 260
11.1.6. Filtering with Partition Predicate 261
11.1.7. Indexing Queries 261
Indexing Ranged Queries 262
Configuring IMap Indexes 262
Composite Indexes 263
Bitmap Indexes 264
Copying Indexes 267
Indexing Attributes with ValueExtractor 268
Using "this" as an Attribute 268
11.1.8. Configuring Query Thread Pool 268
Query Requests from Clients 269
11.2. Querying in Collections and Arrays 269
11.2.1. Indexing in Collections and Arrays 271
11.2.2. Corner cases 271
11.3. Custom Attributes 272
11.3.1. Implementing a ValueExtractor 272
ValueExtractor with Portable Serialization 273
Returning Multiple Values from a Single Extraction 273
11.3.2. Extraction Arguments 273
11.3.3. Configuring a Custom Attribute Programmatically 274
11.3.4. Configuring a Custom Attribute Declaratively 274
11.3.5. Indexing Custom Attributes 275
11.4. MapReduce 275
11.4.1. Understanding MapReduce 276
MapReduce Workflow Example 276
MapReduce Phases 277
Additional MapReduce Resources 278
11.4.2. Using the MapReduce API 279
Retrieving a JobTracker Instance 279
Creating a Job 280
Creating Key-Value Input Sources with KeyValueSource 281
Implementing Mapping Logic with Mapper 282
Minimizing Cluster Traffic with Combiner 283
Doing Algorithm Work with Reducer 284

Modifying the Result with Collator 285



Preselecting Keys with KeyPredicate
Job Monitoring with TrackableJob
Configuring JobTracker

11.4.3. Hazelcast MapReduce Architecture
Member Interoperation Example
Internal MapReduce Packages
MapReduce Job Walk-Through

11.4.4. MapReduce Deprecation
Motivation
Built-In Aggregations
Distributed Computation with Jet
Jet Compared with New Aggregations

11.5. Aggregators
11.5.1. Aggregations Basics

Aggregations and Map Interfaces

Aggregations and the MapReduce Framework

11.5.2. Using the Aggregations API
Supplier
Defining the Aggregation Operation

Extracting Attribute Values with PropertyExtractor

Configuring Aggregations

11.5.3. Aggregations Examples
Setting up the Data Model
Average Aggregation Example
Map Join Example
Grouping Example
Simple Count Example

11.5.4. Implementing Aggregations
Aggregation Methods

11.6. Fast-Aggregations
11.6.1. Aggregator API

11.6.2. Fast-Aggregations and Map Interfaces

11.6.3. Example Implementation

11.6.4. Built-In Aggregations

11.6.5. Configuration Options
11.7. Projections

11.7.1. Projection API

Projections and Map Interfaces
11.7.2. Example implementation
11.7.3. Built-In Projections

11.8. Continuous Query Cache

286
286
287
288
288
290
290
291
291
292
292
297
297
297
298
298
298
298
301
302
303
304
304
306
306
307
308
308
309
309
309
310
310
311
312
312
312
312
313
313
314



11.8.1. Keeping Query Results Local and Ready

11.8.2. Accessing Continuous Query Cache from Member

11.8.3. Accessing Continuous Query Cache from Client Side

11.8.4. Features of Continuous Query Cache
11.8.5. Configuring Continuous Query Cache
12. CP Subsystem
12.1. CP Subsystem Discovery
12.2. CP Sessions
12.3. FencedLock
12.4. Configuration
12.4.1. CP Subsystem Configuration
12.4.2. FencedLock Configuration
12.4.3. Semaphore Configuration
12.4.4. Raft Algorithm Configuration
12.5. CP Subsystem Management
12.5.1. CP Subsystem Management APIs
12.5.2. Session Management API
13. Transactions
13.1. Creating a Transaction Interface
13.1.1. Queue/Set/List vs. Map/Multimap
13.1.2. ONE_PHASE vs. TWO_PHASE
13.2. Providing XA Transactions
14. Hazelcast JCache
14.1. JCache Overview
14.1.1. Supported JCache Versions
14.1.2. Upgrading from JCache 1.1.0 to 1.1.1
14.1.3. Upgrading from JCache 1.0.0 to 1.1.0
14.2. JCache Setup and Configuration
14.2.1. Setting up Your Application
Activating Hazelcast as JCache Provider
Connecting Clients to Remote Member
14.2.2. Example JCache Application
Getting the Hazelcast JCache Implementation
Setting up the JCache Entry Point
Configuring the Cache Before Creating It
Creating the Cache
get, put and getAndPut
14.2.3. Configuring for JCache
Declarative Configuration
Programmatic Configuration
14.3. JCache Providers

314
314
314
315
315
317
319
319
320
321
322
324
325
325
327
329
335
337
337
339
339
339
340
340
341
341
341
342
342
342
343
343
344
344
344
345
345
345
345
347
348



14.3.1. Configuring JCache Provider 348

14.3.2. Configuring JCache with Client Provider 349
14.3.3. Configuring JCache with Server Provider 349
14.4.JCache API 349
14.4.1. JCache API Application Example 350
Creating User Class Example 350
Creating DAO Interface Example 350
Configuring JCache Example 350
14.4.2. JCache Base Classes 352
14.4.3. Implementing Factory and FactoryBuilder 353
14.4.4. Implementing CacheLoader 353
Cache read-through 353
CacheLoader Example 354
14.4.5. CacheWriter 355
14.4.6. Implementing EntryProcessor 357
14.4.7. CacheEntryListener 358
14.4.8. ExpiryPolicy 360
14.5. JCache - Hazelcast Instance Integration 361
14.5.1. JCache and Hazelcast Instance Awareness 362
14.6. Hazelcast JCache Extension - ICache 362
14.6.1. Scoping to Join Clusters 363
Examples 363
Applying Configuration Scope 365
Binding to a Named Instance 367
Binding to an Existing Hazelcast Instance Object 369
14.6.2. Namespacing 370
14.6.3. Retrieving an ICache Instance 370
14.6.4. ICache Configuration 371
14.6.5. ICache Async Methods 372
14.6.6. Defining a Custom ExpiryPolicy 374
14.6.7. JCache Eviction 375
Eviction and Runtime 375
Cache Types 375
Configuring Eviction Policies 376
Eviction Strategy 378
Eviction Algorithm 379
14.6.8. JCache Near Cache 382
14.6.9. ICache Convenience Methods 382
14.6.10. Implementing BackupAwareEntryProcessor 382
14.6.11. ICache Partition Lost Listener 384

14.7. Testing for JCache Specification Compliance 385



15. Integrated Clustering 386

15.1. Integration with Hibernate Second Level Cache 386
15.2. Web Session Replications 386
15.3. Integration with Java EE 386
15.4. Integration with Spring 387
15.4.1. Configuring Spring 387
Enabling Spring Integration 387
Troubleshooting 387
Declaring Beans by Spring beans Namespace 388
Declaring Beans by hazelcast Namespace 388
Supported Configurations with hazelcast Namespace 389
15.4.2. Enabling SpringAware Objects 392
SpringAware Examples 392
15.4.3. Adding Caching to Spring 395
Declarative Spring Cache Configuration 396
Defining Timeouts for Cache Read Operation 396
Declarative Hazelcast JCache Based Caching Configuration 397
Annotation-Based Spring Cache Configuration 397
15.4.4. Configuring Hibernate Second Level Cache 398
15.4.5. Configuring Hazelcast Transaction Manager 399
Example Configuration for Hazelcast Transaction Manager 399
Example Transactional Method 400
15.4.6. Best Practices 400
16. Storage 401
16.1. High-Density Memory Store 401
16.1.1. Configuring High-Density Memory Store 402
16.2. Sizing Practices 404
16.3. Hot Restart Persistence 404
16.3.1. Hot Restart Persistence Overview 404
16.3.2. Hot Restart Types 405
16.3.3. Restart Process 405
Restart of a Member in Running Cluster 406
16.3.4. Force Start 406
16.3.5. Partial Start 407
16.3.6. Configuring Hot Restart 408
Global Hot Restart Configuration 408

Per Data Structure Hot Restart Configuration 410

Hot Restart Configuration Examples 410
Configuring Hot Restart Store on Intel® Optane™ DC Persistent Memory 411
16.3.7. Moving/Copying Hot Restart Data 411

16.3.8. Hot Restart Persistence Design Details 412



16.3.9. Concurrent, Incremental, Generational GC
I/0O Minimization Scheme
Cost-Benefit Factor
16.3.10. Hot Restart Performance Considerations
Performance on a Physical Server
Performance on AWS R3
16.3.11. Hot Backup
Configuring Hot Backup
Using Hot Backup
Starting the Cluster From a Hot Backup
Achieving High Consistency of Backup Data
Achieving High Performance of Backup Process
Backup Process Progress and Completion
Backup Task Interruption and Cancellation
17. Database CDC Integration using Striim Hot Cache
17.1. Introduction
17.2. Supported Versions
17.3. Logging
17.4. Full Worked Example Application
17.5. Further Resources
18. Hazelcast Clients
18.1. Java Client
18.1.1. Getting Started with Java Client
Client API
Java Client Operation Modes
Handling Failures
Using Supported Distributed Data Structures
Using Client Services
Defining Client Labels
Client Listeners
Client Transactions
Async Start and Reconnect Modes
18.1.2. Configuring Java Client
Client Network
Configuring Client Load Balancer
Configuring Client Listeners
Configuring Client Near Cache
Configuring Client Group
Configuring Client Security
Client Serialization Configuration

Configuring Executor Pool Size

412
413
413
413
414
414
415
415
416
417
418
418
419
419
420
420
421
421
422
422
422
422
423
424
424
425
426
427
429
430
430
430
431
431
442
443
443
443
444
444
444



Configuring ClassLoader
Configuring Reliable Topic on the Client Side
18.1.3. Java Client Connection Strategy
Configuring Client Connection Retry
18.1.4. Blue-Green Deployment and Disaster Recovery
Blue-Green Mechanism
Disaster Recovery Mechanism
Ordering of Clusters When Clients Try to Connect
Configuring Using CNAME
Configuring Without CNAME
18.1.5. Java Client Failure Detectors
Client Deadline Failure Detector
Client Ping Failure Detector
18.1.6. Client System Properties
18.1.7. Using High-Density Memory Store with Java Client
18.2. C++ Client
18.3. .NET Client
18.4. REST Client
18.4.1. REST Client GET/POST/DELETE Examples
Creating/Updating Entries in a Map for REST Client
Retrieving Entries from a Map for REST Client
Removing Entries from a Map for REST Client
Offering Items on a Queue for REST Client
Retrieving Items from a Queue for REST Client
Getting the size of the queue for REST Client
18.4.2. Checking the Status of the Cluster for REST Client
18.5. Memcache Client
18.5.1. Memcache Client Code Examples
18.5.2. Unsupported Operations for Memcache
18.6. Python Client
18.7. Node.js Client
18.8. Go Client
18.9. Scala
19. Serialization
19.1. Serialization Interface Types
19.2. Comparing Serialization Interfaces
19.3. Implementing Java Serializable and Externalizable
19.3.1. Implementing Java Externalizable
19.4. Implementing DataSerializable
19.4.1. Reading and Writing and DataSerializable
19.4.2. IdentifiedDataSerializable

444
444
445
446
448
448
449
449
450
452
454
454
455
458
460
461
462
462
463
463
464
464
465
465
466
466
467
467
469
469
469
469
469
469
470
471
472
473
474
474
476



getID and getFactoryld Methods

Implementing IdentifiedDataSerializable

Registering EmployeeDataSerializableFactory

19.5. Implementing Portable Serialization
19.5.1. Portable Serialization Example Code
19.5.2. Registering the Portable Factory
19.5.3. Versioning for Portable Serialization

Example Portable Versioning Scenarios

19.5.4. Ordering Consistency for writePortable

19.5.5. Null Portable Serialization
19.5.6. DistributedObject Serialization
19.6. Custom Serialization
19.6.1. Implementing StreamSerializer
StreamSerializer Example Code 1
StreamSerializer Example Code 2
Configuring StreamSerializer
19.6.2. Implementing ByteArraySerializer
Configuring ByteArraySerializer
19.7. Global Serializer
19.7.1. Example Global Serializer
19.8. Implementing HazelcastInstanceAware
19.9. Untrusted Deserialization Protection
19.10. Serialization Configuration Wrap-Up
20. Management
20.1. Getting Member Statistics
20.1.1. Map Statistics
20.1.2. Map Index Statistics
20.1.3. Near Cache Statistics
20.1.4. Multimap Statistics
20.1.5. Queue Statistics
20.1.6. Topic Statistics
20.1.7. Executor Statistics
20.2. JMX API per Member
20.3. Monitoring with JMX

20.3.1. MBean Naming for Hazelcast Data Structures

20.3.2. Connecting to JMX Agent
20.4. Using the REST Endpoint Groups
20.5. Cluster Utilities

20.5.1. Getting Member Events and Member Sets
20.5.2. Managing Cluster and Member States

Cluster States

476
476
478
478
479
481
481
482
483
484
484
484
484
485
486
487
488
488
489
489
491
492
493
495
495
495
496
498
498
499
499
500
500
508
508
509
509
512
512
513
513



Cluster Member States 515

20.5.3. Using the cluster.sh Script 515
Example Usages for cluster.sh 517
20.5.4. Using REST API for Cluster Management 519
20.5.5. Enabling Lite Members 522
Configuring Lite Members 522
Promoting Lite Members to Data Member 522
20.5.6. Defining Member Attributes 523
20.5.7. Safety Checking Cluster Members 525
Ensuring Safe State with PartitionService 525
20.6. Diagnostics 526
20.6.1. Enabling Diagnostics Logging 526
20.6.2. Diagnostics Log File 526
20.6.3. Diagnostics Plugins 527
BuildInfo 527
SystemProperties 527
ConfigProperties 528
Metrics 528
SlowOperations 528
Invocations 528
HazelcastInstance 528
SystemLog 529
StoreLatency 529
OperationHeartbeats 530
MemberHeartbeats 530
OperationThreadSamples 531
WanDiagnostics 532
20.7. Health Check and Monitoring 533
20.7.1. Health Check 534
20.7.2. Health Check Script 534
20.7.3. Health Monitor 536
20.7.4. Using Health Check on F5 BIG-IP LTM 537
Monitor Types 537
Configuration 538
20.8. Management Center 539
20.8.1. Toggle Scripting Support 539
20.9. Clustered JMX and REST via Management Center 539
21. Security 539
21.1. Enabling JAAS Security 540
21.2. Socket Interceptor 540

21.3. Security Interceptor 543



21.4. Encryption
21.5. TLS/SSL
21.5.1. TLS/SSL for Hazelcast Members
Other Property Configuration Options
21.5.2. TLS/SSL for Hazelcast Clients
21.5.3. Mutual Authentication
21.5.4. TLS/SSL Performance Improvements for Java
21.5.5. TLS/SSL for Hazelcast Management Center
21.6. Integrating OpenSSL / BoringSSL
21.6.1. Netty Libraries
21.6.2. Using BoringSSL
21.6.3. Using OpenSSL
21.6.4. Configuring Hazelcast for OpenSSL
21.6.5. Configuring Cipher Suites
21.6.6. Other Ways of Configuring Properties
21.7. Credentials
21.8. Validating Secrets Using Strength Policy
21.8.1. Using a Custom Secret Strength Policy
21.8.2. Enforcing the Secret Strength Policy
21.9. ClusterLoginModule
21.9.1. Enterprise Integration
21.10. Cluster Member Security
21.11. Native Client Security
21.11.1. Authentication
21.11.2. Authorization
21.11.3. Permissions
Handling Permissions When a New Member Joins
21.12. Java Security Debugging
21.12.1. TLS debugging
21.13. FIPS 140-2
21.13.1. Example FIPS 140-2 environment
22. Performance
22.1. Pipelining
22.2. Data Affinity
22.2.1. PartitionAware
22.2.2. PartitioningStrategy
22.3. Running on EC2
22.4. Back Pressure
22.4.1. Member Side
22.4.2. Client Side
22.5. Threading Model

543
545
545
547
548
548
550
551
551
551
552
552
553
554
5355
556
557
558
558
559
561
561
563
563
564
566
572
573
574
574
575
377
377
578
578
582
583
584
584
585
585



22.5.1.1/0O Threading
22.5.2. Event Threading
22.5.3. IExecutor Threading
22.5.4. Operation Threading
Partition-aware Operations
Non-Partition-aware Operations
Priority Operations
Operation-response and Invocation-future
Local Calls
22.6. SlowOperationDetector
22.6.1. Logging of Slow Operations
22.6.2. Purging of Slow Operation Logs
22.7. Near Cache
22.7.1. Hazelcast Data Structures with Near Cache Support
22.7.2. Configuring Near Cache
22.7.3. Near Cache Configuration Examples
Near Cache Example for IMap

Near Cache Example for JCache Clients

Example for Near Cache with High-Density Memory Store

22.7.4. Near Cache Eviction
22.7.5. Near Cache Expiration
22.7.6. Near Cache Invalidation
22.7.7. Near Cache Consistency
Eventual Consistency
Locally Initiated Changes
22.7.8. Near Cache Preloader
22.8. Caching Deserialized Values
22.8.1. Performance Anti Patterns
Using Single Member per Machine
Using Operation Threads Efficiently
Avoiding Random Changes
Creating the Right Benchmark Environment
23. Hazelcast Simulator
24. WAN
24.1. WAN Replication
24.1.1. Defining WAN Replication
Defining WAN Replication Using Static Endpoints
Defining WAN Replication Using Discovery SPI
24.1.2. WanBatchReplication Implementation
24.1.3. Configuring WAN Replication for IMap and ICache
24.1.4. Batch Size

585
586
587
587
587
588
588
589
589
589
590
590
590
591
592
595
595
597
598
599
599
600
600
600
601
601
602
602
602
603
603
603
603
603
604
604
604
607
612
613
616



24.1.5. Batch Maximum Delay
24.1.6. Response Timeout
24.1.7. Queue Capacity
24.1.8. Queue Full Behavior
24.1.9. Event Filtering API
24.1.10. Acknowledgment Types
24.1.11. Synchronizing WAN Target Cluster
24.1.12. Dynamically Adding WAN Publishers
24.1.13. WAN Replication Failure Detection and Recovery
WAN Target Endpoint List
WAN Failure Detection
WAN Endpoint Recovery
24.1.14. Tuning WAN Replication For Lower Latencies and Higher Throughput
24.1.15. WAN Replication Additional Information
24.2. Delta WAN Synchronization
24.2.1. Requirements
24.2.2. Using Delta WAN Synchronization
24.2.3. Configuring Delta WAN Synchronization
24.2.4. The Process
24.2.5. Memory Consumption
24.2.6. Defining the Depth
24.2.7. REST API
24.2.8. Statistics
25. 0SGI
25.1. OSGI Support
25.2. API
25.3. Configuring Hazelcast OSGI Support
25.4. Design
25.5. Using Hazelcast OSGI Service
25.5.1. Getting Hazelcast OSGI Service Instances
25.5.2. Managing and Using Hazelcast instances
26. Extending Hazelcast
26.1. User Defined Services
26.1.1. Creating the Service Class
26.1.2. Enabling the Service Class
26.1.3. Adding Properties to the Service
26.1.4. Starting the Service
26.1.5. Placing a Remote Call via Proxy
Making Counter a Distributed Object
Implementing ManagedService and RemoteService

Implementing CounterProxy

617
617
618
619
620
620
621
622
629
629
630
630
630
634
634
635
635
636
637
638
638
639
640
640
640
641
641
641
642
642
642
643
643
644
645
646
646
647
647
647
648



Dealing with Exceptions
Implementing the PartitionAwareOperation Interface
Running the Code
26.1.6. Creating Containers
Integrating the Container in the CounterService
Connecting the IncOperation.run Method to the Container
Running the Example Code
26.1.7. Partition Migration
Transferring migrationData
Letting Hazelcast Know CounterService Can Do Partition Migrations
Running the Example Code
26.1.8. Creating Backups
Performing the Backup with IncBackupOperation
Running the Example Code
26.2. OperationParker
26.3. Discovery SPI
26.3.1. Discovery SPI Interfaces and Classes
DiscoveryStrategy: Implement
AbstractDiscoveryStrategy: Abstract Class
DiscoveryStrategyFactory: Factory Contract
DiscoveryNode: Describe a Member
SimpleDiscoveryNode: Default DiscoveryNode
NodeFilter: Filter Members
DiscoveryService: Support In Integrator Systems
DiscoveryServiceProvider: Provide a DiscoveryService
DiscoveryServiceSettings: Configure DiscoveryService
DiscoveryMode: Member or Client
26.3.2. Discovery Strategy
Discovery Strategy Example
Configuring Site Domain
Creating Discovery
Implementing Discovery Strategy
Extending The AbstractDiscoveryStrategy
Overriding Discovery Configuration
Implementing Lookup
Mapping to DiscoveryNode
Configuring DiscoveryStrategy
26.3.3. DiscoveryService (Framework integration)
26.4. Config Properties SPI
26.4.1. Config Properties SPI Classes
PropertyDefinition: Define a Single Property

650
650
651
652
653
655
656
658
659
660
662
664
665
666
667
668
668
668
668
668
669
669
669
669
669
669
669
670
670
670
670
671
672
674
674
675
676
677
678
678
678



SimplePropertyDefinition: Basic PropertyDefinition
PropertyTypeConverter: Set of TypeConverters
ValueValidator and ValidationException
26.4.2. Config Properties SPI Example
Defining a Config PropertyDefinition
Providing a value in XML
Retrieving a PropertyDefinition Value
27. Hazelcast Plugins
27.1. Cloud Discovery Plugins
27.1.1. Hazelcast jclouds®
27.1.2. Hazelcast AWS
27.1.3. Hazelcast GCP
27.1.4. Hazelcast Azure
27.1.5. Hazelcast Consul
27.1.6. Hazelcast etcd
27.1.7. Hazelcast Eureka
27.1.8. Hazelcast IMDG for PCF
27.1.9. Hazelcast OpenShift
27.1.10. Hazelcast Heroku
27.1.11. Hazelcast Kubernetes
27.1.12. Hazelcast Zookeeper
27.2. Integration Plugins
27.2.1. Spring Data Hazelcast
27.2.2. Spring Integration Extension for Hazelcast
27.2.3. Hazelcast JCA Resource Adapter
Integrating with MuleSoft
27.2.4. Hazelcast Grails
27.2.5. Hazelcast Hibernate 2LC
27.2.6. Hazelcast DynaCache
27.2.7. Hazelcast Connector for Kafka
27.2.8. Openfire
27.2.9. SubZero
27.3. Web Sessions Clustering Plugins
27.3.1. Filter Based Web Session Replication
27.3.2. Tomcat Based Web Session Replication
27.3.3. Jetty Based Web Session Replication
27.4. Big Data Plugins
28. Consistency and Replication Model
28.1. A Brief Overview of Consistency and Replication in Distributed Systems
28.2. Hazelcast’s Replication Algorithm
28.2.1. Best-Effort Consistency

678
678
678
679
679
679
679
680
680
680
680
680
681
681
681
681
682
682
682
682
683
683
683
683
684
684
684
684
685
685
685
685
685
686
686
686
686
687
687
687
688



28.3. Invocation Lifecycle

28.4. Exactly-once, At-least-once or At-most-once Execution

28.5. IndeterminateOperationStateException
29. Network Partitioning

29.1. Split-Brain Syndrome

29.2. Dealing with Network Partitions

29.3. Split-Brain Protection

29.3.1. Time Window for Split-Brain Protection

29.3.2. Configuring Split-Brain Protection
Member Count Quorum
Probabilistic Quorum Function
Recently-Active Quorum Function
Quorum Configuration Reference

29.3.3. Configuring Quorum Listeners

29.3.4. Querying Quorum Results

29.4. Split-Brain Recovery

29.4.1. Merge Policies

29.4.2. Supported Data Structures

29.4.3. Configuring Merge Policies
Declarative Configuration
Programmatic Configuration

29.4.4. Custom Merge Policies
Merge Types
Accessing Deserialized Values
Accessing Hazelcast UserContext
Merge Policies With Multiple Merge Types
Merge Policies For Specific Data Structures
Best Practices

Appendix A: System Properties
Appendix B: Migration Guides
B.1. Upgrading to Hazelcast IMDG 3.12.x
B.2. Upgrading to Hazelcast IMDG 3.8.x
B.3. Upgrading to Hazelcast IMDG 3.7.x
B.4. Upgrading to Hazelcast IMDG 3.6.x
B.5. Upgrading to Hazelcast IMDG 3.5.x
B.6. Upgrading to Hazelcast IMDG 3.0.x
Appendix C: Common Exception Types
Appendix D: License Questions
D.1. Embedded Dependencies
D.2. Runtime Dependencies

Appendix E: Frequently Asked Questions

689
690
690
691
691
691
691
692
693
693
694
695
696
697
698
699
700
700
701
701
702
702
703
706
709
711
712
714
715
729
729
730
730
731
731
732
734
735
735
735
736



Glossary















ssss hazelcast IMDG

Hazelcast IMDG Reference Manual

Version 3.12.6

Preface

Welcome to the Hazelcast IMDG (In-Memory Data Grid) Reference Manual. This manual includes
concepts, instructions and examples to guide you on how to use Hazelcast and build Hazelcast
IMDG applications.

As the reader of this manual, you must be familiar with the Java programming language and you
should have installed your preferred Integrated Development Environment (IDE).

Hazelcast IMDG Editions

This Reference Manual covers all editions of Hazelcast IMDG. Throughout this manual:

* Hazelcast or Hazelcast IMDG refers to the open source edition of Hazelcast in-memory data
grid middleware. Hazelcast is also the name of the company (Hazelcast, Inc.) providing the
Hazelcast product.

» Hazelcast IMDG Enterprise is a commercially licensed edition of Hazelcast IMDG which
provides high-value enterprise features in addition to Hazelcast IMDG.

* Hazelcast IMDG Enterprise HD is a commercially licensed edition of Hazelcast IMDG which
provides High-Density (HD) Memory Store and Hot Restart Persistence features in addition to
Hazelcast IMDG Enterprise.

Hazelcast IMDG Architecture

You can see the features for all Hazelcast IMDG editions in the following architecture diagram.



| Java | Scala | C++ | CALNET [ Python | Nodejs | Go |
NearCache[w] ~ NearCache | Operations

; . Open Client Network Protocol
Clients REST (Backward & Forward Compatibility, Binary Protocol)
Serialization
(Serializable, Externalizable, DataSerializable, IdentifiedDataSerializable, Portable, Custom) Management Center
Web Sessions Hibernate FencedLock/
java.util.concurrent (Tomcat/Jetty/Genenc 2nd Level Cache JCache &3“\
Security Suite

q (Connection, Encryption, Authentication,
m Replicated Map m m ReliableTopic AtomicLong Authorization, JAAS LoginModule,
SocketInterceptor, TLS, OpenSSL,

- yperLogLog | Flake ID Gen. | CRDT PN Counter || CountDownLatch Mutual Auth, FIPS140-2 Mode)
Predicate & Executor WAN Replication
SQL Query Partition Predicate [1;] Entry Processor Aggregation ||AtomicReference (Socket, Solace Ssstems, eay
Multiway, Init New Data Center,
DR Data Center Recovery,
AP Subsystem I CP Subsystem Discovery SPI, Delta Synchronization)

Node Engine

(Threads, Instances, Eventing, Wait/Notify, Invocation) . Rolling Upgrades
(Rolling Client Upgrades, Rolling Member

Partition Management Upgrades, No Downtime, Compatibility
(Members, Lite Members, Master Partition, Replicas, Migrations, Partition Groups, Partition Aware) Test Suite)

Cluster Management with Cloud Discovery SPI
(AWS, Azure, Consul, Eureka, etcd, Heroku, IP List, Apache jclouds, Kubernetes, Multicast, Zookeeper) Blue/Green Deployments
: Automatic Disaster Recovery Fail-
5 5 Over
On-Heap Store High-Density Memory Store
(Intel, Sparc) m

APls

Storage

Hot Restart Store Enterprise PaaS Deployment
D, HDD) m Environments

(Pivotal Cloud Foundry,
Red Hat OpenShift Container Platform,

JVM ,
(JDK: 8,9, 10, 11 Vendors: Oracle JDK, OpenJDK, IBM JDK, Azul Zing & Zulu) NEF @] Pl ),

Operating
Env (Linux, Oracle Solaris, Windows, AlX,

e N B s e I

[ Professional Edition [l Enterprise Editon  [ll Enterprise HD Edition Enterprise HD Edition-Enabled Feature Hazelcast Solution % Integrates with Jet

You can see small "HD" boxes for some features in the above diagram. Those

0 features can use High-Density (HD) Memory Store when it is available. It means if
you have Hazelcast IMDG Enterprise HD, you can use those features with HD
Memory Store.

For more information on Hazelcast IMDG’s Architecture, see the white paper An Architect’s View of
Hazelcast.

Hazelcast IMDG Plugins

You can extend Hazelcast IMDG’s functionality by using its plugins. These plugins have their own
lifecycles. See the Plugins page to learn about Hazelcast plugins you can use. Hazelcast plugins are
marked with JlE¥IE_ label throughout this manual. See also the Hazelcast Plugins chapter for more
information.

Licensing

Hazelcast IMDG and Hazelcast Reference Manual are free and provided under the Apache License,
Version 2.0. Hazelcast IMDG Enterprise and Hazelcast IMDG Enterprise HD is commercially
licensed by Hazelcast, Inc.

For more detailed information on licensing, see the License Questions appendix.


https://hazelcast.com/resources/architects-view-hazelcast/
https://hazelcast.com/resources/architects-view-hazelcast/
https://hazelcast.org/plugins/

Trademarks

Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this manual are held
by their respective owners.

Customer Support

Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow.

For information on the commercial support for Hazelcast IMDG and Hazelcast IMDG Enterprise, see
hazelcast.com.

Release Notes

See the Release Notes document for the new features, enhancements and fixes performed for each
Hazelcast IMDG release.

Contributing to Hazelcast IMDG

You can contribute to the Hazelcast IMDG code, report a bug, or request an enhancement. See the
following resources.

* Developing with Git: Document that explains the branch mechanism of Hazelcast and how to
request changes.

» Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and
send back to Hazelcast.

» Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests
are managed.

Partners

Hazelcast partners with leading hardware and software technologies, system integrators, resellers
and OEMs including Amazon Web Services, Vert.x, Azul Systems, C2B2. See the Partners page for
the full list of and information on our partners.

Phone Home

Hazelcast uses phone home data to learn about usage of Hazelcast IMDG.

Hazelcast IMDG member instances call our phone home server initially when they are started and
then every 24 hours. This applies to all the instances joined to the cluster.

What is sent in?
The following information is sent in a phone home:

¢ Hazelcast IMDG version


https://github.com/hazelcast/hazelcast/issues
https://groups.google.com/forum/#!forum/hazelcast
http://www.stackoverflow.com
https://hazelcast.com/pricing/
https://docs.hazelcast.org/docs/release-notes/
https://hazelcast.atlassian.net/wiki/display/COM/Developing+with+Git
https://hazelcast.atlassian.net/wiki/display/COM/Hazelcast+Contributor+Agreement
https://github.com/hazelcast/hazelcast
https://hazelcast.com/partners/

* Local Hazelcast IMDG member UUID
* Download ID
* A hash value of the cluster ID
 Cluster size bands for 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
 Number of connected clients bands of 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
* Cluster uptime
* Member uptime
* Environment Information:
- Name of operating system
- Kernel architecture (32-bit or 64-bit)
o Version of operating system
- Version of installed Java
o Name of Java Virtual Machine
* Hazelcast IMDG Enterprise specific:
o Number of clients by language (Java, C++, C#)
- Flag for Hazelcast Enterprise
o Hash value of license key
- Native memory usage
» Hazelcast Management Center specific:
o Hazelcast Management Center version

- Hash value of Hazelcast Management Center license key
Phone Home Code
The phone home code itself is open source. See the code here.
Disabling Phone Homes

Set the hazelcast.phone.home.enabled system property to false either in the config or on the Java
command line. See the System Properties appendix for information on how to set a property.

You can also disable the phone home using the environment variable HZ_PHONE_HOME_ENABLED. Simply
add the following line to your .bash_profile:

export HZ_PHONE_HOME_ENABLED=false

Phone Home URLs
For versions 1.x and 2.x: http://www.hazelcast.com/version.jsp.

For versions 3.x up to 3.6: http://versioncheck.hazelcast.com/version.jsp.


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/util/PhoneHome.html
http://www.hazelcast.com/version.jsp
http://versioncheck.hazelcast.com/version.jsp

For versions after 3.6: http://phonehome.hazelcast.com/ping.

1. Document Revision History

This chapter lists the changes made to this document from the previous release.

9 See the Release Notes for the new features, enhancements and fixes performed for
each Hazelcast release.

Table 1. Revision History

Chapter

Getting Started

Understanding
Configuration

Setting Up Clusters

Distributed Data Structures

Distributed Query

CP Subsystem

Storage

Description

The "Upgrading from 2.x and 3.x" sections in this chapter have been
moved to the Migration Guides appendix.

Added Deploying using Hazelcast Cloud as a new section.

Added Configuring Declaratively with YAML as a new section along
with the YAML mentions in the whole chapter.

Added content related to newly introduced complete example
configurations for Hazelcast Java client and client failover.

Added Advanced Network Configuration as a new section.

Added Dynamic Data Structure Configuration and User
Customizations as a new section.

Added a filtering example for Ringbuffer to the Reading Batched
Items section.

Added Metadata Policy section as a new section.

Added Composite Indexes as a new section.

Added Querying JSON Strings as a new section.

Added Bitmap Indexes as a new section.

Added as a new chapter.

Added content related to the option for removing Hot Restart data
automatically, i.e., auto-remove-stale-data, to the Restart of a Member
in Running Cluster section.


http://phonehome.hazelcast.com/ping
https://docs.hazelcast.org/docs/rn/

Database CDC Integration
using Striim Hot Cache

Hazelcast Clients

Management

Security

Performance

WAN

Network Partitioning

Rolling Member Upgrades

Added content related to sharing the base directory for the Hot
Restart feature. See the Configuring Hot Restart section.

Added as a new chapter.

Added Defining Client Labels as a new section to explain how you can
configure and use the client labels.

Added the Configuring Hazelcast Cloud section to explain how you
can connect your Java clients to a cluster deployed on Hazelcast
Cloud.

Added Toggle Scripting Support as a new section.

Added  the description for the new  HTTP call:
http://127.0.0.1:${PORT}/hazelcast/health/ready. It checks if a
member is ready to be used.

Added Using the REST Endpoint Groups as a new section.

Updated the cluster.sh and healthcheck.sh sections to include the
HTTPS support.

Added Handling Permissions When a New Member Joins as a new
section.

Added FIPS 140-2 as a new section to explain the Hazelcast’s security
configurations in the FIPS mode.

Added Pipelining as a new section.

Added Performance Anti Patterns as a new section.

Added Dynamically Adding WAN Publishers as a new section.

Added Tuning WAN Replication For Lower Latencies and Higher
Throughput as a new section.

Added description for the publisher-id configuration attribute.

Enhanced the Merge Types section by adding the descriptions of all
merge types.

Added Enabling Auto-Upgrading as a new section.


http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready
http://127.0.0.1:${PORT}/hazelcast/health/ready

System Properties Added the descriptions for the following new system properties:

« hazelcast.cluster.version.auto.upgrade.enabled

« hazelcast.cluster.version.auto.upgrade.min.cluster.size

2. Getting Started

This chapter explains how to install Hazelcast and start a Hazelcast member and client. It describes
the executable files in the download package and also provides the fundamentals for configuring

Hazelcast and its deployment options.

2.1. Installation

The following sections explain the installation of Hazelcast IMDG and Hazelcast IMDG Enterprise. It

also includes notes and changes to consider when upgrading Hazelcast.

2.1.1. Installing Hazelcast IMDG

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need
to add additional repositories to your pom.xml or add hazelcast-<version>.jar file into your

classpath (Maven does that for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast</artifactId>
<version>Hazelcast IMDG Version To Be Installed</version>
</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast IMDG yourself. You only need to:

* download the package hazelcast-<version>.zip or hazelcast-<version>.tar.gz
hazelcast.org

 extract the downloaded hazelcast-<version>.zip or hazelcast-<version>.tar.gz

* and add the file hazelcast-<version>.jar to your classpath.

2.1.2. Installing Hazelcast IMDG Enterprise

There are two Maven repositories defined for Hazelcast IMDG Enterprise:

from


https://hazelcast.org/download

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository.hazelcast.com/snapshot/</url>
</repository>
<repository>
<id>Hazelcast Private Release Repository</id>
<url>https://repository.hazelcast.com/release/</url>
</repository>

Hazelcast IMDG Enterprise customers may also define dependencies. See the following example:

<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise</artifactId>
<version>Hazelcast IMDG Enterprise Version To Be Installed</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>Hazelcast IMDG Enterprise Version To Be Installed</version>
</dependency>

2.1.3. Setting the License Key

Hazelcast IMDG Enterprise offers you two types of licenses: Enterprise and Enterprise HD. The
supported features differ in your Hazelcast setup according to the license type you own.

* Enterprise license: In addition to the open source edition of Hazelcast, Enterprise features are
the following:
o Security
o WAN Replication
o Clustered REST
o Clustered JMX
o Striim Hot Cache
o Rolling Upgrades

* Enterprise HD license: In addition to the Enterprise features, Enterprise HD features are the
following:

o High-Density Memory Store
o Hot Restart Persistence

To use Hazelcast IMDG Enterprise, you need to set the provided license key using one of the
configuration methods shown below.



Hazelcast IMDG Enterprise license keys are required only for members. You do not
need to set a license key for your Java clients for which you want to use IMDG
Enterprise features.

Declarative Configuration:

Add the below line to any place you like in the file hazelcast.xml. This XML file offers you a
declarative way to configure your Hazelcast. It is included in the Hazelcast download package.
When you extract the downloaded package, you will see the file hazelcast.xml under the /bin
directory.

<hazelcast>
<license-key>Your Enterprise License Key</license-key>

</hazelcast>

Programmatic Configuration:

Alternatively, you can set your license key programmatically as shown below.

Config config = new Config();
config.setLicenseKey( "Your Enterprise License Key" );

Spring XML Configuration:

If you are using Spring with Hazelcast, then you can set the license key using the Spring XML
schema, as shown below.

<hz:config>
<hz:license-key>Your Enterprise License Key</hz:license-key>
</hz:config>
JVM System Property:

As another option, you can set your license key using the below command (the "-D" command line
option).

-Dhazelcast.enterprise.license.key=Your Enterprise License Key

License Key Format

License keys have the following format:



<Name of the Hazelcast edition>#<Count of the Members>#<License key>

The strings before the <License key> is the human readable part. You can use your license key with
or without this human readable part. So, both the following example license keys are valid:

HazelcastEnterpriseHD#2Nodes#1q2w3edr5t

1q2w3edr5t

2.1.4. License Information

License information is available through the following Hazelcast APIs.

JMX

The MBean HazelcastInstance.LicenseInfo holds all the relative license details and can be accessed
through Hazelcast’s JMX port (if enabled). The following parameters represent these details:

» maxNodeCountAllowed: Maximum members allowed to form a cluster under the current license.

» expiryDate: Expiration date of the current license.

* typeCode: Type code of the current license.

* type: Type of the current license.

» ownerEmail: Email of the current license’s owner.

» companyName: Company name on the current license.

Following is the list of license types and typeCodes:

MANAGEMENT _CENTER(1, "Management Center"),

ENTERPRISE(@, "Enterprise"),

ENTERPRISE_SECURITY_ONLY(2, "Enterprise only with security"),
ENTERPRISE_HD(3, "Enterprise HD"),

CUSTOM(4, "Custom");

REST

You can access the license details by issuing a GET request through the REST API (if enabled; see the
Using the REST Endpoint Groups section) on the /1license resource, as shown below.

curl -v http://localhost:5701/hazelcast/rest/license

Its output is similar to the following:

10



*

Trying 127.0.0.1...
TCP_NODELAY set
Connected to localhost (127.0.0.71) port 57071 (#0)
GET /hazelcast/rest/license HTTP/1.1
Host: localhost:5701
User-Agent: curl/7.58.0
Accept: */*

*

*

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 187

N N N N V V V V V

licenseInfo{"expiryDate":1560380399161, "maxNodeCount":10,"type":-

1,"companyName" : "ExampleCompany", "ownerEmail":"info@example.com", "keyHash":"ml/ubwaTNQ

+TAEWxnDRykJpwBmaV9uj+skZzv@SzDhs="}

To update the license of a running cluster, you can issue a POST request through the REST API (if
enabled; see the Using the REST Endpoint Groups section) on the /license as shown below:

curl --data "${GROUPNAME}&${PASSWORD}&${LICENSE}" http
://1localhost:5001/hazelcast/rest/license

0 The request parameters must be properly URL-encoded as described in the REST
Client section.

The above command updates the license on all running Hazelcast members of the cluster. If
successful, the response looks as follows:

11



*

Trying 127.0.0.1...
TCP_NODELAY set
Connected to 127.0.0.1 (127.0.0.7) port 5007 (#0)
POST /hazelcast/rest/license HTTP/1.1
Host: 127.0.0.1:5001
User-Agent: curl/7.54.0
Accept: */*
Content-Length: 164
Content-Type: application/x-www-form-urlencoded

*

*

¥V V V V V V V

upload completely sent off: 164 out of 164 bytes
HTTP/1.1 200 0K

Content-Type: application/javascript
Content-Length: 364

Connection #0@ to host 127.0.0.1 left intact
"status":"success","licenseInfo":{"expiryDate":1560380399161, "maxNodeCount":1@,"type"

=~ AN NN

1,"companyName" : "ExampleCompany", "ownerEmail":"info@example.com", "keyHash":"ml/ubwaTNQ
+T4EWxnDRykJpwBmaV9uj+skZzv@SzDhs="}, "message”:"License updated at run time - please
make sure to update the license in the persistent configuration to avoid losing the
changes on restart."}

As the message in the above example indicates, the license is updated only at runtime. The
persistent configuration of each member needs to be updated manually to ensure that the license
change is not lost on restart. The same message is logged as a warning in each member’s log.

It is only possible to update a license that expires at the same time or after the current license. The
new license must allow the exact same list of features and the same number of members.

If, for any reason, updating the license fails on some member (member does not respond, license is
not compatible, etc.), the whole operation fails, leaving the cluster in a potentially inconsistent state
(some members have been switched to the new license while some have not). It is up to you to
resolve this situation manually.

Logs

Besides the above approaches (JMX and REST) to access the license details, Hazelcast also starts to
log a license information banner into the log files when the license expiration is approaching.

During the last two months prior to the expiration, this license information banner is logged daily,
as a reminder to renew your license to avoid any interruptions. Once the expiration is due to a
month, the frequency of logging this banner becomes hourly (instead of daily). Lastly, when the
expiration is due in a week, this banner is printed every 30 minutes.

O Similar alerts are also present on the Hazelcast Management Center.

The banner has the following format:

12



0000EEEECECCCCCCCCEECCCCEEEEEEE WARNING 0EEEECCCCCCCEEEEEEEEEEEEEEEEEEE
HAZELCAST LICENSE WILL EXPIRE IN 29 DAYS.
Your Hazelcast cluster will stop working after this time.

Your license holder is customer -company.com, you should have them contact
our license renewal department, urgently on info .com

or call us on +1 (650) 521-5453

Please quote license id CUSTOM_TEST_KEY

(00(0EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEECEECEEEEEEEEEECEEEEEEEEEECEEEEEEEEEE

9 Please pay attention to the license warnings to prevent any possible interruptions
in the operation of your Hazelcast applications.

2.2. Supported Java Virtual Machines

Following table summarizes the version compatibility between Hazelcast IMDG and various
vendors' Java Virtual Machines (JVMs).

Table 2. Supported JVMs

Hazelcast IMDG Version JDK Oracle JDK IBM SDK, Azul Zing Azul
Version Java JDK Zulu
Technology OpenJD
Edition K
Up to 3.11 6 v x v v

(JDK 6 support is dropped with the
release of Hazelcast IMDG 3.12)

Up to 3.11 7 v v v v

(JDK 7 support is dropped with the
release of Hazelcast IMDG 3.12)

Up to current 8 v v v v
« 311 and newer: Fully 9 v x x v
supported.
' (JDK not (JDK not
310 and older: Partially available yet) available yet)
supported.
« 311 and newer: Fully 10 v x x v
supported.

(JDK not (JDK not

* 310 and older: Partially available yet) available yet)

supported.

13



Hazelcast IMDG Version JDK Oracle JDK IBM SDK, Azul Zing Azul

Version Java JDK Zulu
Technology Open]D
Edition K
311 and newer: Fully 11 x x x v
supported.
) (JDK not (JDK not (JDK not
* 310 and older: Partially available yet) available yet) available yet)
supported.
ﬁ Hazelcast IMDG 3.10 and older releases are not fully tested on JDK 9 and newer, so

there may be some features that are not working properly.

See the following sections for the details of Hazelcast IMDG supporting JDK 9 and
newer:

o * Running in Modular Java: Talks about the new module system present in Java 9
and newer and how you can run a Hazelcast application on it.

» TLS/SSL for Hazelcast Members: Lists TLSv1.3, which comes with Java 11, as a
supported TLS version.

2.3. Running in Modular Java

Java project Jigsaw brought a new Module System into Java 9 and newer. Hazelcast supports
running in the modular environment. If you want to run your application with Hazelcast libraries
on the modulepath, use the following module names:

* com.hazelcast.core for hazelcast-<version>.jar and hazelcast-enterprise-<version>.jar

e com.hazelcast.client for hazelcast-client-<version>.jar and hazelcast-enterprise-client-
<version>.jar

Don’t use hazelcast-all-<version>.jar or hazelcast-enterprise-all-<version>.jar on the
modulepath as it could lead to problems in module dependencies for your application. You can still
use them on the classpath.

The Java Module System comes with stricter visibility rules. It affects Hazelcast which uses internal
Java API to reach the best performance results.

Hazelcast needs the java.se module and access to the following Java packages for a proper work:

« java.base/jdk.internal.ref

* java.base/java.nio (reflective access)

* java.base/sun.nio.ch (reflective access)

* java.base/java.lang (reflective access)

* jdk.management/com.ibm.1lang.management.internal (reflective access)

* jdk.management/com.sun.management.internal (reflective access)

14


http://openjdk.java.net/projects/jigsaw/

* java.management/sun.management (reflective access)

You can provide the access to the above mentioned packages by using --add-exports and --add
-opens (for the reflective access) Java arguments.

Example: Running a member on the classpath

java --add-modules java.se \
--add-exports java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens java.base/java.lang=ALL-UNNAMED \
--add-opens java.base/java.nio=ALL-UNNAMED \
--add-opens java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens java.management/sun.management=ALL-UNNAMED \
--add-opens jdk.management/com.ibm.lang.management.internal=ALL-UNNAMED \
--add-opens jdk.management/com.sun.management.internal=ALL-UNNAMED \
-jar hazelcast-<version>.jar

Example: Running a member on the modulepath

java --add-modules java.se \
--add-exports java.base/jdk.internal.ref=com.hazelcast.core \
--add-opens java.base/java.lang=com.hazelcast.core \
--add-opens java.base/java.nio=com.hazelcast.core \
--add-opens java.base/sun.nio.ch=com.hazelcast.core \
--add-opens java.management/sun.management=com.hazelcast.core \
--add-opens jdk.management/com.ibm.lang.management.internal=com.hazelcast.core \
--add-opens jdk.management/com.sun.management.internal=com.hazelcast.core \
--module-path 1ib \
--module com.hazelcast.core/com.hazelcast.core.server.StartServer

This example expects hazelcast-<version>.jar placed in the 11b directory.

2.4. Starting the Member and Client

Having installed Hazelcast, you can get started.
In this short tutorial, you perform the following activities:

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two members (JVMs).

3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client
API.

Let’s begin.

» The following code starts the first Hazelcast member and creates and uses the customers map
and queue.

15



Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
Map<Integer, String> mapCustomers = instance.getMap("customers");
mapCustomers.put(1, "Joe");
mapCustomers.put(2, "Ali");
mapCustomers.put(3, "Avi");

System.out.println("Customer with key 1: "+ mapCustomers.get(1));
System.out.println("Map Size:" + mapCustomers.size());

Queue<String> queueCustomers = instance.getQueue("customers");
queueCustomers.offer("Tom");

queueCustomers.offer("Mary");

queueCustomers.offer("Jane");

System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

* Run this GettingStarted class a second time to get the second member started. The members

16

form a cluster and the output is similar to the following.

Members {size:2, ver:2} [
Member [127.0.0.1]:5707 - e40081de-056a-4ae5-8ffe-632caf8abef1 this
Member [127.0.0.1]:5702 - 93e82109-16bf-4b16-9c87-f4a6d0873080

Here, you can see the size of your cluster (size) and member list version (ver). The member list
version is incremented when changes happen to the cluster, e.g., a member leaving from or
joining to the cluster.

The above member list format is introduced with Hazelcast 3.9. You can enable the legacy
member list format, which was used for the releases before Hazelcast 3.9, using the system
property hazelcast.legacy.memberlist.format.enabled. See the System Properties appendix. The
following is an example for the legacy member list format:

Members [2] {
Member [127.0.0.1]:5707 - cTccc8d4-ab49-4bff-bf46-9213e14a9fd2 this
Member [127.0.0.1]:5702 - 33a82dbf-85d6-4780-b9cf-e47d42fb89d4

Now, add the hazelcast-client-<version>.jar library to your classpath. This is required to use a
Hazelcast client.

The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the
customers map.



public class GettingStartedClient {
public static void main( String[] args ) {
ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient( clientConfig

IMap map = client.getMap( "customers" );
System.out.println( "Map Size:" + map.size() );

* When you run it, you see the client properly connecting to the cluster and printing the map size
as 3.

Hazelcast also offers a tool, Management Center, that enables you to monitor your cluster. You can
download it from Hazelcast website’s download page. You can use it to monitor your maps, queues
and other distributed data structures and members. Please see the Hazelcast Management Center
Reference Manual for usage explanations.

By default, Hazelcast uses multicast to discover other members that can form a cluster. If you are
working with other Hazelcast developers on the same network, you may find yourself joining their
clusters under the default settings. Hazelcast provides a way to segregate clusters within the same
network when using multicast. See the Creating Cluster Groups section for more information.
Alternatively, if you do not wish to use the default multicast mechanism, you can provide a fixed
list of IP addresses that are allowed to join. See the Join configuration section for more information.

Multicast mechanism is not recommended for production since UDP is often
O blocked in production environments and other discovery mechanisms are more
definite. See the Discovery Mechanisms section.

0 You can also check the video tutorials here.

2.5. Using the Scripts In The Package

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see the following
scripts under the /bin folder that provide basic functionalities for member and -cluster
management.

The following are the names and descriptions of each script:
* start.sh / start.bat: Starts a Hazelcast member with default configuration in the working

directory.

* stop.sh / stop.bat: Stops the Hazelcast member that was started in the current working
directory.

» cluster.sh: Provides basic functionalities for cluster management, such as getting and changing
the cluster state, shutting down the cluster or forcing the cluster to clean its persisted data and
make a fresh start. See the Using the Script cluster.sh section to learn the usage of this script.

17


https://hazelcast.org/download/#management-center
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html
https://hazelcast.org/getting-started-with-hazelcast

ﬁ start.sh/start.bat scripts lets you start one Hazelcast instance per folder. To start
a new instance, please unzip Hazelcast ZIP or TAR.GZ package in a new folder.

0 You can also use the start scripts to deploy your own library to a Hazelcast
member. See the Adding User Library to CLASSPATH section.

2.6. Deploying using Hazelcast Cloud - BETA

A simple option for deploying Hazelcast is Hazelcast Cloud. It delivers enterprise-grade Hazelcast
software in the cloud. You can deploy, scale and update your Hazelcast easily using Hazelcast Cloud;
it maintains the clusters for you. You can use Hazelcast Cloud as a low-latency high-performance
caching or data layer for your microservices, and it is also a nice solution for state management of
serverless functions (AWS Lambda).

Hazelcast Cloud uses Docker and Kubernetes, and is powered by Hazelcast IMDG Enterprise HD. It
is initially available on Amazon Web Services (AWS), to be followed by Microsoft Azure and Google
Cloud Platform (GCP). Since it is based on Hazelcast IMDG Enterprise HD, it features advanced
functionalities such as TLS, multi-region, persistence, and high availability.

Note that Hazelcast Cloud is currently in beta. See here for more information and applying for a
beta.

2.7. Deploying On Amazon EC2
_pusn <

You can deploy your Hazelcast project onto an Amazon EC2 environment using Third Party tools
such as Vagrant and Chef.

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step-by-step instructions
in the hazelcast-integration folder of the hazelcast-code-samples package, which you can
download at hazelcast.org. See this sample project for more information.

2.8. Deploying On Microsoft Azure
_puon <

You can deploy your Hazelcast cluster onto a Microsoft Azure environment. For this, your cluster
should make use of Hazelcast Discovery Plugin for Microsoft Azure. You can find information about
this plugin on its GitHub repository at Hazelcast Azure.

For information on how to automatically deploy your cluster onto Azure, see the Deployment
section of the Hazelcast Azure plugin repository.

2.9. Deploying On Pivotal Cloud Foundry
_puon <

18


https://hazelcast.com/products/cloud/
https://www.vagrantup.com
https://www.chef.io/chef/
https://hazelcast.org/download/
https://github.com/hazelcast/hazelcast-azure
https://github.com/hazelcast/hazelcast-azure/blob/master/README.md#automated-deployment
https://github.com/hazelcast/hazelcast-azure/blob/master/README.md#automated-deployment
https://github.com/hazelcast/hazelcast-azure

Starting with Hazelcast 3.7, you can deploy your Hazelcast cluster onto Pivotal Cloud Foundry. It is
available as a Pivotal Cloud Foundry Tile which you can download at here. You can find the
installation =~ and usage instructions and the release notes documents  at
https://docs.pivotal.io/partners/hazelcast/index.html.

2.10. Deploying using Docker
_puon <

You can deploy your Hazelcast projects using the Docker containers. Hazelcast has the following
images on Docker:

Hazelcast IMDG

Hazelcast IMDG Enterprise
* Hazelcast Management Center

* Hazelcast OpenShift

After you pull an image from the Docker registry, you can run your image to start the Management
Center or a Hazelcast instance with Hazelcast’s default configuration. All repositories provide the
latest stable releases but you can pull a specific release, too. You can also specify environment
variables when running the image.

If you want to start a customized Hazelcast instance, you can extend the Hazelcast image by
providing your own configuration file.

This feature is provided as a Hazelcast plugin. See its own GitHub repo at Hazelcast Docker for
details on configurations and usages.

3. Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable
distributed In-Memory computing, widely recognized as the fastest and most scalable approach to
application performance. Hazelcast does this in open source. More importantly, Hazelcast makes
distributed computing simple by offering distributed implementations of many developer-friendly
interfaces from Java such as Map, Queue, ExecutorService, Lock and JCache. For example, the Map
interface provides an In-Memory Key Value store which confers many of the advantages of NoSQL
in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access
the CPUs in your cluster for maximum processing speed. Hazelcast is designed to be lightweight
and easy to use. Since Hazelcast is delivered as a compact library (JAR) and since it has no external
dependencies other than Java, it easily plugs into your software solution and provides distributed
data structures and distributed computing utilities.

Hazelcast is highly scalable and available. Distributed applications can use Hazelcast for distributed
caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is implemented
in Java and has clients for Java, C/C++, .NET, REST, Python, Go and Node.js. Hazelcast also speaks

19


https://network.pivotal.io/products/hazelcast-pcf/
https://docs.pivotal.io/partners/hazelcast/index.html
https://github.com/hazelcast/hazelcast-docker

Memcached protocol. It plugs into Hibernate and can easily be used with any existing database
system.

If you are looking for in-memory speed, elastic scalability and the developer friendliness of NoSQL,
Hazelcast is a great choice.

Hazelcast is Simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar
Java util package, exposing the same interfaces. Just add hazelcast.jar to your classpath and you
can quickly enjoy JVMs clustering and start building scalable applications.

Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no
single point of failure. All members store equal amounts of data and do equal amounts of
processing. You can embed Hazelcast in your existing application or use it in client and server
mode where your application is a client to Hazelcast members.

Hazelcast is Scalable

Hazelcast is designed to scale up to hundreds and thousands of members. Simply add new
members; they automatically discover the cluster and linearly increase both the memory and
processing capacity. The members maintain a TCP connection between each other and all
communication is performed through this layer.

Hazelcast is Fast
Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.
Hazelcast is Redundant

Hazelcast keeps the backup of each data entry on multiple members. On a member failure, the data
is restored from the backup and the cluster continues to operate without downtime.

3.1. Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we
serialize, hash and mod it with the number of partitions to find the partition which the key belongs
to. The partitions themselves are distributed equally among the members of the cluster. Hazelcast
also creates the backups of partitions and distributes them among members for redundancy.

9 See the Data Partitioning section for more information on how Hazelcast
partitions your data.

3.2. Hazelcast Topology
You can deploy a Hazelcast cluster in two ways: Embedded or Client/Server.

If you have an application whose main focal point is asynchronous or high performance computing

20



and lots of task executions, then Embedded deployment is the preferred way. In Embedded
deployment, members include both the application and Hazelcast data and services. The advantage
of the Embedded deployment is having a low-latency data access.

See the below illustration.

+ Jova AP
IMDG Member 1
Application Application
+ Javaam + Java AR

IMDG Member 2 IMDG Member 3

In the Client/Server deployment, Hazelcast data and services are centralized in one or more server
members and they are accessed by the application through clients. You can have a cluster of server
members that can be independently created and scaled. Your clients communicate with these
members to reach to Hazelcast data and services on them.

See the below illustration.

1MDG

Member 1
HH B
IMEBG IMDG
Member 2 frrmmmes & Member 3
-
-
r ¥ L2 +
i & * ®

Hazelcast provides native clients (Java, .NET and C++), Memcache and REST clients, Scala, Python
and Node.js client implementations.

Client/Server deployment has advantages including more predictable and reliable Hazelcast
performance, easier identification of problem causes and, most importantly, better scalability.

21



When you need to scale in this deployment type, just add more Hazelcast server members. You can
address client and server scalability concerns separately.

Note that Hazelcast member libraries are available only in Java. Therefore, embedding a member
to a business service, it is only possible with Java. Applications written in other languages (.NET,
C++, Node.js, etc.) can use Hazelcast client libraries to access the cluster. See the Hazelcast Clients
chapter for information on the clients and other language implementations.

If you want low-latency data access, as in the Embedded deployment, and you also want the
scalability advantages of the Client/Server deployment, you can consider defining Near Caches for
your clients. This enables the frequently used data to be kept in the client’s local memory. See the
Configuring Client Near Cache section.

3.3. Why Hazelcast?

A Glance at Traditional Data Persistence

Data is at the core of software systems. In conventional architectures, a relational database persists
and provides access to data. Applications are talking directly with a database which has its backup
as another machine. To increase performance, tuning or a faster machine is required. This can cost
a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using
technologies like external key-value stores or second level caching that help offload the database.
However, when the database is saturated or the applications perform mostly "put" operations
(writes), this approach is of no use because it insulates the database only from the "get" loads
(reads). Even if the applications are read-intensive there can be consistency problems - when data
changes, what happens to the cache and how are the changes handled? This is when concepts like
time-to-live (TTL) or write-through come in.

In the case of TTL, if the access is less frequent than the TTL, the result is always a cache miss. On
the other hand, in the case of write-through caches, if there are more than one of these caches in a
cluster, it means there are consistency issues. This can be avoided by having the members
communicate with each other so that entry invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. There are
several cache servers and in-memory database solutions in this field. However, these are stand-
alone single instances with a distribution mechanism that is provided by other technologies to an
extent. So, we are back to square one; we experience saturation or capacity issues if the product is a
single instance or if consistency is not provided by the distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast
shares data around the cluster for flexibility and performance. It is an in-memory data grid for
clustering and highly scalable data distribution.

One of the main features of Hazelcast is that it does not have a master member. Each cluster
member is configured to be the same in terms of functionality. The oldest member (the first

22



member created in the cluster) automatically performs the data assignment to cluster members. If
the oldest member dies, the second oldest member takes over.

You can come across with the term "master" or "master member" in some sections

9 of this manual. They are used for contextual clarification purposes; please
remember that they refer to the "oldest member" which is explained in the above
paragraph.

Another main feature of Hazelcast is that the data is held entirely in-memory. This is fast. In the
case of a failure, such as a member crash, no data is lost since Hazelcast distributes copies of the
data across all the cluster members.

As

shown in the feature list in the Distributed Data Structures chapter, Hazelcast supports a

number of distributed data structures and distributed computing utilities. These provide powerful
ways of accessing distributed clustered memory and accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

Hazelcast is open source.
Hazelcast is only a JAR file. You do not need to install software.
Hazelcast is a library, it does not impose an architecture on Hazelcast users.

Hazelcast provides out-of-the-box distributed data structures, such as Map, Queue, MultiMap,
Topic, Lock and Executor.

There is no "master," meaning no single point of failure in a Hazelcast cluster; each member in
the cluster is configured to be functionally the same.

When the size of your memory and compute requirements increase, new members can be
dynamically joined to the Hazelcast cluster to scale elastically.

Data is resilient to member failure. Data backups are distributed across the cluster. This is a big
benefit when a member in the cluster crashes as data is not lost.

Members are always aware of each other unlike in traditional key-value caching solutions.

You can build your own custom-distributed data structures using the Service Programming
Interface (SPI) if you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

analytic applications requiring big data processing by partitioning the data
to retain frequently accessed data in the grid
a cache, particularly an open source JCache provider with elastic distributed scalability

a primary data store for applications with utmost performance, scalability and low-latency
requirements

an In-Memory NoSQL Key Value Store

publish/subscribe communication at highest speed and scalability between applications

23



* applications that need to scale elastically in distributed and cloud environments
* a highly available distributed cache for applications

e an alternative to Coherence and Terracotta.

3.4. Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions
are memory segments that can contain hundreds or thousands of data entries each, depending on
the memory capacity of your system. Each Hazelcast partition can have multiple replicas, which are
distributed among the cluster members. One of the replicas becomes the primary and other replicas
are called backups. Cluster member which owns primary replica of a partition is called partition
owner. When you read or write a particular data entry, you transparently talk to the owner of the
partition that contains the data entry.

By default, Hazelcast offers 271 partitions. When you start a cluster with a single member, it owns
all of 271 partitions (i.e., it keeps primary replicas for 271 partitions). The following illustration
shows the partitions in a Hazelcast cluster with single member.

P_1
P_2

P_3

P_269
P_270
P27

MNeode

When you start a second member on that cluster (creating a Hazelcast cluster with two members),
the partition replicas are distributed as shown in the illustration here.

Partition distributions in the below illustrations are shown for the sake of
simplicity and for descriptive purposes. Normally, the partitions are not

ﬁ distributed in any order, as they are shown in these illustrations, but are
distributed randomly (they do not have to be sequentially distributed to each
member). The important point here is that Hazelcast equally distributes the
partition primaries and their backup replicas among the members.

24



P_1 P_136

P2 P_137
P_135 P27
P_136 P_1
P_137 P2
P27 P_135

In the illustration, the partition replicas with black text are primaries and the partition replicas
with blue text are backups. The first member has primary replicas of 135 partitions (black) and
each of these partitions are backed up in the second member (i.e., the second member owns the
backup replicas) (blue). At the same time, the first member also has the backup replicas of the
second member’s primary partition replicas.

As you add more members, Hazelcast moves some of the primary and backup partition replicas to
the new members one by one, making all members equal and redundant. Thanks to the consistent
hashing algorithm, only the minimum amount of partitions are moved to scale out Hazelcast. The
following is an illustration of the partition replica distributions in a Hazelcast cluster with four
members.

P.1 P_&3 P_137 P_205
P2 P_70 P_138 PZ0&
P_BE P_136 P_204 P_2M
P_137 P_205 P_1 P_&9
P_138 P_20& P2 P_70
P_204 P_2T1 P_GB P_136

Hazelcast distributes partitions' primary and backup replicas equally among the members of the
cluster. Backup replicas of the partitions are maintained for redundancy.

0 Your data can have multiple copies on partition primaries and backups, depending
on your backup count. See the Backing Up Maps section.

Hazelcast also offers lite members. These members do not own any partition. Lite members are
intended for use in computationally-heavy task executions and listener registrations. Although they
do not own any partitions, they can access partitions that are owned by other members in the
cluster.

25



0 See the Enabling Lite Members section.

3.4.1. How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key
(for example, for a map) or an object name (for example, for a topic or list):

 the key or name is serialized (converted into a byte array)

e this byte array is hashed

* the result of the hash is mod by the number of partitions.
The result of this modulo - MOD(hash result, partition count) - is the partition in which the data

will be stored, that is the partition ID. For ALL members you have in your cluster, the partition ID
for a given key is always the same.

3.4.2. Partition Table

When you start a member, a partition table is created within it. This table stores the partition IDs
and the cluster members to which they belong. The purpose of this table is to make all members
(including lite members) in the cluster aware of this information, making sure that each member
knows where the data is.

The oldest member in the cluster (the one that started first) periodically sends the partition table to
all members. In this way each member in the cluster is informed about any changes to partition
ownership. The ownerships may be changed when, for example, a new member joins the cluster, or
when a member leaves the cluster.

0 If the oldest member of the cluster goes down, the next oldest member sends the
partition table information to the other ones.

You can configure the frequency (how often) that the member sends the partition table the
information by using the hazelcast.partition.table.send.interval system property. The property is
set to every 15 seconds by default.

3.4.3. Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the
repartitioning when a member joins or leaves the cluster.

In these cases, the partition table in the oldest member is updated with the new partition
ownerships. Note that if a lite member joins or leaves a cluster, repartitioning is not triggered since
lite members do not own any partitions.

3.5. Use Cases

Hazelcast can be used:

* to share server configuration/information to see how a cluster performs

26



to cluster highly changing data with event notifications, e.g., user based events, and to queue
and distribute background tasks

as a simple Memcache with Near Cache
as a cloud-wide scheduler of certain processes that need to be performed on some members

to share information (user information, queues, maps, etc.) on the fly with multiple members in
different installations under OSGI environments

to share thousands of keys in a cluster where there is a web service interface on an application
server and some validation

as a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones
as a front layer for a Cassandra back-end

to distribute user object states across the cluster, to pass messages between objects and to share
system data structures (static initialization state, mirrored objects, object identity generators)

as a multi-tenancy cache where each tenant has its own map
to share datasets, e.g., table-like data structure, to be used by applications

to distribute the load and collect status from Amazon EC2 servers where the front-end is
developed using, for example, Spring framework

as a real-time streamer for performance detection

as storage for session data in web applications (enables horizontal scalability of the web
application).

3.6. Resources

4.,

Hazelcast source code can be found at Github/Hazelcast.
Hazelcast API can be found at Hazelcast.org/docs/Javadoc.

Code samples can be downloaded from Hazelcast.org/download.
More use cases and resources can be found at Hazelcast.com.

Questions and discussions can be posted at the Hazelcast mail group.

Understanding Configuration

This chapter describes the options to configure your Hazelcast applications and explains the
utilities which you can make use of while configuring. You can configure Hazelcast using one or
mix of the following options:

Declarative way

Programmatic way

Using Hazelcast system properties
Within the Spring context

Dynamically adding configuration on a running cluster

27


https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/latest-dev/javadoc/
https://hazelcast.org/download/
http://www.hazelcast.com
https://groups.google.com/forum/#!forum/hazelcast

4.1. Configuring Declaratively

This is the configuration option where you use an XML or a YAML configuration file. When you
download and unzip hazelcast-<version> .zip, you see the following files present in the /bin folder,
which are standard configuration files:

hazelcast.xml: Default declarative XML configuration file for Hazelcast. The configuration for
the distributed data structures in this XML file should be fine for most of the Hazelcast users. If
not, you can tailor this XML file according to your needs by adding/removing/modifying
properties. Also see the Setting Up Clusters chapter for the network related configurations.

hazelcast.yaml: Default YAML configuration file identical to hazelcast.xml in content.

hazelcast-full-example.xml: Configuration file which includes all Hazelcast configuration
elements and attributes with their descriptions. It is the "superset" of hazelcast.xml. You can use
hazelcast-full-example.xml as a reference document to learn about any element or attribute, or
you can change its name to hazelcast.xml and start to use it as your Hazelcast configuration file.

hazelcast-full-example.yaml: YAML configuration file identical to hazelcast-full-example.xml in
content.

hazelcast-client-full-example.xml: Complete Hazelcast Java client example configuration file
which includes all configuration elements and attributes with their descriptions. Read more
about Java client configuration here.

hazelcast-client-full-example.yaml: YAML configuration file identical to hazelcast-client-full-
example.xml in content.

hazelcast-client-failover-full-example.xml: Complete Hazelcast client failover example
configuration file which includes all Hazelcast client failover configuration elements and
attributes with their descriptions. Read about Blue-Green Deployment and Disaster Recovery
here.

hazelcast-client-failover-full-example.yaml: YAML configuration file identical to hazelcast-
client-failover-full-example.xml in content.

A part of hazelcast.xml is shown as an example below.

28



<hazelcast>
<group>
<name>dev</name>
</group>
<management-center enabled="false">http://localhost:8080/mancenter</management-
center>
<network>
<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>
==
Allowed port range when connecting to other members.
@ or * means the port provided by the system.
-->
<ports>0</ports>
</outbound-ports>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="false">
<interface>127.0.0.1</interface>
<member-list>
<member>127.0.0.1</member>
</member-list>
</tcp-ip>
</join>
</network>
<map name="default">
<time-to-live-seconds>0</time-to-1live-seconds>
</map>

</hazelcast>

The identical part of the configuration extracted from hazelcast.yaml is shown as below.

29



hazelcast:
group:
name: dev
password: dev-pass
management-center:
enabled: false
url: http://localhost:8080/hazelcast-mancenter
network:
port:
auto-increment: true
port-count: 100
port: 5701
outbound-ports:
# Allowed port range when connecting to other nodes.
# 0 or * means use system provided port.
-0
join:
multicast:
enabled: true
multicast-group: 224.2.2.3
multicast-port: 54327
tep-ip:
enabled: false
interface: 127.0.0.1
member-list:
- 127.0.0.1
map:
default:
time-to-live-seconds: 0

4.1.1. Composing Declarative Configuration

You can compose the declarative configuration of your Hazelcast member or Hazelcast client from
multiple declarative configuration snippets. In order to compose a declarative configuration, you
can import different declarative configuration files. Composing configuration files is supported both
in XML and YAML configurations with the limitation that only configuration files written in the
same language can be composed.

Let’s say you want to compose the declarative configuration for Hazelcast out of two XML
configurations: development-group-config.xml and development-network-config.xml. These two
configurations are shown below.

development-group-config.xml:

30



<hazelcast>
<group>
<name>dev</name>
</group>
</hazelcast>

development-network-config.xml:

<hazelcast>
<network>
<port auto-increment="true" port-count="100">5701</port>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
</join>
</network>
</hazelcast>

To get your example Hazelcast declarative configuration out of the above two, use the <import/>
element as shown below.

<hazelcast>
<import resource="development-group-config.xml"/>
<import resource="development-network-config.xml"/>
</hazelcast>

The above example using the YAML configuration files looks like the following:

development-group-config.yaml:

hazelcast:
group:
name: dev

development-network-config.yaml:

31



hazelcast:
network:
port:
auto-increment: true
port-count: 100

port: 5701
join:
multicast:

enabled: true
multicast-group: 224.2.2.3
multicast-port: 54327

Composing the above two YAML configuration files needs them to be imported as shown below.

hazelcast:
import:
- development-group-config.yaml
- development-network-config.yaml

This feature also applies to the declarative configuration of Hazelcast client. See the following
examples.

client-group-config.xml:

<hazelcast-client>
<group>
<name>dev</name>
</group>
</hazelcast-client>

client-network-config.xml:

<hazelcast-client>
<network>
<cluster-members>
<address>127.0.0.1:7000</address>
</cluster-members>
</network>
</hazelcast-client>

To get a Hazelcast client declarative configuration from the above two examples, use the <import/>
element as shown below.

32



<hazelcast-client>
<import resource="client-group-config.xml"/>
<import resource="client-network-config.xml"/>
</hazelcast>

The same client configuration using the YAML language is shown below.

client-group-config.yaml:

hazelcast-client:
group:
name: dev

client-network-config.yaml:

hazelcast-client:
network:
cluster-members:
- 127.0.0.1:7000

Composing a Hazelcast client declarative configuration by importing the above two examples is
shown below.

hazelcast-client:
import:
- client-group-config.yaml
- client-network-config.yaml

O Use <import/> element on top level of the XML hierarchy.

0 Use the import mapping on top level of the YAML hierarchy.

Resources from the classpath and file system may also be used to compose a declarative
configuration:

<hazelcast>

<import resource="file:///etc/hazelcast/development-group-config.xml"/> <!--
loaded from filesystem -->

<import resource="classpath:development-network-config.xml"/> <!-- loaded from
classpath -->
</hazelcast>

33



hazelcast:
import:

# loaded from filesystem
file:///etc/hazelcast/development-group-config.yaml
# loaded from classpath
classpath:development-network-config.yaml

Importing resources with variables in their names is also supported. See the following example
snippets:

<hazelcast>
<import resource="${environment}-group-config.xm1"/>
<import resource="${environment}-network-config.xml"/>
</hazelcast>

hazelcast:
import:
- ${environment}-group-config.yaml
- ${environment}-network-config.yaml

0 See the Using Variables section to learn how you can set the configuration
elements with variables.

4.1.2. Configuring Declaratively with YAML

You can configure the Hazelcast members and Java clients declaratively with YAML configuration
files in installations of Hazelcast running on Java runtime version 8 or above.

The structure of the YAML configuration follows the structure of the XML configuration. Therefore,
you can rewrite the existing XML configurations in YAML easily. There are some differences
between the XML and YAML languages that make the two declarative configurations to slightly
derive as the the following examples show.

In the YAML declarative configuration, mappings are used in which the name of the mapping node
needs to be unique within its enclosing mapping. See the following example with configuring two
maps in the same configuration file.

In the XML configuration files, we have two <map> elements as shown below.

34



<hazelcast>

<map name="map1">

<!-- map1 configuration -->
</map>
<map name="map2">

<!-- map2 configuration -->
</map>

</hazelcast>

In the YAML configuration, the map can be configured under a mapping map as shown in the
following example.

hazelcast:

map:
map1:
# map1 confiquration
map2:
# map2 configuration

The XML and YAML configurations above define the same maps map1 and map2. Please note that in
the YAML configuration file there is no name node, instead, the name of the map is used as the name
of the mapping for configuring the given map.

There are other configuration entries that have no unique names and are listed in the same
enclosing entry. Examples to this kind of configurations are listing the member addresses,
interfaces in the networking configurations and defining listeners. The following example
configures listeners to illustrate this.

<hazelcast>

<listeners>
<listener>com.hazelcast.examples.MembershipListener</listener>
<listener>com.hazelcast.examples.InstancelListener</listener>
<listener>com.hazelcast.examples.MigrationListener</listener>
<listener>com.hazelcast.examples.PartitionLostListener</listener>
</listeners>

</hazelcast>

In the YAML configuration, the listeners are defined as a sequence.

35



hazelcast:

listeners:
- com.hazelcast.examples.MembershipListener
- com.hazelcast.examples.Instancelistener
- com.hazelcast.examples.MigrationListener
- com.hazelcast.examples.PartitionLostListener

Another notable difference between XML and YAML is the lack of the attributes in the case of
YAML. Everything that can be configured with an attribute in the XML configuration is a scalar
node in the YAML configuration with the same name. See the following example.

hazelcast:
<hazelcast>
<network>
<join>
<multicast enabled="true">
<multicast-group>1.2.3.4</multicast-group>
<!-- other multicast configuration options -->
</multicast>
</join>
</network>
</hazelcast>

In the identical YAML configuration, the enabled attribute of the XML configuration is a scalar node
on the same level with the other items of the multicast configuration.

hazelcast:
network:
join:
multicast:
enabled: true

multicast-group: 1.2.3.4
# other multicast confiquration options

You can refer to the full example YAML configuration files placed in the /bin folder of the
downloadable hazelcast-<version>.zip after unzipping it. Please see the complete list of the full
example YAML configurations here.

36



4.2. Configuring Programmatically

Besides declarative configuration, you can configure your cluster programmatically. For this you
can create a Config object, set/change its properties and attributes and use this Config object to
create a new Hazelcast member. Following is an example code which configures some network and
Hazelcast Map properties.

Config config = new Config();
config.getNetworkConfig().setPort( 5900 )
.setPortAutoIncrement( false );

MapConfig mapConfig = new MapConfig();
mapConfig.setName( "testMap" )

.setBackupCount( 2 )
.setTimeToLiveSeconds( 300 );

To create a Hazelcast member with the above example configuration, pass the configuration object
as shown below:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance( config );

The Config must not be modified after the Hazelcast instance is started. In other

0 words, all configuration must be completed before creating the HazelcastInstance.
Certain additional configuration elements can be added at runtime as described in
the Dynamically Adding Data Structure Configuration on a Cluster section.

You can also create a named Hazelcast member. In this case, you should set instanceName of Config
object as shown below:

Config config = new Config();
config.setInstanceName( "my-instance" );
Hazelcast.newHazelcastInstance( config );

To retrieve an existing Hazelcast member by its name, use the following:
Hazelcast.getHazelcastInstanceByName( "my-instance" );
To retrieve all existing Hazelcast members, use the following:

Hazelcast.getAllHazelcastInstances();

37



Hazelcast performs schema validation through the file hazelcast-config-

0 <version>.xsd which comes with your Hazelcast libraries. Hazelcast throws a
meaningful exception if there is an error in the declarative or programmatic
configuration.

If you want to specify your own configuration file to create Config, Hazelcast supports several ways
including filesystem, classpath, InputStream and URL.

Building Config from the XML declarative configuration:

o Config cfg = new XmlConfigBuilder(xmlFileName).build();
o Config cfg = new XmlConfigBuilder(inputStream).build();
o Config cfg = new ClasspathXmlConfig(xmlFileName);

« Config cfg = new FileSystemXmlConfig(configFilename);

« Config cfg = new UrlXmlConfig(url);

« Config cfg = new InMemoryXmlConfig(xml);
Building Config from the YAML declarative configuration:

o Config cfg = new YamlConfigBuilder(yamlFileName).build();
o Config cfg = new YamlConfigBuilder(inputStream).build();
o Config cfg = new ClasspathYamlConfig(yamlFileName);

o Config cfg = new FileSystemYamlConfig(configFilename);

o Config cfg = new UrlYamlConfig(url);

o Config cfg = new InMemoryYamlConfig(yaml);

4.3. Configuring with System Properties

You can use system properties to configure some aspects of Hazelcast. You set these properties as
name and value pairs through declarative configuration, programmatic configuration or JVM
system property. Following are examples for each option.

Declarative Configuration:

<hazelcast>
<properties>
<property name="hazelcast.property.foo">value</property>

</properties>

</hazelcast>

38



hazelcast:

properties:
hazelcast.property.foo: value

Programmatic Configuration:

Config config = new Config() ;
config.setProperty( "hazelcast.property.foo", "value" );

Using JVM’s System class or -D argument:
System.setProperty( "hazelcast.property.foo", "value" );
or

java -Dhazelcast.property.foo=value

You will see Hazelcast system properties mentioned throughout this Reference Manual as required
in some of the chapters and sections. All Hazelcast system properties are listed in the System
Properties appendix with their descriptions, default values and property types as a reference for
you.

4.4. Configuring within Spring Context

If you use Hazelcast with Spring you can declare beans using the namespace hazelcast. When you
add the namespace declaration to the element beans in the Spring context file, you can start to use
the namespace shortcut hz to be used as a bean declaration. Following is an example Hazelcast
configuration when integrated with Spring:

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"/>
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>
</hz:tcp-ip>
</hz:join>
</hz:network>
</hz:config>
</hz:hazelcast>

See the Integration with Spring section for more information on Hazelcast-Spring integration.

39


https://spring.io/

4.5. Dynamically Adding Data Structure Configuration
on a Cluster

As described above, Hazelcast can be configured in a declarative or programmatic way;
configuration must be completed before starting a Hazelcast member and this configuration cannot
be altered at runtime, thus we refer to this as static configuration.

It is possible to dynamically add configuration for certain data structures at runtime; these can be
added by invoking one of the Config.add*Config methods on the Config object obtained from a
running member’s HazelcastInstance.getConfig() method. For example:

Config config = new Config();

MapConfig mapConfig = new MapConfig("sessions");
config.addMapConfig(mapConfig);

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
MapConfig noBackupsMap = new MapConfig("dont-backup").setBackupCount(0);
instance.getConfig().addMapConfig(noBackupsMap);

Dynamic configuration elements must be fully configured before the invocation of add*Config
method: at that point, the configuration object is delivered to every member of the cluster and
added to each member’s dynamic configuration, so mutating the configuration object after the
add*Config invocation does not have an effect.

As dynamically added data structure configuration is propagated across all cluster members,
failures may occur due to conditions such as timeout and network partition. The configuration
propagation mechanism internally retries adding the configuration whenever a membership
change is detected. However if an exception is thrown from add*Config method, the configuration
may have been partially propagated to some cluster members and adding the configuration should
be retried by the user.

Adding a new dynamic configuration is supported for all add*Config methods except:

* JobTracker which has been deprecated since Hazelcast 3.8

* QuorumConfig: new quorum configuration cannot be dynamically added but other configuration
can reference quorums configured in the existing static configuration

* WanReplicationConfig: new WAN replication configuration cannot be dynamically added,
however existing static ones can be referenced from other configurations, e.g., a new dynamic
MapConfig may include a WanReplicationRef to a statically configured WAN replication config.

* ListenerConfig: listeners can be instead added at runtime via other API such as
HazelcastInstance.getCluster().addMembershipListener and
HazelcastInstance.getPartitionService().addMigrationListener.

Keep in mind that this feature also works for Hazelcast Java clients. See the following example:

40



HazelcastInstance client = HazelcastClient.newHazelcastClient();
MapConfig mCfg = new MapConfig("test");
mCfg.setTimeToLiveSeconds(15);
client.getConfig().addMapConfig(mCfg);
HazelcastClient.shutdownAll();

4.5.1. Handling Configuration Conflicts

Attempting to add a dynamic configuration, when a static configuration for the same element
already exists, throws ConfigurationException. For example, assuming we start a member with the
following fragment in hazelcast.xml configuration:

<hazelcast>
<map name="sessions">
</map>

</hazelcast>

Then adding a dynamic configuration for a map with the name sessions throws a
ConfigurationException:

HazelcastInstance instance = Hazelcast.newHazelcastInstance();
MapConfig sessionsMapConfig = new MapConfig("sessions");

// this will throw ConfigurationException:
instance.getConfig().addMapConfig(sessionsMapConfig);

When attempting to add dynamic configuration for an element for which dynamic configuration
has already been added, then if a configuration conflict is detected a ConfigurationException is
thrown. For example:

41



4,

Dynamically added data structure configuration may reference user customizations, such as a user-
provided MapLoader implementation referenced by a MapConfig. User customizations can be usually

Cco

* by specifying a class or factory class name, e.g., MapStoreConfig.setClassName, and letting the

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

MapConfig sessionsMapConfig = new MapConfig("“sessions").setBackupCount(0);
instance.getConfig().addMapConfig(sessionsMapConfig);

MapConfig sessionsWithBackup = new MapConfig("sessions").setBackupCount(1);

// throws ConfigurationException because the new MapConfig conflicts with existing one
instance.getConfig().addMapConfig(sessionsWithBackup);

MapConfig sessionsWithoutBackup = new MapConfig("sessions").setBackupCount(0);

// does not throw exception: new dynamic config is equal to existing dynamic config of

same name
instance.getConfig().addMapConfig(sessionsWithoutBackup);

5.2. Dynamic Data Structure Configuration and User Customizations

nfigured using either of the following:

Hazelcast members instantiate the object

* by providing an existing instance, e.g., MapStoreConfig.setImplementation.

W

hen dynamically adding new a data structure configuration with user customizations, take the

following considerations into account:

» For the user customizations submitted as a class name or factory class name, the referenced
classes are resolved lazily. Therefore, they should be either already on each member’s local

* When the user customizations are submitted as instances (or similarly factory instances), the
instances themselves have to be serializable. This is because the entire configuration needs to
be sent over the network to all cluster members, and their classes have to be available on each

4

W

classpath or resolvable via user code deployment.

member’s local classpath.

.6. Checking Configuration

hen you start a Hazelcast member without passing a Config object, as explained in the

Configuring Programmatically section, Hazelcast checks the member’s configuration as follows:

* First, it looks for the hazelcast.config system property. If it is set, its value is used as the path.
This is useful if you want to be able to change your Hazelcast configuration; you can do this
because it is not embedded within the application. You can set the config option with the

42

following command:

-Dhazelcast.config="*"<path to the hazelcast.xml or hazelcast.yaml>



The suffix of the filename is used to determine the language of the

0 configuration. If the suffix is .xml the configuration file is parsed as an XML
configuration file. If it is .yaml, the configuration file is parsed as a YAML
configuration file.

The path can be a regular one or a classpath reference with the prefix classpath:.

« If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml
file in the working directory.

 If not, it then checks whether hazelcast.xml exists on the classpath.
* If not, it then checks whether hazelcast.yaml exists in the working directory.
* If not, it then checks whether hazelcast.yaml exists on the classpath.

* If none of the above works, Hazelcast loads the default configuration (hazelcast.xml) that comes
with your Hazelcast package.

Before configuring Hazelcast, please try to work with the default configuration to see if it works for
you. This default configuration should be fine for most of the users. If not, you can consider to
modify the configuration to be more suitable for your environment.

4.7. Configuration Pattern Matcher

You can give a custom strategy to match an item name to a configuration pattern. By default
Hazelcast uses a simplified wildcard matching. See Using Wildcards section for this. A custom
configuration pattern matcher can be given by using either member or client config objects, as
shown below:

// Setting a custom config pattern matcher via member config object
Config config = new Config();
config.setConfigPatternMatcher(new ExampleConfigPatternMatcher());

And the following is an example pattern matcher:

class ExampleConfigPatternMatcher extends MatchingPointConfigPatternMatcher {

public String matches(Iterable<String> configPatterns, String itemName) throws
ConfigurationException {
String matches = super.matches(configPatterns, itemName);
if (matches == null) throw new ConfigurationException("No config found for
itemName);
return matches;

+

}

43



4.8. Using Wildcards

Hazelcast supports wildcard configuration for all distributed data structures that can be configured
using Config, that is, for all except IAtomicLong, IAtomicReference. Using an asterisk (*) character in
the name, different instances of maps, queues, topics, semaphores, etc. can be configured by a
single configuration.

A single asterisk (*) can be placed anywhere inside the configuration name.

For instance, a map named com.hazelcast.test.mymap can be configured using one of the following
configurations:

<hazelcast>
;$ép name="com.hazelcast.test.*">
</maé;.
<I-- 0R -->
<map name="com.hazel*">
</maé;.
<l-- 0R -->
<map name="*.test.mymap">
</maé;.
<I-- OR -->
<map name="com.*test.mymap">
</maé;.

</hazelcast>

A queue named com.hazelcast.test.myqueue can be configured using one of the following
configurations:

44



<hazelcast>
;é&eue name="*hazelcast.test.myqueue">
</qué;é>
<I-- OR -->
<queue name="com.hazelcast.*.myqueue">
</qué;é>

</ha;éicast>

* You can use only a single asterisk as a wildcard for each data structure
configuration.

* If you have matching wildcard configurations for a data structure, the most
specific (longest) one is used when configuring it. Let’s say you have a map
named mymap.customer.name and you have map configurations mymap.* and

O mymap.customer.*. Hazelcast uses mymap.customer.* to configure this map.

As another example, assume that you have a map named mymap.customer.name
and you have map configurations mymap.*.name and mymap.customer.*. Hazelcast
uses mymap.customer.* to configure this map. As you see, the longest character
length before the asterisk makes it the most specific, so it wins the
configuration.

4.9. Using Variables

In your Hazelcast and/or Hazelcast Client declarative configuration, you can use variables to set the
values of the elements. This is valid when you set a system property programmatically or you use
the command line interface. You can use a variable in the declarative configuration to access the
values of the system properties you set.

For example, see the following command that sets two system properties.
-Dgroup.name=dev

Let’s get the values of these system properties in the declarative configuration of Hazelcast, as
shown below.

In the XML configuration:

45



<hazelcast>
<group>
<name>${group.name}</name>
</group>
</hazelcast>

In the YAML configuration:

hazelcast:
group:
name: ${group.name}

This also applies to the declarative configuration of Hazelcast Java Client, as shown below.

<hazelcast-client>
<group>
<name>${group.name}</name>
</group>
</hazelcast-client>

hazelcast-client:
group:
name: ${group.name}

If you do not want to rely on the system properties, you can use the XmlConfigBuilder or
YamlConfigBuilder and explicitly set a Properties instance, as shown below.
Properties properties = new Properties();

// fill the properties, e.g., from database/LDAP, etc.

XmlConfigBuilder builder = new XmlConfigBuilder();
builder.setProperties(properties);

Config config = builder.build();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

4.10. Variable Replacers

Variable replacers are used to replace custom strings during loading the configuration, e.g., they
can be used to mask sensitive information such as usernames and passwords. Of course their usage
is not limited to security related information.

Variable replacers implement the interface com.hazelcast.config.replacer.spi.ConfigReplacer and
they are configured only declaratively: in the Hazelcast’s declarative configuration files, i.e.,

46



hazelcast.xml, hazelcast.yaml and hazelcast-client .xml, hazelcast-client.yaml. See the
ConfigReplacers Javadoc for basic information on how a replacer works.

Variable replacers are configured within the element <config-replacers> under <hazelcast>, as
shown below.

In the XML configuration:

<hazelcast>

<config-replacers fail-if-value-missing="false">
<replacer class-name="com.acme.MyReplacer">
<properties>
<property name="propName">value</property>

</properties>
</replacer>
<replacer class-name="example.AnotherReplacer"/>
</config-replacers>

</hazelcast>
In the YAML configuration:

hazelcast:

config-replacers:
fail-if-value-missing: false
replacers:
- class-name: com.acme.MyReplacer
properties:
propName: value

- class-name: example.AnotherReplacer

As you can see, <config-replacers> is the parent element for your replacers, which are declared
using the <replacer> sub-elements. You can define multiple replacers under the <config-replacers>.
Here are the descriptions of elements and attributes used for the replacer configuration:

o fail-if-value-missing: Specifies whether the loading configuration process stops when a
replacement value is missing. It is an optional attribute and its default value is true.
* class-name: Full class name of the replacer.

» <properties>: Contains names and values of the properties used to configure a replacer. Each
property is defined using the <property> sub-element. All of the properties are explained in the
upcoming sections.

The following replacer classes are provided by Hazelcast as example implementations of the

47


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/config/replacer/spi/ConfigReplacer.html

ConfigReplacer interface. Note that you can also implement your own replacers.

« EncryptionReplacer

« PropertyReplacer

0 There is also a ExecReplacer which runs an external command and uses its
standard output as the value for the variable. See its code sample.

Each example replacer is explained in the below sections.

4.10.1. EncryptionReplacer

This example EncryptionReplacer replaces encrypted variables by its plain form. The secret key for
encryption/decryption is generated from a password which can be a value in a file and/or
environment specific values, such as MAC address and actual user data.

Its full class name is com.hazelcast.config.replacer.EncryptionReplacer and the replacer prefix is
ENC. The following are the properties used to configure this example replacer:

» cipherAlgorithm: Cipher algorithm used for the encryption/decryption. Its default value is AES.

* keyLengthBits: Length of the secret key to be generated in bits. Its default value is 128 bits.

* passwordFile: Path to a file whose content should be used as a part of the encryption password.
When the property is not provided no file is used as a part of the password. Its default value is
null.

* passwordNetworkInterface: Name of network interface whose MAC address should be used as a
part of the encryption password. When the property is not provided no network interface
property is used as a part of the password. Its default value is null.

» passwordUserProperties: Specifies whether the current user properties (user.name and user .home)
should be used as a part of the encryption password. Its default value is true.

* saltlengthBytes: Length of a random password salt in bytes. Its default value is 8 bytes.

» secretKeyAlgorithm: Name of the secret-key algorithm to be associated with the generated secret
key. Its default value is AES.

» secretKeyFactoryAlgorithm: Algorithm used to generate a secret key from a password. Its default
value is PBKDF2WithHmacSHA256.

» securityProvider: Name of a Java Security Provider to be used for retrieving the configured
secret key factory and the cipher. Its default value is null.

0 Older Java versions may not support all the algorithms used as defaults. Please use
the property values supported your Java version.

As a usage example, let’s create a password file and generate the encrypted strings out of this file as
instructed below:

1. Create the password file: echo '/Za-uG3dDfpd,5.-' > /opt/master-password

2. Define the encrypted variables:

48


https://github.com/hazelcast/hazelcast-code-samples/blob/master/variable-replacers/src/main/java/com/hazelcast/sample/replacer/ExecReplacer.java

java -cp hazelcast-*.jar \
-DpasswordFile=/opt/master-password \
-DpasswordUserProperties=false \
com.hazelcast.config.replacer.EncryptionReplacer \
"aGroup"

$ENC{Gw45stI1an0=:531:yVN9/xQpl/Ww3EYKAPVHdA==}

java -cp hazelcast-*.jar \
-DpasswordFile=/opt/master-password \
-DpasswordUserProperties=false \
com.hazelcast.config.replacer.EncryptionReplacer \
"aPasswordToEncrypt"
$ENC{wIxe1vfHTgg=:531:WkAEdSi//YWEbwvVNoUImUyZ@ODE49ac JeaImGalHHA=}

3. Configure the replacer and put the encrypted variables into the configuration:

<hazelcast>
<config-replacers>
<replacer class-name="com.hazelcast.config.replacer.EncryptionReplacer">
<properties>
<property name="passwordFile">/opt/master-password</property>
<property name="passwordUserProperties">false</property>
</properties>
</replacer>
</config-replacers>
<group>
<name>$ENC{Gw45stI1an@=:531:yVN9/xQpl/Ww3EYkAPvHdA==}</name>

<password>$ENC{wIxeTvfHTgg=:531:WkAEdSi/YWEbwvVNoUImUyZ@DE49acJealmGalHHfA=}</passw
ord>

</group>
</hazelcast>

4. Check if the decryption works:

java -jar hazelcast-*.jar

Apr 06, 2018 10:15:43 AM com.hazelcast.config.XmlConfiglLocator
INFO: Loading 'hazelcast.xml' from working directory.

Apr 06, 2018 10:15:44 AM com.hazelcast.instance.AddressPicker
INFO: [LOCAL] [aGroup] [3.710-SNAPSHOT] Prefer IPv4 stack is true.

As you can see in the logs, the correctly decrypted group name value ("aGroup") is used.

4.10.2. PropertyReplacer

The PropertyReplacer replaces variables by properties with the given name. Usually the system
properties are used, e.g., ${user.name}. There is no need to define it in the declarative configuration

49



files.

Its full class name is com.hazelcast.config.replacer.PropertyReplacer and the replacer prefix is
empty string ().

4.10.3. Implementing Custom Replacers

You can also provide your own replacer implementations. All replacers have to implement the
interface com.hazelcast.config.replacer.spi.ConfigReplacer. A simple snippet is shown below.

public interface ConfigReplacer {
void init(Properties properties);
String getPrefix();
String getReplacement(String maskedValue);

5. Setting Up Clusters

This chapter describes Hazelcast clusters and the methods cluster members and native clients use
to form a Hazelcast cluster.

5.1. Discovery Mechanisms

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members
automatically join together to form a cluster. This automatic joining takes place with various
discovery mechanisms that the cluster members use to find each other.

Please note that, after a cluster is formed, communication between cluster members is always via
TCP/IP, regardless of the discovery mechanism used.

Hazelcast uses the following discovery mechanisms.

0 See the Hazelcast IMDG Deployment and Operations Guide for advices on the best
discovery mechanism to use.

5.1.1. TCP

You can configure Hazelcast to be a full TCP/IP cluster. See the Discovering Members by TCP section
for configuration details.

5.1.2. Multicast

Multicast mechanism is not recommended for production since UDP is often blocked in production
environments and other discovery mechanisms are more definite.

With this mechanism, Hazelcast allows cluster members to find each other using multicast
communication. See the Discovering Members by Multicast section.

50


https://hazelcast.com/resources/hazelcast-deployment-operations-guide/

5.1.3. AWS Cloud Discovery

Hazelcast supports EC2 auto-discovery. It is useful when you do not want to provide or you cannot
provide the list of possible IP addresses. This discovery feature is provided as a Hazelcast plugin.
See its documentation for information on configuring and using it.

5.1.4. GCP Cloud Discovery

Hazelcast supports discovering members in the GCP Compute Engine environment. You can easily
configure Hazelcast members discovery, WAN replication, and Hazelcast Client to work seamlessly
on the native GCP VM Instances. This discovery feature is provided as a Hazelcast plugin. See its
documentation for information on configuring and using it.

5.1.5. Apache jclouds® Cloud Discovery

Hazelcast members and native clients support jclouds® for discovery. This mechanism allows
applications to be deployed in various cloud infrastructure ecosystems in an infrastructure-
agnostic way. This discovery feature is provided as a Hazelcast plugin. See its documentation for
information on configuring and using it.

5.1.6. Azure Cloud Discovery

Hazelcast offers a discovery strategy for your Hazelcast applications running on Azure. This
strategy provides all of your Hazelcast instances by returning the virtual machines within your
Azure resource group that are tagged with a specified value. This discovery feature is provided as a
Hazelcast plugin. See its documentation for information on configuring and using it.

5.1.7. Zookeeper Cloud Discovery

This discovery mechanism provides a service based discovery strategy by using Apache Curator to
communicate with your Zookeeper server. You can use this plugin with Discovery SPI enabled
applications. This is provided as a Hazelcast plugin. See its documentation for information on
configuring and using it.

5.1.8. Consul Cloud Discovery

Consul is a highly available and distributed service discovery and key-value store designed with
support for the modern data center to make distributed systems and configuration easy. This
mechanism provides a Consul based discovery strategy for Hazelcast enabled applications and
enables Hazelcast members to dynamically discover one another via Consul. This discovery feature
is provided as a Hazelcast plugin. See its documentation for information on configuring and using
it.

5.1.9. etcd Cloud Discovery

This mechanism provides an etcd based discovery strategy for Hazelcast enabled applications. This
is an easy to configure plug-and-play Hazelcast discovery strategy that optionally registers each of
your Hazelcast members with etcd and enables Hazelcast members to dynamically discover one
another via etcd. This discovery feature is provided as a Hazelcast plugin. See its documentation for

51


https://github.com/hazelcast/hazelcast-aws/blob/master/README.md
https://cloud.google.com/compute/
https://github.com/hazelcast/hazelcast-gcp/blob/master/README.md
https://github.com/hazelcast/hazelcast-jclouds/blob/master/README.md
https://github.com/hazelcast/hazelcast-azure/blob/master/README.md
https://github.com/hazelcast/hazelcast-zookeeper/blob/master/README.md
https://github.com/bitsofinfo/hazelcast-consul-discovery-spi
https://coreos.com/etcd/
https://github.com/bitsofinfo/hazelcast-etcd-discovery-spi/blob/master/README.md

information on configuring and using it.

5.1.10. Hazelcast for PCF

Using a clickable Hazelcast Tile for Pivotal Cloud Foundry (PCF), you can deploy your Hazelcast
cluster on PCF. This feature is provided as a Hazelcast plugin. See its documentation on how to
install, configure and use the plugin Hazelcast for PCF.

5.1.11. Hazelcast OpenShift Integration

Hazelcast can run inside OpenShift benefiting from its cluster management software Kubernetes
for discovery of members. Using Hazelcast Docker images, templates and default configuration
files, you can deploy Hazelcast IMDG, Hazelcast IMDG Enterprise and Management Center onto
OpensShift. See the following related documentation:

* Hazelcast IMDG and Hazelcast IMDG Enterprise

* Management Center

See also the Hazelcast for OpenShift guide, which presents how to set up the local OpenShift
environment, start a Hazelcast cluster, configure the Management Center and finally run a sample
client application.

5.1.12. Eureka Cloud Discovery

Eureka is a REST based service that is primarily used in the AWS cloud for locating services for the
purpose of load balancing and failover of middle-tier servers. Hazelcast supports Eureka V1
discovery; Hazelcast members within EC2 Virtual Private Cloud can discover each other using this
mechanism. This discovery feature is provided as a Hazelcast plugin. See its documentation.

5.1.13. Heroku Cloud Discovery

Heroku is a platform as a service (PaaS) with which you can build, run and operate applications
entirely in the cloud. It is a cloud platform based on a managed container system, with integrated
data services and a powerful ecosystem. Hazelcast offers a discovery plugin that looks for IP
addresses of other members by resolving service names against the Heroku DNS Discovery in
Heroku Private Spaces. This discovery feature is provided as a Hazelcast plugin. See its
documentation.

5.1.14. Kubernetes Cloud Discovery

Kubernetes is an open source system for automating deployment, scaling and management of
containerized applications. Hazelcast provides Kubernetes discovery mechanism that looks for IP
addresses of other members by resolving the requests against a Kubernetes Service Discovery
system. It supports two different options of resolving against the discovery registry: (i) a request to
the REST API, (ii) DNS Lookup against a given DNS service name. This discovery feature is provided
as a Hazelcast plugin. See its documentation for information on configuring and using it.

52


https://docs.pivotal.io/partners/hazelcast/index.html
https://github.com/hazelcast/hazelcast-openshift
https://github.com/hazelcast/management-center-openshift
https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/openshift
https://github.com/hazelcast/hazelcast-eureka
https://github.com/jkutner/hazelcast-heroku-discovery/blob/master/README.md
https://github.com/hazelcast/hazelcast-kubernetes

5.2. Discovering Members by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure
Hazelcast to be a full TCP/IP cluster. When you configure Hazelcast to discover members by TCP/IP,
you must list all or a subset of the members' hostnames and/or IP addresses as cluster members.
You do not have to list all of these cluster members, but at least one of the listed members has to be
active in the cluster when a new member joins.

To configure your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. See
the tcp-ip element section for the full descriptions of the TCP/IP discovery configuration elements.

» Set the enabled attribute of the multicast element to false.
» Set the enabled attribute of the aws element to false.
 Set the enabled attribute of the tcp-ip element to true.

* Provide your member elements within the tcp-ip element.

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">
<member>machinel</member>
<member>machine2</member>
<member>machine3:5799</member>
<member>192.168.1.0-7</member>
<member>192.168.1.21</member>
</tcp-ip>
</join>
</network>

</hazelcast>

As shown above, you can provide IP addresses or hostnames for member elements. You can also give
a range of IP addresses, such as 192.168.1.0-7.

Instead of providing members line-by-line as shown above, you also have the option to use the
members element and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>

If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702 and
SO on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can

53



change this behavior using the system property hazelcast.socket.bind.any. If you set this property
to false, Hazelcast uses the interfaces specified in the interfaces element (see the Interfaces
Configuration section). If no interfaces are provided, then it tries to resolve one interface to bind
from the member elements.

5.3. Discovering Members by Multicast

With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other
using multicast communication. The cluster members do not need to know the concrete addresses
of the other members, as they just multicast to all the other members for listening. Whether
multicast is possible or allowed depends on your environment.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. See the
multicast element section for the full description of the multicast discovery configuration elements.

* Set the enabled attribute of the multicast element to "true".
» Setmulticast-group, multicast-port, multicast-time-to-1live, etc. to your multicast values.

 Set the enabled attribute of both tcp-ip and aws elements to "false".

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-1live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>
<interface>192.168.1.102</interface>
</trusted-interfaces>
</multicast>
<tcp-ip enabled="false">
</tep-ip>
<aws enabled="false">
</aws>
</join>
</network>

</hazelcast>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the
time in seconds that a member should wait for a valid multicast response from another member
running in the network before declaring itself the leader member (the first member joined to the
cluster) and creating its own cluster. This only applies to the startup of members where no leader
has been assigned yet. If you specify a high value to multicast-timeout-seconds, such as 60 seconds,

54



it means that until a leader is selected, each member waits 60 seconds before moving on. Be careful
when providing a high value. Also, be careful not to set the value too low, or the members might
give up too early and create their own cluster.

Multicast auto-discovery is not supported for Hazelcast native clients yet.
However, we offer Multicast Discovery Plugin for this purpose. See the Discovering
Native Clients section.

5.4. Discovering Native Clients

Hazelcast members and native Java clients can find each other with multicast discovery plugin.
This plugin is implemented using Hazelcast Discovery SPI. You should configure the plugin both at
Hazelcast members and Java clients in order to use multicast discovery.

To configure your cluster to have the multicast discovery plugin, follow these steps:

* Disable the multicast and TCP/IP join mechanisms. To do this, set the enabled attributes of the
multicast and tcp-ip elements to false in your hazelcast.xml configuration file

* Set the enabled attribute of the hazelcast.discovery.enabled property to true.

* Add multicast discovery strategy configuration to your XML file, i.e., <discovery-strategies>

element.

The following is an example declarative configuration.

55



<hazelcast>

<properties>
<property name="hazelcast.discovery.enabled">true</property>
</properties>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tep-ip>
<discovery-strategies>
<discovery-strategy class=
"com.hazelcast.spi.discovery.multicast.MulticastDiscoveryStrategy" enabled="true">
<properties>
<property name="group">224.2.2.3</property>
<property name="port">54327</property>
</properties>
</discovery-strategy>
</discovery-strategies>
</join>
</network>

</hazelcast>

The following are the multicast discovery plugin configuration properties with their descriptions:

* group: String value that is used to set the multicast group, so that you can isolate your clusters.

 port: Integer value that is used to set the multicast port.

5.5. Creating Cluster Groups

You can create cluster groups. To do this, use the group configuration element.

You can separate your clusters in a simple way by specifying group names. Example groupings can
be by development, production, test, app, etc. The following is an example declarative
configuration.

<hazelcast>
<group>
<name>production</name>
</group>
</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host
multiple Hazelcast instances. Each Hazelcast instance can only participate in one group. Each
Hazelcast instance only joins to its own group and does not interact with other groups. The

56



following code example creates three separate Hazelcast instances--h1 belongs to the production
cluster, while h2 and h3 belong to the development cluster.

Config configProd = new Config();
configProd.getGroupConfig().setName( "production" );

Config configDev = new Config();
configDev.getGroupConfig().setName( "development" );

HazelcastInstance h1 = Hazelcast.newHazelcastInstance( configProd );
HazelcastInstance h2 = Hazelcast.newHazelcastInstance( configDev );
HazelcastInstance h3 = Hazelcast.newHazelcastInstance( configDev );

5.5.1. Cluster Groups before Hazelcast 3.8.2

If you have a Hazelcast release older than 3.8.2, you need to provide also a group password along
with the group name. The following are the configuration examples with the password element:

<hazelcast>
<group>
<name>production</name>
<password>prod-pass</password>
</group>
</hazelcast>

Config configProd = new Config();
configProd.getGroupConfig().setName( "production” ).setPassword( "prod-pass" );

Config configDev = new Config();
configDev.getGroupConfig().setName( "development" ).setPassword( "dev-pass" );

HazelcastInstance h1
HazelcastInstance h2
HazelcastInstance h3

Hazelcast.newHazelcastInstance( configProd );
Hazelcast.newHazelcastInstance( configDev );
Hazelcast.newHazelcastInstance( configDev );

Starting with 3.8.2, members no longer perform a password check during the
cluster join process. Starting with 3.11, members no longer perform a password
check when a client connects to the cluster.

5.6. Deploying User Codes on the Member

Hazelcast can dynamically load your custom classes or domain classes from a remote class
repository, which typically includes lite members. For this purpose Hazelcast offers a distributed
dynamic class loader.

Using this dynamic class loader, you can control the local caching of the classes loaded from other

57



members, control the classes to be served to other members and create blacklists or whitelists of
classes and packages. When you enable this feature, you don’t need to deploy your classes to all
cluster members.

The following is the brief working mechanism of the User Code Deployment feature:

1. Dynamic class loader first checks the local classes, i.e., your classpath, for your custom class. If it
is there, Hazelcast does not try to load it from the remote class repository.

2. Then, it checks the cache of classes loaded from the remote class repository (for this, caching
should have been enabled in your local, see the Configuring User Code Deployment section). If
your class is found here, again, Hazelcast does not try to load it from the remote class
repository.

3. Finally, dynamic class loader checks the remote class repository. If a member in this repository
returns the class, it means your class is found and to be used. You can also put this class into
your local class cache as mentioned in the previous step.

5.6.1. Configuring User Code Deployment

User Code Deployment feature is not enabled by default. You can configure this feature
declaratively or programmatically. Following are example configuration snippets:

Declarative Configuration:

<hazelcast>

<user-code-deployment enabled="true">
<class-cache-mode>ETERNAL</class-cache-mode>
<provider-mode>LOCAL_CLASSES_ONLY</provider-mode>
<blacklist-prefixes>com.foo</blacklist-prefixes>
<whitelist-prefixes>com.bar.MyClass</whitelist-prefixes>
<provider-filter>HAS_ATTRIBUTE:1ite</provider-filter>
</user-code-deployment>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
UserCodeDeploymentConfig distCLConfig = config.getUserCodeDeploymentConfig();
distCLConfig.setEnabled( true )
.setClassCacheMode( UserCodeDeploymentConfig.ClassCacheMode.ETERNAL )
.setProviderMode( UserCodeDeploymentConfig.ProviderMode.LOCAL_CLASSES_ONLY )
.setBlacklistedPrefixes( "com.foo" )
.setWhitelistedPrefixes( "com.bar.MyClass" )
.setProviderFilter( "HAS_ATTRIBUTE:lite" );

User Code Deployment has the following configuration elements and attributes:

58



* enabled: Specifies whether dynamic class loading is enabled or not. Its default value is "false"
and it is a mandatory attribute.

* <class-cache-mode>: Controls the local caching behavior for the classes loaded from the remote
class repository. Available values are as follows:

o ETERNAL: Cache the loaded classes locally. This is the default value and suitable when you
load long-living objects, such as domain objects stored in a map.

o OFF: Do not cache the loaded classes locally. It is suitable for loading runnables, callables,
entry processors, etc.

e <provider-mode>: Controls how the classes are served to the other cluster members. Available
values are as follows:

o LOCAL_AND_CACHED_CLASSES: Serve classes loaded from both local classpath and from other
members. This is the default value.

o LOCAL_CLASSES_ONLY: Serve classes from the local classpath only. Classes loaded from other
members are used locally, but they are not served to other members.

o OFF: Never serve classes to other members.

» <blacklist-prefixes>: Comma separated name prefixes of classes/packages to be prevented
from dynamic class loading. For example, if you set it as "com.foo", remote loading of all classes
from the "com.foo" package is prevented, including the classes from all its sub-packages. If you
set it as "com.foo.Class", then the "Class" and all classes having the "Class" as prefix in the
"com.foo" package are blacklisted. There are some built-in prefixes which are blacklisted by
default. These are as follows:

o javax.
o java.
- sun.

- com.hazelcast.

» <whitelist-prefixes>: Comma separated name prefixes of classes/packages only from which the
classes are allowed to be loaded. It allows to quickly configure remote loading only for classes
from selected packages. It can be used together with blacklisting. For example, you can whitelist
the prefix "com.foo" and blacklist the prefix "com.foo.secret".

» <provider-filter>: Filter to constraint members to be used for a class loading request when a
class is not available locally. The value is in the format "HAS_ATTRIBUTE:foo". When it is set as
"HAS_ATTRIBUTE:foo", the class loading request is only sent to the members which have "foo"
as a member attribute. Setting this to null allows to load classes from all members. See an
example in the below section.

5.6.2. Example for Filtering Members

As described above, the configuration element provider-filter is used to constrain a member to
load classes only from a subset of all cluster members. The value of the provider-filter must be set
as a member attribute in the desired members from which the classes are to be loaded. See the
following example usages provided as programmatic configurations.

The below example configuration allows the Hazelcast member to load classes only from the
members with the class-provider attribute set. It does not ask any other member to provide a

59



locally unavailable class:

Config hazelcastConfig = new Config();

DistributedClassloadingConfig distributedClassloadingConfig = hazelcastConfig
.getDistributedClassloadingConfig();
distributedClassloadingConfig.setProviderFilter("HAS_ATTRIBUTE:class-provider");

HazelcastInstance instance = Hazelcast.newHazelcastInstance(hazelcastConfig);

And the below example configuration sets the attribute class-provider for a member. So, the above
member loads classes from the members who have the attribute class-provider:

Config hazelcastConfig = new Config();
MemberAttributeConfig memberAttributes = hazelcastConfig.getMemberAttributeConfig();
memberAttributes.setAttribute("class-provider”, "true");

HazecastInstance instance = Hazelcast.newHazelcastInstance(hazelcastConfig);

5.7. Deploying User Codes on Clients
You can also deploy your codes from the client side for the following situations:

1. You have objects that run on the cluster via the clients such as Runnable, Callable and Entry
Processors.

2. You have new or amended user domain objects (in-memory format of the IMap set to Object)
which need to be deployed into the cluster.

When this feature is enabled, the clients deploy these classes to the members. By this way, when a
client adds a new class, the members do not require restarts to include the new classes in classpath.

You can also use the client permission policy to specify which clients are permitted to use User Code
Deployment. See the Permissions section.

5.7.1. Configuring Client User Code Deployment

Client User Code Deployment feature is not enabled by default. You can configure this feature
declaratively or programmatically. Following are example configuration snippets:

Declarative Configuration:

In your hazelcast-client.xml:

60



<hazelcast>

<user-code-deployment enabled="true">
<jarPaths>
<jarPath>/User/example/example.jar</jarPath>
<jarPath>example.jar</jarPath> <!--from class path -->
<jarPath>https://com.example.com/example.jar</jarPath>
<jarPath>file://Users/example/example.jar</jarPath>
</jarPaths>
<classNames>
<!-- for the classes available in client class path -->
<className>example.ClassName</className>
<className>example.ClassName2</className>
</classNames>
</user-code-deployment>

</hazelcast>
Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
ClientUserCodeDeploymentConfig clientUserCodeDeploymentConfig = new
ClientUserCodeDeploymentConfig();

clientUserCodeDeploymentConfig.addJar("/User/example/example.jar");
clientUserCodeDeploymentConfig.addJar("https://com.example.com/example.jar");
clientUserCodeDeploymentConfig.addClass("example.ClassName");
clientUserCodeDeploymentConfig.addClass("example.ClassName2");

clientUserCodeDeploymentConfig.setEnabled(true);
clientConfig.setUserCodeDeploymentConfig(clientUserCodeDeploymentConfig);

Important to Know

Note that User Code Deployment should also be enabled on the members to use this feature.
Config config = new Config();
UserCodeDeploymentConfig userCodeDeploymentConfig = config.

getUserCodeDeploymentConfig();
userCodeDeploymentConfig.setEnabled( true );

See the Member User Code Deployment section for more information on enabling it on the member
side and its configuration properties.

For the property class-cache-mode, Client User Code Deployment supports only the ETERNAL mode,
regardless of the configuration set on the member side (Which can be ETERNAL and OFF).

61



For the property, provider-mode, Client User Code Deployment supports only the
LOCAL_AND_CACHED_CLASSES mode, regardless of the configuration set on the member side (which can
be LOCAL_AND_CACHED_CLASSES, LOCAL_CLASSES_ONLY and OFF).

The remaining properties, which are blacklist-prefixes, whitelist-prefixes and provider-filter
configured on the member side, effect the client user code deployment’s behavior too. For example,
assuming that you provide com.foo as a blacklist prefix on the member side, the member discards
the classes with the prefix com.foo loaded by the client.

5.7.2. Adding User Library to CLASSPATH

When you want to use a Hazelcast feature in a non-Java client, you need to make sure that the
Hazelcast member recognizes it. For this, you can use the /user-1ib directory that comes with the
Hazelcast package and deploy your own library to the member. Let’s say you use Hazelcast Node.js
client and want to use an entry processor. This processor should be IdentifiedDataSerializable or
Portable in the Node.js client. You need to implement the Java equivalents of the processor and its
factory on the member side, and put these compiled class or JAR files into the /user-1ib directory.
Then you can run the start.sh script which adds them to the classpath.

The following is an example code which can be the Java equivalent of entry processor in Node.js
client:

62



public class IdentifiedEntryProcessor extends AbstractEntryProcessor<String, String>
implements IdentifiedDataSerializable {

static final int CLASS_ID = 1;

private String value;

public IdentifiedEntryProcessor() {

}

public int getFactoryId() {
return IdentifiedFactory.FACTORY_ID;

}

public int getId() {
return CLASS_ID;

}

public void writeData(ObjectDataOutput out) throws IOException {
out.writeUTF(value);

}

public void readData(ObjectDatalnput in) throws IOException {
value = in.readUTF();

}

public Object process(Map.Entry<String, String> entry) {
entry.setValue(value);
return value;

You can implement the above processor’s factory as follows:

public class IdentifiedFactory implements DataSerializableFactory {
public static final int FACTORY_ID = 5;

public IdentifiedDataSerializable create(int typeld) {
if (typeld == IdentifiedEntryProcessor.CLASS_ID) {
return new IdentifiedEntryProcessor();

}

return null;

And the following is the configuration for the above factory:

63



<hazelcast>
<serialization>
<data-serializable-factories>
<data-serializable-factory factory-id="5">
IdentifiedFactory
</data-serializable-factory>
</data-serializable-factories>
</serialization>
</hazelcast>

Then, you can start your Hazelcast member by using the start scripts (start.sh or start.bat) in the
/bin directory. The start scripts automatically adds your class and JAR files to the classpath.

5.8. Partition Group Configuration

Hazelcast distributes key objects into partitions using the consistent hashing algorithm. Multiple
replicas are created for each partition and those partition replicas are distributed among Hazelcast
members. An entry is stored in the members that own replicas of the partition to which the entry’s
key is assigned. The total partition count is 271 by default; you can change it with the configuration
property hazelcast.partition.count. See the System Properties appendix.

Hazelcast member that owns the primary replica of a partition is called as partition owner. Other
replicas are called backups. Based on the configuration, a key object can be kept in multiple
replicas of a partition. A member can hold at most one replica of a partition (ownership or backup).

By default, Hazelcast distributes partition replicas randomly and equally among the cluster
members, assuming all members in the cluster are identical. But what if some members share the
same JVM or physical machine or chassis and you want backups of these members to be assigned to
members in another machine or chassis? What if processing or memory capacities of some
members are different and you do not want an equal number of partitions to be assigned to all
members?

To deal with such scenarios, you can group members in the same JVM (or physical machine) or
members located in the same chassis. Or you can group members to create identical capacity. We
call these groups partition groups. Partitions are assigned to those partition groups instead of
individual members. Backup replicas of a partition which is owned by a partition group are located
in other partition groups.

5.8.1. Grouping Types

When you enable partition grouping, Hazelcast presents the following choices for you to configure
partition groups.

HOST_AWARE

You can group members automatically using the IP addresses of members, so members sharing the
same network interface are grouped together. All members on the same host (IP address or domain
name) form a single partition group. This helps to avoid data loss when a physical server crashes,

64



because multiple replicas of the same partition are not stored on the same host. But if there are
multiple network interfaces or domain names per physical machine, this assumption is invalid.

The following are declarative and programmatic configuration snippets that show how to enable
HOST_AWARE grouping:

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled( true )

.setGroupType( MemberGroupType.HOST_AWARE );

CUSTOM

You can do custom grouping using Hazelcast’s interface matching configuration. This way, you can
add different and multiple interfaces to a group. You can also use wildcards in the interface
addresses. For example, the users can create rack-aware or data warehouse partition groups using
custom partition grouping.

The following are declarative and programmatic configuration examples that show how to enable
and use CUSTOM grouping:

<hazelcast>

<partition-group enabled="true" group-type="CUSTOM">
<member-group>
<interface>10.10.0.*</interface>
<interface>10.10.3.*</interface>
<interface>10.10.5.*</interface>
</member-group>
<member-group>
<interface>10.10.10.10-100</interface>
<interface>10.10.1.*</interface>
<interface>10.10.2.*</interface>
</member-group>
</partition-group>

</hazelcast>

65



Config config = new Config();
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled( true )

.setGroupType( PartitionGroupConfig.MemberGroupType.CUSTOM );

MemberGroupConfig memberGroupConfig = new MemberGroupConfig();
memberGroupConfig.addInterface( "10.10.0.*" )
.addInterface( "10.10.3.*" ).addInterface("10.10.5.*" );

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface( "10.10.10.10-100" )
.addInterface( "10.10.1.*").addInterface( "10.10.2.*" );

partitionGroupConfig.addMemberGroupConfig( memberGroupConfig );
partitionGroupConfig.addMemberGroupConfig( memberGroupConfig2 );

While your cluster was forming, if you configured your members to discover each

0 other by their IP addresses, you should use the IP addresses for the <interface>
element. If your members discovered each other by their hostnames, you should
use the hostnames.

PER_MEMBER

You can give every member its own group. Each member is a group of its own and primary and
backup partitions are distributed randomly (not on the same physical member). This gives the least
amount of protection and is the default configuration for a Hazelcast cluster. This grouping type
provides good redundancy when Hazelcast members are on separate hosts. However, if multiple
instances run on the same host, this type is not a good option.

The following are declarative and programmatic configuration snippets that show how to enable

PER_MEMBER grouping:

<partition-group enabled="true" group-type="PER_MEMBER" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled( true )

.setGroupType( MemberGroupType.PER_MEMBER );

ZONE_AWARE

You can use ZONE_AWARE configuration with Hazelcast Kubernetes, Hazelcast AWS, Hazelcast GCP,
Hazelcast jclouds or Hazelcast Azure Discovery Service plugins.

As discovery services, these plugins put zone information to the Hazelcast member attributes map
during the discovery process. When ZONE_AWARE is configured as partition group type, Hazelcast

66


https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-gcp
https://github.com/hazelcast/hazelcast-jclouds
https://github.com/hazelcast/hazelcast-azure

creates the partition groups with respect to member attributes map entries that include zone
information. That means backups are created in the other zones and each zone is accepted as one
partition group.

When using the ZONE_AWARE partition grouping, a Hazelcast cluster spanning
multiple AZs should have an equal number of members in each AZ. Otherwise, it
results in uneven partition distribution among the members.

The following is the list of supported attributes which is set by the Discovery Service plugins during
a Hazelcast member start-up:

* hazelcast.partition.group.zone: For the zones in the same area.
* hazelcast.partition.group.rack: For different racks in the same zone.

* hazelcast.partition.group.host: For a shared physical member if virtualization is used.

hazelcast-jclouds offers rack or host information in addition to zone information

O based on cloud provider. In such cases, Hazelcast looks for zone, rack and host
information in the given order and create partition groups with available
information*

The following are declarative and programmatic configuration snippets that show how to enable
ZONE_AWARE grouping:

<partition-group enabled="true" group-type="ZONE_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled( true )

.setGroupType( MemberGroupType.ZONE_AWARE );

SPI

You can provide your own partition group implementation using the SPI configuration. To create
your partition group implementation, you need to first extend the DiscoveryStrategy class of the
discovery  service  plugin, override the method public PartitionGroupStrategy
getPartitionGroupStrategy() and return the PartitionGroupStrategy configuration in that
overridden method.

The following code covers the implementation steps mentioned in the above paragraph:

67



public class CustomDiscovery extends AbstractDiscoveryStrategy {

public CustomDiscovery(ILogger logger, Map<String, Comparable> properties) {
super(logger, properties);

}

public Iterable<DiscoveryNode> discoverNodes() {
Iterable<DiscoveryNode> iterable = //your implementation
return iterable;

public PartitionGroupStrategy getPartitionGroupStrategy() {
return new CustomPartitionGroupStrategy();

}

private class CustomPartitionGroupStrategy implements PartitionGroupStrategy {

public Iterable<MemberGroup> getMemberGroups() {
Iterable<MemberGroup> iterable = //your implementation
return iterable;

5.9. Logging Configuration

Hazelcast has a flexible logging configuration and does not depend on any logging framework
except JDK logging. It has built-in adapters for a number of logging frameworks and it also supports
custom loggers by providing logging interfaces.

To use the built-in adapters, set the hazelcast.logging.type property to one of the predefined types
below:

* jdk: JDK logging (default)

log4j: Log4j

log4j2: Log4j2

slf4j: Slf4j

* none: disable logging

You can set hazelcast.logging.type through declarative configuration, programmatic configuration
or JVM system property.

ﬁ If you choose to use log4j, log4j2, or slf4j, you should include the proper
dependencies in the classpath.

68



Declarative Configuration:

<hazelcast>

<properties>
<property name="hazelcast.logging.type">log4j</property>
</properties>

</hazelcast>
Programmatic Configuration

Config config = new Config() ;
config.setProperty( "hazelcast.logging.type", "log4j" );

System Property

 using the java -Dhazelcast.logging.type=slf4j JVM parameter

* using System.setProperty( "hazelcast.logging.type", "none" ); System class

If the provided logging mechanisms are not satisfactory, you can implement your own using the
custom logging feature. To use it, implement the com.hazelcast.logging.LoggerFactory and
com.hazelcast.logging.ILogger interfaces and set the system property hazelcast.logging.class as
your custom LoggerFactory class name.

-Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

LogListener listener = new LogListener() {

public void log( LogEvent logEvent ) {

// do something

}
I
HazelcastInstance instance = Hazelcast.newHazelcastInstance();
LoggingService loggingService = instance.getlLoggingService();
loggingService.addLogListener( Level.INFO, listener );

Through the LoggingService, you can get the currently used ILogger implementation and log your
own messages too.

If you are not using command line for configuring logging, you should be careful

about Hazelcast classes. They may be defaulted to jdk logging before newly
configured logging is read. When logging mechanism is selected, it will not change.

69



Below are example configurations for Log4j2 and Log4j. Note that Hazelcast does not recommend
any specific logging library, these examples are provided only to demonstrate how to configure the
logging. You can use your custom logging as explained above.

5.9.1. Example Log4j2 Configuration

Specify the logging type as Log4j2 and a separate logging configuration file as shown below.

Using JVM arguments:

-Dhazelcast.logging.type=1log4j?2
-Dlog4j.configurationFile=/path/to/properties/log4j2.properties

Using declarative configuration (hazelcast.xml):

<hazelcast>
<properties>
<property name="hazelcast.logging.type">1log4j2</property>
<property name="1log4j2.configuration">
/path/to/properties/log4j2.properties</property>
</properties>

</hazelcast>

Following is an example 1og4j2.properties file:

70



rootLogger=file
rootLogger.level=info
property.filepath=/path/to/log/files
property.filename=hazelcast

appender.file.type=RollingFile

appender.file.name=RollingFile
appender.file.fileName=${filepath}/${filename}.log
appender.file.filePattern=${filepath}/${filename}-%d{yyyy-MM-dd}-%i.log.gz
appender.file.layout.type=PatternlLayout

appender.file.layout.pattern = %d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n
appender.file.policies.type=Policies
appender.file.policies.time.type=TimeBasedTriggeringPolicy
appender.file.policies.time.interval=1
appender.file.policies.time.modulate=true
appender.file.policies.size.type=SizeBasedTriggeringPolicy
appender.file.policies.size.size=50MB
appender.file.strateqgy.type=DefaultRolloverStrategy
appender.file.strategy.max=100

rootLogger.appenderRefs=file
rootLogger.appenderRef.file.ref=RollingFile

#Hazelcast specific logs.

#1og4j.logger.com.hazelcast=debug
#log4j.logger.com.hazelcast.cluster=debug
#1og4j.logger.com.hazelcast.partition=debug
#1og4j.logger.com.hazelcast.partition.InternalPartitionService=debug

#1og4j.logger.com.hazelcast.nio=debug
#1og4j.logger.com.hazelcast.hibernate=debug

To enable the debug logs for all Hazelcast operations uncomment the below line in the above
configuration file:

log4j.logger.com.hazelcast=debug

If you do not need detailed logs, the default settings is enough. Using the Hazelcast specific lines in
the above configuration file, you can select to see specific logs (cluster, partition, hibernate, etc.) in
desired levels.

5.9.2. Example Log4j Configuration

Its configuration is similar to that of Log4j2. Below is the JVM argument way of specifying the
logging type and configuration file:

71



-Dhazelcast.logging.type=10g4j
-Dlog4j.configuration=file:/path/to/properties/log4j.properties

Following is an example log4j.properties file:

log4j

log4j
log4j.
log4j
log4j.
log4j
log4j
log4j

#1og4j

#log4j
#log4j
#log4j
#log4j
#log4j

.rootLogger=INFO, file

.appender.file=org.apache.log4j.RollingFileAppender

appender.file.File=/path/to/log/files/hazelcast.log

.logger.

. logger.
.logger.
.com.hazelcast.partition.InternalPartitionService=debug
.logger.
. logger.

. logger

.appender.file.layout=org.apache.log4j.PatternlLayout
appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p [%c{1}] -
.appender.file.maxFileSize=50MB

.appender.file.maxBackupIndex=100

.appender.file.threshold=DEBUG

00
%M%sN

com.hazelcast=debug

com.hazelcast.cluster=debug
com.hazelcast.partition=debug

com.hazelcast.nio=debug
com.hazelcast.hibernate=debug

5.10. Other Network Configurations

All network related configurations are performed via the network element in the Hazelcast XML
configuration file or the class NetworkConfig when using programmatic configuration. Following
subsections describe the available configurations that you can perform under the network element.

5.10.1. Public Address

public-address overrides the public address of a member. By default, a member selects its socket
address as its public address. But behind a network address translation (NAT), two endpoints
(members) may not be able to see/access each other. If both members set their public addresses to
their defined addresses on NAT, then that way they can communicate with each other. In this case,
their public addresses are not an address of a local network interface but a virtual address defined
by NAT. It is optional to set and useful when you have a private cloud. Note that, the value for this
element should be given in the format host IP address:port number. See the following examples.

Declarative Configuration:

72



<hazelcast>

<network>
<public-address>11.22.33.44:5555</public-address>
</network>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
config.getNetworkConfig()
.setPublicAddress( "11.22.33.44:5555" );

5.10.2. Port

You can specify the ports that Hazelcast uses to communicate between cluster members. Its default
value is 5701. The following are example configurations.

Declarative Configuration:

<hazelcast>

<network>
<port port-count="20" auto-increment="true">5701</port>
</network>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
config.getNetworkConfig().setPort( 5707 )
.setPortAutoIncrement( true ).setPortCount( 20 );

According to the above example, Hazelcast tries to find free ports between 5701 and 5720.

port has the following attributes.

* port-count: By default, Hazelcast tries 100 ports to bind. Meaning that, if you set the value of
port as 5701, as members are joining to the cluster, Hazelcast tries to find ports between 5701
and 5801. You can choose to change the port count in the cases like having large instances on a
single machine or willing to have only a few ports to be assigned. The parameter port-count is
used for this purpose, whose default value is 100.

* auto-increment: In some cases you may want to choose to use only one port. In that case, you can

73



disable the auto-increment feature of port by setting auto-increment to false. The port-count
attribute is not used when auto-increment feature is disabled.

5.10.3. Outbound Ports

By default, Hazelcast lets the system pick up an ephemeral port during socket bind operation. But
security policies/firewalls may require you to restrict outbound ports to be used by Hazelcast-
enabled applications. To fulfill this requirement, you can configure Hazelcast to use only defined
outbound ports. The following are example configurations.

Declarative Configuration:

<hazelcast>
<network>
<outbound-ports>
<!-- ports between 33000 and 35000 -->
<ports>33000-35000</ports>
<!-- comma separated ports -->
<ports>37000,37001,37002,37003</ports>
<ports>38000,38500-38600</ports>

</outbound-ports>
</network>

</hazelcast>

Programmatic Configuration:

NetworkConfig networkConfig = config.getNetworkConfig();

// ports between 35000 and 35100
networkConfig.addOutboundPortDefinition("35000-35100");

// comma separated ports
networkConfig.addOutboundPortDefinition("36001, 36002, 36003");
networkConfig.addOutboundPort(37000);
networkConfig.addOutboundPort(37001);

0 You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one
port. If you need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port
definitions. When you set this element to 0 or *, your operating system (not Hazelcast) selects a free
port from the ephemeral range.

74



5.10.4. Reuse Address

When you shutdown a cluster member, the server socket port goes into the TIME_WAIT state for the
next couple of minutes. If you start the member right after shutting it down, you may not be able to
bind it to the same port because it is in the TIME_WAIT state. If you set the reuse-address element to
true, the TIME_WAIT state is ignored and you can bind the member to the same port again.

The following are example configurations.

Declarative Configuration:

<hazelcast>
<network>
<reuse-address>true</reuse-address>

</network>

</hazelcast>

Programmatic Configuration:

NetworkConfig networkConfig = config.getNetworkConfig();

networkConfig.setReuseAddress( true );

5.10.5. Join

The join configuration element is used to discover Hazelcast members and enable them to form a
cluster. Hazelcast provides multicast, TCP/IP, EC2 and jclouds® discovery mechanisms. These
mechanisms are explained the Discovery Mechanisms section. This section describes all the sub-
elements and attributes of join element. The following are example configurations.

Declarative Configuration:

75



<hazelcast>
<network>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>
<interface>192.168.1.102</interface>
</trusted-interfaces>
</multicast>
<tcp-ip enabled="false">
<required-member>192.168.1.104</required-member>
<member>192.168.1.104</member>
<members>192.168.1.105,192.168.1.106</members>
</tep-ip>
<aws enabled="false">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec?2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-members</tag-value>
</aws>
<discovery-strategies>
<discovery-strategy ... />
</discovery-strategies>
</join>
</network>

</hazelcast>

Programmatic Configuration:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
JoinConfig join = network.getJoin();
join.getMulticastConfig().setEnabled( false )
.addTrustedInterface( "192.168.1.102" );
join.getTcpIpConfig().addMember( "10.45.67.32" ).addMember( "10.45.67.100" )
.setRequiredMember( "192.168.10.100" ).setEnabled( true );

The join element has the following sub-elements and attributes.

76



multicast element

The multicast element includes parameters to fine tune the multicast join mechanism.

* enabled: Specifies whether the multicast discovery is enabled or not, true or false.

* multicast-group: The multicast group IP address. Specify it when you want to create clusters
within the same network. Values can be between 224.0.0.0 and 239.255.255.255. Its default value
is 224.2.2.3.

* multicast-port: The multicast socket port that the Hazelcast member listens to and sends
discovery messages through. Its default value is 54327.

* multicast-time-to-live: Time-to-live value for multicast packets sent out to control the scope of
multicasts. See more information here.

* multicast-timeout-seconds: Only when the members are starting up, this timeout (in seconds)
specifies the period during which a member waits for a multicast response from another
member. For example, if you set it as 60 seconds, each member waits for 60 seconds until a
leader member is selected. Its default value is 2 seconds.

» trusted-interfaces: Includes IP addresses of trusted members. When a member wants to join to
the cluster, its join request is rejected if it is not a trusted member. You can give an IP addresses
range using the wildcard (*) on the last digit of IP address, e.g., 192.168.1.* or 192.168.1.100-110.

0 Multicast mechanism is not recommended for production since UDP is often
blocked in production environments and other join mechanisms are more definite.

tcp-ip element

The tcp-ip element includes parameters to fine tune the TCP/IP join mechanism.

* enabled: Specifies whether the TCP/IP discovery is enabled or not. Values can be true or false.

* required-member: IP address of the required member. Cluster is only formed if the member with
this IP address is found.

e member: IP address(es) of one or more well known members. Once members are connected to
these well known ones, all member addresses are communicated with each other. You can also
give comma separated IP addresses using the members element.

ﬁ tep-ip element also accepts the interface parameter. See the Interfaces
element description.

» connection-timeout-seconds: Defines the connection timeout in seconds. This is the maximum
amount of time Hazelcast is going to try to connect to a well known member before giving up.
Setting it to a too low value could mean that a member is not able to connect to a cluster. Setting
it to a too high value means that member startup could slow down because of longer timeouts,
for example when a well known member is not up. Increasing this value is recommended if you
have many IPs listed and the members cannot properly build up the cluster. Its default value is
5 seconds.

77


http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

aws element

The aws element includes parameters to allow the members to form a cluster on the Amazon EC2
environment.

enabled: Specifies whether the EC2 discovery is enabled or not, true or false.
access-key, secret-key: Access and secret keys of your account on EC2.

region: The region where your members are running. Its default value is us-east-1. You need to
specify this if the region is other than the default one.

host-header: The URL that is the entry point for a web service. It is optional.

security-group-name: Name of the security group you specified at the EC2 management console.
It is used to narrow the Hazelcast members to be within this group. It is optional.

tag-key, tag-value: To narrow the members in the cloud down to only Hazelcast members, you
can set these parameters as the ones you specified in the EC2 console. They are optional.

connection-timeout-seconds: The maximum amount of time, in seconds, Hazelcast tries to
connect to a well known member before giving up. Setting this value too low could mean that a
member is not able to connect to a cluster. Setting the value too high means that member
startup could slow down because of longer timeouts (for example, when a well known member
is not up). Increasing this value is recommended if you have many IPs listed and the members
cannot properly build up the cluster. Its default value is 5 seconds.

If you are using a cloud provider other than AWS, you can use the programmatic configuration to
specify a TCP/IP cluster. The members need to be retrieved from that provider, e.g., jclouds.

discovery-strategies element

The discovery-strategies element configures internal or external discovery strategies based on the
Hazelcast Discovery SPI. For further information, see the Discovery SPI section and the vendor
documentation of the used discovery strategy.

5.10.6. AWSClient Configuration

To make sure EC2 instances are found correctly, you can use the AWSClient class. It determines the
private IP addresses of EC2 instances to be connected. Give the AWSClient class the values for the
parameters that you specified in the aws element, as shown below. You will see whether your EC2
instances are found.

78



public static void main( String[] args )throws Exception{
AwsConfig config = new AwsConfig();
config.setSecretKey( ... ) ;
config.setSecretKey( ... );
config.setRegion( ... );
config.setSecurityGroupName( ... );
config.setTagKey( ... );
config.setTagValue( ... );
config.setEnabled( true );
AWSCLlient client = new AWSClient( config );
Collection<String> ipAddresses = client.getPrivateIpAddresses();
System.out.println( "addresses found:" + ipAddresses );
for ( String ip: ipAddresses ) {

System.out.println( ip );

}

}

5.10.7. Interfaces

You can specify which network interfaces that Hazelcast should use. Servers mostly have more than
one network interface, so you may want to list the valid IPs. Range characters (* and -) can be used
for simplicity. For instance, 10.3.10.* refers to IPs between 10.3.10.0 and 10.3.10.255. Interface
10.3.10.4-18 refers to IPs between 10.3.10.4 and 10.3.10.18 (4 and 18 included). If network interface
configuration is enabled (it is disabled by default) and if Hazelcast cannot find a matching interface,
then it prints a message on the console and does not start on that member.

The following are example configurations.

Declarative Configuration:

<hazelcast>
<network>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>192.168.1.3</interface>

</interfaces>
</network>

</hazelcast>

Programmatic Configuration:

79



Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
InterfacesConfig interfaceConfig = network.getInterfaces();
interfaceConfig.setEnabled( true )

.addInterface( "192.168.1.3" );

5.10.8. IPv6 Support

Hazelcast supports IPv6 addresses seamlessly (This support is switched off by default, see the note
at the end of this section).

All you need is to define IPv6 addresses or interfaces in the network configuration. The only
current limitation is that you cannot define wildcard IPv6 addresses in the TCP/IP join
configuration (tcp-ip element). Interfaces configuration does not have this limitation, you can
configure wildcard IPv6 interfaces in the same way as IPv4 interfaces.

<hazelcast>
<network>
<port auto-increment="true">5701</port>
<join>
<multicast enabled="false">
<multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="true">
<member>[fe80::223:6cff:fe93:7c7e]:5701</member>
<interface>192.168.1.0-7</interface>
<interface>192.168.1.*</interface>
<interface>fe80:0:0:0:45c5:47ee:fe15:493a</interface>
</tcp-ip>
</join>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>fe80:0:0:0:45c5:47ee:fel15:*</interface>
<interface>fe80::223:6cff:fe93:0-5555</interface>
</interfaces>
</network>

</hazelcast>

JVM has two system properties for setting the preferred protocol stack (IPv4 or IPv6) as well as the
preferred address family types (inet4 or inet6). On a dual stack machine, IPv6 stack is preferred by
default, you can change this through the java.net.preferIPv4Stack=<true|false> system property.
When querying name services, JVM prefers IPv4 addresses over IPv6 addresses and returns an IPv4
address if possible. You can change this through java.net.preferIPv6Addresses=<true|false> system
property.

80



See also additional details on IPv6 support in Java.

IPv6 support has been switched off by default, since some platforms have issues
using the IPv6 stack. Some other platforms such as Amazon AWS have no support

0 at all. To enable IPv6 support, just set configuration property
hazelcast.prefer.ipvd.stack to false. See the System Properties appendix for
details.

5.10.9. Member Address Provider SPI

0 This SPI is not intended to provide addresses of other cluster members with which
the Hazelcast instance forms a cluster. To do that, see the previous sections above.

By default, Hazelcast chooses the public and bind address. You can influence on the choice by
defining a public-address in the configuration or by using other properties mentioned above. In
some cases, though, these properties are not enough and the default address picking strategy
chooses wrong addresses. This may be the case when deploying Hazelcast in some cloud
environments, such as AWS, when using Docker or when the instance is deployed behind a NAT
and the public-address property is not enough (see the Public Address section).

In these cases, it is possible to configure the bind and public address in a more advanced way. You
can provide an implementation of the com.hazelcast.spi.MemberAddressProvider interface which
provides the bind and public address. The implementation may then choose these addresses in any
way - it may read from a system property or file or even invoke a web service to retrieve the public
and private address.

The details of the implementation depend heavily on the environment in which Hazelcast is
deployed. As such, we now demonstrate how to configure Hazelcast to use a simplified custom
member address provider SPI implementation. An example implementation is shown below:

public static final class SimpleMemberAddressProvider implements MemberAddressProvider

{

public InetSocketAddress getBindAddress() {
// determine the address using some confiquration, calling an API, ...
return new InetSocketAddress(hostname, port);

public InetSocketAddress getPublicAddress() {
// determine the address using some confiquration, calling an API, ...
return new InetSocketAddress(hostname, port);

Note that if the bind address port is @ then it uses a port as configured in the Hazelcast network
configuration (see the Port section). If the public address port is set to 0 then it broadcasts the same
port that it is bound to. If you wish to bind to any local interface, you may return new

81


http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/

InetSocketAddress((InetAddress) null, port) from the getBindAddress() address.

The following configuration examples contain properties that are provided to the constructor of the
provider class. If you do not provide any properties, the class may have either a no-arg constructor
or a constructor accepting a single java.util.Properties instance. On the other hand, if you do
provide properties in the configuration, the class must have a constructor accepting a single
java.util.Properties instance.

Declarative Configuration:

<hazelcast>
<network>
<member-address-provider enabled="true">
<class-name>SimpleMemberAddressProvider</class-name>
<properties>
<property name="prop1">prop1-value</property>
<property name="prop2">prop2-value</property>
</properties>
</member-address-provider>
<!-- other network configurations -->
</network>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
MemberAddressProviderConfig memberAddressProviderConfig = config.getNetworkConfig()
.getMemberAddressProviderConfig();
memberAddressProviderConfig
.setEnabled(true)
.setClassName(MemberAddressProviderWithStaticProperties.class.getName());
Properties properties = memberAddressProviderConfig.getProperties();
properties.setProperty("prop1", "prop1-value");
properties.setProperty("prop2", "prop2-value");

config.getNetworkConfig().getJoin().getMulticastConfig().setEnabled(false);
// perform other configuration

Hazelcast.newHazelcastInstance(config);

5.11. Failure Detector Configuration

A failure detector is responsible to determine if a member in the cluster is unreachable or crashed.
The most important problem in failure detection is to distinguish whether a member is still alive
but slow or has crashed. But according to the famous FLP result, it is impossible to distinguish a

82


http://dl.acm.org/citation.cfm?doid=3149.214121

crashed member from a slow one in an asynchronous system. A workaround to this limitation is to
use unreliable failure detectors. An unreliable failure detector allows a member to suspect that
others have failed, usually based on liveness criteria but it can make mistakes to a certain degree.

Hazelcast has the following built-in failure detectors: Deadline Failure Detector and Phi Accrual
Failure Detector.

There is also a Ping Failure Detector, that, if enabled, works in parallel with the above ones, but
identifies the failures on OSI Layer 3 (Network Layer). This detector is by default disabled.

Note that, Hazelcast also offers failure detectors for its Java client. See the Client Failure Detectors
section for more information.

5.11.1. Deadline Failure Detector

Deadline Failure Detector uses an absolute timeout for missing/lost heartbeats. After timeout, a
member is considered as crashed/unavailable and marked as suspected.

Deadline Failure Detector has the following configuration properties:

* hazelcast.heartbeat.interval.seconds: This is the interval at which member heartbeat messages
are sent to each other.

* hazelcast.max.no.heartbeat.seconds: This is the timeout which defines when a cluster member
is suspected because it has not sent any heartbeats.

To use Deadline Failure Detector configuration property hazelcast.heartbeat.failuredetector.type
should be set to "deadline".

<hazelcast>

<properties>
<property name="hazelcast.heartbeat.failuredetector.type">deadline</property>
<property name="hazelcast.heartbeat.interval.seconds">5</property>
<property name="hazelcast.max.no.heartbeat.seconds">120</property>
</properties>

</hazelcast>

Config config = ...;
config.setProperty("hazelcast.heartbeat.failuredetector.type", "deadline");
config.setProperty("hazelcast.heartbeat.interval.seconds", "5");
config.setProperty("hazelcast.max.no.heartbeat.seconds", "120");

[...]

0 Deadline Failure Detector is the default failure detector in Hazelcast.

83



5.11.2. Phi Accrual Failure Detector

This is the failure detector based on The Phi Accrual Failure Detector' by Hayashibara et al.

Phi Accrual Failure Detector keeps track of the intervals between heartbeats in a sliding window of
time and measures the mean and variance of these samples and calculates a value of suspicion
level (Phi). The value of phi increases when the period since the last heartbeat gets longer. If the
network becomes slow or unreliable, the resulting mean and variance increase, there needs to be a
longer period for which no heartbeat is received before the member is suspected.

The hazelcast.heartbeat.interval.seconds and hazelcast.max.no.heartbeat.seconds properties still
can be used as period of heartbeat messages and deadline of heartbeat messages. Since Phi Accrual
Failure Detector is adaptive to network conditions, a much lower
hazelcast.max.no.heartbeat.seconds can be defined than Deadline Failure Detector's timeout.

In addition to the above two properties, Phi Accrual Failure Detector has the following configuration
properties:

* hazelcast.heartbeat.phiaccrual.failuredetector.threshold: This is the phi threshold for
suspicion. After calculated phi exceeds this threshold, a member is considered as unreachable
and marked as suspected. A low threshold allows to detect member crashes/failures faster but
can generate more mistakes and cause wrong member suspicions. A high threshold generates
fewer mistakes but is slower to detect actual crashes/failures.

1 means likeliness that we will make a mistake is about 10%. The likeliness is about 1% with
2,0.1% with phi = 3 and so on. Default phi threshold is 10.

phi
phi

* hazelcast.heartbeat.phiaccrual.failuredetector.sample.size: Number of samples to keep for
history. Its default value is 200.

* hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis: Minimum standard
deviation to use for the normal distribution used when calculating phi. Too low standard
deviation might result in too much sensitivity.

To use Phi Accrual Failure Detector, configuration property
hazelcast.heartbeat.failuredetector.type should be set to "phi-accrual”.

84


https://www.computer.org/csdl/proceedings/srds/2004/2239/00/22390066-abs.html

<hazelcast>

<properties>
<property name="hazelcast.heartbeat.failuredetector.type">phi-
accrual</property>
<property name="hazelcast.heartbeat.interval.seconds">1</property>
<property name="hazelcast.max.no.heartbeat.seconds">60</property>
<property name="hazelcast.heartbeat.phiaccrual.failuredetector.threshold">
10</property>
<property name="hazelcast.heartbeat.phiaccrual.failuredetector.sample.size"
>200</property>
<property name=
"hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis">100</property>
</properties>

</hazelcast>

Config config = ...;

config.setProperty("hazelcast.heartbeat.failuredetector.type", "phi-accrual");
config.setProperty("hazelcast.heartbeat.interval.seconds", "1");
config.setProperty("hazelcast.max.no.heartbeat.seconds", "60");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.threshold", "10");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.sample.size", "200
");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis"
, "100");

[...]

5.11.3. Ping Failure Detector

The Ping Failure Detector may be configured in addition to one of Deadline and Phi Accrual Failure
Detectors. It operates at Layer 3 of the OSI protocol and provides much quicker and more
deterministic detection of hardware and other lower level events. This detector may be configured
to perform an extra check after a member is suspected by one of the other detectors, or it can work
in parallel, which is the default. This way hardware and network level issues are detected more
quickly.

This failure detector is based on InetAddress.isReachable(). When the JVM process has enough
permissions to create RAW sockets, the implementation chooses to rely on ICMP Echo requests. This
is preferred.

If there are not enough permissions, it can be configured to fallback on attempting a TCP Echo on
port 7. In the latter case, both a successful connection or an explicit rejection is treated as "Host is
Reachable". Or, it can be forced to use only RAW sockets. This is not preferred as each call creates a
heavy weight socket and moreover the Echo service is typically disabled.

For the Ping Failure Detector to rely only on ICMP Echo requests, there are some criteria that need
to be met.

85



Requirements and Linux/Unix Configuration

* Supported OS: as of Java 1.8 only Linux/Unix environments are supported. This detector

relies on ICMP, i.e., the protocol behind the ping command. It tries to issue the ping attempts
periodically, and their responses are used to determine the reachability of the remote member.
However, you cannot simply create an ICMP Echo Request because these type of packets do not
rely on any of the preexisting transport protocols such as TCP. In order to create such a request,
you must have the privileges to create RAW sockets (see https://linux.die.net/man/7/raw). Most
operating systems allow this to the root users, however Unix based ones are more flexible and
allow the use of custom privileges per process instead of requiring root access. Therefore, this
detector is supported only on Linux.

The Java executable must have the cap_net_raw capability. As described in the above
requirement, on Linux, you have the ability to define extra capabilities to a single process,
which would allow the process to interact with the RAW sockets. This interaction is achieved via
the capability cap_net_raw (see https://linux.die.net/man/7/capabilities). To enable this capability
run the following command:

sudo setcap cap_net_raw=+ep <JDK_HOME>/jre/bin/java

When running with custom capabilities, the dynamic linker on Linux rejects loading the

libs from untrusted paths. Since you have now cap_net_raw as a custom capability for a

process, it becomes suspicious to the dynamic linker and throws an error: java: error while

loading shared Tlibraries: 1ibjli.so: cannot open shared object file: No such file or

directory

> To overcome this rejection, the <JDK_HOME>/jre/1ib/amd64/j1i/ path needs to be added in the

1d.conf. Run the following command to do this: echo "<JDK_HOME>/jre/lib/amd64/jli/" >>
/etc/1d.so.conf.d/java.conf && sudo ldconfig

ICMP Echo Requests must not be blocked by the receiving hosts.

/proc/sys/net/ipv4/icmp_echo_ignore_all set to 0. Run the following command:

echo @ > /proc/sys/net/ipv4/icmp_echo_ignore_all

If any of the above criteria isn’t met, then the isReachable always falls back on TCP Echo attempts
on port 7.

To be able to use the Ping Failure Detector, please add the following properties in your Hazelcast
declarative configuration file:

86


https://linux.die.net/man/7/raw
https://linux.die.net/man/7/capabilities

<hazelcast>

<properties>
<property name="hazelcast.icmp.enabled">true</property>
<property name="hazelcast.icmp.parallel.mode">true</property>
<property name="hazelcast.icmp.timeout">1000</property>
<property name="hazelcast.icmp.max.attempts">3</property>
<property name="hazelcast.icmp.interval">1000</property>
<property name="hazelcast.icmp.tt1">0</property>

</properties>

</hazelcast>

The following are the property descriptions:

* hazelcast.icmp.enabled: Enables legacy ICMP detection mode, works cooperatively with the
existing failure detector and only kicks-in after a pre-defined period has passed with no
heartbeats from a member. Its default value is false.

* hazelcast.icmp.parallel.mode: Enabling the parallel ping detector, works separately from the
other detectors. Its default value is true.

* hazelcast.icmp.timeout: Number of milliseconds until a ping attempt is considered failed if
there was no reply. Its default value is 1000 milliseconds.

* hazelcast.icmp.max.attempts: Maximum number of ping attempts before the member/node gets
suspected by the detector. Its default value is 3.

* hazelcast.icmp.interval: Interval, in milliseconds, between each ping attempt. 1000ms (1 sec) is
also the minimum interval allowed. Its default value is 1000 milliseconds.

* hazelcast.icmp.ttl: Maximum number of hops the packets should go through. Its default value
is 0.

In the above configuration, the Ping detector attempts 3 pings, one every second and waits up to 1
second for each to complete. If after 3 seconds, there was no successful ping, the member gets
suspected.

To enforce the Requirements, the property hazelcast.icmp.echo.fail.fast.on.startup can also be
set to true, in which case, if any of the requirements isn’t met, Hazelcast fails to start.

Below is a summary table of all possible configuration combinations of the ping failure detector.

Table 3. Ping Failure Detector Possible Configuration Combinations

ICMP Parallel Fail-Fast Description Linux Window macOS
s
false false false Completely disabled N/A N/A N/A

87



ICMP Parallel Fail-Fast Description Linux Window macOS$S

s
true false false Legacy ping mode. This Supported ICMP  Support Support
works hand-to-hand with Echo if available- ed TCP ed ICMP
the OSI Layer 7 failure Falls back on TCP Echoon Echo if
detector (see. phi or Echo on port 7 port7  availabl
deadline in sections above). e - Falls
Ping in this mode only kicks back on
in after a period when there TCP
are no heartbeats received, Echo on
in which case the remote port 7
Hazelcast member is pinged
up to a configurable count of
attempts. If all those
attempts fail, the member
gets suspected. You can
configure this attempt count
using the
hazelcast.icmp.max.attempts
system property.
true true false Parallel ping detector, works Supported ICMP  Support Support
in parallel with the Echo if available - ed TCP  ed ICMP
configured failure detector. Falls back on TCP Echoon Echo if
Checks periodically if Echo on port 7 port7  availabl
members are live (OSI Layer e - Falls
3) and suspects them back on
immediately, regardless of TCP
the other detectors. Echo on
port 7
true true true Parallel ping detector, works Supported - Not Not
in parallel with the Requires OS Support Support
configured failure detector. Configuration ed ed -
Checks periodically if Enforcing ICMP Requires
members are live (OSI Layer Echo if available - root
3) and suspects them No start up if not privilege
immediately, regardless of  available S

the other detectors.

5.12. Advanced Network Configuration

Up to and including Hazelcast 3.11, Hazelcast members use a single server socket for all kinds of
connections: cluster members, Hazelcast clients implementing the Open Binary Client Protocol and
HTTP protocol clients connect to a single server socket that handles all the protocols.

Starting with Hazelcast 3.12, it is possible to configure the Hazelcast members with separate server
sockets using a different network configuration for different protocols. This configuration scheme
allows more flexibility when deploying Hazelcast as described in the following cases:

» For security, it is possible to bind the member protocol server socket on a protected internal
network interface, while the client connections can be established on another network interface

88



accessible by the Hazelcast clients.

* Different kinds of network connections can be established with different socket options. For
example varying send/receive window size to optimize the network usage, TLS for connections
over WAN while member-to-member connections may remain unencrypted, etc.

In the following example we introduce the advanced network configuration for a member to listen
for member-to-member connections on the default port 5701 while listening for client connections
on the port 9090:

Config config = new Config();
config.getAdvancedNetworkConfig().setEnabled(true);
config.getAdvancedNetworkConfig().setClientEndpointConfig(

new ServerSocketEndpointConfig().setPort(9090)
)i
HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
System.out.println(instance.getCluster().getLocalMember().getAddressMap());

Running this example prints something similar to the following output, indicating that the member
listens for the specified protocols on the respective configured ports:

{EndpointQualifier{type="CLIENT'}=[10.212.134.156]:9090, EndpointQualifier{type=
"MEMBER'}=[10.212.134.156]:5701}

The following is the equivalent declarative configuration:

<hazelcast>

<advanced-network enabled="true">
<member-server-socket-endpoint-config>
<port>5701</port>
</member-server-socket-endpoint-config>
<client-server-socket-endpoint-config>
<port>9090</port>
</client-server-socket-endpoint-config>
</advanced-network>

</hazelcast>

5.12.1. Setting Up Cluster Members for Advanced Network Configuration

Advanced network configuration and single-socket network configuration are mutually exclusive:
either an enabled AdvancedNetworkConfig or the NetworkConfig object is used to configure a
member’s networking, including the joiner, discovery, failure detectors, etc. as described in the
previous sections of this chapter.

You cannot define both elements in the declarative configuration, i.e., the network and advanced-

89



network elements cannot be configured at the same time. In the programmatic configuration, an
enabled AdvancedNetworkConfig takes precedence over the NetworkConfig. AdvancedNetworkConfig is
disabled by default, therefore the unisocket member configuration under NetworkConfig is used in
the default case.

When using the advanced network configuration, the following configurations are defined
member-wide:

* Joiner and cluster discovery (Multicast, TCP/IP, AWS, Eureka, etc.)

* MemberAddressProvider configuration

* Failure detector configuration
In addition to the above, the advanced network configuration allows the configuration of multiple
endpoints: each endpoint configuration applies for a specific protocol, e.g., MEMBER and CLIENT. An

additional optional identifier can be configured to separate the configuration of multiple WAN
protocol endpoints.

The supported protocols are as follows:

» MEMBER: A member server socket is required for Hazelcast to operate. The default advanced
network configuration defines a member endpoint configuration listening on port 5701 (same
as the single-socket Hazelcast member configuration).

* CLIENT: A single server socket handling the Hazelcast Open Binary Client Protocol can be
optionally configured. If no such endpoint is configured, then the clients will not be able to
connect to the Hazelcast member.

» REST: A REST server socket is optional.

* MEMCACHE: When accessing a Hazelcast cluster over the Memcache text protocol, an endpoint
listening to MEMCACHE protocol must be defined.

* WAN: Multiple WAN endpoint configurations can be defined to determine the network settings of
outgoing connections (from the members of a source cluster to the target WAN cluster
members) or to establish server sockets on which a target WAN member can listen for the
incoming connections from the source cluster.

5.12.2. Server Socket Endpoint Configuration

The server socket endpoint configuration is common for all protocols. The elements comprising a
server socket endpoint configuration are identical to their single-socket network configuration
counterparts.

The following declarative configuration example includes all the common server socket endpoint
elements:

90



<hazelcast>

<advanced-network enabled="true">
<member-server-socket-endpoint-config>
<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>
<ports>33000-35000</ports>
<ports>37000,37001,37002,37003</ports>
<ports>38000,38500-38600</ports>
</outbound-ports>
<interfaces enabled="true">
<interface>10.10.1.*</interface>
</interfaces>
<ssl enabled="true">
<factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
<properties>
<property name="foo">bar</property>
</properties>
</ssl>
<symmetric-encryption>
<algorithm>ALGO</algorithm>
<salt>SALT</salt>
<password>PASS</password>
<iteration-count>10000</iteration-count>
</symmetric-encryption>
<socket-interceptor enabled="true">
<class-name>com.hazelcast.examples.MySocketInterceptor</class-name>
<properties>
<property name="foo">bar</property>
</properties>
</socket-interceptor>
<socket-options>
<buffer-direct>true</buffer-direct>
<tcp-no-delay>true</tcp-no-delay>
<keep-alive>true</keep-alive>
<connect-timeout-seconds>64</connect-timeout-seconds>
<send-buffer-size-kb>25</send-buffer-size-kb>
<receive-buffer-size-kb>33</receive-buffer-size-kb>
<linger-seconds>99</1linger-seconds>
</socket-options>
<public-address>dummy</public-address>
<reuse-address>true</reuse-address>
</member-server-socket-endpoint-config>
</advanced-network>

</hazelcast>

When using the declarative configuration, specific element names introduce the server socket
endpoint configuration for each protocol:

91



* member-server-socket-endpoint-config for MEMBER protocol

* client-server-socket-endpoint-config for CLIENT protocol

* rest-server-socket-endpoint-config for REST endpoint

* memcache-server-socket-endpoint-config for MEMCACHE endpoint

* wan-server-socket-endpoint-config for WAN endpoints

When using the programmatic configuration, corresponding methods set the respective server
socket endpoint configuration:

config.getAdvancedNetworkConfig().setMemberEndpointConfig(
new ServerSocketEndpointConfig()
.setPort(5701)
.setPortAutoIncrement(false)
.setSSLConfig(new SSLConfig())
.setReuseAddress(true)
.setSocketTcpNoDelay(true)

5.12.3. Setting Up REST Server Socket Endpoint Configuration

In addition to the common server socket configuration described above, the REST endpoint
configuration includes certain additional elements which are used to enable/disable the REST
functionality groups.

config.getAdvancedNetworkConfig().setRestEndpointConfig(
new RestServerEndpointConfig()
.setPort(8080)
.setPortAutoIncrement(false)
.enableGroups(WAN, CLUSTER_READ, HEALTH_CHECK)

)

The following is the equivalent declarative configuration:

92



<hazelcast>

<advanced-network enabled="true">
<rest-server-socket-endpoint-config>
<port auto-increment="false">8080</port>
<endpoint-groups>
<endpoint-group name="WAN" enabled="true"/>
<endpoint-group name="CLUSTER_READ" enabled="true"/>
<endpoint-group name="HEALTH_CHECK" enabled="true"/>
</endpoint-groups>
</rest-server-socket-endpoint-config>
</advanced-network>

</hazelcast>

5.12.4. Setting Up WAN Endpoints Configuration

Multiple WAN endpoint configurations can be defined to configure the outgoing connections and
server sockets, depending on the role of the member in the WAN replication. The configuration
examples are provided in the following sections for both active and passive side of the WAN
replication.

Configuring the WAN Active Side

The members on the active cluster initiate connections to the target cluster members, so there is no
need to create a server socket. A plain EndpointConfig is created that supplies the configuration for
the client side of connections that the active members will create:

config.getAdvancedNetworkConfig().addWanEndpointConfig(
new EndpointConfig().setName("tokyo")
.setSSLConfig(new SSLConfig()
.setEnabled(true)
.setFactoryClassName(
"com.hazelcast.examples.MySSLContextFactory")
.setProperty("foo", "bar"))
)i
WanPublisherConfig wanPublisherConfig = new WanPublisherConfig();
wanPublisherConfig.setEndpoint("tokyo"); // refer to WAN endpoint config
config.addWanReplicationConfig(
new WanReplicationConfig().setName("replicate-to-tokyo")
.addWanPublisherConfig(wanPublisherConfig)
)i
config.getMapConfig("customers").setWanReplicationRef(
new WanReplicationRef("replicate-to-tokyo", "com.company.MergePolicy",
emptyList(), false)
)i

The following is the equivalent declarative configuration:

93



<hazelcast>

<advanced-network enabled="true">
<wan-endpoint-config name="tokyo">
<ssl enabled="true">
<factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
<properties>
<property name="endpoints">tokyo.example.com:11010</property>
</properties>
</ssl>
</wan-endpoint-config>
</advanced-network>

<wan-replication name="replicate-to-tokyo">
<wan-publisher group-name="clusterB">
<class-name>...</class-name>
<endpoint>tokyo</endpoint>
</wan-publisher>
</wan-replication>

<map name="customer">
<wan-replication-ref name="replicate-to-tokyo">
<merge-policy>...</merge-policy>
</wan-replication-ref>
</map>

</hazelcast>

The wan-endpoint-config element contains the same sub-elements as the member-server-socket-
endpoint-config element described above except port, public-address and reuse-address

Configuring the WAN Passive Side

On the passive cluster, a server socket is configured on the members to listen for the incoming WAN
connections, matching the network configuration (SSL configuration, etc.) configured on the active
side of the WAN replication.

94



config.getAdvancedNetworkConfig().addWanEndpointConfig(
new ServerSocketEndpointConfig()
.setName("tokyo")
.setPort(11010)
.setPortAutoIncrement(false)
.setSSLConfig(new SSLConfig()
.setEnabled(true)
.setFactoryClassName(
"com.hazelcast.examples.MySSLContextFactory")
.setProperty("foo", "bar")

));

The following is the equivalent declarative configuration:

<hazelcast>

<advanced-network enabled="true">
<wan-server-socket-endpoint-config name="tokyo">
<port auto-increment="false">11010</port>
<ssl enabled="true">
<factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
<properties>
<property name="foo">bar</property>
</properties>
</ssl>
</wan-server-socket-endpoint-config>
</advanced-network>

</hazelcast>

5.12.5. Advanced Network Configuration FAQ

Can I multiplex protocols on a single advanced network endpoint? For example, can I use a
single server socket to listen for MEMBER and CLIENT protocols?

No, each endpoint configuration that defines a server socket must bind to a different socket
address.

Can I mix unisocket and advanced network members in the same cluster?

No, the results will be undefined.

Can I configure multiple server socket endpoints for the same protocol?

You can only configure multiple server socket endpoints for WAN protocol. For other protocols
(MEMBER, CLIENT, REST, MEMCACHE), a single server socket can be configured.

95



6. Rolling Member Upgrades

Hazelcast IMDG Enterprise

This chapter explains the procedure of upgrading the version of Hazelcast members in a running
cluster without interrupting the operation of the cluster.

6.1. Terminology

* Minor version: A version change after the decimal point, e.g., 3.12 and 3.13.
» Patch version: A version change after the second decimal point, e.g., 3.12.1 and 3.12.2.

* Member codebase version: The major.minor.patch version of the Hazelcast binary on which
the member executes. For example, when running on hazelcast-3.12.jar, your member’s
codebase version is 3.12.0.

* Cluster version: The major.minor version at which the cluster operates. This ensures that
cluster members are able to communicate using the same cluster protocol and determines the
feature set exposed by the cluster.

6.2. Hazelcast Members Compatibility Guarantees

Hazelcast members operating on binaries of the same major and minor version numbers are
compatible regardless of patch version. For example, in a cluster with members running on version
3.11.1, it is possible to perform a rolling upgrade to 3.11.2 by shutting down, upgrading to
hazelcast-3.11.2.jar binary and starting each member one by one. Patch level compatibility applies
to both Hazelcast IMDG and Hazelcast IMDG Enterprise.

Also, each minor version is compatible with the previous one (back until Hazelcast IMDG 3.8). For
example, it is possible to perform a rolling upgrade on a cluster running Hazelcast IMDG Enterprise
3.11 to Hazelcast IMDG Enterprise 3.12. Rolling upgrades across minor versions is a Hazelcast IMDG
Enterprise feature.

The compatibility guarantees described above are given in the context of rolling member upgrades
and only apply to GA (general availability) releases. It is never advisable to run a cluster with
members running on different patch or minor versions for prolonged periods of time.

6.3. Rolling Upgrade Procedure

0 The version numbers used in the paragraph below are only used as an example.

Let’s assume a cluster with four members running on codebase version 3.12.0 with cluster version
3.12, that should be upgraded to codebase version 3.13.0 and cluster version 3.13. The rolling
upgrade process for this cluster, i.e., replacing existing 3.12.0 members one by one with an
upgraded one at version 3.13.0, includes the following steps which should be repeated for each
member:

* Gracefully shut down an existing 3.12.0 member.

96



* Wait until all partition migrations are completed; during migrations, membership changes
(member joins or removals) are not allowed.

» Update the member with the new 3.13.0 Hazelcast binaries.

« Start the member and wait until it joins the cluster. You should see something like the following
in your logs:

INFO: [192.168.2.2]1:5707 [cluster] [3.13] Hazelcast 3.9 (20170630 - a67dc3a)
starting at [192.168.2.2]:5701

INFO: [192.168.2.2]1:5701 [cluster] [3.13] Cluster version set to 3.12

The version in brackets ([3.13]) still denotes the member’s codebase version (running on the
hypothetical hazelcast-3.13.jar binary). Once the member locates the existing cluster members, it
sends its join request to the master. The master validates that the new member is allowed to join
the cluster and lets the new member know that the cluster is currently operating at 3.12 cluster
version. The new member sets 3.12 as its cluster version and starts operating normally.

At this point all members of the cluster have been upgraded to codebase version 3.13.0 but the
cluster still operates at cluster version 3.12. In order to use 3.13 features the cluster version must be
changed to 3.13.

6.4. Upgrading Cluster Version
You have the following options to upgrade the cluster version:

* Using Management Center.
» Using the cluster.sh script.

» Allow the cluster to auto-upgrade.

Note that you need to enable the REST API to use either of the above methods to upgrade your
cluster version. For this, enable the CLUSTER_WRITE REST endpoint group (its default is disabled). See
the Using the REST Endpoint Groups section on how to enable them.

Also note that you need to upgrade your Management Center version before upgrading the
member version if you want to change cluster version using Management Center. Management
Center is compatible with the previous minor version of Hazelcast, starting with version 3.9. For
example, Management Center 3.12 works with both Hazelcast IMDG 3.11 and 3.12. To change your
cluster version to 3.12, you need Management Center 3.12.

97


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#rolling-upgrade

Upgrading Cluster Version From IMDG 3.11 to 3.12

For the IMDG versions before 3.12, REST API could be enabled by using the
hazelcast.rest.enabled system property, which is deprecated now. IMDG 3.12 and
newer versions introduce the rest-api configuration element along with REST
endpoint groups. Therefore, a configuration change is needed specifically when
performing a rolling member upgrade from IMDG 3.11 to 3.12.

So, the steps listed in the above Rolling Upgrade Procedure section should be as
follows:
1. Shutdown the 3.11 member
2. Wait until all partition migrations are completed
3. Update the member with 3.12 binaries
A 4. Update the configuration (see below)
5. Start the member

For the 4th step ("Update the configuration"), the configuration should be updated
as follows:

<hazelcast>

<rest-api enabled="true">
<endpoint-group name="CLUSTER_WRITE" enabled="true"/>
</rest-api>

</hazelcast>

See the Using the REST Endpoint Groups section for more information.

6.5. Enabling Auto-Upgrading

The cluster can automatically upgrade its version. As soon as it detects that all its members have a
version higher than the current cluster version, it upgrades the cluster version to match it. This
feature is disabled by defaultt To enable it, set the system property
hazelcast.cluster.version.auto.upgrade.enabled to true.

There is one tricky detail here: as you are shutting down and upgrading the members one by one,
when you shut down the last one, all the members in the remaining cluster have the newer version,
but you don’t want the auto-upgrade to kick in before you have successfully upgraded the last
member as well. To avoid this, you can use the
hazelcast.cluster.version.auto.upgrade.min.cluster.size system property. You should set it to the
size of your cluster, and then Hazelcast will wait for the last member to join before it can proceed
with the auto-upgrade.

98



6.6. Network Partitions and Rolling Upgrades

In the event of network partitions which split your cluster into two subclusters, split-brain handling
works as explained in the Network Partitioning chapter, with the additional constraint that two
subclusters only merge as long as they operate on the same cluster version. This is a requirement to
ensure that all members participating in each one of the subclusters are able to operate as
members of the merged cluster at the same cluster version.

With regards to rolling upgrades, the above constraint implies that if a network partition occurs
while a change of cluster version is in progress, then with some unlucky timing, one subcluster may
be upgraded to the new cluster version and another subcluster may have upgraded members but
still operate at the old cluster version.

In order for the two subclusters to merge, it is necessary to change the cluster version of the
subcluster that still operates on the old cluster version, so that both subclusters will be operating at
the same, upgraded cluster version and able to merge as soon as the network partition is fixed.

6.7. Rolling Upgrade FAQ

The following provide answers to the frequently asked questions related to rolling member
upgrades.

How is the cluster version set?

When a new member starts, it is not yet joined to a cluster; therefore its cluster version is still
undetermined. In order for the cluster version to be set, one of the following must happen:

» the member cannot locate any members of the cluster to join or is configured without a joiner:
in this case, the member appoints itself as the master of a new single-member cluster and its
cluster version is set to the major.minor version of its own codebase version. So a standalone
member running on codebase version 3.12.0 sets its own cluster version to 3.12.

* the member that is starting locates members of the cluster and identifies which is the master: in
this case, the master validates that the joining member’s codebase version is compatible with
the current cluster version. If it is found to be compatible, then the member joins and the
master sends the cluster version, which is set on the joining member. Otherwise, the starting
member fails to join and shuts down.

What if a new Hazelcast minor version changes fundamental cluster protocol
communication, like join messages?

0 The version numbers used in the paragraph below are only used as an example.

On startup, as answered in the above question (How is the cluster version set?), the cluster version
is not yet known to a member that has not joined any cluster. By default the newly started member
uses the cluster protocol that corresponds to its codebase version until this member joins a cluster
(so for codebase 3.12.0 this means implicitly assuming cluster version 3.12). If, hypothetically,
major changes in discovery & join operations have been introduced which do not allow the
member to join a 3.11 cluster, then the member should be explicitly configured to start assuming a

99



3.11 cluster version.
Do I have to upgrade clients to work with rolling upgrades?

Clients which implement the Open Binary Client Protocol are compatible with Hazelcast version 3.6
and newer minor versions. Thus older client versions are compatible with next minor versions.
Newer clients connected to a cluster operate at the lower version of capabilities until all members
are upgraded and the cluster version upgrade occurs.

Can I stop and start multiple members at once during a rolling member upgrade?

It is not recommended due to potential network partitions. It is advised to always stop and start one
member in each upgrade step.

Can I upgrade my business app together with Hazelcast while doing a rolling member
upgrade?

Yes, but make sure to make the new version of your app compatible with the old one since there
will be a timespan when both versions interoperate. Checking if two versions of your app are
compatible includes verifying binary and algorithmic compatibility and some other steps.

It is worth mentioning that a business app upgrade is orthogonal to a rolling member upgrade. A
rolling business app upgrade may be done without upgrading the members.

7. Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java
interfaces. Below is the list of these implementations with links to the corresponding sections in this
manual.

» Standard utility collections

o Map is the distributed implementation of java.util.Map. It lets you read from and write to a
Hazelcast map with methods such as get and put.

o Queue is the distributed implementation of java.util.concurrent.BlockingQueue. You can add
an item in one member and remove it from another one.

o Ringbhuffer is implemented for reliable eventing system.

o Set is the distributed and concurrent implementation of java.util.Set. It does not allow
duplicate elements and does not preserve their order.

o List is similar to Hazelcast Set. The only difference is that it allows duplicate elements and
preserves their order.

o Multimap is a specialized Hazelcast map. It is a distributed data structure where you can
store multiple values for a single key.

o Replicated Map does not partition data. It does not spread data to different cluster members.
Instead, it replicates the data to all members.

o Cardinality Estimator is a data structure which implements Flajolet’s HyperLogLog
algorithm.

100



» Topic is the distributed mechanism for publishing messages that are delivered to multiple
subscribers. It is also known as the publish/subscribe (pub/sub) messaging model. See the Topic
section for more information. Hazelcast also has a structure called Reliable Topic which uses
the same interface of Hazelcast Topic. The difference is that it is backed up by the Ringbuffer
data structure. See the Reliable Topic section.

* Concurrency utilities

o

Lock is the distributed implementation of java.util.concurrent.locks.Lock. When you use
lock, the critical section that Hazelcast Lock guards is guaranteed to be executed by only one
thread in the entire cluster.

ISemaphore is the distributed implementation of java.util.concurrent.Semaphore. When
performing concurrent activities, semaphores offer permits to control the thread counts.

[AtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong.
Most of AtomicLong’s operations are available. However, these operations involve remote
calls and hence their performances differ from AtomicLong, due to being distributed.

[AtomicReference is the distributed implementation of
java.util.concurrent.atomic.AtomicReference. When you need to deal with a reference in a
distributed environment, you can use Hazelcast IAtomicReference.

IdGenerator is used to generate cluster-wide unique identifiers. ID generation occurs almost
at the speed of AtomiclLong.incrementAndGet(). This feature is deprecated, please use
FlakeldGenerator instead.

ICountdownLatch is the distributed implementation of java.util.concurrent.CountDownLatch.
Hazelcast CountDownLatch is a gate keeper for concurrent activities. It enables the threads
to wait for other threads to complete their operations.

PN counter is a distributed data structure where each Hazelcast instance can increment and
decrement the counter value and these updates are propagated to all replicas.

» Event Journal is a distributed data structure that stores the history of mutation actions on map
or cache.

7.1.

Overview of Hazelcast Distributed Objects

Hazelcast has two types of distributed objects in terms of their partitioning strategies:

1. Data structures where each partition stores a part of the instance, namely partitioned data
structures.

2. Data structures where a single partition stores the whole instance, namely non-partitioned data
structures.

The following are the partitioned Hazelcast data structures:

* Map

* MultiMap

* Cache (Hazelcast JCache implementation)

* Event Journal

101



The following are the non-partitioned Hazelcast data structures:

* Queue

* Set

* List

* Ringbuffer

* Lock

* ISemaphore

* JAtomicLong

* IAtomicReference
* FlakeldGenerator
* ICountdownLatch
 Cardinality Estimator
* PN Counter

Besides these, Hazelcast also offers the Replicated Map structure as explained in the above
Standard utility collections list.

7.1.1. Loading and Destroying a Distributed Object

Hazelcast offers a get method for most of its distributed objects. To load an object, first create a
Hazelcast instance and then use the related get method on this instance. Following example code
snippet creates an Hazelcast instance and a map on this instance.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap( "customers" );

As to the configuration of distributed object, Hazelcast uses the default settings from the file
hazelcast.xml that comes with your Hazelcast download. Of course, you can provide an explicit
configuration in this XML or programmatically according to your needs. See the Understanding
Configuration section.

Note that, most of Hazelcast’s distributed objects are created lazily, i.e., a distributed object is
created once the first operation accesses it.

If you want to use an object you loaded in other places, you can safely reload it using its reference
without creating a new Hazelcast instance (customers in the above example).

To destroy a Hazelcast distributed object, you can use the method destroy. This method clears and
releases all resources of the object. Therefore, you must use it with care since a reload with the
same object reference after the object is destroyed creates a new data structure without an error.
See the following example code where one of the queues are destroyed and the other one is
accessed.

102



HazelcastInstance hz1 = Hazelcast.newHazelcastInstance();
HazelcastInstance hz2 = Hazelcast.newHazelcastInstance();
IQueue<String> q1 = hz1.getQueue("q");

IQueue<String> q2 = hz2.getQueue("q");

q1.add("foo");

System.out.println("ql.size: "+ql.size()+ " q2.size:"+q2.size());
ql.destroy();
System.out.println("ql.size:

n T 1

+ ql.size() + " q2.size:" + q2.size());

If you start the Member above, the output is as shown below:

ql.size: 1 q2.size:1
ql.size: @ g2.size:0

As you see, no error is generated and a new queue resource is created.

Hazelcast is designed to create any distributed data structure whenever it is accessed, i.e.,
whenever a call is made to the data structure. Therefore, keep in mind that a data structure is
recreated when you perform an operation on it even after you have destroyed it.

7.1.2. Controlling Partitions

Hazelcast uses the name of a distributed object to determine which partition it will be put. Let’s
load two semaphores as shown below:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore s1 = hazelcastInstance.getSemaphore("s1");
ISemaphore s2 = hazelcastInstance.getSemaphore("s2");

Since these semaphores have different names, they will be placed into different partitions. If you
want to put these two into the same partition, you use the @ symbol as shown below:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore s1 = hazelcastInstance.getSemaphore("s1@foo");
ISemaphore s2 = hazelcastInstance.getSemaphore("s2@foo");

Now, these two semaphores will be put into the same partition whose partition key is foo. Note that
you can use the method getPartitionKey to learn the partition key of a distributed object. It may be
useful when you want to create an object in the same partition of an existing object. See its usage as
shown below:

String partitionKey = s1.getPartitionKey();
ISemaphore s3 = hazelcastInstance.getSemaphore("s3@"+partitionKey);

103



7.1.3. Common Features of all Hazelcast Data Structures

o If a member goes down, its backup replica (which holds the same data) dynamically
redistributes the data, including the ownership and locks on them, to the remaining live
members. As a result, there will not be any data loss.

* There is no single cluster master that can be a single point of failure. Every member in the
cluster has equal rights and responsibilities. No single member is superior. There is no
dependency on an external 'server' or 'master’.

7.1.4. Example Distributed Object Code

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock,
topic, etc.) and how you can listen for instance events, such as an instance being created or
destroyed.

ExampleDOL example = new ExampleDOL();
Config config = new Config();

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener(example);

Collection<DistributedObject> distributedObjects = hazelcastInstance

.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName());

}

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName());

public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName());

7.2. Map

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence
java.util.Map. It is the distributed implementation of Java map. You can perform operations like
reading and writing from/to a Hazelcast map with the well known get and put methods.

104



IMap data structure can also be used by Hazelcast Jet for Real-Time Stream
Processing (by enabling the Event Journal on your map) and Fast Batch Processing.

0 Hazelcast Jet uses IMap as a source (reads data from IMap) and as a sink (writes
data to IMap). See the Fast Batch Processing and Real-Time Stream Processing use
cases for Hazelcast Jet. See also here in the Hazelcast Jet Reference Manual to learn
how Jet uses IMap, i.e., how it can read from and write to IMap.

7.2.1. Getting a Map and Putting an Entry

Hazelcast partitions your map entries and their backups, and almost evenly distribute them onto all
Hazelcast members. Each member carries approximately "number of map entries * 2 * 1/n" entries,
where n is the number of members in the cluster. For example, if you have a member with 1000
objects to be stored in the cluster and then you start a second member, each member will both
store 500 objects and back up the 500 objects in the other member.

Let’s create a Hazelcast instance and fill a map named Capitals with key-value pairs using the
following code. Use the HazelcastInstance getMap method to get the map, then use the map put
method to put an entry into the map.

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap( "capitals" );

capitalcities.put( "1", "Tokyo" );

capitalcities.put( "2", "Paris" );

capitalcities.put( "3", "Washington" );

capitalcities.put( "4", "Ankara" );

capitalcities.put( "5", "Brussels" );

capitalcities.put( "6", "Amsterdam" );

capitalcities.put( "7", "New Delhi" );

capitalcities.put( "8", "London" );

capitalcities.put( "9", "Berlin" );

capitalcities.put( "10", "Oslo" );

capitalcities.put( "11", "Moscow" );

capitalcities.put( "120", "Stockholm" );

When you run this code, a cluster member is created with a map whose entries are distributed
across the members' partitions. See the below illustration. For now, this is a single member cluster.

105


https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://docs.hazelcast.org/docs/jet/latest/manual/#connector-imdg

[I‘.’l“ .

("3", “Washington”)
"Tokyo™)

(4, “Ankara”)

ti!lznﬂ .

“Prague”)

(19",

“"Rome" )

(ra",

“Paris”)
(“5", “Brussels”)

("6, "Amsterdam”)

i

Please note that some of the partitions do not contain any data entries since we
only have 120 objects and the partition count is 271 by default. This count is
configurable and can be changed wusing the system property
hazelcast.partition.count. See the System Properties appendix.

7.2.2. Creating A Member for Map Backup

Now let’s create a second member by running the above code again. This creates a cluster with two
members. This is also where backups of entries are created - remember the backup partitions
mentioned in the Hazelcast Overview section. The following illustration shows two members and
how the data and its backup is distributed.

(3", "Washington”) (6", "Amsterdam”)
‘Hlﬂ; Hmkrﬂll}

(4", “Ankara”)

{"12", "Prague”) (719", “Rome”)
("19", “"Rome”) (3", "Washington”)

{"2", “Parias”)
{“5*, “Brussals”)

{"1", “Tﬂkrﬂ”:

(2", “Paris”)
("5", "Brussals")

("6”, "Amstardam”) {"4", "Ankara")

{("12"”, "Prague”)

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in

106



the cluster. Eventually, it will carry almost "(1/n * total-data) + backups" of the data, reducing the
load on other members.

HazelcastInstance.getMap() returns an instance of com.hazelcast.core.IMap which extends the
java.util.concurrent.ConcurrentMap interface. Methods like ConcurrentMap.putIfAbsent(key,value)
and ConcurrentMap.replace(key,value) can be used on the distributed map, as shown in the example
below.

public class BasicMapOperations {
private HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

public Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
Customer customer = customers.get(id);
if (customer == null) {
customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

}

return customer;

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
return (customers.replace(customer.getId(), customer) != null);

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
return customers.remove(customer.getId(), customer);

All ConcurrentMap operations such as put and remove might wait if the key is locked by another
thread in the local or remote JVM. But, they will eventually return with success. ConcurrentMap
operations never throw a java.util.ConcurrentModificationException.

7.2.3. Backing Up Maps

Hazelcast distributes map entries onto multiple cluster members (JVMs). Each member holds some
portion of the data.

Distributed maps have one backup by default. If a member goes down, your data is recovered using
the backups in the cluster. There are two types of backups as described below: sync and async.

107



Creating Sync Backups

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to
have. That way, data on a cluster member is copied onto other member(s).

To create synchronous backups, select the number of backup copies using the backup-count
property.

<hazelcast>

<map name="default">
<backup-count>1</backup-count>
</map>

</hazelcast>

When this count is 1, a map entry will have its backup on one other member in the cluster. If you
set it to 2, then a map entry will have its backup on two other members. You can set it to 0 if you do
not want your entries to be backed up, e.g., if performance is more important than backing up. The
maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations
are synchronous and configured with backup-count. In this case, backup operations block
operations until backups are successfully copied to backup members (or deleted from backup
members in case of remove) and acknowledgements are received. Therefore, backups are updated
before a put operation is completed, provided that the cluster is stable. Sync backup operations
have a blocking cost which may lead to latency issues.

Creating Async Backups

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do
not require acknowledgements; the backup operations are performed at some point in time.

To create asynchronous backups, select the number of async backups with the async-backup-count
property. An example is shown below.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>

</map>

</hazelcast>

See Consistency and Replication Model for more detail.

0 Backups increase memory usage since they are also kept in memory.

108



0 A map can have both sync and async backups at the same time.

Enabling Backup Reads

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each
member will carry both owned entries and backup copies of other members. So for the
map.get(key) call, it is possible that the calling member has a backup copy of that key. By default,
map.get(key) always reads the value from the actual owner of the key for consistency.

To enable backup reads (read local backup entries), set the value of the read-backup-data property
to true. Its default value is false for consistency. Enabling backup reads can improve performance
but on the other hand it can cause stale reads while still preserving monotonic-reads property.

<hazelcast>

<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>
</map>

</hazelcast>

This feature is available when there is at least one sync or async backup.

Please note that if you are performing a read from a backup, you should take into account that your
hits to the keys in the backups are not reflected as hits to the original keys on the primary
members. This has an impact on IMap’s maximum idle seconds or time-to-live seconds expiration.
Therefore, even though there is a hit on a key in backups, your original key on the primary member
may expire.

7.2.4. Map Eviction
0 Starting with Hazelcast 3.7, Hazelcast Map uses a new eviction mechanism which

is based on the sampling of entries. See the Eviction Algorithm section for details.

Unless you delete the map entries manually or use an eviction policy, they will remain in the map.
Hazelcast supports policy-based eviction for distributed maps. Currently supported policies are LRU
(Least Recently Used) and LFU (Least Frequently Used).

Understanding Map Eviction

Hazelcast Map performs eviction based on partitions. For example, when you specify a size using
the PER_NODE attribute for max-size (see the Configuring Map Eviction section), Hazelcast internally
calculates the maximum size for every partition. Hazelcast uses the following equation to calculate
the maximum size of a partition:

109



partition-maximum-size = max-size * member-count / partition-count

If the partition-maximum-size is less than 1 in the equation above, it will be set to 1
(otherwise, the partitions would be emptied immediately by eviction due to the
exceedance of max-size being less than 1).

The eviction process starts according to this calculated partition maximum size when you try to put
an entry. When entry count in that partition exceeds partition maximum size, eviction starts on
that partition.

Assume that you have the following figures as examples:

* partition count: 200
* entry count for each partition: 100
e max-size (PER_NODE): 20000
The total number of entries here is 20000 (partition count * entry count for each partition). This
means you are at the eviction threshold since you set the max-size to 20000. When you try to put an
entry:
1. the entry goes to the relevant partition
2. the partition checks whether the eviction threshold is reached (max-size)
3. only one entry will be evicted.
As a result of this eviction process, when you check the size of your map, it is 19999. After this

eviction, subsequent put operations do not trigger the next eviction until the map size is again close
to the max-size.

The above scenario is simply an example that describes how the eviction process

works. Hazelcast finds the most optimum number of entries to be evicted
according to your cluster size and selected policy.

Configuring Map Eviction

The following is an example declarative configuration for map eviction.

110



<hazelcast>

<map name="default">
<time-to-live-seconds>0</time-to-1live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
</map>

</hazelcast>

The following are the configuration element descriptions:

* time-to-live-seconds: Maximum time in seconds for each entry to stay in the map (TTL). It
limits the lifetime of the entries relative to the time of the last write access performed on them.
If it is not 0, the entries whose lifetime exceeds this period (without any write access performed
on them during this period) are expired and evicted automatically. An individual entry may
have its own lifetime limit by using one of the methods accepting a TTL; see Evicting Specific
Entries section. If there is no TTL value provided for the individual entry, it inherits the value
set for this element. Valid values are integers between 0 and Integer.MAX VALUE. Its default value
is 0, which means infinite (no expiration and eviction). If it is not 0, entries are evicted
regardless of the set eviction-policy described below.

» max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. It limits the
lifetime of the entries relative to the time of the last read or write access performed on them.
The entries whose idle period exceeds this limit are expired and evicted automatically. An entry
is idle if no get, put, EntryProcessor.process or containsKey is called on it. Valid values are
integers between 0 and Integer.MAX VALUE. Its default value is 0, which means infinite.

Setting this property to 1 second expires the entry after 1 second, regardless of
the operations done on that entry in-between, due to the loss of millisecond

0 resolution on the entry timestamps. Assume that you create a record at time =
1 second (1000 milliseconds) and access it at wall clock time 1100 milliseconds
and then again at 1400 milliseconds. In this case, the entry is deemed as not
touched. So, setting this property to 1 second is not supported.

Both time-to-live-seconds and max-idle-seconds may be used simultaneously
0 on the map entries. In that case, the entry is considered expired if at least one
of the policies marks it as expired.

* eviction-policy: Eviction policy to be applied when the size of map grows larger than the value
specified by the max-size element described below. Valid values are:

o NONE: Default policy. If set, no items are evicted and the property max-size described below
is ignored. You still can combine it with time-to-1live-seconds and max-idle-seconds.

o LRU: Least Recently Used.

o LFU: Least Frequently Used.

111



Apart from the above values, you can also develop and use your own eviction policy. See the
Custom Eviction Policy section.

* max-size: Maximum size of the map. When maximum size is reached, the map is evicted based
on the policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Its default
value is 0, which means infinite. If you want max-size to work, set the eviction-policy property
to a value other than NONE. Its attributes are described below.

112

o

PER_NODE: Maximum number of map entries in each cluster member. This is the default
policy.

<max-size policy="PER_NODE">5000</max-size>

PER_PARTITION: Maximum number of map entries within each partition. Storage size depends
on the partition count in a cluster member. This attribute should not be used often. For
instance, avoid using this attribute with a small cluster. If the cluster is small, it hosts more
partitions, and therefore map entries, than that of a larger cluster. Thus, for a small cluster,
eviction of the entries decreases performance (the number of entries is large).

<max-size policy="PER_PARTITION">27100</max-size>

USED_HEAP_SIZE: Maximum used heap size in megabytes per map for each Hazelcast instance.
Please note that this policy does not work when in-memory format is set to 0BJECT, since the
memory footprint cannot be determined when data is put as 0BJECT.

<max-size policy="USED_HEAP_SIZE">4096</max-size>

USED_HEAP_PERCENTAGE: Maximum used heap size percentage per map for each Hazelcast
instance. If, for example, a JVM is configured to have 1000 MB and this value is 10, then the
map entries will be evicted when used heap size exceeds 100 MB. Please note that this policy
does not work when in-memory format is set to 0BJECT, since the memory footprint cannot
be determined when data is put as 0BJECT.

<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>
FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.
<max-size policy="FREE_HEAP_SIZE">512</max-size>

FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example, a
JVM is configured to have 1000 MB and this value is 10, then the map entries will be evicted
when free heap size is below 100 MB.

<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

USED_NATIVE_MEMORY_SIZE: (Hazelcast IMDG Enterprise HD) Maximum used native memory
size in megabytes per map for each Hazelcast instance.

<max-size policy="USED_NATIVE_MEMORY_SIZE">1024</max-size>

USED_NATIVE_MEMORY_PERCENTAGE: (Hazelcast IMDG Enterprise HD) Maximum used native
memory size percentage per map for each Hazelcast instance.

<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">65</max-size>



o FREE_NATIVE_MEMORY_SIZE: (Hazelcast IMDG Enterprise HD) Minimum free native memory
size in megabytes for each Hazelcast instance.

<max-size policy="FREE_NATIVE_MEMORY_SIZE">256</max-size>

o FREE_NATIVE_MEMORY_PERCENTAGE: (Hazelcast IMDG Enterprise HD) Minimum free native
memory size percentage for each Hazelcast instance.

<max-size policy="FREE_NATIVE_MEMORY_PERCENTAGE">5</max-size>

To put it briefly, Hazelcast maps have no restrictions on the size and may grow arbitrarily large, by
default. When it comes to reducing the size of a map, there are two concepts: expiration and
eviction.

Expiration puts a limit on the maximum lifetime of an entry stored inside the map. When the entry
expires it cannot be retrieved from the map any longer and at some point in time it will be cleaned
out from the map to free up the memory. Expiration, and hence the eviction based on the
expiration, can be configured using the element time-to-live-seconds and max-idle-seconds as
described above.

Eviction puts a limit on the maximum size of the map. If the size of the map grows larger than the
maximum allowed size, an eviction policy decides which item to evict from the map to reduce its
size. The maximum allowed size can be configured using the element max-size and the eviction
policy can be configured using the element eviction-policy as described above.

Eviction and expiration can be used together. In this case, the expiration configurations (time-to-
live-seconds and max-idle-seconds) continue to work as usual cleaning out the expired entries
regardless of the map size. Note that locked map entries are not the subjects for eviction and
expiration.

Example Eviction Configurations

<hazelcast>

<map name="documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>
</map>

</hazelcast>

In the above example, documents map starts to evict its entries from a member when the map size
exceeds 10000 in that member. Then the entries least recently used will be evicted. The entries not
used for more than 60 seconds will be evicted as well.

And the following is an example eviction configuration for a map having NATIVE as the in-memory
format:

113



<hazelcast>

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-policy>LFU</eviction-policy>
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">99</max-size>
</map>

</hazelcast>

Evicting Specific Entries

The eviction policies and configurations explained above apply to all the entries of a map. The
entries that meet the specified eviction conditions are evicted.

If you want to evict some specific map entries, you can use the ttl and ttlUnit parameters of the
method map.put(). An example code line is given below.

myMap.put( "1", "John", 5@, TimeUnit.SECONDS )
The map entry with the key "1" will be evicted 50 seconds after it is put into myMap.

You may also use map.setTTL method to alter the time-to-live value of an existing entry. It is done as
follows:

myMap.setTTL( "1", 50, TimeUnit.SECONDS )

In addition to the tt1, you may also specify a maximum idle timeout for specific map entries using
the maxIdle and maxIdleUnit parameters:

myMap.put( "1", "John", 5@, TimeUnit.SECONDS, 4@, TimeUnit.SECONDS )

Here ttl is set as 50 seconds and maxIdle is set as 40 seconds. The entry is considered to be evicted if
at least one of these policies marks it as expired. If you want to specify only the maxIdle parameter,
you need to set ttl as 0 seconds.

Evicting All Entries

To evict all keys from the map except the locked ones, use the method evictAll(). If a MapStore is
defined for the map, deleteAll is not called by evictAll. If you want to call the method deleteAll,
use clear().

An example is given below.

114



final int numberOfKeysTolLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance nodel = Hazelcast.newHazelcastInstance();
HazelcastInstance node? = Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = nodel.getMap( "map" );
for (int i = 0; 1 < numberOfEntriesToAdd; i++) {
map.put(i, 1);

for (int i = 0; i < numberOfKeysTolLock; i++) {
map.lock(i);
+

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf("# After calling evictAll...\n");

System.out.printf("# Expected map size\t: %d\n", numberOfKeysTolock);
System.out.printf("# Actual map size\t: %d\n", map.size());

o Only EVICT_ALL event is fired for any registered listeners.

Forced Eviction

Hazelcast IMDG Enterprise

Hazelcast may use forced eviction in the cases when the eviction explained in Understanding Map
Eviction is not enough to free up your memory. Note that this is valid if you are using Hazelcast

IMDG Enterprise and you set your in-memory format to NATIVE.

The forced eviction mechanism is explained below as steps in the given order:

* When the normal eviction is not enough, forced eviction is triggered and first it tries to evict

approx. 20% of the entries from the current partition. It retries this five times.

« If the result of above step is still not enough, forced eviction applies the above step to all maps.
This time it might perform eviction from some other partitions too, provided that they are

owned by the same thread.

« If that is still not enough to free up your memory, it evicts not the 20% but all the entries from

the current partition.

 If that is not enough, it will evict all the entries from the other data structures; from the

partitions owned by the local thread.

Finally, when all the above steps are not enough, Hazelcast throws a Native Out of Memory

Exception.

115



Custom Eviction Policy

o This section is valid for Hazelcast 3.7 and higher releases.

Apart from the policies such as LRU and LFU, which Hazelcast provides out-of-the-box, you can
develop and use your own eviction policy.

To achieve this, you need to provide an implementation of MapEvictionPolicy as in the following
OddEvictor example:

public class MapCustomEvictionPolicy {

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("test")
.setMapEvictionPolicy(new OddEvictor())
.getMaxSizeConfig()
.setMaxSizePolicy(PER_NODE).setSize(10000);

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = instance.getMap("test");

final Queue<Integer> oddKeys = new ConcurrentlLinkedQueue<Integer>();
final Queue<Integer> evenKeys = new ConcurrentlLinkedQueue<Integer>();

map.addEntryListener(new EntryEvictedListener<Integer, Integer>() {
@0verride
public void entryEvicted(EntryEvent<Integer, Integer> event) {
Integer key = event.getKey();
if (key % 2 ==0) {
evenKeys.add(key);
} else {
oddKeys.add(key);
}

}
}, false);

// wait some more time to receive evicted-events
parkNanos(SECONDS. toNanos(5));

for (int i = 0; i < 15000; i++) {
map.put(i, 1);
}

String msg = "IMap uses sampling based eviction. After eviction is completed,
we are expecting "
+ "number of evicted-odd-keys should be greater than number of
evicted-even-keys"
+ "\nNumber of evicted-odd-keys = %d, number of evicted-even-keys =

%d",'

116



out.println(format(msg, oddKeys.size(), evenKeys.size()));

instance.shutdown();

/**

* 0dd evictor tries to evict odd keys first.

*/

private static class OddEvictor extends MapEvictionPolicy {

public int compare(EntryView o1, EntryView 02) {
Integer key = (Integer) ol.getKey();
if (key % 2 1=10) {
return -1;

}

return 1;

Then you can enable your policy by setting it via the method MapConfig.setMapEvictionPolicy()
programmatically or via XML declaratively. Following is the example declarative configuration for
the eviction policy 0ddEvictor implemented above:

<hazelcast>
<map name="test">

<map-eviction-policy-class-name>com.package.0ddEvictor</map-eviction-policy-
class-name>

</map>
</hazelcast>

If you Hazelcast with Spring, you can enable your policy as shown below.

<hz:map name="test">
<hz:map-eviction-policy class-name="com.package.0ddEvictor"/>
</hz:map>

7.2.5. Setting In-Memory Format

IMap (and a few other Hazelcast data structures, such as ICache) has an in-memory-format
configuration option. By default, Hazelcast stores data into memory in binary (serialized) format.
Sometimes it can be efficient to store the entries in their object form, especially in cases of local

117



processing, such as entry processor and queries.

Specify the in-memory-format element in the configuration to set how the data will be stored in the
memory. You have the following format options:

» BINARY (default): The data (both the key and value) is stored in serialized binary format. You can
use this option if you mostly perform regular map operations, such as put and get.

* OBJECT: The data is stored in deserialized form. This configuration is good for maps where entry
processing and queries form the majority of all operations and the objects are complex, making
the serialization cost comparatively high. By storing objects, entry processing does not contain
the deserialization cost. Note that when you use 0BJECT as the in-memory format, the key is still
stored in binary format and the value is stored in object format.

* NATIVE: (Hazelcast IMDG Enterprise HD) This format behaves the same as BINARY, however,
instead of heap memory, key and value are stored in the off-heap memory.

Regular operations like get rely on the object instance. When the 0BJECT format is used and a get is
performed, the map does not return the stored instance, but creates a clone. Therefore, this whole
get operation first includes a serialization on the member owning the instance and then a
deserialization on the member calling the instance. When the BINARY format is used, only a
deserialization is required; BINARY is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was 0BJECT, the map
would create a clone of the instance, and there would first be a serialization and then a
deserialization. When BINARY is used, only a deserialization is needed.

If a value is stored in OBJECT format, a change on a returned value does not affect
the stored instance. In this case, the returned instance is not the actual one but a

0 clone. Therefore, changes made on an object after it is returned will not reflect on
the actual stored data. Similarly, when a value is written to a map and the value is
stored in 0BJECT format, it will be a copy of the put value. Therefore, changes made
on the object after it is stored will not reflect on the stored data.

7.2.6. Using High-Density Memory Store with Map

Hazelcast IMDG Enterprise HD

Hazelcast instances are Java programs. In case of BINARY and 0BJECT in-memory formats, Hazelcast
stores your distributed data into the heap of its server instances. Java heap is subject to garbage
collection (GC). In case of larger heaps, garbage collection might cause your application to pause for
tens of seconds (even minutes for really large heaps), badly affecting your application performance
and response times.

As the data gets bigger, you either run the application with larger heap, which would result in
longer GC pauses or run multiple instances with smaller heap which can turn into an operational
nightmare if the number of such instances becomes very high.

To overcome this challenge, Hazelcast offers High-Density Memory Store for your maps. You can
configure your map to use High-Density Memory Store by setting the in-memory format to NATIVE.

118



The following snippet is the declarative configuration example.

<hazelcast>

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
</map>

</hazelcast>

Keep in mind that you should have already enabled the High-Density Memory Store usage for your
cluster. See the Configuring High-Density Memory Store section.

Required configuration changes when using NATIVE

Note that the eviction mechanism is different for NATIVE in-memory format. The new eviction
algorithm for map with High-Density Memory Store is similar to that of JCache with High-Density
Memory Store and is described here.

 Eviction percentage has no effect.

<hazelcast>

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-percentage>25</eviction-percentage> <--! NO IMPACT with NATIVE --

</map>

</hazelcast>

* These IMap eviction policies for max-size cannot be used: FREE_HEAP_PERCENTAGE, FREE_HEAP_SIZE,
USED_HEAP_PERCENTAGE, USED_HEAP_SIZE.

* Near Cache eviction configuration is also different for NATIVE in-memory format. For a Near
Cache configuration with in-memory format set to BINARY:

<hazelcast>

<map name="nativeMap*">
<near-cache>
<in-memory-format>BINARY</in-memory-format>
<max-size>10000</max-size> <--1 NO IMPACT with NATIVE -->
<eviction-policy>LFU</eviction-policy> <--! NO IMPACT with NATIVE -->
</near-cache>
</map>

</hazelcast>

119



the equivalent configuration for NATIVE in-memory format would be similar to the following:

<hazelcast>

<map name="nativeMap*">
<near-cache>
<in-memory-format>NATIVE</in-memory-format>
<eviction size="10000" eviction-policy="LFU" max-size-policy=
"USED_NATIVE_MEMORY_SIZE"/> <--! Correct configuration with NATIVE -->
</near-cache>
</map>

</hazelcast>

» Near Cache eviction policy ENTRY_COUNT cannot be used for max-size-policy.

0 See the High-Density Memory Store section for more information.

7.2.7. Metadata Policy

Hazelcast IMap offers automatic preprocessing of various data types on the update time to make
queries faster. It is currently supported only by the HazelcastJsonValue type. When metadata
creation is on, IMap creates additional metadata about the objects of supported types and uses this
metadata during the querying. It does not affect the latency and throughput of the object of any
type except the supported types.

This feature is on by default. You can configure it using the metadata-policy configuration element.

Declarative Configuration:

<hazelcast>

<map name="map-a">
gl==
valid values for metadata-policy are:
- OFF
- CREATE_ON_UPDATE (default)
-->
<metadata-policy>0FF</metadata-policy>
</map>

</hazelcast>
Programmatic Configuration:

MapConfig mapConfig = new MapConfig();
mapConfig.setMetadataPolicy(MetadataPolicy.OFF);

120



7.2.8. Loading and Storing Persistent Data

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store
such as a relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist
in memory, MapLoader's load method loads that entry from the data store. This loaded entry is placed
into the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

ﬂ Data store needs to be a centralized system that is accessible from all Hazelcast
members. Persistence to a local file system is not supported.

ﬁ Also note that the MapStore interface extends the MapLoader interface as you can see
in the interface code.

0 Starting with Hazelcast IMDG 3.11, all loads can be listened via
EntrylLoadedListener.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {

private final Connection con;
private final PreparedStatement allKeysStatement;

public PersonMapStore() {
try {
con = DriverManager.getConnection("jdbc:hsqldb:mydatabase”, "SA", "");
con.createStatement().executeUpdate(
"create table if not exists person (id bigint not null, name
varchar(45), primary key (id))");
allKeysStatement = con.prepareStatement("select id from person");
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {
con.createStatement().executeUpdate(
format("delete from person where id = %s", key));
} catch (SQLException e) {
throw new RuntimeException(e);

}

121


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/MapStore.html

public synchronized void store(Long key, Person value) {
try {
con.createStatement().executeUpdate(
format("insert into person values(%s,'%s')", key, value.getName()
));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet()) {
store(entry.getKey(), entry.getValue());
}
}

public synchronized void deleteAll(Collection<Long> keys) {
for (Long key : keys) {
delete(key);
}
}

public synchronized Person load(Long key) {
try {
ResultSet resultSet = con.createStatement().executeQuery(
format("select name from person where id =%s", key));
try {
if (IresultSet.next()) {
return null;
}
String name = resultSet.getString(1);
return new Person(key, name);
} finally {
resultSet.close();
}
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) {
result.put(key, load(key));
}

return result;

}

public Iterable<Long> loadAllKeys() {
return new StatementIterable<Long>(allKeysStatement);

}

122



During the initial loading process, MapStore uses a thread different from the
partition threads that are used by the ExecutorService. After the initialization is

ﬁ completed, the map.get method looks up any nonexistent value from the database
in a partition thread, or the map.put method looks up the database to return the
previously associated value for a key also in a partition thread.

o For more MapStore/MapLoader code samples, see here.

Hazelcast supports read-through, write-through and write-behind persistence modes, which are
explained in the subsections below.

Using Read-Through Persistence

If an entry does not exist in memory when an application asks for it, Hazelcast asks the loader
implementation to load that entry from the data store. If the entry exists there, the loader
implementation gets it, hands it to Hazelcast, and Hazelcast puts it into memory. This is read-
through persistence mode.

Setting Write-Through Persistence

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0.
This means the entries are put to the data store synchronously.

In this mode, when the map.put(key,value) call returns:

 MapStore.store(key,value) is successfully called so the entry is persisted.
* In-Memory entry is updated.
* In-Memory backup copies are successfully created on other cluster members (if backup-count is

greater than 0).

If MapStore throws an exception then the exception is propagated to the original put or remove call in
the form of RuntimeException.

There is a key difference in the behaviors of map.remove(key) and map.delete(key),
i.e.,, the latter results in MapStore.delete(key) to be invoked whereas the former
only removes the entry from IMap.

Setting Write-Behind Persistence

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value
bigger than 0. This means the modified entries will be put to the data store asynchronously after a
configured delay.

123


https://github.com/hazelcast/hazelcast-code-samples/tree/master/distributed-map/mapstore/src/main/java

In write-behind mode, Hazelcast coalesces updates on a specific key by default,

0 which means it applies only the last update on that key. However, you can set
MapStoreConfig.setWriteCoalescing() to FALSE and you can store all updates
performed on a key to the data store.

When you set MapStoreConfig.setWriteCoalescing() to FALSE, after you reached per-
node maximum write-behind-queue capacity, subsequent put operations will fail
with ReachedMaxSizeException. This exception is thrown to prevent uncontrolled

0 grow of write-behind queues. You can set per-node maximum capacity using the
system property hazelcast.map.write.behind.queue.capacity. See the System
Properties appendix for information on this property and how to set the system
properties.

In write-behind mode, when the map.put(key,value) call returns:

* in-memory entry is updated
* in-memory backup copies are successfully created on the other cluster members (if backup-

count is greater than 0)

* the entry is marked as dirty so that after write-delay-seconds, it can be persisted with
MapStore.store(key,value) call

 and for fault tolerance, dirty entries are stored in a queue on the primary member and also on a
back-up member.

The same behavior goes for the map.remove(key), the only difference is that MapStore.delete(key) is
called when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still
cannot be stored, a log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast calls the
MapStore.storeAll(map) and MapStore.deleteAll(collection) methods to do all writes in a single call.

If a map entry is marked as dirty, meaning that it is waiting to be persisted to the

ﬂ MapStore in a write-behind scenario, the eviction process forces the entry to be
stored. This way you have control over the number of entries waiting to be stored,
and thus you can prevent a possible OutOfMemory exception.

MapStore or MaplLoader implementations should not use Hazelcast
0 Map/Queue/MultiMap/List/Set operations. Your implementation should only work
with your data store. Otherwise, you may get into deadlock situations.

Here is an example configuration:

124



<hazelcast>

<map name="default">
<map-store enabled="true" initial-mode="LAZY">
<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>
</map-store>
</map>

</hazelcast>

The following are the descriptions of MapStore configuration elements and attributes:

* class-name: Name of the class implementing MapLoader and/or MapStore.

* write-delay-seconds: Number of seconds to delay to call the MapStore.store(key, value). If the
value is zero then it is write-through, so the MapStore.store(key,value) method is called as soon
as the entry is updated. Otherwise, it is write-behind; so the updates will be stored after the
write-delay-seconds value by calling the Hazelcast.storeAll(map) method. Its default value is 0.

* write-batch-size: Used to create batch chunks when writing map store. In default mode, all map
entries are tried to be written in one go. To create batch chunks, the minimum meaningful
value for write-batch-size is 2. For values smaller than 2, it works as in default mode.

* write-coalescing: In write-behind mode, Hazelcast coalesces updates on a specific key by
default; it applies only the last update on it. You can set this element to false to store all updates
performed on a key to the data store.

* enabled: True to enable this map-store, false to disable. Its default value is true.

* initial-mode: Sets the initial load mode. LAZY is the default load mode, where load is
asynchronous. EAGER means load is blocked till all partitions are loaded. See the Initializing
Map on Startup section for more details.

Storing Entries to Multiple Maps

A configuration can be applied to more than one map using wildcards (see Using Wildcards),
meaning that the configuration is shared among the maps. But MapStore does not know which
entries to store when there is one configuration applied to multiple maps.

To store entries when there is one configuration applied to multiple maps, use Hazelcast’s
MapStoreFactory interface. Using the MapStoreFactory interface, MapStores for each map can be
created when a wildcard configuration is used. Example code is shown below.

125



Config config = new Config();

MapConfig mapConfig = config.getMapConfig( "*" );

MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig();
mapStoreConfig.setFactoryImplementation( new MapStoreFactory<Object, Object>() {

public MapLoader<Object, Object> newMapStore( String mapName, Properties
properties ) {
return null;

}
1

To initialize the MapLoader implementation with the given map name, configuration properties and
the Hazelcast instance, implement the MapLoaderLifecycleSupport interface. This interface has the
methods init() and destroy().

The method init() initializes the MapLoader implementation. Hazelcast calls this method when the
map is first used on the Hazelcast instance. The MaplLoader implementation can initialize the
required resources for implementing MapLoader such as reading a configuration file or creating a
database connection.

Hazelcast calls the method destroy() before shutting down. You can override this method to
cleanup the resources held by this MaplLoader implementation, such as closing the database
connections.

Initializing Map on Startup

To pre-populate the in-memory map when the map is first touched/used, use the
MapLoader.loadAl1Keys APIL

If MapLoader.loadAllKeys returns NULL, then nothing will be loaded. Your MaplLoader.loadAl1lKeys
implementation can return all or some of the keys. For example, you may select and return only the
keys which are most important to you that you want to load them while initializing the map.
MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast optimizes the
loading process by having each cluster member load its owned portion of the entries.

The InitiallLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and
EAGER. If InitiallLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER,
all the data is loaded while the map is created and everything becomes ready to use. Also, if you
add indices to your map with the MapIndexConfig class or the addIndex method, then
InitiallLoadMode is overridden and MapStoreConfig behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any member, initialization starts depending on the value of
InitiallLoadMode. If it is set to EAGER, initialization starts on all partitions as soon as the map is
touched, i.e., all partitions are loaded when getMap is called. If it is set to LAZY, data is loaded
partition by partition, i.e., each partition is loaded with its first touch.

2. Hazelcast calls MapLoader.1loadAl1lKeys() to get all your keys on one of the members.

126


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/MapLoaderLifecycleSupport.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/MapLoaderLifecycleSupport.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/config/MapStoreConfig.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/config/MapIndexConfig.html

3. That member distributes keys to all other members in batches.
4. Each member loads values of all its owned keys by calling MapLoader.loadAll(keys).

5. Each member puts its owned entries into the map by calling IMap.putTransient(key,value).

If the load mode is LAZY and the clear() method is called (which triggers

ﬁ MapStore.deleteAll()), Hazelcast removes ONLY the loaded entries from your map
and datastore. Since all the data is not loaded in this case (LAZY mode), please note
that there may still be entries in your datastore.*

If you do not want the MapStore start to load as soon as the first cluster member

0 starts, you can use the system property hazelcast.initial.min.cluster.size. For
example, if you set its value as 3, loading process will be blocked until all three
members are completely up.*

The return type of loadAllKeys() is changed from Set to Iterable with the release
0 of Hazelcast 3.5. MapLoader implementations from previous releases are also
supported and do not need to be adapted.

Loading Keys Incrementally

If the number of keys to load is large, it is more efficient to load them incrementally rather than
loading them all at once. To support incremental loading, the MaplLoader.loadAllKeys() method
returns an Iterable which can be lazily populated with the results of a database query.

Hazelcast iterates over the Iterable and, while doing so, sends out the keys to their respective
owner members. The Iterator obtained from MaplLoader.loadAl1lKeys() may also implement the
(loseable interface, in which case Iterator is closed once the iteration is over. This is intended for
releasing resources such as closing a JDBC result set.

Forcing All Keys To Be Loaded

The method 1loadAll loads some or all keys into a data store in order to optimize the multiple load
operations. The method has two signatures; the same method can take two different parameter
lists. One signature loads the given keys and the other loads all keys. See the example code below.

127



final int numberOfEntriesToAdd = 1000;

final String mapName = LoadAll.class.getCanonicalName();

final Config config = createNewConfig(mapName);

final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName);

populateMap(map, numberOfEntriesToAdd);
System.out.printf("# Map store has %d elements\n", numberOfEntriesToAdd);

map.evictAll();
System.out.printf("# After evictAll map size\t: %d\n", map.size());

map.loadAll(true);
System.out.printf("# After loadAll map size\t: %d\n", map.size());

Post-Processing Objects in Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For
example, you can get an ID or version auto-generated by your database and then need to modify
your object stored in the distributed map, but not to break the synchronization between the
database and the data grid.

To post-process an object in the map store, implement the PostProcessingMapStore interface to put
the modified object into the distributed map. This triggers an extra step of Serialization, so use it
only when needed. (This is only valid when using the write-through map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {

public void store( Integer key, Employee employee ) {
EmployeeId id = saveEmployee();
employee.setId( id.getId() );

0 Please note that if you are using a post-processing map store in combination with
the entry processors, post-processed values will not be carried to backups.
Accessing a Database Using Properties

You can prepare your own MaplLoader to access a database such as Cassandra and MongoDB. For this,
you can first declaratively specify the database properties in your hazelcast.xml configuration file
and then implement the MapLoaderLifecycleSupport interface to pass those properties.

You can define the database properties, such as its URL and name, using the properties
configuration element. The following is a configuration example for MongoDB:

128



<hazelcast>

<map name="supplements">
<map-store enabled="true" initial-mode="LAZY">
<class-name>com.hazelcast.loader.YourMapStoreImplementation</class-name>
<properties>
<property name="mongo.ur1l">mongodb://localhost:27017</property>
<property name="mongo.db">mydb</property>
<property name="mongo.collection">supplements</property>
</properties>
</map-store>
</map>

</hazelcast>

After you specified the database properties in your configuration, you need to implement the
MapLoaderLifecycleSupport interface and give those properties in the init() method, as shown
below:

public class YourMapStoreImplementation implements MapStore<String, Supplement>,
MapLoaderLifecycleSupport {

private MongoClient mongo(Client;
private MongoCollection collection;

public YourMapStoreImplementation() {
}

public void init(HazelcastInstance hazelcastInstance, Properties properties,

String mapName) {

String mongoUrl = (String) properties.get("mongo.url");

String dbName = (String) properties.get("mongo.db");

String collectionName = (String) properties.get("mongo.collection");

this.mongoClient = new MongoClient(new MongoClientURI(mongoUrl));

this.collection = mongoClient.getDatabase(dbName).getCollection(
collectionName);

}

See the full example here.

MapStore and MapLoader Methods Triggered by IMap Operations

As it is explained in the above sections, you can configure Hazelcast maps to be backed by a map
store to persist the entriess In this case many of the IMap methods call
MapLoader or MapStore methods to load, store or remove data. This section summarizes these
methods. Here are the Hazelcast IMap operations that may trigger the MapStore or MapLoader
methods:

129


https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/mongodb

IMap Method
flush()

. put()
o PUtALL()
o putAsync()
o tryPut()

o putIfAbsent
O

o set()
« setAsync()

remove()

« removeAll()
o delete()

« removeAsync

O

o tryRemove()

clear()

replace()

130

Impact on the MapStore/MapLoader

If the map has a MapStore, this method flushes all the local dirty entries. It calls
the MapStore.storeAl1(Map) or MapStore.deleteAll(Collection) methods with the
elements marked as dirty.

These methods are used to put entries to the map. They call the
MapLoader.load(Object) method for each entry not found in the memory to load
the value from the map store backing the map. They also call the
MapStore.store(Object, Object) method for each entry, if write-through
persistence mode is configured before the entry is added into the memory.

These methods put an entry into the map without returning the old value. They
call the MapStore.store(Object, Object) method if write-through persistence
mode is configured before the entry is added into the memory, to write the value
into the map store.

Removes the mapping for a key from the map if it is present. It calls the
MapLoader.load(Object) method if no value is found with key in the memory, to
load the value from the map store backing the map. It also calls the
MapStore.delete(Object) method if write-through persistence mode is configured
before the value is removed from the memory, to remove the value from the map
store.

These methods are used to remove entries from the map for various conditions.
They call the MapStore.delete(Object) method if write-through persistence mode
is configured before the value is removed from the memory, to remove the value
from the map store.

It clears the map and deletes the items from the backing map store. It calls
the MapStore.deleteAll(Collection) method on each partition with the keys that
the given partition stores.

It replaces the entry for a key only if currently mapped to a given value. It calls
the MapStore.store(Object, Object) method if write-through persistence mode is
configured before the value is stored in the memory, to write the value into the
map store.



IMap Method Impact on the MapStore/MapLoader

« executeOnKe These methods apply the user defined entry processors to the entry or entries.

O They call the MapLoader.load(0Object) method if the value with key is not found in
« executeOnKe the memory, to load the value from the map store backing the map. If the entry
ysO) processor updates the entry and write-through persistence mode is configured,

« submitToKey pefore the value is stored in memory, they call the MapStore.store(Object,

O Object) method to write the value into the map store. If the entry processor

« executeOnAl ypqates the entry’s value to null value and write-through persistence mode is

LEntries() configured, before the value is removed from the memory, they call the
MapStore.delete(Object) method to delete the value from the map store.

7.2.9. Creating Near Cache for Map

The Hazelcast distributed map supports a local Near Cache for remotely stored entries to increase
the performance of local read operations. See the Near Cache section for a detailed explanation of
the Near Cache feature and its configuration.

7.2.10. Locking Maps

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When
these requirements increase or you want to have more control on the concurrency, consider the
Hazelcast solutions described here.

Consider the following example:

public class RacyUpdateMember {
public static void main( String[] args ) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap( "map" );
String key = "1";
map.put( key, new Value() );
System.out.println( "Starting" );
for ( int k = 0; k < 1000; k++ ) {
if ( k% 100 == 0 ) System.out.println( "At: " + k );
Value value = map.get( key );
Thread.sleep( 10 );
value.amount++;
map.put( key, value );
}
System.out.println( "Finished! Result =

+ map.get(key).amount );
}

static class Value implements Serializable {
public int amount;

}

131



If the above code is run by more than one cluster member simultaneously, a race condition is likely.
You can solve this condition with Hazelcast using either pessimistic or optimistic locking.

Pessimistic Locking

One way to solve the race issue is by using pessimistic locking - lock the map entry until you are
finished with it.

To perform pessimistic locking, use the lock mechanism provided by the Hazelcast distributed map,
i.e,, the map.lock and map.unlock methods. See the below example code.

public class PessimisticUpdateMember {
public static void main( String[] args ) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap( "map" );
String key = "1";
map.put( key, new Value() );
System.out.println( "Starting" );
for (int k = 0; k < 1000; k++ ) {
map.lock( key );
try {
Value value = map.get( key );
Thread.sleep( 10 );
value.amount++;
map.put( key, value );
} finally {
map.unlock( key );
}

}
System.out.println( "Finished! Result =

+ map.get( key ).amount );
}

static class Value implements Serializable {
public int amount;

}

The IMap lock will automatically be collected by the garbage collector when the lock is released and
no other waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

Another way to solve the race issue is by acquiring a predictable Lock object from Hazelcast. This
way, every value in the map can be given a lock, or you can create a stripe of locks.

Optimistic Locking

In Hazelcast, you can apply the optimistic locking strategy with the map’s replace method. This
method compares values in object or data forms depending on the in-memory format
configuration. If the values are equal, it replaces the old value with the new one. If you want to use

132



your defined equals method, in-memory-format should be OBJECT. Otherwise, Hazelcast serializes
objects to BINARY forms and compares them.

See the below example code.

0 The below example code is intentionally broken.

public class OptimisticMember {
public static void main( String[] args ) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap( "map" );
String key = "1";
map.put( key, new Value() );
System.out.println( "Starting" );
for (int k = 0; k < 1000; k++ ) {
if (k% 10 == 0 ) System.out.println( "At: " + k );
for (; ;) {
Value oldValue = map.get( key );
Value newValue = new Value( oldValue );
Thread.sleep( 10 );
newValue.amount++;
if ( map.replace( key, oldValue, newValue ) )
break;

}

}
System.out.println( "Finished! Result =

+ map.get( key ).amount );
}

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value( Value that ) {
this.amount = that.amount;

}

public boolean equals( Object o ) {
if ( 0 == this ) return true;
if ( !'( o instanceof Value ) ) return false;
Value that = ( Value ) o;
return that.amount == this.amount;

133



Pessimistic vs. Optimistic Locking

The locking strategy you choose depends on your locking requirements.

Optimistic locking is better for mostly read-only systems. It has a performance boost over
pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than
optimistic locking from the perspective of data consistency.

In Hazelcast, use IExecutorService to submit a task to a key owner, or to a member or members.
This is the recommended way to perform task executions, rather than using pessimistic or
optimistic locking techniques. IExecutorService has fewer network hops and less data over wire,
and tasks are executed very near to the data. See the Data Affinity section.

Solving the ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple
threads. Even if one thread sees the same value for a particular key in consecutive reads, it does not
mean that nothing has changed between the reads. Another thread may change the value, do work
and change the value back, while the first thread thinks that nothing has changed.

To prevent these kind of problems, you can assign a version number and check it before any write
to be sure that nothing has changed between consecutive reads. Although all the other fields are
equal, the version field will prevent objects from being seen as equal. This is the optimistic locking
strategy; it is used in environments that do not expect intensive concurrent changes on a specific
key.

In Hazelcast, you can apply the optimistic locking strategy with the map replace method.

Lock Split-Brain Protection with Pessimistic Locking

Locks can be configured to check the number of currently present members before applying a
locking operation. If the check fails, the lock operation fails with a QuorumException (see Split-Brain
Protection). As pessimistic locking uses lock operations internally, it also uses the configured lock
quorum. This means that you can configure a lock quorum with the same name or a pattern that
matches the map name. Note that the quorum for IMap locking actions can be different from the
quorum for other IMap actions.

The following actions check for lock quorum before being applied:

» IMap.lock(K) and IMap.lock(K, long, java.util.concurrent.TimeUnit)
o IMap.isLocked()

» IMap.trylLock(K), IMap.tryLock(K, Tlong, java.util.concurrent.TimeUnit) and IMap.tryLock(K,
long, java.util.concurrent.TimeUnit, long, java.util.concurrent.TimeUnit)

« IMap.unlock()
« IMap.forceUnlock()

* MultiMap.lock(K) and MultiMap.lock(K, long, java.util.concurrent.TimeUnit)
o MultiMap.isLocked()

134



e MultiMap.tryLock(K), MultiMap.tryLock(K, long, java.util.concurrent.TimeUnit) and
MultiMap.tryLock(K, long, java.util.concurrent.TimeUnit, long,
java.util.concurrent.TimeUnit)

o MultiMap.unlock()
o MultiMap.forceUnlock()

An example of declarative configuration:

<hazelcast>

<map name="myMap">
<quorum-ref>map-actions-quorum</quorum-ref>

</map>

<lock name="myMap">
<quorum-ref>map-lock-actions-quorum</quorum-ref>

</lock>

</hazelcast>

Here the configured map uses the map-lock-actions-quorum quorum for map lock actions and the
map-actions-quorum quorum for other map actions.

7.2.11. Accessing Map and Entry Statistics

You can retrieve the statistics of the map in your Hazelcast IMDG member using the
getlLocalMapStats() method, which is the programmatic approach. It returns information such as
primary and backup entry count, last update time and locked entry count. If you need the cluster-
wide map statistics, you can get the local map statistics from all members of the cluster and
combine them. Alternatively, you can see the map statistics on the Hazelcast Management Center.

To be able to retrieve the map statistics, the statistics-enabled element under the map
configuration should be set as true, which is the default value:

<hazelcast>

<map name="myMap">
<statistics-enabled>true</statistics-enabled>
</map>

</hazelcast>

When this element is set to false, the statistics are not gathered for the map and cannot be seen on
the Hazelcast Management Center, nor retrieved by the getLocalMapStats() method.

Hazelcast also keeps statistics about each map entry, such as creation time, last update time, last
access time, and number of hits and version. To access the map entry statistics, use an
IMap.getEntryView(key) call. Here is an example.

135


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#managing-maps

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap( "quotes" ).getEntryView( "1" );
System.out.println ( "size in memory + entry.getCost() );

(

System.out.println ( "creationTime + entry.getCreationTime() );
System.out.println ( "expirationTime : " + entry.getExpirationTime() );
System.out.println ( "number of hits : " + entry.getHits() );
System.out.println ( "lastAccessedTime: " + entry.getlLastAccessTime() );
System.out.println ( "lastUpdateTime : " + entry.getlLastUpdateTime() );
System.out.println ( "version : " + entry.getVersion() );
System.out.println ( "key "+ entry.getKey() );
System.out.println ( "value " + entry.getValue() );

7.2.12. Map Listener

See the Listening for Map Events section.

7.2.13. Listening to Map Entries with Predicates

You can listen to the modifications performed on specific map entries. You can think of it as an
entry listener with predicates. See the Listening for Map Events section for information on how to
add entry listeners to a map.

The default backwards-compatible event publishing strategy only publishes
UPDATED events when map entries are updated to a value that matches the

9 predicate with which the listener was registered. This implies that when using the
default event publishing strategy, your listener is not notified about an entry
whose value is updated from one that matches the predicate to a new value that
does not match the predicate.

Since version 3.7, when you configure Hazelcast members with property
hazelcast.map.entry.filtering.natural.event.types set to true, handling of entry updates
conceptually treats value transition as entry, update or exit with regards to the predicate value
space. The following table compares how a listener is notified about an update to a map entry value
under the  default backwards-compatible  Hazelcast behavior (when  property
hazelcast.map.entry.filtering.natural.event.types is not set or is set to false) versus when set to
true:

Default hazelcast.map.entry.filtering.
natural.event.types = true

When old value matches No event is delivered to entry ~ REMOVED event is delivered to
predicate, new value does not  listener entry listener
match predicate
When old value matches UPDATED event is delivered to UPDATED event is delivered to
predicate, new value matches  entry listener entry listener
predicate

136



When old value does not match No event is delivered to entry  No event is delivered to entry

predicate, new value does not  listener listener

match predicate

When old value does not match UPDATED event is delivered to ADDED event is delivered to entry
predicate, new value matches  entry listener listener

predicate

As an example, let’s listen to the changes made on an employee with the surname "Smith". First,
let’s create the Employee class.

public class Employee implements Serializable {
private final String surname;

public Employee(String surname) {
this.surname = surname;

}

public String toString() {
return "Employee{" +
"surname=""

B

+ surname + '\'' +

Then, let’s create a listener with predicate by adding a listener that tracks ADDED, UPDATED and REMOVED
entry events with the surname predicate.

137



public class ListenerWithPredicate {

public static void main(String[] args) {
Config config = new Config();
config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
IMap<String, String> map = hz.getMap("map");
map.addEntryListener(new MyEntrylListener(),

new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntrylListener

implements EntryAddedlListener<String, String>,
EntryUpdatedListener<String, String>,
EntryRemovedListener<String, String> {

@0verride

public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);

}

@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

}

@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

}

And now, let’s play with the employee "smith" and see how that employee is listened to.

138



public class Modify {

public static void main(String[] args) {
Config config = new Config();
config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
IMap<String, Employee> map = hz.getMap("map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));

System.out.println("done");
System.exit(0);

When you first run the class ListenerWithPredicate and then run Modify, an output similar to the
one below appears.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,0ldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

0 See the Continuous Query Cache section for more information.

7.2.14. Removing Map Entries in Bulk with Predicates

You can remove all map entries that match your predicate. For this, Hazelcast offers the method
removeAll(). Its syntax is as follows:

void removeAll(Predicate<K, V> predicate);

Normally the map entries matching the predicate are found with a full scan of the map. If the
entries are indexed, Hazelcast uses the index search to find them. With index, you can expect that
finding the entries is faster.

0 When removeAll() is called, ALL entries in the caller member’s Near Cache are also
removed.

7.2.15. Adding Interceptors

You can add intercept operations and execute your own business logic synchronously blocking the
operations. You can change the returned value from a get operation, change the value in put, or
cancel operations by throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has

139



been completed. Interceptor actions are synchronous and you can alter the behavior of operation,
change its values, or totally cancel it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can
result in duplicate effects. This can easily happen when the interceptor is added to the map at
member initialization, so that each member adds the same interceptor. When you add the
interceptor in this way, be sure to implement the hashCode() method to return the same value for
every instance of the interceptor. It is not strictly necessary, but it is a good idea to also implement
equals() as this ensures that the map interceptor can be removed reliably.

The IMap API has two methods for adding and removing an interceptor to the map: addInterceptor
and removelnterceptor. See also the MapInterceptor interface to see the methods used to intercept
the changes in a map.

The following is an example usage.

140


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/MapInterceptor.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/MapInterceptor.html

public class MapInterceptorMember {

public static void main(String[] args) {

}

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("themap");
map.addInterceptor(new MyMapInterceptor());

map.put("1"' "1");
System.out.println(map.get("1"));

private static class MyMapInterceptor implements MapInterceptor {

public Object interceptGet(Object value) {
return value + "-foo";

}

public void afterGet(Object value) {
}

public Object interceptPut(Object oldValue, Object newValue) {
return null;

}

public void afterPut(Object value) {
}

public Object interceptRemove(Object removedValue) {
return null;

}

public void afterRemove(Object value) {
}

7.2.16. Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query-based map methods,
especially with large clusters or heap sizes. For example, on a cluster with five members having 10
GB of data and 25 GB heap size per member, a single call of IMap.entrySet() fetches 50 GB of data
and crashes the calling instance.

141



A call of IMap.values() may return too much data for a single member. This can also happen with a
real query and an unlucky choice of predicates, especially when the parameters are chosen by a
user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is
not a limit like SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A
maximum result size limit for query based operations is meant to be a last line of defense to
prevent your members from retrieving more data than they can handle.

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each
QueryOperation runs on all partitions of a member, so it collects result entries as long as the member
limit is not exceeded. If that happens, a QueryResultSizeExceededException is thrown and propagated
to the calling instance.

This feature depends on an equal distribution of the data on the cluster members to calculate the
result size limit per member. Therefore, there is a minimum value defined in
QueryResultSizelLimiter .MINIMUM_MAX_RESULT_LIMIT. Configured values below the minimum will be
increased to the minimum.

Local Pre-check

In addition to the distributed result size check in the QueryOperations, there is a local pre-check on
the calling instance. If you call the method from a client, the pre-check is executed on the member
that invokes the QueryOperations.

Since the local pre-check can increase the latency of a QueryOperation, you can configure how many
local partitions should be considered for the pre-check, or you can deactivate the feature
completely.

Scope of Result Size Limit

Besides the designated query operations, there are other operations that use predicates internally.
Those method calls throw the QueryResultSizeExceededException as well. See the following matrix
for the methods that are covered by the query result size limit.

142



Mathod MapProxyImpl| ClientMapProxyImpl | TransactionalMapProxy ClientTxnMapProxy
values() v v v v
keyset() o ,

entryset()

values(predicate)

keySet (predicate)

v
v
L
v
v

entrySet (predicate)

localkeySet()

RN N N NSNS

localKeySet (predicate)

Interfaces:| IMap | TransactionalMap

Configuring Query Result Size

The query result size limit is configured via the following system properties.

* hazelcast.query.result.size.limit: Result size limit for query operations on maps. This value
defines the maximum number of returned elements for a single query result. If a query exceeds
this number of elements, a QueryResultSizeExceededException is thrown.

* hazelcast.query.max.local.partition.limit.for.precheck: Maximum value of local partitions to
trigger local pre-check for TruePredicate query operations on maps.

See the System Properties appendix to see the full descriptions of these properties and how to set
them.

7.3. Queue

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being
distributed, Hazelcast distributed queue enables all cluster members to interact with it. Using
Hazelcast distributed queue, you can add an item in one cluster member and remove it from
another one.

7.3.1. Getting a Queue and Putting Items

Use the Hazelcast instance’s getQueue method to get the queue, then use the queue’s put method to
put items into the queue.

143



HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue( "tasks" );
queue.put( new MyTask() );

MyTask task = queue.take();

boolean offered = queue.offer( new MyTask(), 10, TimeUnit.SECONDS );
task = queue.poll( 5, TimeUnit.SECONDS );
if ( task != null ) {

//process task

}

FIFO ordering applies to all queue operations across the cluster. The user objects (such as MyTask in
the example above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items are
copied locally and iteration occurs locally.

Hazelcast distributed queue uses ItemListener to listen to the events that occur when items are
added to and removed from the queue. See the Listening for Item Events section for information on
how to create an item listener class and register it.

7.3.2. Creating an Example Queue

The following example code illustrates a distributed queue that connects a producer and consumer.

Putting Items on the Queue

Let’s put one integer on the queue every second, 100 integers total.

public class ProducerMember {

public static void main( String[] args ) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue( "queue" );
for (int k = 1; k < 100; k++ ) {
queue.put( k );
System.out.println( "Producing: " + k );
Thread.sleep(1000);
}
queue.put( -1 );
System.out.println( "Producer Finished!" );

Producer puts a -1 on the queue to show that the puts are finished.

144



Taking Items off the Queue

Now, let’s create a Consumer class to take a message from this queue, as shown below.

public class ConsumerMember {

public static void main( String[] args ) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue( "queue" );
while ( true ) {
int item = queue.take();
System.out.println( "Consumed:
if (item == -1 ) {
queue.put( -1 );
break;

+ item );

}
Thread.sleep( 5000 );

}

System.out.println( "Consumer Finished!" );

As seen in the above example code, Consumer waits five seconds before it consumes the next
message. It stops once it receives -1. Also note that Consumer puts -1 back on the queue before the
loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be
consumed from the same queue.

Balancing the Queue Operations

From the above example code, you can see that an item is produced every second and consumed
every five seconds. Therefore, the consumer keeps growing. To balance the produce/consume
operation, let’s start another consumer. This way, consumption is distributed to these two
consumers, as seen in the example outputs below.

The second consumer is started. After a while, here is the first consumer output:

Consumed 13
Consumed 15
Consumer 17

Here is the second consumer output:

145



Consumed 14
Consumed 16
Consumer 18

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the
queue bottlenecks. In this case, be aware that the order of the messages sent to different queues is
not guaranteed. Since in most cases strict ordering is not important, a list of queues is a good
solution.

0 The items are taken from the queue in the same order they were put on the queue.
However, if there is more than one consumer, this order is not guaranteed.

ItemIDs When Offering Items

Hazelcast gives an itemld for each item you offer, which is an incrementing sequence identification
for the queue items. You should consider the following to understand the itemId assignment
behavior:

* When a Hazelcast member has a queue and that queue is configured to have at least one
backup, and that member is restarted, the itemId assignment resumes from the last known
highest itemId before the restart; itemId assignment does not start from the beginning for the
new items.

* When the whole cluster is restarted, the same behavior explained in the above consideration
applies if your queue has a persistent data store (QueueStore). If the queue has QueueStore, the
itemId for the new items are given, starting from the highest itemId found in the IDs returned by
the method loadAl1Keys. If the method loadAllKeys does not return anything, the itemIds starts
from the beginning after a cluster restart.

* The above two considerations mean there are no duplicated itemIds in the memory or in the
persistent data store.

7.3.3. Setting a Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more
items can be put into the queue until some items are taken out.

To turn a Hazelcast distributed queue into a bounded queue, set the capacity limit with the max-size
property. You can set the max-size property in the configuration, as shown below. The max-size
element specifies the maximum size of the queue. Once the queue size reaches this value, put
operations are blocked until the queue size goes below max-size, which happens when a consumer
removes items from the queue.

Let’s set 10 as the maximum size of our example queue in Creating an Example Queue.

146



<hazelcast>

<queue name="queue">
<max-size>10</max-size>
</queue>

</hazelcast>

When the producer is started, ten items are put into the queue and then the queue will not allow
more put operations. When the consumer is started, it will remove items from the queue. This
means that the producer can put more items into the queue until there are ten items in the queue
again, at which point the put operation again becomes blocked.

In this example code, the producer is five times faster than the consumer. It will effectively always
be waiting for the consumer to remove items before it can put more on the queue. For this example
code, if maximum throughput is the goal, it would be a good option to start multiple consumers to
prevent the queue from filling up.

7.3.4. Queueing with Persistent Datastore

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore
using the interface QueueStore. If queue store is enabled, each item added to the queue is also stored
at the configured queue store. When the number of items in the queue exceeds the memory limit,
the subsequent items are persisted in the queue store, they are not stored in the queue memory.

The QueueStore interface enables you to store, load and delete queue items with methods like store,
storeAll, load and delete. The following example class includes all of the QueueStore methods.

147



public class TheQueueStore implements QueueStore<Item> {

@0verride

public void delete(Long key) {
System.out.println("delete");

}

@0verride
public void store(Long key, Item value) {
System.out.println("store");

}

@0verride

public void storeAll(Map<Long, Item> map) {
System.out.println("store all");

}

@0verride

public void deleteAll(Collection<Long> keys) {
System.out.println("deleteAll");

}

@0verride

public Item load(Long key) {
System.out.println("load");
return null;

}

@0verride

public Map<Long, Item> loadAll(Collection<Long> keys) {
System.out.println("loadAL1");
return null;

}

@0verride

public Set<Long> loadAllKeys() {
System.out.println("loadAl1Keys");
return null;

I'tem must be serializable. The following is an example queue store configuration.

148



<hazelcast>

<queue name="queue">
<max-size>10</max-size>
<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-1limit">1000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>
</queue>

</hazelcast>

The following are the descriptions for each queue store property:

* Binary: By default, Hazelcast stores the queue items in serialized form, and before it inserts the
queue items into the queue store, it deserializes them. If you are not reaching the queue store
from an external application, you might prefer that the items be inserted in binary form. Do this
by setting the binary property to true: then you can get rid of the deserialization step, which is a
performance optimization. The binary property is false by default.

* Memory Limit: This is the number of items after which Hazelcast stores items only to the
datastore. For example, if the memory limit is 1000, then the 1001st item is put only to the
datastore. This feature is useful when you want to avoid out-of-memory conditions. If you want
to always use memory, you can set it to Integer.MAX_VALUE. The default number for memory-limit
is 1000.

* Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load
is the size of these bulks. The default value of bulk-1oad is 250.

7.3.5. Split-Brain Protection for Queue

Queues can be configured to check for a minimum number of available members before applying
queue operations (see Split-Brain Protection). This is a check to avoid performing successful queue
operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the quorum type, that support Split-Brain Protection
checks:
» WRITE, READ_WRITE
o Collection.addAll()
o Collection.removeAll(), Collection.retainAll()
o BlockingQueue.offer(), BlockingQueue.add(), BlockingQueue.put()
» BlockingQueue.drainTo()

o IQueue.poll(), Queue.remove(), IQueue.take()

149



- BlockingQueue.remove()
* READ, READ_WRITE
- Collection.clear()
o Collection.containsAl1(), BlockingQueue.contains()
» Collection.isEmpty()
o Collection.iterator(), Collection.toArray()

o Queue.peek(), Queue.element()

» Collection.size()

» BlockingQueue.remainingCapacity()

7.3.6. Configuring Queue

The following are examples of queue configurations. It includes the QueueStore configuration, which
is explained in the Queueing with Persistent Datastore section.

Declarative Configuration:

<hazelcast>

<queue name="default">
<max-size>0</max-size>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<empty-queue-ttl>-1</empty-queuve-ttl>
<item-listeners>
<item-listener>com.hazelcast.examples.ItemListener</item-listener>
</item-listeners>
<statistics-enabled>true</statistics-enabled>
<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-1limit">10000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>
<quorum-ref>quorumname</quorum-ref>
</queue>

</hazelcast>

Programmatic Configuration:

150



Config config = new Config();
QueueConfig queueConfig = config.getQueueConfig("default");
queueConfig.setName("MyQueue")
.setBackupCount (1)
.setMaxSize(0)
.setStatisticsEnabled(true)
.setQuorumName("quorumname");
queueConfig.getQueueStoreConfig()
.setEnabled(true)
.setClassName("com.hazelcast.QueueStoreImpl")
.setProperty("binary", "false");
config.addQueueConfig(queueConfig);

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a
cluster member with a queue goes down, another member having the backup of that queue will
continue. Therefore, no items are lost. You can define the number of synchronous backups for a
queue using the backup-count element in the declarative configuration. A queue can also have
asynchronous backups: you can define the number of asynchronous backups using the async-
backup-count element.

To set the maximum size of the queue, use the max-size element. To purge unused or empty queues
after a period of time, use the empty-queue-ttl element. If you define a value (time in seconds) for
the empty-queue-ttl element, then your queue will be destroyed if it stays empty or unused for the
time in seconds that you give.

The following is the full list of queue configuration elements with their descriptions:

* max-size: Maximum number of items in the queue. It is used to set an upper bound for the
queue. You will not be able to put more items when the queue reaches to this maximum size
whether you have a queue store configured or not.

* backup-count: Number of synchronous backups. Queue is a non-partitioned data structure, so all
entries of a queue reside in one partition. When this parameter is '1', it means there will be one
backup of that queue in another member in the cluster. When it is '2', two members will have
the backup.

* async-backup-count: Number of asynchronous backups.

» empty-queue-ttl: Used to purge unused or empty queues. If you define a value (time in seconds)
for this element, then your queue will be destroyed if it stays empty or unused for that time.

* item-listeners: Adds listeners (listener classes) for the queue items. You can also set the
attribute include-value to true if you want the item event to contain the item values. You can set
local to true if you want to listen to the items on the local member.

* queue-store: Includes the queue store factory class name and the properties binary, memory
limit and bulk load. See the Queueing with Persistent Datastore section.

» statistics-enabled: Specifies whether the statistics gathering is enabled for your queue. If set
to false, you cannot collect statistics in your implementation (using getlLocalQueueStats()) and
also Hazelcast Management Center will not show them. Its default value is true.

151


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-queues

* quorum-ref : Name of quorum configuration that you want this queue to use.

7.4. MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just
like any other distributed data structure implementation in Hazelcast, MultiMap is distributed and
thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method
signatures. It supports most features of Hazelcast Map except for indexing, predicates and
MapLoader/MapStore. Yet, like Hazelcast Map, entries are almost evenly distributed onto all cluster
members. When a new member joins the cluster, the same ownership logic used in the distributed
map applies.

7.4.1. Getting a MultiMap and Putting an Entry

The following example creates a MultiMap and puts items into it:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap<String , String > map = hazelcastInstance.getMultiMap( "map" );

map.put( "a", "1" );
map.put( "a", "2" );
map.put( "b", "3" );
System.out.println( "PutMember:Done" );

We use the getMultiMap method to create the MultiMap and then use the put method to put an entry
into it.

Now let’s print the entries in this MultiMap using the following code:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hazelcastInstance.getMultiMap("map");

map.pUt("a", u1u);
map.put("a"’ l|2|l);
map.put("b", u3u);
System.out.printf("PutMember:Done");

for (String key: map.keySet()){
Collection<String> values = map.get(key);
System.out.printf("%s -> %s\n", key, values);

After you run ExampleMultiMap, run PrintMember. You will see the key a has two values, as shown
below:

b - [3]

152



a = [2, 1]

Hazelcast MultiMap uses EntrylListener to listen to events which occur when entries are added to,
updated in or removed from the MultiMap. See the Listening for MultiMap Events section for
information on how to create an entry listener class and register it.

7.4.2. Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. Configure the
collection type with the valueCollectionType parameter. If you choose Set, duplicate and null values
are not allowed in your collection and ordering is irrelevant. If you choose List, ordering is
relevant and your collection can include duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you
enable statisticsEnabled, statistics can be retrieved with getlLocalMultiMapStats() method.

O Currently, eviction is not supported for the MultiMap data structure.

The following are the example MultiMap configurations.

Declarative Configuration:

<hazelcast>

<multimap name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<value-collection-type>SET</value-collection-type>
<entry-listeners>

<entry-listener include-value="false" local="false'
>com.hazelcast.examples.EntryListener</entry-listener>

</entry-listeners>
<quorum-ref>quorumname</quorum-ref>

</multimap>

</hazelcast>
Programmatic Configuration:

MultiMapConfig mmConfig = new MultiMapConfig();
mmConfig.setName( "default" )
.setBackupCount( @ ).setAsyncBackupCount( 1 )
.setValueCollectionType( "SET" )
.setQuorumName( "quorumname" );

The following are the configuration elements and their descriptions:

* backup-count: Defines the number of synchronous backups. For example, if it is set to 1, backup

153



of a partition will be placed on one other member. If it is 2, it will be placed on two other
members.

async-backup-count: The number of asynchronous backups. Behavior is the same as that of the
backup-count element.

statistics-enabled: Specifies whether the statistics gathering is enabled for your MultiMap. If
set to false, you cannot collect statistics in your implementation (using getLocalMultiMapStats())
and also Hazelcast Management Center will not show them. Its default value is true.

value-collection-type: Type of the value collection. It can be SET or LIST.

entry-listeners: Lets you add listeners (listener classes) for the map entries. You can also set the
attribute include-value to true if you want the item event to contain the entry values. You can
set local to true if you want to listen to the entries on the local member.

quorum-ref: Name of quorum configuration that you want this MultiMap to use. See the Split-
Brain Protection for MultiMap and TransactionalMultiMap section.

7.4.3. Split-Brain Protection for MultiMap and TransactionalMultiMap

MultiMap & TransactionalMultiMap can be configured to check for a minimum number of
available members before applying their operations (see Split-Brain Protection). This is a check to
avoid performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods that now support Split-Brain Protection checks. The list is grouped
by quorum type.

MultiMap:

154

WRITE, READ_WRITE:
o Clear
o forceUnlock
o lock
o put
o remove
o trylock
o unlock
READ, READ_WRITE:
. containsEntry
. containsKey
» containsValue
o entrySet
o get
» islLocked
o keySet
o localKeySet
. Size

o valueCount


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-multimaps

- values

TransactionalMultiMap:

* WRITE, READ_WRITE:
o put
o remove

* READ, READ_WRITE:

o Size
o get

o valueCount
Configuring Split-Brain Protection

Split-Brain protection for MultiMap can be configured programmatically using the method
setQuorumName( ), or declaratively using the element quorum-ref. Following is an example declarative
configuration:

<hazelcast>

<multimap name="default">
<quorum-ref>quorumname</quorum-ref>
</multimap>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

7.5. Set

Hazelcast Set (ISet) is a distributed and concurrent implementation of java.util.Set. It has the
following features:

» Hazelcast Set does not allow duplicate elements.

» Hazelcast Set does not preserve the order of elements.

* Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set lives on one
single partition in that member.

* Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives
on a single partition, storing a large amount of data on a single set may cause memory pressure.
Therefore, you should use multiple sets to store a large amount of data. This way, all the sets are
spread across the cluster, sharing the load.

* A backup of Hazelcast Set is stored on a partition of another member in the cluster so that data
is not lost in the event of a primary member failure.

+ All items are copied to the local member and iteration occurs locally.

155


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/MultiMapConfig.html

* The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as
opposed to java.util.HashSet.

7.5.1. Getting a Set and Putting Items

Use the HazelcastInstances getSet method to get the Set, then use the add method to put items into it.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
ISet<String> set = hz.getSet("set");

set.add("Tokyo");

set.add("Paris");

set.add("London");

set.add("New York");

System.out.println("Putting finished!");

Hazelcast Set uses ItemListener to listen to events that occur when items are added to and removed
from the Set. See the Listening for Item Events section for information on how to create an item
listener class and register it.

7.5.2. Configuring Set
The following are the example Hazelcast Set configurations.

Declarative Configuration:

<hazelcast>

<set name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>

<item-listener>com.hazelcast.examples.ItemlListener</item-listener>

</item-listeners>
<quorum-ref>quorumname</quorum-ref>

</set>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
CollectionConfig collectionSet = config.getSetConfig("MySet");
collectionSet.setBackupCount(1)

.setMaxSize(10)

.setQuorumName ("quorumname");

156



Hazelcast Set configuration has the following elements:

» statistics-enabled: True (default) if statistics gathering is enabled on the Set, false otherwise.

* backup-count: Count of synchronous backups. Set is a non-partitioned data structure, so all
entries of a Set reside in one partition. When this parameter is '1', it means there will be one
backup of that Set in another member in the cluster. When it is '2', two members will have the
backup.

* async-backup-count: Count of asynchronous backups.

* max-size: The maximum number of entries for this Set. It can be any number between 0 and
Integer.MAX_VALUE. Its default value is 0, meaning there is no capacity constraint.

» item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the
attributes include-value to true if you want the item event to contain the item values. You can
set local to true if you want to listen to the items on the local member.

* quorum-ref: Name of quorum configuration that you want this Set to use. See the Split-Brain
Protection for ISet and TransactionalSet section.

7.5.3. Split-Brain Protection for ISet and TransactionalSet

ISet & TransactionalSet can be configured to check for a minimum number of available members
before applying queue operations (see Split-Brain Protection). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

ISet:

 WRITE, READ_WRITE:
» add
» addAll
o Clear
o remove
o removeAll
* READ, READ_WRITE:
. contains
» containsAll
o 1sEmpty
. iterator
. Size

o toArray

TransactionalSet:

o« WRITE, READ_WRITE:
- add

157



o remove
* READ, READ_WRITE:

. Size
Configuring Split-Brain Protection

Split-Brain protection for ISet can be configured programmatically using the method
setQuorumName(), or declaratively using the element quorum-ref. The following is an example
declarative configuration:

<hazelcast>
<set name="default">
<quorum-ref>quorumname</quorum-ref>

</set>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

7.6. List

Hazelcast List (IList) is similar to Hazelcast Set, but it also allows duplicate elements.

Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

* Hazelcast List is a non-partitioned data structure where values and each backup are
represented by their own single partition.

» Hazelcast List cannot be scaled beyond the capacity of a single machine.

* All items are copied to local and iteration occurs locally.

While IMap and ICache are the recommended data structures to be used by
Hazelcast Jet, IList can also be used by it for unit testing or similar non-production

0 situations. See here in the Hazelcast Jet Reference Manual to learn how Jet can use
IList, e.g., how it can fill IList with data, consume it in a Jet job and drain the
results to another IList. See also the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet.

7.6.1. Getting a List and Putting Items

Use the HazelcastInstances getlList method to get the List, then use the add method to put items into
it.

158


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/SetConfig.html
https://jet.hazelcast.org/
https://docs.hazelcast.org/docs/jet/latest/manual/#imdg-list
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IList<String> list = hz.getlList("list");
list.add("Tokyo");

list.add("Paris");

list.add("London");

list.add("New York");

System.out.println("Putting finished!");

Hazelcast List uses ItemListener to listen to events that occur when items are added to and removed
from the List. See the Listening for Item Events section for information on how to create an item
listener class and register it.

7.6.2. Configuring List
The following are the example Hazelcast List configurations.

Declarative Configuration:

<hazelcast>

<list name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
</item-listeners>
<quorum-ref>quorumname</quorum-ref>
</list>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
CollectionConfig collectionlist = config.getListConfig("MyList");
collectionList.setBackupCount(1)

.setMaxSize(10)

.setQuorumName ("quorumname");

Hazelcast List configuration has the following elements:

» statistics-enabled: True (default) if statistics gathering is enabled on the list, false otherwise.

* backup-count: Number of synchronous backups. List is a non-partitioned data structure, so all
entries of a List reside in one partition. When this parameter is '1', there will be one backup of

159



that List in another member in the cluster. When it is '2', two members will have the backup.
* async-backup-count: Number of asynchronous backups.
* max-size: The maximum number of entries for this List.

* item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the
attribute include-value to true if you want the item event to contain the item values. You can set
the attribute local to true if you want to listen the items on the local member.

* quorum-ref: Name of quorum configuration that you want this List to use. See the Split-Brain
Protection for IList and TransactionallList section.

7.6.3. Split-Brain Protection for IList and TransactionalList

IList & TransactionalList can be configured to check for a minimum number of available members
before applying queue operations (see Split-Brain Protection). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

IList:

* WRITE, READ_WRITE:
- add
» addAll
o Clear
o remove
o removeAll
o set
* READ, READ_WRITE:
- add
. contains
» containsAll
o get
» indexOf
. isEmpty
. iterator
o lastIndexOf
o listIterator
. Size
o sublList
o toArray

TransactionalList:

» WRITE, READ_WRITE:

160



- add

o remove
* READ, READ_WRITE:

. Size
Configuring Split-Brain Protection

Split-Brain protection for IList can be configured programmatically using the method
setQuorumName(), or declaratively using the element quorum-ref. Following is an example declarative
configuration:

<hazelcast>

<list name="default">
<quorum-ref>quorumname</quorum-ref>
</list>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

7.7. Ringbuffer

Hazelcast Ringbuffer is a replicated but not partitioned data structure that stores its data in a ring-
like structure. You can think of it as a circular array with a given capacity. Each Ringbuffer has a tail
and a head. The tail is where the items are added and the head is where the items are overwritten
or expired. You can reach each element in a Ringbuffer using a sequence ID, which is mapped to
the elements between the head and tail (inclusive) of the Ringbuffer.

7.7.1. Getting a Ringbuffer and Reading Items

Reading from Ringbuffer is simple: get the Ringbuffer with the HazelcastInstance getRingbuffer
method, get its current head with the headSequence method and start reading. Use the method
readOne to return the item at the given sequence; readOne blocks if no item is available. To read the
next item, increment the sequence by one.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true){
String item = ringbuffer.readOne(sequence);
sequence++;
// process item

By exposing the sequence, you can now move the item from the Ringbuffer as long as the item is

161


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/ListConfig.html

still available. If the item is not available any longer, StaleSequenceException is thrown.

7.7.2. Adding Items to a Ringbuffer

Adding an item to a Ringbuffer is also easy with the Ringbuffer add method:

Ringbuffer<String> ringbuffer = hz.getRingbuffer("ExampleRB");
ringbuffer.add("someitem");

Use the method add to return the sequence of the inserted item; the sequence value is always
unique. You can use this as a very cheap way of generating unique IDs if you are already using
Ringbuffer.

7.7.3. IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike
IQueue, Ringbuffer does not remove the items, it only reads items using a certain position. There
are many advantages to this approach as described below:

* The same item can be read multiple times by the same thread. This is useful for realizing
semantics of read-at-least-once or read-at-most-once.

* The same item can be read by multiple threads. Normally you could use an IQueue per thread
for the same semantic, but this is less efficient because of the increased remoting. A take from
an IQueue is destructive, so the change needs to be applied for backup also, which is why a
queue.take() is more expensive than a ringBuffer.read(::-).

» Reads are extremely cheap since there is no change in the Ringbuffer. Therefore no replication
is required.

* Reads and writes can be batched to speed up performance. Batching can dramatically improve
the performance of Ringbuffer.

7.7.4. Configuring Ringbuffer Capacity

By default, a Ringbuffer is configured with a capacity of 10000 items. This creates an array with a
size of 10000. If a time-to-live is configured, then an array of longs is also created that stores the
expiration time for every item. In a lot of cases you may want to change this capacity number to
something that better fits your needs.

Below is a declarative configuration example of a Ringbuffer with a capacity of 2000 item:s.

<hazelcast>
<ringbuffer name="rb">
<capacity>2000</capacity>

</ringbuffer>

</hazelcast>

162



Currently, Hazelcast Ringbuffer is not a partitioned data structure; its data is stored in a single
partition and the replicas are stored in another partition. Therefore, create a Ringbuffer that can
safely fit in a single cluster member.

7.7.5. Backing Up Ringbuffer

Hazelcast Ringbuffer has a single synchronous backup by default. You can control the Ringbuffer
backup just like most of the other Hazelcast distributed data structures by setting the synchronous
and asynchronous backups: backup-count and async-backup-count. In the example below, a
Ringbuffer is configured with no synchronous backups and one asynchronous backup:

<hazelcast>

<ringbuffer name="rb">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</ringbuffer>

</hazelcast>

An asynchronous backup probably gives you better performance. However, there is a chance that
the item added will be lost when the member owning the primary crashes before the backup could
complete. You may want to consider batching methods if you need high performance but do not
want to give up on consistency.

7.7.6. Configuring Ringbuffer Time-To-Live

You can configure Hazelcast Ringbuffer with a time-to-live in seconds. Using this setting, you can
control how long the items remain in the Ringbuffer before they are expired. By default, the time-
to-live is set to 0, meaning that unless the item is overwritten, it will remain in the Ringbuffer
indefinitely. If you set a time-to-live and an item is added, then, depending on the Overflow Policy,
either the oldest item is overwritten, or the call is rejected.

In the example below, a Ringbuffer is configured with a time-to-live of 180 seconds.

<hazelcast>
<ringbuffer name="rb">
<time-to-live-seconds>180</time-to-1live-seconds>

</ringbuffer>

</hazelcast>

7.7.7. Setting Ringbuffer Overflow Policy

Using the overflow policy, you can determine what to do if the oldest item in the Ringbuffer is not
old enough to expire when more items than the configured Ringbuffer capacity are being added.

163



The below options are currently available:

* OverflowPolicy.OVERWRITE: The oldest item is overwritten.

* OverflowPolicy.FAIL: The call is aborted. The methods that make use of the OverflowPolicy
return -1 to indicate that adding the item has failed.

Overflow policy gives you fine control on what to do if the Ringbuffer is full. You can also use the
overflow policy to apply a back pressure mechanism. The following example code shows the usage
of an exponential backoff.

Random random = new Random();
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<Long> rb = hz.getRingbuffer("rb");

long i = 100;
while (true) {
long sleepMs = 100;
for (; ;) {
long result = rb.addAsync(i, OverflowPolicy.FAIL).get();
if (result != -1) {
break;

}
TimeUnit.MILLISECONDS.sleep(sleepMs);

sleepMs = min(5000, sleepMs * 2);
}

// add a bit of random delay to make it look a bit more realistic
Thread.sleep(random.nextInt(10));

System.out.println("Written: " + i);

i++;

7.7.8. Ringbuffer with Persistent Datastore

Hazelcast allows you to load and store the Ringbuffer items from/to a persistent datastore using the
interface RingbufferStore. If a Ringbuffer store is enabled, each item added to the Ringbuffer will
also be stored at the configured Ringbuffer store.

If the Ringbuffer store is configured, you can get items with sequences which are no longer in the
actual Ringbuffer but are only in the Ringbuffer store. This is probably much slower but still allows
you to continue consuming items from the Ringbuffer even if they are overwritten with newer
items in the Ringbuffer.

When a Ringbuffer is being instantiated, it checks if the Ringbuffer store is configured and requests
the latest sequence in the Ringbuffer store. This is to enable the Ringbuffer to start with sequences
larger than the ones in the Ringbuffer store. In this case, the Ringbuffer is empty but you can still
request older items from it (which will be loaded from the Ringbuffer store).

164



The Ringbuffer store stores items in the same format as the Ringbuffer. If the BINARY in-memory
format is used, the Ringbuffer store must implement the interface RingbufferStore<byte[ ]> meaning
that the Ringbuffer receives items in the binary format. If the 0BJECT in-memory format is used, the
Ringbuffer store must implement the interface RingbufferStore<K>, where K is the type of item being
stored (meaning that the Ringbuffer store receives the deserialized object).

When adding items to the Ringbuffer, the method storeAll allows you to store items in batches.

The following example class includes all of the RingbufferStore methods.

public class TheRingbufferObjectStore implements RingbufferStore<Item> {

public void store(long sequence, Item data) {
System.out.println("Object store");

}

public void storeAll(long firstItemSequence, Item[] items) {
System.out.println("Object store all");

}

public Item load(long sequence) {
System.out.println("Object load");
return null;

public long getlargestSequence() {
System.out.println("Object get largest sequence");
return -1;

Item must be serializable. The following is an example of a Ringbuffer with the Ringbuffer store
configured and enabled.

165



<hazelcast>

<ringbuffer name="default">
<capacity>10000</capacity>
<time-to-live-seconds>30</time-to-live-seconds>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<in-memory-format>BINARY</in-memory-format>
<ringbuffer-store>

<class-name>com.hazelcast.RingbufferStoreImpl</class-name>

</ringbuffer-store>

</ringbuffer>

</hazelcast>

The following are the explanations for the Ringbuffer store configuration elements:

¢ class-name: Name of the class implementing the ‘RingbufferStore interface.

» factory-class-name: Name of the class implementing the RingbufferStoreFactory interface. This
interface allows a factory class to be registered instead of a class implementing the
RingbufferStore interface.

Either the class-name or the factory-class-name element should be used.

7.7.9. Configuring Ringbuffer In-Memory Format

You can configure Hazelcast Ringbuffer with an in-memory format that controls the format of the
Ringbuffer’s stored items. By default, BINARY in-memory format is used, meaning that the object is
stored in a serialized form. You can select the OBJECT in-memory format, which is useful when
filtering is applied or when the 0BJECT in-memory format has a smaller memory footprint than
BINARY.

In the declarative configuration example below, a Ringbuffer is configured with the 0BJECT in-
memory format:

<hazelcast>
<ringbuffer name="rb">
<in-memory-format>0BJECT</in-memory-format>

</ringbuffer>

</hazelcast>

7.7.10. Configuring Split-Brain Protection for Ringbuffer

Ringbuffer can be configured to check for a minimum number of available members before
applying Ringbuffer operations. This is a check to avoid performing successful Ringbuffer

166



operations on all parts of a cluster during a network partition and can be configured using the
element quorum-ref. You should set this element’s value as the quorum’s name, which you
configured under the quorum element as explained in the Split-Brain Protection section. Following is
an example snippet:

<hazelcast>

<ringbuffer name="rb">
<quorum-ref>quorumname</quorum-ref>
</ringbuffer>

</hazelcast>

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

» WRITE, READ_WRITE:
- add
o addAl1lAsync
- addAsync

* READ, READ_WRITE:
. capacity
» headSequence
» readManyAsync
o readOne
. remainingCapacity
. Size

» tailSequence

7.7.11. Adding Batched Items

In the previous examples, the method ringBuffer.add() is used to add an item to the Ringbuffer.
The problems with this method are that it always overwrites and that it does not support batching.
Batching can have a huge impact on the performance. You can use the method addAllAsync to
support batching.

See the following example code.

List<String> items = Arrays.asList("1","2","3");
ICompletableFuture<Long> f = rb.addA11Async(items, OverflowPolicy.OVERWRITE);
f.get();

In the above case, three strings are added to the Ringbuffer using the policy
OverflowPolicy.OVERWRITE. See the Overflow Policy section for more information.

167



7.7.12. Reading Batched Items

In the previous example, the readOne method read items from the Ringbuffer. readOne is simple but
not very efficient for the following reasons:

* readOne does not use batching.

* readOne cannot filter items at the source; the items need to be retrieved before being filtered.
The method readManyAsync can read a batch of items and can filter items at the source.

See the following example code.

ICompletableFuture<ReadResultSet<E>> readManyAsync(
long startSequence,
int minCount,
int maxCount,
IFunction<E, Boolean> filter);

The meanings of the readManyAsync arguments are given below:

» startSequence: Sequence of the first item to read.

* minCount: Minimum number of items to read. If you do not want to block, set it to 0. If you want
to block for at least one item, set it to 1.

e maxCount: Maximum number of the items to retrieve. Its value cannot exceed 1000.

» filter: A function that accepts an item and checks if it should be returned. If no filtering should
be applied, set it to null.

A full example is given below.

long sequence = rb.headSequence();
for(5;) {

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 1, 10,
null);

ReadResultSet<String> rs = f.get();

for (String s : rs) {

System.out.println(s);
}

sequence+=rs.readCount();

Please take a careful look at how your sequence is being incremented. You cannot always rely on
the number of items being returned if the items are filtered out.

There is not any filtering applied in the above example. The following example shows how you can
apply a filter when reading batched items. First, let’s create our filter as shown below:

168



public class FruitFilter implements IFunction<String, Boolean> {
public FruitFilter() {}

public Boolean apply(String s) {
return s.startsWith("a");

}

So, the FruitFilter checks whether a String object starts with the letter "a". You can see this filter in
action in the below example:

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<String> rb = hz.getRingbuffer("rb");

rb.add("apple");
rb.add("orange");
rb.add("pear");
rb.add("peach");
rb.add("avocado");

long sequence = rb.headSequence();
ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 2, 5, new
FruitFilter());

try {
ReadResultSet<String> rs = f.get();
for (String s : rs) {
System.out.println(s);

}

}

catch (InterruptedException | ExecutionException e) {
System.out.println(e.getMessage());

}

7.7.13. Using Async Methods

Hazelcast Ringbuffer provides asynchronous methods for more powerful operations like batched
writing or batched reading with filtering. To make these methods synchronous, just call the method
get() on the returned future.

See the following example code.

ICompletableFuture f = ringbuffer.addAsync(item, OverflowPolicy.FAIL);
f.get();

However, you can also use ICompletableFuture to get notified when the operation has completed.
The advantage of ICompletableFuture is that the thread used for the call is not blocked till the

169



response is returned.

See the below code as an example of when you want to get notified when a batch of reads has
completed.

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, min, max,
someFilter);
f.andThen(new ExecutionCallback<ReadResultSet<String>>() {

public void onResponse(ReadResultSet<String> response) {
for (String s : response) {
System.out.println("Received:" + s);

}

public void onFailure(Throwable t) {
t.printStackTrace();
Iy
Ik

7.7.14. Ringbuffer Configuration Examples

The following shows the declarative configuration of a Ringbuffer called rb. The configuration is
modeled after the Ringbuffer defaults.

<hazelcast>

<ringbuffer name="rb">
<capacity>10000</capacity>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<time-to-live-seconds>0</time-to-1ive-seconds>
<in-memory-format>BINARY</in-memory-format>
<quorum-ref>quorumname</quorum-ref>

</ringbuffer>

</hazelcast>

You can also configure a Ringbuffer programmatically. The following is a programmatic version of
the above declarative configuration.

170



Config config = new Config();
RingbufferConfig rbConfig = config.getRingbufferConfig("myRB");
rbConfig.setCapacity(10000)
.setBackupCount (1)
.setAsyncBackupCount(0)
.setTimeToLiveSeconds(9)
.setInMemoryFormat(InMemoryFormat.BINARY)
.setQuorumName ("quorumname");

7.8. Topic

Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple
subscribers. This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and
subscribing operations are cluster wide. When a member subscribes to a topic, it is actually
registering for messages published by any member in the cluster, including the new members that
joined after you add the listener.

0 Publish operation is async. It does not wait for operations to run in remote
members; it works as fire and forget.

7.8.1. Getting a Topic and Publishing Messages

Use the HazelcastInstance’s getTopic method to get the topic, then use the topic’s publish method to
publish your messages. The following is an example publisher:

public class TopicPublisher {
public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();

ITopic<Date> topic = hz.getTopic("topic");
topic.publish(new Date());

And here is an example subscriber:

171



public class TopicSubscriber {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
ITopic<Date> topic = hz.getTopic("topic");
topic.addMessagelistener(new MessagelListenerImpl());
System.out.println("Subscribed");

private static class MessagelistenerImpl implements Messagelistener<Date> {
public void onMessage(Message<Date> m) {
System.out.println("Received: " + m.getMessageObject());

}

Hazelcast Topic uses the MessagelListener interface to listen for events that occur when a message is
received. See the Listening for Topic Messages section for information on how to create a message
listener class and register it.

7.8.2. Getting Topic Statistics
Topic has two statistic variables that you can query. These values are incremental and local to the

member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic( "myTopicName" );

myTopic.getLocalTopicStats().getPublishOperationCount();
myTopic.getLocalTopicStats().getReceiveOperationCount();

getPublishOperationCount and getReceiveOperationCount returns the total number of published and
received messages since the start of this member, respectively. Note that these values are not
backed up, so if the member goes down, these values will be lost.

You can disable this feature with topic configuration. See the Configuring Topic section.

ﬁ These statistics values can be also viewed in Management Center. See the
Monitoring Topics section in Hazelcast Management Center Reference Manual.

7.8.3. Understanding Topic Behavior

Each cluster member has a list of all registrations in the cluster. When a new member is registered
for a topic, it sends a registration message to all members in the cluster. Also, when a new member
joins the cluster, it receives all registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter

172


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-topics

globalOrderEnabled.

Ordering Messages as Published

If globalOrderEnabled is disabled, messages are not ordered and listeners (subscribers) process the
messages in the order that the messages are published. If cluster member M publishes messages
ml, m2, m3, ..., mn to a topic T, then Hazelcast makes sure that all of the subscribers of topic T
receive and process m1, m2, m3, ..., mn in the given order.

Here is how it works: Let’s say that we have three members (memberl, member2 and member3)
and that member1 and member2 are registered to a topic named news. Note that all three members
know that member1 and member2 are registered to news.

In this example, member1 publishes two messages: al and a2. Member3 publishes two messages:
cl and c2. When memberl and member3 publish a message, they check their local list for
registered members, discover that member1l and member2 are in their lists, and then they fire
messages to those members. One possible order of the messages received could be the following.

memberl - c1, al, a2, c2

member2 - c1, c2, al, a2

Ordering Messages for Members

If globalOrderEnabled is enabled, all members listening to the same topic get its messages in the
same order.

Here is how it works. Let’s say that we have three members (memberl, member2 and member3)
and that member1 and member2 are registered to a topic named news. Note that all three members
know that member1 and member2 are registered to news.

In this example, member1 publishes two messages: al and a2. Member3 publishes two messages:
c1 and c2. When a member publishes messages over the topic news, it first calculates which partition
the news ID corresponds to. Then it sends an operation to the owner of the partition for that
member to publish messages. Let’s assume that news corresponds to a partition that member2
owns. member1 and members3 first sends all messages to member2. Assume that the messages are
published in the following order:

memberl - al, c1, a2, c2

member2 then publishes these messages by looking at registrations in its local list. It sends these
messages to memberl and member2 (it makes a local dispatch for itself).

memberl - al, c1, a2, c2
member2 - al, c1, a2, c2

This way we guarantee that all members see the events in the same order.

173



Keeping Generated and Published Order the Same

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the
received message. For all events in Hazelcast, the order that events are generated and the order
they are published to the user are guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property
hazelcast.event.thread.count (default is five). For a specific event source (for a particular topic
name), hash of that source’s name % 5 gives the ID of the responsible thread. Note that there can
be another event source (entry listener of a map, item listener of a collection, etc.) corresponding to
the same thread. In order not to make other messages to block, heavy processing should not be
done in this thread. If there is time-consuming work that needs to be done, the work should be
handed over to another thread. See the Getting a Topic and Publishing Messages section.

7.8.4. Configuring Topic

To configure a topic, set the topic name, decide on statistics and global ordering, and set the
message listeners. The following are the default values:

* global-ordering is false, meaning that by default, there is no guarantee of global order.

* statisticsis true, meaning that by default, statistics are calculated.
You can see the example configuration snippets below.

Declarative Configuration:

<hazelcast>

<topic name="yourTopicName">
<global-ordering-enabled>true</global-ordering-enabled>
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>MessagelistenerImpl</message-listener>
</message-listeners>
</topic>

</hazelcast>

Programmatic Configuration:

174



TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled( true );
topicConfig.setStatisticsEnabled( true );

topicConfig.setName( "yourTopicName" );

MessagelListener<String> implementation = new Messagelistener<String>() {

public void onMessage( Message<String> message ) {
// process the message

}
i
topicConfig.addMessagelistenerConfig( new ListenerConfig( implementation ) );
HazelcastInstance instance = Hazelcast.newHazelcastInstance();

Topic configuration has the following elements:

* statistics-enabled: Specifies whether the statistics gathering is enabled for your topic. If set
to false, you cannot collect statistics in your implementation (using getLocalTopicStats()) and
also Hazelcast Management Center will not show them. Its default value is true.

* global-ordering-enabled: Default is false, meaning there is no global order guarantee.

* message-listeners: Lets you add listeners (listener classes) for the topic messages.
Besides the above elements, there are the following system properties that are topic related but not
topic specific:

* hazelcast.event.queue.capacity with a default value of 1,000,000

* hazelcast.event.queue.timeout.millis with a default value of 250

e hazelcast.event.thread.count with a default value of 5

For the descriptions of these parameters, see the Global Event Configuration section.

7.9. Reliable Topic

Reliable Topic uses the same ITopic interface as a regular topic. The main difference is that Reliable
Topic is backed up by the Ringbuffer data structure. The following are the advantages of this
approach:

* Events are not lost since the Ringbuffer is configured with one synchronous backup by default.

* Each Reliable ITopic gets its own Ringbuffer; if a topic has a very fast producer, it will not lead
to problems at topics that run at a slower pace.

* Since the event system behind a regular ITopic is shared with other data structures, e.g.,
collection listeners, you can run into isolation problems. This does not happen with the Reliable
ITopic.

Here is an example for a publisher using Reliable Topic:

175


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-topics

public class PublisherMember {
public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Random random = new Random();
ITopic<Long> topic = hz.getReliableTopic("sometopic");
long messageld = 0;

while (true) {
topic.publish(messageld);
messageld++;
System.out.println("Written: " + messageld);
sleepMillis(random.nextInt(100));

}
Iy
public static boolean sleepMillis(int millis) {
try {
MILLISECONDS.sleep(millis);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();
return false;

}

return true;

}

And the following is an example for the subscriber:

public class SubscribedMember {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
ITopic<Long> topic = hz.getReliableTopic("sometopic");
topic.addMessagelistener(new MessagelListenerImpl());

}

private static class MessagelistenerImpl implements Messagelistener<Long> {
public void onMessage(Message<Long> m) {
System.out.println("Received: " + m.getMessageObject());

}

When you create a Reliable Topic, Hazelcast automatically creates a Ringbuffer for it. You may
configure this Ringbuffer by adding a Ringbuffer config with the same name as the Reliable Topic.
For instance, if you have a Reliable Topic with the name "sometopic”, you should add a Ringbuffer
config with the name "sometopic" to configure the backing Ringbuffer. Some of the things that you
may configure are the capacity, the time-to-live for the topic messages, and you can even add a
Ringbuffer store which allows you to have a persistent topic. By default, a Ringbuffer does not have

176



any TTL (time-to-live) and it has a limited capacity; you may want to change that configuration. The
following is an example configuration for the "sometopic" given above.

<hazelcast>

<!-- This is the ringbuffer that is used by the 'sometopic' Reliable-topic. As you
can see the
ringbuffer has the same name as the topic. -->
<ringbuffer name="sometopic">
<capacity>1000</capacity>
<time-to-live-seconds>5</time-to-live-seconds>
</ringbuffer>
<reliable-topic name="sometopic">
<topic-overload-policy>BLOCK</topic-overload-policy>
</reliable-topic>

</hazelcast>

See the Configuring Reliable Topic section below for the descriptions of all Reliable Topic
configuration elements.

By default, the Reliable ITopic uses a shared thread pool. If you need a better isolation, you can
configure a custom executor on the ReliableTopicConfig.

Because the reads on a Ringbuffer are not destructive, batching is easy to apply. ITopic uses read
batching and reads ten items at a time (if available) by default. See Reading Batched Items for more
information.

7.9.1. Slow Consumers

The Reliable ITopic provides control and a way to deal with slow consumers. It is unwise to keep
events for a slow consumer in memory indefinitely since you do not know when the slow consumer
is going to catch up. You can control the size of the Ringbuffer by using its capacity. For the cases
when a Ringbuffer runs out of its capacity, you can specify the following policies for the
TopicOverloadPolicy configuration:

* DISCARD_OLDEST: Overwrite the oldest item, even if a TTL is set. In this case the fast producer
supersedes a slow consumer.

e DISCARD_NEWEST: Discard the newest item.
» BLOCK: Wait until the items are expired in the Ringbuffer.

* ERROR: Immediately throw TopicOverloadException if there is no space in the Ringbuffer.

7.9.2. Configuring Reliable Topic

The following are example Reliable Topic configurations.

Declarative Configuration:

177



<hazelcast>

<reliable-topic name="default">
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>

</message-listener>
</message-listeners>
<read-batch-size>10</read-batch-size>
<topic-overload-policy>BLOCK</topic-overload-policy>
</reliable-topic>

</hazelcast>

Programmatic Configuration:

Config config = new Config();
ReliableTopicConfig rtConfig = config.getReliableTopicConfig( "default" );
rtConfig.setTopicOverloadPolicy( TopicOverloadPolicy.BLOCK )

.setReadBatchSize( 10 )
.setStatisticsEnabled( true );

Reliable Topic configuration has the following elements:

statistics-enabled: Specifies whether the statistics gathering is enabled for your Reliable Topic.
If set tofalse, you cannot collect statistics in your implementation and also Hazelcast
Management Center will not show them. Its default value is true.

message-listener: Message listener class that listens to the messages when they are added or
removed.

read-batch-size: Minimum number of messages that Reliable Topic tries to read in batches. Its
default value is 10.

topic-overload-policy: Policy to handle an overloaded topic. Available values are
DISCARD_OLDEST, DISCARD _NEWEST, BLOCK and ERROR. Its default value is BLOCK. See Slow Consumers
for definitions of these policies.

7.10. Lock

FencedLock is a linearizable and distributed implementation of java.util.concurrent.locks.Lock,
meaning that if you lock using a FencedlLock, the critical section that it guards is guaranteed to be
executed by only one thread in the entire cluster. Even though locks are great for synchronization,
they can lead to problems if not used properly. Also note that Hazelcast Lock does not support
fairness.

178


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-reliable-topics
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-reliable-topics

ILock interface and implementation of ILock has been deprecated. To read about
ILock, see the Lock section of the Hazelcast IMDG 3.11 Reference Manual. The CP
Subsystem chapter introduces FencedLock provided by the CP Subsystem.

7.10.1. Using Try-Catch Blocks with Locks

Always use locks with try-catch blocks. This ensures that locks are released if an exception is
thrown from the code in a critical section. Also note that the lock method is outside the try-catch
block because we do not want to unlock if the lock operation itself fails.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Lock lock = hazelcastInstance.getCPSubsystem().getLock("myLock");
lock.lock();
try {
// do something here
} finally {
lock.unlock();
+

7.10.2. Releasing Locks with tryLock Timeout

If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever.
To avoid this, use tryLock with a timeout value. You can set a high value (normally it should not take
that long) for tryLock. You can check the return value of tryLock as follows:

if ( lock.trylLock ( 10, TimeUnit.SECONDS ) ) {
try {
// do some stuff here..
} finally {
lock.unlock();

}
} else {
// warning

}

7.10.3. Understanding Lock Behavior

* Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will
keep your locks safe and available. Moreover, when a member leaves the cluster, all the locks
acquired by that dead member will be removed so that those locks are immediately available
for live members.

* Locks are re-entrant. The same thread can lock multiple times on the same lock. Note that for
other threads to be able to require this lock, the owner of the lock must call unlock as many
times as the owner called Tock.

* Locks are not automatically removed. If a lock is not used anymore, Hazelcast does not

179


https://docs.hazelcast.org/docs/3.11.2/manual/html-single/index.html#lock

automatically perform garbage collection in the lock. This can lead to an OutOfMemoryError. If
you create locks on the fly, make sure they are destroyed.

0 For detailed information and configuration, see the FencedLock section under the
CP Subsystem chapter.

7.11. IAtomicLong

Hazelcast IAtomiclLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong.
It offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and
incrementAndGet. Since IAtomicLong is a distributed implementation, these operations involve
remote calls and thus their performances differ from AtomicLong.

The original implementation of IAtomicLong has been deprecated. To read about

O the previous implementation, see the IAtomicLong section of the Hazelcast IMDG
3.11 Reference Manual. The CP Subsystem chapter introduces IAtomiclLong
provided by the CP Subsystem.

The following example code creates an instance, increments it by a million and prints the count.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong counter = hazelcastInstance.getCPSubsystem().getAtomicLong( "counter" );
for ( int k = 0; k < 1000 * 1000; k++ ) {
if ( k % 500000 == 0 ) {
System.out.println( "At: " + k );
}

counter.incrementAndGet();

}

System.out.printf( "Count is %s\n", counter.get() );

When you start other instances with the code above, you will see the count as member count times
a million.

7.11.1. Sending Functions to IAtomicLong

You can send functions to an IAtomicLong. IFunction is a Hazelcast owned, single method interface.
The following example IFunction implementation adds two to the original value.

private static class Add2Function implements IFunction<Long, Long> {
public Long apply( Long input ) {

return input + 2;

}

180


https://docs.hazelcast.org/docs/3.11.2/manual/html-single/index.html#iatomiclong

7.11.2. Executing Functions on IAtomicLong
You can use the following methods to execute functions on IAtomicLong:

» apply: Applies the function to the value in IAtomicLong without changing the actual value and
returning the result.

 alter: Alters the value stored in the IAtomicLong by applying the function. It does not send back
a result.

* alterAndGet: Alters the value stored in the IAtomicLong by applying the function, storing the
result in the IAtomicLong and returning the result.

» getAndAlter: Alters the value stored in the IAtomicLong by applying the function and returning
the original value.

The following example includes these methods.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong atomicLong = hazelcastInstance.getCPSubsystem().getAtomicLong( "counter"

)

atomiclong.set( 1 );

long result = atomicLong.apply( new Add2Function() );
System.out.println( "apply.result: " + result);
System.out.println( "apply.value: " + atomiclLong.get() );
atomiclong.set( 1 );
atomiclLong.alter( new Add2Function() );
System.out.println( "alter.value: " + atomiclong.get() );

atomiclong.set( 1 );

result = atomiclLong.alterAndGet( new Add2Function() );
System.out.println( "alterAndGet.result: " + result );
System.out.println( "alterAndGet.value: " + atomiclLong.get() );
atomiclong.set( 1 );

result = atomiclLong.getAndAlter( new Add2Function() );
System.out.println( "getAndAlter.result: " + result );
System.out.println( "getAndAlter.value: " + atomiclLong.get() );

The output of the above class when run is as follows:

apply.result: 3
apply.value: 1
alter.value: 3
alterAndGet.result: 3
alterAndGet.value: 3
getAndAlter.result: 1
getAndAlter.value: 3

181



7.11.3. Reasons to Use Functions with IAtomicLong

The reason for using a function instead of a simple code line like atomicLong.set(atomicLong.get() +
2)); is that the IAtomicLong read and write operations are not atomic. Since IAtomiclong is a
distributed implementation, those operations can be remote ones, which may lead to race
problems. By using functions, the data is not pulled into the code, but the code is sent to the data.
This makes it more scalable.

7.12. ISemaphore

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore.

The original implementation of ISemaphore has been deprecated. To read about the

O previous implementation, see the ISemaphore section of the Hazelcast IMDG 3.11
Reference Manual. The CP Subsystem chapter introduces ISemaphore provided by
the CP Subsystem.

7.12.1. Controlling Thread Counts with Permits

Semaphores offer permits to control the thread counts when performing concurrent activities. To
execute a concurrent activity, a thread grants a permit or waits until a permit becomes available.
When the execution is completed, the permit is released.

ISemaphore with a single permit may be considered as a lock. Unlike the locks,

ﬂ when semaphores are used, any thread can release the permit depending on the
configuration, and semaphores can have multiple permits. For more information,
see the Semaphore Configuration section.

Hazelcast ISemaphore does not support fairness at all times. There are some edge
0 cases where the fairness is not honored, e.g., when the permit becomes available
at the time when an internal timeout occurs.

When a permit is acquired on ISemaphore:

* If there are permits, the number of permits in the semaphore is decreased by one and the
calling thread performs its activity. If there is contention, the longest waiting thread acquires
the permit before all other threads.

* If no permits are available, the calling thread blocks until a permit becomes available. When a
timeout happens during this block, the thread is interrupted.

7.12.2. Example Semaphore Code

The following example code uses an IAtomiclLong resource 1000 times, increments the resource
when a thread starts to use it and decrements it when the thread completes.

182


https://docs.hazelcast.org/docs/3.11.2/manual/html-single/index.html#isemaphore

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getCPSubsystem().getSemaphore( "semaphore" );
IAtomicLong resource = hazelcastInstance.getCPSubsystem().getAtomicLong( "resource" );
for (int k=0 ; k <1000 ; k++ ) {

System.out.println( "At iteration: " + k + ", Active Threads:

+ resource.get()

)i
semaphore.acquire();
try {
resource.incrementAndGet();
Thread.sleep( 1000 );
resource.decrementAndGet();
} finally {
semaphore.release();
Iy
+

System.out.println("Finished");

If you execute the above SemaphorelMember class 5 times, the following output appears:

At

At

At

At

At

iteration: @, Active Threads: 1
iteration: 1, Active Threads: 2
iteration: 2, Active Threads: 3
iteration: 3, Active Threads: 3

iteration: 4, Active Threads: 3

As you can see, the maximum count of concurrent threads is equal or smaller than three. If you
remove the semaphore acquire/release statements in SemaphoreMember, you will see that there is no
limitation on the number of concurrent usages.

7

.13. IAtomicReference

The IAtomiclong is very useful if you need to deal with a long, but in some cases you need to deal
with a reference. That is why Hazelcast also supports the IAtomicReference which is the distributed

version of the java.util.concurrent.atomic.AtomicReference

The original implementation of IAtomicReference has been deprecated. To read
0 about the previous implementation, see the IAtomicReference section of the
Hazelcast IMDG 3.11 Reference Manual. The CP Subsystem chapter introduces

IAtomicReference provided by the CP Subsystem.

Here is an IAtomicReference example.

183


https://docs.hazelcast.org/docs/3.11.2/manual/html-single/index.html#iatomicreference

Config config = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

IAtomicReference<String> ref = hz.getCPSubsystem().getAtomicReference("reference");
ref.set("foo");

System.out.println(ref.get());

System.exit(0);

When you execute the above example, the output is as follows:

foo

7.13.1. Sending Functions to IAtomicReference

Just like TAtomicLong, IAtomicReference has methods that accept a 'function’ as an argument, such as
alter, alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

* From a performance point of view, it is better to send the function to the data then the data to
the function. Often the function is a lot smaller than the data and therefore cheaper to send
over the line. Also the function only needs to be transferred once to the target machine and the
data needs to be transferred twice.

* You do not need to deal with concurrency control. If you would perform a load, transform,
store, you could run into a data race since another thread might have updated the value you are
about to overwrite.

7.13.2. Using IAtomicReference
The following are some considerations you need to know when you use IAtomicReference:

» TAtomicReference works based on the byte-content and not on the object-reference. If you use
the compareAndSet method, do not change to the original value because its serialized content will
then be different. It is also important to know that if you rely on Java serialization, sometimes
(especially with hashmaps) the same object can result in different binary content.

* All methods returning an object return a private copy. You can modify the private copy, but the
rest of the world is shielded from your changes. If you want these changes to be visible to the
rest of the world, you need to write the change back to the IAtomicReference; but be careful
about introducing a data-race.

* The 'in-memory format' of an IAtomicReference is binary. The receiving side does not need to
have the class definition available unless it needs to be deserialized on the other side, e.g.,
because a method like 'alter’ is executed. This deserialization is done for every call that needs to
have the object instead of the binary content, so be careful with expensive object graphs that
need to be deserialized.

* If you have an object with many fields or an object graph and you only need to calculate some
information or need a subset of fields, you can use the apply method. With the apply method, the
whole object does not need to be sent over the line; only the information that is relevant is sent.

184



7.14. ICountDownLatch

Hazelcast ICountDownLatch is the distributed implementation of
java.util.concurrent.CountDownLatch.

The original implementation of "ICountDownLatch " has been deprecated. To read

O about the previous implementation, see the ICountDownLatch section of the
Hazelcast IMDG 3.11 Reference Manual. The CP Subsystem chapter introduces
"ICountDownLatch  provided by the CP Subsystem.

7.14.1. Gate-Keeping Concurrent Activities

CountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads to
wait for other threads to complete their operations. The following examples describe the
mechanism of ICountDownLatch.

Assume that there is a leader process and there are follower processes that will wait until the
leader completes. Here is the leader:

public class Leader {
public static void main( String[] args ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCPSubsystem().getCountDownLatch(
"countDownLatch" );
System.out.println( "Starting" );
latch.trySetCount( 1 );
Thread.sleep( 30000 );
latch.countDown();
System.out.println( "Leader finished" );
latch.destroy();

Since only a single step is needed to be completed as a sample, the above code initializes the latch
with 1. Then, the code sleeps for a while to simulate a process and starts the countdown. Finally, it
clears up the latch. Let’s write a follower:

public class Follower {
public static void main( String[] args ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCPSubsystem().getCountDownLatch(
"countDownLatch" );
System.out.println( "Waiting" );
boolean success = latch.await( 10, TimeUnit.SECONDS );
System.out.println( "Complete: " + success );

185


https://docs.hazelcast.org/docs/3.11.2/manual/html-single/index.html#icountdownlatch

The follower class above first retrieves ICountDownLatch and then calls the await method to enable
the thread to listen for the latch. The method await has a timeout value as a parameter. This is
useful when the countDown method fails. To see ICountDownlLatch in action, start the leader first and
then start one or more followers. You will see that the followers wait until the leader completes.

7.14.2. Recovering From Failure

In a distributed environment, the counting down cluster member may go down. In this case, all
listeners are notified immediately and automatically by Hazelcast. The state of the current process
just before the failure should be verified and 'how to continue now' should be decided, e.g., restart
all process operations, continue with the first failed process operation and throw an exception.

7.14.3. Using ICountDownLatch

Although ICountDownLatch is a very useful synchronization aid, you may probably not use it on a
daily basis. Unlike Java’s implementation, Hazelcast’s ICountDownLatch count can be reset after a
countdown has finished, but not during an active count.

7.15. PN Counter

A Conflict-free Replicated Data Type (CRDT) is a distributed data structure that achieves high
availability by relaxing consistency constraints. There may be several replicas for the same data
and these replicas can be modified concurrently without coordination. This means that you may
achieve high throughput and low latency when updating a CRDT data structure. On the other hand,
all of the updates are replicated asynchronously. Each replica then receives updates made on other
replicas eventually and if no new updates are done, all replicas which can communicate to each
other return the same state (converge) after some time.

Hazelcast offers a lightweight CRDT PN counter (Positive-Negative Counter) implementation where
each Hazelcast instance can increment and decrement the counter value and these updates are
propagated to all replicas. Only a Hazelcast member can store state for a counter which means that
counter method invocations performed on a Hazelcast member are usually local (depending on the
configured replica count). If there is no member failure, it is guaranteed that each replica sees the
final value of the counter eventually. Counter’s state converges with each update and all CRDT
replicas that can communicate to each other will eventually have the same state.

Using the PN Counter, you can get a distributed counter, increment and decrement it, and query its
value with RYW (read-your-writes) and monotonic reads. The implementation borrows most
methods from the AtomicLong which should be familiar in most cases and easily interchangeable in
the existing code.

Some examples of PN counter are:

» counting the number of "likes" or "+1"
» counting the number of logged in users

 counting the number of page hits/views.

How it works

186



The counter supports adding and subtracting values as well as retrieving the current counter value.
Each replica of this counter can perform operations locally without coordination with the other
replicas, thus increasing availability. The counter guarantees that whenever two members have
received the same set of updates, possibly in a different order, their state is identical, and any
conflicting updates are merged automatically. If no new updates are made to the shared state, all
members that can communicate will eventually have the same data.

The updates to the counter are applied locally when invoked on a CRDT replica. A CRDT replica can
be any Hazelcast instance which is NOT a client or a lite member. You can configure the number
of replicas in the cluster using the replica-count configuration element.

When invoking updates from a non-replica instance, the invocation is remote. This may lead to
indeterminate state - the update may be applied but the response has not been received. In this
case, the caller is notified with a TargetDisconnectedException when invoked from a client or a
MemberLeftException when invoked from a member.

The read and write methods provide monotonic read and RYW (read-your-write) guarantees. These
guarantees are session guarantees which mean that if no replica with the previously observed state
is reachable, the session guarantees are lost and the method invocation throws a
ConsistencylLostException. This does not mean that an update is lost. All of the updates are part of
some replica and eventually reflected in the state of all other replicas. This exception just means
that you cannot observe your own writes because all replicas that contain your updates are
currently unreachable. After you have received a ConsistencyLostException, you can either wait for
a sufficiently up-to-date replica to become reachable in which case the session can be continued or
you can reset the session by calling the method “reset(). If you have called this method, a new
session is started with the next invocation to a CRDT replica.

The CRDT state is kept entirely on non-lite (data) members. If there aren’t any and
the methods here are invoked on a lite member, they fail with a

NoDataMemberInClusterException.

The following is an example code.

final HazelcastInstance instance = Hazelcast.newHazelcastInstance();
final PNCounter counter = instance.getPNCounter("counter");
counter.addAndGet(5);

final long value = counter.get();

This code snippet creates an instance of a PN counter, increments it by 5 and retrieves the value.

7.15.1. Configuring PN Counter

Following is an example declarative configuration snippet:

187



<hazelcast>

<pn-counter name="default">
<replica-count>10</replica-count>
<statistics-enabled>true</statistics-enabled>
</pn-counter>

</hazelcast>

PN Counter has the following configuration elements:

* name: Name of your PN Counter.

* replica-count: Number of replicas on which state for this PN counter is kept. This number
applies in quiescent state, if there are currently membership changes or clusters are merging,
the state may be temporarily kept on more replicas. Its default value is Integer.MAX_VALUE.
Generally, keeping the state on more replicas means that more Hazelcast members are able to
perform updates locally but it also means that the PN counter state is kept on more replicas,
increasing the network traffic, decreasing the speed at which replica states converge and
increasing the size of the PN counter state kept on each replica.

» statistics-enabled: Specifies whether the statistics gathering is enabled for your PN Counter. If
set tofalse, you cannot collect statistics in your implementation (using
getLocalPNCounterStats()) and also Hazelcast Management Center will not show them. Its
default value is true.

Following is an equivalent snippet of Java configuration:

PNCounterConfig pnCounterConfig = new PNCounterConfig("default")
.setReplicaCount(10)
.setStatisticsEnabled(true);

Config hazelcastConfig = new Config()
.addPNCounterConfig(pnCounterConfig);

7.15.2. Configuring the CRDT Replication Mechanism

O Configuring the replication mechanism is for advanced use cases only - usually the
default configuration works fine for most cases.

In some cases, you may want to configure the replication mechanism for all CRDT implementations.
The CRDT states are replicated in rounds (the period is configurable) and in each round the state is
replicated up to the configured number of members. Generally speaking, you may increase the
speed at which replicas converge at the expense of more network traffic or decrease the network
traffic at the expense of slower convergence of replicas. Hazelcast implements the state-based
replication mechanism - the CRDT state for changed CRDTs is replicated in its entirety to other
replicas on each replication round.

188


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-pn-counters

<hazelcast>

<crdt-replication>
<max-concurrent-replication-targets>1</max-concurrent-replication-targets>
<replication-period-millis>1000</replication-period-millis>
</crdt-replication>

</hazelcast>

CRDT replication has the following configuration elements:

* max-concurrent-replication-targets: The maximum number of target members that we
replicate the CRDT states to in one period. A higher count leads to states being disseminated
more rapidly at the expense of burst-like behavior - one update to a CRDT leads to a sudden
burst in the number of replication messages in a short time interval. Its default value is 1 which
means that each replica replicates state to only one other replica in each replication round.

* replication-period-millis: The period between two replications of CRDT states in milliseconds.
A lower value increases the speed at which changes are disseminated to other cluster members
at the expense of burst-like behavior - less updates are batched together in one replication
message, and one update to a CRDT may cause a sudden burst of replication messages in a short
time interval. The value must be a positive non-null integer. Its default value is 1000
milliseconds which means that the changed CRDT state is replicated every 1 second.

Following is an equivalent snippet of Java configuration:

final CRDTReplicationConfig crdtReplicationConfig = new CRDTReplicationConfig()
.setMaxConcurrentReplicationTargets(1)
.setReplicationPeriodMillis(1000);

Config hazelcastConfig = new Config()
.setCRDTReplicationConfig(crdtReplicationConfig);

7.16. IdGenerator

Hazelcast IdGenerator is used to generate cluster-wide unique identifiers. Generated identifiers are
long type primitive values between 0 and Long.MAX_VALUE.

Feature is deprecated. The implementation can produce duplicate IDs in case of a
network split, even with split-brain protection enabled (during short window

0 while split-brain is detected). Please use FlakeldGenerator for an alternative
implementation which does not suffer from the issue. See also the Migration guide
at the end of this section.

7.16.1. Generating Cluster-Wide IDs

ID generation occurs almost at the speed of AtomiclLong.incrementAndGet(). A group of 10,000
identifiers is allocated for each cluster member. In the background, this allocation takes place with

189



an IAtomicLong incremented by 10,000. Once a cluster member generates IDs (allocation is done),
IdGenerator increments a local counter. If a cluster member uses all IDs in the group, it gets another
10000 IDs. This way, only one time of network traffic is needed, meaning that 9,999 identifiers are
generated in memory instead of over the network. This is fast.

Let’s write an example identifier generator.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IdGenerator idGen = hazelcastInstance.getIdGenerator( "newId" );
while (true) {

Long id = idGen.newId();

System.err.println( "Id: " + id );

Thread.sleep( 1000 );

Let’s run the above code two times. The output is similar to the following:

Members [1] {
Member [127.0.0.1]:5701 this

+

Id: 1
Id: 2
Id: 3

Members [2] {
Member [127.0.0.1]:5701
Member [127.0.0.1]:5702 this

}

Id: 10001
Id: 10002
Id: 10003

7.16.2. Unique IDs and Duplicate IDs

You can see that the generated IDs are unique and counting upwards. If you see duplicated
identifiers, it means your instances could not form a cluster.

Generated IDs are unique during the life cycle of the cluster. If the entire cluster is

0 restarted, IDs start from 0, again or you can initialize to a value using the init()
method of IdGenerator.

0 IdGenerator has one synchronous backup and no asynchronous backups. Its
backup count is not configurable.

190



7.16.3. Migrating to FlakeIdGenerator

The Flake ID generator provides similar features with more safety guarantees during network
splits. The two generators are completely different implementations, but both types of generator
generate roughly ordered IDs. So in order to ensure uniqueness of the generated IDs, we can force
the Flake ID generator to start at least where the old generator ended. This is likely the case,
because the values from Flake ID generator are quite large compared to values from the old
generator. Consider and perform the following:

* Make sure the version of your Hazelcast cluster and of all clients is at least 3.10.

o If the current ID from old IdGenerator is higher than the ID from FlakeIdGenerator, you need to
configure ID offset. See FlakeldMigrationSample for mor details.

* Replace all calls to HazelcastInstance.getIdGenerator() with
HazelcastInstance.getFlakeIdGenerator(). If you wuse Spring configuration, replace <id-
generator> with <flake-id-generator>

7.17. Flake ID Generator

Hazelcast Flake ID Generator is used to generate cluster-wide unique identifiers. Generated
identifiers are long primitive values and are k-ordered (roughly ordered). IDs are in the range from
0 to Long. MAX_VALUE.

7.17.1. Generating Cluster-Wide IDs

The IDs contain timestamp component and a node ID component, which is assigned when the
member joins the cluster. This allows the IDs to be ordered and unique without any coordination
between the members, which makes the generator safe even in split-brain scenarios (for limitations
in this case, see the Node ID assignment section below).

Timestamp component is in milliseconds since 1.1.2018, 0:00 UTC and has 41 bits. This caps the
useful lifespan of the generator to little less than 70 years (until ~2088). The sequence component is
6 bits. If more than 64 IDs are requested in single millisecond, IDs gracefully overflow to the next
millisecond and uniqueness is guaranteed in this case. The implementation does not allow
overflowing by more than 15 seconds, if IDs are requested at higher rate, the call blocks. Note,
however, that clients are able to generate even faster because each call goes to a different (random)
member and the 64 IDs/ms limit is for single member.

7.17.2. Performance

Operation on member is always local, if the member has valid node ID, otherwise it’s remote. On
the client, the newId() method goes to a random member and gets a batch of IDs, which is then
returned locally for a limited time. The pre-fetch size and the validity time can be configured for
each client and member.

7.17.3. Example

Let’s write an example identifier generator.

191


https://github.com/hazelcast/hazelcast-code-samples/blob/master/distributed-primitives/flake-id-generator/src/main/java/FlakeIdMigrationSample.java

public class ExampleFlakeIdGenerator {
public static void main(String[] args) {
HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

ClientConfig clientConfig = new ClientConfig()
.addFlakeIdGeneratorConfig(new ClientFlakeIdGeneratorConfig(
"idGenerator")
.setPrefetchCount(10)
.setPrefetchValidityMillis(MINUTES.toMillis(10)));
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

FlakeIdGenerator idGenerator = client.getFlakeIdGenerator("idGenerator");
for (int i = 0; i < 10000; i++) {

sleepSeconds(1);

System.out.printf("Id: %s\n", idGenerator.newId());

7.17.4. Node ID Assignment

Flake IDs require a unique node ID to be assigned to each member, from which point the member
can generate unique IDs without any coordination. Hazelcast uses the member list version from the
moment when the member joined the cluster as a unique node ID.

The join algorithm is specifically designed to ensure that member list join version is unique for
each member in the cluster. This ensures that IDs are unique even during network splits, with one
caveat: at most one member is allowed to join the cluster during a network split. If two members
join different subclusters, they are likely to get the same node ID. This is resolved when the cluster
heals, but until then, they can generate duplicate IDs.

Node ID Overflow

Node ID component of the ID has 16 bits. Members with the member list join version higher than
2716 won’t be able to generate IDs, but functionality is preserved by forwarding to another
member. It is possible to generate IDs on any member or client as long as there is at least one
member with join version smaller than 2416 in the cluster. The remedy is to restart the cluster: the
node ID component will be reset and assigned starting from zero again. Uniqueness after the
restart will be preserved thanks to the timestamp component.

7.17.5. Configuring Flake ID Generator

Following is an example declarative configuration snippet:

192



<hazelcast>

<flake-id-generator name="default">
<prefetch-count>100</prefetch-count>
<prefetch-validity-millis>600000</prefetch-validity-millis>
<id-offset>0</id-offset>
<node-id-offset>0</node-id-offset>
<statistics-enabled>true</statistics-enabled>
</flake-1id-generator>

</hazelcast>

The following are the descriptions of configuration elements and attributes:

* name: Name of your Flake ID Generator. It is a required attribute.

» prefetch-count: Count of IDs which are pre-fetched on the background when one call to
FlakeldGenerator.newId() is made. Its value must be in the range 1 -100,000. Its default value is
100. This setting pertains only to newId() calls made on the member that configured it.

» prefetch-validity-millis: Specifies for how long the pre-fetched IDs can be used. After this time
elapses, a new batch of IDs are fetched. Time unit is milliseconds. Its default value is 600,000
milliseconds (10 minutes). The IDs contain a timestamp component, which ensures a rough
global ordering of them. If an ID is assigned to an object that was created later, it will be out of
order. If ordering is not important, set this value to 0. This setting pertains only to newId() calls
made on the member that configured it.

» id-offset: Specifies the offset that is added to the returned IDs. Its default value is 0. Setting
might be useful when migrating from ID Generator. The default value works for all green-field
projects. For example, assume the largest ID returned from ID Generator is 150. And, Flake ID
Generator now returns 100. If you set this element to 50 and stop using the ID Generator, the
next ID from Flake ID Generator will be 151 or larger and no duplicate IDs will be generated. In
real-life, the IDs are much larger. You also need to add a reserve to the offset because the IDs
from Flake ID Generator are only roughly ordered. Recommended reserve is 2238, that is
274877906944. Negative values are allowed to increase the lifespan of the generator, however
keep in mind that the generated IDs might also be negative.

* node-id-offset: Specifies the offset that is added to the node ID assigned to cluster member for
this generator. Might be useful in A/B deployment scenarios where you have cluster A which
you want to upgrade. You create cluster B and for some time both will generate IDs and you
want to have them unique. In this case, configure node ID offset for generators on cluster B.

» statistics-enabled: Specifies whether the statistics gathering is enabled for your Flake ID
Generator. If set tofalse, you cannot collect statistics in your implementation (using
getlLocalFlakeIdGeneratorStats()) and also Hazelcast Management Center will not show them.
Its default value is true.

7.18. Replicated Map

A Replicated Map is a distributed key-value data structure where the data is replicated to all

193


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-flake-id-generators

members in the cluster. It provides full replication of entries to all members for high speed access.
The following are the features of Replicated Map:
* When you have a Replicated Map in the cluster, your clients can communicate with any cluster
member.
 All cluster members are able to perform write operations.
* It supports all methods of the interface java.util.Map.
* It supports automatic initial fill up when a new member is started.

» It provides statistics for entry access, write and update so that you can monitor it using
Hazelcast Management Center.

* New members joining to the cluster pull all the data from the existing members.

* You can listen to entry events using listeners. See the Using EntryListener on Replicated Map
section.

7.18.1. Replicating Instead of Partitioning

A Replicated Map does not partition data (it does not spread data to different cluster members);
instead, it replicates the data to all members.

Replication leads to higher memory consumption. However, a Replicated Map has faster read and
write access since the data is available on all members.

Writes could take place on local/remote members in order to provide write-order, eventually being
replicated to all other members.

Replicated Map is suitable for objects, catalog data, or idempotent calculable data (such as HTML
pages). It fully implements the java.util.Map interface, but it lacks the methods from
java.util.concurrent.ConcurrentMap since there are no atomic guarantees to writes or reads.

O If Replicated Map is used from a unisocket client and this unisocket client is
connected to a lite member, the entry listeners cannot be registered/de-registered.

You cannot use Replicated Map from a lite member. A

0 com.hazelcast.replicatedmap.ReplicatedMapCantBeCreatedOnLiteMemberException is
thrown if com.hazelcast.core.HazelcastInstance.getReplicatedMap(name) is invoked
on a lite member.

7.18.2. Example Replicated Map Code

Here is an example of Replicated Map code. The HazelcastInstance’s getReplicatedMap method gets
the Replicated Map, and the Replicated Map’s put method creates map entries.

194



HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Map<String, String> map = hz.getReplicatedMap("map");

map.put("1", "Tokyo");
map.put("2", "Paris");
map.put("3", "New York");

System.out.println("Finished loading map");
hz.shutdown();

HazelcastInstance.getReplicatedMap() returns com.hazelcast.core.ReplicatedMap which, as stated
above, extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry
listeners or retrieving values in an expected order.

7.18.3. Considerations for Replicated Map

If you have a large cluster or very high occurrences of updates, the Replicated Map may not scale
linearly as expected since it has to replicate update operations to all members in the cluster.

Since the replication of updates is performed in an asynchronous manner, we recommend you
enable back pressure in case your system has high occurrences of updates. See the Back Pressure
section to learn how to enable it.

Replicated Map has an anti-entropy system that converges values to a common one if some of the
members are missing replication updates.

Replicated Map does not guarantee eventual consistency because there are some edge cases that
fail to provide consistency.

Replicated Map uses the internal partition system of Hazelcast in order to serialize updates
happening on the same key at the same time. This happens by sending updates of the same key to
the same Hazelcast member in the cluster.

Due to the asynchronous nature of replication, a Hazelcast member could die before successfully
replicating a "write" operation to other members after sending the "write completed" response to
its caller during the write process. In this scenario, Hazelcast’s internal partition system promotes
one of the replicas of the partition as the primary one. The new primary partition does not have the
latest "write" since the dead member could not successfully replicate the update. (This leaves the
system in a state that the caller is the only one that has the update and the rest of the cluster have
not.) In this case even the anti-entropy system simply could not converge the value since the source
of true information is lost for the update. This leads to a break in the eventual consistency because
different values can be read from the system for the same key.

Other than the aforementioned scenario, the Replicated Map behaves like an eventually consistent
system with read-your-writes and monotonic-reads consistency.

195



7.18.4. Configuration Design for Replicated Map

There are several technical design decisions you should consider when you configure a Replicated
Map.

Initial Provisioning

If a new member joins the cluster, there are two ways you can handle the initial provisioning that is
executed to replicate all existing values to the new member. Each involves how you configure the
async fill up.

First, you can configure async fill up to true, which does not block reads while the fill up operation
is underway. That way, you have immediate access on the new member, but it will take time until
all the values are eventually accessible. Not yet replicated values are returned as non-existing
(nul).

Second, you can configure for a synchronous initial fill up (by configuring the async fill up to false),
which blocks every read or write access to the map until the fill up operation is finished. Use this
with caution since it might block your application from operating.

7.18.5. Configuring Replicated Map

Replicated Map can be configured programmatically or declaratively.
Declarative Configuration:

You can declare your Replicated Map configuration in the Hazelcast configuration file
hazelcast.xml. See the following example:

<hazelcast>

<replicatedmap name="default">
<in-memory-format>BINARY</in-memory-format>
<async-fillup>true</async-fillup>
<statistics-enabled>true</statistics-enabled>
<entry-listeners>
<entry-listener include-value="true">
com.hazelcast.examples.EntrylListener
</entry-listener>
</entry-listeners>
<quorum-ref>quorumname</quorum-ref>
</replicatedmap>

</hazelcast>

Replicated Map has the following configuration elements:

 in-memory-format: Internal storage format. See the In-Memory Format section. Its default value is
OBJECT.

196



» async-fillup: Specifies whether the Replicated Map is available for reads before the initial
replication is completed. Its default value is true. If set to false, i.e., synchronous initial fill up,
no exception is thrown when the Replicated Map is not yet ready, but null values can be seen
until the initial replication is completed.

* statistics-enabled: Specifies whether the statistics gathering is enabled for your Replicated
Map. If set tofalse, you cannot collect statistics in your implementation (using
getlLocalReplicatedMapStats()) and also Hazelcast Management Center will not show them. Its
default value is true.

» entry-listener: Full canonical classname of the EntrylListener implementation.

o entry-listener#include-value: Specifies whether the event includes the value or not.
Sometimes the key is enough to react on an event. In those situations, setting this value to
false saves a deserialization cycle. Its default value is true.

o entry-listener#local: Not used for Replicated Map since listeners are always local.
* quorum-ref: Name of quorum configuration that you want this Replicated Map to use. See the
Split-Brain Protection for Replicated Map section.

Programmatic Configuration:

You can configure a Replicated Map programmatically, as you can do for all other data structures in
Hazelcast. You must create the configuration upfront, when you instantiate the HazelcastInstance. A
basic example of how to configure the Replicated Map using the programmatic approach is shown
in the following snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
config.getReplicatedMapConfig( "default" );

replicatedMapConfig.setInMemoryFormat( InMemoryFormat.BINARY )
.setQuorumName( "quorumname" );

All properties that can be configured using the declarative configuration are also available using
programmatic configuration by transforming the tag names into getter or setter names.

In-Memory Format on Replicated Map

Currently, you can use the following in-memory-format options with the Replicated Map:

* 0BJECT (default): The data is stored in deserialized form. This configuration is the default choice
since the data replication is mostly used for high speed access. Please be aware that changing
the values without a Map.put() is not reflected on the other members but is visible on the
changing members for later value accesses.

* BINARY: The data is stored in serialized binary format and has to be deserialized on every
request. This option offers higher encapsulation since changes to values are always discarded as
long as the newly changed object is not explicitly Map.put() into the map again.

197


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-replicated-maps

7.18.6. Using EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a Replicated Map serves the same purpose as it would
on other data structures in Hazelcast. You can use it to react on add, update and remove operations.
Replicated Maps do not yet support eviction.

Difference in EntryListener on Replicated Map

The fundamental difference in Replicated Map behavior, compared to the other data structures, is
that an EntryListener only reflects changes on local data. Since replication is asynchronous, all
listener events are fired only when an operation is finished on a local member. Events can fire at
different times on different members.

Example of Replicated Map EntryListener

Here is a code example for using EntryListener on a Replicated Map.

The HazelcastInstance s getReplicatedMap method gets a Replicated Map (customers), and the
ReplicatedMap s addEntrylListener method adds an entry listener to the Replicated Map. Then, the
ReplicatedMap s put method adds a Replicated Map entry and updates it. The method remove removes
the entry.

198



HazelcastInstance hz = Hazelcast.newHazelcastInstance();
ReplicatedMap<String, String> map = hz.getReplicatedMap("somemap");
map.addEntryListener(new MyEntryListener());
System.out.println("EntrylListener registered");

}

private static class MyEntrylListener implements EntrylListener<String, String> {

public void entryAdded(EntryEvent<String, String> event) {
System.out.println("entryAdded: " + event);
}

public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("entryRemoved: " + event);

}

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("entryUpdated: " + event);
}

public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("entryEvicted: " + event);

}

public void mapEvicted(MapEvent event) {
System.out.println("mapEvicted:" + event);

public void mapCleared(MapEvent event) {
System.out.println("mapCleared: " + event);

}

7.18.7. Split-Brain Protection for Replicated Map

Replicated Map can be configured to check for a minimum number of available members before
applying its operations (see Split-Brain Protection). This is a check to avoid performing successful
queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

 WRITE, READ_WRITE:

199



o Clear
o put
o pPutAll
. remove
* READ, READ_WRITE:
. containsKey
. containsValue
» entrySet
o get
. isEmpty
» keySet
. Size

- values

Configuring Split-Brain Protection

Split-Brain protection for Replicated Map can be configured programmatically using the method
setQuorumName(), or declaratively using the element quorum-ref. Following is an example declarative
configuration:

<hazelcast>

<replicatedmap name="default">
<quorum-ref>quorumname</quorum-ref>
</replicatedmap>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

7.19. Cardinality Estimator Service

Hazelcast’s cardinality estimator service is a data structure which implements Flajolet’s
HyperLogLog algorithm for estimating cardinalities of unique objects in theoretically huge data
sets. The implementation offered by Hazelcast includes improvements from Google’s version of the
algorithm, i.e., HyperLogLog++.

The cardinality estimator service does not provide any ways to configure its properties, but rather
uses some well tested defaults:

* P: Stands for precision with a default value of 14 (using the 14 LSB of the hash for the index)
o M:2 AP =16384 (16K) registers
» P': Stands for sparse precision with a default value of 25

* Durability: Count of backups for each estimator with a default value of 2

200


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/ReplicatedMapConfig.html

It is important to understand that this data structure is not 100% accurate, it is
used to provide estimates. The error rate is typically a result of 1.04/sqrt(M) which
in our implementation is around 0.81% for high percentiles.

The memory consumption of this data structure is close to 16K despite the size of elements in the
source data set or stream.

There are two phases in using the cardinality estimator.

1. Add objects to the instance of the estimator, e.g., for IPs estimator.add("0.0.0.0."). The
provided object is first serialized and then the byte array is used to generate a hash for that
object.

0 Objects must be serializable in a form that Hazelcast understands.

2. Compute the estimate of the set so far estimator.estimate().
See the cardinality estimator Javadoc for more information on its API.

The following is an example code.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
CardinalityEstimator visitorsEstimator = hz.getCardinalityEstimator("visitors");

InputStreamReader isr = new InputStreamReader (ExampleCardinalityEstimator.class
.getResourceAsStream("visitors.txt"));
BufferedReader br = new BufferedReader(isr);
try {
String visitor = br.readlLine();
while (visitor != null) {
visitorsEstimator.add(visitor);
visitor = br.readline();
}
} catch (IOException e) {
e.printStackTrace();
} finally {
closeResource(br);
closeResource(isr);

System.out.printf("Estimated unique visitors seen so far: %d%n", visitorsEstimator

.estimate());

Hazelcast.shutdownAll();

7.19.1. Split-Brain Protection for Cardinality Estimator

Cardinality Estimator can be configured to check for a minimum number of available members
before applying its operations (see Split-Brain Protection). This is a check to avoid performing

201


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/cardinality/CardinalityEstimator.html

successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods,grouped by quorum type, that support Split-Brain Protection
checks:

* WRITE, READ_WRITE:
- add
» addAsync

* READ, READ_WRITE:

- estimate

. estimateAsync

Configuring Split-Brain Protection

Split-Brain protection for Cardinality Estimator can be configured programmatically using the
method setQuorumName(), or declaratively using the element quorum-ref. Following is an example
declarative configuration:

<hazelcast>

<cardinality-estimator name="default">
<quorum-ref>quorumname</quorum-ref>
</cardinality-estimator>

</hazelcast>
The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.
Configuring Merge Policy

While recovering from a Split-Brain syndrome, Cardinality Estimator in the small cluster merges
into the bigger cluster based on a configured merge policy. When an estimator merges into the
cluster, an estimator with the same name might already exist in the cluster. So the merge policy
resolves these kinds of conflicts with different out-of-the-box strategies. It can be configured
programmatically using the method setMergePolicyConfig(), or declaratively using the element
merge-policy. Following is an example declarative configuration:

<hazelcast>
<cardinality-estimator name="default">
<merge-policy>HyperLoglLogMergePolicy</merge-policy>

</cardinality-estimator>

</hazelcast>

The following out-of-the-box merge policies are available:

202


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/CardinalityEstimatorConfig.html
https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/CardinalityEstimatorConfig.html

* DiscardMergePolicy: Estimator from the smaller cluster is discarded.

* HyperLoglogMergePolicy: Estimator merges with the existing one, using the algorithmic merge for
HyperLogLog. This is the default policy.

* PassThroughMergePolicy: Estimator from the smaller cluster wins.

PutIfAbsentMergePolicy: Estimator from the smaller cluster wins if it doesn’t exist in the cluster.

7.20. Event Journal

The event journal is a distributed data structure that stores the history of mutation actions on map
or cache. Each action on the map or cache which modifies its contents (such as put, remove or
scheduled tasks which are not triggered by using the public API) creates an event which is stored in
the event journal. The event stores the event type as well as the key, old value and updated value
for the entry (when applicable). As a user, you can only append to the journal indirectly by using
the map and cache methods or configuring the expiration and eviction. By reading from the event
journal you can recreate the state of the map or cache at any point in time.

Currently the event journal does not expose a public API for reading the event
journal in Hazelcast IMDG. The event journal can be used to stream event data to
Hazelcast Jet, so it should be used in conjunction with Hazelcast Jet. Because of this

0 we describe how to configure it but not how to use it from IMDG in this section. If
you enable and configure the event journal, you may only reach it through private
API and you most probably do not get any benefits but the journal retains events
nevertheless and consumes heap space.

The event journal has a fixed capacity and an expiration time. Internally it is structured as a
ringbuffer (partitioned by ringbuffer item) and shares many similarities with it.

7.20.1. Interaction with Evictions and Expiration for IMap

Configuring IMap with eviction and expiration can cause the event journal to contain different
events on the different replicas of the same partition. You can run into issues if you are reading
from the event journal and the partition owner is terminated. A backup replica is then promoted
into the partition owner but the event journal will contain different events. The event count should
stay the same but the entries which you previously thought were evicted and expired could now be
"alive" and vice versa.

This is because eviction and expiration randomly choose entries to be evicted/expired. The entry is
not coordinated between partition replicas. In these cases, the event journal diverges and will not
converge at any future point, but will remain inconsistent just as well as the contents of the internal
record stores are inconsistent between replicas. You may say that the event journal on a specific
replica is in-sync with the record store on that replica but the event journals and record stores
between replicas are out-of-sync.

7.20.2. Configuring Event Journal Capacity

By default, an event journal is configured with a capacity of 10000 items. This creates a single array
per partition, roughly the size of the capacity divided by the number of partitions. Thus, if the

203


http://jet.hazelcast.org/

configured capacity is 10000 and number of partitions is 271, we create 271 arrays of size 36
(10000/271). If a time-to-live is configured, then an array of longs is also created that stores the
expiration time for every item. A single array of the event journal keeps events that are only related
to the map entries in that partition. In a lot of cases you may want to change this capacity number
to something that better fits your needs. As the capacity is shared between partitions, keep in mind
not to set it to a value which is too low for you. Setting the capacity to a number lower than the
partition count results in an error when initializing the event journal.

Below is a declarative configuration example of an event journal with a capacity of 5000 items for a
map and 10000 items for a cache:

<hazelcast>

<event-journal enabled="true">
<mapName>myMap</mapName>
<capacity>5000</capacity>
<time-to-live-seconds>20</time-to-1live-seconds>

</event-journal>

<event-journal enabled="true">
<cacheName>myCache</cacheName>
<capacity>10000</capacity>
<time-to-live-seconds>0</time-to-1ive-seconds>

</event-journal>

</hazelcast>

You can also configure an event journal programmatically. The following is a programmatic version
of the above declarative configuration:

EventJournalConfig myMapJournalConfig = new EventJournalConfig()
.setMapName ("myMap")
.setEnabled(true)
.setCapacity(5000)
.setTimeToLiveSeconds(20);

EventJournalConfig myCacheJournalConfig = new EventJournalConfig()
.setMapName ("myCache")
.setEnabled(true)
.setCapacity(10000)
.setTimeToLiveSeconds(0);

Config config = new Config();
config.addEventJournalConfig(myMapJournalConfig);
config.addEventJournalConfig(myCacheJournalConfig);

The mapName and cacheName attributes define the map or cache to which this event journal
configuration applies. You can use pattern-matching and the default keyword when doing so. For
instance, by using a mapName of journaled*, the journal configuration applies to all maps whose

204



names start with "journaled" and don’t have other journal configurations that match (e.g., if you
would have a more specific journal configuration with an exact name match). If you specify the
mapName or cacheName as default, the journal configuration applies to all maps and caches that don’t
have any other journal configuration. This means that potentially all maps and/or caches have one
single event journal configuration.

7.20.3. Event Journal Partitioning

The event journal is a partitioned data structure. The partitioning is done by the event key. Because
of this, the map and cache entry with a specific key is co-located with the events for that key and
will be migrated accordingly. Also, the backup count for the event journal is equal to the backup
count of the map or cache for which it contains events. The events on the backup replicas will be
created with the map or cache backup operations and no additional network traffic is introduced
when appending events to the event journal.

7.20.4. Configuring Event Journal time-to-live

You can configure Hazelcast event journal with a time-to-live in seconds. Using this setting, you
can control how long the items remain in the event journal before they are expired. By default, the
time-to-live is set to 0, meaning that unless the item is overwritten, it remains in the journal
indefinitely. The expiration time of the existing journal events is checked whenever a new event is
appended to the event journal or when the event journal is being read. If the journal is not being
read from or written to, the journal may keep expired items indefinitely.

In the example below, an event journal is configured with a time-to-1live of 180 seconds:

<hazelcast>

<event-journal enabled="true">
<cacheName>myCache</cacheName>
<capacity>10000</capacity>
<time-to-live-seconds>180</time-to-1live-seconds>
</event-journal>

</hazelcast>

8. Distributed Events

You can register for Hazelcast entry events so you are notified when those events occur. Event
listeners are cluster-wide: when a listener is registered in one member of cluster, it is actually
registered for the events that originated at any member in the cluster. When a new member joins,
events originated at the new member are also delivered.

An event is created only if you registered an event listener. If no listener is registered, then no
event is created. If you provided a predicate when you registered the event listener, pass the
predicate before sending the event to the listener (member/client).

205



As a rule of thumb, your event listener should not implement heavy processes in its event methods
that block the thread for a long time. If needed, you can use ExecutorService to transfer long
running processes to another thread and thus offload the current listener thread.

In a failover scenario, events are not highly available and may get lost. However,
you can perform workarounds such as configuring the event queue capacity as
explained in the Global Event Configuration section.

Hazelcast offers the following event listeners.
For cluster events:

* Membership Listener for cluster membership events
* Distributed Object Listener for distributed object creation and destruction events

» Migration Listener for partition migration start and completion events

Partition Lost Listener for partition lost events

Lifecycle Listener for HazelcastInstance lifecycle events

Client Listener for client connection events

For distributed object events:

* Entry Listener for IMap and MultiMap entry events
» Item Listener for IQueue, ISet and IList item events

» Message Listener for ITopic message events
For Hazelcast JCache implementation:

* Cache Entry Listener

e ICache Partition Lost Listener
For Hazelcast clients:

» Lifecycle Listener
* Membership Listener

* Distributed Object Listener

8.1. Cluster Events

8.1.1. Listening for Member Events
The Membership Listener interface has methods that are invoked for the following events:

* memberAdded: A new member is added to the cluster.
* memberRemoved: An existing member leaves the cluster.

» memberAttributeChanged: An attribute of a member is changed. See the Defining Member

206



Attributes section to learn about member attributes.

To write a Membership Listener class, you implement the MembershipListener interface and its
methods.

The following is an example Membership Listener class.

public class ClusterMembershipListener implements MembershipListener {

public void memberAdded(MembershipEvent membershipEvent) {
System.err.println("Added: " + membershipEvent);
}

public void memberRemoved(MembershipEvent membershipEvent) {
System.err.println("Removed: " + membershipEvent);

}

public void memberAttributeChanged(MemberAttributeEvent memberAttributeEvent) {
System.err.println("Member attribute changed: " + memberAttributeEvent);

}

When a respective event is fired, the membership listener outputs the addresses of the members
that joined and left, and also which attribute changed on which member.

Registering Membership Listeners

After you create your class, you can configure your cluster to include the membership listener.
Below is an example using the method addMembershipListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getCluster().addMembershipListener( new ClusterMembershipListener()

)

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

Config config = new Config();
config.addListenerConfig(
new ListenerConfig( "com.yourpackage.ClusterMembershiplListener" ) );

The following is an example of the equivalent declarative configuration.

207



<hazelcast>

<listeners>
<listener>
com.yourpackage.ClusterMembershipListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.yourpackage.ClusterMembershipListener"/>
<hz:listener implementation="MembershipListener"/>

</hz:listeners>

8.1.2. Listening for Distributed Object Events

The Distributed Object Listener methods distributedObjectCreated and distributedObjectDestroyed
are invoked when a distributed object is created and destroyed throughout the cluster. To write a
Distributed Object Listener class, you implement the DistributedObjectListener interface and its
methods.

The following is an example Distributed Object Listener class.

public class ExampleDistObjListener implements DistributedObjectListener {

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + ", service=" + instance
.getServiceName());

}

public void distributedObjectDestroyed(DistributedObjectEvent event) {
System.out.println("Destroyed " + event.getObjectName() + ", service=" +
event.getServiceName());

}
}

When a respective event is fired, the distributed object listener outputs the event type, the object
name and a service name (for example, for a Map object the service name is "hz:impl:mapService").

208



Registering Distributed Object Listeners

After you create your class, you can configure your cluster to include distributed object listeners.
Below is an example using the method addDistributedObjectlListener. You can also see this portion
in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ExampleDistObjListener example = new ExampleDistObjListener();

hazelcastInstance.addDistributedObjectListener( example );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig( "com.yourpackage.ExampleDistObjListener" ) );

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.yourpackage.ExampleDistObjListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.yourpackage.ExampleDistObjListener"/>
<hz:listener implementation="DistributedObjectListener"/>
</hz:listeners>

8.1.3. Listening for Migration Events
The Migration Listener interface has methods that are invoked for the following events:

* migrationStarted: A partition migration is started.

* migrationCompleted: A partition migration is completed.

209



* migrationFailed: A partition migration failed.
To write a Migration Listener class, you implement the MigrationListener interface and its methods.

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {

public void migrationStarted(MigrationEvent migrationEvent) {
System.err.println("Started: " + migrationEvent);

}

public void migrationCompleted(MigrationEvent migrationEvent) {
System.err.println("Completed: " + migrationEvent);

}

public void migrationFailed(MigrationEvent migrationEvent) {
System.err.println("Failed: " + migrationEvent);

}

When a respective event is fired, the migration listener outputs the partition ID, status of the
migration, the old member and the new member. The following is an example output.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

Registering Migration Listeners
After you create your class, you can configure your cluster to include migration listeners. Below is

an example using the method addMigrationListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

PartitionService partitionService = hazelcastInstance.getPartitionService();
partitionService.addMigrationListener( new ClusterMigrationListener() );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig( "com.yourpackage.ClusterMigrationListener" ) );

210



The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.yourpackage.ClusterMigrationListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.yourpackage.ClusterMigrationListener"/>
<hz:listener implementation="MigrationlListener"/>

</hz:listeners>

8.1.4. Listening for Partition Lost Events

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one
of your cluster members becomes the owner and some of the other members become replica
members, based on your configuration. Nevertheless, data loss may occur if a few members crash
simultaneously.

Let’s consider the following example with three members: N1, N2, N3 for a given partition-0. N1 is
owner of partition-0. N2 and N3 are the first and second replicas respectively. If N1 and N2 crash
simultaneously, partition-0 loses its data that is configured with less than two backups. For instance,
if we configure a map with one backup, that map loses its data in partition-0 since both owner and
first replica of partition-0 have crashed. However, if we configure our map with two backups, it
does not lose any data since a copy of partition-0’s data for the given map also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how
many replicas are lost for a partition. It listens to PartitionLostEvent instances. Partition lost events
are dispatched per partition.

Partition loss detection is done after a member crash is detected by the other members and the
crashed member is removed from the cluster. Please note that false-positive PartitionLostEvent
instances may be fired on the network split errors.

Writing a Partition Lost Listener Class

To write a Partition Lost Listener, you implement the PartitionLostListener interface and its
partitionLost method, which is invoked when a partition loses its owner and all backups.

The following is an example Partition Lost Listener class.

211



public class ConsolelLoggingPartitionLostListener implements PartitionlLostListener {

public void partitionLost(PartitionLostEvent event) {
System.out.println(event);

}

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID,
the replica index that is lost and the member that has detected the partition loss. The following is
an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49]:5701}

Registering Partition Lost Listeners

After you create your class, you can configure your cluster programmatically or declaratively to
include the partition lost listener. Below is an example of its programmatic configuration.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getPartitionService().addPartitionLostListener( new
ConsoleloggingPartitionLostListener() );

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.yourpackage.ConsolelLoggingPartitionLostListener
</listener>
</listeners>

</hazelcast>

8.1.5. Listening for Lifecycle Events

The Lifecycle Listener notifies for the following events:

STARTING: A member is starting.

STARTED: A member started.

SHUTTING_DOWN: A member is shutting down.

SHUTDOWN: A member’s shutdown has completed.

MERGING: A member is merging with the cluster.

212



* MERGED: A member’s merge operation has completed.
e CLIENT_CONNECTED: A Hazelcast Client connected to the cluster.
e CLIENT_DISCONNECTED: A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

public class NodelLifecyclelListener implements Lifecyclelistener {

public void stateChanged(LifecycleEvent event) {
System.err.println(event);

}

This listener is local to an individual member. It notifies the application that uses Hazelcast about
the events mentioned above for a particular member.

Registering Lifecycle Listeners

After you create your class, you can configure your cluster to include lifecycle listeners. Below is an
example using the method addLifecycleListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getLifecycleService().addLifecycleListener( new
NodeLifecyclelListener() );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig( "com.yourpackage.NodelLifecycleListener" ) );

The following is an example of the equivalent declarative configuration.

213



<hazelcast>

<listeners>
<listener>
com.yourpackage.NodeLifecyclelistener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.yourpackage.NodelLifecyclelListener"/>
<hz:listener implementation="LifecyclelListener"/>

</hz:listeners>

8.1.6. Listening for Clients

The client listener is used by the Hazelcast cluster members. It notifies the cluster member when a
client is connected to or disconnected from it, i.e., the clients fire an event from only one member
they are connected to. Other cluster members do not fire a "client is connected" or "client is
disconnected" event.

To write a client listener class, you implement the (ClientListener interface and its methods
clientConnected and clientDisconnected, which are invoked when a client is connected to or
disconnected from the cluster. You can add your client listener as shown below.

hazelcastInstance.getClientService().addClientListener(new ExampleClientListener());
The following is the equivalent declarative configuration.

<hazelcast>
<listeners>
<listener>
com.yourpackage.ExampleClientListener
</listener>
</listeners>

</hazelcast>

The following is the equivalent configuration in the Spring context.

214



<hz:listeners>
<hz:listener class-name="com.yourpackage.ExampleClientListener"/>
<hz:listener implementation="com.yourpackage.ExampleClientListener"/>
</hz:listeners>

0 You can also add event listeners to a Hazelcast client. See the Client Listenerconfig
section for the related information.

8.2. Distributed Object Events

8.2.1. Listening for Map Events

You can listen to map-wide or entry-based events using the listeners provided by the Hazelcast’s
eventing framework. To listen to these events, implement a MapListener sub-interface.

A map-wide event is fired as a result of a map-wide operation. For example, IMap.clear() or
IMap.evictAll(). An entry-based event is fired after the operations that affect a specific entry. For
example, IMap.remove() or IMap.evict().

Catching a Map Event

To catch an event, you should explicitly implement a corresponding sub-interface of a MapListener,
such as EntryAddedListener or MapClearedListener.

The EntrylListener interface still can be implemented (we kept it for backward

0 compatibility reasons). However, if you need to listen to a different event, one that
is not available in the EntrylListener interface, you should also implement a
relevant MapListener sub-interface.

Let’s take a look at the following class example.

public class Listen {

public static void main( String[] args ) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap( "somemap" );
map.addEntrylListener( new MyEntrylListener(), true );
System.out.println( "EntrylListener registered" );

}

static class MyEntrylListener implements
EntryAddedListener<String, String>,
EntryRemovedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryEvictedListener<String, String>,
EntrylLoadedListener<String,String>,
MapEvictedListener,

215



MapClearedListener  {

@0verride

public void entryAdded( EntryEvent<String, String> event ) {
System.out.println( "Entry Added:" + event );

}

@Jverride
public void entryRemoved( EntryEvent<String, String> event ) {
System.out.println( "Entry Removed:" + event );

}

@0verride

public void entryUpdated( EntryEvent<String, String> event ) {
System.out.println( "Entry Updated:" + event );

}

@0verride

public void entryEvicted( EntryEvent<String, String> event ) {
System.out.println( "Entry Evicted:" + event );

}

@0verride

public void entrylLoaded( EntryEvent<String, String> event ) {
System.out.println( "Entry Loaded:" + event );

}

@0verride

public void mapEvicted( MapEvent event ) {
System.out.println( "Map Evicted:" + event );

}

@0verride

public void mapCleared( MapEvent event ) {
System.out.println( "Map Cleared:" + event );

}

Now, let’s perform some modifications on the map entries using the following example code.

216



public class ModifyMap {

public static void main( String[] args ) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap( "somemap");
String key = "" + System.nanoTime();
String value = "1";
map.put( key, value );
map.put( key, "2" );
map.delete( key );

If you execute the Listen class and then the Modify class, you get the following output produced by
the Listen class.

Entry Added:EntryEvent{entryEventType=ADDED, member=Member [192.168.1.100]]:5702
- ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
oldValue=null, value=1, mergingValue=null}

Entry Updated:EntryEvent{entryEventType=UPDATED, member=Member [192.168.1.100]]:5702
- ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
oldValue=1, value=2, mergingValue=null}

Entry Removed:EntryEvent{entryEventType=REMOVED, member=Member [192.168.1.100]]:5702
- ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
oldValue=null, value=null, mergingValue=null}

0 Please note that the method IMap.clear() does not fire an "EntryRemoved" event,
but fires a "MapCleared" event.

0 Listeners have to offload all blocking operations to another thread (pool).

8.2.2. Listening for Lost Map Partitions

You can listen to MapPartitionLostEvent instances by registering an implementation of
MapPartitionLostListener, which is also a sub-interface of MapListener.

Let’s consider the following example code:

217



public class ListenMapPartitionLostEvents {

public static void main(String[] args) {
Config config = new Config();
// keeps its data if a single node crashes
config.getMapConfig("map").setBackupCount(1);

HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance
(config);

IMap<Object, Object> map = instance.getMap("map");
map.put(9, 0);

map.addPartitionLostListener(new MapPartitionLostListener() {

public void partitionLost(MapPartitionLostEvent event) {
System.out.println(event);

}
b

Within this example code, a MapPartitionLostListener implementation is registered to a map that is
configured with one backup. For this particular map and any of the partitions in the system, if the
partition owner member and its first backup member crash simultaneously, the given
MapPartitionLostListener receives a corresponding MapPartitionLostEvent. If only a single member
crashes in the cluster, there is no MapPartitionLostEvent fired for this map since backups for the
partitions owned by the crashed member are kept on other members.

See the Listening for Partition Lost Events section for more information about partition lost
detection and partition lost events.

Registering Map Listeners

After you create your listener class, you can configure your cluster to include map listeners using
the method addEntrylListener (as you can see in the example Listen class above). Below is the
related portion from this code, showing how to register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap( "somemap" );
map.addEntryListener( new MyEntrylListener(), true );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in configuration. You can register listeners using declarative, programmatic, or
Spring configuration, as shown below.

The following is an example programmatic configuration.

218



mapConfig.addEntryListenerConfig(
new EntrylListenerConfig( "com.yourpackage.MyEntrylListener"”,
false, false ) );

The following is an example of the equivalent declarative configuration.

<hazelcast>

<map name="somemap">
<entry-listeners>
<entry-listener include-value="false" local="false">
com.yourpackage.MyEntrylListener
</entry-listener>
</entry-listeners>
</map>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:map name="somemap">
<hz:entry-listeners>
<hz:entry-listener include-value="true"
class-name="com.hazelcast.spring.DummyEntryListener"/>
<hz:entry-listener implementation="dummyEntryListener" local="true"/>
</hz:entry-listeners>
</hz:map>

Map Listener Attributes

As you see, there are attributes of the map listeners in the above examples: include-value and local.
The attribute include-value is a boolean attribute that is optional, and if you set it to true, the map
event contains the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen
to the map on the local member. Its default value is false.

8.2.3. Listening for MultiMap Events

You can listen to entry-based events in the MultiMap using EntryListener. The following is an
example entry listener implementation for MultiMap.

219



public class ExampleEntrylListener implements EntrylListener<String, String> {

public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added: " + event);
}

public void entryRemoved( EntryEvent<String, String> event ) {
System.out.println( "Entry Removed: " + event );

}

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println( "Entry Updated: " + event );
}

public void entryEvicted(EntryEvent<String, String> event) {
System.out.println( "Entry evicted: " + event );

}

public void map(Cleared(MapEvent event) {

System.out.println( "Map Cleared: " + event );

}

public void mapEvicted(MapEvent event) {

System.out.println( "Map Evicted: " + event );

}

Registering MultiMap Listeners

After you create your listener class, you can configure your cluster to include MultiMap listeners
using the method addEntryListener. Below is the related portion from a code, showing how to
register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap( "somemap" );
map.addEntryListener( new ExampleEntrylListener(), true );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

220



multiMapConfig.addEntryListenerConfig(
new EntrylListenerConfig( "com.yourpackage.ExampleEntryListener",
false, false ) );
[source, xml]

The following is an example of the equivalent declarative configuration.

<hazelcast>

<multimap name="somemap">
<value-collection-type>SET</value-collection-type>
<entry-listeners>
<entry-listener include-value="false" local="false">
com.yourpackage.ExampleEntrylListener
</entry-listener>
</entry-listeners>
</multimap>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:multimap name="somemap" value-collection-type="SET">
<hz:entry-listeners>
<hz:entry-listener include-value="false"
class-name="com.yourpackage.ExampleEntryListener"/>
<hz:entry-listener implementation="EntryListener" local="false"/>
</hz:entry-listeners>
</hz:multimap>

MultiMap Listener Attributes

As you see, there are attributes of the MultiMap listeners in the above examples: include-value and
local. The attribute include-value is a boolean attribute that is optional, and if you set it to true, the
MultiMap event contains the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen
to the MultiMap on the local member. Its default value is false.

8.2.4. Listening for Item Events

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces.

To write an Item Listener class, you implement the ItemListener interface and its methods
itemAdded and itemRemoved. These methods are invoked when an item is added or removed.

The following is an example Item Listener class for an ISet structure.

221



public class ExampleltemListener implements ItemListener<Price> {

public void itemAdded(ItemEvent<Price> event) {
System.out.println( "Item added: " + event );
}

public void itemRemoved(ItemEvent<Price> event) {
System.out.println( "Item removed: " + event );

}

You can use ICollection when creating any of the collection (queue, set and list)
data structures, as shown above. You can also use IQueue, ISet or IList instead of
ICollection.

Registering Item Listeners

After you create your class, you can configure your cluster to include item listeners. Below is an
example using the method addItemListener for ISet (it applies also to IQueue and IList). You can also
see this portion in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ICollection<Price> set = hazelcastInstance.getSet( "default" );
// or ISet<Prices> set = hazelcastInstance.getSet( "default" );
set.addItemListener( new ExampleltemListener(), true );

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

setConfig.addItemlListenerConfig(
new ItemListenerConfig( "com.yourpackage.ExampleItemListener", true ) );

The following is an example of the equivalent declarative configuration.

222



<hazelcast>
<set>
<item-listeners>
<item-listener include-value="true">
com.yourpackage.ExampleItemListener
</item-listener>

</item-listeners>
</set>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:set name="default" >
<hz:item-listeners>
<hz:item-listener include-value="true"
class-name="com.yourpackage.ExampleItemListener"/>
</hz:item-listeners>
</hz:set>

Item Listener Attributes

As you see, there is an attribute in the above examples: include-value. It is a boolean attribute that
is optional, and if you set it to true, the item event contains the item value. Its default value is true.

There is also another attribute called local, which is not shown in the above examples. It is also a
boolean attribute that is optional, and if you set it to true, you can listen to the items on the local
member. Its default value is false.

8.2.5. Listening for Topic Messages

The Message Listener is used by the ITopic interface. It notifies when a message is received for the
registered topic.

To write a Message Listener class, you implement the MessageListener interface and its method
onMessage, which is invoked when a message is received for the registered topic.

The following is an example Message Listener class.

public class ExampleMessagelistener implements Messagelistener<MyEvent> {
public void onMessage( Message<MyEvent> message ) {

MyEvent myEvent = message.getMessageObject();
System.out.println( "Message received = " + myEvent.toString() );

223



Registering Message Listeners

After you create your class, you can configure your cluster to include message listeners. Below is an
example using the method addMessagelListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ITopic topic = hazelcastInstance.getTopic( "default" );
topic.addMessagelistener( new ExampleMessagelistener() );

With the above approach, there is the possibility of missing messaging events between the creation
of the instance and registering the listener. To overcome this race condition, Hazelcast allows you
to register this listener in the configuration. You can register it using declarative, programmatic, or
Spring configuration, as shown below.

The following is an example programmatic configuration.

topicConfig.addMessagelistenerConfig(
new ListenerConfig( "com.yourpackage.ExampleMessagelListener" ) );

The following is an example of the equivalent declarative configuration.

<hazelcast>

<topic name="default">
<message-listeners>
<message-listener>
com.yourpackage.ExampleMessagelListener
</message-listener>
</message-listeners>
</topic>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:topic name="default">
<hz:message-listeners>
<hz:message-listener
class-name="com.yourpackage.ExampleMessageListener"/>
</hz:message-listeners>
</hz:topic>

224



8.3. Event Listeners for Hazelcast Clients

You can add event listeners to a Hazelcast Java client. You can configure the following listeners to
listen to the events on the client side. See the respective content under the Cluster Events section for
example codes.

* Lifecycle Listener: Notifies when the client is starting, started, shutting down and shutdown.

* Membership Listener: Notifies when a member joins to/leaves the cluster to which the client is
connected, or when an attribute is changed in a member.

 DistributedObject Listener: Notifies when a distributed object is created or destroyed
throughout the cluster to which the client is connected.

0 See the Configuring Client Listeners section for more information.

8.4. Global Event Configuration

e hazelcast.event.queue.capacity: default value is 1000000
e hazelcast.event.queue.timeout.millis: default value is 250

e hazelcast.event.thread.count: default value is 5

A striped executor in each cluster member controls and dispatches the received events. This striped
executor also guarantees the event order. For all events in Hazelcast, the order in which events are
generated and the order in which they are published are guaranteed for given keys. For map and
multimap, the order is preserved for the operations on the same key of the entry. For list, set, topic
and queue, the order is preserved for events on that instance of the distributed data structure.

To achieve the order guarantee, you make only one thread responsible for a particular set of events
(entry events of a key in a map, item events of a collection, etc.) in StripedExecutor (within
com.hazelcast.util.executor).

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be
put into the event queue for the period specified in hazelcast.event.queue.timeout.millis, these
events are dropped with a warning message, such as "EventQueue overloaded".

If event listeners perform a computation that takes a long time, the event queue can reach its
maximum capacity and lose events. For map and multimap, you can configure
hazelcast.event.thread.count to a higher value so that fewer collisions occur for keys, and
therefore worker threads do not block each other in StripedExecutor. For list, set, topic and queue,
you should offload heavy work to another thread. To preserve order guarantee, you should
implement similar logic with StripedExecutor in the offloaded thread pool.

9. Hazelcast Jet

0 This chapter briefly describes Hazelcast Jet. For detailed information and Jet
documentation, please visit jet.hazelcast.org.

225


https://jet.hazelcast.org/

9.1. Overview

Hazelcast Jet, built on top of the Hazelcast IMDG, is a distributed processing engine for fast stream
and batch processing of large data sets. It reuses the features and services of Hazelcast IMDG, but it
is a separate product with features not available in IMDG.

With Hazelcast IMDG providing storage functionality, Jet performs parallel execution in a Hazelcast
Jet cluster, composed of Jet instances, to enable data-intensive applications to operate in near real-
time. Jet uses green threads (threads that are scheduled by a runtime library or VM) to achieve this
parallel execution.

Since Jet uses Hazelcast IMDG’s discovery mechanisms, it can be used both on-premises and on the
cloud environments. Hazelcast Jet typically runs on several machines that form a cluster.

9.1.1. How You Can Use It

The Pipeline API is the primary high-level API of Hazelcast Jet for batch and stream processing. This
API is easy-to-use and set-up providing you with the tools to compose batch computations from
building blocks such as filters, aggregators and joiners - saving time and resource. With Pipeline
API, you can build bounded and unbounded data pipelines on a variety of sources and sinks.

In addition to the Pipeline API, Jet also offers a distributed implementation of java.util.stream. You
can express your computation over any data source Jet supports using the familiar API from the
JDK 8. This distributed implementation can be used for simple transform and reduce operations on
top of IMap and IList.

There is also Jet’s Core API for advanced users to build custom data sources and sinks, to have a
low-level control over the data flow, to fine-tune performance and build DSLs.

See the Work with Jet section in the Hazelcast Jet Reference Manual to see a simple example.

9.1.2. Where You Can Use It

Hazelcast Jet is appropriate for applications that require a near real-time experience such as
operations in IoT architectures (house thermostats, lighting systems, etc.), in-store e-commerce
systems and social media platforms. Typical use cases include the following:

* Real-time (low-latency) stream processing

* Fast batch processing

* Streaming analytics

* Complex event processing

* Implementing event sourcing and CQRS (Command Query Responsibility Segregation)

* Internet-of-things (IoT) data ingestion, processing and storage

* Data processing microservice architectures

* Online trading

 Social media platforms

226


https://docs.hazelcast.org/docs/jet/latest-dev/manual/index.html#work-with-jet

* System log events

The aforementioned use cases require huge amounts of data to be processed in near real-time.
Hazelcast Jet achieves this by processing the incoming records as soon as possible, hence lowering
the latency, and ingesting the data at high-velocity. Jet’s execution model and keeping both the
computation and data storage in memory enables high application speeds.

9.1.3. Data Processing Styles

The data processing is traditionally divided into batch and stream processing.

Batch data is considered as bounded, i.e., finite, and fast batch processing typically may refer to
running a job on a data set which is available in a data center. You simply provide one or more pre-
existing datasets and order Hazelcast Jet to mine them for the information you need.

Stream data is considered as unbounded, i.e., infinite, and infinite stream processing deals with in-
flight data before it is stored. It offers lower latency; data is processed on-the-fly and you do not
have to wait for the whole data set to arrive in order to run a computation.

9.2. Relationship with Hazelcast IMDG

Hazelcast Jet leans on Hazelcast IMDG for cluster management and deployment, data partitioning
and networking; all the services of IMDG are available to your Jet Jobs (units of work which are
executed). A Jet instance is also a fully functional Hazelcast IMDG instance and a Jet cluster is also a
Hazelcast IMDG cluster.

A Jet job is implemented as a Hazelcast IMDG proxy, similar to the other services and data
structures in Hazelcast. Hazelcast operations are used for different actions that can be performed
on a job. Jet can also be used with the Hazelcast Client, which uses the Hazelcast Open Binary
Protocol to communicate different actions to the server instance.

In the Hazelcast Jet world, Hazelcast IMDG can be used for data ingestion prior to processing,
connecting multiple Jet jobs, enriching processed events, caching the remote data, distributing Jet-
processed data and running advanced data processing tasks on top of IMDG data structures.

Hazelcast Jet can use Hazelcast IMDG’s IMap, ICache and IList on the embedded cluster as sources
(data structures from which Jet reads data) and sinks (data structures to which Jet writes data).
IMap and ICache are partitioned data structures distributed across the cluster and Jet members can
read from these structures by having each member read just its local partitions. Hazelcast IMDG’s
IList is stored on a single partition; all the data is read on the single member that owns that
partition. See the IMap and ICache and IList sections in the Hazelcast Jet Reference Manual to learn
how Jet uses these IMDG data structures. In addition to these data structures, Jet can also process a
stream of changes of IMap and ICache, using the Event Journal.

You can use Hazelcast Jet with embedded Hazelcast IMDG or a remote Hazelcast IMDG cluster.
Benefits of using Hazelcast Jet with embedded Hazelcast IMDG are as follows:

* sharing the processing state among Jet Jobs

* caching intermediate processing results

227


https://docs.hazelcast.org/docs/jet/latest-dev/manual/index.html#connector-imdg
https://docs.hazelcast.org/docs/jet/latest-dev/manual/index.html#imdg-list

* enriching processed events; cache remote data, e.g., fact tables from a database, on the Jet
members

* running advanced data processing tasks on top of Hazelcast data structures

* improving development processes by making start up of a Jet cluster simple and fast
Jet Jobs use Hazelcast IMDG connector by allowing reading and writing records to/from a remote
Hazelcast IMDG instance. You can use a remote Hazelcast IMDG cluster for the following cases:

* distributing data across IMap, ICache and IList structures

* sharing state or intermediate results among more Jet clusters

* isolating the processing cluster (Jet) from operational data storage cluster (IMDG)

* publishing intermediate results, e.g., to show real-time processing stats on a dashboard

9.3. Hazelcast IMDG Computing vs. Hazelcast Jet

As described in the Fast-Aggregations section Hazelcast IMDG has native support for aggregation
operations on the contents of its distributed data structures.

Fast-Aggregations are a good fit for simple operations (count, distinct, sum, avg, min, max, etc.).
However, they may not be sufficient for operations that group data by key and produce the results
of size O(keyCount). The architecture of Hazelcast aggregations is not well suited to this use case,
although it still works even for moderately sized results (up to 100 MB, as a ballpark figure).
Hazelcast Jet can be the preferred choice for larger sized results and whenever something more
than a single aggregation step is needed. See the Jet Compared with New Aggregations section.

Another Hazelcast IMDG computing feature is Entry Processors. They are used for fast mutating
operations in an atomic way, in which the map entry is mutated by executing logic directly on the
JVM where the data resides. And this means the network hops are reduced and atomicity is
provided in a single step. Keeping this in mind, you can use Hazelcast IMDG Entry Processors when
they perform bulk mutations of an IMap, where the processing function is fast and involves a single
map entry per call. On the other hand, you can prefer to use Hazelcast Jet when the processing
involves multiple entries (aggregations, joins, etc.), or involves multiple computing steps to be made
parallel, or when the data source and sink are not a single IMap instance.

10. Distributed Computing

This chapter explains Hazelcast’s executor service, durable/scheduled executor services and entry
processor implementations.

10.1. Executor Service

One of the coolest features of Java is the Executor framework, which allows you to asynchronously
execute your tasks (logical units of work), such as database queries, complex calculations and
image rendering.

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a

228



single JVM (cluster member). In distributed systems, this implementation is not desired since you
may want a task submitted in one JVM and processed in another one. Hazelcast offers
IExecutorService for you to use in distributed environments. It implements
java.util.concurrent.ExecutorService to serve the applications requiring computational and data
processing power.

Note that you may want to use Hazelcast Jet if you want to process batch or real-
time streaming data. See the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If
your task execution takes longer than expected, you can cancel the task execution. Tasks should be
Serializable since they are distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

* Callable: If you need to return a value and submit it to Executor, implement the task as
java.util.concurrent.Callable.

* Runnable: If you do not need to return a value, implement the task as
java.util.concurrent.Runnable.

Note that, the distributed executor service (IExecutorService) is intended to run processing where
the data is hosted: on the server members. In general, you cannot run a Java Runnable or Callable
on the clients as the clients may not be Java. Also, the clients do not host any data, so they would
have to fetch what data they need from the servers potentially. If you want something to run on all
or some clients connected to your cluster, you could implement this using the publish/subscribe
mechanism; a payload could be sent to an ITopic with the necessary execution parameters, and
clients listening can act on the message.

10.1.1. Implementing a Callable Task

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a
value), you implement Callable and Serializable.

Below is an example of a Callable task. SumTask prints out map keys and returns the summed map
values.

229


https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/

public class SumTask
implements Callable<Integer>, Serializable, HazelcastInstanceAware {

private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance( HazelcastInstance hazelcastInstance ) {
this.hazelcastInstance = hazelcastInstance;

}

public Integer call() throws Exception {
IMap<String, Integer> map = hazelcastInstance.getMap( "map" );
int result = 0;
for ( String key : map.localKeySet() ) {

System.out.println( "Calculating for key: " + key );
result += map.get( key );

}

System.out.println( "Local Result: " + result );

return result;

Another example is the Echo callable below. In its call() method, it returns the local member and
the input passed in. Remember that instance.getCluster().getLocalMember() returns the local
member and toString() returns the member’s address (IP + port) in String form, just to see which
member actually executed the code for our example. Of course, the call() method can do and
return anything you like.

public class Echo implements Callable<String>, Serializable, HazelcastInstanceAware {
String input = null;

private transient HazelcastInstance hazelcastInstance;

public Echo() {
}

public void setHazelcastInstance( HazelcastInstance hazelcastInstance ) {
this.hazelcastInstance = hazelcastInstance;

}

public Echo(String input) {
this.input = input;
}

public String call() {
return hazelcastInstance.getCluster().getLocalMember().toString() +
input;

}

+

}

230



Executing a Callable Task

To execute a callable task:

* retrieve the Executor from HazelcastInstance

submit a task which returns a Future

* after executing the task, you do not have to wait for the execution to complete, you can process
other things

* when ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

public class MasterMember {

public static void main( String[] args ) throws Exception {

HazelcastInstance instance = Hazelcast.newHazelcastInstance();
IExecutorService executorService = instance.getExecutorService(

"executorService" );
Future<String> future = executorService.submit( new Echo( "myinput") );
//while it is executing, do some useful stuff
//when ready, get the result of your execution
String result = future.get();

Please note that the Echo callable in the above example also implements a Serializable interface,
since it may be sent to another member to be processed.

When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the
task  should implement HazelcastInstanceAware interface. See the
HazelcastInstanceAware Interface section for more information.

10.1.2. Implementing a Runnable Task

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not
return a value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

231



public class EchoTask implements Runnable, Serializable {
private final String msg;

public EchoTask( String msg ) {
this.msg = msg;

}

public void run() {
try {
Thread.sleep( 5000 );
} catch ( InterruptedException e ) {

}

System.out.println( "echo:'

+ msqg );

Executing a Runnable Task

To execute the runnable task:

* retrieve the Executor from HazelcastInstance

» submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class RunnableMasterMember {

public static void main( String[] args ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executor = hazelcastInstance.getExecutorService( "exec" );
for (int k = 1; k <= 1000; k++ ) {
Thread.sleep( 1000 );
System.out.println( "Producing echo task: " + k );
executor.execute( new EchoTask( String.valueOf( k ) ) );

}
System.out.println( "EchoTaskMain finished!" );

10.1.3. Scaling The Executor Service

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the cluster member (JVM). You can do
this by increasing the pool-size property mentioned in Configuring Executor Service (i.e.,

232



increasing the thread count). However, please be aware of your member’s capacity. If you think it
cannot handle such an additional load caused by increasing the thread count, you may want to
consider improving the member’s resources (CPU, memory, etc.). As an example, set the pool-size
to 5 and run the above MasterMember. You will see that EchoTask is run as soon as it is produced.

To scale out, add more members instead of increasing only one member’s capacity. In reality, you
may want to expand your cluster by adding more physical or virtual machines. For example, in the
EchoTask example in the Runnable section, you can create another Hazelcast instance. That
instance automatically gets involved in the executions started in MasterMember and start processing.

10.1.4. Executing Code in the Cluster

The distributed executor service is a distributed implementation of
java.util.concurrent.ExecutorService. It allows you to execute your code in the cluster. In this
section, the code examples are based on the Echo class above (please note that the Echo class is
Serializable). The code examples show how Hazelcast can execute your code (Runnable, Callable):

* echoOnTheMember: On a specific cluster member you choose with the IExecutorService
submitToMember method.

e echoOnTheMemberOwningTheKey: On the member owning the key you choose with the
IExecutorService submitToKeyOwner method.

» echoOnSomewhere: On the member Hazelcast picks with the IExecutorService submit method.

e echoOnMembers: On all or a subset of the cluster members with the IExecutorService
submitToMembers method.

public void echoOnTheMember( String input, Member member ) throws Exception {
Callable<String> task = new Echo( input );
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService( "default" );

Future<String> future = executorService.submitToMember( task, member );
String echoResult = future.get();

public void echoOnTheMemberOwningTheKey( String input, Object key ) throws Exception {
Callable<String> task = new Echo( input );
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService( "default" );

Future<String> future = executorService.submitToKeyOwner( task, key );
String echoResult = future.get();

233



public void echoOnSomewhere( String input ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService( "default" );

Future<String> future = executorService.submit( new Echo( input ) );
String echoResult = future.get();

public void echoOnMembers( String input, Set<Member> members ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService( "default" );

Map<Member, Future<String>> futures = executorService
.submitToMembers( new Echo( input ), members );

for ( Future<String> future : futures.values() ) {
String echoResult = future.get();
/] ...

9 You can obtain the set of cluster members via
HazelcastInstance.getCluster().getMembers() call.

10.1.5. Canceling an Executing Task

A task in the code that you execute in a cluster might take longer than expected. If you cannot
stop/cancel that task, it keeps eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API This framework
encourages us to code and design for cancellations, a highly ignored part of software development.

Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the
calculate method, we check if the current thread is interrupted so that the code can respond to
cancellations once the execution is started.

234



int input = 0;

public FibonacciCallable( int input ) {
this.input = input;
}

public Long call() {
return calculate( input );

}

private long calculate( int n ) {
if ( Thread.currentThread().isInterrupted() ) {

return 0;
Iy
if (n<=1) {
return n;
} else {
return calculate( n - 1 ) + calculate( n - 2 );
}

Example Method to Execute and Cancel the Task

The fib() method below submits the Fibonacci calculation task above for number n' and waits a
maximum of 3 seconds for the result. If the execution does not completed in three seconds, the
future.get() method throws a TimeoutException and upon catching it, we cancel the execution,
saving some CPU cycles.

long fib( int n ) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService("es");
Future<Long> future = es.submit( new FibonacciCallable( n ) );
try {
long result = future.get( 3, TimeUnit.SECONDS );
System.out.println(result);
} catch ( TimeoutException e ) {
future.cancel( true );

}

return -1;

fib(20) probably takes less than 3 seconds. However, fib(50) takes much longer. (This is not an
example for writing better Fibonacci calculation code, but for showing how to cancel a running
execution that takes too long.) The method future.cancel(false) can only cancel execution before it
is running (executing), but future.cancel(true) can interrupt running executions provided that
your code is able to handle the interruption. If you are willing to cancel an already running task,
then your task should be designed to handle interruptions. If the calculate (int n) method did not
have the (Thread.currentThread().isInterrupted()) line, then you would not be able to cancel the

235



execution after it is started.

10.1.6. Callback When Task Completes

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the
execution is done. To be notified when your task completes without an error, implement the
onResponse method. To be notified when your task completes with an error, implement the
onFailure method.

Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that is
executed. Note that it is Callable and Serializable.

public class Fibonacci2 implements Callable<Long>, Serializable {
private final int input;

public Fibonacci2(int input) {
this.input = input;
}

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (Thread.currentThread().isInterrupted()) {
System.out.println("FibonacciCallable is interrupted");
throw new RuntimeException("FibonacciCallable is interrupted");

}
if (n<=1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}

Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the
result asynchronously. ExecutionCallback has the methods onResponse and onFailure. In this
example code, onResponse is called upon a valid response and prints the calculation result, whereas
onFailure is called upon a failure and prints the stacktrace.

236



public class MasterMemberCallback {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IExecutorService executor = hz.getExecutorService("executor");

ExecutionCallback<Long> executionCallback = new ExecutionCallback<Long>() {
public void onFailure(Throwable t) {
t.printStackTrace();

}

public void onResponse(Long response) {
System.out.println("Result: " + response);

}
};

executor.submit(new FibonacciCallable(10), executionCallback);
System.out.println("Fibonacci task submitted");

10.1.7. Selecting Members for Task Execution

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or
Callable is executed. Usually you execute these in the cluster based on the location of a key or a set
of keys, or you allow Hazelcast to select a member.

If you want more control over where your code runs, use the MemberSelector interface. For example,
you may want certain tasks to run only on certain members, or you may wish to implement some
form of custom load balancing regime. The MemberSelector is an interface that you can implement
and then provide to the IExecutorService when you submit or execute.

The select(Member) method is called for every available member in the cluster. Implement this
method to decide if the member is going to be used or not.

In a simple example shown below, we select the cluster members based on the presence of an
attribute.

public class MyMemberSelector implements MemberSelector {
public boolean select(Member member) {
return Boolean.TRUE.equals(member.getBooleanAttribute("my.special.executor"));

}
}
You can use MemberSelector instances provided by the
com.hazelcast.cluster.memberselector.MemberSelectors class. For example, you can select a lite
member for running a task using

com.hazelcast.cluster.memberselector.MemberSelectors#LITE _MEMBER_SELECTOR.

237



10.1.8. Configuring Executor Service
The following are example configurations for executor service.

Declarative Configuration:

<hazelcast>

<executor-service name="exec">
<pool-size>1</pool-size>
<queue-capacity>10</queue-capacity>
<statistics-enabled>true</statistics-enabled>
<quorum-ref>quorumname</quorum-ref>
</executor-service>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
ExecutorConfig executorConfig = config.getExecutorConfig("exec");
executorConfig.setPoolSize( 1 ).setQueueCapacity( 10 )
.setStatisticsEnabled( true )
.setQuorumName( "quorumname" );

Executor service configuration has the following elements:
* pool-size: The number of executor threads per Member for the Executor. By default, Executor is
configured to have 16 threads in the pool. You can change that with this element.
* queue-capacity: Executor’s task queue capacity; the number of tasks this queue can hold.

» statistics-enabled: Specifies whether the statistics gathering is enabled for your Executor
Service. If set tofalse, you cannot collect statistics in your implementation (using
getlLocalExecutorStats()) and also Hazelcast Management Center will not show them. Its default
value is true.

* quorum-ref: Name of quorum configuration that you want this Executor Service to use. See the
Split-Brain Protection for IExecutorService section.

10.1.9. Split-Brain Protection for IExecutorService

[ExecutorService can be configured to check for a minimum number of available members before
applying its operations (see Split-Brain Protection). This is a check to avoid performing successful
queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

» WRITE, READ_WRITE:

238


https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-executors

o execute

. executeOnAl1lMembers
. executeOnKeyOwner
. executeOnMember

. executeOnMembers

» shutdown

» shutdownNow

o submit

o submitToAllMembers
o submitToKeyOwner

o submitToMember

- submitToMembers

Configuring Split-Brain Protection

Split-Brain protection for Executor Service can be configured programmatically using the method
setQuorumName(), or declaratively using the element quorum-ref. Following is an example declarative
configuration:

<hazelcast>

<executor-service name="default">
<quorum-ref>quorumname</quorum-ref>
</executor-service>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

10.2. Durable Executor Service

Hazelcast’s durable executor service is a data structure which is able to store an execution task
both on the executing Hazelcast member and its backup member(s), if configured. By this way, you
do not lose any tasks if a member goes down or any results if the submitter (member or client) goes
down while executing the task. When using the durable executor service you can either submit or
execute a task randomly or on the owner of a provided key. Note that in executor service, you can
submit or execute tasks to/on the selected member(s).

Processing of the tasks when using durable executor service involves two invocations:

1. Sending the task to primary Hazelcast member (primary partition) and to its backups, if
configured, and executing the task.

2. Retrieving the result of the task.

As you may already know, Hazelcast’s executor service returns a future representing the task to the

239


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/ExecutorConfig.html

user. With the above two-invocations approach, it is guaranteed that the task is executed before the
future returns and you can track the response of a submitted task with a unique ID. Hazelcast
stores the task on both primary and backup members, and starts the execution also.

With the first invocation, a Ringbuffer stores the task and a generated sequence for the task is
returned to the caller as a result. In addition to the storing, the task is executed on the local
execution service for the primary member. By this way, the task is now resilient to member failures
and you are able to track the task with its ID.

After the first invocation has completed and the sequence of task is returned, second invocation
starts to retrieve the result of task with that sequence. This retrieval waits in the waiting operations
queue until notified, or it runs immediately if the result is already available.

When task execution is completed, Ringbuffer replaces the task with the result for the given task
sequence. This replacement notifies the waiting operations queue.

10.2.1. Configuring Durable Executor Service

This section presents example configurations for durable executor service along with the
descriptions of its configuration elements and attributes.

Declarative Configuration:

<hazelcast>

<durable-executor-service name="myDurableExecSvc">
<pool-size>8</pool-size>
<durability>1</durability>
<capacity>1</capacity>
<quorum-ref>quorumname</quorum-ref>

</durable-executor-service>

</hazelcast>
Programmatic Configuration:

Config config = new Config();
config.getDurableExecutorConfig( "myDurableExecSvc" )
.setPoolSize ( 8 )
.setDurability( 1)
.setCapacity( 1)
.setQuorumName( "quorumname" );

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);
DurableExecutorService durableExecSve = hazelcast.getDurableExecutorService(
"myDurableExecSvc");

The following are the descriptions of each configuration element and attribute:

240



* name: Name of the executor task.

* pool-size: Number of executor threads per member for the executor.

* durability: Number of backups in the cluster for the submitted task. Its default value is 1.
* capacity: Executor’s task queue capacity; the number of tasks this queue can hold.

* quorum-ref: Name of quorum configuration that you want this Durable Executor Service to use.
See the Split-Brain Protection for Durable Executor Service section.

10.2.2. Split-Brain Protection for Durable Executor Service

Durable Executor Service can be configured to check for a minimum number of available members
before applying its operations (see Split-Brain Protection). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection
checks:

* WRITE, READ_WRITE:
» disposeResult
o execute
» executeOnKeyOwner
. retrieveAndDisposeResult
» shutdown
» shutdownNow
o submit

o submitToKeyOwner
* READ, READ_WRITE:

o retrieveResult

Configuring Split-Brain Protection

Split-Brain protection for Durable Executor Service can be configured programmatically using the
method setQuorumName(), or declaratively using the element quorum-ref. Following is an example
declarative configuration:

<hazelcast>
<durable-executor-service name="myDurableExecSvec">
<quorum-ref>quorumname</quorum-ref>

</durable-executor-service>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

241


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/DurableExecutorConfig.html

10.3. Scheduled Executor Service

Hazelcast’s scheduled executor service (IScheduledExecutorService) is a data structure which
implements the java.util.concurrent.ScheduledExecutorService, partially. Here, partially means
that it allows the scheduling of a single future execution and/or at a fixed rate execution but not at a
fixed delay.

On top of the Vanilla Scheduling API, IScheduledExecutorService allows additional methods such as
the following:

* scheduleOnMember: On a specific cluster member.
* scheduleOnKeyOwner: On the partition owning that key.
* scheduleOnAllMembers: On all cluster members.

* scheduleOnAl1Members: On all given members.
See the IScheduledExecutorService Javadoc for its API details.
There are two different modes of durability for the service:

1. Upon partition specific scheduling, the future task is stored both in the primary partition and
also in its N backups, N being the <durability> property in the configuration. More specifically,
there are always one or more backups to take ownership of the task in the event of a lost
member. If a member is lost, the task is re-scheduled on the backup (new primary) member,
which might induce further delays on the subsequent executions of the task. For example, if we
schedule a task to run in 10 seconds from now, schedule(new ExampleTask(), 10,
TimeUnit.SECONDS); and after 5 seconds the owner member goes down (before the execution
takes place), then the backup owner re-schedules the task in 10 seconds from now. Therefore,
from the user’s perspective waiting on the result, this will be available in 10 + 5 = 15 seconds
rather than 10 seconds as it is anticipated originally. If atFixedRate was used, then only the
initial delay is affected in the above scenario, all subsequent executions should adhere to the
given period parameter.

2. Upon member specific scheduling, the future task is only stored in the member itself, which
means that in the event of a lost member, the task is lost as well.

To accomplish the described durability, all tasks provide a unique identity/name before the
scheduling takes place. The name allows the service to reach the scheduled task even after the
caller (client or member) goes down and also allows to prevent duplicate tasks. The name of the
task can be  user-defined if it needs to be, by implementing the
com.hazelcast.scheduledexecutor.NamedTask interface (plain wrapper util is available here:
com.hazelcast.scheduledexecutor.TaskUtils.named(java.lang.String, java.lang.Runnable)). If the
task does not provide a name in its implementation, the service provides a random UUID for it,
internally.

Upon scheduling, the service returns an IScheduledFuture, which on top of the
java.util.concurrent.ScheduledFuture functionality, provides an API to get the resource handler of
the task ScheduledTaskHandler and also the runtime statistics of the task.

Futures associated with a scheduled task, in order to be aware of lost partitions and/or members,

242


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/scheduledexecutor/IScheduledExecutorService.html

act as listeners on the local member/client. Therefore, they are always strongly referenced, on the
member/client side. In order to clean up their resources, once completed, you can use the method
dispose(). This method also cancels further executions of the task if scheduled at a fixed rate. See
the IScheduledFuture Javadoc for its API details.

The task handler is a descriptor class holding information for the scheduled future, which is used to
pinpoint the actual task in the cluster. It contains the name of the task, the owner (member or
partition) and the scheduler name.

The handler is always available after scheduling and can be stored in a plain string format
com.hazelcast.scheduledexecutor.ScheduledTaskHandler.toUrn() and re-constructed back from that
String com.hazelcast.scheduledexecutor.ScheduledTaskHandler.of(). If the handler is lost, you can
still find a task under a given scheduler by using the Scheduler’s
com.hazelcast.scheduledexecutor.IScheduledExecutorService.getAl1ScheduledFutures().

Last but not least, similar to executor service, the scheduled executor service allows Stateful tasks
to be scheduled. Stateful tasks, are tasks that require any kind of state during their runtime, which
must also be durable along with the task in the event of a lost partition.

Stateful tasks can be created by implementing the com.hazelcast.scheduledexecutor.StatefulTask
interface, providing implementation details for saving the state and loading it back. If a partition is
lost, then the re-scheduled task loads the previously saved state before its execution.

o As with the tasks, Objects stored in the state Map need to be Hazelcast serializable.

10.3.1. Configuring Scheduled Executor Service

This section presents example configurations for scheduled executor service along with the
descriptions of its configuration elements and attributes.

Declarative Configuration:

<hazelcast>

<scheduled-executor-service name="myScheduledExecSvc">
<pool-size>16</pool-size>
<durability>1</durability>
<capacity>100</capacity>
<quorum-ref>quorumname</quorum-ref>

</scheduled-executor-service>

</hazelcast>

Programmatic Configuration:

243


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/scheduledexecutor/IScheduledFuture.html

Config config = new Config();
config.getScheduledExecutorConfig( "myScheduledExecSvc" )
.setPoolSize ( 16 )
.setCapacity( 100 )
.setDurability( 1)
.setQuorumName( "quorumname" );

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);
IScheduledExecutorService myScheduledExecSve = hazelcast.getScheduledExecutorService(
"myScheduledExecSve");

The following are the descriptions of each configuration element and attribute:

* name: Name of the scheduled executor.
* pool-size: Number of executor threads per member for the executor.

* capacity: Maximum number of tasks that a scheduler can have per partition. Attempt to
schedule more results in RejectedExecutionException. To free up the capacity, tasks should get
disposed by the user.

 durability: Durability of the executor.

* quorum-ref: Name of quorum configuration that you want this Scheduled Executor Service to
use. See the Split-Brain Protection for IScheduled Executor Service section.

10.3.2. Examples

Scheduling a callable that computes the cluster size in 10 seconds from now:

244



static class DelayedClusterSizeTask implements Callable<Integer>,
HazelcastInstanceAware, Serializable {

private transient HazelcastInstance instance;

@0verride
public Integer call()
throws Exception {
return instance.getCluster().getMembers().size();

}

@0verride
public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.instance = hazelcastInstance;
}
}

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();
IScheduledExecutorService executorService = hazelcast.getScheduledExecutorService(
"myScheduler");
IScheduledFuture<Integer> future = executorService.schedule(

new DelayedClusterSizeTask(), 10, TimeUnit.SECONDS);

int membersCount = future.get(); // Block until we get the result
ScheduledTaskStatistics stats = future.getStats();

future.dispose(); // Always dispose futures that are not in use any more, to release
resources

long totalTaskRuns = stats.getTotalRuns(); // = 1

10.3.3. Split-Brain Protection for IScheduled Executor Service

IScheduledExecutorService can be configured to check for a minimum number of available
members before applying its operations (see Split-Brain Protection). This is a check to avoid
performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by quorum type, that support Split-Brain Protection

checks:

* WRITE, READ_WRITE:
o schedule
o scheduleAtFixedRate
» scheduleOnAl1Members
» scheduleOnAl1MembersAtFixedRate
o scheduleOnKeyOwner
» scheduleOnKeyOwnerAtFixedRate
- scheduleOnMember
» scheduleOnMemberAtFixedRate

245



o scheduleOnMembers
o scheduleOnMembersAtFixedRate

» shutdown
* READ, READ_WRITE:
» getAllScheduledFutures

Configuring Split-Brain Protection

Split-Brain protection for Scheduled Executor Service can be configured programmatically using
the method setQuorumName(), or declaratively using the element quorum-ref. Following is an example
declarative configuration:

<hazelcast>

<scheduled-executor-service name="myScheduledExecSve">
<quorum-ref>quorumname</quorum-ref>
</scheduled-executor-service>

</hazelcast>

The value of quorum-ref should be the quorum configuration name which you configured under the
quorum element as explained in the Split-Brain Protection section.

10.4. Entry Processor

Hazelcast supports entry processing. An entry processor is a function that executes your code on a
map entry in an atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually you perform
a loop of keys - executing IMap.get(key), mutating the value and finally putting the entry back in the
map using IMap.put(key,value). If you perform this process from a client or from a member where
the keys do not exist, you effectively perform two network hops for each update: the first to
retrieve the data and the second to update the mutated value.

If you are doing the process described above, you should consider using entry processors. An entry
processor executes a read and updates upon the member where the data resides. This eliminates
the costly network hops described above.

Entry processor is meant to process a single entry per call. Processing multiple
O entries and data structures in an entry processor is not supported as it may result
in deadlocks.

Note that Hazelcast Jet is a good fit when you want to perform processing that
involves multiple entries (aggregations, joins, etc.), or involves multiple computing

0 steps to be made parallel. Hazelcast Jet contains an Entry Processor Sink to allow
you to update Hazelcast IMDG data as a result of your Hazelcast Jet computation.
See the Hazelcast Jet Reference Manual.

246


https://docs.hazelcast.org/docs/3.10/javadoc/com/hazelcast/config/ScheduledExecutorConfig.html
https://docs.hazelcast.org/docs/jet/latest/manual/index.html#connector-imdg

10.4.1. Performing Fast In-Memory Map Operations

An entry processor enables fast in-memory operations on your map without you having to worry
about locks or concurrency issues. You can apply it to a single map entry or to all map entries. Entry
processors support choosing target entries using predicates. You do not need any explicit lock on
entry thanks to the isolated threading model: Hazelcast runs the entry processor for all entries on a
partitionThread so there will NOT be any interleaving of the entry processor and other mutations.

Hazelcast sends the entry processor to each cluster member and these members apply it to map
entries. Therefore, if you add more members, your processing completes faster.

Using Indexes

Entry processors can be used with predicates. Predicates help to process a subset of data by
selecting eligible entries. This selection can happen either by doing a full-table scan or by using
indexes. To accelerate entry selection step, you can consider to add indexes. If indexes are there,
entry processor automatically uses them.

Using OBJECT In-Memory Format

If entry processing is the major operation for a map and if the map consists of complex objects, you
should use 0BJECT as the in-memory-format to minimize serialization cost. By default, the entry value
is stored as a byte array (BINARY format). When it is stored as an object (0BJECT format), then the
entry processor is applied directly on the object. In that case, no serialization or deserialization is
performed. However, if there is a defined event listener, a new entry value will be serialized when
passing to the event publisher service.

o When in-memory-format is 0BJECT, the old value of the updated entry will be null.

Processing Entries

The IMap interface provides the following methods for entry processing:

executeOnKey processes an entry mapped by a key.
» executeOnKeys processes entries mapped by a collection of keys.
» submitToKey processes an entry mapped by a key while listening to event status.

* executeOnEntries processes all entries in a map.

executeOnEntries can also process all entries in a map with a defined predicate.

When using the executeOnEntries method, if the number of entries is high and you need the results,
then returning null with the process() method is a good practice. This method is offered by the
EntryProcessor interface. By returning null, results of the processing is not stored in the map and
thus out of memory errors are eliminated.

If you want to execute a task on a single key, you can also use executeOnKeyOwner provided by
[ExecutorService. However, in this case you need to perform a lock and serialization.

247


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/IMap.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/EntryProcessor.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/IExecutorService.html#executeOnKeyOwner-java.lang.Runnable-java.lang.Object-

Entry processors run via Operation Threads that are dedicated to specific
0 partitions. Therefore, with long running entry processor executions, other

partition operations such as map.put(key) cannot be processed. With this in mind,

it is a good practice to make your entry processor executions as quick as possible.

Respecting Locks on Single Keys

The entry processor respects locks ONLY when its executions are performed on a single key. As
explained in the above section, the entry processor has the following methods to process a single
key:

Object executeOnKey(K key, EntryProcessor entryProcessor);
ICompletableFuture submitToKey(K key, EntryProcessor entryProcessor);

Therefore, if you want to to perform an entry processor execution on a single key using one of these
methods and that key has a lock on it, the execution will wait until the lock on that key is removed.

Processing Backup Entries

If your code modifies the data, then you should also provide a processor for backup entries. This is
required to prevent the primary map entries from having different values than the backups
because it causes the entry processor to be applied both on the primary and backup entries. The
interface EntryBackupProcessor offers the method processBackup for this purpose.

It is possible that an entry processor could see that a key exists though its backup
processor may not find it at the run time due to an unsent backup of a previous
operation, e.g., a previous put operation. In those situations, Hazelcast

O internally/eventually synchronizes those owner and backup partitions so you do
not lose any data. When coding an EntryBackupProcessor, you should take that case
into account, otherwise NullPointerException can be seen since
Map.Entry.getValue() may return null.

10.4.2. Creating an Entry Processor

The class IncrementingEntryProcessor creates an entry processor to process the map entries. It
implements:

 the map interfaces EntryProcessor and EntryBackupProcessor

* java.io.Serializable interface

* EntryProcessor methods process and getBackupProcessor

* EntryBackupProcessor method processBackup.

248


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/EntryBackupProcessor.html

public class IncrementingEntryProcessor
implements EntryProcessor<Integer, Integer>, EntryBackupProcessor<Integer,
Integer>, Serializable {

public Object process( Map.Entry<Integer, Integer> entry ) {
Integer value = entry.getValue();
entry.setValue( value + 1 );
return value + 1;

}

public EntryBackupProcessor<Integer, Integer> getBackupProcessor() {
return IncrementingEntryProcessor.this;

}

public void processBackup( Map.Entry<Integer, Integer> entry ) {
entry.setValue( entry.getValue() + 1 );
}

An example usage is shown below:

IMap<Integer, Integer> map = hazelcastInstance.getMap( "myMap" );
for (int i =0; i <100; i++ ) {

map.put( i, 1 );
}

Map<Integer, Object> res = map.executeOnEntries( new IncrementingEntryProcessor() );

0 You should explicitly call the setValue method of Map.Entry when modifying data in
the entry processor. Otherwise, the entry processor is accepted as read-only.

An entry processor instance is not thread-safe. If you are storing a partition
0 specific state between invocations, be sure to register this in a thread-local. An
entry processor instance can be used by multiple partition threads.

10.4.3. Abstract Entry Processor

You can use the AbstractEntryProcessor class when the same processing will be performed both on
the primary and backup map entries, i.e., the same logic applies to them. If you use entry processor,
you need to apply the same logic to the backup entries separately. The AbstractEntryProcessor class
makes this primary/backup processing easier.

You can use the AbstractEntryProcessor class to create your own abstract entry processor. The
method getBackupProcessor in this class returns an EntryBackupProcessor instance. This means the
same processing applies to both the primary and backup entries. If you want to apply the
processing only upon the primary entries, make the getBackupProcessor method return null.

249


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/AbstractEntryProcessor.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/map/AbstractEntryProcessor.html

Beware of the null issue described above. Due to a yet unsent backup from a
previous operation, an EntryBackupProcessor may temporarily receive null from

0 Map.Entry.getValue() even though the value actually exists in the map. If you
decide to use AbstractEntryProcessor, make sure your code logic is not sensitive to
null values, or you may encounter NullPointerException during runtime.

10.4.4. Entry Processor Performance Optimizations

By default the entry processor executes on a partition thread. A partition thread is responsible for
handling one or more partitions. The design of entry processor assumes users have fast user code
execution of the process() method. In the pathological case where the code is very heavy and
executes in multi-milliseconds, this may create a bottleneck.

We have a slow user code detector which can be used to log a warning controlled by the following
system properties:

* hazelcast.slow.operation.detector.enabled (default: true)

e hazelcast.slow.operation.detector.threshold.millis (default: 10000)

The defaults catch extremely slow operations but you should set this much lower, say to 1ms, at
development time to catch entry processors that could be problematic in production. These are
good candidates for our optimizations.

We have two optimizations:

» Offloadable which moves execution off the partition thread to an executor thread

* ReadOnly which means we can avoid taking a lock on the key
These are enabled very simply by implementing these interfaces in your EntryProcessor.

As of Hazelcast IMDG 3.9, these optimizations apply to the following IMap methods only:

« executeOnKey(Object, EntryProcessor)
« submitToKey(Object, EntryProcessor)
o submitToKey(Object, EntryProcessor, ExecutionCallback)

Offloadable Entry Processor

If an entry processor implements the 0ffloadable interface, the process() method is executed in the
executor specified by the 0ffloadable's getExecutorName() method.

Offloading unblocks the partition thread allowing the user to profit from much higher throughput.
The key is locked for the time span of the processing in order to not generate a write conflict.

In this case the threading looks as follows:

1. partition thread (fetch entry & lock key)
2. execution thread (process(entry) method)

3. partition thread (set new value & unlock key, or just unlock key if the entry has not been

250



modified)

The method getExecutorName() method may also return two constants defined in the Offloadable
interface:

* NO_OFFLOADING: Processing is not offloaded if the method getExecutorName() returns this
constant; it is executed as if it does not implement the Offloadable interface.

e OFFLOADABLE_EXECUTOR: Processing is offloaded to the default
ExecutionService.0OFFLOADABLE_EXECUTOR.

Note that if the method getExecutorName() cannot find an executor whose name matches the one
called by this method, then the default executor service is used. Here is the configuration for the
"default" executor:

<hazelcast>

<executor-service name="default">
<pool-size>16</pool-size>
<queue-capacity>0</queue-capacity>

</executor-service>

</hazelcast>
An example of an Offloadable called "OffloadedInventoryEntryProcessor” would be as follows:

<hazelcast>

<executor-service name="0ffloadedInventoryEntryProcessor”>
<pool-size>30</pool-size>
<queue-capacity>0</queue-capacity>

</executor-service>

</hazelcast>

Remember to set the pool-size (count of executor threads per member) according to your execution
needs. See the Configuring Executor Service section for the configuration details.

ReadOnly Entry Processor

By default, an entry processor does not run if the key is locked. It waits until the key has been
unlocked (it applies to the executeOnKey, submitToKey methods, that were mentioned before).

If the entry processor implements the ReadOnly interface without implementing the Offloadable
interface, the processing is not offloaded to an external executor. However, the entry processor
does not observe if the key of the processed entry is locked, nor tries to acquire the lock since the
entry processor will not do any modifications.

If the entry processor implements ReadOnly and modifies the entry, an

251


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/Offloadable.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/Offloadable.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/Offloadable.html

UnsupportedOperationException is thrown.

ReadOnly and Offloadable Entry Processor

If the entry processor implements both ReadOnly and Offloadable interfaces, we observe the
combination of both optimizations described above.

The process() method is executed in the executor specified by the 0ffloadable’s ‘getExecutorName()
method. Also, the entry processor does not observe if the key of the processed entry is locked, nor
tries to acquire the lock since the entry processor will not do any modifications.

In this case the threading looks as follows:

1. partition thread (fetch entry)

2. execution thread (process(entry))

In this case the EntryProcessor.getBackupProcessor() has to return null; otherwise an
I1legalArgumentException exception is thrown.

If the entry processor implements ReadOnly and modifies the entry, an
UnsupportedOperationException is thrown.

Putting it all together:

public class OffloadableReadOnlyEntryProcessor implements EntryProcessor<String,
Employee>,
Offloadable, ReadOnly {

@0verride

public Object process(Map.Entry<String, Employee> entry) {
// heavy logic
return null;

}

@Override
public EntryBackupProcessor<String, Employee> getBackupProcessor() {
// ReadOnly EntryProcessor has to return null, since it's just a read-only
operation that will not be
// executed on the backup
return null;

}

@0verride
public String getExecutorName() {
return OFFLOADABLE EXECUTOR;

}

252



11. Distributed Query

Distributed queries access data from multiple data sources stored on either the same or different
members.

Hazelcast partitions your data and spreads it across cluster of members. You can iterate over the
map entries and look for certain entries (specified by predicates) you are interested in. However,
this is not very efficient because you have to bring the entire entry set and iterate locally. Instead,
Hazelcast allows you to run distributed queries on your distributed map.

11.1. How Distributed Query Works

1. The requested predicate is sent to each member in the cluster.

2. Each member looks at its own local entries and filters them according to the predicate. At this
stage, key/value pairs of the entries are deserialized and then passed to the predicate.

3. The predicate requester merges all the results coming from each member into a single set.

Distributed query is highly scalable. If you add new members to the cluster, the partition count for
each member is reduced and thus the time spent by each member on iterating its entries is
reduced. In addition, the pool of partition threads evaluates the entries concurrently in each
member and the network traffic is also reduced since only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:
* Criteria API
* Distributed SQL Query

11.1.1. Employee Map Query Example

Assume that you have an "employee" map containing values of Employee objects, as coded below.

253



public class Employee implements Serializable {
private String name;
private int age;
private boolean active;
private double salary;

public Employee(String name, int age, boolean active, double salary) {
this.name = name;
this.age = age;
this.active = active;
this.salary = salary;

}

public Employee() {
}

public String getName() {
return name;

}

public int getAge() {
return age;

}

public double getSalary() {
return salary;

}

public boolean isActive() {
return active;

}

Now let’s look for the employees who are active and have an age less than 30 using the
aforementioned APIs (Criteria API and Distributed SQL Query). The following subsections describe
each query mechanism for this example.

When using Portable objects, if one field of an object exists on one member but

ﬁ does not exist on another one, Hazelcast does not throw an unknown field
exception. Instead, Hazelcast treats that predicate, which tries to perform a query
on an unknown field, as an always false predicate.

11.1.2. Querying with Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence
Query Language (JPQL). Below is the code for the above example query.

254



IMap<String, Employee> map = hazelcastInstance.getMap( "employee" );

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is( "active" ).and( e.get( "age" ).lessThan( 30 ) );

Collection<Employee> employees = map.values( predicate );

In the above example code, predicate verifies whether the entry is active and its age value is less
than 30. This predicate is applied to the employee map using the map.values(predicate) method. This
method sends the predicate to all cluster members and merges the results coming from them. Since
the predicate is communicated between the members, it needs to be serializable.

ﬂ Predicates can also be applied to keySet, entrySet and localKeySet of the Hazelcast
distributed map.

Predicates Class Operators

The Predicates class includes many operators for your query requirements. The following are
descriptions for some of them:

» equal: Checks if the result of an expression is equal to a given value.

* notEqual: Checks if the result of an expression is not equal to a given value.

* instance0f: Checks if the result of an expression has a certain type.

* like: Checks if the result of an expression matches some string pattern. % (percentage sign) is
the placeholder for many characters, (underscore) is placeholder for only one character.

» greaterThan: Checks if the result of an expression is greater than a certain value.

» greaterEqual: Checks if the result of an expression is greater than or equal to a certain value.
* lessThan: Checks if the result of an expression is less than a certain value.

* lessEqual: Checks if the result of an expression is less than or equal to a certain value.

* between: Checks if the result of an expression is between two values (this is inclusive).

* in: Checks if the result of an expression is an element of a certain collection.

* isNot: Checks if the result of an expression is false.

* regex: Checks if the result of an expression matches some regular expression.

0 See the Predicates Javadoc for all predicates provided.

Combining Predicates with AND, OR, NOT

You can combine predicates using the and, or and not operators, as shown in the below examples.

255


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/query/Predicates.html

public Collection<Employee> getWithNameAndAge( String name, int age ) {
Predicate namePredicate = Predicates.equal( "name", name );
Predicate agePredicate = Predicates.equal( "age", age );
Predicate predicate = Predicates.and( namePredicate, agePredicate );
return employeeMap.values( predicate );

public Collection<Employee> getWithNameOrAge( String name, int age ) {
Predicate namePredicate = Predicates.equal( "name", name );
Predicate agePredicate = Predicates.equal( "age", age );
Predicate predicate = Predicates.or( namePredicate, agePredicate );
return employeeMap.values( predicate );

public Collection<Employee> getNotWithName( String name ) {
Predicate namePredicate = Predicates.equal( "name", name );
Predicate predicate = Predicates.not( namePredicate );
return employeeMap.values( predicate );

Simplifying with PredicateBuilder

You can simplify predicate usage with the PredicateBuilder class, which offers simpler predicate
building. See the below example code which selects all people with a certain name and age.

public Collection<Employee> getWithNameAndAgeSimplified( String name, int age ) {
EntryObject e = new PredicateBuilder().getEntryObject();
Predicate agePredicate = e.get( "age" ).equal( age );
Predicate predicate = e.get( "name" ).equal( name ).and( agePredicate );
return employeeMap.values( predicate );

11.1.3. Querying with SQL

com.hazelcast.query.SqlPredicate takes the regular SQL where clause. Here is an example:

IMap<String, Employee> map = hazelcastInstance.getMap( "employee" );
Set<Employee> employees = map.values( new SqlPredicate( "active AND age < 30" ) );

Supported SQL Syntax
AND/OR: "<expression> AND <expression> AND <expression>...

« active AND age>30

256



o active=false OR age = 45 OR name = 'Joe'
o active AND ( age > 20 OR salary < 60000 )

Equality: =, !=, <, <, >, >=

« <expression> = value
o age < 30

« name = 'Joe'

o salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <valuel> AND <value2>

« age BETWEEN 20 AND 33 ( same as age >= 20 AND age < 33 )
« age NOT BETWEEN 30 AND 40 ( same as age < 30 OR age > 40 )

IN: <attribute> [NOT] IN (vall, val2,:)

« age IN ( 20, 30, 40 )

« age NOT IN ( 60, 70 )

o active AND ( salary >= 50000 OR ( age NOT BETWEEN 20 AND 30 ) )
« age IN ( 20, 30, 40 ) AND salary BETWEEN ( 50000, 80000 )

LIKE: <attribute> [NOT] LIKE "expression"

The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for
only one character.

* name LIKE 'Jo%' (true for 'Joe', 'Josh', 'Joseph' etc.)

* name LIKE 'Jo_' (true for 'Joe'; false for 'Josh')

name NOT LIKE 'Jo_' (true for 'Josh'; false for 'Joe")

name LIKE 'J_s%' (true for 'Josh', 'Joseph'; false 'John', 'Joe")
ILIKE: <attribute> [NOT] ILIKE 'expression'
Similar to LIKE predicate but in a case-insensitive manner.

* name ILIKE 'Jo%' (true for 'Joe', joe’, 'jOe', Josh','joSH', etc.)

* name ILIKE 'Jo_' (true for 'Joe' or 'jOE'; false for 'Josh')
REGEX: <attribute> [NOT] REGEX 'expression'

* name REGEX 'abc-.*' (true for 'abc-123'; false for 'abx-123")

Querying Entry Keys with Predicates

You can use __key attribute to perform a predicated search for entry keys. See the following
example:

257



IMap<String, Person> personMap = hazelcastInstance.getMap(persons);
personMap.put("Alice", new Person("Alice", 35, Gender.FEMALE));
personMap.put("Andy", new Person("Andy", 37, Gender.MALE));
personMap.put("Bob", new Person("Bob", 22, Gender.MALE));

[...]
Predicate predicate = new SqlPredicate("__key like A%");
Collection<Person> startingWithA = personMap.values(predicate);

In this example, the code creates a collection with the entries whose keys start with the letter "A”.

11.1.4. Querying JSON Strings

You can query JSON strings stored inside your Hazelcast clusters. To query a JSON string, you first
need to create a HazelcastJsonValue from the JSON string. You can use HazelcastJsonValues both as
keys and values in the distributed data structures. Then, it is possible to query these objects using
the Hazelcast query methods explained in this section.

String personi
String person2
String person3

"{ \"name\": \"John\", \"age\": 35 }";
“{ \"name\": \"Jane\", \"age\": 24 }";
ll{ \"name\ll: \"Trey\“’ \llage\": 17 }ll;

IMap<Integer, HazelcastJsonValue> idPersonMap = instance.getMap("jsonValues");

idPersonMap.put(1, new HazelcastJsonValue(personl));
idPersonMap.put(2, new HazelcastJsonValue(person2));
idPersonMap.put(3, new HazelcastJsonValue(person3));

Collection<HazelcastJsonValue> peopleUnder21 = idPersonMap.values(Predicates.lessThan
("age", 21));

When running the queries, Hazelcast treats values extracted from the JSON documents as Java
types so they can be compared with the query attribute. JSON specification defines five primitive
types to be used in the JSON documents: number,string, true, false and null. The string, true/false
and null types are treated as String, boolean and null, respectively. We treat the extracted number
values as longs if they can be represented by a long. Otherwise, numbers are treated as doubles.

It is possible to query nested attributes and arrays in JSON documents. The query syntax is the
same as querying other Hazelcast objects as explained in the Querying in Collections and Arrays
section.

258



/**

* Sample JSON object

*{

* "departmentId": 1,

% “room": "alpha",

* "people": [

* {

@ "name": "Peter",
* "age": 26,

* "salary": 50000
- I

* {

* "name": "Jonah",
W "age": 50,

* "salary": 140000
* }

* ]

*}

* The following query finds all the departments that have a person named "Peter"
working in them.

*/

Collection<HazelcastJsonValue> departmentWithPeter = departments.values(Predicates
.equal("people[any].name", "Peter"));

HazelcastJsonValue is a lightweight wrapper around your JSON strings. It is used merely as a way to
indicate that the contained string should be treated as a valid JSON value. Hazelcast does not check
the validity of JSON strings put into to maps. Putting an invalid JSON string in a map is permissible.
However, in that case whether such an entry is going to be returned or not from a query is not
defined.

Metadata Creation for JSON Querying

Hazelcast stores a metadata object per HazelcastJsonValue stored. This metadata object is created
every time a HazelcastJsonValue is put into an IMap. Metadata is later used to speed up the query
operations. Metadata creation is on by default. Depending on your application’s needs, you may
want to turn off the metadata creation to decrease the put latency and increase the throughput. You
can configure this using Metadata Policy.

JSON metadata is stored on-heap even when you use the NATIVE in-memory format.
0 If you are storing HazelcastJsonValues in your NATIVE maps, there is a certain

amount of on-heap cost per object. Metadata is not created unless you put

HazelcastJsonValues in your NATIVE maps even when metadata creation is on.

259



11.1.5. Filtering with Paging Predicates

Hazelcast provides paging for defined predicates. With its PagingPredicate class, you can get a
collection of keys, values, or entries page by page by filtering them with predicates and giving the
size of the pages. Also, you can sort the entries by specifying comparators. In this case, the
comparator should be Serializable and the serialization factory implementations you use, e.g.,
PortableFactory and DataSerializableFactory, should be registered. See the Serialization chapter on
how to register these factories.

Paging predicates require the objects to be deserialized both on the calling side (either a member or
client) and the member side from which the collection is retrieved. Therefore, you need to register
the serialization factories you use on all the members and clients on which the paging predicates
are used. See the Serialization chapter on how to register these factories.

In the example code below:

* The greaterEqual predicate gets values from the "students" map. This predicate has a filter to
retrieve the objects with an "age" greater than or equal to 18.

* Then a PagingPredicate is constructed in which the page size is 5, so that there are five objects in
each page. The first time the values are called creates the first page.

* It gets subsequent pages with the nextPage() method of PagingPredicate and querying the map
again with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap( "students" );
Predicate greaterEqual = Predicates.greaterEqual( "age", 18 );
PagingPredicate pagingPredicate = new PagingPredicate( greaterEqual, 5 );
// Retrieve the first page

Collection<Student> values = map.values( pagingPredicate );

// Set up next page
pagingPredicate.nextPage();

// Retrieve next page

values = map.values( pagingPredicate );

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or
values page by page, this collection must be an instance of Comparable (i.e., it must implement
java.lang.Comparable). Otherwise, the java.lang.I1llegalArgument exception is thrown.

You can also access a specific page more easily with the help of the setPage() method. This way, if
you make a query for the hundredth page, for example, it gets all 100 pages at once instead of
reaching the hundredth page one by one using the nextPage() method. Note that this feature tires
the memory and see the PagingPredicate Javadoc.

Paging Predicate, also known as Order & Limit, is not supported in Transactional Context.

260


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/query/PagingPredicate.html

11.1.6. Filtering with Partition Predicate

You can run queries on a single partition in your cluster using the partition predicate
(PartitionPredicate).

It takes a predicate and partition key as parameters, gets the partition ID using the key and runs
that predicate only on the partition where that key belongs.

See the following code snippet:

Predicate predicate = new PartitionPredicate<String, Integer>(partitionKey,
TruePredicate.INSTANCE);

Collection<Integer> values = map.values(predicate);
Collection<String> keys = map.keySet(predicate);

By default there are 271 partitions, and using a regular predicate, each partition needs to be
accessed. However, if the partition predicate only accesses a single partition, this can lead to a big
performance gain.

For the partition predicate to work correctly, you need to know which partition your data belongs
to so that you can send the request to the correct partition. One of the ways of doing it is to make
use of the PartitionAware interface when data is inserted, thereby controlling the owning partition.
See the PartitionAware section for more information and examples.

A concrete example may be a webshop that sells phones and accessories. To find all the accessories
of a phone, a query could be executed that selects all accessories for that phone. This query is
executed on all members in the cluster and therefore could generate quite a lot of load. However, if
we would store the accessories in the same partition as the phone, the partition predicate could use
the partitionKey of the phone to select the right partition and then it queries for the accessories for
that phone; and this reduces the load on the system and get faster query results.

11.1.7. Indexing Queries

Hazelcast distributed queries run on each member in parallel and return only the results to the
caller. Then, on the caller side, the results are merged.

When a query runs on a member, Hazelcast iterates through all the owned entries and find the
matching ones. This can be made faster by indexing the mostly queried fields, just like you would
do for your database. Indexing adds overhead for each write operation but queries will be a lot
faster. If you query your map a lot, make sure to add indexes for the most frequently queried fields.
For example, if you do an active and age < 30 query, make sure you add an index for the active
and age fields. The following example code does that by getting the map from the Hazelcast instance
and adding indexes to the map with the IMap addIndex method.

261



IMap map = hazelcastInstance.getMap( "employees" );

// ordered, since we have ranged queries for this field
map.addIndex( "age", true );

// not ordered, because boolean field cannot have range
map.addIndex( "active", false );

Indexing Ranged Queries

IMap.addIndex(fieldName, ordered) is used for adding index. For each indexed field, if you have
ranged queries such as age>30, age BETWEEN 40 AND 60, then you should set the ordered parameter to
true. Otherwise, set it to false.

Configuring IMap Indexes

Also, you can define IMap indexes in configuration. An example is shown below.

<hazelcast>

<map name="default">
<indexes>
<index ordered="false">name</index>
<index ordered="true">age</index>
</indexes>
</map>

</hazelcast>
You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addMapIndexConfig( new MapIndexConfig( "name", false ) );
mapConfig.addMapIndexConfig( new MapIndexConfig( "age", true ) );

The following is the Spring declarative configuration for the same example.

<hz:map name="default">
<hz:indexes>
<hz:index attribute="name"/>
<hz:index attribute="age" ordered="true"/>
</hz:indexes>
</hz:map>

0 Non-primitive types to be indexed should implement Comparable.

262



If you configure the data structure to use High-Density Memory Store and indexes,

0 the indexes are automatically stored in the High-Density Memory Store as well.
This prevents from running into full garbage collections when doing a lot of
updates to index.

Composite Indexes

Composite indexes, also known as compound indexes, are special kind of indexes that are built on
top of the multiple map entry attributes and therefore may be used to significantly speed up the
queries involving those attributes simultaneously.

There are two distinct composite index types used for two different purposes: unordered composite
indexes and ordered ones.

Unordered Composite Indexes

The unordered indexes are used to perform equality queries, also known as the point queries, e.g.,
name = 'Alice'. These are specifically optimized for equality queries and don’t support other
comparison operators like > or <=.

Additionally, the composite unordered indexes allow speeding up the equality queries involving
multiple attributes simultaneously, e.g., name = 'Alice' and age = 33. This example query results in
a single composite index lookup operation which can be performed very efficiently.

The unordered composite index on the name and age attributes may be configured for a map as
follows:

<hazelcast>

<map name="persons">
<indexes>
<index ordered="false">name, age</index>
</indexes>
</map>

</hazelcast>

The attributes indexed by the unordered composite indexes can’t be matched partially: the name =
'Alice’ query can’t utilize the composite index configured above.

Ordered Composite Indexes

The ordered indexes are specifically designed to perform efficient order comparison queries, also
known as the range queries, e.g., age > 33. The equality queries, like age = 33, are still supported by
the ordered indexes, but they are handled in a slightly less efficient manner comparing to the
unordered indexes.

The composite ordered indexes extend the concept by allowing multiple equality predicates and a
single order comparison predicate to be combined into a single index query operation. For

263



instance, the name = 'Alice’ and age > 33 and name = 'Bob' and age = 33 and balance > 0.0 queries
are good candidates to be covered by an ordered composite index configured as follows:

<hazelcast>

<map name="persons">
<indexes>
<index ordered="true">name, age, balance</index>
</indexes>
</map>

</hazelcast>

Unlike the unordered composite indexes, partial attribute prefixes may be matched for the ordered
composite indexes. In general, a valid non-empty attribute prefix is formed as a sequence of zero or
more equality predicates followed by a zero or exactly one order comparison predicate. Given the
index definition above, the following queries may be served by the index: name = 'Alice', name >
'Alice’, name = 'Alice' and age > 33, name = 'Alice' and age = 33 and balance = 5.0. The
following queries can’t be served the index: age = 33,age > 33 and balance = 0.0, balance > 0.0.

While matching the ordered composite indexes, multiple order comparison predicates acting on the
same attribute are treated as a single range predicate acting on that attribute. Given the index
definition above, the following queries may be served by the index: name > 'Alice' and name <
'Bob', name = 'Alice' and age > 33 and age < 55, name = 'Alice' and age = 33 and balance > 0.0
and balance < 100.0.

Composite Index Matching and Selection

The order of attributes involved in a query plays no role in the selection of the matching composite
index: name = 'Alice’' and age = 33 and age = 33 and name = 'Alice’' queries are equivalent from
the point of view of the index matching procedure.

The attributes involved in a query can be matched partially by the composite index matcher: name =
"Alice' and age = 33 and balance > 0.0 can be partially matched by the name, age composite index,
the name = 'Alice' and age = 33 predicates are served by the matched index, while the balance >
0.0 predicate is processed by other means.

Bitmap Indexes

Bitmap indexes provide capabilities similar to unordered/hash indexes. The same set of predicates
is supported:

« equal

« notEqual
e 1in,

« and

o OF

e NOt

264



But, unlike hash indexes, bitmap indexes are able to achieve a much higher memory efficiency for
low cardinality attributes at the cost of reduced query performance. In practice, the query
performance is comparable to the performance of hash indexes, while memory footprint reduction
is high, usually around an order of magnitude.

Bitmap indexes are specifically designed for indexing of collection and array attributes since a
single IMap entry produces many index entries in that case. A single hash index entry costs a few
tens of bytes, while a single bitmap index entry usually costs just a few bytes.

It’s also possible to improve the memory footprint while indexing regular single-value attributes,
but the improvement is usually minor, depending on the data layout and total number of indexes.

0 Currently, bitmap indexes are not supported by off-heap High-Density Memory
Stores (HD).

Configuring Bitmap Indexes

In the simplest form, bitmap index for an IMap entry attribute can be declaratively configured as
follows:

<hazelcast>

<map name="persons">
<indexes>
<index>BITMAP(age)</index>
</indexes>
</map>

</hazelcast>

Internally, a unique non-negative long ID is assigned to every indexed IMap entry based on the entry
key. That unique ID is required for bitmap indexes to distinguish one indexed IMap entry from
another.

The mapping between IMap entries and long IDs is not free and its performance and memory
footprint can be improved in certain cases. For instance, if IMap entries already have a unique
integer-valued attribute, the attribute values can be used as unique long IDs directly without any
additional transformations. That can be configured as follows:

<hazelcast>

<map name="persons">
<indexes>
<index>BITMAP(age, uniqueld, RAW)</index>
</indexes>
</map>

</hazelcast>

265



The index definition above instructs Hazelcast to create a bitmap index on the age attribute, extract
the unique key values from uniqueld attribute and use the raw (RAW) extracted values directly as
long IDs. If the extracted unique key value is not of long type, the widening conversion is performed
for the following types: byte, short and int; boxed variants are also supported.

In certain cases, the extracted raw IDs might be randomly distributed. This causes increased
memory usage in bitmap indexes since the best case scenario for them is sequential contiguous IDs.
That can be countered by applying the renumbering technique:

<hazelcast>

<map name="persons">
<indexes>
<index>BITMAP(age, uniqueld, LONG)</index>
</indexes>
</map>

</hazelcast>

The index definition above instructs the bitmap index to extract the unique keys from uniqueld
attribute, convert every extracted non-negative value to long (LONG) and assign an internal
sequential unique long ID based on that extracted and then converted unique value. The widening
conversion is applied to the extracted values, if necessary.

This long-to-long mapping is performed more efficiently than the general object-to-long mapping
done for the simple index definitions. Basically, a simple bitmap index definition like BITMAP(age) is
equivalent to the following full-form definition: BITMAP(age, key, OBJECT), which indexes age
attribute, uses IMap entry keys (key) interpreted as Java objects (0BJECT) to assign internal unique
long IDs.

The full-form definition syntax is defined as follows:
BITMAP(<attr>, <key>, <transform>)

The following are the parameter descriptions:

» <attr>: Specifies the attribute index.

» <key>: Specifies the attribute to use as a unique key source for internal unique long ID
assignment.

» <transform>: Specifies the transformation to be applied to unique keys to generate unique long
IDs from them. The following transformations are supported:

o OBJECT: Object-to-long transformation. Each extracted unique key value is interpreted as a
Java object instance. Internally, an object-to-long hash table is used to establish the mapping
from unique keys to unique IDs. Good as a general-purpose transformation.

o LONG: Long-to-long transformation. Each extracted unique key value is interpreted as a non-
negative long value, the widening conversion from byte, short and int is performed, if

266



necessary. Internally, a long-to-long hash table is used to establish the mapping from unique
keys to unique IDs, which is more efficient than the object-to-long hash table. It is good for
sparse/random unique integer-valued keys renumbering to raise the IDs density and to
make the bitmap index more memory-efficient as a result.

o RAW: Raw transformation. Each extracted unique key value is interpreted as a non-negative
long value, the widening conversion from byte, short and int is performed, if necessary.
Internally, no hash table of any kind is used to establish the mapping from unique keys to
unique IDs, the raw extracted keys are used directly as IDs. It is good for dense unique
integer-valued keys, and it has the best performance in terms of time and memory.

The regular dotted attribute path syntax is supported for <attr> and <key>:

BITMAP(name.first)
BITMAP(name.first, __key, RAW)
BITMAP(name.first, __key.id, RAW)
BITMAP(name.first, id.external, RAW)

Collection and array indexing is also possible using the regular syntax:

BITMAP(habits[any])
BITMAP(habits[@], __key, RAW)

See Indexing in Collections and Arrays section for more details.

Bitmap Index Querying

Bitmap index matching and selection for queries are performed automatically. No special treatment
is required. The querying can be performed using the regular IMap querying methods:
IMap.values(Predicate), IMap.entrySet(Predicate), etc.

Copying Indexes

The underlying data structures used by the indexes need to copy the query results to make sure
that the results are correct. This copying process is performed either when reading the index from
the data structure (on-read) or writing to it (on-write).

On-read copying means that, for each index-read operation, the result of the query is copied before
it is sent to the caller. Depending on the query result’s size, this type of index copying may be
slower since the result is stored in a map, i.e., all entries need to have the hash calculated before
being stored. Unlike the index-read operations, each index-write operation is fast, since there is no
copying. So, this option can be preferred in index-write intensive cases.

On-write copying means that each index-write operation completely copies the underlying map to
provide the copy-on-write semantics and this may be a slow operation depending on the index size.
Unlike index-write operations, each index-read operation is fast since the operation only includes

267



accessing the map that stores the results and returning them to the caller.

Another option is never copying the results of a query to a separate map. This means the results
backed by the underlying index-map can change after the query has been executed (such as an
entry might have been added or removed from an index, or it might have been remapped). This
option can be preferred if you expect "mostly correct” results, i.e., if it is not a problem when some
entries returned in the query result set do not match the initial query criteria. This is the fastest
option since there is no copying.

You can set one these options using the system property hazelcast.index.copy.behavior. The
following values, which are explained in the above paragraphs, can be set:

e COPY_ON_READ (the default value)

o COPY_ON_WRITE
o NEVER

0 Usage of this system property is supported for BINARY and OBJECT in-memory
formats. Only in Hazelcast 3.8.7, it is also supported for NATIVE in-memory format.
Indexing Attributes with ValueExtractor

You can also define custom attributes that may be referenced in predicates, queries and indexes.
Custom attributes can be defined by implementing a ValueExtractor. See the Custom Attributes
section for details.

Using "this" as an Attribute

You can use the keyword this as an attribute name while adding an index or creating a predicate. A
basic usage is shown below.

map.addIndex("this", true);
Predicate<Integer, Integer> lessEqual = Predicates.between("this", 12, 20);

Another basic example using SqlPredicate is shown below.

new SqlPredicate("this = 'jones'")
new SqlPredicate("this.age > 33")

The special attribute this acts on the value of a map entry. Typically, you do not need to specify it
while accessing a property of an entry’s value, since its presence is implicitly assumed if the special
attribute _ key is not specified.

11.1.8. Configuring Query Thread Pool

You can change the size of thread pool dedicated to query operations using the pool-size property.
Each query consumes a single thread from a Generic Operations ThreadPool on each Hazelcast
member - let’s call it the query-orchestrating thread. That thread is blocked throughout the whole

268



execution-span of a query on the member.
The query-orchestrating thread uses the threads from the query-thread pool in the following cases:

« if you run a PagingPredicate (since each page runs as a separate task)

* if you set the system property hazelcast.query.predicate.parallel.evaluation to true (since the
predicates are evaluated in parallel)

See the Filtering with Paging Predicates section and System Properties appendix for information on
paging predicates and for description of the above system property.

Below is an example of that declarative configuration.

<hazelcast>

<executor-service name="hz:query">
<pool-size>100</pool-size>
</executor-service>

</hazelcast>
Below is the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query").setPoolSize(100);

Query Requests from Clients

When dealing with the query requests coming from the clients to your members, Hazelcast offers
the following system properties to tune your thread pools:

* hazelcast.clientengine.thread.count which is the number of threads to process non-partition-
aware client requests, like map.size() and executor tasks. Its default value is the number of
cores multiplied by 20.

* hazelcast.clientengine.query.thread.count which is the number of threads to process query
requests coming from the clients. Its default value is the number of cores.

If there are a lot of query request from the clients, you may want to increase the value of
hazelcast.clientengine.query.thread.count. In addition to this tuning, you may also consider
increasing the value of hazelcast.clientengine.thread.count if the CPU load in your system is not
high and there is plenty of free memory.

11.2. Querying in Collections and Arrays

Hazelcast allows querying in collections and arrays. Querying in collections and arrays is
compatible with all Hazelcast serialization methods, including the Portable serialization.

269



Let’s have a look at the following data structure expressed in pseudo-code:

class Motorbike {
Wheel wheels[2];

class Wheel {
String name;

In order to query a single element of a collection/array, you can execute the following query:

// it matches all motorbikes where the zero wheel's name is 'front-wheel'
Predicate p = Predicates.equal("wheels[0].name", "front-wheel");
Collection<Motorbike> result = map.values(p);

It is also possible to query a collection/array using the any semantic as shown below:

// it matches all motorbikes where any wheel's name is 'front-wheel'
Predicate p = Predicates.equal("wheels[any].name", "front-wheel");
Collection<Motorbike> result = map.values(p);

The exact same query may be executed using the SQLPredicate as shown below:

Predicate p = new SqlPredicate("wheels[any].name = 'front-wheel'");
Collection<Motorbike> result = map.values(p);

[ ] notation applies to both collections and arrays.

Hazelcast requires all elements of a collection to have the same type. Considering

and expanding the above example:

* If you have a wheels collection attribute, all of its elements must be of the Wheel

type, subclasses of Wheel are not allowed.

* Let’s say you have added a seats collection attribute, which is a Seat object.

O Then all of its elements must of this concrete Seat type.

So, you may have collections of different types in your map. However, each
collection’s elements must be of the same concrete type within that collection

attribute.

Consider custom attribute extractors if it is impossible or undesirable to reduce the
variety of types to a single type. See the Custom Attributes section for information

on them.

270



11.2.1. Indexing in Collections and Arrays
You can also create an index using a query in collections and arrays.

Please note that in order to leverage the index, the attribute name used in the query has to be the
same as the one used in the index definition.

Let’s assume you have the following index definition:

<hazelcast>
<indexes>
<index ordered="false">wheels[any].name</index>

</indexes>

</hazelcast>
The following query uses the index:
Predicate p = Predicates.equal("wheels[any].name", "front-wheel");

The following query, however, does NOT leverage the index, since it does not use exactly the same
attribute name that was used in the index:

Predicates.equal("wheels[@].name", "front-wheel")

In order to use the index in the case mentioned above, you have to create another index, as shown
below:

<hazelcast>
<indexes>
<index ordered="false">wheels[@].name</index>

</indexes>

</hazelcast>

11.2.2. Corner cases
Handling of corner cases may be a bit different than in a programming language like Java.

Let’s have a look at the following examples in order to understand the differences. To make the
analysis simpler, let’s assume that there is only one Motorbike object stored in a Hazelcast Map.

271



Id Query Data State Extract Match

ion
Result
1 Predicates.equal("wheels[7].name", "front- wheels.size() == 1 null No
wheel™)
2 Predicates.equal("wheels[7].name", null) wheels.size() == null Yes
3 Predicates.equal("wheels[@].name", "front- wheels[@].name == null null No
wheel")
4 Predicates.equal("wheels[@].name", null) wheels[@].name == null null Yes
5 Predicates.equal("wheels[@].name", "front- wheels[@] == null null No
wheel")
6 Predicates.equal("wheels[0].name", null)  wheels[@] == null null Yes
7 Predicates.equal("wheels[@].name", "front- wheels == null null No
wheel")
8 Predicates.equal("wheels[@].name", null) wheels == null null Yes

As you can see, no NullPointerExceptions or IndexOutOfBoundExceptions are thrown in the extraction
process, even though parts of the expression are null.

Looking at examples 4, 6 and 8, we can also easily notice that it is impossible to distinguish which
part of the expression was null. If we execute the following query wheels[1].name = null, it may be
evaluated to true because:

* wheels collection/array is null

* index == 11is out of bound

* name attribute of the wheels[1] object is null.

In order to make the query unambiguous, extra conditions would have to be added, e.g., wheels !=
null AND wheels[1].name = null.

11.3. Custom Attributes

It is possible to define a custom attribute that may be referenced in predicates, queries and indexes.

A custom attribute is a "synthetic" attribute that does not exist as a field or a getter in the object
that it is extracted from. Thus, it is necessary to define the policy on how the attribute is supposed
to be extracted. Currently the only way to extract a custom attribute is to implement a
com.hazelcast.query.extractor.ValueExtractor that encompasses the extraction logic.

Custom Attributes are compatible with all Hazelcast serialization methods, including the Portable
serialization.

11.3.1. Implementing a ValueExtractor

In order to implement a ValueExtractor, extend the abstract
com.hazelcast.query.extractor.ValueExtractor class and implement the extract() method. This
method does not return any values since the extracted value is collected by the ValueCollector. In
order to return multiple results from a single extraction, invoke the ValueCollector.collect()

272



method multiple times, so that the collector collects all results.

See the ValueExtractor and ValueCollector Javadocs.

ValueExtractor with Portable Serialization

Portable serialization is a special kind of serialization where there is no need to have the class of
the serialized object on the classpath in order to read its attributes. That is the reason why the
target object passed to the ValueExtractor.extract() method is not of the exact type that has been
stored. Instead, an instance of a com.hazelcast.query.extractor.ValueReader is passed. ValueReader
enables reading the attributes of a Portable object in a generic and type-agnostic way. It contains
two methods:

* read(String path, ValueCollector<T> collector) - enables passing all results directly to the
ValueCollector.

* read(String path, ValueCallback<T> callback) - enables filtering, transforming and grouping
the result of the read operation and manually passing it to the ValueCollector.

See the ValueReader Javadoc.

Returning Multiple Values from a Single Extraction

It sounds counter-intuitive, but a single extraction may return multiple values when arrays or
collections are involved. Let’s have a look at the following data structure in pseudo-code:

class Motorbike {
Wheel wheel[2];

class Wheel {
String name;

Let’s assume that we want to extract the names of all wheels from a single motorbike object. Each
motorbike has two wheels so there are two names for each bike. In order to return both values
from the extraction operation, collect them separately using the ValueCollector. Collecting multiple
values in this way allows you to operate on these multiple values as if they were single values
during the evaluation of the predicates.

Let’s assume that we registered a custom extractor with the name wheelName and executed the
following query: wheelName = front-wheel.

The extraction may return up to two wheel names for each Motorbike since each Motorbike has up to
two wheels. In such a case, it is enough if a single value evaluates the predicate’s condition to true
to return a match, so it returns a Motorbike if "any" of the wheels matches the expression.

11.3.2. Extraction Arguments

A ValueExtractor may use a custom argument if it is specified in the query. The custom argument

273


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/query/extractor/ValueExtractor.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/query/extractor/ValueCollector.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/query/extractor/ValueReader.html

may be passed within the square brackets located after the name of the custom attribute, e.g.,
customAttribute[arqument].

Let’s have a look at the following query: currency[incoming] == EUR The currency is a custom
attribute that uses a com.test.CurrencyExtractor for extraction.

The string incoming is an argument that is passed to the ArgumentParser during the extraction. The
parser parses the string according to its custom logic and it returns a parsed object. The parsed
object may be a single object, array, collection, or any arbitrary object. It is up to the
“ValueExtractor’s implementor to understand the semantics of the parsed argument object.

For now it is not possible to register a custom ArgumentParser, thus a default parser is used. It
follows a pass-through semantic, which means that the string located in the square brackets is
passed "as is" to the ValueExtractor.extract() method.

Please note that using square brackets within the argument string is not allowed.

11.3.3. Configuring a Custom Attribute Programmatically

The following snippet demonstrates how to define a custom attribute using a ValueExtractor.

MapAttributeConfig attributeConfig = new MapAttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractor("com.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addMapAttributeConfig(attributeConfig);

currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Keep in mind that an extractor may not be added after the map has been instantiated. All extractors
have to be defined upfront in the map’s initial configuration.

11.3.4. Configuring a Custom Attribute Declaratively
The following snippet demonstrates how to define a custom attribute in the Hazelcast XML

Configuration.

<hazelcast>

<map name="trades">
<attributes>
<attribute extractor="com.bank.CurrencyExtractor">currency</attribute>
</attributes>
</map>

</hazelcast>

274



Analogous to the example above, currency is the name of the custom attribute that will be extracted
using the CurrencyExtractor class.

Please note that an attribute name may begin with an ASCII letter [A-Za-z] or digit [0-9] and may
contain ASCII letters [A-Za-z], digits [0-9] or underscores later on.

11.3.5. Indexing Custom Attributes
You can create an index using a custom attribute.

The name of the attribute used in the index definition has to match the one used in the attributes
configuration.

Defining indexes with extraction arguments is allowed, as shown in the example below:

<hazelcast>

<indexes>
<!-- custom attribute without an extraction argument -->
<index ordered="true">currency</index>
<!-- custom attribute using an extraction argument -->
<index ordered="true">currency[incoming]</index>
</indexes>

</hazelcast>

11.4. MapReduce

MapReduce is deprecated since Hazelcast 3.8. You can use Fast-Aggregations and
Hazelcast Jet for map aggregations and general data processing, respectively. See
the MapReduce Deprecation section for more details.

You have likely heard about MapReduce ever since Google released its research white paper on this
concept. With Hadoop as the most common and well known implementation, MapReduce gained a
broad audience and made it into all kinds of business applications dominated by data warehouses.

MapReduce is a software framework for processing large amounts of data in a distributed way.
Therefore, the processing is normally spread over several machines. The basic idea behind
MapReduce is that source data is mapped into a collection of key-value pairs and reducing those
pairs, grouped by key, in a second step towards the final result.

The main idea can be summarized with the following steps:

1. Read the source data.
2. Map the data to one or multiple key-value pairs.

3. Reduce all pairs with the same key.

Use Cases

275


https://jet.hazelcast.org/
http://research.google.com/archive/mapreduce.html

The best known examples for MapReduce algorithms are text processing tools, such as counting the
word frequency in large texts or websites. Apart from that, there are more interesting examples of
use cases listed below:

* Log Analysis

* Data Querying

» Aggregation and summing

* Distributed Sort

* ETL (Extract Transform Load)

* Credit and Risk management

* Fraud detection

¢ and more.

11.4.1. Understanding MapReduce

This section gives a deeper insight into the MapReduce pattern and helps you understand the
semantics behind the different MapReduce phases and how they are implemented in Hazelcast.

In addition to this, the following sections compare Hadoop and Hazelcast MapReduce
implementations to help adopters with Hadoop backgrounds quickly get familiar with Hazelcast
MapReduce.

MapReduce Workflow Example

The flowchart below demonstrates the basic workflow of the word count example (distributed
occurrences analysis) mentioned in the MapReduce section introduction. From left to right, it
iterates over all the entries of a data structure (in this case an IMap). In the mapping phase, it splits
the sentence into single words and emits a key-value pair per word: the word is the key, 1 is the
value. In the next phase, values are collected (grouped) and transported to their corresponding
reducers, where they are eventually reduced to a single key-value pair, the value being the number
of occurrences of the word. At the last step, the different reducer results are grouped up to the final
result and returned to the requester.

276



IMap<String, String» Mapping Grouping f Shuffling Reducing Final Result

 Saturn: 1
saturm: 1 \A saturn: 1
is: 1 1
a: 1 1
planet: 1 1 \
is: 3
Saturn 1
1 —» a 3
Saturn is a planet 1
v saturn: 1
b planet: 3 = :
earth: 1 : ™ a: 3
=l is: 1 4 planet: 1 / T planet: 3
E— —# planet: 1 -
Earth I a: 1 [ 4 ol . 1 earth: 1
arth is a planet - 4 anet: .
i5ap planet: 1 AP sarth: 1 Jff" pluto: 1
J not 1
’ anymore: 1
i earth: 1
pluto: 1
Pluto is not a planet anymore /‘
pluto: 1 PrFin: ! not: 1
is: 1
not: 1 -
a: 1 . not 1
planet: 1 ", anymore: 1
anymore: 1 S /'
\1

anymore: 1

In pseudo code, the corresponding map and reduce function would look like the following. A
Hazelcast code example is shown in the next section.

map( key:String, document:String ):Void ->
for each w:word in document:
emit( w, 1)

reduce( word:String, counts:List[Int] ):Int ->
return sum( counts )

MapReduce Phases

As seen in the workflow example, a MapReduce process consists of multiple phases. The original
MapReduce pattern describes two phases (map, reduce) and one optional phase (combine). In
Hazelcast, these phases either only exist virtually to explain the data flow, or are executed in
parallel during the real operation while the general idea is still persisting.

KxV)* - (LxW)*
[(k*1% v*1%), ..., (K*n* v*n™)] - [*1% w*1¥), ..., @*m* w*m™*)]
Mapping Phase

The mapping phase iterates all key-value pairs of any kind of legal input source. The mapper then
analyzes the input pairs and emits zero or more new key-value pairs.

KxV - (LxW)*

277



(k, v) = [*1*% w*1%), ..., I*n* w*n*)]
Combine Phase

In the combine phase, multiple key-value pairs with the same key are collected and combined to an
intermediate result before being sent to the reducers. Combine phase is also optional in
Hazelcast, but is highly recommended to lower the traffic.

In terms of the word count example, this can be explained using the sentences "Saturn is a planet
but the Earth is a planet, too". As shown above, we would send two key-value pairs (planet, 1). The
registered combiner now collects those two pairs and combines them into an intermediate result of
(planet, 2). Instead of two key-value pairs sent through the wire, there is now only one for the key
"planet".

The pseudo code for a combiner is similar to the reducer.

combine( word:String, counts:List[Int] ):Void ->
emit( word, sum( counts ) )

Grouping / Shuffling Phase

The grouping or shuffling phase only exists virtually in Hazelcast since it is not a real phase;
emitted key-value pairs with the same key are always transferred to the same reducer in the same
job. They are grouped together, which is equivalent to the shuffling phase.

Reducing Phase

In the reducing phase, the collected intermediate key-value pairs are reduced by their keys to build
the final by-key result. This value can be a sum of all the emitted values of the same key, an average
value, or something completely different, depending on the use case.

Here is a reduced representation of this phase.
LxW* - X*

d, [w*1* ..., w*n*]) - [x*1* .., x*n*]
Producing the Final Result

This is not a real MapReduce phase, but it is the final step in Hazelcast after all reducers are
notified that reducing has finished. The original job initiator then requests all reduced results and
builds the final result.

Additional MapReduce Resources

The Internet is full of useful resources for finding deeper information on MapReduce. Below is a
short collection of more introduction material. In addition, there are books written about all kinds
of MapReduce patterns and how to write a MapReduce function for your use case. To name them all
is out of the scope of this documentation, but here are some resources:

278



http://research.google.com/archive/mapreduce.html

* http://en.wikipedia.org/wiki/MapReduce

http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf

http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/

http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635

11.4.2. Using the MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the
different API classes, we will build the word count example that was discussed earlier and create it
step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to
build and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is
retrieved from com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the
name of the required JobTracker configuration. The configuration for JobTrackers will be discussed
later; for now we focus on the API itself. In addition, the complete submission part of the API is
built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar
as possible to their counterparts on Hadoop. That means while most users recognize a lot of similar
sounding classes, the way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g., we will create a
specialized JobTracker configuration (at the end). Special JobTracker configuration is not required,
because for all other Hazelcast features you can use "default" as the configuration name. However,
special configurations offer better options to predict behavior of the framework execution.

The full example is available here as a ready to run Maven project.

Retrieving a JobTracker Instance

JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a
single MapReduce configuration. The same Job can be submitted multiple times regardless of
whether it is executed in parallel or after the previous execution is finished.

After retrieving the JobTracker, be aware that it should only be used with data
structures derived from the same HazelcastInstance. Otherwise, you can get

unexpected behavior.

To retrieve a JobTracker from Hazelcast, we start by using the "default" configuration for
convenience reasons to show the basic way.

JobTracker jobTracker = hazelcastInstance.getJobTracker( "default" );

JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After
building the cluster connection, you use the created HazelcastInstance to request the configured (or

279


http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635
http://github.com/noctarius/hz-map-reduce

default) JobTracker from Hazelcast.

The next step is creating a new Job and configuring it to execute our first MapReduce request
against cluster data.

Creating a Job

As mentioned in the previous section, you create a Job using the retrieved JobTracker instance. A
Job defines exactly one configuration of a MapReduce task. Mapper, combiner and reducers are
defined per job. However, since the Job instance is only a configuration, it can be submitted
multiple times, regardless of whether executions happen in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker’s name and a
jobId generated on submit-time. The way to retrieve the ‘jobId is shown in one of the later
sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a
deeper look at the KeyValueSource class in the next section. KeyValueSource is used to wrap any kind
of data or data structure into a well defined set of key-value pairs.

The example code below is a direct follow up to the example in Retrieving a JobTracker Instance. It
reuses the already created HazelcastInstance and JobTracker instances.

The example starts by retrieving an instance of our data map and then it creates the Job instance.
Implementations used to configure the Job are discussed while walking further through the API
documentation.

Since the Job class is highly dependent upon generics to support type safety, the
generics change over time and may not be assignment compatible to old variable

0 types. To make use of the full potential of the fluent API, we recommend you use
fluent method chaining as shown in this example to prevent the need for too many
variables.

IMap<String, String> map = hazelcastInstance.getMap( "articles" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );
Job<String, String> job = jobTracker.newJob( source );

ICompletableFuture<Map<String, Long>> future = job
.mapper( new TokenizerMapper() )
.combiner( new WordCountCombinerFactory() )
.reducer( new WordCountReducerFactory() )
.submit();

// Attach a callback listener
future.andThen( buildCallback() );

// Wait and retrieve the result
Map<String, Long> result = future.get();

280



As seen above, we create the Job instance and define a mapper, combiner and reducer. Then we
submit the request to the cluster. The submit method returns an ICompletableFuture that can be
used to attach our callbacks or to wait for the result to be processed in a blocking fashion.

There are more options available for job configurations, such as defining a general chunk size or on
what keys the operation will operate. See Hazelcast source code for the Job.java for more
information.

Creating Key-Value Input Sources with KeyValueSource

KeyValueSource can either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-
value pair input sources, or build your own custom key-value input source. The latter option makes
it possible to feed Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web
page contents or data files. People familiar with Hadoop will recognize similarities with the Input
class.

You can imagine a KeyValueSource as a bhigger java.util.Iterator implementation. Whereas most
methods must be implemented, implementing the getAl11Keys method is optional. If implementation
is able to gather all keys upfront, it should be implemented and isAllKeysSupported must return
true. That way, Job configured KeyPredicates are able to evaluate keys upfront before sending them
to the cluster. Otherwise they are serialized and transferred as well, to be evaluated at execution
time.

As shown in the example above, the abstract KeyValueSource class provides a number of static
methods to easily wrap Hazelcast data structures into KeyValueSource implementations already
provided by Hazelcast. The data structures' generics are inherited by the resulting KeyValueSource
instance. For data structures like IList or ISet, the key type is always String. While mapping, the key
is the data structure’s name, whereas the value type and value itself are inherited from the IList or
ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap( "my-map" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );

// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap( "my-multimap" );
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap( multiMap );

// KeyValueSource from com.hazelcast.core.Ilist
IList<String> list = hazelcastInstance.getlList( "my-list" );
KeyValueSource<String, String> source = KeyValueSource.fromList( list );

// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet( "my-set" );
KeyValueSource<String, String> source = KeyValueSource.fromSet( set );

281


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/mapreduce/Job.html

PartitionldAware

The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource
implementation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for
all internal data structures). If this interface is implemented, the same KeyValueSource instance is
reused multiple times for all partitions on the cluster member. As a consequence, the close and open
methods are also executed multiple times but once per partitionld.

Implementing Mapping Logic with Mapper

You implement the mapping logic using the Mapper interface. Mappers can transform, split, calculate
and aggregate data from data sources. In Hazelcast you can also integrate data from more than the
KeyValueSource data source by implementing com.hazelcast.core.HazelcastInstanceAware and
requesting additional maps, multimaps, list and/or sets.

The mappers map function is called once per available entry in the data structure. If you work on
distributed data structures that operate in a partition-based fashion, multiple mappers work in
parallel on the different cluster members on the members' assigned partitions. Mappers then
prepare and maybe transform the input key-value pair and emit zero or more key-value pairs for
the reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it
by splitting the text into the available words. After that, as discussed in the pseudo code, we emit
every single word with a key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
private static final Long ONE = Long.valueOf( 1L );

public void map(String key, String document, Context<String, Long> context) {
StringTokenizer tokenizer = new StringTokenizer( document.tolLowerCase() );
while ( tokenizer.hasMoreTokens() ) {
context.emit( tokenizer.nextToken(), ONE );

This code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are
more tokens and emits a pair per word. Note that we’re not yet collecting multiple occurrences of
the same word, we just fire every word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the
Mapper implementation lifecycle aware. That means it will be notified when mapping of a partition
or set of data begins and when the last entry was mapped.

282



Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit
additional values.

Minimizing Cluster Traffic with Combiner

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster
members when transmitting mapped values from mappers to the reducers. It does this by
aggregating multiple values for the same emitted key. This is a fully optional operation, but using it
is highly recommended.

Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to
the key for which the combiner initially was created. Since combiners are created per emitted key,
the Combiner implementation itself is not defined in the jobs configuration; instead, a
CombinerFactory that is able to create the expected Combiner instance is created.

Because Hazelcast MapReduce is executing the mapping and reducing phases in parallel, the
Combiner implementation must be able to deal with chunked data. Therefore, you must reset its
internal state whenever you call finalizeChunk. Calling the finalizeChunk method creates a chunk of
intermediate data to be grouped (shuffled) and sent to the reducers.

Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.

For our word count example, we are going to have a simple CombinerFactory and Combiner
implementation similar to the following example.

283



public class WordCountCombinerFactory
implements CombinerFactory<String, Long, Long> {

public Combiner<Long, Long> newCombiner( String key ) {
return new WordCountCombiner();

}

private class WordCountCombiner extends Combiner<Long, Long> {
private long sum = 0;

public void combine( Long value ) {
SUM++;

}

public Long finalizeChunk() {
return sum;

}

public void reset() {
sum = 0;

}

The Combiner must be able to return its current value as a chunk and reset the internal state by
setting sum back to 0. Since combiners are always called from a single thread, no synchronization or
volatility of the variables is necessary.

Doing Algorithm Work with Reducer

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or
any other work that is expected from the algorithm.

Since values arrive in chunks, the reduce method is called multiple times for every emitted value of
the creation key. This also can happen multiple times per chunk if no Combiner implementation
was configured for a job configuration.

Unlike combiners, a reducer’s finalizeReduce method is only called once per reducer (which means
once per key). Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation looks similar to the following code example.

284



public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

public Reducer<Long, Long> newReducer( String key ) {
return new WordCountReducer();

}

private class WordCountReducer extends Reducer<Long, Long> {
private volatile long sum = 0;

public void reduce( Long value ) {
sum += value.longValue();

}

public Long finalizeReduce() {
return sum;

}

Reducers Switching Threads

Unlike combiners, reducers tend to switch threads if running out of data to prevent blocking
threads from the JobTracker configuration. They are rescheduled at a later point when new data to
be processed arrives, but are unlikely to be executed on the same thread as before. As of Hazelcast
version 3.3.3 the guarantee for memory visibility on the new thread is ensured by the framework.
This means the previous requirement for making fields volatile is dropped.

Modifying the Result with Collator

A Collator is an optional operation that is executed on the job emitting member and is able to
modify the finally reduced result before returned to the user’s codebase. Only special use cases are
likely to use collators.

For an imaginary use case, we might want to know how many words were all over in the
documents we analyzed. For this case, a Collator implementation can be given to the submit method
of the Job instance.

A collator would look like the following snippet:

285



public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

public Long collate( Iterable<Map.Entry<String, Long>> values ) {
long sum = 0;

for ( Map.Entry<String, Long> entry : values ) {
sum += entry.getValue().longValue();
}

return sum;

The definition of the input type is a bit strange, but because Combiner and Reducer
implementations are optional, the input type heavily depends on the state of the data. As stated
above, collators are non-typical use cases and the generics of the framework always help in finding
the correct signature.

Preselecting Keys with KeyPredicate

You can use KeyPredicate to pre-select whether or not a key should be selected for mapping in the
mapping phase. If the KeyValueSource implementation is able to know all keys prior to execution,
the keys are filtered before the operations are divided among the different cluster members.

A KeyPredicate can also be used to select only a special range of data, e.g., a time frame, or in similar
use cases.

A basic KeyPredicate implementation that only maps keys containing the word "hazelcast" might
look like the following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

public boolean evaluate( String s ) {
return s != null && s.tolLowerCase().contains( "hazelcast" );

}

Job Monitoring with TrackableJob

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker
using the unique jobId (per JobTracker). You can use it get runtime statistics of the job. The
information available is limited to the number of processed (mapped) records and the processing
state of the different partitions or members (if KeyValueSource is not PartitionldAware).

To retrieve the jobld after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture
instead of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

286



The example code below gives a quick introduction on how to retrieve the instance and the
runtime data. For more information, please have a look at the Javadoc corresponding your running
Hazelcast version.

The example performs the following steps to get the job instance.

* It gets the map with the hazelcastInstance getMap method.
* From the map, it gets the source with the KeyValueSource fromMap method.

* From the source, it gets a job with the JobTracker newJob method.

IMap<String, String> map = hazelcastInstance.getMap( "articles" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );
Job<String, String> job = jobTracker.newJob( source );

JobCompletableFuture<Map<String, Long>> future = job
.mapper( new TokenizerMapper() )
.combiner( new WordCountCombinerFactory() )
.reducer( new WordCountReducerFactory() )
.submit();

String jobId = future.getJobId();
TrackableJob trackablelob = jobTracker.getTrackableJob(jobId);

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log( "ProcessedRecords: " + processedRecords );

JobPartitionState[] partitionStates = stats.getPartitionStates();
for ( JobPartitionState partitionState : partitionStates ) {
log( "PartitionOwner: " + partitionState.getOwner()
+ ", Processing state: " + partitionState.getState().name() );

Caching of the JobProcessInformation does not work on Java native clients since
0 current values are retrieved while retrieving the instance to minimize traffic
between executing member and client.

Configuring JobTracker

You configure JobTracker configuration to set up behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is
meant as a shared resource for all jobs created by the same JobTracker. The configuration gives full
control over the expected load behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. The configuration properties are
discussed below the example.

287



<hazelcast>

<jobtracker name="default">
<max-thread-size>0</max-thread-size>
<!-- Queue size @ means number of partitions * 2 -->
<queue-size>0</queue-size>
<retry-count>0</retry-count>
<chunk-size>1000</chunk-size>
<communicate-stats>true</communicate-stats>
<topology-changed-strateqgy>CANCEL_RUNNING_OPERATION</topology-changed-

strategy>
</jobtracker>

</hazelcast>

JobTracker has the following configuration elements:

* max-thread-size: Maximum thread pool size of the JobTracker.

* queue-size: Maximum number of tasks that are able to wait to be processed. A value of 0 means
an unbounded queue. Very low numbers can prevent successful execution since the job might
not be correctly scheduled or intermediate chunks might be lost.

* retry-count: Currently not used. Reserved for later use where the framework will automatically
try to restart/retry operations from an available save point.

* chunk-size: Number of emitted values before a chunk is sent to the reducers. If your emitted
values are big or you want to better balance your work, you might want to change this to a
lower or higher value. A value of 0 means immediate transmission, but remember that low
values mean higher traffic costs. A very high value might cause an OutOfMemoryError to occur
if the emitted values do not fit into heap memory before being sent to the reducers. To prevent
this, you might want to use a combiner to pre-reduce values on mapping members.

» communicate-stats: Specifies whether the statistics (for example, statistics about processed
entries) are transmitted to the job emitter. This can show progress to a user inside of an Ul
system, but it produces additional traffic. If not needed, you might want to deactivate this.

* topology-changed-strategy: Specifies how the MapReduce framework reacts on topology
changes while executing a job. Currently, only CANCEL_RUNNING_OPERATION is fully
supported, which  throws an exception  to the  job emitter (throws
com.hazelcast.mapreduce.TopologyChangedException).

11.4.3. Hazelcast MapReduce Architecture

This section explains some of the internals of the MapReduce framework. This is more advanced
information. If you’re not interested in how it works internally, you might want to skip this section.

Member Interoperation Example

To understand the following technical internals, we first have a short look at what happens in
terms of an example workflow.

288



As a simple example, think of an IMap<String, Integer> and emitted keys having the same types.
Imagine you have a cluster with three members and you initiate the MapReduce job on the first
member. After you requested the JobTracker from your running/connected Hazelcast, we submit
the task and retrieve the ICompletableFuture, which gives us a chance to wait for the result to be
calculated or to add a callback (and being more reactive).

The example expects that the chunk size is 0 or 1, so an emitted value is directly sent to the
reducers. Internally, the job is prepared, started and executed on all members as shown below. The
first member acts as the job owner (job emitter).

Member1 starts MapReduce job
Member1 emits key=Foo, value=1
Member1 does PartitionService::getKeyOwner(Foo) => results in Member3

Member2 emits key=Foo, value=14
Member2 asks jobOwner (Member1) for keyOwner of Foo => results in Member3

Member1 sends chunk for key=Foo to Member3

Member3 receives chunk for key=Foo and looks if there is already a Reducer,
if not creates one for key=Foo

Member3 processes chunk for key=Foo

Member2 sends chunk for key=Foo to Member3

Member3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Member3 processes chunk for key=Foo

Member1 send LastChunk information to Member3 because processing local values finished

Member2 emits key=Foo, value=27

Member2 has cached keyOwner of Foo => results in Member3

Member2 sends chunk for key=Foo to Member3

Member3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Member3 processes chunk for key=Foo

Member2 send LastChunk information to Member3 because processing local values finished

Member3 finishes reducing for key=Foo

Member1 registers its local partitions are processed
Member?2 registers its local partitions are processed

Member1 sees all partitions processed and requests reducing from all members

Member1 merges all reduced results together in a final structure and returns it

289



The flow is quite complex but extremely powerful since everything is executed in parallel. Reducers
do not wait until all values are emitted, but they immediately begin to reduce (when the first chunk
for an emitted key arrives).

Internal MapReduce Packages

Beginning with the package level, there is one basic package: com.hazelcast.mapreduce. This includes
the external API and the impl package, which itself contains the internal implementation.

* The impl package contains all the default KeyValueSource implementations and abstract base
and support classes for the exposed APIL

* The client package contains all classes that are needed on the client and member sides when a
client offers a MapReduce job.

» The notification package contains all "notification” or event classes that notify other members
about progress on operations.

* The operation package contains all operations that are used by the workers or job owner to
coordinate work and sync partition or reducer processing.

» The task package contains all classes that execute the actual MapReduce operation. It features
the supervisor, mapping phase implementation and mapping/reducing tasks.

MapReduce Job Walk-Through

Now to the technical walk-through: A MapReduce Job is always retrieved from a named JobTracker,
which is implemented in NodeJobTracker (extends AbstractJobTracker) and is configured using the
configuration DSL. All of the internal implementation is completely ICompletableFuture-driven and
mostly non-blocking in design.

On submit, the Job creates a unique UUID which afterwards acts as a jobld and is combined with
the JobTracker’s name to be uniquely identifiable inside the cluster. Then, the preparation is sent
around the cluster and every member prepares its execution by creating a JobSupervisor,
MapCombineTask and ReducerTask. The job-emitting JobSupervisor gains special capabilities to
synchronize and control JobSupervisors on other members for the same job.

If preparation is finished on all members, the job itself is started by executing a
StartProcessingJobOperation on every member. This initiates a MappingPhase implementation
(defaults to KeyValueSourceMappingPhase) and starts the actual mapping on the members.

The mapping process is currently a single threaded operation per member, but will be extended to
run in parallel on multiple partitions (configurable per Job) in future versions. The Mapper is now
called on every available value on the partition and eventually emits values. For every emitted
value, either a configured CombinerFactory is called to create a Combiner or a cached one is used
(or the default CollectingCombinerFactory is used to create Combiners). When the chunk limit is
reached on a member, a IntermediateChunkNotification is prepared by collecting emitted keys to
their corresponding members. This is either done by asking the job owner to assign members or by
an already cached assignment. In later versions, a PartitionStrategy might also be configurable.

The IntermediateChunkNotification is then sent to the reducers (containing only values for this
member) and is offered to the ReducerTask. On every offer, the ReducerTask checks if it is already

290



running and if not, it submits itself to the configured ExecutorService (from the JobTracker
configuration).

If reducer queue runs out of work, the ReducerTask is removed from the ExecutorService to not
block threads but eventually will be resubmitted on next chunk of work.

On every phase, the partition state is changed to keep track of the currently running operations. A
JobPartitionState can be in one of the following states with self-explanatory titles: [WAITING,
MAPPING, REDUCING, PROCESSED, CANCELLED].If you have a deeper interest of these states, look at the
Javadoc.

* Member asks for new partition to process: WAITING = MAPPING
* Member emits first chunk to a reducer: MAPPING = REDUCING

 All members signal that they finished mapping phase and reducing is finished, too: REDUCING
= PROCESSED

Eventually, all JobPartitionStates reach the state of PROCESSED. Then, the job emitter’s
JobSupervisor asks all members for their reduced results and executes a potentially offered
Collator. With this Collator, the overall result is calculated before it removes itself from the
JobTracker, doing some final cleanup and returning the result to the requester (using the internal
TrackableJobFuture).

If a job is cancelled while execution, all partitions are immediately set to the CANCELLED state and
a CancelJobSupervisorOperation is executed on all members to kill the running processes.

While the operation is running in addition to the default operations, some more operations like
ProcessStatsUpdateOperation (updates processed records statistics) or
NotifyRemoteExceptionOperation (notifies the members that the sending member encountered an
unrecoverable situation and the Job needs to be cancelled, e.g., NullPointerException inside of a
Mapper, are executed against the job owner to keep track of the process.

11.4.4. MapReduce Deprecation

This section informs Hazelcast users about the MapReduce deprecation, it’s motivation and
replacements.

Motivation

We’ve decided to deprecate the MapReduce framework in Hazelcast IMDG 3.8. The MapReduce
framework provided the distributed computing model and it was used to back the old Aggregations
system. Unfortunately the implementation didn’t live up to the expectations and adoption wasn’t
high, so it never got out of Beta status. Apart from that the current shift in development away from
M/R-like processing to a more near-realtime, streaming approach left us with the decision to
deprecate and finally remove the MapReduce framework from Hazelcast IMDG. With that said, we
want to introduce the successors and replacements; Fast Aggregations on top of Query
infrastructure and the Hazelcast Jet distributed computing platform.

291



Built-In Aggregations

MapReduce is a very powerful tool, however it’s demanding in terms of space, time and bandwidth.
We realized that we don’t need so much power when we simply want to find out a simple metric
such as the number of entries matching a predicate. Therefore, the built-in aggregations were
rebuilt on top of the existing Query infrastructure (count, sum, min, max, mean, variance) which
automatically leverages any matching query index. The aggregations are computed in tho phases:

* 1st phase: on each member (scatter)

* 2nd phase: one member aggregates responses from members (gather)
It is not as flexible as a full-blown M/R system due to the 2nd phase being single-member and the
input can be massive in some use cases. The member doing the 2nd step needs enough capacity to

hold all intermediate results from all members from the 1st step, but in practice it is sufficient for
many aggregation tasks like "find average" or "find highest" and other common examples.

The benefits are:

* improved performance
* simplified API

« utilization of existing indexes.

See the Fast Aggregations section for examples. If you need a more powerful tool like MapReduce,
then there is Hazelcast Jet!

Distributed Computation with Jet

Hazelcast Jet is the new distributed computing framework build on top of Hazelcast IMDG. It uses
directed acyclic graphs (DAG) to model relationships between individual steps in the data
processing pipeline. Conceptually speaking, the MapReduce model simply states that distributed
computation on a large dataset can be boiled down to two kinds of computation steps - a map step
and a reduce step. One pair of map and reduce does one level of aggregation over data. Complex
computations typically require multiple such steps. Multiple M/R-steps essentially form a DAG of
operations, so that a DAG execution model boils down to a generalization of the MapReduce model.
Therefore it is always possible to rewrite a MapReduce application to Hazelcast Jet DAG or "pipeline
of tasks" without conceptual changes.

The benefits can be summarized as follows:

* MapReduce steps are completely isolated (by definition). With the whole computation modeled
as a DAG, the Jet scheduler can optimize the operation pipeline

* Hazelcast Jet provides a convenient high-level API (distributed j.u.stream). The code stays
compact but also offers a more concrete API to leverage the full power of DAGs.

Moving MapReduce Tasks to Hazelcast Jet

We’ll use the example of the word count application which summarizes a set of documents into a
mapping from each word to the total number of its occurrences in the documents. This involves
both a mapping stage where one document is transformed into a stream of words and a reducing

292



stage that performs a COUNT DISTINCT operation on the stream and populates a Hazelcast IMap
with the results.

This is the word count code in MapReduce (also available on Hazelcast Jet Code Samples):

JobTracker t = hz.getJobTracker("word-count");
IMap<Long, String> documents = hz.getMap("documents");
LongSumAggregation<String, String> aggr = new LongSumAggregation<>();
Map<String, Long> counts =
t.newJob(KeyValueSource.fromMap(documents))
.mapper ((Long x, String document, Context<String, Long> ctx) ->
Stream.of(document.tolLowerCase().split("\\W+"))
filter(w -> !w.isEmpty())

.forEach(w -> ctx.emit(w, 1L)))
.combiner(aggr.getCombinerFactory())
.reducer(aggr.getReducerFactory())

.submit()

.get();

Jet’s Core API is strictly lower-level than MapReduce’s because it can be used to build the entire
infrastructure that can drive MapReduce’s mapper, combiner and reducer, fully preserving the
semantics of the MapReduce job. However, this approach to migrating your code to Jet is not a good
option because the MapReduce API enforces a quite suboptimal computation model. The simplest
approach is implementing the job in terms of Jet’s java.util.stream support (Jet JUS for short):

IStreamMap<String, String> documents = jet.getMap(“documents");
IMap<String, Long> counts = documents
.stream()
.flatMap(m -> Stream.of(m.getValue().toLowerCase().spLit("\\W+"))
filter(w -> lw.isEmpty()))
.collect(DistributedCollectors.toIMap(w -> w, w -> 1L, (left, right) -> left +
right));

This can be taken as a general template to express a MapReduce job in terms of Jet JUS: the logic of
the mapper is inside flatMap and the logic of both the combiner and the reducer is inside collect. Jet
automatically applies the optimization where the data stream is first "combined" locally on each
member, then the partial results "reduced" in the final step, after sending across the network.

Keep in mind that MapReduce and JUS use the same terminology, but with quite different meaning:
in JUS the final step is called "combine" (MapReduce calls it "reduce") and the middle step is called
"reduce" (MapReduce calls this one "combine"). MapReduce’s "combine" collapses the stream in
fixed-size batches, whereas in Jet JUS "reduce" collapses the complete local dataset and sends just a
single item per distinct key to the final step. In Jet JUS, the final "combine" step combines just one
partial result per member into the total result, whereas in MapReduce the final step "reduces" all
the one-per-batch items to the final result. Therefore, in Jet there are only O (distinct-key-count)
items sent over the network whereas in MapReduce it is still O (total-item-count) with just a linear
scaling factor equal to the configured batch size.

293


https://github.com/hazelcast/hazelcast-jet-code-samples/blob/v0.4/batch/mapreduce-migration/src/main/java/WordCountCoreApi.java

A complete example of the word count done with the Streams API can be found in the Hazelcast Jet
Code Samples A minor difference is that the code on GitHub stores the documents line by line, with
the effect of a finer-grained distribution across the cluster.

To better understand how the JUS pipeline is executed by Jet, take a look at the file WordCount.java
in the core/wordcount module, which builds the same DAG as the Jet JUS implementation, but using
the Jet Core API. Here is a somewhat simplified DAG from this example:

DAG dag = new DAG();
Vertex source = dag.newVertex("source", Processors.readMap("documents"))
.localParallelism(1);
Vertex map = dag.newVertex("map", Processors.flatMap(
(String document) -> traverseArray(document.split("\\W+"))));
Vertex reduce = dag.newVertex("reduce", Processors.groupAndAccumulate(
() -> 0L, (count, x) -> count + 1));
Vertex combine = dag.newVertex("combine", Processors.groupAndAccumulate(
Entry::qgetKey,
() -> 6oL,
(Long count, Entry<String, Long> wordAndCount) ->
count + wordAndCount.getValue())
e

Vertex sink = dag.newVertex("sink", writeMap("counts"));

dag.edge(between(source, map))
.edge(between(map, reduce).partitioned(wholeItem(), HASH_CODE))
.edge(between(reduce, combine).partitioned(entryKey()).distributed())
.edge(between(combine, sink));

It is a simple cascade of vertices: source » map — reduce — combine — sink and matches quite
closely the workflow of a MapReduce job. On each member, a distinct slice of data (IMap partitions
stored locally) is ingested by the source vertex and sent to map on the local member. The output of
map are words and they travel over a partitioned edge to reduce. Note that, as opposed to
MapReduce, a single instance of a processor doesn’t count occurrences of just one word, but is
responsible for entire partitions. There are only as many processors as configured by the
localParallelism property. This is one of several examples where Jet’s DAG exposes performance-
critical attributes of the computation to the user.

Another example of this can be seen in arguments passed to partitioned(wholeItem(), HASH_CODE).
The user has a precise control over the partitioning key as well as the algorithm used to map the
key to a partition ID. In this case we use the whole item (the word) as the key and apply the fast
HASH_CODE strategy, which derives the partition ID from the object’s hashCode().

The reduce - combine edge is both partitioned and distributed. Whereas each cluster member has
its own reduce processor for any given word, there is only one combine processor in the entire
cluster for a given word. This is where network traffic happens: reduce sends its local results for a
word to that one combine processor in the cluster. Note that here we didn’t specify HASH_CODE; it is
not guaranteed to be safe on a distributed edge because on the target member the hashcode can
come out differently. For many value classes (like String and Integer) it is guaranteed to work,
though, because their hashcode explicitly specifies the function used. By default Jet applies the

294


https://github.com/hazelcast/hazelcast-jet-code-samples/tree/v0.4/batch/wordcount-j.u.s
https://github.com/hazelcast/hazelcast-jet-code-samples/tree/v0.4/batch/wordcount-j.u.s

slower but safer Hazelcast strategy: first serialize and then compute the MurmurHash3 of the
resulting blob. It is up to the user to ensure that the faster strategy is safe, or to provide a custom
strategy.

In the above example we can see many out-of-the-box processors being used:

* readMap to ingest the data from an IMap

» flatMap to perform a flat-map operation on incoming items (closely corresponds to MapReduce’s
mapper)

* groupAndAccumulate to perform the reduction and combining

There are some more in the Processors class. For even more flexibility we’ll now show how you can
implement a processor on your own (also available in the Hazelcast Jet Code Samples repository):

public class MapReduce {

public static void main(String[] args) throws Exception {
Jet.newJetInstance();
JetInstance jet = Jet.newletInstance();
try {
DAG dag = new DAG();
Vertex source = dag.newVertex("source", readMap("sourceMap"));
Vertex map = dag.newVertex("map", MapP::new);
Vertex reduce = dag.newVertex("reduce", ReduceP::new);
Vertex combine = dag.newVertex("combine", CombineP::new);
Vertex sink = dag.newVertex("sink", writeMap("sinkMap"));
dag.edge(between(source, map))
.edge(between(map, reduce).partitioned(wholeItem(), HASH_CODE))
.edge(between(reduce, combine).partitioned(entryKey()).distributed())
.edge(between(combine, sink.localParallelism(1)));
jet.newJob(dag).execute().get();
} finally {
Jet.shutdownAll();
}
}

private static class MapP extends AbstractProcessor {
private final FlatMapper<Entry<Long, String>, String> flatMapper = flatMapper(
(Entry<Long, String> e) -> new WordTraverser(e.getValue())

)i
protected boolean tryProcessd( Object item) {

return flatMapper.tryProcess((Entry<Long, String>) item);
}

}

private static class WordTraverser implements Traverser<String> {

private final StringTokenizer tokenizer;

295



WordTraverser(String document) {
this.tokenizer = new StringTokenizer(document.tolLowerCase());

}

public String next() {
return tokenizer.hasMoreTokens() ? tokenizer.nextToken() : null;
}
}

private static class ReduceP extends AbstractProcessor {
private final Map<String, Long> wordToCount = new HashMap<>();
private final Traverser<Entry<String, Long>> resultTraverser =
lazy(() -> traverselterable(wordToCount.entrySet()));

protected boolean tryProcessd( Object item) {
wordToCount.compute((String) item, (x, count) -> 1 + (count != null ?
count : 0L));
return true;

}

public boolean complete() {
return emitCooperatively(resultTraverser);
}
}

private static class CombineP extends AbstractProcessor {
private final Map<String, Long> wordToCount = new HashMap<>();
private final Traverser<Entry<String, Long>> resultTraverser =
lazy(() -> traverselterable(wordToCount.entrySet()));

protected boolean tryProcessd( Object item) {
final Entry<String, Long> e = (Entry<String, Long>) item;
wordToCount.compute(e.getKey(),
(x, count) -> e.getValue() + (count != null ? count : 0L));
return true;

public boolean complete() {
return emitCooperatively(resultTraverser);

}

One of the challenges of implementing a custom processor is cooperativeness: it must back off as

296



soon as there is no more room in the output buffer (the outbox). This example shows how to make
use of another line of convenience provided at this lower level, which takes care of almost all the
mechanics involved. One gotcha is that a simple for loop must be converted to a stateful iterator-
style object, like WordTraverser in the above code. To make this conversion as painless as possible
we chose to not require a Java Iterator, but defined our own Traverser interface with just a single
method to implement. This means that Traverser is a functional interface and can often be
implemented with a one-liner lambda.

Jet Compared with New Aggregations

Hazelcast has native support for aggregation operations on the contents of its distributed data
structures. They operate on the assumption that the aggregating function is commutative and
associative, which allows the two-tiered approach where first the local data is aggregated, then all
the local subresults sent to one member, where they are combined and returned to the user. This
approach works quite well as long as the result is of manageable size. Many interesting
aggregations produce an O(1) result and for those, the native aggregations are a good match.

The main area where native aggregations may not be sufficient are the operations that group the
data by key and produce results of size O (keyCount). The architecture of Hazelcast aggregations is
not well adapted to this use case, although it still works even for moderately-sized results (up to 100
MB, as a ballpark figure). Beyond these numbers, and whenever something more than a single
aggregation step is needed, Jet becomes the preferred choice. In the mentioned use case Jet helps
because it doesn’t send the entire hashtables in serialized form and materialize all the results on
the user’s machine, but rather streams the key-value pairs directly into a target IMap. Since it is a
distributed structure, it doesn’t focus its load on a single member.

Jet’s DAG paradigm offers much more than the basic map-reduce-combine cascade. Among other
setups, it can compose several such cascades and also perform co-grouping, joining and many other
operations in complex combinations.

11.5. Aggregators
o This feature has been deprecated. Please use the Fast-Aggregations instead.

Based on the Hazelcast MapReduce framework, Aggregators are ready-to-use data aggregations.
These are typical operations like sum up values, finding minimum or maximum values, calculating
averages and other operations that you would expect in the relational database world.

Aggregation operations are implemented, as mentioned above, on top of the MapReduce
framework. All operations can be achieved using pure MapReduce calls. However, using the
Aggregation feature is more convenient for a big set of standard operations.

11.5.1. Aggregations Basics

This section quickly guides you through the basics of the Aggregations framework and some of its
available classes. We also implement a first base example in this section.

297



Aggregations and Map Interfaces

Aggregations are available on both types of map interfaces, com.hazelcast.core.IMap and
com.hazelcast .core.MultiMap, using the aggregate methods. Two overloaded methods are available
that customize resource management of the underlying MapReduce framework by supplying a
custom configured com.hazelcast.mapreduce.JobTracker instance. To find out how to configure the
MapReduce framework, see the Configuring JobTracker section. We will later see another way to
configure the automatically used MapReduce framework if no special JobTracker is supplied.

Aggregations and the MapReduce Framework

As mentioned before, the Aggregations implementation is based on the Hazelcast MapReduce
framework and therefore you might find overlaps in their APIs. One overload of the aggregate
method can be supplied with a JobTracker, which is part of the MapReduce framework.

If you implement your own aggregations, you will use a mixture of the Aggregations and the
MapReduce API. If you do so, e.g., to make the life of colleagues easier, please read the
Implementing Aggregations section.

11.5.2. Using the Aggregations API

We now look into what can be achieved using the Aggregations API. To work on some deeper
examples, let’s quickly have a look at the available classes and interfaces and discuss their usage.

Supplier

The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the
aggregation operation. This class already provides a few different static methods to achieve the
most common cases. Supplier.all() accepts all incoming values and does not apply any data
extraction or transformation upon them before supplying them to the aggregation function itself.

For filtering data sets, you have two options by default:

* You can supply a com.hazelcast.query.Predicate if you want to filter on values and/or keys.

* Alternatively, you can supply a com.hazelcast.mapreduce.KeyPredicate if you can decide directly
on the data key without the need to deserialize the value.

As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let’s have a look on how we
can do basic filtering using those two options.

Basic Filtering with KeyPredicate

First, we have a look at a KeyPredicate and only accept people whose last name is "Jones".

Supplier<...> supplier = Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase( lastName )

)

298



class JonesKeyPredicate implements KeyPredicate<String> {
public boolean evaluate( String key ) {
return "Jones".equalsIgnoreCase( key );

}
}

Filtering on Values with Predicate

Using the standard Hazelcast Predicate interface, we can also filter based on the value of a data
entry. In the following example, you can only select values that are divisible by 4 without a
remainder.

Supplier<...> supplier = Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0
)i

class DivisiblePredicate implements Predicate<String, Integer> {
public boolean apply( Map.Entry<String, Integer> entry ) {
return entry.getValue() % 4 == 0;

}
}

Extracting and Transforming Data

As well as filtering, Supplier can also extract or transform data before providing it to the
aggregation operation itself. The following example shows how to transform an input value to a
string.

Supplier<String, Integer, String> supplier = Supplier.all(
value -> Integer.toString(value)

)

You can see a Java 6/7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see
that the generic information of the resulting Supplier has changed as well. This indicates that we
now have an aggregation working on string values.

Chaining Multiple Filtering Rules

Another feature of Supplier is its ability to chain multiple filtering rules. Let’s combine all of the
above examples into one rule set:

299



Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase( lastName ),
Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0,
Supplier.all( value -> Integer.toString(value) )

)

Implementing Supplier with Special Requirements

You might prefer or need to implement your Supplier based on special requirements. This is a very
basic task. The Supplier abstract class has just one method: the apply method.

0 Due to a limitation of the Java Lambda API, you cannot implement abstract classes
using Lambdas. Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
public String apply( Map.Entry<String, Integer> entry ) {
Integer value = entry.getValue();
if (value == null) {
return null;
}
return value % 4 == 0 ? String.valueOf( value ) : null;
}
¥

The Supplier apply methods are expected to return null whenever the input value should not be
mapped to the aggregation process. This can be used, as in the example above, to implement filter

rules directly. Implementing filters using the KeyPredicate and Predicate interfaces might be more
convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other
Suppliers.

int sum = personAgeMapping.aggregate( new MyCustomSupplier(), Aggregations.count() );

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase( lastName ),
new MyCustomSupplier()
)i
int sum = personAgeMapping.aggregate( supplier, Aggregations.count() );

300



Defining the Aggregation Operation

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation
itself. It contains a set of MapReduce API implementations like Mapper, Combiner, Reducer and
Collator. These implementations are normally unique to the chosen Aggregation. This interface can
also be implemented with your aggregation operations based on MapReduce calls. See the
Implementing Aggregations section for more information.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of
aggregations. This class contains type-safe aggregations of the following types:

Average (Integer, Long, Double, BigInteger, BigDecimal)

Sum (Integer, Long, Double, BigInteger, BigDecimal)

Min (Integer, Long, Double, BigInteger, BigDecimal, Comparable)

* Max (Integer, Long, Double, Biginteger, BigDecimal, Comparable)

DistinctValues

¢ Count

Those aggregations are similar to their counterparts on relational databases and can be equated to
SQL statements as set out below.

Average:

Calculates an average value based on all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
Aggregations.integerAvg() );

SELECT AVG(person.age) FROM person;

Sum:

Calculates a sum based on all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
Aggregations.integerSum() );

SELECT SUM(person.age) FROM person;

Minimum (Min):

Finds the minimal value over all selected values.

301



map.aggregate( Supplier.all( person -> person.getAge() ),
Aggregations.integerMin() );

SELECT MIN(person.age) FROM person;

Maximum (Max):

Finds the maximal value over all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
Aggregations.integerMax() );

SELECT MAX(person.age) FROM person;

Distinct Values:

Returns a collection of distinct values over the selected values

map.aggregate( Supplier.all( person -> person.getAge() ),
Aggregations.distinctValues() );

SELECT DISTINCT person.age FROM person;

Count:

Returns the element count over all selected values

map.aggregate( Supplier.all(), Aggregations.count() );

SELECT COUNT(*) FROM person;

Extracting Attribute Values with PropertyExtractor

We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had
a look at the example on how to use a Supplier to transform a value to another type. It can also be
used to extract attributes from values.

302



class Person {
private String firstName;
private String lastName;
private int age;

// getters and setters
¥

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();

class AgeExtractor implements PropertyExtractor<Person, Integer> {
public Integer extract( Person value ) {
return value.getAge();

}
}

In this example, we extract the value from the person’s age attribute. The value type changes from
Person to Integer which is reflected in the generics information to stay type-safe.

You can use PropertyExtractors for any kind of transformation of data. You might even want to
have multiple transformation steps chained one after another.

Configuring Aggregations

As stated before, the easiest way to configure the resources used by the underlying MapReduce
framework is to supply a JobTracker to the aggregation call itself by passing it to either
IMap.aggregate() or MultiMap.aggregate().

There is another way to implicitly configure the underlying used JobTracker. If no specific
JobTracker was passed for the aggregation call, internally one is created using the following naming
specifications:

For IMap aggregation calls, the naming specification is created as hz::aggregation-map- and the
concatenated name of the map. For MultiMap it is very similar, i.e., hz::aggregation-multimap- and
the concatenated name of the MultiMap.

Knowing the specification of the name, we can configure the JobTracker as expected (as described
in Retrieving a JobTracker Instance) using the naming spec we just learned. For more information
on the configuration of JobTracker, see the Configuring Jobtracker section.

To finish this section, let’s have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap( "mymap" );

// The internal JobTracker name resolves to 'hz::aggregation-map-mymap'
map.aggregate( ... );

303



MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap( "mymultimap" );

// The internal JobTracker name resolves to 'hz::aggregation-multimap-mymultimap’
multimap.aggregate( ... );

11.5.3. Aggregations Examples

For the final example, imagine you are working for an international company and you have an
employee database stored in Hazelcast IMap with all employees worldwide and a MultiMap for
assigning employees to their certain locations or offices. In addition, there is another IMap that
holds the salary per employee.

Setting up the Data Model

Let’s have a look at our data model.

304



class Employee implements Serializable {
private String firstName;
private String lastName;
private String companyName;
private String address;
private String city;
private String county;
private String state;
private int zip;
private String phonel;
private String phone2;
private String email;
private String web;

// getters and setters
}

class SalaryMonth implements Serializable {
private Month month;
private int salary;

// getters and setters
}

class SalaryYear implements Serializable {
private String email;
private int year;
private List<SalaryMonth> months;

// getters and setters

public int getAnnualSalary() {
int sum = 0;
for ( SalaryMonth salaryMonth : getMonths() ) {
sum += salaryMonth.getSalary();
}

return sum;

The two IMaps and the MultiMap are keyed by the string of email. They are defined as follows:

IMap<String, Employee> employees = hz.getMap( "employees" );
IMap<String, SalaryYear> salaries = hz.getMap( "salaries" );
MultiMap<String, String> officeAssignment = hz.getMultiMap( "office-employee" );

So far, we know all the important information to work out some example aggregations. We will
look into some deeper implementation details and how we can work around some current

305



limitations that will be eliminated in future versions of the API.

Average Aggregation Example

Let’s start with a very basic example. We want to know the average salary of all of our employees.
To do this, we need a PropertyExtractor and the average aggregation for type Integer.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap( "salaries" );
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate( Supplier.all( extractor ),
Aggregations.integerAvg() );

That’s it. Internally, we created a MapReduce task based on the predefined aggregation and fired it
up immediately. Currently all aggregation calls are blocking operations, so it is not yet possible to
execute the aggregation in a reactive way (using com.hazelcast.core.ICompletableFuture), but this
will be part of an upcoming version.

Map Join Example

The following example is a little more complex. We only want to have our US-based employees
selected into the average salary calculation, so we need to execute a join operation between the
employees and salaries maps.

class USEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance( HazelcastInstance hazelcastInstance ) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate( String email ) {
IMap<String, Employee> employees = hazelcastInstance.getMap( "employees" );
Employee employee = employees.get( email );
return "US".equals( employee.getCountry() );
}
}

Using the HazelcastInstanceAware interface, we get the current instance of Hazelcast injected into
our filter and we can perform data joins on other data structures of the cluster. We now only select
employees that work as part of our US offices into the aggregation.

306



IMap<String, SalaryYear> salaries = hazelcastInstance.getMap( "salaries" );
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate( Supplier.fromKeyPredicate(
new USEmployeeFilter(), extractor
), Aggregations.integerAvg() );

Grouping Example

For our next example, we do some grouping based on the different worldwide offices. Currently, a
group aggregator is not yet available, so we need a small workaround to achieve this goal. (In later
versions of the Aggregations API this will not be required because it will be available out-of-the-box
in a much more convenient way.)

Again, let’s start with our filter. This time, we want to filter based on an office name and we need to
do some data joins to achieve this kind of filtering.

A short tip: to minimize the data transmission on the aggregation we can use Data Affinity rules to
influence the partitioning of data. Be aware that this is an expert feature of Hazelcast.

class OfficeEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;
private String office;

// Deserialization Constructor
public OfficeEmployeeFilter() {
}

public OfficeEmployeeFilter( String office ) {
this.office = office;

}

public void setHazelcastInstance( HazelcastInstance hazelcastInstance ) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate( String email ) {
MultiMap<String, String> officeAssignment = hazelcastInstance
.getMultiMap( "office-employee" );

return officeAssignment.containsEntry( office, email );

Now we can execute our aggregations. As mentioned before, we currently need to do the grouping
on our own by executing multiple aggregations in a row.

307



Map<String, Integer> avgSalariesPerOffice = new HashMap<String, Integer>();

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap( "salaries" );
MultiMap<String, String> officeAssignment =
hazelcastInstance.getMultiMap( "office-employee" );

PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();

for ( String office : officeAssignment.keySet() ) {
OfficeEmployeeFilter filter = new OfficeEmployeeFilter( office );
int avgSalary = salaries.aggregate( Supplier.fromKeyPredicate( filter, extractor ),
Aggregations.integerAvg() );

avgSalariesPerOffice.put( office, avgSalary );
}

Simple Count Example

We want to end this section by executing one final and easy aggregation. We want to know how
many employees we currently have on a worldwide basis. Before reading the next lines of example
code, you can try to do it on your own to see if you understood how to execute aggregations.

IMap<String, Employee> employees = hazelcastInstance.getMap( "employees" );
int count = employees.size();

After the quick joke of the previous two code lines, we look at the real two code lines:

IMap<String, Employee> employees = hazelcastInstance.getMap( "employees" );
int count = employees.aggregate( Supplier.all(), Aggregations.count() );

We now have an overview of how to use aggregations in real life situations. If you want to do your
colleagues a favor, you might want to write your own additional set of aggregations. If so, then read
the next section, Implementing Aggregations.

11.5.4. Implementing Aggregations

This section explains how to implement your own aggregations in your own application. It is an
advanced section, so if you do not intend to implement your own aggregation, you might want to
stop reading here and come back later when you need to know how to implement your own
aggregation.

An Aggregation implementation is defining a MapReduce task, but with a small difference: the
Mapper is always expected to work on a Supplier that filters and/or transforms the mapped input
value to some output value.

308



Aggregation Methods

The main interface for making your own aggregation is
com.hazelcast.mapreduce.aggregation.Aggregation. It consists of four methods.

interface Aggregation<Key, Supplied, Result> {
Mapper getMapper(Supplier<Key, ?, Supplied> supplier);
CombinerFactory getCombinerFactory();
ReducerFactory getReducerFactory();
Collator<Map.Entry, Result> getCollator();

The getMapper and getReducerFactory methods should return non-null values. getCombinerFactory
and getCollator are optional operations and you do not need to implement them. You can decide to
implement them depending on the use case you want to achieve.

11.6. Fast-Aggregations

Fast-Aggregations functionality is the successor of the Aggregators. They are equivalent to the
MapReduce Aggregators in most of the use cases, but instead of running on the MapReduce engine
they run on the Query infrastructure. Their performance is tens to hundreds times better since they
run in parallel for each partition and are highly optimized for speed and low memory
consumption.

If the [setting-in-memory-format in-memory format] of your data is NATIVE, Fast-
Aggregations always run on the partition threads. If the data is of type BINARY or

0 OBJECT, they also mostly run on the partition threads, however, they may run on
the separate query threads to avoid blocking partition threads (if there are no
ongoing migrations).

11.6.1. Aggregator API

The Fast-Aggregation consists of three phases represented by three methods:

1. accumulate()
2. combine()

3. aggregate()

There are also the following callbacks:

* onAccumulationFinished() called when the accumulation phase finishes

» onCombinationFinished() called when the combination phase finishes

These callbacks enable releasing the state that might have been initialized and stored in the
Aggregator - to reduce the network traffic.

Each phase is described below. See also the Aggregator Javadoc for the API’s details.

309


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/aggregation/Aggregator.html

Accumulation:

During the accumulation phase each Aggregator accumulates all entries passed to it by the query
engine. It accumulates only those pieces of information that are required to calculate the
aggregation result in the last phase - that’s implementation specific.

In case of the DoubleAverage aggregation the Aggregator would accumulate:

e the sum of the elements it accumulated

» the count of the elements it accumulated
Combination:

Since Fast-Aggregation is executed in parallel on each partition of the cluster, the results need to be
combined after the accumulation phase in order to be able to calculate the final result.

In case of the DoubleAverage aggregation, the aggregator would sum up all the sums of the elements
and all the counts.

Aggregation:

Aggregation is the last phase that calculates the final result from the results accumulated and
combined in the preceding phases.

In case of the DoubleAverage aggregation, the Aggregator would just divide the sum of the elements
by their count (if non-zero).

11.6.2. Fast-Aggregations and Map Interfaces

Fast-Aggregations are available on com.hazelcast.core.IMap only. IMap offers the method aggregate
to apply the aggregation logic on the map entries. This method can be called with or without a
predicate. You can refer to its Javadoc to see the method details.

11.6.3. Example Implementation

Here’s an example implementation of the Aggregator:

310


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/IMap.html#aggregate-com.hazelcast.aggregation.Aggregator-

private static void simpleCustomAverageAggregation(IMap<String, FAEmployee> employees)

{

System.out.println("Calculating salary average");

double avgSalary = employees.aggregate(new Aggregator<Map.Entry<String,
FAEmployee>, Double>() {

protected long sum;
protected long count;

public void accumulate(Map.Entry<String, FAEmployee> entry) {
count++;
sum += entry.getValue().getSalaryPerMonth();

public void combine(Aggregator aggregator) {

this.sum += this.getClass().cast(aggregator).sum;
this.count += this.getClass().cast(aggregator).count;

public Double aggregate() {
if (count == 0) {
return null;

}
return ((double) sum / (double) count);

1)

System.out.println("Overall average salary:
System.out.println("\n");

+ avgSalary);

As you can see:

e the accumulate() method calculates the sum and count of the elements
e the combine() method combines the results from all the accumulations

* the aggregate() method calculates the final result.

11.6.4. Built-In Aggregations

The com.hazelcast.aggregation.Aggregators class provides a wide variety of built-in Aggregators.
The full list is presented below:

« count

311



o distinct

* bigDecimal sum/avg/min/max
* bigInteger sum/avg/min/max
* double sum/avg/min/max

* integer sum/avg/min/max

* long sum/avg/min/max

* number avg

» comparable min/max

* fixedPointSum, floatingPointSum
To use the any of these Aggregators, instantiate them using the Aggregators factory class.

Each built-in Aggregator can also navigate to an attribute of the object passed to the accumulate()
method (via reflection). For example, Aggregators.distinct("address.city") extracts the
address.city attribute from the object passed to the Aggregator and accumulate the extracted value.

11.6.5. Configuration Options

On each partition, after the entries have been passed to the aggregator, the accumulation runs in
parallel. It means that each aggregator is cloned and receives a sub-set of the entries received from
a partition. Then, it runs the accumulation phase in all of the cloned aggregators - at the end, the
result is combined into a single accumulation result. It speeds up the processing by at least the
factor of two - even in case of simple aggregations. If the accumulation logic is more "heavy", the
speed-up may be more significant.

In order to switch the accumulation into a sequential mode just set the
hazelcast.aggregation.accumulation.parallel.evaluation property to false (it’s set to true by
default).

11.7. Projections

There are cases where instead of sending all the data returned by a query from a member, you
want to transform (strip down) each result object in order to avoid redundant network traffic.

For example, you select all employees based on some criteria, but you just want to return their
name instead of the whole Employee object. It is easily doable with the Projection API.

11.7.1. Projection API

The Projection API provides the method transform() which is called on each result object. Its result
is then gathered as the final query result entity. You can refer to the Projection Javadoc for the API’s
details.

Projections and Map Interfaces

Projections are available on com.hazelcast.core.IMap only. IMap offers the method project to apply

312


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/projection/Projection.html

the projection logic on the map entries. This method can be called with or without a predicate. See
its Javadoc to see the method details.

11.7.2. Example implementation

Let’s consider the following domain object stored in an IMap:

public class Employee implements Serializable {
private String name;

public Employee() {
}

public String getName() {
return name;

}

public void setName(String firstName) {
this.name = name;

}

To return just the names of the Employees, you can run the query in the following way:

Collection<String> names = employees.project(new Projection<Map.Entry<String,
Employee>, String>() {

public String transform(Map.Entry<String, Employee> entry) {
return entry.getValue().getName();

}

}, somePredicate);

11.7.3. Built-In Projections
The com.hazelcast.projection.Projections class provides two built-in Projections:

o singleAttribute
o multiAttribute

The singleAttribute Projection enables extracting a single attribute from an object (via reflection).
For example, Projection.singleAttribute("address.city") extracts the address.city attribute from
the object passed to the Projection.

The multiAttribute Projection enables extracting multiples attributes from an object (via
reflection). For example, Projection.multiAttribute("address.city”, "postalAddress.city") extracts
both attributes from the object passed to the Projection and return them in an Object[] array.

313


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/core/IMap.html#project-com.hazelcast.projection.Projection-

11.8. Continuous Query Cache

A continuous query cache is used to cache the result of a continuous query. After the construction
of a continuous query cache, all changes on IMap are asynchronously reflected to this cache via
events. This makes this cache as an asynchronously updated view of IMap. You can create a
continuous query cache either on the client or member.

11.8.1. Keeping Query Results Local and Ready

A continuous query cache is beneficial when you need to query the distributed IMap data in a very
frequent and fast way. By using a continuous query cache, the result of the query will always be
ready and local to the application.

11.8.2. Accessing Continuous Query Cache from Member

The following code snippet shows how you can access a continuous query cache from a member.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig("map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig);

Config config = new Config();
config.addMapConfig(mapConfig);

HazelcastInstance node = Hazelcast.newHazelcastInstance(config);

IMap<Integer, String> map = (IMap) node.getMap("map-name");

11.8.3. Accessing Continuous Query Cache from Client Side

The following code snippet shows how you can access a continuous query cache from the client
side. The difference in this code from the member side code above is that you configure and
instantiate a client instance instead of a member instance.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap<Integer, Integer> clientMap = (IMap) client.getMap("map-name");

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

314



11.8.4. Features of Continuous Query Cache
The following features of continuous query cache are valid for both the member and client:

* The initial query that is run on the existing IMap data during the continuous query cache
construction can be enabled/disabled according to the supplied predicate via
QueryCacheConfig.setPopulate().

» Continuous query cache allows you to run queries with indexes and perform event batching
and coalescing.

* A continuous query cache is evictable. Note that a continuous query cache has a default
maximum capacity of 10000. If you need a non-evictable cache, you should configure the
eviction via QueryCacheConfig.setEvictionConfig().

* Alistener can be added to a continuous query cache using QueryCache.addEntryListener().

» IMap events are reflected in continuous query cache in the same order as they were generated
on map entries. Since events are created on entries stored in partitions, ordering of events is
maintained based on the ordering within the partition. You can add listeners to capture lost
events using EventlostlListener and you can recover lost events with the method
QueryCache.tryRecover (). Recovery of lost events largely depends on the size of the buffer on
Hazelcast members. Default buffer size is 16 per partition, i.e., 16 events per partition can be
maintained in the buffer. If the event generation is high, setting the buffer size to a higher
number provides better chances of recovering lost events. You can set buffer size with
QueryCacheConfig.setBufferSize(). You can use the following example code for a recovery case.

QueryCache queryCache = map.getQueryCache("cache-name", new SqlPredicate("this >
20"), true);
queryCache.addEntryListener(new EventLostListener() {

public void eventLost(EventLostEvent event) {
queryCache.tryRecover();

}
}, false);

* You can populate a continuous query cache with only the keys of its entries and retrieve the
subsequent values directly via QueryCache.get() from the underlying IMap. This helps to
decrease the initial population time when the values are very large.

11.8.5. Configuring Continuous Query Cache

You can configure continuous query cache declaratively or programmatically; the latter is mostly
explained in the previous section. The parent configuration element is <query-caches> which should
be placed within your <map> configuration. You can create your query caches using the <query-
cache> sub-element under <query-caches>.

The following is an example declarative configuration.

315



<hazelcast>

<map>
<query-caches>
<query-cache name="myContQueryCache">
<include-value>true</include-value>
<predicate type="class-name">

com.hazelcast.examples.ExamplePredicate</predicate>

<entry-listeners>
<entry-listener>...</entry-listener>
</entry-listeners>
<in-memory-format>BINARY</in-memory-format>
<populate>true</populate>
<coalesce>false</coalesce>
<batch-size>2</batch-size>
<delay-seconds>3</delay-seconds>
<buffer-size>32</buffer-size>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy=

"LFU"/>

<indexes>
<index ordered="true">...</index>
</indexes>
</query-cache>
</query-caches>
</map>

</hazelcast>

Continuous query caches have the following configuration elements:

316

name: Name of your continuous query cache.
include-value: Specifies whether the value will be cached too. Its default value is true.
predicate: Predicate to filter events which are applied to the query cache.

entry-listeners: Adds listeners (listener classes) for your query cache entries. See the
Registering Map Listeners section.

in-memory-format: Type of the data to be stored in your query cache. See the Setting In-Memory
Format section. Its default value is BINARY.

populate: Specifies whether the initial population of your query cache is enabled. Its default
value is true.

coalesce: Specifies whether the coalescing of your query cache is enabled. Its default value is
false.

delay-seconds: Minimum time in seconds that an event waits in the member’s buffer. Its default
value is 0.

batch-size: Batch size used to determine the number of events sent in a batch to your query
cache. Its default value is 1.



* buffer-size: Maximum number of events which can be stored in a partition buffer. Its default
value is 16.

* eviction: Configuration for the eviction of your query cache. See the Configuring Map Eviction
section.

* indexes: Indexes for your query cache defined by using this element’s <index> sub-elements. See
the Configuring IMap Indexes section.

Please take the following configuration considerations and publishing logic into account:

If delay-seconds is equal to or smaller than 0, then batch-size loses its function. Each time there is
an event, all the entries in the buffer are pushed to the subscriber.

If delay-seconds is bigger than 0, the following logic applies:

 If coalesce is set to true, the buffer is checked for an event with the same key; if so, it is
overridden by the current event. Then:

o The current size of the buffer is checked: if the current size of the buffer is equal to or larger
than batch-size, then the events counted as much as the batch-size are pushed to the
subscriber. Otherwise, no events are sent.

o After finishing with checking batch-size, the delay-seconds is checked. The buffer is scanned
from the oldest to youngest entries; all the entries that are older than delay-seconds are
pushed to the subscriber.

12. CP Subsystem

The CP subsystem is a component of a Hazelcast cluster that builds an in-memory strongly
consistent layer. It is accessed via HazelcastInstance.getCPSubsystem(). Its data structures are CP
with respect to the CAP principle, i.e., they always maintain linearizability and prefer consistency
over availability during network partitions.

Currently, the CP subsystem contains only the implementations of Hazelcast’s concurrency APIs.
These APIs do not maintain large states. For this reason, all members of a Hazelcast cluster do not
take part in the CP subsystem. The number of members that take part in the CP subsystem is
specified with CPSubsystemConfig.setCPMemberCount(int). Let’s suppose the number of CP members
is configured as C. Then, when Hazelcast cluster starts, the first C members form the CP subsystem.
These members are called the CP members and they can also contain data for the other regular
Hazelcast data structures, such as IMap, ISet.

Data structures in the CP subsystem run in CPGroups. A CP group consists of an odd number of
(PMembers between 3 and 7. Each CP group independently runs the Raft consensus algorithm.
Operations are committed and executed only after they are successfully replicated to the majority
of the CP members in a CP group. For instance, in a CP group of 5 CP members, operations are
committed when they are replicated to at least 3 CP members. The size of CP groups is specified via
CPSubsystemConfig.setGroupSize(int) and each CP group contains the same number of CP members.
See the CP Subsystem Configuration section for configuration details.

Please note that the size of CP groups does not have to be same with the CP member count. Namely,

317


http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
https://aphyr.com/posts/313-strong-consistency-models
https://raft.github.io/

the number of CP members in the CP subsystem can be larger than the configured CP group size. In
this case, CP groups are formed by selecting the CP members randomly. Also note that the current
CP subsystem implementation works only in memory, without persisting any state to disk. It means
that a crashed CP member is not able to recover by reloading its previous state. Therefore, crashed
CP members create a danger for gradually losing the majority of CP groups and eventually cause
the total loss of availability of the CP subsystem. To prevent such situations, failed CP members can
be removed from the CP subsystem and replaced in CP groups with other available CP members.
This flexibility provides a good degree of fault tolerance at run-time. See the CP Subsystem
Management section for more details.

The CP subsystem runs 2 CP groups by default. The first one is the Metadata group. It is an internal
CP group which is responsible for managing the CP members and CP groups. It is initialized during
the cluster startup process if the Cp subsystem is enabled via
(PSubsystemConfig.setCPMemberCount(int) configuration. The second group is the DEFAULT CP
group, whose name is given in CPGroup.DEFAULT_GROUP_NAME. If a group name is not specified while
creating a proxy for a CP data structure, that data structure is mapped to the DEFAULT CP group.
For  instance, when a CP IAtomiclong  instance is  created by  calling
CPSubsystem.getAtomicLong("myAtomicLong"), it will be initialized on the DEFAULT CP group. Besides
these 2 predefined CP groups, custom CP groups can be created at run-time. If a CP IAtomiclong is
created by calling CPSubsystem.getAtomicLong("myAtomicLong@emyGroup"), first a new CP group is
created with the name myGroup and then myAtomicLong is initialized on this custom CP group.

The current set of CP data structures have quite low memory overheads. Moreover, related to the
Raft consensus algorithm, each CP group makes use of internal heartbeat RPCs to maintain the
authority of the leader member and help lagging CP members to make progress. Last but not least,
the new CP Lock and Semaphore implementations rely on a brand new session mechanism. In a
nutshell, a Hazelcast member or client starts a new session on the corresponding CP group when it
makes its very first Lock or Semaphore acquire request, and then periodically commits session
heartbeats to this CP group to indicate its liveliness. It means that if CP Locks and Semaphores are
distributed into multiple CP groups, there will be a session management overhead. See the CP
Sessions section for more details. For the aforementioned reasons, we recommend you to use a
minimal number of CP groups. For most use cases, the DEFAULT CP group should be sufficient to
maintain all CP data structure instances. Custom CP groups could be created when the throughput
of CP subsystem is needed to be improved.

API Code Sample:

CPSubsystem cpSubsystem = hazelcastInstance.getCPSubsystem();
IAtomicLong atomicLong = cpSubsystem.getAtomicLong(name);
IAtomicReference atomicRef = cpSubsystem.getAtomicReference(name);
FencedLock lock = cpSubsystem.getLock(name);

ISemaphore semaphore = cpSubsystem.getSemaphore(name);

ICountDownLatch latch = cpSubsystem.getCountDownLatch(name);

318



The CP data structure proxies differ from the other data structure proxies in two
aspects:

* Each time you fetch a proxy via one of the methods in this interface, internally
a commit is performed on the Metadata CP group. Hence, the callers should
A cache the returned proxies.

o If you call the DistributedObject.destroy() method on a CP data structure
proxy, that data structure is terminated on the underlying CP group and cannot
be reinitialized until the CP group is force-destroyed. For this reason, please
make sure that you are completely done with a CP data structure before
destroying its proxy.

12.1. CP Subsystem Discovery

The CP subsystem runs a discovery process in the background on cluster startup. When you enable
it by setting a positive value to CPSubsystemConfig.setCPMemberCount(int), say N, the first N members
in the cluster member list initiate the discovery process. Other Hazelcast members skip this step.
The CP subsystem discovery process runs out of the box on top of Hazelcast’s cluster member list
without requiring any custom configuration for different environments. It is completed when each
one of the first N Hazelcast members initializes its local CP member list and commits it to the
Metadata CP group. The Metadata CP group is initialized among those CP members as well. A soon-
to-be CP member terminates itself if any of the following conditions occur before the CP
discovery process is completed:

* Any Hazelcast member leaves the cluster,

» The local Hazelcast member commits a CP member list which is different from other members'
committed CP member lists,

» The local Hazelcast member list fails to commit its discovered CP member list for any reason.

When the CP subsystem is restarted via CPSubsystemManagementService.restart(), the CP subsystem
discovery process is triggered again. However, it does not terminate Hazelcast members if the
discovery fails for the aforementioned reasons, because Hazelcast members are likely to contain
data for AP data structures and termination can cause data loss. Hence, you need to observe the
cluster and check if the discovery process completes successfully on CP subsystem restart. See CP
Subsystem Management APIs section for more details.

You can use the CPSubsystemManagementService.awaitUntilDiscoveryCompleted(timeout, timeUnit)
API to wait until the CP Subsystem discovery process is completed.

12.2. CP Sessions

For CP data structures which are performing ownership management of the resources, such as
Lock or Semaphore, a session is required to keep track of the liveliness of the caller. In this context,
the caller means an entity that uses the CP subsystem APIs. It can be either a Hazelcast member or
a client. A caller initially creates a session before sending its very first session based request to the
CP group, such as a Lock / Semaphore acquire. After creating a session on the CP group, the caller

319



stores its session ID locally and sends it alongside its session based operations. A single session is
used for all lock and semaphore proxies of the caller. When a CP group receives a session based
operation, it checks the validity of the session using the session ID information available in the
operation. A session is valid if it is still open in the CP group. An operation with a valid session ID is
accepted as a new session heartbeat. While a caller is idle, in other words, it does not send any
session based operation to the CP group for a while, it commits periodic heartbeats to the CP group
in the background in order to keep its session alive. This interval is specified in
CPSubsystemConfig.getSessionHeartbeatIntervalSeconds().

A session is closed when the caller does not touch the session during a predefined duration. In this
case, the caller is assumed to be crashed and all its resources are released automatically. This
duration is specified in CPSubsystemConfig.getSessionTimeToLiveSeconds(). See the CP Subsystem
Configuration section to learn the recommendations for choosing a reasonable session time-to-live
duration.

Sessions offer a trade-off between liveliness and safety. If you set a very small value using
CPSubsystemConfig.setSessionTimeToLiveSeconds(int), then a session owner could be considered
crashed very quickly and its resources can be released prematurely. On the other hand, if you set a
large value, a session could be kept alive for an unnecessarily long duration even if its owner
actually crashes.

See the CP Subsystem Configuration section for more details.

12.3. FencedLock

FencedLock is a linearizable & distributed & reentrant implementation of j.u.c.locks.Lock.
FencedlLock is accessed via CPSubsystem.getLock(String). It is CP with respect to the CAP principle. It
works on top of the Raft consensus algorithm. It offers linearizability during crash-stop failures and
network partitions. If a network partition occurs, it remains available on at most one side of the
partition. FencedLock works on top of CP sessions. Please see CP Sessions section for more
information about CP sessions.

By default, FencedlLock is reentrant. Once a caller acquires the lock, it can acquire the lock
reentrantly as many times as it wants in a linearizable manner. You can configure the reentrancy
behavior via FencedLockConfig. For instance, reentrancy can be disabled and FencedLock can work as
a non-reentrant mutex. You can also set a custom reentrancy limit. When the reentrancy limit is
already reached, Fencedlock does not block a lock call. Instead, it fails with
LockAcquireLimitReachedException or a specified return value. Please check the locking methods to
see details about the behavior and FencedLock Configuration section for the configuration.

Distributed locks are unfortunately not equivalent to single-node mutexes because of the
complexities in distributed systems, such as uncertain communication patterns, and independent
and partial failures. In an asynchronous network, no lock service can guarantee mutual exclusion,
because there is no way to distinguish between a slow and a crashed process. Consider the
following scenario, where a Hazelcast client acquires a FencedLock, then hits a long GC pause. Since
it will not be able to commit session heartbeats while paused, its CP session will be eventually
closed. After this moment, another Hazelcast client can acquire this lock. If the first client wakes up
again, it may not immediately notice that it has lost ownership of the lock. In this case, multiple
clients think they hold the lock. If they attempt to perform an operation on a shared resource, they

320



can break the system. To prevent such situations, you can choose to use an infinite session timeout,
but this time probably you are going to deal with liveliness issues. For the scenario above, even if
the first client actually crashes, the requests sent by two clients can be reordered in the network
and hit the external resource in the reverse order.

There is a simple solution for this problem. Lock holders are ordered by a monotonic fencing token,
which increments each time the lock is assigned to a new owner. This fencing token can be passed
to external services or resources to ensure sequential execution of the side effects performed by
lock holders.

The following diagram illustrates the idea. Client-1 acquires the lock first and receives 1 as its
fencing token. Then, it passes this token to the external service, which is our shared resource in this
scenario. Just after that, Client-1 hits a long GC pause and eventually loses ownership of the lock
because it misses to commit CP session heartbeats. Then, Client-2 chimes in and acquires the lock.
Similar to Client-1, Client-2 passes its fencing token to the external service. After that, once Client-1
comes back alive, its write request will be rejected by the external service, and only Client-2 will be
able to safely talk to it.

client 1's session is expired >
l time
@ Iock is acquared by client 1 !ock is acqulred by cl1ent 2 .
fence=1 fence=2

lock
zko client 1 is paused
set_fence(1)
client 1
lock()
client 2
@ service belongs to client 1 sewlc.e belongs to cllent 2

external service

You can read more about the fencing token idea in Martin Kleppmann’s How to do distributed
locking blog post and Google’s Chubby paper. FencedlLock integrates this idea with the
j.u.c.locks.Lock abstraction, excluding j.u.c.locks.Condition. newCondition() is not implemented
and throws UnsupportedOperationException.

All of the API methods in the new FencedlLock abstraction offer exactly-once execution semantics.
For instance, even if a lock() call is internally retried because of a crashed CP member, the lock is
acquired only once. The same rule also applies to the other methods in the APIL

12.4. Configuration

321


https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://ai.google/research/pubs/pub27897

12.

322

4.1. CP Subsystem Configuration

cp-member-count: Number of CPMembers to initialize the CPSubsystem. It is @ by default, meaning
that the CP subsystem is disabled. The CP subsystem is enabled when a positive value is set.
After the CP subsystem is initialized successfully, more CP members can be added at run-time
and the number of active CP members can go beyond the configured CP member count. The
number of CP members can be smaller than the total size of the Hazelcast cluster. For instance,
you can run 5 CP members in a 20-member Hazelcast cluster.

If set, must be greater than or equal to group-size.

group-size: Number of CP members to run CP groups. If set, it must be an odd number between
3 and 7. Otherwise, cp-member-count is respected.

If set, must be smaller than or equal to cpMemberCount.

session-time-to-live-seconds: Duration for a CP session to be kept alive after the last received
heartbeat. The session will be closed if there is no new heartbeat during this duration. Session
TTL must be decided wisely. If a very low value is set, CP session of a Hazelcast instance can be
closed prematurely if the instance temporarily loses connectivity to the CP subsystem because
of a network partition or a GC pause. In such an occasion, all CP resources of this Hazelcast
instance, such as FencedLock or ISemaphore, are released. On the other hand, if a very large value
is set, CP resources can remain assigned to an actually crashed Hazelcast instance for too long
and liveliness problems can occur. The CP subsystem offers an API CPSessionManagementService,
to deal with liveliness issues related to CP sessions. In order to prevent premature session
expires, session TTL configuration can be set a relatively large value and
(PSessionManagementService.forceCloseSession(String, long) can be manually called to close CP
session of a crashed Hazelcast instance.

Must be greater than session-heartbeat-interval-seconds, and smaller than or equal to missing-
cp-member-auto-removal-seconds. Default value is 300 seconds.

session-heartbeat-interval-seconds: Interval for the periodically-committed CP session
heartbeats. A CP session is started on a CP group with the first session based request of a
Hazelcast instance. After that moment, heartbeats are periodically committed to the CP group.

Must be smaller than session-time-to-1ive-seconds. Default value is 5 seconds.

missing-cp-member-auto-removal-seconds: Duration to wait before automatically removing a
missing CP member from the CP subsystem. When a CP member leaves the cluster, it is not
automatically removed from the CP subsystem, since it could be still alive and left the cluster
because of a network partition. On the other hand, if a missing CP member is actually crashed, it
creates a danger for its CP groups, because it will be still part of majority calculations. This
situation could lead to losing majority of CP groups if multiple CP members leave the cluster
over time.

With the default configuration, missing CP members will be automatically removed from the CP
subsystem after 4 hours. This feature is very useful in terms of fault tolerance when CP member
count is also configured to be larger than group size. In this case, a missing CP member will be
safely replaced in its CP groups with other available CP members in the CP subsystem. This



configuration also implies that no network partition is expected to be longer than the
configured duration.

If a missing CP member comes back alive after it is automatically removed from the CP
subsystem with this feature, that CP member must be terminated manually.

Must be greater than or equal to session-time-to-1live-seconds. Default value is 14400 seconds (4
hours).

» fail-on-indeterminate-operation-state: Offers a choice between at-least-once and at-most-once
execution of the operations on top of the Raft consensus algorithm. It is disabled by default and
offers at-least-once execution guarantee. If enabled, it switches to at-most-once execution
guarantee. When you invoke an API method on a CP data structure proxy, it replicates an
internal operation to the corresponding CP group. After this operation is committed to majority
of this CP group by the Raft leader node, it sends a response for the public API call. If a failure
causes loss of the response, then the calling side cannot determine if the operation is committed
on the CP group or not. In this case, if this configuration is disabled, the operation is replicated
again to the CP group, and hence could be committed multiple times. If it is enabled, the public
API call fails with IndeterminateOperationStateException.

Default value is false.

Declarative Configuration:

<hazelcast>

<cp-subsystem>
<cp-member-count>7</cp-member-count>
<group-size>3</group-size>
<session-time-to-live-seconds>300</session-time-to-1live-seconds>
<session-heartbeat-interval-seconds>5</session-heartbeat-interval-seconds>
<missing-cp-member-auto-removal-seconds>14400</missing-cp-member-auto-removal-
seconds>
<fail-on-indeterminate-operation-state>false</fail-on-indeterminate-operation-
state>
</cp-subsystem>

</hazelcast>
Programmatic Configuration:

config.getCPSubsystemConfig()
.setCPMemberCount(7)
.setGroupSize(3)
.setSessionTimeTolLiveSeconds(300)
.setSessionHeartbeatIntervalSeconds(5)
.setMissingCPMemberAutoRemovalSeconds(14400)
.setFailOnIndeterminateOperationState(false);

323



12.4.2. FencedLock Configuration

* name: Name of the FencedlLock.

* lock-acquire-limit: Maximum number of reentrant lock acquires. Once a caller acquires the
lock this many times, it will not be able to acquire the lock again, until it makes at least one
unlock() call.

By default, no upper bound is set for the number of reentrant lock acquires, which means that
once a caller acquires a FencedlLock, all of its further lock() calls will succeed. However, for
instance, if you set lock-acquire-limit to 2, once a caller acquires the lock, it will be able to
acquire it once more, but its third lock() call will not succeed.

If Tock-acquire-1imit is set to 1, then the lock becomes non-reentrant.

0 means there is no upper bound for the number of reentrant lock acquires. Default value is 0.

Declarative Configuration:

<hazelcast>
<cp-subsystem>
<locks>

<fenced-lock>
<name>reentrant-lock</name>
<lock-acquire-1limit>0</lock-acquire-limit>

</fenced-1lock>

<fenced-lock>
<name>limited-reentrant-lock</name>
<lock-acquire-1imit>10</lock-acquire-limit>

</fenced-lock>

<fenced-lock>
<name>non-reentrant-lock</name>
<lock-acquire-limit>1</lock-acquire-limit>

</fenced-1lock>

</locks>
</cp-subsystem>

</hazelcast>
Programmatic Configuration:

config.getCPSubsystemConfig()
.addLockConfig(new FencedLockConfig("reentrant-lock", 0))
.addLockConfig(new FencedLockConfig("limited-reentrant-lock", 10))
.addLockConfig(new FencedLockConfig("non-reentrant-lock", 1));

324



12.4.3. Semaphore Configuration

* name: Name of the CP ISemaphore.

* jdk-compatible: Enables / disables JDK compatibility of the CP ISemaphore. When it is JDK
compatible, just as in the j.u.c.Semaphore.release() method, a permit can be released without
acquiring it first, because acquired permits are not bound to threads. However, there is no auto-
cleanup of the acquired permits upon Hazelcast server / client failures. If a permit holder fails,
its permits must be released manually. When JDK compatibility is disabled, a HazelcastInstance
must acquire permits before releasing them and it cannot release a permit that it has not
acquired. It means, you can acquire a permit from one thread and release it from another
thread using the same HazelcastInstance, but not different HazelcastInstance's. In this mode,
acquired permits are automatically released upon failure of the holder ‘HazelcastInstance.
So there is a minor behavioral difference to the j.u.c.Semaphore.release() method.

JDK compatibility is disabled by default.

Declarative Configuration:

<hazelcast>
<cp-subsystem>

<semaphores>
<cp-semaphore>
<name>jdk-compatible-semaphore</name>
<jdk-compatible>true</jdk-compatible>
</cp-semaphore>
<cp-semaphore>
<name>another-semaphore</name>
<jdk-compatible>false</jdk-compatible>
</cp-semaphore>
</semaphores>
</cp-subsystem>

</hazelcast>
Programmatic Configuration:

config.getCPSubsystemConfig()
.addSemaphoreConfig(new CPSemaphoreConfig("jdk-compatible-semaphore”, true))
.addSemaphoreConfig(new CPSemaphoreConfig("another-semaphore", false));

12.4.4. Raft Algorithm Configuration

ﬁ These parameters tune specific parameters of Hazelcast’s Raft consensus
algorithm implementation and are only for power users.

325



* leader-election-timeout-in-millis: Leader election timeout in milliseconds. If a candidate
cannot win the majority of votes in time, a new election round is initiated. Default value is 2000
milliseconds.

* leader-heartbeat-period-in-millis: Period in milliseconds for a leader to send heartbeat
messages to its followers. Default value is 5000 milliseconds.

* max-missed-leader-heartbeat-count: Maximum number of missed leader heartbeats to trigger a
new leader election. Default value is 5.

* append-request-max-entry-count: Maximum entry count that can be sent in a single batch of
append entries request. Default value is 100.

* commit-index-advance-count-to-snapshot: Number of new commits to initiate a new snapshot
after the last snapshot. Default value is 10000.

* uncommitted-entry-count-to-reject-new-appends: Maximum number of uncommitted entries in
the leader’s Raft log before temporarily rejecting the new requests of callers. Default value is
100.

* append-request-backoff-timeout-in-millis: Timeout in milliseconds for append request backoff.
After the leader sends an append request to a follower, it will not send a subsequent append
request until the follower responds to the former request or this timeout occurs. Default value
is 100 milliseconds.

Declarative Configuration:

<hazelcast>
<cp-subsystem>

<raft-alqorithm>
<leader-election-timeout-in-millis>2000</1leader-election-timeout-in-
millis>
<leader-heartbeat-period-in-millis>5000</1eader-heartbeat-period-in-
millis>
<max-missed-leader-heartbeat-count>5</max-missed-leader-heartbeat-count>
<append-request-max-entry-count>100</append-request-max-entry-count>
<commit-index-advance-count-to-snapshot>10000</commit-index-advance-count-
to-snapshot>
<uncommitted-entry-count-to-reject-new-appends>200</uncommitted-entry-
count-to-reject-new-appends>
<append-request-backoff-timeout-in-millis>250</append-request-backoff-
timeout-in-millis>
</raft-alqorithm>

</cp-subsystem>

</hazelcast>

Programmatic Configuration:

326



config.getCPSubsystemConfig()
.getRaftAlgorithmConfig()
.setlLeaderElectionTimeoutInMillis(2000)
.setLeaderHeartbeatPeriodInMillis(5000)
.setMaxMissedLeaderHeartbeatCount(5)
.setAppendRequestMaxEntryCount(50)
.setAppendRequestMaxEntryCount(1000)
.setUncommittedEntryCountToRejectNewAppends(200)
.setAppendRequestBackoffTimeoutInMillis(250);

12.5. CP Subsystem Management

Unlike the dynamic nature of Hazelcast clusters, the CP subsystem requires manual intervention
while expanding/shrinking its size, or when a CP member crashes or becomes unreachable. When a
CP member becomes unreachable, it cannot be automatically removed from the CP subsystem
because it could be still alive and partitioned away.

Moreover, the current CP subsystem implementation works only in memory without persisting any
state to disk. It means that a crashed CP member will not be able to recover by reloading its
previous state. Therefore, crashed CP members create a danger for gradually losing the majority of
CP groups and eventually total loss of the availability of the CP subsystem. To prevent such
situations, CPSubsystemManagementService offers APIs for dynamic management of the CP members.

The CP subsystem relies on Hazelcast’s failure detectors to test the reachability of CP members.
Before removing a CP member from the CP subsystem, please make sure that it is declared as
unreachable by Hazelcast’s failure detector and removed from the Hazelcast’s member list.

CP member additions and removals are internally handled by performing a single membership
change at a time. When multiple CP members are shutting down concurrently, their shutdown
process is executed serially. First, the Metadata CP group creates a membership change plan for CP
groups. Then, the scheduled changes are applied to the CP groups one by one. After all removals are
done, the shutting down CP member is removed from the active CP members list and its shutdown
process is completed.

When a CP member is being shut down, it is replaced with another available CP member in all of its
CP groups, including the Metadata group, in order not to decrease or more importantly not to lose
the majority of CP groups. If there is no available CP member to replace a shutting down CP
member in a CP group, that group’s size is reduced by 1 and its majority value is recalculated.

A new CP member can be added to the CP subsystem to either increase the number of available CP
members for new CP groups or to fulfill the missing slots in the existing CP groups. After the initial
Hazelcast cluster startup is done, an existing Hazelcast member can be be promoted to the CP
member role. This new CP member automatically joins to CP groups that have missing members,
and the majority value of these CP groups is recalculated.

A CP member may crash due to hardware problems or a defect in user code, or it may become
unreachable because of connection problems, such as network partitions, network hardware
failures, etc. If a CP member is known to be alive but only has temporary communication issues, it

327



will catch up the other CP members and continue to operate normally after its communication
issues are resolved. If it is known to be crashed or communication issues cannot be resolved in a
short time, it can be preferable to remove this CP member from the CP subsystem, hence from all its
CP groups. In this case, the unreachable CP member should be terminated to prevent any accidental
communication with the rest of the CP subsystem.

When the majority of a CP group is lost for any reason, that CP group cannot make progress
anymore. Even a new CP member cannot join to this CP group, because membership changes also
go through the Raft consensus algorithm. For this reason, the only option is to force-destroy the CP
group via the CPSubsystemManagementService.forceDestroyCPGroup() API. When this API is used, the
CP group is terminated non-gracefully, without the Raft algorithm mechanics. Then, all CP data
structure proxies that talk to this CP group fail with CPGroupDestroyedException. However, if a new
proxy is created afterwards, then this CP group will be recreated from the scratch with a new set of
CP members. Losing the majority of a CP group can be likened to partition-loss scenario of AP
Hazelcast.

Please note that the CP groups that have lost their majority must be force-destroyed immediately,
because they can block the Metadata CP group to perform membership changes.

Loss of the majority of Metadata CP group is the doomsday scenario for the CP subsystem. It is a
fatal failure and the only solution is to reset the whole CP subsystem state via the
(PSubsystemManagementService.restart() APL To be able to reset the CP subsystem, the initial size of
the CP subsystem must be satisfied, which is defined by CPSubsystemConfig.getCPMemberCount(). For
instance, assuming that CPSubsystemConfig.getCPMemberCount() is 5 and only 1 CP member is
currently alive, when CPSubsystemManagementService.restart() is called, additional 4 regular
Hazelcast members should exist in the cluster. New Hazelcast members can be started to satisfy
CPSubsystemConfig.getCPMemberCount().

328



There is a subtle point about graceful shutdown of CP members. If there are N CP
members in the cluster, HazelcastInstance.shutdown() can be called on N-2 CP
members concurrently. Once these N-2 CP members complete their shutdown, the
remaining 2 CP members must be shut down serially. Even though the shutdown
API is called concurrently on multiple members, the Metadata CP group handles
shutdown requests serially. Therefore, it would be simpler to shut down CP
members one by one, by calling HazelcastInstance.shutdown() on the next CP
member once the current CP member completes its shutdown. The reason behind
this limitation is, each shutdown request internally requires a Raft commit to the
Metadata CP group. A CP member proceeds to shutdown after it receives a
response of its commit to the Metadata CP group. To be able to perform a Raft
O commit, the Metadata CP group must have its majority available. When there are
only 2 CP members left after graceful shutdowns, the majority of the Metadata CP
group becomes 2. If the last 2 CP members shut down concurrently, one of them is
likely to perform its Raft commit faster than the other one and leave the cluster
before the other CP member completes its Raft commit. In this case, the last CP
member waits for a response of its commit attempt on the Metadata group, and
times out eventually. This situation causes an unnecessary delay on shutdown
process of the last CP member. On the other hand, when the last 2 CP members
shut down serially, the "N-1"th member receives response of its commit after its
shutdown request is committed also on the last CP member. Then, the last CP
member checks its local data to notice that it is the last CP member alive, and
proceeds its shutdown without attempting a Raft commit on the Metadata CP

group.

12.5.1. CP Subsystem Management APIs

You can access the CP subsystem management APIs using the Java API or REST interface. To
communicate with the REST interface there are two options; one is to access REST endpoint URL
directly or using the cp-subsystem.sh shell script, which comes with the Hazelcast package.

O The cp-cluster.sh script uses curl command, and curl must be installed to be able
to use the script.

* Get Local CP Member:
Returns the local CP member if this Hazelcast member is a part of the CP Subsystem.

Java API

CPMember localMember = cpSubsystem.getLocalCPMember();

329



REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members/local

OR
> sh cp-subsystem.sh -o get-local-member --address 127.0.0.1 --port 5701
+
Sample Response:
{
"uuid": "6428d7fd-6079-48b2-902c-bdf6a376051e",
"address": "[127.0.0.1]:5701"
}

* Get CP Groups:
Returns the list of active CP groups.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
ICompletableFuture<Collection<CPGroupId>> future = managementService.getCPGroupIds

0);
Collection<CPGroupId> groups = future.get();

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups

OR

> sh cp-subsystem.sh -o get-groups --address 127.0.0.1 --port 5701

+

Sample Response:

[{
"name": "METADATA",
"id": 0

oA
"name": "atomics",
"id": 8

b A
"name": "locks",
"id": 14

}

* Get a single CP Group:

Returns the active CP group with the given name. There can be at most one active CP group with
a given name.

330



Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<CPGroup> future = managementService.getCPGroup(groupName);
CPGroup group = future.get();

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME }
OR
> sh cp-subsystem.sh -o get-group --group ${CPGROUP_NAME} --address 127.0.0.1

--port 5701
+
Sample Response:
{
"id": {
"name": "locks",
"id": 14
Iy
"status": "ACTIVE",
"members": [{
"uuid": "33f84b0f-46ba-4a41-9e0@a-29ee284c1c2a",
"address": "[127.0.0.1]:5703"
}oAo
"uuid": "59ca804c-312c-4cdb-95ff-906b2db13ach",
"address": "[127.0.0.1]:5704"
oA
"uuid": "777ffbea-b8a3-478d-9642-47d1db019b37",
"address": "[127.0.0.1]:5705"
o
"uuid": "c7856e0f-25d2-4717-9919-88fb3ecb3384",
"address": "[127.0.0.1]:5702"
oA
"uuid": "c6229b44-8976-4602-bb57-d13cf743ccef",
"address": "[127.0.0.1]:5701"
}
}

* Get CP Members:
Returns the list of active CP members in the cluster.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<Collection<CPMember>> future = managementService.getCPMembers();
Collection<CPMember> members = future.get();

331



REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members

OR

> sh cp-subsystem.sh -o get-members --address 127.0.0.1 --port 5701
+

Sample Response:

[{

"uuid": "33f84b0f-46ba-4a41-9e0a-29ee284cl1c2a",
"address": "[127.0.0.1]:5703"

hoA
"uuid": "59ca804c-312c-4cdb-95ff-906b2db13ach”,

"address": "[127.0.0.1]:5704"

oo
"uuid": "777ff6ea-b8a3-478d-9642-47d1db019b37",
"address": "[127.0.0.1]:5705"

Ao
"uuid": "c6229b44-8976-4602-bb57-d13cf743ccef",
"address": "[127.0.0.1]:5701"

oo
"uuid": "c7856e0f-25d2-4717-9919-88fb3ecb3384",
"address": "[127.0.0.1]:5702"

}

* Force Destroy a CP Group:

Unconditionally destroys the given active CP group without using the Raft algorithm mechanics.
This method must be used only when a CP group loses its majority and cannot make progress
anymore. Normally, membership changes in CP groups, such as CP member promotion or
removal, are done via the Raft consensus algorithm . However, when a CP group loses its
majority, it will not be able to commit any new operation. Therefore, this method ungracefully
terminates the remaining members of the given CP group. It also performs a Raft commit to the
Metadata CP group in order to update the status of the destroyed group. Once a CP group ID is
destroyed, all CP data structure proxies created before the destroy fails with
CPGroupDestroyedException

Once a CP group is destroyed, it can be created again with a new set of CP members. This
method is idempotent. It has no effect if the given CP group is already destroyed.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<Void> future = managementService.forceDestroyCPGroup(groupName);
future.get();

332



REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME}/remove
OR

> sh cp-subsystem.sh -o force-destroy-group --group ${CPGROUP_NAME} --address
127.0.0.1 --port 5701 --groupname ${GROUPNAME} --password ${PASSWORD}

* Remove a CP Member:

Removes the given unreachable CP member from the active CP members list and all CP groups
it belongs to. If any other active CP member is available, it will replace the removed CP member
in its CP groups. Otherwise, CP groups which the removed CP member is a member of will
shrink and their majority values will be recalculated.

Before removing a CP member from the CP subsystem, please make sure that it

A is declared as unreachable by Hazelcast’s failure detector and removed from
Hazelcast’s member list. The behavior is undefined when a running CP
member is removed from the CP subsystem.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<Void> future = managementService.removeCPMember (memberUUID);
future.get();

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members/${CPMEMBER_UUID}/remove
OR

> sh cp-subsystem.sh -o remove-member --member ${CPMEMBER_UUID} --address 127.0.0.1
--port 5701 --groupname ${GROUPNAME} --password ${PASSWORD}

* Promote Local Member to a CP Member

Promotes the local Hazelcast member to a CP member. If the local member is already in the
active CP members list, then this method has no effect. When the current member is promoted
to a CP member, its member UUID is assigned as CP member UUID. The promoted CP member
will be added to the CP groups that have missing members, i.e.,, whose size is smaller than
CPSubsystemConfig.getGroupSize().

333



Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<Void> future = managementService.promoteToCPMember();
future.get();

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members

OR

> sh cp-subsystem.sh -o promote-member --address 127.0.0.1 --port 5701 --groupname
${GROUPNAME} --password ${PASSWORD}

* Wipe and Restart CP Subsystem

Wipes and resets the whole CP subsystem and initializes it as if the Hazelcast cluster is starting
up initially. This method must be used only when the Metadata CP group loses its majority and
cannot make progress anymore.

After this method is called, all CP state and data are wiped and the CP members start with
empty state.

This method can be invoked only from the Hazelcast master member. Moreover, the Hazelcast
cluster must have at least CPSubsystemConfig.getCPMemberCount() members.

This method must not be called while there are membership changes in the cluster. Before
calling this method, please make sure that there is no new member joining and all existing
Hazelcast members have seen the same member list.

This method is NOT idempotent and multiple invocations can break the whole
A system! After calling this API, you must observe the system to see if the restart
process is successfully completed or failed before making another call.

Java API
CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();

ICompletableFuture<Void> future = managementService.restart();
future.get();

334



REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/restart

OR

> sh cp-subsystem.sh -o restart --address 127.0.0.1 --port 5701 --groupname
${GROUPNAME} --password ${PASSWORD}

12.5.2. Session Management API
There are two management API methods for session management.
* Get CP Group Sessions:
Returns all CP sessions that are currently active in a CP group.

Java API

CPSessionManagementService sessionManagementService = cpSubsystem
.getCPSessionManagementService();

ICompletableFuture<Collection<CPSession>> future = sessionManagementService
.getAl1Sessions(groupName);

Collection<CPSession> sessions = future.get();

335



336

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions

OR

> sh cp-subsystem.sh -o get-sessions --group ${CPGROUP_NAME} --address 127.0.0.1

--port 5701

+

Sample Response:

[{
"id": 1,
"creationTime": 1549008095530,
"expirationTime": 1549008766630,
"version": 73,
"endpoint": "[127.0.0.1]:5701",
"endpointType": "SERVER",
"endpointName": "hz-member-1"

FoA
"id": 2,
"creationTime": 1549008115419,
"expirationTime": 1549008765425,
"version": 71,
"endpoint": "[127.0.0.1]:5702",
"endpointType": "SERVER",
"endpointName": "hz-member-2"

]

Force Close a Session:

If a Hazelcast instance that owns a CP session crashes, its CP session is not terminated
immediately. Instead, the session is closed after
(PSubsystemConfig.getSessionTimeToLiveSeconds() passes. If it is known for sure that the session
owner is not partitioned and definitely crashed, this method can be used for closing the session
and releasing its resources immediately.

Java API

CPSessionManagementService sessionManagementService = cpSubsystem
.getCPSessionManagementService();

ICompletableFuture<Boolean> future = sessionManagementService.forceCloseSession
(groupName, sessionId);

future.get();



REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions/${CP_SESSION_ID}/remove

OR

> sh cp-subsystem.sh -o force-close-session --group ${CPGROUP_NAME} --session-id
${CP_SESSION_ID} --address 127.0.0.1 --port 5701 --groupname ${GROUPNAME}
--password ${PASSWORD}

13. Transactions

This chapter explains the usage of Hazelcast in a transactional context. It describes the Hazelcast
transaction types and how they work, how to provide XA (eXtended Architeture) transactions and
how to integrate Hazelcast with J2EE containers.

13.1. Creating a Transaction Interface

You create a TransactionContext object to begin, commit and rollback a transaction. You can obtain
transaction-aware instances of queues, maps, sets, lists and multimaps via TransactionContext, work
with them and commit/rollback in one shot. You can see the TransactionContext API here.

Hazelcast supports two types of transactions: ONE_PHASE and TWO_PHASE. The type of transaction
controls what happens when a member crashes while a transaction is committing. The default
behavior is TWO_PHASE.

* ONE_PHASE: By selecting this transaction type, you execute the transactions with a single phase
that is committing the changes. Since a preparing phase does not exist, the conflicts are not
detected. When a conflict happens while committing the changes, e.g., due to a member crash,
not all the changes are written and this leaves the system in an inconsistent state.

« TWO_PHASE: When you select this transaction type, Hazelcast first tries to execute the prepare
phase. This phase fails if there are any conflicts. Once the prepare phase is successful, Hazelcast
executes the commit phase (writing the changes). Before TWO_PHASE commits, Hazelcast
copies the commit log to other members, so in case of a member failure, another member can
complete the commit.

337


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/transaction/TransactionContext.html

public class TransactionalMember {

public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

TransactionOptions options = new TransactionOptions()
.setTransactionType( TransactionOptions.TransactionType.ONE_PHASE );

TransactionContext context = hazelcastInstance.newTransactionContext( options
context.beginTransaction();

TransactionalQueue queue = context.getQueue( "myqueue" );
TransactionalMap map = context.getMap( "mymap" );
TransactionalSet set = context.getSet( "myset" );

try {
Object obj = queue.poll();
//process obj
map.put( "1", "valuel" );
set.add( "value" );
//do other things
context.commitTransaction();

} catch ( Throwable t ) {
context.rollbackTransaction();

In a transaction, operations are not executed immediately. Their changes are local to the
TransactionContext until committed. However, they ensure the changes via locks.

For the above example, when map.put is executed, no data is put in the map but the key is locked
against changes. While committing, operations are executed, the value is put to the map and the
key is unlocked.

The isolation level in Hazelcast Transactions is READ_COMMITTED on the level of a single partition. If
you are in a transaction, you can read the data in your transaction and the data that is already
committed. If you are not in a transaction, you can only read the committed data.

0 The REPEATABLE_READ isolation level can also be exercised using the method
getForUpdate() of TransactionalMap.

The isolation levels might be broken if the objects involved in the transaction span
ﬁ multiple partitions. A reader which is not in a transaction can then temporarily
observe partially committed data.

338



13.1.1. Queue/Set/List vs. Map/Multimap

Hazelcast implements queue/set/list operations differently than map/multimap operations. For
queue operations (offer, poll), offered and/or polled objects are copied to the owner member in
order to safely commit/rollback. For map/multimap, Hazelcast first acquires the locks for the write
operations (put, remove) and holds the differences (what is added/removed/updated) locally for
each transaction. When the transaction is set to commit, Hazelcast releases the locks and apply the
differences. When rolling back, Hazelcast releases the locks and discard the differences.

MapStore and QueueStore do not participate in transactions. Hazelcast suppresses exceptions thrown
by the store in a transaction. See the XA Transactions section for further information.

13.1.2. ONE_PHASE vs. TWO_PHASE

As discussed in Creating a Transaction Interface, when you choose ONE_PHASE as the transaction
type, Hazelcast tracks all changes you make locally in a commit log, i.e., a list of changes. In this
case, all the other members are asked to agree that the commit can succeed and once they agree,
Hazelcast starts to write the changes. However, if the member that initiates the commit crashes
after it has written to at least one member (but has not completed writing to all other members),
your system may be left in an inconsistent state.

On the other hand, if you choose TWO_PHASE as the transaction type, the commit log is again
tracked locally but it is copied to another cluster member. Therefore, when a failure happens, e.g.,
the member initiating the commit crashes, you still have the commit log in another member and
that member can complete the commit. However, copying the commit log to another member
makes the TWO_PHASE approach slow.

Consequently, it is recommended that you choose ONE_PHASE as the transaction type if you want
better performance, and that you choose TWO_PHASE if reliability of your system is more
important than the performance.

0 It should be noted that in split-brain situations or during a member failure,
Hazelcast might not be able to always hold ACID guarantees.

13.2. Providing XA Transactions

XA describes the interface between the global transaction manager and the local resource manager.
XA allows multiple resources (such as databases, application servers, message queues and
transactional caches) to be accessed within the same transaction, thereby preserving the ACID
properties across applications. XA uses a two-phase commit to ensure that all resources either
commit or rollback any particular transaction consistently (all do the same).

When you implement the XAResource interface, Hazelcast provides XA transactions. You can obtain
the HazelcastXAResource instance via the HazelcastInstance getXAResource method. You can see the
HazelcastXAResource API here.

Below is example code that uses JTA API for transaction management.

339


https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/transaction/HazelcastXAResource.html

cleanAtomikoslLogs();

HazelcastInstance instance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = instance.getXAResource();

UserTransactionManager tm = new UserTransactionManager();
tm.begin();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);

TransactionContext context = xaResource.getTransactionContext();
TransactionalMap<Object, Object> map = context.getMap("map");
map.put("key", "val");

transaction.delistResource(xaResource, XAResource.TMSUCCESS);

tm.commit();

IMap<Object, Object> m = instance.getMap("map");
Object val = m.get("key");
System.out.println("value:

+ val);

cleanAtomikoslLogs();
Hazelcast.shutdownAll();

14. Hazelcast JCache

This chapter describes the basics of JCache, the standardized Java caching layer API. The JCache
caching API is specified by the Java Community Process (JCP) as Java Specification Request (JSR)
107.

Caching keeps data in memory that either are slow to calculate/process or originate from another
underlying backend system. Caching is used to prevent additional request round trips for
frequently used data. In both cases, caching can be used to gain performance or decrease
application latencies.

14.1. JCache Overview

Hazelcast offers a specification-compliant JCache implementation. To show our commitment to this
important specification that the Java world was waiting for over a decade, we did not just provide a
simple wrapper around our existing APIs; we implemented a caching structure from the ground up
to optimize the behavior to the needs of JCache. The Hazelcast JCache implementation is 100% TCK
(Technology Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost
all operations to give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup

340



Hazelcast to be your JCache provider. It also shows examples of basic JCache usage as well as the
additionally offered features that are not part of JSR-107. To gain a full understanding of the JCache
functionality and provided guarantees of different operations, read the specification document
(which is also the main documentation for functionality) at the specification page of JSR-107.

14.1.1. Supported JCache Versions

The following versions of the JCache specification have been released:

* The original release, version 1.0.0, was released in March 2014. Hazelcast versions 3.3.1 up to
3.9.2 (included) implement version 1.0.0 of the JCache specification.

* A maintenance release, version 1.1.0 was released in December 2017. Hazelcast version 3.9.3
and higher implement JCache specification version 1.1.0.

* A patch release, version 1.1.1 was released in May 2019. Hazelcast version 3.12.1 and higher
implement JCache 1.1.1.

JCache 1.1.x versions are backwards compatible with JCache 1.0.0. As maintenance releases, JCache
1.1.x versions introduce clarifications and bug fixes in the specification, reference implementation
and TCK, without introducing any additional features.

14.1.2. Upgrading from JCache 1.1.0 to 1.1.1

JCache 1.1.1 is a bug-fix-only release. There are no behavioral differences between the JCache 1.1.0
and 1.1.1 specifications.

14.1.3. Upgrading from JCache 1.0.0 to 1.1.0

When upgrading from a Hazelcast version which implements JCache 1.0.0 to a version that
implements version 1.1.0 of the specification, some behavioral differences must be taken into
account:

* Invoking CacheManager.getCacheNames on a closed CacheManager returns an empty iterator under
JCache 1.0.0. While under JCache 1.1.0, it throws I11legalStateException.

* Runtime type checking is removed from CacheManager.getCache(String), so when using JCache
1.1.0 one may obtain a Cache by name even when its configured key/value types are not known.

» Statistics effects of Cache.putIfAbsent on misses and hits are properly applied when using
JCache 1.1.0, while under JCache 1.0.0 misses and hits were not updated.

Note that these behavioral differences apply on the Hazelcast member that executes the operation.
Thus when performing a rolling member upgrade from a JCache 1.0.0-compliant Hazelcast version
to a newer Hazelcast version that supports JCache 1.1.0, operations executed on the new members
exhibit JCache 1.1.0 behavior while those executed on old members implement JCache 1.0.0
behavior.

The complete list of issues addressed in JCache specification version 1.1.0 is available on Github.

341


https://www.jcp.org/en/jsr/detail?id=107
https://github.com/jsr107/jsr107spec/milestone/2?closed=1

14.2. JCache Setup and Configuration

This section shows what is necessary to provide the JCache API and the Hazelcast JCache
implementation for your application. In addition, it demonstrates the different configuration
options and describes the configuration properties.

14.2.1. Setting up Your Application

To provide your application with this JCache functionality, your application needs the JCache API
inside its classpath. This API is the bridge between the specified JCache standard and the
implementation provided by Hazelcast.

The method of integrating the JCache API JAR into the application classpath depends on the build
system used. For Maven, Gradle, SBT, Ivy and many other build systems, all using Maven-based
dependency repositories, perform the integration by adding the Maven coordinates to the build
descriptor.

As already mentioned, you have to add JCache coordinates next to the default Hazelcast coordinates
that might be already part of the application.

For Maven users, the coordinates look like the following code:

<dependency>
<groupId>javax.cache</groupld>
<artifactId>cache-api</artifactId>
<version>1.1.1</version>
</dependency>

With other build systems, you might need to describe the coordinates in a different way.

Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all.jar or
hazelcast.jar to the classpath (if not already available) by either one of the following Maven
snippets.

If you use hazelcast-all.jar:
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-all</artifactld>

<version>"your Hazelcast version, e.g., 3.10"</version>
</dependency>

If you use hazelcast.jar:

342



<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast</artifactId>
<version>"your Hazelcast version, e.g., 3.10"</version>
</dependency>

The users of other build systems have to adjust the definition of the dependency to their needs.

Connecting Clients to Remote Member

When the users want to use Hazelcast clients to connect to a remote cluster, the hazelcast-
client.jar dependency is also required on the client side applications. This JAR is already included
in hazelcast-all.jar. Or, you can add it to the classpath using the following Maven snippet:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-client</artifactId>
<version>"your Hazelcast version, e.g., 3.10"</version>
</dependency>

For other build systems, for instance, ANT, the users have to download these dependencies from
either the JSR-107 specification and Hazelcast community website (http://www.hazelcast.org) or
from the Maven repository search page (http://search.maven.org).

14.2.2. Example JCache Application

Before moving on to configuration, let’s have a look at a basic introductory example. The following
code shows how to use the Hazelcast JCache integration inside an application in an easy but
typesafe way.

343


https://hazelcast.org/
http://search.maven.org

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast member or client provider.
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager.
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache.
CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
.setTypes( String.class, String.class );

// Create and get the cache.

Cache<String, String> cache = cacheManager.createCache( "example", config );
// Alternatively to request an already existing cache:

// Cache<String, String> cache = cacheManager

// .getCache( name, String.class, String.class );

// Put a value into the cache.
cache.put( "world", "Hello World" );

// Retrieve the value again from the cache.
String value = cache.get( "world" );

// Print the value 'Hello World'.
System.out.println( value );

Although the example is simple, let’s go through the code lines one by one.

Getting the Hazelcast JCache Implementation

First of all, we retrieve the javax.cache.spi.CachingProvider using the static method from
javax.cache.Caching.getCachingManager (), which automatically picks up Hazelcast as the underlying
JCache implementation, if available in the classpath. This way, the Hazelcast implementation of a
CachingProvider automatically starts a new Hazelcast member or client (depending on the chosen
provider type) and pick up the configuration from either the command line parameter or from the
classpath. We will show how to use an existing HazelcastInstance later in this chapter; for now, we
keep it simple.

Setting up the JCache Entry Point

In the next line, we ask the CachingProvider to return a javax.cache.CacheManager. This is the general
application’s entry point into JCache. The CacheManager creates and manages named caches.

Configuring the Cache Before Creating It

The next few lines create a simple javax.cache.configuration.MutableConfiguration to configure the
cache before actually creating it. In this case, we only configure the key and value types to make the
cache typesafe which is highly recommended and checked on retrieval of the cache.

344



Creating the Cache

To create the cache, we call javax.cache.CacheManager.createCache() with a name for the cache and
the previously created configuration; the call returns the created cache. If you need to retrieve a
previously created cache, vyou <can use the corresponding method overload
javax.cache.CacheManager.getCache(). If the cache was created using type parameters, you must
retrieve the cache afterward using the type checking version of getCache.

get, put and getAndPut

The following lines are simple put and get calls from the java.util.Map interface. The
javax.cache.Cache.put() has a void return type and does not return the previously assigned value of
the key. To imitate the java.util.Map.put() method, the JCache cache has a method called getAndPut.

14.2.3. Configuring for JCache
Hazelcast JCache provides two different methods for cache configuration:

* declaratively: using hazelcast.xml or hazelcast-client.xml

» programmatically: the typical Hazelcast way, using the Config API seen above

Declarative Configuration

You can declare your JCache cache configuration using the hazelcast.xml or hazelcast-client.xml
configuration files. Using this declarative configuration makes creating the javax.cache.Cache fully
transparent and automatically ensures internal thread safety. You do not need a call to
javax.cache.Cache.createCache() in this case: you can retrieve the cache using
javax.cache.Cache.getCache() overloads and by passing in the name defined in the configuration
for the cache.

To retrieve the cache that you defined in the declaration files, you need only perform a simple call
(example below) because the cache is created automatically by the implementation.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager

.getCache( "default", Object.class, Object.class );

Note that this section only describes the JCache provided standard properties. For the Hazelcast
specific properties, see the ICache Configuration section.

345



<hazelcast>

<cache name="default">

<key-type class-name="java.lang.Object" />

<value-type class-name="java.lang.0Object" />

<statistics-enabled>false</statistics-enabled>

<management-enabled>false</management-enabled>

<read-through>true</read-through>

<write-through>true</write-through>

<cache-loader-factory
class-name="com.example.cache.MyCachelLoaderFactory" />

<cache-writer-factory
class-name="com.example.cache.MyCacheWriterFactory" />

<expiry-policy-factory
class-name="com.example.cache.MyExpiryPolicyFactory" />

<cache-entry-listeners>
<cache-entry-listener old-value-required="false" synchronous="false">

<cache-entry-listener-factory
class-name="com.example.cache.MyEntryListenerFactory" />
<cache-entry-event-filter-factory
class-name="com.example.cache.MyEntryEventFilterFactory" />

</cache-entry-listener>

</cache-entry-listeners>

</cache>

</hazelcast>

346

key-typeficlass-name: Fully qualified class name of the cache key type. Its default value is
java.lang.0Object

value-type#class-name: Fully qualified class name of the cache value type. Its default value is
java.lang.0Object

statistics-enabled: If set to true, statistics like cache hits and misses are collected. Its default
value is false.

management-enabled: If set to true, JMX beans are enabled and collected statistics are provided. It
doesn’t automatically enable statistics collection. Its default value is false.

read-through: If set to true, enables read-through behavior of the cache to an underlying
configured javax.cache.integration.CachelLoader which is also known as lazy-loading. Its default
value is false.

write-through: If set to true, enables write-through behavior of the cache to an underlying
configured javax.cache.integration.CacheWriter which passes any changed value to the
external backend resource. Its default value is false.

cache-loader-factory#class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.integration.Cacheloader instance to the cache.

cache-writer-factory#class-name: Fully qualified class name of the



javax.cache.configuration.Factory implementation providing a
javax.cache.integration.Cachellriter instance to the cache.

o expiry-policy-factory#-class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.expiry.ExpiryPolicy instance to the cache.

» cache-entry-listener: A set of attributes and elements, explained below, to describe a
javax.cache.event.CacheEntrylListener.

o cache-entry-listener#fold-value-required: If set to true, previously assigned values for the
affected keys are sent to the javax.cache.event.CacheEntrylListener implementation. Setting
this attribute to true creates additional traffic. Its default value is false.

o cache-entry-listener#synchronous: If set to true, the javax.cache.event.CacheEntrylListener
implementation is called in a synchronous manner. Its default value is false.

o cache-entry-listener/entry-listener-factory#iclass-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.event.CacheEntrylListener instance.

o cache-entry-listener/entry-event-filter-factory#class-name: Fully qualified class name of
the javax.cache.configuration.Factory implementation providing a
javax.cache.event.CacheEntryEventFilter instance.

The JMX MBeans provided by Hazelcast JCache show statistics of the local member
only. To show the cluster-wide statistics, the user should collect statistic
information from all members and accumulate them to the overall statistics.

Programmatic Configuration

To configure the JCache programmatically:

* either instantiate javax.cache.configuration.MutableConfiguration if you will use only the
JCache standard configuration,

* or instantiate com.hazelcast.config.CacheConfig for a deeper Hazelcast integration.

com.hazelcast.config.CacheConfig offers additional options that are specific to Hazelcast, such as
asynchronous and synchronous backup counts. Both classes share the same supertype interface
javax.cache.configuration.CompleteConfiguration which is part of the JCache standard.

To stay vendor independent, try to keep your code as near as possible to the
standard JCache API. We recommend that you use declarative configuration and

0 that you use the javax.cache.configuration.Configuration or
javax.cache.configuration.CompleteConfiguration interfaces in your code only
when you need to pass the configuration instance throughout your code.

If you don’t need to configure Hazelcast specific properties, we recommend that you instantiate
javax.cache.configuration.MutableConfiguration and that you use the setters to configure Hazelcast
as shown in the example in the Example JCache Application section. Since the configurable
properties are the same as the ones explained in the JCache Declarative Configuration section, they

347



are not mentioned here. For Hazelcast specific properties, please read the ICache Configuration
section section.

14.3. JCache Providers

Use JCache providers to create caches for a specification compliant implementation. Those
providers abstract the platform specific behavior and bindings and provide the different JCache
required features.

Hazelcast has two types of providers. Depending on your application setup and the cluster topology,
you can use the Client Provider (used by Hazelcast clients) or the Server Provider (used by cluster
members).

For more information on cluster topologies and Hazelcast clients, see the Hazelcast Topology
section.

14.3.1. Configuring JCache Provider

Configure the JCache javax.cache.spi.CachingProvider by either specifying the provider at the
command line or by declaring the provider inside the Hazelcast configuration XML file. For more
information on setting properties in this XML configuration file, see the JCache Declarative
Configuration section.

Hazelcast implements a delegating CachingProvider that can automatically be configured for either
client or member mode and that delegates to the real underlying implementation based on the
user’s choice. Hazelcast recommends that you use this CachingProvider implementation.

The delegating " CachingProvider s fully qualified class name is
com.hazelcast.cache.HazelcastCachingProvider

To configure the delegating provider at the command line, add the following parameter to the Java
startup call, depending on the chosen provider:

-Dhazelcast.jcache.provider.type=[client|server]

By default, the delegating CachingProvider is automatically picked up by the JCache SPI and
provided as shown above. In cases where multiple javax.cache.spi.CachingProvider
implementations reside on the classpath (like in some Application Server scenarios), you can select
a CachingProvider by explicitly calling Caching.getCachingProvider() overloads and providing them
using the canonical class name of the provider to be used. The class names of member and client
providers provided by Hazelcast are mentioned in the following two subsections.

348



Hazelcast advises that you use the Caching.getCachingProvider() overloads to select

0 a CachingProvider explicitly. This ensures that uploading to later environments or
Application Server versions doesn’t result in unexpected behavior like choosing a
wrong CachingProvider.

14.3.2. Configuring JCache with Client Provider

For cluster topologies where Hazelcast light clients are used to connect to a remote Hazelcast
cluster, use the Client Provider to configure JCache.

The Client Provider provides the same features as the Server Provider. However, it does not hold
data on its own but instead delegates requests and calls to the remotely connected cluster.

The Client Provider can connect to multiple clusters at the same time. This can be achieved by
scoping the client side CacheManager with different Hazelcast configuration files. For more
information, see Scoping to Join Clusters.

To request this CachingProvider wusing Caching.getCachingProvider( String ) or

Caching.getCachingProvider( String, ClassLoader ), use the following fully qualified class name:

com.hazelcast.client.cache.impl.HazelcastClientCachingProvider

14.3.3. Configuring JCache with Server Provider

If a Hazelcast member is embedded into an application directly and the Hazelcast client is not used,
the Server Provider is required. In this case, the member itself becomes a part of the distributed
cache and requests and operations are distributed directly across the cluster by its given key.

The Server Provider provides the same features as the Client provider, but it keeps data in the local
Hazelcast member and also distributes non-owned keys to other direct cluster members.

Like the Client Provider, the Server Provider can connect to multiple clusters at the same time. This
can be achieved by scoping the client side CacheManager with different Hazelcast configuration files.
For more information, see Scoping to Join Clusters.

To request this CachingProvider wusing Caching.getCachingProvider(  String ) or
Caching.getCachingProvider( String, ClassLoader ), use the following fully qualified class name:

com.hazelcast.cache.impl.HazelcastServerCachingProvider

14.4. JCache API

This section explains the JCache API by providing simple examples and use cases. While walking
through the examples, we will have a look at a couple of the standard API classes and see how these
classes are used.

349



14.4.1. JCache API Application Example

The code in this subsection creates a small account application by providing a caching layer over an
imagined database abstraction. The database layer is simulated using a single demo data in a
simple DAO interface. To show the difference between the "database" access and retrieving values
from the cache, a small waiting time is used in the DAO implementation to simulate network and
database latency.

Creating User Class Example

Before we implement the JCache caching layer, let’s have a quick look at some basic classes we need
for this example.

The User class is the representation of a user table in the database. To keep it simple, it has just two

properties: userId and username.

public class User implements Serializable {

private int userld;
private String username;

public User() {
}

Creating DAO Interface Example

The DAO interface is also kept easy in this example. It provides a simple method to retrieve (find) a
user by its userId.

public interface UserDao {

User findUserById(int userId);

boolean storelUser(int userId, User user);
boolean removeUser(int userId);
Collection<Integer> allUserIds();

Configuring JCache Example

To show most of the standard features, the configuration example is a little more complex.

350



// Create javax.cache.configuration.CompleteConfiguration subclass
CompleteConfiguration<Integer, User> config =
new MutableConfiguration<Integer, User>()
// Configure the cache to be typesafe
.setTypes( Integer.class, User.class )
// Configure to expire entries 30 secs after creation in the cache
.setExpiryPolicyFactory( FactoryBuilder.factoryOf(
new AccessedExpiryPolicy( new Duration( TimeUnit.SECONDS, 30 ) )
) )
// Confiqure read-through of the underlying store
.setReadThrough( true )
// Confiqure write-through to the underlying store
.setWriteThrough( true )
// Configure the javax.cache.integration.Cacheloader
.setCacheloaderFactory( FactoryBuilder.factoryOf(
new UserCacheloader( userDao )
) )
// Configure the javax.cache.integration.CacheWriter
.setCacheWriterFactory( FactoryBuilder.factoryOf(
new UserCacheWriter( userDao )
) )
// Confiqure the javax.cache.event.CacheEntrylListener with no
// javax.cache.event.CacheEntryEventFilter, to include old value
// and to be executed synchronously
.addCacheEntryListenerConfiguration(
new MutableCacheEntrylListenerConfiguration<Integer, User>(
new UserCacheEntrylListenerFactory(),
null, true, true

)

Let’s go through this configuration line by line.

Setting the Cache Type and Expire Policy

First, we set the expected types for the cache, which is already known from the previous example.
On the next line, a javax.cache.expiry.ExpiryPolicy is configured. Almost all integration
ExpiryPolicy implementations are configured using javax.cache.configuration.Factory instances.
Factory and FactoryBuilder are explained later in this chapter.

Configuring Read-Through and Write-Through

The next two lines configure the thread that are read-through and write-through to the underlying
backend resource that is configured over the next few lines. The JCache API offers
javax.cache.integration.CacheLoader and javax.cache.integration.CacheWriter to implement
adapter classes to any kind of backend resource, e.g., JPA, JDBC, or any other backend technology
implementable in Java. The interface provides the typical CRUD operations like create, get, update,
delete and some bulk operation versions of those common operations. We will look into the
implementation of those implementations later.

351



Configuring Entry Listeners

The last configuration setting defines entry listeners based on sub-interfaces of
javax.cache.event.CacheEntryListener. This config does not use a
javax.cache.event.CacheEntryEventFilter since the listener is meant to be fired on every change
that happens on the cache. Again we will look in the implementation of the listener in later in this
chapter.

Full Example Code

A full running example that is presented in this subsection is available in the code samples
repository. The application is built to be a command line app. It offers a small shell to accept
different commands. After startup, you can enter help to see all available commands and their
descriptions.

14.4.2. JCache Base Classes

In the Example JCache Application section, we have already seen a couple of the base classes and
explained how those work. The following are quick descriptions of them:

javax.cache.Caching:

The access point into the JCache API. It retrieves the general CachingProvider backed by any
compliant JCache implementation, such as Hazelcast JCache.

javax.cache.spi.CachingProvider:

The SPI that is implemented to bridge between the JCache API and the implementation itself.
Hazelcast members and clients use different providers chosen as seen in the Configuring JCache
Provider section which enable the JCache API to interact with Hazelcast clusters.

When a  javax.cache.spi.CachingProvider.getCacheManager() overload that takes a
java.lang.(ClassLoader argument is used, this classloader will be a part of the scope of the created
java.cache.(Cache, and it is not possible to retrieve it on other members. We advise not to use those
overloads, as they are not meant to be used in distributed environments!

javax.cache.CacheManager:

The CacheManager provides the capability to create new and manage existing JCache caches.

A javax.cache.(Cache instance created with key and value types in the configuration

0 provides a type checking of those types at retrieval of the cache. For that reason,
all non-types retrieval methods like getCache throw an exception because types
cannot be checked.

javax.cache.configuration.Configuration, javax.cache.configuration.MutableConfiguration:

These two classes are used to configure a cache prior to retrieving it from a CacheManager. The
Configuration interface, therefore, acts as a common super type for all compatible configuration
classes such as MutableConfiguration.

352


https://github.com/hazelcast/hazelcast-code-samples/tree/master/jcache/src/main/java/com/hazelcast/examples/application
https://github.com/hazelcast/hazelcast-code-samples/tree/master/jcache/src/main/java/com/hazelcast/examples/application

Hazelcast itself offers a special implementation (com.hazelcast.config.CacheConfig) of the
Configuration interface which offers more options on the specific Hazelcast properties that can be
set to configure features like synchronous and asynchronous backups counts or selecting the
underlying in-memory format of the cache. For more information on this configuration class, see
the reference in the JCache Programmatic Configuration section.

javax.cache.Cache:

This interface represents the cache instance itself. It is comparable to java.util.Map but offers
special operations dedicated to the caching wuse case. Therefore, for example
javax.cache.Cache.put(), unlike java.util.Map.put(), does not return the old value previously
assigned to the given key.

Bulk operations on the Cache interface guarantee atomicity per entry but not over
all given keys in the same bulk operations since no transactional behavior is
applied over the whole batch process.

14.4.3. Implementing Factory and FactoryBuilder

The javax.cache.configuration.Factory implementations configure features like CacheEntryListener,
ExpiryPolicy and “CacheLoader s or "CacheWriter's. These factory implementations are required
to distribute the different features to members in a cluster environment like Hazelcast. Therefore,
these factory implementations have to be serializable.

Factory implementations are easy to do, as they follow the default Provider- or Factory-Pattern. The
example class UserCacheEntrylListenerFactory shown below implements a custom JCache Factory.

public class UserCacheEntrylListenerFactory implements Factory<CacheEntrylListener
<Integer, User>> {

public CacheEntrylListener<Integer, User> create() {
// just create a new listener instance
return new UserCacheEntryListener();

To simplify the process for the users, JCache API offers a set of helper methods collected in
javax.cache. configuration.FactoryBuilder. In the above configuration example,
FactoryBuilder.factory0Of() creates a singleton factory for the given instance.

14.4.4. Implementing CacheLoader

javax.cache.integration.Cacheloader loads cache entries from any external backend resource.

Cache read-through

If the cache is configured to be read-through, then CachelLoader.load() is called transparently from

353



the cache when the key or the value is not yet found in the cache. If no value is found for a given
key, it returns null.

If the cache is not configured to be read-through, nothing is loaded automatically. The user code
must call javax.cache.Cache.loadAll() to load data for the given set of keys into the cache.

For the bulk load operation (1oadA11()), some keys may not be found in the returned result set. In
this case, a javax.cache.integration.CompletionListener parameter can be used as an asynchronous
callback after all the key-value pairs are loaded because loading many key-value pairs can take lots
of time.

CacheLoader Example

Let’s look at the UserCachelLoader implementation. This implementation is quite straight forward.

* It implements Cacheloader.
* It overrides the 1load method to compute or retrieve the value corresponding to key.

* It overrides the 1oadA1l1l method to compute or retrieve the values corresponding to keys.

An important note is that any kind of exception has to be wrapped into
javax.cache.integration.CachelLoaderException.

354



public class UserCachelLoader implements Cacheloader<Integer, User>, Serializable {
private final UserDao userDao;

public UserCachelLoader(UserDao userDao) {
// store the dao instance created externally
this.userDao = userDao;

}

@0verride

public User load(Integer key) throws CachelLoaderException {
// just call through into the dao
return userDao.findUserById(key);

Iy

@Override
public Map<Integer, User> loadAll(Iterable<? extends Integer> keys) throws
CacheloaderException {
// create the resulting map
Map<Integer, User> loaded = new HashMap<Integer, User>();
// for every key in the given set of keys
for (Integer key : keys) {
// try to retrieve the user
User user = userDao.findUserById(key);
// 1f user is not found do not add the key to the result set
if (user != null) {
loaded.put(key, user);

}
}

return loaded;

14.4.5. CacheWriter

You use a javax.cache.integration.Cachellriter to update an external backend resource. If the cache
is configured to be write-through, this process is executed transparently to the user’s code.
Otherwise, there is currently no way to trigger writing changed entries to the external resource to a
user-defined point in time.

If bulk operations throw an exception, java.util.Collection has to be cleaned of all successfully
written keys so the cache implementation can determine what keys are written and can be applied
to the cache state.

The following example performs the following tasks:

It implements CacheWriter.

* It overrides the write method to write the specified entry to the underlying store.

355



It overrides the writeAll method to write the specified entires to the underlying store.
* It overrides the delete method to delete the key entry from the store.

* It overrides the deleteAll method to delete the data and keys from the underlying store for the
given collection of keys, if present.

public class UserCacheWriter implements CacheWriter<Integer, User>, Serializable {
private final UserDao userDao;

public UserCacheWriter(UserDao userDao) {
// store the dao instance created externally
this.userDao = userDao;

}

@0verride
public void write(Cache.Entry<? extends Integer, ? extends User> entry) throws
CacheWriterException {
// store the user using the dao
userDao.storeUser(entry.getKey(), entry.getValue());
}

@Override
public void writeAll(Collection<Cache.Entry<? extends Integer, ? extends User>>
entries) throws CacheWriterException {
// retrieve the iterator to clean up the collection from written keys in case
of an exception
Iterator<Cache.Entry<? extends Integer, ? extends User>> iterator = entries
.iterator();
while (iterator.hasNext()) {
// write entry using dao
write(iterator.next());
// remove from collection of keys
iterator.remove();

}

@0verride
public void delete(Object key) throws CacheWriterException {
// test for key type
if (!(key instanceof Integer)) {
throw new CacheWriterException("Illegal key type");
¥
// remove user using dao
userDao.removeUser ((Integer) key);

}

@Override
public void deleteAll(Collection<?> keys) throws CacheWriterException {
// retrieve the iterator to clean up the collection from written keys in case

356



of an exception
Iterator<?> iterator = keys.iterator();
while (iterator.hasNext()) {
// write entry using dao
delete(iterator.next());
// remove from collection of keys
iterator.remove();

Again, the implementation is pretty straightforward and also as above all exceptions thrown by the
external  resource, like  java.sql.SQLException has to be wrapped into a
javax.cache.integration.CacheliriterException. Note this is a different exception from the one
thrown by Cacheloader.

14.4.6. Implementing EntryProcessor

With javax.cache.processor.EntryProcessor, you can apply an atomic function to a cache entry. In a
distributed environment like Hazelcast, you can move the mutating function to the member that
owns the key. If the value object is big, it might prevent traffic by sending the object to the mutator
and sending it back to the owner to update it.

By default, Hazelcast JCache sends the complete changed value to the backup partition. Again, this
can cause a lot of traffic if the object is big. The Hazelcast ICache extension can also prevent this.
Further information is available at Implementing BackupAwareEntryProcessor.

An arbitrary number of arguments can be passed to the Cache.invoke() and Cache.invokeAll()
methods. All of those arguments need to be fully serializable because in a distributed environment
like Hazelcast, it is very likely that these arguments have to be passed around the cluster.

The following example performs the following tasks.

* It implements EntryProcessor.

* It overrides the process method to process an entry.

357



public class UserUpdateEntryProcessor implements EntryProcessor<Integer, User, User> {

@0verride
public User process(MutableEntry<Integer, User> entry, Object... arguments) throws
EntryProcessorException {
// test arqguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username");

}

// get first arqument and test for String type
Object argument = arguments[0];
if (!(argument instanceof String)) {
throw new EntryProcessorException("First argument has wrong type, required
java.lang.String");
}

// retrieve the value from the MutableEntry
User user = entry.getValue();

// retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// set the new username
user.setUsername(newUsername);

// set the changed user to mark the entry as dirty
entry.setValue(user);

// return the changed user to return it to the caller
return user;

}
}
0 By executing the bulk Cache.invokeAll() operation, atomicity is only guaranteed
for a single cache entry. No transactional rules are applied to the bulk operation.
0 JCache EntryProcessor implementations are not allowed to call javax.cache.Cache
methods. This prevents operations from deadlocking between different calls.

In addition, when using a Cache.invokeAll() method, a java.util.Map is returned that maps the key
to its javax.cache.processor.EntryProcessorResult, which itself wraps the actual result or a thrown
javax.cache.processor.EntryProcessorException.

14.4.7. CacheEntryListener

The javax.cache.event.CacheEntrylListener implementation is straight forward. CacheEntrylListener
is a super-interface that is used as a marker for listener classes in JCache. The specification brings a

358



set of sub-interfaces.
» CacheEntryCreatedListener: Fires after a cache entry is added (even on read-through by a
Cacheloader) to the cache.
» CacheEntryUpdatedListener: Fires after an already existing cache entry updates.
» CacheEntryRemovedListener: Fires after a cache entry was removed (not expired) from the cache.

» CacheEntryExpiredListener: Fires after a cache entry has been expired. Expiry does not have to
be a parallel process-- Hazelcast JCache implementation detects and removes expired entries
periodically. Therefore, the expiration event may not be fired as soon as the entry expires. See
ExpiryPolicy for details.

To configure CacheEntrylListener, add a javax.cache.configuration.CacheEntrylListenerConfiguration
instance to the JCache configuration class, as seen in the above example configuration. In addition,
listeners can be configured to be executed synchronously (blocking the calling thread) or
asynchronously (fully running in parallel).

In this example application, the listener is implemented to print event information on the console.
That visualizes what is going on in the cache. This application performs the following tasks:
* It implements the CacheEntryCreatedListener.onCreated method to call after an entry is created.
It implements the CacheEntryUpdatedListener.onUpdated method to call after an entry is updated.

* It implements the CacheEntryRemovedListener.onRemoved method to call after an entry is
removed.

It implements the CacheEntryExpiredListener.onExpired method to call after an entry expires.

It implements printEvents to print event information on the console.

359



class UserCacheEntrylListener implements CacheEntryCreatedlListener<Integer, User>,
CacheEntryUpdatedlListener<Integer, User>,
CacheEntryRemovedlListener<Integer, User>,
CacheEntryExpiredListener<Integer, User> {

public void onCreated(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
throws CacheEntryListenerException {

printEvents(cacheEntryEvents);

public void onUpdated(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
throws CacheEntrylListenerException {

printEvents(cacheEntryEvents);

public void onRemoved(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
throws CacheEntrylListenerException {

printEvents(cacheEntryEvents);

public void onExpired(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
throws CacheEntryListenerException {

printEvents(cacheEntryEvents);

}

private void printEvents(Iterable<CacheEntryEvent<? extends Integer, ? extends
User>> cacheEntryEvents) {
for (CacheEntryEvent<? extends Integer, ? extends User> event :
cacheEntryEvents) {
System.out.println(event.getEventType());
}

14.4.8. ExpiryPolicy

In JCache, javax.cache.expiry.ExpiryPolicy implementations are used to automatically expire cache

360



entries based on different rules.

JCache does not require expired entries to be removed from the cache immediately. It only enforces
that expired entries are not returned from cache. Therefore, exact time of removal is
implementation specific. Hazelcast complies JCache by checking the entries for expiration at the
time of get operations (lazy expiration). In addition to that, Hazelcast uses a periodic task to detect
and remove expired entries as soon as possible (eager expiration). Thanks to eager expiry, all
expired entries are removed from the memory eventually even when they are not touched again.
So the space used by such entries are released as well.

For a detailed explanation of interaction between expiry policies and JCache API, see the table in
the Expiry Policies section of JCache documentation.

Expiry timeouts are defined wusing javax.cache.expiry.Duration, which is a pair of
java.util.concurrent.TimeUnit, that describes a time unit and a long, defining the timeout value.
The minimum allowed TimeUnit is TimeUnit.MILLISECONDS. The long value durationAmount must be
equal or greater than zero. A value of zero (or Duration.ZERO) indicates that the cache entry expires
immediately.

By default, JCache delivers a set of predefined expiry strategies in the standard API.

* AccessedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on accessing the key.

» CreatedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is never updated.

» EternalExpiryPolicy: Never expires. This is the default behavior, similar to ExpiryPolicy being
set to null.

* ModifiedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on updating the key.

* TouchedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on accessing or updating the key.

Because EternalExpiryPolicy does not expire cache entries, it is still possible to evict values from
memory if an underlying CachelLoader is defined.

14.5. JCache - Hazelcast Instance Integration

You can retrieve javax.cache.Cache instances using the interface ICacheManager of HazelcastInstance.
This interface has the method getCache(String name) where name is the prefixed cache name. The
prefixes in the cache name are URI and classloader prefixes, which are optional.

If you create a cache through a ICacheManager which has its own specified URI scope (and/or
specified classloader), it must be prepended to the pure cache name as a prefix while retrieving the

cache through getCache(String name). Prefix generation for full cache name is exposed through
com.hazelcast.cache.CacheUtil.getPrefixedCacheName(String name, java.net.URI wuri, ClasslLoader

classloader). If the URI scope and classloader is not specified, the pure cache name can be used
directly while retrieving cache over ICacheManager.

361


https://www.jcp.org/en/jsr/detail?id=107

If you have a cache which is not created, but is defined/exists (cache is specified in Hazelcast
configuration but not created yet), you can retrieve this cache by its name. This also triggers cache
creation before retrieving it. This retrieval is supported through HazelcastInstance. However,
HazelcastInstance does not support creating a cache by specifying configuration; this is supported
by Hazelcast’s ICacheManager as it is.

0 If a valid (rather than 1.0.0-PFD or 0.x versions) JCache library does not exist on
the classpath, I1legalStateException is thrown.

14.5.1. JCache and Hazelcast Instance Awareness

HazelcastInstance is injected into the following cache API interfaces (provided by javax.cache.Cache
and com.hazelcast.cache.ICache) if they implement HazelcastInstanceAware interface:

* ExpiryPolicyFactory and ExpiryPolicy [provided by javax.cache.Cache]

* CacheloaderFactory and Cacheloader [provided by javax.cache.Cache]

* CachellriteFactory and CacheWriter [provided by javax.cache.Cache]

* EntryProcessor [provided by javax.cache.Cache]

e CacheEntrylListener (CacheEntryCreatedListener, CacheEntryUpdatedListener,
CacheEntryRemovedListener, CacheEntryExpiredListener) [provided by javax.cache.Cache]

* CacheEntryEventFilter [provided by javax.cache.Cache]
* CompletionListener [provided by javax.cache.Cache]

» CachePartitionLostListener [provided by com.hazelcast.cache.ICache]

14.6. Hazelcast JCache Extension - ICache

Hazelcast provides extension methods to Cache API through the interface
com.hazelcast.cache.ICache.

It has two sets of extensions:

» Asynchronous version of all cache operations. See Async Operations.

* Cache operations with custom ExpiryPolicy parameter to apply on that specific operation. See
Custom ExpiryPolicy.

ICache data structure can also be used by Hazelcast Jet for Real-Time Stream
Processing (by enabling the Event Journal on your cache) and Fast Batch
0 Processing. Hazelcast Jet uses ICache as a source (reads data from ICache) and as a
sink (writes data to ICache). See the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet. See also here in the Hazelcast Jet Reference
Manual to learn how Jet uses ICache, i.e., how it can read from and write to ICache.

362


https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://docs.hazelcast.org/docs/jet/latest/manual/index.html#connector-imdg

14.6.1. Scoping to Join Clusters

A CacheManager, started either as a client or as an embedded member, can be configured to start a
new Hazelcast instance or reuse an already existing one to connect to a Hazelcast cluster. To
achieve this, request a CacheManager Dby passing a java.net.URI instance to
CachingProvider.getCacheManager(). The java.net.URI instance must point to either a Hazelcast
configuration or to the name of a named com.hazelcast.core.HazelcastInstance instance. In
addition to the above, the same can be achieved by passing Hazelcast-specific properties to
CachingProvider.getCacheManager (URI, ClassLoader, Properties) as detailed in the sections that
follow.

Multiple requests for the same java.net.URI result in returning a CacheManager
instance that shares the same HazelcastInstance as the CacheManager returned by
the previous call.

Examples

The following examples illustrate how HazelcastInstances are created or reused during the creation
of a new CacheManager. Complete reference on the HazelcastInstance lookup mechanism is provided
in the sections that follow.

Starting the Default CacheManager

Assuming no other HazelcastInstance exists in the same JVM, the cacheManager below starts a new
HazelcastInstance, configured according to the configuration lookup rules as defined for
Hazelcast.newHazelcastInstance() in case of an embedded member or
HazelcastClient.newHazelcast(Client() for a client-side CacheManager.

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager();

Reusing Existing HazelcastInstance with the Default CacheManager

When using both Hazelcast-specific features and JCache, a HazelcastInstance might be already
available to your JCache configuration. By configuring an instance name in hazelcast.xml in the
classpath root, the CacheManager locates the existing instance by name and reuses it.

e hazelcast.xml:

<hazelcast>
<instance-name>hz-member-1</instance-name>

</hazelcast>

* HazelcastInstance & CacheManager startup:

363



// start hazelcast, configured with default hazelcast.xml
HazelcastInstance hz = Hazelcast.newHazelcastInstance();

// start the default CacheManager -- it locates the default hazelcast.xml
configuration

// and identify the existing HazelcastInstance by its name
CachingProvider caching = Caching.getCachingProvider();

CacheManager cacheManager = caching.getCacheManager();

Starting a CacheManager with a New HazelcastInstance Configured with a Non-default Configuration File

Given a configuration file named hazelcast-jcache.xml in the package com.domain, a CacheManager
can be configured to start a new HazelcastInstance:

* By passing the URI to the configuration file as the CacheManager’s ‘URI:

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager (new URI(
"classpath:com/domain/hazelcast-jcache.xml"), null);

* By specifying the configuration file location as a property:

Properties properties = HazelcastCachingProvider.propertiesBylLocation(
"classpath:com/domain/aaa-hazelcast.xml");

CachingProvider caching = Caching.getCachingProvider();

CacheManager cacheManager = caching.getCacheManager(new URI("any-uri-will-do"),
null, properties);

Note that if the Hazelcast configuration file does specify an instance name, then any CacheManagers
referencing the same configuration file locates by name and reuses the same HazelcastInstance.

Reusing an Existing Named HazelcastInstance

Assuming a HazelcastInstance named hc-instance is already started, it can be used as the
HazelcastInstance to back a CacheManager:

* By using the instance’s name as the CacheManager’s ‘URI:

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager(new URI("hc-instance"), null);

* By specifying the instance name as a property:

364



Properties properties = HazelcastCachingProvider.propertiesByInstanceName("hc-
instance");

CachingProvider caching = Caching.getCachingProvider();

CacheManager cacheManager = caching.getCacheManager(new URI("any-uri-will-do"),
null, properties);

Applying Configuration Scope

To connect or join different clusters, apply a configuration scope to the CacheManager. If the same URI
is used to request a CacheManager that was created previously, those CacheManagers share the same
underlying HazelcastInstance.

To apply configuration scope you can do either one of the following:

» pass the path to the configuration file using the location property
HazelcastCachingProvider#HAZELCAST _CONFIG_LOCATION (which resolves to
hazelcast.config.location) as a mapping inside a java.util.Properties instance to the
CachingProvider.getCacheManager(uri, classLoader, properties) call.

* use directly the configuration path as the CacheManager’s “URI.
If both HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION property is set and the CacheManager URI

resolves to a valid config file location, then the property value is used to obtain the configuration
for the HazelcastInstance the first time a CacheManager is created for the given URI.

Here is an example of using configuration scope:

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file

Properties properties = new Properties();

// "scope-hazelcast.xml" resides in package com.domain.config

properties.setProperty( HazelcastCachingProvider.HAZELCAST_CONFIG_LOCATION,
"classpath:com/domain/config/scoped-hazelcast.xml" );

URI cacheManagerName = new URI( "my-cache-manager" );
CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

Here is an example using HazelcastCachingProvider.propertiesBylLocation() helper method:

365



CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file in root package
String configFile = "classpath:scoped-hazelcast.xml";
Properties properties = HazelcastCachingProvider

.propertiesBylLocation( configFile );

URI cacheManagerName = new URI( "my-cache-manager" );
CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

The retrieved CacheManager is scoped to use the HazelcastInstance that was just created and
configured using the given XML configuration file.

Available protocols for config file URL include classpath to point to a classpath location, file to
point to a filesystem location and http and https for remote web locations. In addition, everything
that does not specify a protocol is recognized as a placeholder that can be configured using a
system property.

String configFile = "my-placeholder"”;
Properties properties = HazelcastCachingProvider
.propertiesBylLocation( configFile );

You can set this on the command line:

-Dmy-placeholder=classpath:my-configs/scoped-hazelcast.xml

You should consider the following rules about the Hazelcast instance name when you specify the
configuration file location wusing HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which
resolves to hazelcast.config.location):

* If you also specified the HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to
hazelcast.instance.name) property, this property is used as the instance name even though you
configured the instance name in the configuration file.

* If you do not specify HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME but you configure the
instance name in the configuration file using the element <instance-name>, then this element’s
value is used as the instance name.

* If you do not specify an instance name via property or in the configuration file, the URL of the
configuration file location is used as the instance name.

No check is performed to prevent creating multiple CacheManagers with the same

cluster configuration on different configuration files. If the same cluster is referred
from different configuration files, multiple cluster members or clients are created.

366



The configuration file location will not be a part of the resulting identity of the
CacheManager. An attempt to create a CacheManager with a different set of properties
but an already used name results in an undefined behavior.

Binding to a Named Instance

You can bind CacheManager to an existing and named HazelcastInstance instance. If the instanceName
is specified in com.hazelcast.config.Config, it can be used directly by passing it to CachingProvider
implementation. Otherwise (instanceName not set or instance is a client instance) you must get the
instance name from the HazelcastInstance instance via the String getName() method to pass the
CachingProvider implementation. Please note that instanceName is not configurable for the client side
HazelcastInstance instance and is auto-generated by using group name (if it is specified). In general,
String getName() method over HazelcastInstance is safer and the preferable way to get the name of
the instance. Multiple CacheManagers created using an equal java.net.URI share the same
HazelcastInstance.

A named scope is applied nearly the same way as the configuration scope. Pass the instance name
using:

* either the property HazelcastCachingProvider#HAZELCAST _INSTANCE_NAME (which resolves to
hazelcast.instance.name) as a mapping inside a java.util.Properties instance to the
CachingProvider.getCacheManager(uri, classLoader, properties) call

* or use the instance name when specifying the CacheManager’s ‘URI.

If a valid instance name is provided both as property and as URI, then the property value takes
precedence and is used to resolve the HazelcastInstance the first time a CacheManager is created for
the given URI.

Here is an example of Named Instance Scope with specified name:

Config config = new Config();

config.setInstanceName( "my-named-hazelcast-instance" );
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance( config );

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty( HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
"my-named-hazelcast-instance" );

URI cacheManagerName = new URI( "my-cache-manager" );

CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

Here is an example of Named Instance Scope with specified name passed as URI of the CacheManager:

367



Config config = new Config();

config.setInstanceName( "my-named-hazelcast-instance" );
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance( config );

CachingProvider cachingProvider = Caching.getCachingProvider();
URI cacheManagerName = new URI( "my-named-hazelcast-instance" );
CacheManager cacheManager = cachingProvider

.getCacheManager( cacheManagerName, null);

Here is an example of Named Instance Scope with auto-generated name:

Config config = new Config();

// Create a auto-generated named HazelcastInstance

HazelcastInstance instance = Hazelcast.newHazelcastInstance( config );
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty( HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
instanceName );

URI cacheManagerName = new URI( "my-cache-manager" );

CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

Here is an example of Named Instance Scope with auto-generated name on client instance:

368



ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("127.0.0.1", "127.0.0.2");

// Create a client side HazelcastInstance
HazelcastInstance instance = HazelcastClient.newHazelcastClient( clientConfig );
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty( HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
instanceName );

URI cacheManagerName = new URI( "my-cache-manager" );
CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

Here is an example using HazelcastCachingProvider.propertiesByInstanceName() method:

Config config = new Config();

config.setInstanceName( "my-named-hazelcast-instance" );
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance( config );

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = HazelcastCachingProvider
.propertiesByInstanceName( "my-named-hazelcast-instance" );

URI cacheManagerName = new URI( "my-cache-manager" );
CacheManager cacheManager = cachingProvider
.getCacheManager( cacheManagerName, null, properties );

The instanceName will not be a part of the resulting identity of the CacheManager. An
attempt to create a CacheManager with a different set of properties but an already
used name will result in undefined behavior.

Binding to an Existing Hazelcast Instance Object

When an existing HazelcastInstance object is available, it can be passed to the CacheManager by
setting the property HazelcastCachingProvider#HAZELCAST_INSTANCE_ITSELF:

369



// Create a member HazelcastInstance
HazelcastInstance instance = Hazelcast.newHazelcastInstance();

Properties properties = new Properties();
properties.put( HazelcastCachingProvider.HAZELCAST_INSTANCE_ITSELF,
instance );

CachingProvider cachingProvider = Caching.getCachingProvider();

// cacheManager initialized for uri will be bound to instance

CacheManager cacheManager = cachingProvider.getCacheManager(uri, classlLoader,
properties);

14.6.2. Namespacing

The java.net.URIs that don’t use the above-mentioned Hazelcast-specific schemes are recognized as
namespacing. Those CacheManagers share the same underlying default HazelcastInstance created (or
set) by the CachingProvider, but they cache with the same names and different namespaces on the
CacheManager level, and therefore they won’t share the same data. This is useful where multiple
applications might share the same Hazelcast JCache implementation, e.g., on application or OSGi
servers, but are developed by independent teams. To prevent interfering on caches using the same
name, every application can use its own namespace when retrieving the CacheManager.

Here is an example of using namespacing.

CachingProvider cachingProvider = Caching.getCachingProvider();

URI nsApp1 = new URI( "application-1" );
CacheManager cacheManagerApp1 = cachingProvider.getCacheManager( nsApp1, null );

URI nsApp2 = new URI( "application-2" );
CacheManager cacheManagerApp2 = cachingProvider.getCacheManager( nsApp2, null );

That way both applications share the same HazelcastInstance instance but not the same caches.

14.6.3. Retrieving an ICache Instance

Besides Scoping to Join Clusters and Namespacing, which are implemented using the URI feature of
the specification, all other extended operations are required to retrieve the
com.hazelcast.cache.ICache interface instance from the JCache javax.cache.Cache instance. For
Hazelcast, both interfaces are implemented on the same object instance. It is recommended that
you stay with the specification method to retrieve the ICache version, since ICache might be subject
to change without notification.

To retrieve or unwrap the ICache instance, you can execute the following code example:

370



CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager.getCache( ... );

ICache<Object, Object> unwrappedCache = cache.unwrap( ICache.class );

After unwrapping the Cache instance into an ICache instance, you have access to all of the following

operations, e.g., ICache Async Methods and ICache Convenience Methods.

14.6.4. ICache Configuration

As mentioned in the JCache Declarative Configuration section, the Hazelcast ICache extension offers

additional configuration properties over the default JCache configuration. These additional
properties include internal storage format, backup counts, eviction policy and quorum reference.

The declarative configuration for ICache is a superset of the previously discussed JCache
configuration:

<hazelcast>
<cache>
<!-- ... default cache configuration goes here ... -->
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<in-memory-format>BINARY</in-memory-format>
<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
<partition-lost-listeners>
<partition-lost-listener>CachePartitionLostListenerImpl</partition-lost-
listener>
</partition-lost-listeners>
<quorum-ref>quorum-name</quorum-ref>
<disable-per-entry-invalidation-events>true</disable-per-entry-invalidation-
events>
</cache>

</hazelcast>

* backup-count: Number of synchronous backups. Those backups are executed before the
mutating cache operation is finished. The mutating operation is blocked. Its default value is 1.

* async-backup-count: Number of asynchronous backups. Those backups are executed
asynchronously so the mutating operation is not blocked and it is done immediately. Its default
value is 0.

* in-memory-format: Internal storage format. For more information, see the in-memory format
section. Its default value is BINARY.

» eviction: Defines the used eviction strategies and sizes for the cache. For more information on
eviction, see the JCache Eviction section.

371



> size: Maximum number of records or maximum size in bytes depending on the max-size-
policy property. Size can be any integer between 0 and Integer.MAX_VALUE. The default max-
size-policy is ENTRY_COUNT and its default size is 10.000.

o max-size-policy: Maximum size. If maximum size is reached, the cache is evicted based on
the eviction policy. Default max-size-policy is ENTRY_COUNT and its default size is 10.000. The
following eviction policies are available:

= ENTRY_COUNT: Maximum number of cache entries in the cache. Available on heap based
cache record store only.

= USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes per cache for
each Hazelcast instance. Available on High-Density Memory cache record store only.

= USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory size percentage per
cache for each Hazelcast instance. Available on High-Density Memory cache record
store only.

= FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size in megabytes for each
Hazelcast instance. Available on High-Density Memory cache record store only.

= FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory size percentage for each
Hazelcast instance. Available on High-Density Memory cache record store only.

o eviction-policy: Eviction policy that compares values to find the best matching eviction
candidate. Its default value is LRU.

= LRU: Less Recently Used - finds the best eviction candidate based on the lastAccessTime.
= LFU: Less Frequently Used - finds the best eviction candidate based on the number of hits.

» partition-lost-listeners : Defines listeners for dispatching partition lost events for the cache.
For more information, see the ICache Partition Lost Listener section.

 quorum-ref : Name of quorum configuration that you want this cache to use.

» disable-per-entry-invalidation-events : Disables invalidation events for each entry; but full-
flush invalidation events are still enabled. Full-flush invalidation means the invalidation of
events for all entries when clear is called. Its default value is false.

Since javax.cache.configuration.MutableConfiguration misses the above additional configuration
properties, Hazelcast ICache extension provides an extended configuration class called
com.hazelcast.config.CacheConfig. This class is an implementation of
javax.cache.configuration.CompleteConfiguration and all the properties shown above can be
configured using its corresponding setter methods.

0 ICache can be configured only programmatically on the client side.

14.6.5. ICache Async Methods

As another addition of Hazelcast ICache over the normal JCache specification, Hazelcast provides
asynchronous versions of almost all methods, returning a com.hazelcast.core.ICompletableFuture.
By using these methods and the returned future objects, you can use JCache in a reactive way by
registering zero or more callbacks on the future to prevent blocking the current thread.

372



The asynchronous versions of the methods append the phrase Async to the method name. The
example code below uses the method putAsync().

ICache<Integer, String> unwrappedCache = cache.unwrap( ICache.class );
ICompletableFuture<String> future = unwrappedCache.getAndPutAsync( 1, "value" );
future.andThen( new ExecutionCallback<String>() {

public void onResponse( String response ) {

System.out.println( "Previous value: " + response );

}

public void onFailure( Throwable t ) {
t.printStackTrace();

}
)

Following methods are available in asynchronous versions:

o get(key):

- getAsync(key)

- getAsync(key, expiryPolicy)
* put(key, value):

- putAsync(key, value)

- putAsync(key, value, expiryPolicy)
e putIfAbsent(key, value):

- putIfAbsentAsync(key, value)

o putIfAbsentAsync(key, value, expiryPolicy)
» getAndPut(key, value):

» getAndPutAsync(key, value)

» getAndPutAsync(key, value, expiryPolicy)
» remove(key):

» removeAsync(key)
* remove(key, value):

. removeAsync(key, value)
* getAndRemove(key):

- getAndRemoveAsync(key)
» replace(key, value):

» replaceAsync(key, value)

. replaceAsync(key, value, expiryPolicy)
» replace(key, oldValue, newValue):

» replaceAsync(key, oldValue, newValue)
o replaceAsync(key, oldValue, newValue, expiryPolicy)

» getAndReplace(key, value):

373



» getAndReplaceAsync(key, value)
- getAndReplaceAsync(key, value, expiryPolicy)

The methods with a given javax.cache.expiry.ExpiryPolicy are further discussed in the Defining a
Custom ExpiryPolicy.

0 Asynchronous versions of the methods are not compatible with synchronous
events.

14.6.6. Defining a Custom ExpiryPolicy

The JCache specification has an option to configure a single ExpiryPolicy per cache. Hazelcast
ICache extension offers the possibility to define a custom ExpiryPolicy per key by providing a set of
method overloads with an expirePolicy parameter, as in the list of asynchronous methods in the
Async Methods section. This means that you can pass custom expiry policies to a cache operation.

Here is how an ExpiryPolicy is set on JCache configuration:

CompleteConfiquration<String, String> config =
new MutableConfiguration<String, String>()
.setExpiryPolicyFactory(
AccessedExpiryPolicy.factoryOf( Duration.ONE_MINUTE )

)

To pass a custom ExpiryPolicy, a set of overloads is provided. You can use them as shown in the
following code example.

ICache<Integer, String> unwrappedCache = cache.unwrap( ICache.class );
unwrappedCache.put( 1, "value", new AccessedExpiryPolicy( Duration.ONE_DAY ) );

The ExpiryPolicy instance can be pre-created, cached and re-used, but only for each cache instance.
This is because ExpiryPolicy implementations can be marked as java.io.Closeable. The following
list shows the provided method overloads over javax.cache.Cache by com.hazelcast.cache.ICache
featuring the ExpiryPolicy parameter:

* get(key):
- get(key, expiryPolicy)
getAll(keys):

- getAll(keys, expirePolicy)
e put(key, value):
- put(key, value, expirePolicy)
getAndPut(key, value):

- getAndPut(key, value, expirePolicy)
putAll(map):

374



o putAll(map, expirePolicy)

putIfAbsent(key, value):
- putIfAbsent(key, value, expirePolicy)
» replace(key, value):
. replace(key, value, expirePolicy)
* replace(key, oldValue, newValue):

o replace(key, oldValue, newValue, expirePolicy)

getAndReplace(key, value):
- getAndReplace(key, value, expirePolicy)

Asynchronous method overloads are not listed here. See the ICache Async Methods section for the
list of asynchronous method overloads.

ICache also offers setExpiryPolicy(key, expirePolicy) method to associate certain keys with custom
expiry policies. Per key expiry policies defined by this method take precedence over cache policies,
but they are overridden by the expiry policies specified in above mentioned overloaded methods.

14.6.7. JCache Eviction

Caches are generally not expected to grow to an infinite size. Implementing an expiry policy is one
way you can prevent infinite growth, but sometimes it is hard to define a meaningful expiration
timeout. Therefore, Hazelcast JCache provides the eviction feature. Eviction offers the possibility of
removing entries based on the cache size or amount of used memory (Hazelcast IMDG Enterprise
Only) and not based on timeouts.

Eviction and Runtime

Since a cache is designed for high throughput and fast reads, Hazelcast put a lot of effort into
designing the eviction system to be as predictable as possible. All built-in implementations provide
an amortized O(1) runtime. The default operation runtime is rendered as O(1), but it can be faster
than the normal runtime cost if the algorithm finds an expired entry while sampling.

Cache Types

Most importantly, typical production systems have two common types of caches:

* Reference Caches: Caches for reference data are normally small and are used to speed up the
de-referencing as a lookup table. Those caches are commonly tend to be small and contain a
previously known, fixed number of elements, e.g., states of the USA or abbreviations of
elements.

» Active DataSet Caches: The other type of caches normally caches an active data set. These
caches run to their maximum size and evict the oldest or not frequently used entries to keep in
memory bounds. They sit in front of a database or HTML generators to cache the latest
requested data.

Hazelcast JCache eviction supports both types of caches using a slightly different approach based
on the configured maximum size of the cache. For detailed information, see the Eviction Algorithm

375



section.

Configuring Eviction Policies

Hazelcast JCache provides two commonly known eviction policies, LRU and LFU, but loosens the
rules for predictable runtime behavior. LRU, normally recognized as Least Recently Used, is
implemented as Less Recently Used and LFU known as Least Frequently Used is implemented as
Less Frequently Used. The details about this difference are explained in the Eviction Algorithm
section.

Eviction Policies are configured by providing the corresponding abbreviation to the configuration
as shown in the ICache Configuration section. As already mentioned, two built-in policies are
available:

To configure the use of the LRU (Less Recently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />

And to configure the use of the LFU (Less Frequently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU" />

The default eviction policy is LRU. Therefore, Hazelcast JCache does not offer the possibility of
performing no eviction.

Custom Eviction Policies

Besides the out-of-the-box eviction policies LFU and LRU, you can also specify your custom eviction
policies through the eviction configuration either programmatically or declaratively.

You can provide your com.hazelcast.cache.CacheEvictionPolicyComparator implementation to
compare com.hazelcast.cache.CacheEntryViews. Supplied CacheEvictionPolicyComparator is used to
compare cach