Hazelcast Documentation

version 3.5.1

Jul 27, 2015

In-Memory Data Grid - Hazelcast | Documentation: version 3.5.1
Publication date Jul 27, 2015
Copyright (© 2015 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Contents

Preface

What’s New in Hazelcast 3.5

2.1 Release Notes L e
2.1.1 New Features e
2.1.2 Enhancements
2.1.3 Fixes. e

2.2 Upgrading Hazelcast o . e
2.2.1 Upgrading from 2.x L e e
2.2.2 Upgrading from 3.X

2.3 Document Revision History

Getting Started

3.1 Imstallation o . e
3.1.1 Hazelcast e
3.1.2 Hazelcast Enterprise

3.2 Starting the Member and Client L e
3.2.1 Deploying On Amazon EC2

3.3 Configuring Hazelcast

Hazelcast Overview

4.1 Sharding in Hazelcast e
4.2 Hazelcast Topology o e e e e e e
4.3 Why Hazelcast? o L e
4.4 Data Partitioning Lo
4.4.1 How the Data is Partitioned
4.4.2 Partition Table
4.4.3 Repartitioning oL e e e
4.5 Use Cases . . . v v v v i e e
4.6 Resources L e

17

19
19
19
20
21
23
23
25
25

27
27
27
27
29
30
30

4 CONTENTS
5 Hazelcast Clusters 41
5.1 Discovering Cluster Members L 41
5.1.1 Discovering Members by Multicast oo 41
5.1.2 Discovering Members by TCP 42
5.1.3 Discovering Members within EC2 Cloud 43

5.2 Creating Cluster Groups o i e e 44
6 Distributed Data Structures 45
6.1 Map e 46
6.1.1 Map Overview e 46
6.1.2 Map Backups 49
6.1.3 Map Eviction e 50
6.1.4 In Memory Format e 53
6.1.5 Map Persistence L 54
6.1.6 Near Cache e 59
6.1.7 Map Locks e e 61
6.1.8 Entry Statistics 63
6.1.9 Map Listener L 63
6.1.10 Interceptors e e 66
6.1.11 Preventing Out of Memory Exceptions L. 69

6.2 QUEUE e 70
6.2.1 Queue OVErvIEW i e e 70
6.2.2 Sample Queue Code L 71
6.2.3 Bounded Queue. e 72
6.2.4 Queue Persistence 73
6.2.5 Configuring Queue L e 74

6.3 MultiMap e e 74
6.3.1 Sample MultiMap Code e 74
6.3.2 Configuring MultiMap L 75

6.4 Set . . . 75
6.4.1 Sample Set Code L 76
6.4.2 Event Registration and Configuration for Seto 76

6.5 LiSt 7
6.5.1 Sample List Code e 77
6.5.2 Event Registration and Configuration for List "

6.6 Ringbuffer e 78
6.6.1 IQueue vs. Ringbuffer 79
6.6.2 Capacity e 79
6.6.3 Synchronous and Asynchronous Backups. 79

6.6.4

Time to live e e e e e e e e 80

CONTENTS 5

6.6.5 Overflow Policy e 80
6.6.6 In-Memory Format 80
6.6.7 Adding Batched Items L 80
6.6.8 Reading Batched Items e 81
6.6.9 Async Methods L 81
6.6.10 Full Configuration examples L 82

6.7 TOpIC. . . . o e e 83
6.7.1 Sample Topic Code e 83
6.7.2 Statistics e 83
6.7.3 Internmals. 84
6.7.4 Configuring Topic L e 85

6.8 Reliable Topic e 85
6.8.1 Sample Reliable ITopic Code 86
6.8.2 Slow CONSUIMETS i vt ittt e e e e 86

6.9 Lock L 86
6.9.1 ICondition 88

6.10 TAtomicLong L 89
6.11 ISemaphore e 90
6.12 TAtomicReference 92
6.13 ICountDownLatch e 92
6.14 IdGenerator e e e 93
6.15 Replicated Map L e 94
6.15.1 For Consideration L e 95
6.15.2 Breakage of the Map-Contract 95
6.15.3 Technical Design e e 95
6.15.4 Replicated Map Configuration L 96
6.15.5 EntryListener on Replicated Map 97

7 Distributed Events 99
7.1 Event Listeners for Hazelcast Nodes 99
7.1.1 Membership Listener 99
7.1.2 Distributed Object Listener 100
7.1.3 Migration Listener e 101
7.1.4 Partition Lost Listener L 101
7.1.5 Lifecycle Listener oL 102
7.1.6 TItem Listener L 102
7.1.7 Message Listenero 103
7.1.8 Client Listener e 103

7.2 Event Listeners for Hazelcast Clients 103

7.3 Global Event Configuration e 104

6 CONTENTS

8 Distributed Computing 105
8.1 Executor Service e 105
8.1.1 Executor Overview L e 105
8.1.2 Execution e e e 108

8.1.3 Execution Cancellation e 109
8.1.4 Execution Callback e 110
8.1.5 Execution Member Selection 111

8.2 Emtry Processor L 112
8.2.1 Entry Processor Overview L 112
8.2.2 Sample Entry Processor Code 114
8.2.3 Abstract Entry Processor 115

9 Distributed Query 117
9.1 Query OVErview o e e 117
9.1.1 How It Works L e 117
9.1.2 Employee Map Query Example 117
9.1.3 Criteria APL e 118
9.1.4 Distributed SQL Query 120
9.1.5 Paging Predicate 121
9.1.6 Indexing L 121
9.1.7 Query Thread Configuration 122

9.2 MapReduce e e 122
9.2.1 MapReduce Essentialso 123
9.2.2 Introduction to MapReduce API 125
9.2.3 Hazelcast MapReduce Architecture 132

0.3 Aggregators e e e 134
9.3.1 Aggregations Basics 134
9.3.2 Introduction to Aggregations APT 135
9.3.3 Aggregations Examples L 140
9.3.4 Implementing Aggregations Lo 143

9.4 Continuous QUETY e 143
9.5 Continuous Query Cache L 145
9.5.1 Features of Continuous Query Cacheo oL 146

10 User Defined Services 147
10.1 Sample Case L e e 147
10.1.1 Creating Class o o i 147
10.1.2 Enabling Class o e e e e e 148
10.1.3 Adding Properties e e 149

10.1.4 Starting Serviceo e e e 149

CONTENTS 7

10.1.5 Placing a Remote Call - Proxy 149
10.1.6 Creating Containers o i e e 154
10.1.7 Partition Migrationo 158
10.1.8 Creating Backups. e 163

10.2 WaitNotifyService oL 165
11 Transactions 167
11.1 Transaction Interface L 167
11.1.1 LOCAL versus TWO PHASE e 168

11.2 XA Transactions o o o 168
11.3 J2EE Integration L 169
11.3.1 Sample Code for J2EE Integration L o 170
11.3.2 Resource Adapter Configuration 170
11.3.3 Sample Glassfish v3 Web Application Configuration 170
11.3.4 Sample JBoss AS 5 Web Application Configuration 171
11.3.5 Sample JBoss AS 7 / EAP 6 Web Application Configuration 171

12 Hazelcast JCache 175
12.1 JCache Overview o o e 175
12.2 Setup and Configuration L L 175
12.2.1 Application Setup 175
12.2.2 Quick Exampleo 177
12.2.3 JCache Configuration L 178

12.3 JCache Providers L 180
12.3.1 Provider Configuration 180
12.3.2 JCache Client Provider e 181
12.3.3 JCache Server Provider e 181

12.4 Introduction to the JCache API 181
12.4.1 JCache API Walk-through 181
12.4.2 Roundup of Basics L 183
12.4.3 Factory and FactoryBuildero 184
12.4.4 CacheLoader e 184
12.4.5 CacheWriter o 185
12.4.6 JCache EntryProcessor e 186
12.4.7 CacheEntryListener e 187
12.4.8 ExpirePolicy e 189

12.5 Hazelcast JCache Extension - ICache L 189
12.5.1 Scopes and Namespaces« oot v i e e e 189
12.5.2 Retrieving an ICache Instance L 192

12.5.3 ICache Configuration 193

8 CONTENTS
12.5.4 Async Operations e e 194
12.5.5 Custom ExpiryPolicy e 195
12.5.6 JCache Eviction e 196
12.5.7 JCache Near Cache e 199
12.5.8 Additional Methods 202
12.5.9 BackupAwareEntryProcessor L 203

12.6 JCache Specification Compliance 204
13 Integrated Clustering 207
13.1 Hibernate Second Level Cache 207
13.1.1 Sample Code for Hibernate 207
13.1.2 Supported Hibernate Versions 207
13.1.3 Hibernate Configuration 207
13.1.4 Hazelcast Configuration for Hibernate 208
13.1.5 RegionFactory Options e 209
13.1.6 Hazelcast Modes for Hibernate Usage 210
13.1.7 Hibernate Concurrency Strategies it i 210
13.1.8 Advanced Settings L 211

13.2 Web Session Replication e 211
13.2.1 Filter Based Web Session Replicationo . 212
13.2.2 Spring Security Support L 214
13.2.3 Tomcat Based Web Session Replication 216
13.2.4 Jetty Based Web Session Replication L 220

13.3 Spring Integration L 225
13.3.1 Supported Versions L e 225
13.3.2 Spring Configuration L 225
13.3.3 Spring Managed Context with @QSpringAware 228
13.3.4 Spring Cache L 231
13.3.5 Hibernate 2nd Level Cache Config 232
13.3.6 Best Practices e 232

14 Storage 235
14.1 High-Density Memory Store o e 235
14.1.1 Configuring Hi-Density Memory Store 235

14.2 Elastic Memory (High-Density Memory First Generation) 236
14.3 Sizing Practices L 237

CONTENTS

15 Hazelcast Java Client

15.1 Hagzelcast Clients Feature Comparison

15.2 Java Client Overview

15.2.1 Java Client Dependencies

15.2.2 Getting Started with Client APT

15.2.3 Java Client Operation modes

15.2.4 Failure Handling

15.2.5 Supported Distributed Data Structures o,

15.2.6 Client Services
15.2.7 Client Listeners
15.2.8 Client Transactions . . .

15.3 Java Client Configuration . . .

15.3.1 Client Network Configuration o

15.3.2 Client Load Balancer Configuration

15.3.3 Client Near Cache Config

uration L

15.3.4 Client Group Configuration

15.3.5 Client Security Configuration L

15.3.6 Client Serialization Configuration

15.3.7 Client Listener Configuration

15.3.8 ExecutorPoolSize
15.3.9 ClassLoader
15.4 Client System Properties. . . .

15.5 Sample Codes for Client

16 Other Client Implementations
16.1 C++ Client

16.1.1 How to Setup

16.1.2 Platform Specific Installation Guides

16.1.3 Code Examples
16.2 .NET Client
16.2.1 Client Configuration . .
16.2.2 Client Startup
16.3 REST Client
16.4 Memcache Client

16.4.1 Unsupported Operations

239
239
241
241
241
242
242
242
243
245
245
245
245
251
251
252
252
252
252
253
253
253
253

255

10 CONTENTS

17 Serialization 269
17.1 Serialization Overview L 269
17.2 Serialization Interfaces L 269
17.3 Comparison Table e 270
17.4 Serializable & Externalizable L 270
17.5 DataSerializable 271

17.5.1 IdentifiedDataSerializable 273
17.6 Portable o 274
17.6.1 Versions L 276
17.6.2 Null Portable Serialization o 277
17.6.3 DistributedObject Serialization o 277
17.7 Custom Serialization L e e 277
17.7.1 StreamSerializero 277
17.7.2 ByteArraySerializer L 280
17.8 HazelcastInstanceAware Interface L 280

18 Management 283

18.1 Statistics API per Node 283
18.1.1 Map Statistics o L e 283
18.1.2 Multimap Statistics 286
18.1.3 Queue Statistics oL 289
18.1.4 Topic Statistics o o L e e 290
18.1.5 Executor Statistics e 291

18.2 JMX API per Node e 291

18.3 Monitoring with JMX e 297

18.4 Cluster Utilities 298
18.4.1 Cluster Interface 298
18.4.2 Member Attributeso 298
18.4.3 Cluster-Member Safety Check 299
18.4.4 Cluster QUOruImM« .t e e 300

18.5 Management Center L e e 303
18.5.1 Imtroduction L e 303
18.5.2 Tool Overview e 304
18.5.3 Home Page 305
18.5.4 Caches e e 309
18.5.5 Maps v o e e e 309
18.5.6 QUEUES e 313
18.5.7 Topics . . . o o o e e e 314
18.5.8 MultiMaps e e e e 315

18.5.9 Executors e s 315

CONTENTS 11

18.5. 10 Members L e e e e 316
18.5.11Scripting o e e 318
18.5.12C0mns0le 319
18513 Alerts L e 320
18.5.14 Administration L 323
18.5.15Time Travel o e e 324
18.5.16 Documentation Lo e 325
18.5.17Suggested Heap Size 325

18.6 Clustered JMX L 325
18.6.1 Clustered JMX Configuration e 326
18.6.2 API Documentation e 326
18.6.3 New Relic Integration L 331
18.6.4 AppDynamics Integration e 332

18.7 Clustered REST e 332
18.7.1 Enabling Clustered REST e 332
18.7.2 Clustered REST APT Root e 332
18.7.3 Clusters Resource e 332
18.7.4 Cluster Resource e 333
18.7.5 Members Resource L L 333
18.7.6 Member Resource L e 334
18.7.7 Clients Resource e 337
18.7.8 Maps Resource L e 337
18.7.9 MultiMaps Resource L 338
18.7.10Queues Resource L e e 339
18.7.11Topics Resource oL 340
18.7.12 Executors Resource L 341

19 Security 343
19.1 Enabling Security for Hazelcast Enterprise Lo o 343
19.2 Socket Interceptor L 343
19.3 Security Interceptor L e 344
19.4 Encryption L 345
19.5 SSL . L e e 346
19.6 Credentials L 347
19.7 ClusterLoginModule 348
19.7.1 Enterprise Integration L e 349

19.8 Cluster Member Security e 349
19.9 Native Client Security o 350
19.9.1 Authentication L e 350
19.9.2 Authorization L e 351

19.9.3 Permissions e 353

12 CONTENTS
20 Performance 357
20.1 Data Affinity L 357
20.2 Back Pressure e 360
20.3 Threading Model L e e e 361
20.3.1 I/O Threading e 361
20.3.2 Event Threading« . . e 361
20.3.3 IExecutor Threading e 362
20.3.4 Operation Threading o 362

20.4 SlowOperationDetector e e 364
20.4.1 Logging of Slow Operations e 365
20.4.2 Purging of Slow Operation Logs 365

20.5 Hazelcast Performance on AWS 365
20.5.1 Selecting EC2 Instance Type L 365
20.5.2 Dealing with Network Latency 366
20.5.3 Selecting Virtualization L 366

21 Hazelcast Simulator 367
21.1 Simulator Overview e 367
21.2 Key Concepts o o o o e e 367
21.3 Imstalling Simulator L 368
21.3.1 Firewall settings L 368
21.3.2 Setup of local machine (Coordinator) 368
21.3.3 Setup of remote machines (Agents, Workers) Lo L oL 369
21.3.4 Setup of public/private key pair L 369

21.4 Setting Up For Amazon EC2 e 370
21.5 Setting Up For Google Compute Engine L o 370
21.6 Setting Up Machines Manually L 371
21.7 Executing a Simulator Test L 372
21.7.1 An Example Simulator Test 372
21.7.2 Editing the simulator.properties File oo oL 374
21.7.3 Editing the test.properties fileo L 374
21.7.4 Running the Test e 374
21.7.5 Using Maven Archetypes e 378

21.8 Provisioner 378
21.8.1 Accessing the Provisioned Machineo oL 379

21.9 Coordinator L 379
21.9.1 Controlling Hazelcast Declarative Configuration 380
21.9.2 Controlling Test Duration e 380
21.9.3 Controlling Client And Workers. 380
21.10Communicator e 380

CONTENTS

21.10.1Example L e e e e e
21.10.2Message Types o o o e e
21.10.3Message Addressingo e
21.11Simulator.Properties File Description

21.12Performance and Benchmarking oL oL L

22 WAN
22.1 WAN Replication e
22.1.1 Configuring WAN Replication e
22.1.2 WAN Replication Additional Information
22.2 Enterprise WAN Replication
22.2.1 Replication implementations L L
22.2.2 WAN Replication Batch Size
22.2.3 WAN Replication Batch Frequency L o
22.2.4 WAN Replication Operation Timeout
22.2.5 WAN Replication Queue Capacity
22.2.6 Enterprise WAN Replication Additional Information

23 Hazelcast Configuration
23.1 Configuration Overview e
23.2 Using Wildcard o o
23.3 Using Variables oL
23.4 Composing Declarative Configuration L
23.5 Network Configuration o e
23.5.1 Public Address e
23.5.2 Port . . .o
23.5.3 Outbound Ports e
23.5.4 Reuse Address e e
23.5.5 Join ...
23.5.6 Interfaces
23.5.7 SSL . . e
23.5.8 Socket Interceptor
23.5.9 Symmetric Encryption oL
23.5.10IPv6 Support e
23.6 Group Configuration
23.7 Map Configuration L e
23.7.1 Map Store e
23.7.2 Near Cache e e
23.7.3 Indexes L
23.7.4 Entry Listeners L e

13

381
381
381
382
383

385
385
385
386
387
387
387
388
388
388
389

14 CONTENTS

23.8 MultiMap Configuration 406
23.9 Queue Configuration L e 406
23.10Topic Configuration e e 407
23.11List Configuration e e 408
23.12Set Configuration L e 409
23.13Ringbuffer Configuration 410
23.14Semaphore Configuration 410
23.15Executor Service Configuration 411
23.16Serialization Configuration L 411
23.17MapReduce Jobtracker Configuration 412
23.18Services Configuration L e 413
23.19Management Center Configuration 414
23.20WAN Replication Configuration 414
23.21Enterprise WAN Replication Configuration 415
23.21.1IMap and ICache WAN Configuration 416
23.22Partition Group Configuration 418
23.23Listener Configurations L 419
23.24Logging Configuration L e 423
23.25System Properties L L e 424

24 Network Partitioning - Split Brain Syndrome 429
24.1 Understanding Partition Recreation L o 429
24.2 Understanding Backup Partition Creation o Lo 429
24.3 Understanding The Update Overwrite Scenario 429
24.4 What Happens When The Network Failure Is Fixed, 430
24.5 How Hazelcast Split Brain Merge Happens, 430
24.6 Specifying Merge Policies oL 431

25 License Questions 433
25.1 Embedded Dependencies 433
25.2 Runtime Dependencies 433
26 Common Exception Types 435
27 Frequently Asked Questions 437
27.1 Why 271 as the default partition count? L 437
27.2 Is Hazelcast thread safe? o 437
27.3 What happens when a node goes down? Lo L 437
27.4 How do I test the connectivity? L 438
27.5 How do I choose keys properly? o 438

CONTENTS

27.7 How do I test my Hazelcast cluster?
27.8 Does Hazelcast support hundreds of nodes?
27.9 Does Hazelcast support thousands of clients?
27.10What is the difference between old LiteMember and new Smart Client?
27.11How do you give support?o e e
27.12Does Hazelcast persist? L

27.15How can I see debug level logs? L
27.16What is the difference between client-server and embedded topologies?
27.17THow do I know it is safe to kill the second node?

27.21How can I set socket options? L
27.221 periodically see client disconnections during idle time? oo oL
27.23How to get rid of “java.lang.OutOfMemoryError: unable to create new native thread”?
27.24Does repartitioning wait for Entry Processor? oL o Lo
27.25Why do Hazelcast instances on different machines not see each other?

27.26What Does “Replica: 1 has no owner” Mean?

28 Glossary

440

441
441

442

443

16

CONTENTS

Chapter 1

Preface

Welcome to the Hazelcast Reference Manual. This manual includes concepts, instructions and samples to guide you
on how to use Hazelcast and build Hazelcast applications.

As the reader of this manual, you must be familiar with the Java programming language and you should have
installed your preferred IDE.

1.0.0.0.1 Product Naming Throughout this manual:

e Hazelcast refers to the open source edition of Hazelcast in-memory data grid middleware. It is also the
name of the company providing the Hazelcast product.
e Hazelcast Enterprise refers to the commercial edition of Hazelcast.

1.0.0.0.2 Licensing Hazelcast is free provided under the Apache 2 license. Hazelcast Enterprise is commercially
licensed by Hazelcast, Inc.

For more detailed information on licensing, please see the License Questions appendix.

1.0.0.0.3 Trademarks Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this
manual are held by their respective owners.

1.0.0.0.4 Customer Support Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow.

For information on support for Hazelcast Enterprise, please see hazelcast.com/pricing.

1.0.0.0.5 Contributing to Hazelcast You can contribute to the Hazelcast code, report a bug or request an
enhancement. Please see the following resources.

e Developing with Git: Document that explains the branch mechanism of Hazelcast and how to request changes.

e Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and send back to
Hazelcast.

e Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests are managed.

1.0.0.0.6 Typographical Conventions Below table shows the conventions used in this manual.

Convention Description
bold font - Indicates part of a sentence that require the reader’s specific attention. - Also indicates
italic font - When italicized words are enclosed with “<” and “>”, indicates a variable in commanc

17

https://github.com/hazelcast/hazelcast/issues
https://groups.google.com/forum/#!forum/hazelcast
http://www.stackoverflow.com
http://hazelcast.com/pricing/
https://hazelcast.atlassian.net/wiki/display/COM/Developing+with+Git
https://hazelcast.atlassian.net/wiki/display/COM/Hazelcast+Contributor+Agreement
https://github.com/hazelcast/hazelcast

18 CHAPTER 1. PREFACE

Convention Description

monospace - Indicates files, folders, class and library names, code snippets, and inline code words in

RELATED INFORMATION - Indicates a resource that is relevant to the topic, usually with a link or cross-reference.

! NOTE Indicates information that is of special interest or importance, e.g. an additional action 1

element & attribute Mostly used in the context of declarative configuration, i.e. configuration performed by t

Chapter 2

What’s New in Hazelcast 3.5

This chapter includes the release notes, information on how to upgrade Hazelcast from previous releases and the
revision history for this document.

2.1 Release Notes

This section lists the new features and enhancements developed and bugs fixed for this release.

2.1.1 New Features

The following the new features introduced with Hazelcast 3.5 release.

e Async Back Pressure: The Back Pressure introduced with Hazelcast 3.4 now supports async operations.
For more information, please see the Back Pressure section.

e Client Configuration Import: Hazelcast now supports replacing variables with system properties in the
declarative configuration of Hazelcast client. Moreover, now you can compose the Hazelcast client declarative
configuration out of smaller configuration snippets. For more information, please see the Composing Declarative
Configuration section.

e Cluster Quorum: This feature enables you to define the minimum number of machines required in a cluster
for the cluster to remain in an operational state. For more information, please see the Cluster Quorum section.

e Hazelcast Client Protocol: Starting with 3.5, Hazelcast introduces the support for different versions of
clients in a cluster. Please keep in mind that this support is not valid for the releases before 3.5. Please see
the important note at the last paragraph of the Hazelcast Java Client chapter’s introduction.

e Listener for Lost Partitions: This feature notifies you for possible data loss occurrences. Please see the
Partition Lost Listener section and MapPartitionLostListener section.

e Increased Visibility of Slow Operations: With the introduction of the SlowOperationDetector fea-
ture, slow operations are logged and can be seen on the Hazelcast Management Center. Please see the
SlowOperationDetector section and Management Center:Members section.

e Enterprise WAN Replication: Hazelcast Enterprise implementation of the WAN Replication. Please see
the Enterprise WAN Replication section.

e Sub-Listener Interfaces for Map Listener: This feature enables you to listen to map-wide or entry-
based events. With this new feature, the listener formerly known as EntryListener has been changed to
MapListener and MapListener has sub-interfaces to catch map/entry related events. Please see the Map
Listener section for more information.

e Scalable Map Loader: With this feature, you can load your keys incrementally if the number of your keys
is large. Please see the Incremental Key Loading section.

e Near Cache for JCache: Now you can use a near cache with Hazelcast’s JCache implementation. Please
see JCache Near Cache for details.

19

20 CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

e Fail Fast on Invalid Configuration: With this feature, Hazelcast throws a meaningful exception if there is
an error in the declarative or programmatic configuration. Please see the note at the end of the Configuration
Overview section.

e Continuous Query Caching: (Enterprise only, since 3.5) Provides an always up to date view of an IMap
according to the given predicate. Please see the Continuous Query Cache section

e Dynamic Selector Rebalancing

e Management of Unbounded Return Values

2.1.2 Enhancements

3.5.1 Enhancements

The following are the the enhancements performed for Hazelcast 3.5.1 release.

e Client instances should spawn threads with their instance names added as prefix [#5671].

e The method com.hazelcast.spi.impl.classicscheduler.ResponseThread: :process may catch throw-
ables. When this occurs, it logs an unhelpful message, and ignores the actual exception. This method should
be improved to additionally log the cause, or at least the exception class and message [#5619).

e The element min-eviction-check-millis in the map configuration does not exist in documentation [#5614].

3.5 Enhancements

This section lists the enhancements performed for Hazelcast 3.5 release.

e Eventing System Improvements: RingBuffer and Reliable Topic structures are introduced.

e XA Transactions Improvements: With this improvement, you can now obtain a Hazelcast XA Resource
instance through HazelcastInstance. For more information, please see XA Transactions.

¢ Query and Indexing Improvements

The following are the other improvements performed to solve the enhancement issues opened by the Hazelcast
customers/team.

e While configuring JCache, duration of the ExpiryPolicy can be set programmatically but not declaratively
[#5347].

e Since near cache is not supported as embedded but only at client, at the moment, there is no need for
NearCacheConfig in CacheConfig [#5215].

e Support for parametrized test is needed [#5182].

e SlowOperationDetector should have an option to not to log the stacktraces to the log file. There is no need
to have the stacktraces written to the normal log file if the Hazelcast Management Center or the performance
monitor is being used [#5043].

e The batch launcher should include the JCache APT [#4902].

e There are no Spring tags available for Native Memory configuration [#4772].

e In the class BasicInvocationFuture, there is no need to create an additional AtomicInteger object. It
should be replaced with AtomicIntegerFieldUpdater [#4408].

e There is no need to use the class IsStillExecutingOperation to check if an operation is running locally.
One can directly access to the scheduler [#4407].

e Configuring NearCache in a Client/Server system only talks about the programmatic configuration of
NearCache on the clients. The declarative configuration (XML) of the same is not mentioned [#4376].

e XML schema and XML configuration validation is not compliant for AWS configuration [#4310].

e The JavaDoc for the methods KeyValueSource.hasNext/element/key and Iterator.hasNext/next should
emphasize the differences between each other, i.e. the state changing behavior should be clarified [#4218].

e While migration is in progress, the nodes will have different partition state versions. If the query is running
at that time, it can get results from the nodes at different stages of the migration. By adding partition state
version to the query results, it can be checked whether the migration was happening and the query can be
re-run [#4206].

https://github.com/hazelcast/hazelcast/issues/5671
https://github.com/hazelcast/hazelcast/issues/5619
https://github.com/hazelcast/hazelcast/issues/5614
https://github.com/hazelcast/hazelcast/issues/5347
https://github.com/hazelcast/hazelcast/issues/5215
https://github.com/hazelcast/hazelcast/issues/5182
https://github.com/hazelcast/hazelcast/issues/5043
https://github.com/hazelcast/hazelcast/issues/4902
https://github.com/hazelcast/hazelcast/issues/4772
https://github.com/hazelcast/hazelcast/issues/4408
https://github.com/hazelcast/hazelcast/issues/4407
https://github.com/hazelcast/hazelcast/issues/4376
https://github.com/hazelcast/hazelcast/issues/4310
https://github.com/hazelcast/hazelcast/issues/4218
https://github.com/hazelcast/hazelcast/issues/4206

2.1. RELEASE NOTES 21

e XML Config Schema does not allow to set a SecurityInterceptor Implementation [#4118].

e Currently, certain types of remote executed calls are stored into the executingCalls map. The key (and
value) is a RemoteCallKey object. The functionality provided is the ability to ask on the remote side if
an operation is still executing. For a partition-aware operation, this is not needed. When an operation is
scheduled by a partition specific operation thread, the operation can be stored in a volatile field in that thread
[#4079].

e The class TcpIpJoinerOverAWS fails at AWS’ recently launched eu-central-1 region. The reason for the fail is
that the region requires v4 signatures [#3963].

e API change in EntryListener breaks the compatibility with the Camel Hazelcast component [#3859].

The hazelcast-spring-<wversion>.xsd should include the User Defined Services (SPI) elements and attributes

[#3565].

XA Transactions run on multiple threads [#3385].

Hazelcast client fails to connect when you provide variables from the system properties [#3270].

Entry listeners are not called when the entries are modified by WAN replication [#2981].

Map wildcard matching is confusing. There should be a pluggable wildcard configuration resolver [#2431].

The method loadAllKeys () in map is not scalable [#2266].

Back pressure feature should be added [#1781].

2.1.3 Fixes

3.5.1 Fixes

The following are the issues solved for Hazelcast 3.5.1 release.

e Hazelcast Management Center uses UpdateMapConfigOperation to update map configurations. This operation
simply replaces the map configuration of the related map container. However, this replacement has no effect
for maxIdleSeconds and timeToLiveSeconds properties of the map configuration since they are not used in
the map container directly. They are assigned to the final variables during map container creation and never
touched again [#5593].

e Destroying a map just after creating it produces double create/destroy events for DistributedObjectListener
[#5592].

e Map does not allow changing its maximum size, TTL and maximum idle properties. However, these fields
are editable in the “Map Config” popup of Management Center. These fields should be disabled to prevent
misguiding [#5591].

e Map is destroyed using IMap.destroy() but then it is immediately recreated [#5554].

e There should be a better calculation when calling the method getApproximateMaxSize () related to casting.
Its return type is int and this causes the map entries to be evicted all the time when, for example, the
eviction policy for an IMap is set to heap percentage with the value 1% [#5516].

e All onResponse() calls on a MultiExecutionCallback should be made before the method onComplete ()
is called. There exists a race condition in ExecutionCallbackAdapterFactory which permits the method
onComplete () to be called before all onReponse () calls are made [#5490].

e Hazelcast Management Center “Scripting” tab is not refreshed when a new node joins to the cluster [#4738].

e When updating a map entry which is replicated over WAN, the TTL (time to live) is not honored in the
remote cluster map. When the timeout expires, the entry disappears from the cluster in which the key is
owned, however it remains in the remote cluster [#254].

3.5 Fixes

The following are the issues solved for Hazelcast 3.5 release.

e Operation timeout mechanism is not working [#5468].

e MapLoader exception is not logged: Exception should be logged and propagated back to the client that
triggered the loading of the map [#5430].

e Replicated Map documentation page does not mention that it is in the beta stage [#5424].

e The method XAResource.rollback() should not need the transaction to be in the prepared state when
called from another member/client [#5401].

https://github.com/hazelcast/hazelcast/issues/4118
https://github.com/hazelcast/hazelcast/issues/4079
https://github.com/hazelcast/hazelcast/issues/3963
https://github.com/hazelcast/hazelcast/issues/3859
https://github.com/hazelcast/hazelcast/issues/3565
https://github.com/hazelcast/hazelcast/issues/3385
https://github.com/hazelcast/hazelcast/issues/3270
https://github.com/hazelcast/hazelcast/issues/2981
https://github.com/hazelcast/hazelcast/issues/2431
https://github.com/hazelcast/hazelcast/issues/2266
https://github.com/hazelcast/hazelcast/issues/1781
https://github.com/hazelcast/hazelcast/issues/5593
https://github.com/hazelcast/hazelcast/issues/5592
https://github.com/hazelcast/hazelcast/issues/5591
https://github.com/hazelcast/hazelcast/issues/5554
https://github.com/hazelcast/hazelcast/issues/5516
https://github.com/hazelcast/hazelcast/issues/5490
https://github.com/hazelcast/hazelcast/issues/4738
https://github.com/hazelcast/hazelcast/issues/254
https://github.com/hazelcast/hazelcast/issues/5468
https://github.com/hazelcast/hazelcast/issues/5430
https://github.com/hazelcast/hazelcast/issues/5424
https://github.com/hazelcast/hazelcast/issues/5401

22

CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

The method XAResource.end () should not need to check threadId [#5400].

The method IList::remove() should publish the event REMOVED [#5386].

IllegalStateException with wrong partition is thrown when the method IMap: : getOperation() is invoked
[#5341].

WrongTarget warnings appear in the log since the operations are not sent to the replicas when a map has no
backups [#5324].

When the method finalizeCombine() is used, Hazelcast throws NullPointerException [#5283].

e WanBatchReplication causes OutOfMemoryException when the default value for WAN Replication Batch

Size (50) is used [#5280].

When testing Hazelcast, it does not start as an OSGI bundle. After the OSGI package was refactored, the
dynamic class loading of the Script engine was missed [#5274].

XA Example from Section 11.3.5 in the Reference Manual broken after the latest XA Improvements are
committed [#5273].

XA Transaction throws TransactionException instead of an XAException on timeout [#5260].

The test for unbounded return values runs forever with the new client implementation [#5230].

The new client method getAsync () fails with a NegativeArraySizeException [#5229].

The method putTransient actuated the MapStore unexpectedly in an environment with multiple instances
[#5225].

Changes made by the interceptor do not appear in the backup [#5211].

The method removeAttribute will prevent any updates by the method setAttribute in the deferred write
mode [#5186].

Backward compatibility of eviction configuration for cache is broken since CacheEvictionConfig class was
renamed to EvictionConfig for general usage [#5180].

Value passed into ICompletableFuture.onResponse() is not deserialized [#5158].

Map Eviction section in the Reference Manual needs more clarification [#5120].

When host names are not registered in DNS or in /etc/hosts and the members are configured manually

with TP addresses and while one node is running, a second node joins to the cluster 5 minutes after it started
[#5072].

e The method OperationService.asyncInvokeOnPartition() sometimes fails [#5069].

The SlowOperationDTO.operation shows only the class name, not the package. This can lead to ambiguity
and the actual class cannot be tracked [#5041].

There is no documentation comment for the MessageListener interface of ITopic [#5019].

The method InvocationFuture.isDone returns true as soon as there is a response including WAIT_RESPONSE.
However, WAIT_RESPONSE is an intermediate response, not a final one [#5002].

The method InvocationFuture.andThen does not deal with the null response correctly [#5001].
CacheCreationTest fails due to the multiple TestHazelcastInstanceFactory creations in the same test
[#4987].

When Spring dependency is upgraded to 4.1.x, an exception related to the putIfAbsent method is thrown
[#4981].

HazelcastCacheManager should offer a way to access the underlying cache manager [#4978].

e Hazelcast Client code allows to use the value 0 for the connectionAttemptLimit property which internally

results in int.maxValue. However, the XSD of the Hazelcast Spring configuration requires it to be at least 1
[#4967].

Updates from Entry Processor does not take write-coalescing into account [#4967].

CachingProvider does not honor custom URI [#4943].

Test for the method getLocalExecutorStats() fails spuriously [#4911].

Missing documentation of network configuration for JCache [#4905].

Slow operation detector throws a NullPointerException [#4855].

Consider use of System.nanoTime in sleepAtLeast test code [#4835].

When upgraded to 3.5-SNAPSHOT for testing, Hazelcast project gives a warning that mentions a missing
configuration for hazelcastmq.txn-topic [#4790].

ClassNotFoundException when using WAR classes with JCache APT [#4775].

When Hazelcast is installed using Maven in Windows environment, the test Xml1ConfigImportVariableReplacementTest

fails [#4758].
When a request cannot be executed due to a problem (connection error, etc.), if the operation redo is enabled,

https://github.com/hazelcast/hazelcast/issues/5400
https://github.com/hazelcast/hazelcast/issues/5386
https://github.com/hazelcast/hazelcast/issues/5341
https://github.com/hazelcast/hazelcast/issues/5324
https://github.com/hazelcast/hazelcast/issues/5283
https://github.com/hazelcast/hazelcast/issues/5280
https://github.com/hazelcast/hazelcast/issues/5274
https://github.com/hazelcast/hazelcast/issues/5273
https://github.com/hazelcast/hazelcast/issues/5260
https://github.com/hazelcast/hazelcast/issues/5230
https://github.com/hazelcast/hazelcast/issues/5229
https://github.com/hazelcast/hazelcast/issues/5225
https://github.com/hazelcast/hazelcast/issues/5211
https://github.com/hazelcast/hazelcast/issues/5186
https://github.com/hazelcast/hazelcast/issues/5180
https://github.com/hazelcast/hazelcast/issues/5158
https://github.com/hazelcast/hazelcast/issues/5120
https://github.com/hazelcast/hazelcast/issues/5072
https://github.com/hazelcast/hazelcast/issues/5069
https://github.com/hazelcast/hazelcast/issues/5041
https://github.com/hazelcast/hazelcast/issues/5019
https://github.com/hazelcast/hazelcast/issues/5002
https://github.com/hazelcast/hazelcast/issues/5001
https://github.com/hazelcast/hazelcast/issues/4987
https://github.com/hazelcast/hazelcast/issues/4981
https://github.com/hazelcast/hazelcast/issues/4978
https://github.com/hazelcast/hazelcast/issues/4967
https://github.com/hazelcast/hazelcast/issues/4957
https://github.com/hazelcast/hazelcast/issues/4943
https://github.com/hazelcast/hazelcast/issues/4911
https://github.com/hazelcast/hazelcast/issues/4905
https://github.com/hazelcast/hazelcast/issues/4855
https://github.com/hazelcast/hazelcast/issues/4835
https://github.com/hazelcast/hazelcast/issues/4790
https://github.com/hazelcast/hazelcast/issues/4775
https://github.com/hazelcast/hazelcast/issues/4758

2.2. UPGRADING HAZELCAST 23

request is retried. Retried operations are offloaded to an executor, but after offloading, the user thread still

tries to retry the request. This causes anomalies like operations being executed twice or operation responses

being handled incorrectly [#4693].

Client destroys all connections when a reconnection happens [#4692].

The size() method for a replicated map should return 0 when the entry is removed [#4666].

NullPointerException on the CachePutBackupOperation class [#4660].

When removing keys from a MultiMap with a listener, the method entryRemoved() is called. In order to get

the removed value, one must call the event.getValue () instead of event.get0ldValue() [#4644)].

Unnecessary deserialization at the server side when using Cache.get () [#4632].

e Operation timeout exception during IMap.loadAllKeys() [#4618].

e There have been Hazelcast AWS exceptions after the version of AWS signer had changed (from v2 to v4)
[#4571].

e In the declarative configuration; when a variable is used to specify the value of an element or attribute,
Hazelcast ignores the strings that come before the variable [#4533].

LocalRegionCache cleanup is working wrongly [#4445].
Repeatable-read does not work in a transaction [#4414].
Hazelcast instance name with Hibernate still creates multiple instances [#4374].

In Hazelcast 3.3.4, FinalizeJoinOperation times out if the method MapStore.loadAllKeys () takes more

than 5 seconds [#4348].

e JCache sync listener completion latch problems: Status of ICompletableFuture while waiting for completion
latch in the cache must be checked [#4335].

o Classloader issue with javax.cache.api and Hazelcast 3.3.1 [#3792].

e Failed backup operation on transaction commit causes “”’Nested transactions are not allowed!" warning
[#3577].

e Hazelcast Client should not ignore the fact that the XML is for server and should not use default XML feature
to connect to localhost [#3256].

e Owner connection read() forever [#3401].

2.2 Upgrading Hazelcast

In the following sections, you can see the changes that you should take into account before upgrading to latest
Hazelcast from 2.x and 3.x releases.

2.2.1 Upgrading from 2.x

e Removal of deprecated static methods: The static methods of Hazelcast class reaching Hazelcast data
components have been removed. The functionality of these methods can be reached from HazelcastInstance
interface. Namely you should replace following:

Map<Integer, String> customers = Hazelcast.getMap("customers");
with

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

// or if you already started an instance named "instancel”

// HazelcastInstance hazelcastInstance = Hazelcast.getHazelcastInstanceByName("instancel");
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

e Removal of lite members: With 3.0 there will be no member type as lite member. As 3.0 clients are smart
client that they know in which node the data is located, you can replace your lite members with native clients.

e Renaming “instance” to “distributed object”: Before 3.0 there was a confusion for the term “instance”.
It was used for both the cluster members and the distributed objects (map, queue, topic, etc. instances).
Starting 3.0, the term instance will be only used for Hazelcast instances, namely cluster members. We will

https://github.com/hazelcast/hazelcast/issues/4693
https://github.com/hazelcast/hazelcast/issues/4692
https://github.com/hazelcast/hazelcast/issues/4666
https://github.com/hazelcast/hazelcast/issues/4660
https://github.com/hazelcast/hazelcast/issues/4644
https://github.com/hazelcast/hazelcast/issues/4632
https://github.com/hazelcast/hazelcast/issues/4618
https://github.com/hazelcast/hazelcast/issues/4571
https://github.com/hazelcast/hazelcast/issues/4533
https://github.com/hazelcast/hazelcast/issues/4445
https://github.com/hazelcast/hazelcast/issues/4414
https://github.com/hazelcast/hazelcast/issues/4374
https://github.com/hazelcast/hazelcast/issues/4348
https://github.com/hazelcast/hazelcast/issues/4335
https://github.com/hazelcast/hazelcast/issues/3792
https://github.com/hazelcast/hazelcast/issues/3577
https://github.com/hazelcast/hazelcast/issues/3256
https://github.com/hazelcast/hazelcast/issues/3401

24 CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

use the term “distributed object” for map, queue, etc. instances. So you should replace the related methods
with the new renamed ones. As 3.0 clients are smart client that they know in which node the data is located,
you can replace your lite members with native clients.

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hazelcastInstance.getMap("test");
Collection<Instance> instances = hazelcastInstance.getInstances();
for (Instance instance : instances) {
if (instance.getInstanceType() == Instance.InstanceType.MAP) {
System.out.println("There is a map with name: " + instance.getId());
¥
}
}

with

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hz.getMap("test");
Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : objects) {
if (distributedObject instanceof IMap) {
System.out.println("There is a map with name: " + distributedObject.getName());
}
}
}

e Package structure change: PartitionService has been moved to package com.hazelcast.core from
com.hazelcast.partition.

e Listener API change: Before 3.0, removeListener methods was taking the Listener object as parameter.
But, it causes confusion as same listener object may be used as parameter for different listener registrations.
So we have changed the listener API. addListener methods return you an unique ID and you can remove
listener by using this ID. So you should do following replacement if needed:

IMap map = hazelcastInstance.getMap("map");
map.addEntryListener(listener, true);
map.removeEntryListener(listener);

with

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

e IMap changes:
tryRemove (K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is
successful.

tryLockAndGet (K key, long time, TimeUnit timeunit) is removed.

putAndUnlock(K key, V value) is removed.

lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.

getMapEntry (K key) is renamed as getEntryView(K key). The returned object’s type, MapEntry class is
renamed as EntryView.

e There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

2.3. DOCUMENT REVISION HISTORY

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

25

Also MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented

merge () method causes the existing entry to be removed.

e IQueue changes: There is no change on IQueue API but there are changes on how IQueue is configured.
With Hazelcast 3.0 there will not be backing map configuration for queue. Settings like backup count will be
directly configured on queue config. For queue configuration details, please see the Queue section.

e Transaction API change: In Hazelcast 3.0, transaction API is completely different. Please see the
Transactions chapter.

e ExecutorService API change: Classes MultiTask and DistributedTask have been removed. All the
functionality is supported by the newly presented interface IExecutorService. Please see the Executor Service
section.

e LifeCycleService API: The lifecycle has been simplified. pause(), resume(), restart () methods have
been removed.

e AtomicNumber: AtomicNumber class has been renamed to IAtomicLong.

e ICountDownLatch: await () operation has been removed. We expect users to use await () method with
timeout parameters.

e ISemaphore API: The ISemaphore has been substantially changed. attach(), detach() methods have
been removed.

e In 2.x releases, the default value for max-size eviction policy was cluster__wide__map_ size. In 3.x releases,
default is PER__NODE. After upgrading, the max-size should be set according to this new default, if it is
not changed. Otherwise, it is likely that OutOfMemory exception may be thrown.

2.2.2 Upgrading from 3.x

e Introducing the spring-aware element: Before the release 3.5, Hazelcast uses SpringManagedContext
to scan SpringAware annotations by default. This may cause some performance overhead for the users who
do not use SpringAware. This behavior has been changed with the release of Hazelcast 3.5. SpringAware
annotations are disabled by default. By introducing the spring-aware element, now it is possible to enable
it by adding the <hz:spring-aware /> tag to the configuration. Please see the Spring Integration section.

2.3 Document Revision History

Chapter Section

Description

Chapter 1 - Preface
Chapter 2 - What’s New in Hazelcast 3.5 Upgrading from 3.x
Chapter 3 - Getting Started Deploying On Amazon EC2
Chapter 4 - Hazelcast Overview

Data Partitioning
Chapter 5 - Hazelcast Clusters Creating Cluster Groups
Chapter 6 - Distributed Data Structures Map

Replicated Map

RingBuffer

Reliable Topic
Chapter 7 - Distributed Events

Partition Lost Listener

Chapter 8 - Distributed Computing Execution Member Selector

Added information on how to cor
Added as a new section.
Added as a new section to provic
Separated from Getting Started :
Added as a new section explainir
Added as a new section explainir
The content of the section, previ
Replicated Map Configuration ac
Added as a new section.
Added as a new section.
The whole chapter improved by :
Added as a new section.

Added as a new section explainir

26

CHAPTER 2. WHAT’S NEW IN HAZELCAST 3.5

Chapter

Section

Description

Chapter 9 - Distributed Query
Chapter 11 - Transactions

Chapter 12 - Hazelcast JCache

Chapter 13 - Integrated Clustering

Chapter 14 - Storage
Chapter 15 - Hazelcast Java Client

Chapter 16 - Other Client Implementations

Chapter 18 - Management
Chapter 19 - Security

Chapter 20 - Performance

Chapter 21 - Hazelcast Simulator
Chapter 22 - WAN

Chapter 23 - Hazelcast Configuration

Chapter 25 - License Questions

Chapter 26 - Common Exception Types

Chapter 27 - FAQ
Chapter 28 - Glossary

Paging Predicate

Local versus Two Phase

JCache Near Cache

Tomcat Based Web Session Replication

Web Session Replication

Sizing Practices

Hazelcast Clients Feature Comparison

JMX API per Node
Management Center
ClusterLoginModule

Hazelcast Performance on AWS
Back Pressure

SlowOperationDetector

WAN Replication Queue Capacity
Enterprise WAN Replication

Configuration Overview
Using Variables

System Properties

Enterprise WAN Replication Configuration

Added a note related to random
Added a note related to REPEATA
Added as a new section explainir
Added as a new section explainir
Added introduction paragraphs.
Updated the Overview paragrapl
transient-attributes added as a n
Added as a new section.
Separated from the formerly kno
Added an important note related
Added as a new section.

C++, .NET, Memcache and RE!
Two new bean definitions added
Added more information on the
The Enterprise Integration sectic
Added as a new section that pro
Added as a new section.

Added as a new section explainir
Added as a new chapter providin
The previous heading title (WAD
Added as a new section.
Improved by adding missing con
Added a note related to the inva
Added as a new section explainir
Updated by adding the new syst
Added as a new section describir
Added as a new chapter describi
Added as a new chapter.

Added new questions/answers.

Added new glossary items.

Chapter 3

Getting Started

This chapter explains how to install Hazelcast, start a Hazelcast member and client, and gives Hazelcast configuration
fundamentals.

3.1 Installation

The following sections explains the installation of Hazelcast and Hazelcast Enterprise.

3.1.1 Hazelcast

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need to add
additional repositories to your pom.xml or add hazelcast-<wversion>. jar file into your classpath (Maven does that
for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.5.1</version>
</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast yourself. You only need to:

e Download hazelcast-<wversion>.zip file from www.hazelcast.org.
e Unzip hazelcast-<version>.zip file.

e Add hazelcast-<wersion>. jar file into your classpath.

3.1.2 Hazelcast Enterprise

There are two Maven repositories defined for Hazelcast Enterprise:

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/snapshot/</url>
</repository>
<repository>

27

http://www.hazelcast.org/download/

28 CHAPTER 3. GETTING STARTED

<id>Hazelcast Private Release Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/release/</url>
</repository>

Hazelcast Enterprise customers may also define dependencies, a sample of which is shown below.

<dependency>
<groupIld>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat6</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupIld>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-tomcat7</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>${project.version}</version>
</dependency>

3.1.2.1 Setting the License Key
To use Hazelcast Enterprise, you need to set the license key in configuration.
e Declarative Configuration

<hazelcast>
<license-key>HAZELCAST_ENTERPRISE_LICENSE_KEY</license-key>

</hazelcast>
e Client Declarative Configuration

<hazelcast-client>
<license-key>HAZELCAST_ENTERPRISE_LICENSE_KEY</license-key>

</hazelcast-client>
e Programmatic Configuration

Config config = new Config();
config.setLicenseKey("HAZELCAST_ENTERPRISE_LICENSE_KEY");

e Spring XML Configuration

3.2. STARTING THE MEMBER AND CLIENT 29

<hz:config>
<hz:license-key>HAZELCAST_ENTERPRISE_LICENSE_KEY</hz:license-key>

</hz:config>
e JVM System Property

-Dhazelcast.enterprise.license.key=HAZELCAST_ENTERPRISE_LICENSE_KEY

3.2 Starting the Member and Client

Having installed Hazelcast, you can get started.

In this short tutorial, you perform the following activities.

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two members (JVMs).
3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client API.

Let’s begin.
e The following code starts the first Hazelcast member and creates and uses the customers map and queue.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap("customers");
customers.put(1, "Joe");
customers.put(2, "Ali");
customers.put(3, "Avi");

System.out.println("Customer with key 1: " + customers.get(l));
System.out.println("Map Size:" + customers.size());

Queue<String> queueCustomers = hazelcastInstance.getQueue("customers");
queueCustomers.offer("Tom");
queueCustomers.offer("Mary");
queueCustomers.offer("Jane");

System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

e Run this GettingStarted class a second time to get the second member started. The members form a cluster
and the output is similar to the following.

30 CHAPTER 3. GETTING STARTED

Members [2] {
Member [127.0.0.1:5701]
Member [127.0.0.1:5702] this
}

e Now, add the hazelcast-client-<wersion>.jar library to your classpath. This is required to use a
Hazelcast client.

e The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the customers
map.

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {
public static void main(String[] args) {
ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap map = client.getMap("customers");
System.out.println("Map Size:" + map.size());

e When you run it, you see the client properly connecting to the cluster and printing the map size as 3.

Hazelcast also offers a tool, Mlanagement Center, that enables you to monitor your cluster. To use it, deploy
the mancenter-<version> .war included in the ZIP file to your web server. You can use it to monitor your maps,
queues, and other distributed data structures and members. Please see the Management Center section for usage
explanations.

By default, Hazelcast uses Multicast to discover other members that can form a cluster. If you are working with
other Hazelcast developers on the same network, you may find yourself joining their clusters under the default
settings. Hazelcast provides a way to segregate clusters within the same network when using Multicast. Please see
the Creating Cluster Groups for more information. Alternatively, if you do not wish to use the default Multicast
mechanism, you can provide a fixed list of IP addresses that are allowed to join. Please see the Join Configuration
section for more information.

RELATED INFORMATION

You can also check the video tutorials here.

3.2.1 Deploying On Amazon EC2

You can deploy your Hazelcast project onto Amazon EC2 environment using Third Party tools such as Vagrant
and Chef.

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step by step instructions in the
hazelcast-integration folder of the hazelcast-code-samples package. Please refer to this sample project for
more information.

3.3 Configuring Hazelcast

When Hazelcast starts up, it checks for the configuration as follows:

http://hazelcast.org/getting-started/
https://www.vagrantup.com
https://www.chef.io/chef/
http://hazelcast.org/download/

3.3. CONFIGURING HAZELCAST 31

e First, it looks for the hazelcast.config system property. If it is set, its value is used as the path. This
is useful if you want to be able to change your Hazelcast configuration: you can do this because it is not
embedded within the application. You can set the config option with the following command:

- Dhazelcast.config=<path to the hazelcast.zml>.

The path can be a normal one or a classpath reference with the prefix CLASSPATH.

e If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml file in the
working directory.

e If not, then it checks whether hazelcast.xml exists on the classpath.
e If none of the above works, Hazelcast loads the default configuration, i.e. hazelcast-default.xml that

comes with hazelcast. jar.

When you download and unzip hazelcast-<wversion>.zip, you will see a hazelcast.xml in the /bin folder. This
is the declarative configuration file for Hazelcast. Part of this XML file is shown below.

<hazelcast xsi:schemalocation="http://www.hazelcast.com/schema/config hazelcast-config-3.5.xsd"
xmlns="http://www.hazelcast.com/schema/config"
xmlns:xsi="http://wuw.w3.org/2001/XMLSchema-instance">

<group>
<name>dev</name>
<password>dev-pass</password>
</group>
<management-center enabled="false">http://localhost:8080/mancenter</management-center>
<network>

<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>
<I--
Allowed port range when connecting to other nodes.
0 or * means use system provided port.
-—>
<ports>0</ports>
</outbound-ports>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="false">

For most users, default configuration should be fine. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties.

Besides declarative configuration, you can configure your cluster programmatically. Just instantiate a Config object
and add/remove/modify properties.

You can also use wildcards while configuring Hazelcast. Please refer to the Using Wildcard section for details.

Hazelcast also offers System Properties to tune some aspects of it. Please refer to the System Properties section for
details.

RELATED INFORMATION

Please refer to the Hazelcast Configuration chapter for more information.

32

CHAPTER 3. GETTING STARTED

Chapter 4

Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable distributed In-Memory
computing, widely recognized as the fastest and most scalable approach to application performance. Hazelcast
does this in open source. More importantly, Hazelcast makes distributed computing simple by offering distributed
implementations of many developer friendly interfaces from Java such as Map, Queue, ExecutorService, Lock,
and JCache. For example, the Map interface provides an In-Memory Key Value store which confers many of the
advantages of NoSQL in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access the CPUs in your
cluster for maximum processing speed. Hazelcast is designed to be lightweight and easy to use. Since Hazelcast is
delivered as a compact library (JAR) and since it has no external dependencies other than Java, it easily plugs into
your software solution and provides distributed data structures and distributed computing utilities.

Hazelcast is highly scalable and available (100% operational, never failing). Distributed applications can use
Hazelcast for distributed caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is
implemented in Java and has clients for Java, C/C++, .NET and REST. Hazelcast also speaks memcache protocol.
It plugs into Hibernate and can easily be used with any existing database system.

If you are looking for In-Memory speed, elastic scalability, and the developer friendliness of NoSQL, Hazelcast is a
great choice.

Hazelcast is simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar Java util
package, exposing the same interfaces. Just add hazelcast. jar to your classpath, and you can quickly enjoy
JVMs clustering and you can start building scalable applications.

Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no single point of
failure. All nodes store equal amounts of data and do equal amounts of processing. You can embed Hazelcast in
your existing application or use it in client and server mode where your application is a client to Hazelcast nodes.

Hazelcast is scalable

Hazelcast is designed to scale up to hundreds and thousands of nodes. Simply add new nodes and they will
automatically discover the cluster and will linearly increase both memory and processing capacity. The nodes
maintain a TCP connection between each other and all communication is performed through this layer.

Hazelcast is fast
Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.
Hazelcast is redundant

Hazelcast keeps the backup of each data entry on multiple nodes. On a node failure, the data is restored from the
backup and the cluster will continue to operate without downtime.

33

34 CHAPTER 4. HAZELCAST OVERVIEW

4.1 Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we serialize, hash
and mode it with the number of partitions to find the partition the key belongs to. The partitions themselves
are distributed equally among the members of the cluster. Hazelcast also creates the backups of partitions and
distributes them among nodes for redundancy.

RELATED INFORMATION

Please refer to the Data Partitioning section for more information on how Hazelcast partitions your data.

4.2 Hazelcast Topology

If you have an application whose main focal point is asynchronous or high performance computing and lots of task
executions, then embedded deployment is very useful. In this type, nodes include both the application and data.
See the below illustration.

.- Node
TCP/IP
: , TCP/IP
Node
“teeaest Node
TCP/IP

You can have a cluster of server nodes that can be independently created and scaled. Your clients communicate
with these server nodes to reach to the data on them. Hazelcast provides native clients (Java, NET and C++),
Memcache clients and REST clients. See the below illustration.

4.3 Why Hazelcast?

A Glance at Traditional Data Persistence

Data is at the core of software systems. In conventional architectures, a relational database persists and provides
access to data. Applications are talking directly with a database which has its backup as another machine. To
increase performance, tuning or a faster machine is required. This can cost a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using technologies like
external key-value stores or second level caching. This helps to offload the database. However, when the database
is saturated or the applications perform mostly “put” operations (writes), this approach is of no use because it
insulates the database only from the “get” loads (reads). Even if the applications are read-intensive, there can be
consistency problems: when data changes, what happens to the cache, and how are the changes handled? This is
when concepts like time-to-live (TTL) or write-through come in.

4.3. WHY HAZELCAST? 35

ol Jawa,
y A VE UIE"""'_ET:EFI‘H C# ol C+

*t:uf____——f Client

‘, Node .
TCPAP
: ' TCP/IP

: - r Memchache Protocol Memcache

. Client

Mode
Tresasnet Node
RE%
TCP/IP T Protgey
—2 REST
Client

However, in the case of TTL, if the access is less frequent then the TTL, the result will always be a cache miss. On
the other hand, in the case of write-through caches; if there are more than one of these caches in a cluster, then we
again have consistency issues. This can be avoided by having the nodes communicating with each other so that
entry invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. And, there are several cache
servers and in-memory database solutions in this field. However, those are stand-alone single instances with a
distribution mechanism to an extent provided by other technologies. This brings us back to square one: we would
experience saturation or capacity issues if the product is a single instance or if consistency is not provided by the
distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast shares data
around the cluster for flexibility and performance. It is an in-memory data grid for clustering and highly scalable
data distribution.

One of the main features of Hazelcast is not having a master node. Each node in the cluster is configured to be the
same in terms of functionality. The oldest node (the first node created in the node cluster) manages the cluster
members, i.e. automatically performs the data assignment to nodes. If the oldest node dies, the second oldest node
will manage the cluster members.

Another main feature is the data being held entirely in-memory. This is fast. In the case of a failure, such as a
node crash, no data will be lost since Hazelcast distributes copies of data across all the nodes of cluster.

As shown in the feature list in the Hazelcast Overview, Hazelcast supports a number of distributed data structures
and distributed computing utilities. This provides powerful ways of accessing distributed clustered memory and
accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

It is open source.

It is a small JAR file. You do not need to install software.

It is a library, it does not impose an architecture on Hazelcast users.

It provides out of the box distributed data structures (i.e. Map, Queue, MultiMap, Topic, Lock, Executor,
etc.).

e There is no “master”, so no single point of failure in Hazelcast cluster; each node in the cluster is configured
to be functionally the same.

36 CHAPTER 4. HAZELCAST OVERVIEW

When the size of your memory and compute requirement increases, new nodes can be dynamically joined to
the cluster to scale elastically.

Data is resilient to node failure. Data backups are distributed across the cluster. This is a big benefit when a
node in the cluster crashes: data will not be lost.

Nodes are always aware of each other: they communicate, unlike traditional key-value caching solutions.
You can build your own custom distributed data structures using the Service Programming Interface (SPI) if
you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

e analytic applications requiring big data processing by partitioning the data,
e to retain frequently accessed data in the grid,

e a cache, particularly an open source JCache provider with elastic distributed scalability,

e a primary data store for applications with utmost performance, scalability and low-latency requirements,
e an In-Memory NoSQL Key Value Store,

e publish/subscribe communication at highest speed and scalability between applications,

e applications that need to scale elastically in distributed and cloud environments,

e a highly available distributed cache for applications,

e an alternative to Coherence, Gemfire and Terracotta.

4.4 Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions are memory
segments, where each of those segments can contain hundreds or thousands of data entries, depending on the
memory capacity of your system.

By default, Hazelcast offers 271 partitions. When you start a node, that nose owns those 271 partitions. The
following illustration shows the partitions in a single node Hazelcast cluster.

P_1
P2

P_3

P_Z&4
P 270
P 2T
Mode

When you start a second node on that cluster (creating a 2-node Hazelcast cluster), the partitions are distributed
as shown in the following illustration.

In the illustration, the partitions with black text are primary partitions, and the partitions with blue text are
replica partitions (backups). The first node has 135 primary partitions (black), and each of these partitions are

4.4. DATA PARTITIONING

37

P P 136
P2 P 137
P_135 P27
| I
P 136 P1
P 137 P2
P 271 P_135

backed up in the second node (blue). At the same time, the first node also has the replica partitions of the second
node’s primary partitions.

As you add more nodes, Hazelcast one-by-one moves some of the primary and replica partitions to the new nodes,
making all nodes equal and redundant. Only the minimum amount of partitions will be moved to scale out Hazelcast.
The following is an illustration of the partition distributions in a 4-node Hazelcast cluster.

P P 69 P_137 P_205

P_137 P_205 P P_69
P_138 P_206 P2 P_70
P_204 P27 P_&6B P_136

Hazelcast distributes the partitions equally among the members of the cluster. Hazelcast creates the backups of
partitions and distributes them among nodes for redundancy.

38 CHAPTER 4. HAZELCAST OVERVIEW

4.4.1 How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key (for example,
for a map) or an object name (for example, for a topic or list):

e the key or name is serialized (converted into a byte array),
e this byte array is hashed, and
e the result of the hash is mod by the number of partitions.

The result of this modulo - MOD(hash result, partition count) - gives the partition in which the data will be stored.

4.4.2 Partition Table

When you start a node, a partition table is created within it. This table stores the information for which partitions
belong to which nodes. The purpose of this table is to make all nodes in the cluster aware of this information,
making sure that each node knows where the data is.

The oldest node in the cluster (the one that started first) periodically sends the partition table to all nodes. In this
way, each node in the cluster is informed about any changes to the partition ownership. The ownerships may be
changed when, for example, a new node joins the cluster, or when a node leaves the cluster.

! NOTE: If the oldest node goes down, the next oldest node sends the partition table information to the other
nodes.

You can configure the frequency (how often) that the node sends the partition table the information by using
the hazelcast.partition.table.send.interval system property. The property is set to every 15 seconds by
default.

4.4.3 Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the repartitioning in the
following cases:

e When a node joins to the cluster.
e When a node leaves the cluster.

In these cases, the partition table in the oldest node is updated with the new partition ownerships.

4.5 Use Cases

Some example usages are listed below. Hazelcast can be used: - To share server configuration/information to see
how a cluster performs,

e To cluster highly changing data with event notifications (e.g. user based events) and to queue and distribute
background tasks,

e As a simple Memcache with near cache,

e As a cloud-wide scheduler of certain processes that need to be performed on some nodes,

e To share information (user information, queues, maps, etc.) on the fly with multiple nodes in different
installations under OSGI environments,

e To share thousands of keys in a cluster where there is a web service interface on an application server and
some validation,

4.6. RESOURCES 39

4.6

As a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones,
As a front layer for a Cassandra back-end,

To distribute user object states across the cluster, to pass messages between objects and to share system data
structures (static initialization state, mirrored objects, object identity generators),

As a multi-tenancy cache where each tenant has its own map,
To share datasets (e.g. table-like data structure) to be used by applications,

To distribute the load and collect status from Amazon EC2 servers where front-end is developed using, for
example, Spring framework,

As a real time streamer for performance detection,

As storage for session data in web applications (enables horizontal scalability of the web application).

Resources

Hazelcast source code can be found at Github/Hazelcast.
Hazelcast API can be found at Hazelcast.org/docs/Javadoc.
Code samples can be downloaded from Hazelcast.org/download.
More use cases and resources can be found at Hazelcast.com.
Questions and discussions can be posted at Hazelcast mail group.

https://github.com/hazelcast/hazelcast
http://www.hazelcast.org/docs/latest/javadoc/
http://hazelcast.org/download/
http://www.hazelcast.com
https://groups.google.com/forum/#!forum/hazelcast

40

CHAPTER 4. HAZELCAST OVERVIEW

Chapter 5

Hazelcast Clusters

This chapter describes Hazelcast clusters and the ways cluster members use to form a Hazelcast cluster.

5.1 Discovering Cluster Members

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members (also called nodes)
automatically join together to form a cluster. This automatic joining takes place with various discovery mechanisms
that the cluster members use to find each other. Hazelcast uses the following discovery mechanisms.

e Multicast
e TCP
e EC2 Cloud

Each discovery mechanism is explained in the following sections.

! NOTE: After a cluster is formed, communication between cluster members is always via TCP/IP, regardless
of the discovery mechanism used.

5.1.1 Discovering Members by Multicast

With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other using multicast
communication. The cluster members do not need to know the concrete addresses of the other members, they just
multicast to all the other members for listening. It depends on your environment if multicast is possible or allowed.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. Please refer to the
multicast element section for the full description of the multicast discovery configuration elements.

e Set the enabled attribute of the multicast element to “true”.
e Set multicast-group, multicast-port, multicast-time-to-live, etc. to your multicast values.
e Set the enabled attribute of both tcp-ip and aws elements to “false”.

The following is an example declarative configuration.

<network>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>

41

42 CHAPTER 5. HAZELCAST CLUSTERS

<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>
<interface>192.168.1.102</interface>

</trusted-interfaces>

</multicast>

<tcp-ip enabled="false">

</tcp-ip>

<aws enabled="false">

</aws>

</join>
<network>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the time
in seconds that a node should wait for a valid multicast response from another node running in the network
before declaring itself as the leader node (the first node joined to the cluster) and creating its own cluster. This
only applies to the startup of nodes where no leader has been assigned yet. If you specify a high value to
multicast-timeout-seconds, such as 60 seconds, it means that until a leader is selected, each node will wait 60
seconds before moving on. Be careful when providing a high value. Also be careful not to set the value too low, or
the nodes might give up too early and create their own cluster.

5.1.2 Discovering Members by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure Hazelcast to be a
full TCP/IP cluster. When you configure Hazelcast to discover members by TCP/IP, you must list all or a subset
of the members’ hostnames and/or IP addresses as cluster members. You do not have to list all of these cluster
members, but at least one of the listed members has to be active in the cluster when a new member joins.

To set your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. Please refer to the
tep-ip element section for the full description of the TCP/IP discovery configuration elements.

Set the enabled attribute of the multicast element to “false”.
Set the enabled attribute of the aws element to “false”.

Set the enabled attribute of the tcp-ip element to “true”.
Set your member elements within the tcp-ip element.

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">
<member>machinel</member>
<member>machine2</member>
<member>machine3:5799</member>
<member>192.168.1.0-7</member>

<member>192.168.1.21</member>
</tcp-ip>

</join>
</network>

</hazelcast>

5.1. DISCOVERING CLUSTER MEMBERS 43

As shown above, you can provide IP addresses or hostnames for member elements. You can also give a range of IP
addresses, such as 192.168.1.0-7.

Instead of providing members line by line as shown above, you also have the option to use the members element
and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>
If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702, and so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can change this behavior
using the system property hazelcast.socket.bind.any. If you set this property to false, Hazelcast uses the
interfaces specified in the interfaces element (please refer to the Interfaces Configuration section). If no interfaces
are provided, then it will try to resolve one interface to bind from the member elements.

5.1.3 Discovering Members within EC2 Cloud

Hazelcast supports EC2 Auto Discovery. It is useful when you do not want to provide or you cannot provide the
list of possible IP addresses.

To configure your cluster to use EC2 Auto Discovery, set the following configuration elements. Please refer to the
aws element section for the full description of the EC2 Auto Discovery configuration elements.

e Add the hazelcast-cloud.jar dependency to your project. Note that it is also bundled inside hazelcast-all.jar.
The Hazelcast cloud module does not depend on any other third party modules.

e Disable join over multicast and TCP/IP: set the enabled attribute of the multicast element to “false”, and
set the enabled attribute of the tcp-ip element to “false”.

e Set the enabled attribute of the aws element to “true”.

e Within the aws element, provide your credentials (access and secret key), your region, etc.

The following is an example declarative configuration.

<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="false">
</tcp-ip>

<aws enabled="true">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>

</join>

5.1.3.1 Debugging

When needed, Hazelcast can log the events for the instances that exist in a region. To see what has happened or to
trace the activities while forming the cluster, change the log level in your logging mechanism to FINEST or DEBUG.
After this change, you can also see in the generated log whether the instances are accepted or rejected, and the
reason the instances were rejected. Note that changing the log level in this way may affect the performance of the
cluster. Please see the Logging Configuration section for information on logging mechanisms.

RELATED INFORMATION

You can download the white paper “Hazelcast on AWS: Best Practices for Deployment”* from Hazelcast.com.*

http://hazelcast.com/resources/hazelcast-on-aws-best-practices-for-deployment/

44 CHAPTER 5. HAZELCAST CLUSTERS
5.2 Creating Cluster Groups

You can create cluster groups. To do this, use the group configuration element.

By specifying a group name and group password, you can separate your clusters in a simple way. Example groupings
can be by development, production, test, app, etc. The following is an example declarative configuration.

<hazelcast>
<group>
<name>appl</name>
<password>appl-pass</password>
</group>

</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host multiple Hazelcast
instances. Each Hazelcast instance can only participate in one group. Each Hazelcast instance only joins to its own
group, it does not mess with other groups. The following code example creates three separate Hazelcast instances:
h1 belongs to the app1 cluster, while h2 and h3 belong to the app2 cluster.

Config configAppl = new Config();
configAppl.getGroupConfig() .setName("appl").setPassword("appl-pass");

Config configApp2 = new Config();
configApp2.getGroupConfig() .setName("app2").setPassword("app2-pass");

HazelcastInstance hl = Hazelcast.newHazelcastInstance(configAppl);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(confighApp2);

Chapter 6

Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java interfaces. Below is the
Java interface list with links to each section in this manual.

e Standard utility collections:

— Map: The distributed implementation of java.util.Map lets you read from and write to a Hazelcast
map with methods like get and put.

— Queue: The distributed queue is an implementation of java.util.concurrent.BlockingQueue. You
can add an item in one machine and remove it from another one.

— RingBuffer: The distributed RingBuffer is implemented for reliable eventing system.

— Set: The distributed and concurrent implementation of java.util.Set. It does not allow duplicate
elements and does not preserve their order.

— List: Very similar to Hazelcast List, except that it allows duplicate elements and preserves their order.

— MultiMap: This is a specialized Hazelcast map. It is distributed, where multiple values under a single
key can be stored.

— ReplicatedMap: This does not partition data, i.e. it does not spread data to different cluster members.
Instead, it replicates the data to all nodes.

e Topic: Distributed mechanism for publishing messages that are delivered to multiple subscribers; this is also
known as a publish/subscribe (pub/sub) messaging model. Please see the Topic section for more information.

e Concurrency utilities:

— Lock: Distributed implementation of java.util.concurrent.locks.Lock. When you lock using
Hazelcast Lock, the critical section that it guards is guaranteed to be executed by only one thread in the
entire cluster.

— Semaphore: Distributed implementation of java.util.concurrent.Semaphore. When performing
concurrent activities, semaphores offer permits to control the thread counts.

— AtomicLong: Distributed implementation of java.util.concurrent.atomic.AtomicLong. Most of
AtomicLong’s operations are available. However, these operations involve remote calls and hence their
performances differ from AtomicLong, due to being distributed.

— AtomicReference: When you need to deal with a reference in a distributed environment, you can use Hazel-
cast AtomicReference. This is the distributed version of java.util.concurrent.atomic.AtomicReference.

— IdGenerator: You use Hazelcast IdGenerator to generate cluster-wide unique identifiers. ID generation
occurs almost at the speed of AtomicLong.incrementAndGet ().

— CountdownLatch: Distributed implementation of java.util.concurrent.CountDownLatch. Hazelcast
CountDownLatch is a gate keeper for concurrent activities, enabling the threads to wait for other threads
to complete their operations.

Common Features of all Hazelcast Data Structures:

45

46 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e If a member goes down, its backup replica (which holds the same data) will dynamically redistribute the data,
including the ownership and locks on them, to the remaining live nodes. As a result, no data will be lost.

e There is no single cluster master that can cause single point of failure. Every node in the cluster has equal
rights and responsibilities. No single node is superior. There is no dependency on an external ‘server’ or
‘master’.

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and
how you can listen for instance events, such as an instance being created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.x*;

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
b
3

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

6.1 Map

6.1.1 Map Overview

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence java.util.Map.
It is the distributed implementation of Java map. You can perfrom operations like reading and writing from/to a
Hazelcast map with the well known get and put methods.

6.1.1.1 How Distributed Map Works

Hazelcast will partition your map entries and almost evenly distribute onto all Hazelcast members. Each member
carries approximately “(1/n * total-data) 4+ backups”, n being the number of nodes in the cluster. For example, if
you have a node with 1000 objects to be stored in the cluster, and then you start a second node, each node will
both store 500 objects and back up the 500 objects in the other node.

Let’s create a Hazelcast instance (node) and fill a map named Capitals with key-value pairs using the following
code.

6.1. MAP 47

public class FillMapMember {
public static void main(String[] args) {

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
capitalcities.put("1", "Tokyo");
capitalcities.put("2", "Paris");
capitalcities.put("3", "Washington");
capitalcities.put("4", "Ankara");
capitalcities.put("5", "Brussels");
capitalcities.put("6", "Amsterdam");
capitalcities.put("7", "New Delhi");
capitalcities.put("8", "London");
capitalcities.put("9", "Berlin");
capitalcities.put("10", "Oslo");
capitalcities.put("11", "Moscouw");

capitalcities.put("120", "Stockholm")
}
}

When you run this code, a node is created with a map whose entries are distributed across the node’s partitions.
See the below illustration. For now, this is a single node cluster.

("3", “Washington”)
Lk “Tﬂky’ﬂ”]

(47, “Ankara”)

("12", "Prague”)

("19", "Rome”)

("2”, “Paris"”)
("5, “Brussels”)

("6, "Amsterdam”™)

. NOTE: Please note that some of the partitions will not contain any data entries since we only have 120

48 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

objects and the partition count is 271 by default. This count is configurable and can be changed using the system
property hazelcast.partition. count. Please see the System Properties section.

Now, let’s create a second node by running the above code again. This will create a cluster with 2 nodes. This is
also where backups of entries are created; remember the backup partitions mentioned in the Hazelcast Overview
section. The following illustration shows two nodes and how the data and its backup is distributed.

("3, “Washington”) (6", "Amsterdam”)
I i 1.|'.|' . \.\.Tukyﬂ i]

(2", “Paris")
("5, “Brussels”)

("4”, “Ankara”)

{”12”, ”Pragu&“} {ulg#' “Ruma”}

(19", “Rome"”) ("3”, “Washington”)
{‘”1“, “Tﬂk?ﬂ.ﬂl'}

("2", “Paris"”) nygw w o
(5", “Brussels”) ("1 v Pragﬂe)

(“e”, "Amsterdam”) ("4", “Ankara”)

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in the cluster.
Eventually, it will carry almost “(1/n * total-data) + backups” of the data, reducing the load on other nodes.

HazelcastInstance: :getMap returns an instance of com.hazelcast.core.IMap which extends the java.util.concurrent.Cc
interface. Methods like ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value)
can be used on the distributed map, as shown in the example below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
Customer customer = customers.get(id);
if (customer == null) {
customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

6.1. MAP 49

return customer;

}

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return (customers.replace(customer.getId(), customer) != null);

}

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return customers.remove(customer.getId(), customer);

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread in the
local or remote JVM. But, they will eventually return with success. ConcurrentMap operations never throw a
java.util.ConcurrentModificationException.

Also see:

e Data Affinity section.
e Map Configuration with wildcards.
e Map Configuration section for a full description of Hazelcast Distributed Map configuration.

6.1.2 Map Backups

Hazelcast distributes map entries onto multiple JVMs (cluster members). Each JVM holds some portion of the
data.

Distributed maps have 1 backup by default. If a member goes down, you do not lose data. Backup operations are
synchronous, so when a map.put(key, value) returns, it is guaranteed that the entry is replicated to one other
node. For the reads, it is also guaranteed that map.get (key) returns the latest value of the entry. Consistency is
strictly enforced.

6.1.2.1 Sync Backup

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to have. That way,
data on a JVM will be copied onto other JVM(s). You select the number of backup copies using the backup-count

property.

<hazelcast>
<map name='"default">
<backup-count>1</backup-count>
</map>
</hazelcast>

When this count is 1, a map entry will have its backup on one other node in the cluster. If you set it to 2, then a
map entry will have its backup on two other nodes. You can set it to 0 if you do not want your entries to be backed
up, e.g. if performance is more important than backing up. The maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations are synchronous
and configured with backup-count. In this case, backup operations block operations until backups are successfully
copied to backup nodes (or deleted from backup nodes in case of remove) and acknowledgements are received.
Therefore, backups are updated before a put operation is completed. Sync backup operations have a blocking cost
which may lead to latency issues.

50 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

6.1.2.2 Async Backup

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do not require
acknowledgements; the backup operations are performed at some point in time. Async backup is configured using
the async-backup-count property. An example is shown below.

<hazelcast>
<map name='"default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</map>
</hazelcast>

. NOTE: Backups increase memory usage since they are also kept in memory.
. NOTE: A map can have both sync and aysnc backups at the same time.

6.1.2.3 Read Backup Data

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each member will
carry both owned entries and backup copies of other members. So for the map.get (key) call, it is possible that
the calling member has a backup copy of that key. By default, map.get (key) will always read the value from the
actual owner of the key for consistency. It is possible to enable backup reads (read local backup entries) by setting
the value of the read-backup-data property to true. Its default value is false for strong consistency. Enabling
backup reads can improve performance.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>
</map>
</hazelcast>

This feature is available when there is at least 1 sync or async backup.

6.1.3 Map Eviction

Unless you delete the map entries manually or use an eviction policy, they will remain in the map. Hazelcast
supports policy based eviction for distributed maps. Currently supported policies are LRU (Least Recently Used)
and LFU (Least Frequently Used).

Map eviction works based on the size of a partition. For example, once you specify a size using the PER_NODE
attribute for max-size (please see Configuring Map Eviction), Hazelcast internally calculates the maximum size for
every partition. Eviction process starts according to this calculated per-partition maximum size when you try to
put an entry. Below section gives an example scenario.

6.1.3.1 Example Map Eviction Scenario
Assume that you have the following figures:

e Partition count: 200
e Entry count for each partition: 100

6.1. MAP o1

e max-size (PER_NODE): 20000
e eviction-percentage (please see Configuring Map Eviction): 10%

The total number of entries here is 20000 (partition count * entry count for each partition). This means you are at
the eviction threshold since you set the max-size to 20000. When you try to put an entry:

1. Entry goes to the relevant partition.
2. Partition checks whether the eviction threshold is reached (max-size).
3. If reached, approximately 10 (100 * 10%) entries are evicted from that particular partition.

As a result of this eviction process, when you check the size of your map, it is ~19990 (20000 - ~10). After this
eviction, subsequent put operations will not trigger the next eviction until the map size is again close to the
max-size.

l NOTE: Above scenario is just an example to describe how the eviction process works. Hazelcast finds the
most optimum number of entries to be evicted according to your cluster size and selected policy.

6.1.3.2 Configuring Map Eviction

The following is an example declarative configuration for map eviction.

<hazelcast>
<map name="default">

<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
<eviction-percentage>25</eviction-percentage>
<min-eviction-check-millis>100</min-eviction-check-millis>
</map>
</hazelcast>

Let’s describe each element.

e time-to-live: Maximum time in seconds for each entry to stay in the map. If it is not 0, entries that
are older than this time and not updated for this time are evicted automatically. Valid values are integers
between 0 and Integer.MAX VALUE. Default value is 0, which means infinite. If it is not 0, entries are evicted
regardless of the set eviction-policy.

e max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. Entries that are idle
for more than this time are evicted automatically. An entry is idle if no get, put or containsKey is called.
Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0, which means infinite.

e eviction-policy: Valid values are described below.

— NONE: Default policy. If set, no items will be evicted and the property max-size will be ignored. You
still can combine it with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

e max-size: Maximum size of the map. When maximum size is reached, the map is evicted based on the
policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0. If you
want max-size to work, set the eviction-policy property to a value other than NONE. Its attributes are
described below.

52

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

PER_NODE: Maximum number of map entries in each JVM. This is the default policy.

<max-size policy="PER_NODE">5000</max-size>

PER_PARTITION: Maximum number of map entries within each partition. Storage size depends on the
partition count in a JVM. This attribute should not be used often. Avoid using this attribute with a
small cluster: if the cluster is small it will be hosting more partitions, and therefore map entries, than
that of a larger cluster. Thus, for a small cluster, eviction of the entries will decrease performance (the
number of entries is large).

<max-size policy="PER_PARTITION">27100</max-size>

USED_HEAP_SIZE: Maximum used heap size in megabytes for each JVM.

<max-size policy="USED_HEAP_SIZE">4096</max-size>

USED_HEAP_PERCENTAGE: Maximum used heap size percentage for each JVM. If, for example, JVM is
configured to have 1000 MB and this value is 10, then the map entries will be evicted when used heap
size exceeds 100 MB.

<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>

FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.

<max-size policy="FREE_HEAP_SIZE">512</max-size>

FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example, JVM is
configured to have 1000 MB and this value is 10, then the map entries will be evicted when free heap
size is below 100 MB.

<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

e eviction-percentage: When max-size is reached, the specified percentage of the map will be evicted.
For example, if set to 25, 25% of the entries will be evicted. Setting this property to a smaller value will
cause eviction of a smaller number of map entries. Therefore, if map entries are inserted frequently, smaller
percentage values may lead to overheads. Valid values are integers between 0 and 100. The default value is 25.
min-eviction-check-millis: The minimum time in milliseconds which should elapse before checking
whether a partition of the map is evictable or not. In other terms, this property specifies the frequency of the
eviction process. The default value is 100. Setting it to 0 (zero) makes the eviction process run for every put
operation.

NOTE: When map entries are inserted frequently, the property min-eviction-check-millis should be set

to a number lower than the insertion period in order not to let any entry escape from the eviction.

6.1.3.3 Sample Eviction Configuration

<map name="documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>

</map>

In the above sample, documents map starts to evict its entries from a member when the map size exceeds 10000 in
that member. Then, the entries least recently used will be evicted. The entries not used for more than 60 seconds
will be evicted as well.

6.1.3.4 Evicting Specific Entries

The eviction policies and configurations explained above apply to all the entries of a map. The entries that meet
the specified eviction conditions are evicted.

But you may want to evict some specific map entries. In this case, you can use the ttl and timeunit parameters
of the method map.put (). A sample code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key “1” will be evicted 50 seconds after it is put into myMap.

6.1. MAP 93

6.1.3.5 Evicting All Entries

The method evictAll() evicts all keys from the map except the locked ones. If a MapStore is defined for the map,
deleteAll is not called by evictAll. If you want to call the method deleteAll, use clear ().

A sample is given below.

public class EvictAll {

public static void main(String[] args) {
final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance nodel = Hazelcast.newHazelcastInstance();
HazelcastInstance node?2 Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = nodel.getMap(EvictAll.class.getCanonicalName());
for (int i = 0; i < numberOfEntriesToAdd; i++) {

map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {
map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf ("# After calling evictAll...\n");
System.out.printf ("# Expected map size\t: ’d\n", number0fKeysToLock);
System.out.printf ("# Actual map size\t: %d\n", map.size());

l NOTE: Only EVICT _ALL event is fired for any registered listeners.

6.1.4 In Memory Format

IMap has an in-memory-format configuration option. By default, Hazelcast stores data into memory in binary
(serialized) format. But sometimes, it can be efficient to store the entries in their object form, especially in cases of
local processing like entry processor and queries. By setting in-memory-format in map’s configuration, you can
decide how the data will be stored in memory. You have the following format options.

e BINARY (default): This is the default option. The data will be stored in serialized binary format. You can use
this option if you mostly perform regular map operations, such as put and get.

e OBJECT: The data will be stored in deserialized form. This configuration is good for maps where entry
processing and queries form the majority of all operations and the objects are complex ones, making the
serialization cost respectively high. By storing objects, entry processing will not contain the deserialization
cost.

Regular operations like get rely on the object instance. When the 0BJECT format is used and a get is performed,
the map does not return the stored instance, but creates a clone. Therefore, this whole get operation includes
a serialization first on the node owning the instance, and then a deserialization on the node calling the instance.
When the BINARY format is used, only a deserialization is required; this is faster.

54 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, map would create a
clone of the instance, and there would first a serialization and then deserialization. When BINARY is used, only a
deserialization is needed.

. NOTE: If a value is stored in OBJECT format, a change on a returned value does not affect the stored
instance. In this case, the returned instance is not the actual one but a clone. Therefore, changes made on an object
after it is returned will not reflect on the actual stored data. Similarly, when a value is written to a map and the
value is stored in OBJECT format, it will be a copy of the put value. Therefore, changes made on the object after it
1s stored will not reflect on the stored data.

6.1.5 Map Persistence

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a
relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory,
MapLoader’s load or loadAll methods will load that entry from the data store. This loaded entry is placed into
the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

. NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast Nodes. Persistence
to local file system is not supported.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
private final Connection con;

public PersonMapStore() {
try {
con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
con.createStatement () .executeUpdate (
"create table if not exists person (id bigint, name varchar(45))");
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {
con.createStatement () .executeUpdate (
format("delete from person where id = %s", key));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void store(Long key, Person value) {
try {
con.createStatement () .executeUpdate (
format("insert into person values(%s,’%s’)", key, value.name));
} catch (SQLException e) {
throw new RuntimeException(e);

3

6.1. MAP 95

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet())
store(entry.getKey(), entry.getValue());
}

public synchronized void deleteAll(Collection<Long> keys) {
for (Long key : keys) delete(key);
3

public synchronized Person load(Long key) {
try {
ResultSet resultSet = con.createStatement () .executeQuery(
format("select name from person where id =Ys", key));
try {
if (!resultSet.next()) return null;
String name = resultSet.getString(1);
return new Person(name) ;
} finally {
resultSet.close();
}
} catch (SQLException e) {
throw new RuntimeException(e);
¥
3

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) result.put(key, load(key));
return result;

}

public Iterable<Long> loadAllKeys() {
return null;

3

l NOTE: Loading process is performed on a thread different than the partition threads using EzxecutorService.
RELATED INFORMATION
For more MapStore/MapLoader code samples please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes which are explained in below
subsections.

6.1.5.1 Read-Through

If an entry does not exist in the memory when an application asks for it, Hazelcast asks your loader implementation
to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to
Hazelcast, and Hazelcast puts it into the memory. This is read-through persistence mode.

6.1.5.2 Write-Through

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means
the entries will be put to the data store synchronously.

In this mode, when the map.put (key,value) call returns:

https://github.com/hazelcast/hazelcast-code-samples/tree/master/distributed-map/mapstore/src/main/java

56 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e MapStore.store(key,value) is successfully called so the entry is persisted.
e In-Memory entry is updated.
e In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

The same behavior goes for a map.remove (key) call. The only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in
the form of RuntimeException.

6.1.5.3 Write-Behind

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than
0. This means the modified entries will be put to the data store asynchronously after a configured delay.

l NOTE: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies only the
last update on it. But, you can set MapStoreConfig#setiWriteCoalescing to FALSE and you can store all updates
performed on a key to the data store.

l NOTE: When you set MapStoreConfig#setiWriteCoalescing to FALSE, after you reached per-node max-
imum write-behind-queue capacity, subsequent put operations will fail with ReachedMazSizeException. This
exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per node mazximum
capacity with GroupProperty#MAP_WRITE_BEHIND_QUEUE_CAPACITY.

In this mode, when the map.put (key,value) call returns:

e In-Memory entry is updated.

e In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

e The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store (key,value)
call.

e For fault tolerance dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove (key), the only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a
log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll (map)
and MapStore.deleteAll(collection) to do all writes in a single call.

l NOTE: If a map entry is marked as dirty, i.e. it is waiting to be persisted to the MapStore in a write-behind
scenario, the eviction process forces the entry to be stored. By this way, you will have control on the number of
entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

l NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queue/MultiMap/List/Set
operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock
sttuations.

Here is a sample configuration:

<hazelcast>
<map name='"default">

<map-store enabled="true">

6.1. MAP o7

<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>
</map-store>
</map>
</hazelcast>

RELATED INFORMATION

Please refer to the Map Store section for the full Map Store configuration description.

6.1.5.4 MapStoreFactory And MapLoaderLifecycleSupport Interfaces

A configuration can be applied to more than one map using wildcards (see Using Wildcard), meaning that the
configuration is shared among the maps. But MapStore does not know which entries to store when there is one
configuration applied to multiple maps. To overcome this, Hazelcast provides the MapStoreFactory interface.

Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is
used. Sample code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig();
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
@0verride
public MapLoader<Object, Object> newMapStore(String mapName, Properties properties) {
return null;
}
b;

If the configuration implements the MapLoaderLifecycleSupport interface, then the user can initialize the
MapLoader implementation with the given map name, configuration properties, and the Hazelcast instance. See the
following example code.

public interface MapLoaderLifecycleSupport {

/K

Inttializes this MapLoader implementation. Hazelcast will call
this method when the map is first used on the
HazelcastInstance. Implementation can

tnitialize required resources for the implementing

mapLoader such as reading a config file and/or creating
database connection.

¥ ¥ % %X % %

*/

void init(HazelcastInstance hazelcastInstance, Properties properties, String mapName) ;

/K
* Hazelcast will call this method before shutting down.
* Thts method can be overridden to cleanup the resources
* held by thtis map loader implementation, such as closing the
* database connections etc.
*/

void destroy();

}

o8 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

6.1.5.5 Initialization On Startup

You can use the MapLloader.loadAllKeys API to pre-populate the in-memory map when the map is
first touched/used. If MapLoader.loadAllKeys returns NULL then nothing will be loaded. Your
MapLoader.loadAllKeys implementation can return all or some of the keys. For example, you may se-
lect and return only the hot keys. MapLoader.loadAllKeys is the fastest way of pre-populating the map since
Hazelcast will optimize the loading process by having each node loading its owned portion of the entries.

The InitialLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If
InitialloadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, the whole data
is loaded while the map is created and everything becomes ready to use. Also, if you add indices to your map with
the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig
behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any node, initialization will start depending on the value of
InitialloadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start
but data is loaded each time a partition loading completes.

Hazelcast will call MapLoader.loadAllKeys () to get all your keys on one of the nodes.

That node will distribute keys to all other nodes in batches.

FEach node will load values of all its owned keys by calling MapLoader.loadAll (keys).

Each node puts its owned entries into the map by calling IMap.putTransient (key,value).

Gl N

l NOTE: If the load mode is LAZY and when the clear () method is called (which triggers MapStore.deleteAll()),
Hazelcast will remove ONLY the loaded entries from your map and datastore. Since the whole data is not loaded
for this case (LAZY mode), please note that there may be still entries in your datastore.

l NOTE: The return type of loadAllKeys () is changed from Set to Iterable with the release of Hazelcast
3.5. MapLoader implementations from previous releases are also supported and do not need to be adapted.

#+#4## Incremental Key Loading

If the number of keys to load is large, it is more efficient to load them incrementally than loading them all at once.
To support incremental loading, MapLoader.loadAllKeys () returns an Iterable which can be lazily populated
with results of a database query. Hazelcast iterates over the iterable and, while doing so, sends out the keys to
their respective owner nodes. The Iterator obtained from MapLoader.loadAllKeys() may also implement the
Closeable interface in which case it is closed once the iteration is over. This is intended for releasing resources
such as closing a JDBC result set.

6.1.5.6 Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load operations.
The method has two signatures (i.e. the same method can take two different parameter lists). One signature loads
the given keys and the other loads all keys. Please see the sample code below.

public class LoadAll {

public static void main(String[] args) {
final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName() ;
final Config config = createNewConfig(mapName) ;
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName) ;

populateMap (map, numberOfEntriesToAdd);

https://github.com/hazelcast/hazelcast/blob/5f4f6a876e572f91431ad22f01ad5af9f5837f72/hazelcast/src/main/java/com/hazelcast/config/MapStoreConfig.java
https://github.com/hazelcast/hazelcast/blob/da5cceee74e471e33f65f43f31d891c9741e31e3/hazelcast/src/main/java/com/hazelcast/config/MapIndexConfig.java

6.1. MAP 99

System.out.printf ("# Map store has 7%d elements\n", numberOfEntriesToAdd) ;

map.evictAll();
System.out.printf ("# After evictAll map size\t: %d\n", map.size());

map.loadAll(true);
System.out.printf ("# After loadAll map size\t: ’d\n", map.size());

6.1.5.7 Post Processing Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can
get an ID or version auto generated by your database and then you need to modify your object stored in the
distributed map but not to break the sync between database and data grid. You can do that by implementing the
PostProcessingMapStore interface to put the modified object into the distributed map. That will cause an extra
step of Serialization, so use it only when needed. (This explanation is only valid when using the write-through
map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
@0verride
public void store(Integer key, Employee employee) {
Employeeld id = saveEmployee();
employee.setId(id.getId());
}
}

6.1.6 Near Cache

Map entries in Hazelcast are partitioned across the cluster. Imagine that you are reading the key k so many times
and k is owned by another member in your cluster. Each map.get (k) will be a remote operation, meaning lots of
network trips. If you have a map that is read-mostly, then you should consider creating a near cache for the map so
that reads can be much faster and consume less network traffic. All these benefits do not come free. When using
near cache, you should consider the following issues:

e JVM will have to hold extra cached data so it will increase the memory consumption.
e If invalidation is turned on and entries are updated frequently, then invalidations will be costly.
e Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. Here is a near cache configuration for a map:

<hazelcast>
<map name='"my-read-mostly-map">

<near-cache>

<l--
Mazimum size of the near cache. When maxz size %S Teached,
cache 1s evicted based on the policy defined.
Any integer between O and Integer.MAX_VALUE. O means
Integer.MAX_VALUE. Default s O.

-—>

<max-size>5000</max-size>

60 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

<I--
Mazimum number of seconds for each entry to stay in the near cache. Entries that are
older than <time-to-live-seconds> will get automatically evicted from the near cache.
Any integer between O and Integer.MAX_VALUE. O means infinite. Default is 0.

-—>

<time-to-live-seconds>0</time-to-live-seconds>

<l--
Mazimum number of seconds each entry can stay in the near cache as untouched (not-read).
Entries that are not read (touched) more than <maz-idle-seconds> wvalue will get Temoved
from the near cache.
Any integer between O and Integer.MAX_VALUE. O means
Integer.MAX_VALUE. Default s O.

-—>

<max-idle-seconds>60</max-idle-seconds>

<I--

Valid wvalues are:

NONE (no eztra eviction, <time-to-live-seconds> may still apply),

LRU (Least Recently Used),

LFU (Least Frequently Used).

NONE is the default.

Regardless of the eviction policy used, <time-to-live-seconds> will still apply.
-—>
<eviction-policy>LRU</eviction-policy>

<l--
Should the cached entries get evicted if the entries are changed (updated or removed).
true of false. Default is true.

-—>

<invalidate-on-change>true</invalidate-on-change>

<l--
You may want also local entries to be cached.
This ts useful when in memory format for mear cache is different than the map’s one.
By default it is disabled.

-—>

<cache-local-entries>false</cache-local-entries>

</near-cache>
</map>
</hazelcast>

. NOTE: Programmatically, near cache configuration is done by using the class NearCacheConfig. And this
class is used both in the nodes and clients. In a client/server system, you must enable the near cache separately
on the client, without needing to configure it on the server. For information on how to create a near cache on a
client (native Java client), please see the Client Near Cache Configuration section. Please note that near cache
configuration is specific to the node or client itself, a map in a node may not have near cache configured while the
same map in a client may have.

. NOTE: If you are using near cache, you should take into account that your hits to the keys in near cache
are not reflected as hits to the original keys on the remote nodes; this has an impact on IMap’s mazimum idle
seconds or time-to-live seconds expiration. Therefore, even there is a hit on a key in near cache, your original key
on the remote node may expire.

. NOTE: Near cache works only when you access data via map.get (k) methods. Data returned using a
predicate is not stored in the near cache

https://github.com/hazelcast/hazelcast/blob/607aa5484958af706ee18a1eb15d89afd12ee7af/hazelcast/src/main/java/com/hazelcast/config/NearCacheConfig.java

6.1. MAP 61

6.1.7 Map Locks

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When these requirements
increase or you want to have more control on the concurrency, consider the following Hazelcast features and
solutions.

Let’s work on a sample case as shown below.

public class RacyUpdateMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 100 == 0) System.out.println("At: " + k);
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

3

If the above code is run by more than one cluster member simultaneously, there will be likely a race condition. You
can solve this with Hazelcast.

6.1.7.1 Pessimistic Locking

One way to solve the race issue is the lock mechanism provided by Hazelcast distributed map, i.e. the map.lock
and map.unlock methods. You simply lock the entry until you are finished with it. See the below sample code.

public class PessimisticUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
map.lock(key);
try {
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
} finally {
map.unlock(key);
}

}
System.out.println("Finished! Result = " + map.get(key).amount);

62 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

}

static class Value implements Serializable {
public int amount;

}

The IMap lock will automatically be collected by the garbage collector when the lock is released and no other
waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

Another way to solve the race issue can be acquiring a predictable Lock object from Hazelcast. This way, every
value in the map can be given a lock or you can create a stripe of locks.

6.1.7.2 Optimistic Locking

The Hazelcast way of optimistic locking is to use the map.replace method. See the below sample code.

public class OptimisticMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 10 == 0) System.out.println("At: " + k);
for (; ;) {
Value oldValue = map.get(key);
Value newValue = new Value(oldValue);
Thread.sleep(10);
newValue.amount++;
if (map.replace(key, oldValue, newValue))
break;
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value(Value that) {
this.amount = that.amount;

}

public boolean equals(Object o) {
if (o == this) return true;
if ('(o instanceof Value)) return false;
Value that = (Value) o;
return that.amount == this.amount;

6.1. MAP 63

NOTE: Above sample code is intentionally broken.

6.1.7.3 Pessimistic vs. Optimistic Locking

Depending on the locking requirements, one locking strategy can be picked.
Optimistic locking is better for mostly read only systems. It has a performance boost over pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than optimistic locking
from the perspective of data consistency. In Hazelcast, use IExecutorService to submit a task to a key owner,
or to a member or members. This is the recommended way to perform task executions that use pessimistic or
optimistic locking techniques. IExecutorService will have less network hops and less data over wire, and tasks
will be executed very near to the data. Please refer to the Data Affinity section.

6.1.7.4 ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple threads. Even if
one thread sees the same value for a particular key in consecutive reads, it does not mean nothing has changed
between the reads. Another thread may come and change the value, do work, and change the value back, but the
first thread can think that nothing has changed.

To prevent these kind of problems, one solution is to use a version number and to check it before any write to be sure
that nothing has changed between consecutive reads. Although all the other fields will be equal, the version field
will prevent objects from being seen as equal. This is the optimistic locking strategy, and it is used in environments
which do not expect intensive concurrent changes on a specific key.

In Hazelcast, you can apply optimistic locking strategy with the map replace method. This method compares
values in object or data forms depending on the in-memory format configuration. If the values are equal, it replaces
the old value with the new one. If you want to use your defined equals method, in-memory format should be
Object. Otherwise, Hazelcast serializes objects to binary forms and compares them.

6.1.8 Entry Statistics

Hazelcast keeps extra information about each map entry, such as creation time, last update time, last access time,
number of hits, and version. This information is exposed to the developer via a IMap.getEntryView(key) call.
Here is an example:

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory " + entry.getCost());

(
System.out.println ("creationTime : " + entry.getCreationTime());
System.out.println ("expirationTime : " + entry.getExpirationTime());
System.out.println ("number of hits " + entry.getHits());
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime());
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key : " + entry.getKey());
System.out.println ("value : " + entry.getValue());

6.1.9 Map Listener

You can listen to map-wide or entry-based events by implementing a MapListener sub-interface. A map-wide event
is fired as a result of a map-wide operation: for example, IMap#clear or IMap#evictAll. An entry-based event is
fired after the operations that affect a specific entry: for example, IMap#remove or IMap#evict.

64 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Let’s take a look at the following code sample. To catch an event, you should explicitly implement a corresponding
sub-interface of a MapListener, such as EntryAddedListener or MapClearedListener.

. NOTE: EntryListener interface still can be implemented, we kept that as is due to backward compatibility
reasons. However, if you need to listen to a different event which is not available in the EntryListener interface,
you should also implement a relevant MapListener sub-interface.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

static class MyEntryListener implements EntryAddedListener<String, String>,

EntryRemovedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryEvictedListener<String, String> ,
MapEvictedListener,
MapClearedListener {

Q@0verride

public void entryAdded(EntryEvent<String, String> event) {

System.out.println("Entry Added:" + event);
}

Q@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

3

Q@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

X

Q@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

3

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

3

@0verride
public void mapCleared(MapEvent event) {
System.out.println("Map Cleared:" + event);

}

Now, let’s perform some modifications on the map entries using the following example code.

6.1. MAP 65

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
String key = "" + System.nanoTime();
String value = "1";
map.put(key, value);
map.put(key, "2");
map.delete(key);

If you execute the Listen class and then the Modify class, you get the following output produced by the Listen
class.

entryAdded:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=null, value=1, event=ADDED, by Member [192.168.1.100]:5702

entryUpdated:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=1, value=2, event=UPDATED, by Member [192.168.1.100]:5702

entryRemoved:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=2, value=2, event=REMOVED, by Member [192.168.1.100]:5702

public class MyEntryListener implements EntryListener{
private Executor executor = Executors.newFixedThreadPool(5);

@0verride
public void entryAdded(EntryEvent event) {
executor.execute (new DoSomethingWithEvent (event)) ;

}

A map listener runs on the event threads that are also used by the other listeners: for example, the collection
listeners and pub/sub message listeners. This means that the entry listeners can access other partitions. Consider
this when you run long tasks, since listening to those tasks may cause the other map/event listeners to starve.

6.1.9.1 MapPartitionLostListener

You can listen to MapPartitionLostEvent instances by registering an implementation of MapPartitionLostListener,
which is also a sub-interface of MapListener.

Let‘s consider the following example code:

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("map") .setBackupCount(1); // might lose data if any node crashes

HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance(config) ;

IMap<Object, Object> map = instancel.getMap('"map");
map.put (0, 0);

map.addPartitionlLostListener (new MapPartitionLostListener() {
@0verride

66 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

public void partitionLost(MapPartitionLostEvent event) {
System.out.println(event);
}
b;
}

Within this example code, a MapPartitionLostListener implementation is registered to a map that is configured
with 1 backup. For this particular map and any of the partitions in the system, if the partition owner node
and its first backup node crash simultaneously, the given MapPartitionLostListener receives a corresponding
MapPartitionLostEvent. If only a single node crashes in the cluster, there will be no MapPartitionLostEvent
fired for this map since backups for the partitions owned by the crashed node are kept on other nodes.

Please refer to the Partition Lost Listener section for more information about partition lost detection and partition
lost events.

6.1.10 Interceptors

You can add intercept operations and then execute your own business logic synchronously blocking the operations.
You can change the returned value from a get operation, change the value to be put or cancel operations by
throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behavior of operation, change the values, or totally cancel
it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can result in duplicate
effects. This can easily happen when the interceptor is added to the map at node initialization, so that each node
adds the same interceptor. When adding the interceptor in this way, be sure that the hashCode() method is
implemented to return the same value for every instance of the interceptor. It is not strictly necessary, but it is a
good idea to also implement equals() as this will ensure that the map interceptor can be removed reliably.

IMap API has two methods for adding and removing an interceptor to the map,addInterceptor and
removelnterceptor:

Jk*
* Adds an interceptor for this map. Added interceptor will intercept operations
and execute user defined methods and will cancel operations i1f user defined method throw exception.

*
*
*
*# @param interceptor map interceptor
*

Q@return <d of registered interceptor

*/
String addInterceptor(MapInterceptor interceptor);

VAL
* Removes the given interceptor for this map. So it will not intercept operations anymore.
*
*

* @param id registration id of map interceptor
*/

void removelnterceptor(String id);
Here is the MapInterceptor interface:

public interface MapInterceptor extends Serializable {

/K

* Intercept the get operation before it returns a wvalue.

6.1. MAP

* Return another object to change the return value of get(..)
* Returning null will cause the get(..) operation to return the original value,
* namely return null if you do not want to change anything.
*
*
* @param value the original value to be returned as the result of get(..) operation
* Q@return the new value that will be returned by get(..) operation
*/
Object interceptGet(Object value);
VLS
* Called after get(..) operation is completed.
*
*

* @param value the value returned as the result of get(..) operation
*/
void afterGet(Object value);

J**

Intercept put operation before modifying map data.

Return the object to be put into the map.

Returning null will cause the put(..) operation to operate as ezpected,
namely no interception. Throwing an exception will cancel the put operation.

*
*
*
*
*
*
* @param oldValue the walue currently in map
* @param newValue the new walue to be put
* @return new value after intercept operation

*/
Object interceptPut(Object oldValue, Object newValue);

VLS
* Called after put(..) operation is completed.
*

*
* @param value the value returned as the result of put(..) operation
*/

void afterPut(Object value);

Intercept remove operation before removing the data.
Return the object to be returned as the result of remove operation.
Throwing an exception will cancel the remove operation.

@param removedValue the exzisting wvalue to be removed
Q@return the value to be returned as the result of remove operation
*/

Object interceptRemove(Object removedValue);

VLT
* Called after remove(..) operation is completed.
*
*
* @param value the value returned as the result of remove(..) operation
*/
void afterRemove(Object value);

3

68

Example Usage:

public class InterceptorTest {

QTest
public void testMapInterceptor() throws InterruptedException {
HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance();
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance();
IMap<Object, Object> map = hazelcastInstancel.getMap("testMapInterceptor");

}

SimpleInterceptor interceptor =

map.
map . put (
map.put(2
map.put(3
map.put(4,
map.put(5
map.put(6
map.put(7

try {

map.remove(1);

} catch (Exception ignore) {

}
try {

map.remove(2);

} catch (Exception ignore) {

}
assertEquals(

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map.

map

map.
.get(3

map

map.
.get(5

map

map.
map.

size(), 6)

.get(1

get(2
get(4

get(6
get(7

null);
"ISTANBUL:");
"TOKYO:");
"LONDON:");
"PARIS:");
"CAIRO:");
"HONG KONG:");

map.removelInterceptor(interceptor);
map.put(8, "Moscow");

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map

map.
.get(2

map

map.
map.
map.
map.
.get(7

map

.get(8

get(1

get(3
get(4
get(5
get(6

"Moscow");
null);
"ISTANBUL");
"TOKYQ");
"LONDON") ;
"PARIS");
"CAIRO");
"HONG KONG");

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

new SimpleInterceptor();
addInterceptor(interceptor);
"New York");
, "Istanbul");
, "Tokyo");
"London");
, "Paris");
, "Cairo");
, "Hong Kong");

static class SimpleInterceptor implements MapInterceptor, Serializable {

@0verride

public Object interceptGet(Object value) {

if (value == null)
return null;

return value + ":

"n.
’

6.1. MAP 69

@0verride
public void afterGet(Object value) {
}

@0verride
public Object interceptPut(Object oldValue, Object newValue) {
return newValue.toString() .toUpperCase();

}

@0verride
public void afterPut(Object value) {
}

@0verride
public Object interceptRemove(Object removedValue) {
if (removedValue.equals("ISTANBUL"))
throw new RuntimeException("you can not remove this");
return removedValue;

}

@0verride
public void afterRemove(Object value) {
// do something
}
}
}

6.1.11 Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query based map methods, especially with
large clusters or heap sizes. For example, on a 5 node cluster with 10 GB of data and 25 GB heap size per node, a
single call of IMap.entrySet() fetches 50 GB of data and crashes the calling instance.

A call of IMap.values() may return too much data for a single node. This can also happen with a real query and
an unlucky choice of predicates, especially when the parameters are chosen by a user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is not a limit like
SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A maximum result size limit for
query based operations is meant to be a last line of defense to prevent your nodes from retrieving more data than
they can handle.

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

6.1.11.1 Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each QueryOperation
runs on all partitions of a node, so it collects result entries as long as the node limit is not exceeded. If that happens,
a QueryResultSizeExceededException is thrown and propagated to the calling instance.

This feature depends on an equal distribution of the data on the cluster nodes to calculate the result size limit
per node. Therefore, there is a minimum value defined in QueryResultSizeLimiter .MINIMUM_MAX_RESULT_LIMIT.
Configured values below the minimum will be increased to the minimum.

6.1.11.1.1 Local Pre-check In addition to the distributed result size check in the QueryOperations, there is
a local pre-check on the calling instance. If you call the method from a client, the pre-check is executed on the
member which invokes the QueryOperations.

70 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

Since the local pre-check can increase the latency of a QueryOperation you can configure how many local partitions
should be considered for the pre-check or you can deactivate the feature completely.

6.1.11.1.2 Scope of Result Size Limit Besides the designated query operations, there are other operations
which use predicates internally. Those method calls will throw the QueryResultSizeExceededException as well.
Please see the following matrix to see the methods that are covered by the query result size limit.

Method MapProxyImpl|ClientMapProxyImpl | TransactionalMapProxy|ClientTxnMapProxy

values() e X X X
keySet () X X

entrySet()

values(predicate)

keySet (predicate)

X
X
v
v
v

entrySet(predicate)

localKeySet()

NN N SN ENEN

localKeySet (predicate)

Interfaces: | IMap || TransactionalMap

6.1.11.1.3 Configuring Query Result Size The query result size limit is configured via the following system
properties.

e hazelcast.query.result.size.limit
e hazelcast.query.max.local.partition.limit.for.precheck

Please refer to the System Properties section for explanations of these properties.

6.2 Queue

6.2.1 Queue Overview

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being distributed,
it enables all cluster members to interact with it. Using Hazelcast distributed queue, you can add an item in one
machine and remove it from another one.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put(new MyTask());

MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {

//process task

}

6.2. QUEUE 71

FIFO ordering will apply to all queue operations across the cluster. User objects (such as MyTask in the example
above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items will be copied locally
and iteration will occur locally.

6.2.2 Sample Queue Code

The following sample code illustrates a producer and consumer connected by a distributed queue.

Let’s put one integer on the queue every second, 100 integers total.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ProducerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
for (int k = 1; k < 100; k++) {
queue.put(k);
System.out.println("Producing: " + k);
Thread.sleep(1000);
¥
queue.put(-1);
System.out.println("Producer Finished!");
}
}

Producer puts a -1 on the queue to show that the put’s are finished. Now, let’s create a Consumer class that take
a message from this queue, as shown below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ConsumerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
while (true) {
int item = queue.take();
System.out.println("Consumed: " + item);
if (item == -1) {
queue.put(-1);
break;
}
Thread.sleep(5000);
}
System.out.println("Consumer Finished!");
}
}

As seen in the above sample code, Consumer waits 5 seconds before it consumes the next message. It stops once it
receives -1. Also note that Consumer puts -1 back on the queue before the loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be consumed from the
same queue.

72 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

From the above sample code, you can see that an item is produced every second, and consumed every 5 seconds.
Therefore, the consumer keeps growing. To balance the produce/consume operation, let’s start another consumer.
By this way, consumption is distributed to these two consumers, as seen in the sample outputs below.

The second consumer is started. After a while, here is the first consumer output:

Consumed 13
Consumed 15
Consumer 17

Here is the second consumer output:

Consumed 14
Consumed 16
Consumer 18

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the queue bottlenecks.
In this case, be aware that the order of the messages being sent to different queues is not guaranteed. Since in most
cases strict ordering is not important, a list of queues is a good solution.

! NOTE: The items are taken from the queue in the same order they were put on the queue. However, if
there is more than one consumer, this order is not guaranteed.

6.2.3 Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more items can be put
into the queue until some items are taken out.

A Hazelcast distributed queue can be turned into a bounded queue by setting the capacity limit using the max-size
property.

Queue capacity can be set using the max-size property in the configuration, as shown below. max-size specifies
the maximum size of the queue. Once the queue size reaches this value, put operations will be blocked until the
queue size goes below max-size, that happens when a consumer removes items from the queue.

Let’s set 10 as the maximum size of our sample queue in the Sample Queue Code.

<hazelcast>

<queue name="queue'">
<max-size>10</max-size>
</queue>

</hazelcast>

When the producer is started, 10 items are put into the queue and then the queue will not allow more put operations.
When the consumer is started, it will remove items from the queue. This means that the producer can put more
items into the queue until there are 10 items in the queue again, at which point put operation again become blocked.

But in this sample code, the producer is 5 times faster than the consumer. It will effectively always be waiting for
the consumer to remove items before it can put more on the queue. For this sample code, if maximum throughput
was the goal, it would be a good option to start multiple consumers to prevent the queue from filling up.

6.2. QUEUE 73

6.2.4 Queue Persistence

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore using the interface
QueueStore. If queue store is enabled, each item added to the queue will also be stored at the configured queue
store. When the number of items in the queue exceeds the memory limit, the subsequent items are persisted in the
queue store, they are not stored in the queue memory.

QueueStore interface enables you to store, load, and delete items with methods like store, storeAll, load and
delete. The following example class includes all of the QueueStore methods.

public class TheQueueStore implements QueueStore<Item> {
@0verride
public void delete(Long key) {
System.out.println("delete");
}

©@0verride
public void store(Long key, Item value) {
System.out.println("store");

}

O@0verride

public void storeAll(Map<Long, Item> map) {
System.out.println("store all");

}

@0verride

public void deleteAll(Collection<Long> keys) {
System.out.println("deleteAll");

}

@0verride

public Item load(Long key) {
System.out.println("load");
return null;

©@0verride

public Map<Long, Item> loadAll(Collection<Long> keys) {
System.out.println("loadAll");
return null;

@0verride

public Set<Long> loadAllKeys() {
System.out.println("loadAllKeys") ;
return null;

}
Item must be serializable. Following is an example queue store configuration.

<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class—name>
<properties>
<property name="binary">false</property>
<property name="memory-limit">1000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

74 CHAPTER 6. DISTRIBUTED DATA STRUCTURES
Let’s explain the properties.

e Binary: By default, Hazelcast stores the queue items in serialized form in memory. Before it inserts the
queue items into datastore, it deserializes them. But if you will not reach the queue store from an external
application, you might prefer that the items be inserted in binary form. You can get rid of the de-serialization
step; this would be a performance optimization. The binary feature is disabled by default.

e Memory Limit: This is the number of items after which Hazelcast will store items only to datastore. For
example, if the memory limit is 1000, then the 1001st item will be put only to datastore. This feature is
useful when you want to avoid out-of-memory conditions. The default number for memory-1imit is 1000. If
you want to always use memory, you can set it to Integer .MAX_VALUE.

e Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load is the size
of these bulks. By default, bulk-1load is 250.

6.2.5 Configuring Queue

An example declarative configuration is shown below.

<hazelcast>

<queue name="tasks">
<max-size>10</max-size>
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<empty-queue-ttl>10</empty-queue-ttl>
</queue>
</hazelcast>

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a cluster member
with a queue goes down, another member having the backups will continue. Therefore, no items are lost. You can
define the count of synchronous backups using the backup-count element in the declarative configuration. A queue
can also have asynchronous backups, you can define the count using the async-backup-count element.

The max-size element defines the maximum size of the queue. You can use the empty-queue-ttl element when
you want to purge unused or empty queues after a period of time. If you define a value (time in seconds) for this
element, then your queue will be destroyed if it stays empty or unused for the time you give.

RELATED INFORMATION

Please refer to the Queue Configuration section for a full description of Hazelcast Distributed Queue configuration.

6.3 MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just like any other
distributed data structure implementation in Hazelcast, MultiMap is distributed and thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method signatures. It
supports most features of Hazelcast Map except for indexing, predicates and MapLoader/MapStore. Yet, like
Hazelcast Map, entries are almost evenly distributed onto all cluster members. When a new member joins the
cluster, the same ownership logic used in the distributed map applies.

6.3.1 Sample MultiMap Code

Let’s write code that puts data into a MultiMap.

6.4. SET 75

public class PutMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String , String > map = hazelcastInstance.getMultiMap("map");

map.put(ngh, mqn) ;
map.put(nan’ non) ;
mapput("b”, n3n);
System.out.println("PutMember:Done");

Now let’s print the entries in this MultiMap.

public class PrintMember {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String, String > map = hazelcastInstance.getMultiMap("map");
for (String key : map.keySet()){
Collection <String > values = map.get(key);
System.out.println("%s -> %s\n",key, values);
3
}
}

After you run the first code sample, run the PrintMember sample. You will see the key a has two values, as shown
below.

b -> [3]
a —> [2, 1]

6.3.2 Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. You configure the collection
type with the valueCollectionType parameter. If you choose Set, duplicate and null values are not allowed in
your collection and ordering is irrelevant. If you choose List, ordering is relevant and your collection can include
duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you enable
statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

l NOTE: Currently, eviction is not supported for the MultiMap data structure.
RELATED INFORMATION

Please refer to the MultiMap Configuration section for a full description of Hazelcast Distributed MultiMap
configuration.

6.4 Set

Hazelcast Set is a distributed and concurrent implementation of java.util.Set.

e Hazelcast Set does not allow duplicate elements.

e Hazelcast Set does not preserve the order of elements.

e Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set will live on one single
partition in that node.

76 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives on a single
partition, storing large amount of data on a single set may cause memory pressure. Therefore, you should
use multiple sets to store large amount of data; this way all the sets will be spread across the cluster, hence
sharing the load.

e A backup of Hazelcast Set is stored on a partition of another node in the cluster so that data is not lost in
the event of a primary node failure.

e All items are copied to the local node and iteration occurs locally.

e The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as opposed to
java.util.HashSet.

6.4.1 Sample Set Code

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Set<Price> set = hazelcastInstance.getSet("IBM-Quote-History");
set.add(new Price(10, timel));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, timed));
VI
Iterator<Price> iterator = set.iterator();
while (iterator.hasNext()) {

Price price = iterator.next();

//analyze
}

6.4.2 Event Registration and Configuration for Set

Hazelcast Set uses ItemListener to listen to events which occur when items are added and removed.

import java.util.Queue;

import java.util.Map;

import java.util.Set;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.ItemListener;
import com.hazelcast.core.EntryListener;
import com.hazelcast.core.EntryEvent;

public class Sample implements ItemListener {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISet<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sample, true);

Price price = new Price(10, timel)
set.add(price);
set.remove(price);

3

public void itemAdded(Object item) {

6.5. LIST 77

System.out.println("Item added = " + item);
}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);
}
}

RELATED INFORMATION

To learn more about the configuration of listeners please refer to the Listener Configurations section.
RELATED INFORMATION

Please refer to the Set Configuration section for a full description of Hazelcast Distributed Set configuration.

6.5 List

Hazelcast List is similar to Hazelcast Set, but Hazelcast List also allows duplicate elements.

Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

Hazelcast List is a non-partitioned data structure where values and each backup are represented by their own
single partition.

Hazelcast List cannot be scaled beyond the capacity of a single machine.

All items are copied to local and iteration occurs locally.

6.5.1 Sample List Code

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

List<Price> list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));
list.add(new Price(11));
list.add(new Price(12));

VI
Iterator<Price> iterator = list.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();
//analyze
}

6.5.2 Event Registration and Configuration for List

Hazelcast List uses ItemListener to listen to events which occur when items are added and removed.

import java.util.Queue;
import java.util.Map;

78

import
import
import
import
import

public

java.util.Set;
com.hazelcast.core.Hazelcast;
com.hazelcast.core.ItemListener;
com.hazelcast.core.EntryListener;
com.hazelcast.core.EntryEvent;

class Sample implements ItemListener{

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IList<Price> list = hazelcastInstance.getList("default");
list.addItemListener(sample, true);

Price price = new Price(10, timel)
list.add(price);
list.remove(price);

3

public void itemAdded(Object item) {
System.out.println("Item added = " + item);

}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);

}
}

RELATED INFORMATION

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

To learn more about the configuration of listeners please refer to the Listener Configurations section.

RELATED INFORMATION

Please refer to the List Configuration section for a full description of Hazelcast Distributed List configuration.

6.6

Ringbuffer

Hazelcast Ringbuffer is a distributed data structure where the data is stored in a ring-like structure. You can think
of it as a circular array with a certain capacity. Each Ringbuffer has a tail and a head. The tail is where the items
are added and the head is where the items are overwritten or expired. You can reach each element in a Ringbuffer
using a sequence ID, which is mapped to the elements between the head and tail (inclusive) of the Ringbuffer.

Reading from Ringbuffer is very simple. Just get the current head and start reading. The method readOne returns
the item at the given sequence or blocks if no item is available. To read the next item, the sequence is incremented

by one.

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true){

String item = ringbuffer.readOne(sequence);

sequencet+;

}

. process item

By exposing the sequence, you can now move the item from Ringbuffer as long as the item is still available. If it is
not available any longer, StaleSequenceException is thrown.

Adding an item to Ringbuffer is also very easy:

6.6. RINGBUFFER 79

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
ringbuffer.add("someitem")

The method add returns the sequence of the inserted item and this value will always be unique. This can sometimes
be used as a very cheap way of generating unique IDs if you are already using Ringbuffer.

6.6.1 IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike IQueue, Ringbuffer
does not remove the items, it only reads items using a certain position. There are many advantages using this
approach:

e The same item can be read multiple times by the same thread; this is useful for realizing semantics of
read-at-least-once or read-at-most-once.

e The same item can be read by multiple threads. Normally you could use an IQueue per thread for the same
semantic, but this is less efficient because of the increased remoting. A take from an IQueue is destructive,
so the change needs to be applied for backup also, which is why a queue.take() is more expensive than a
ringBuffer.read(...).

e Reads are extremely cheap since there is no change in the Ringbuffer, therefore no replication is required.

e Reads and writes can be batched to speed up performance. Batching can dramatically improve the performance
of Ringbuffer.

6.6.2 Capacity

By default, a Ringbuffer is configured with a capacity of 10000 items. Internally, an array is created with exactly
that size. If a time-to-live is configured, then an array of longs is also created that stores the expiration time for
every item. In a lot of cases, you may want to change this number to something that fits your needs better.

Below is a declarative configuration example of a Ringbuffer with a capacity of 2000 items.

<ringbuffer name="rb">
<capacity>2000</capacity>
</ringbuffer>

Hazelcast Ringbuffer is not a partitioned data structure in its current state; its data is stored in a single partition
and the replicas are stored in another partition. Therefore, create a Ringbuffer that can safely fit in a single cluster
member.

6.6.3 Synchronous and Asynchronous Backups

Hazelcast Ringbuffer has a single synchronous backup by default. This can be controlled just like most of the other
Hazelcast distributed data structures by setting the sync and async backups. In the example below, a Ringbuffer is
configured with 0 sync backups and 1 async backup:

<ringbuffer name="rb">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</ringbuffer>

An async backup will probably give you better performance. However, there is a chance that the item added is lost
when the member owning the primary crashes before the replication could complete. You may want to consider
batching methods if you need high performance but do not want to give up on consistency.

80 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

6.6.4 Time to live

Hazelcast Ringbuffer can be configured with a time to live seconds. Using this setting, you can control how long
the items remain in the Ringbuffer before they are expired. By default, the time to live is set to 0, meaning that
unless the item is overwritten, it will remain in the Ringbuffer indefinitely. If a time to live is set and an item is
added, then depending on the Overflow Policy, either the oldest item is overwritten, or the call is rejected.

In the example below, a Ringbuffer is configured with a time to live of 180 seconds.
<ringbuffer name="rb">

<time-to-live-seconds>180</time-to-live-seconds>
</ringbuffer>

6.6.5 Overflow Policy

Using the overflow policy, you can determine what to do if the oldest item in the Ringbuffer is not old enough
to expire when more items than the configured RingBuffer capacity are being added. There are currently below
options available:

e OverflowPolicy.OVERWRITE: The oldest item is overwritten.
e OverflowPolicy.FAIL: The call is aborted. The methods that make use of the OverflowPolicy return -1 to
indicate that adding the item has failed.

Overflow policy gives fine control on what to do if the Ringbuffer is full. The policy can also be used to apply a
back pressure mechanism. The following example code shows the usage of an exponential backoff.

long sleepMs = 100;

for (5 ;) o
long result = ringbuffer.addAsync(item, OverflowPolicy.FAIL).get();
if (result != -1) {
break;
X

TimeUnit .MILLISECONDS.sleep(sleepMs);
sleepMs = min(5000, sleepMs * 2);

6.6.6 In-Memory Format

Hazelcast Ringbuffer can also be configured with an in-memory format which controls the format of stored items.
By default, BINARY is used, meaning that the object is stored in a serialized form. You can select the 0BJECT
in-memory format, which is useful when filtering is applied or when the OBJECT in-memory format has a smaller
memory footprint than BINARY.

In the declarative configuration example below, a Ringbuffer is configured with 0BJECT in-memory format:

<ringbuffer name="rb">
<in-memory-format>BINARY</in-memory-format>
</ringbuffer>

6.6.7 Adding Batched Items

In the previous examples, the method ringBuffer.add() is used to add an item to the Ringbuffer. The problem
with this method is that it always overwrites and that it does not support batching. Batching can have a huge
impact on the performance. That is why the method addA11Async is available.

Please see the following example code.

6.6. RINGBUFFER 81

List<String> items = Arrays.asList("1","2","3");
ICompletableFuture<Long> f = rb.addAllAsync(items, OverflowPolicy.OVERWRITE) ;
f.get()

In the above case, three strings are added to the Ringbuffer using the policy OverflowPolicy.OVERWRITE. Please
see the Overflow Policy section for more information.

6.6.8 Reading Batched Items

In the previous example the readOne was being used. It is simple but not very efficient for the following reasons:

e It does not make use of batching.
e It cannot filter items at the source; they need to be retrieved before being filtered.

That is why the method readManyAsync is available.

Please see the following example code.

ICompletableFuture<ReadResultSet<E>> readManyAsync(
long startSequence,
int minCount,
int maxCount,
IFunction<E, Boolean> filter);

This call can read a batch of items and can filter items at the source. The meaning of the arguments are given
below.

e startSequence: Sequence of the first item to read.

e minCount: Minimum number of items to read. If you do not want to block, set it to 0. If you do want to
block for at least one item, set it to 1.

e maxCount: Maximum number of the items to retrieve. Its value cannot exceed 1000.

e filter: A function that accepts an item and checks if it should be returned. If no filtering should be applied,
set it to null.

A full example is given below.

long sequence = rb.headSequence();
for(;;) {
ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 1, 10, null);
ReadResultSet<String> rs = f.get();
for (String s : rs) {
System.out.println(s);
3

sequence+=rs.readCount () ;

Please take a careful look at how the sequence is being incremented. You cannot always rely on the number of
items being returned if the items are filtered out.

6.6.9 Async Methods

Hazelcast Ringbuffer provides asynchronous methods for more powerful operations like batched reading with filtering
or batched writing. To make these methods synchronous, just call the method get () on the returned future.

Please see the following example code.

82 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

ICompletableFuture f = ringbuffer.addAsync(item, OverflowPolicy.FAIL);
f.get();

However, the ICompletableFuture can also be used to get notified when the operation has completed. Please see
the example code when you want to get notified when a batch of reads has completed.

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, min, max, someFilter);
f.andThen(new ExecutionCallback<ReadResultSet<String>>() {
@0verride
public void onResponse(ReadResultSet<String> response) {
for (String s : response) {
System.out.println("Received:" + s);

}

@0verride
public void onFailure(Throwable t) {
t.printStackTrace();
}
b;

The advantage of this approach: The thread that is used for the call is not blocked till the response is returned.

6.6.10 Full Configuration examples

The following shows the declarative configuration of a Ringbuffer called rb. The configuration is modeled after
Ringbuffer defaults.

<ringbuffer name="rb">
<capacity>10000</capacity>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<time-to-live-seconds>0</time-to-live-seconds>
<in-memory-format>BINARY</in-memory-format>
</ringbuffer>

You can also configure a Ringbuffer programmatically. The following is programmatic version of the above declarative
configuration.

RingbufferConfig rbConfig = new RingbufferConfig("rb")
.setCapacity(10000)
.setBackupCount (1)
.setAsyncBackupCount (0)
.setTimeToLiveSeconds (0)
.setInMemoryFormat (InMemoryFormat .BINARY) ;
Config config = new Config();
config.addRingbufferConfig(rbConfig) ;

RELATED INFORMATION

Please refer to the Ringbuffer Configuration section for more information on configuring the Ringbuffer.

6.7. TOPIC 83
6.7 Topic

Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple subscribers.
This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and subscribing operations are
cluster wide. When a member subscribes to a topic, it is actually registering for messages published by any member
in the cluster, including the new members that joined after you add the listener.

. NOTE: Publish operation is async. It does not wait for operations to run in remote nodes, it works as fire
and forget.

6.7.1 Sample Topic Code

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessagelListener;

public class Sample implements MessagelListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessagelistener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);
}
)
}
}

/7

private final Executor messageExecutor = Executors.newSingleThreadExecutor();

}

6.7.2 Statistics
Topic has two statistic variables that you can query. These values are incremental and local to the member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic("myTopicName");

myTopic.getLocalTopicStats() .getPublishOperationCount () ;
myTopic.getLocalTopicStats() .getReceiveOperationCount () ;

getPublishOperationCount and getReceiveOperationCount returns the total number of published and received
messages since the start of this node, respectively. Please note that these values are not backed up, so if the node
goes down, these values will be lost.

84 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

You can disable this feature with topic configuration. Please see the Topic Configuration section.

NOTE: These statistics values can be also viewed in Management Center. Please see the Topics section.

6.7.3 Internals

Each node has a list of all registrations in the cluster. When a new node is registered for a topic, it sends a
registration message to all members in the cluster. Also, when a new node joins the cluster, it will receive all
registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter globalOrderEnabled.
e If globalOrderEnabled is disabled:

Messages are ordered, i.e. listeners (subscribers) process the messages in the order that the messages are published.
If cluster member M publishes messages m1, m2, m3, ..., mn to a topic T, then Hazelcast makes sure that all of
the subscribers of topic T will receive and process m1, m2, m3, ..., mn in the given order.

Here is how it works. Let’s say that we have three nodes (nodel, node2 and node3) and that node! and node2 are
registered to a topic named news. Note that all three nodes know that nodel and node2 are registered to news.

In this example, nodel publishes two messages: al and a2, and node3 publishes two messages: c1 and c2. When
nodel and node3 publish a message, they will check their local list for registered nodes, and they will discover that
nodel and mode2 are in their lists, then they will fire messages to those nodes. One possible order of the messages
received can be the following.

nodel -> c1, b1, a2, c2

node2 -> c1, c2, al, a2
e If globalOrderEnabled is enabled:

When enabled, globalOrderEnabled guarantees that all nodes listening to the same topic will get its messages in
the same order.

Here is how it works. Let’s say that we have three nodes (nodel, node2 and node3) and that node! and node2 are
registered to a topic named news. Note that all three nodes know that nodel and node2 are registered to news.

In this example, node! publishes two messages: al and a2, and node3 publishes two messages: c1 and c2. When a
node publishes messages over the topic news, it first calculates which partition the news ID corresponds to. Then
it sends an operation to the owner of the partition for that node to publish messages. Let’s assume that news
corresponds to a partition that node2 owns. nodel and node3 first sends all messages to node2. Assume that the
messages are published in the following order:

nodel -> al, c1, a2, c2

node2 then publishes these messages by looking at registrations in its local list. It sends these messages to nodel
and node2 (it makes a local dispatch for itself).

nodel -> al, cl, a2, c2
node2 -> al, cl, a2, c2
This way, we guarantee that all nodes will see the events in the same order.

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the received message.
For all events in Hazelcast, the order that events are generated and the order they are published to the user are
guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property hazelcast.event.thread.count
(default is 5). For a specific event source (for a particular topic name), hash of that source’s name % 5 gives the ID
of the responsible thread. Note that there can be another event source (entry listener of a map, item listener of a
collection, etc.) corresponding to the same thread. In order not to make other messages to block, heavy processing
should not be done in this thread. If there is time consuming work that needs to be done, the work should be
handed over to another thread. Please see the Sample Topic Code section.

6.8. RELIABLE TOPIC 85

6.7.4 Configuring Topic

Declarative Configuration:

<hazelcast>

<topic name="yourTopicName">
<global-ordering-enabled>true</global-ordering-enabled>
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>MessagelListenerImpl</message-listener>
</message-listeners>
</topic>

</hazelcast>
Programmatic Configuration:

TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled(true);
topicConfig.setStatisticsEnabled(true);
topicConfig.setName("yourTopicName") ;
MessageListener<String> implementation = new MessagelListener<String>() {

@0verride

public void onMessage(Message<String> message) {

// process the message

}
};
topicConfig.addMessagelListenerConfig(new ListenerConfig(implementation));
HazelcastInstance instance = Hazelcast.newHazelcastInstance()

Default values are:

e global-ordering is false, meaning that by default, there is no guarantee of global order.

e statistics is true, meaning that by default, statistics are calculated.
Topic related but not topic specific configuration parameters:

- ‘hazelcast.event.queue.capacity‘: default value is 1,000,000
- ‘hazelcast.event.queue.timeout.millis: default value is 250
- ‘hazelcast.event.thread.count‘: default value is 5

RELATED INFORMATION
For description of these parameters, please see the Global Event Configuration section.
RELATED INFORMATION

Please refer to the Topic Configuration section for a full description of Hazelcast Distributed Topic configuration.

6.8 Reliable Topic

Reliable Topic data structure has been introduced with the release of Hazelcast 3.5. The Reliable Topic makes use
of the same ITopic interface as a regular topic. The main difference is that it is backed up by the RingBuffer (also
introduced with Hazelcast 3.5) data structure. The following are the advantages of this approach:

86 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e Events are not lost since the RingBuffer is configured with 1 synchronous backup by default.

e Fach Reliable ITopic gets its own RingBuffer; if there is a topic with a very fast producer, it will not lead to
problems at the topic that runs at a slower pace.

e Since the event system behind a regular ITopic is shared with other data structures (e.g. collection listeners),
you can run into isolation problems. This does not happen with the Reliable ITopic.

6.8.1 Sample Reliable ITopic Code

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessagelListener;

public class Sample implements MessageListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getReliableTopic("default");
topic.addMessagelListener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
}
}

The Reliable ITopic can be configured using its RingBuffer. If there is a Reliable Topic with name Foo, then
this topic can be configured by adding a ReliableTopicConfig for a RingBuffer with the name Foo. By default,
a RingBuffer does not have any TTL (time to live) and it has a limited capacity; you may want to change the
configuration.

By default, the Reliable ITopic uses a shared thread pool. If you need a better isolation, you can configure a
custom executor on the ReliableTopicConfig.

Because the reads on a RingBuffer are not destructive, it is easy to apply batching. ITopic uses read batching and
reads 10 items at a time (if available) by default.

6.8.2 Slow Consumers

The Reliable ITopic provides control and a way to deal with slow consumers. It is unwise to keep events for a slow
consumer in memory indefinitely since you do not know when it is going to catch up. The size of the RingBuffer
can be controlled using its capacity. For the cases when a RingBuffer runs out of its capacity, you can specify the
following policies for the TopicOverloadPolicy configuration:

e DISCARD_OLDEST: Overwrite the oldest item, no matter if a TTL is set. In this case the fast producer
supersedes a slow consumer

e DISCARD_NEWEST: Discard the newest item.

e BLOCK: Wait until the items are expired in the RingBuffer.

e FATL: Immediately throw TopicOverloadException if there is no space in the RingBuffer.

6.9 Lock

ILock is the distributed implementation of java.util.concurrent.locks.Lock. Meaning if you lock using an
ILock, the critical section that it guards is guaranteed to be executed by only one thread in the entire cluster. Even

6.9. LOCK 87

though locks are great for synchronization, they can lead to problems if not used properly. Also note that Hazelcast
Lock does not support fairness.

A few warnings when using locks:

e Always use locks with try-catch blocks. It will ensure that locks will be released if an exception is thrown
from the code in a critical section. Also note that the lock method is outside the try-catch block, because we
do not want to unlock if the lock operation itself fails.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLock");
lock.lock();
try {
// do something here
} finally {
lock.unlock();
}

e If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever. To avoid
this, use tryLock with a timeout value. You can set a high value (normally it should not take that long) for
tryLock. You can check the return value of tryLock as follows:

if (lock.tryLock (10, TimeUnit.SECONDS)) {
try {
// do some stuff here..
} finally {
lock.unlock();
}
} else {
// warning

}

e You can also avoid indefinitely waiting threads by using lock with lease time: the lock will be released in the
given lease time. Lock can be safely unlocked before the lease time expires. Note that the unlock operation
can throw an IllegalMonitorStateException if lock is released because the lease time expires. If that is
the case, critical section guarantee is broken.

Please see the below example.

lock.lock(5, TimeUnit.SECONDS)
try {
// do some stuff here..
} finally {
try {
lock.unlock();
} catch (IllegalMonitorStateException ex){
// WARNING Critical section guarantee can be broken
}
}

e Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will keep your
locks safe and available. Moreover, when a member leaves the cluster, all the locks acquired by that dead
member will be removed so that those locks are immediately available for live members.

e Locks are re-entrant: the same thread can lock multiple times on the same lock. Note that for other threads
to be able to require this lock, the owner of the lock must call unlock as many times as the owner called lock.

88 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

e In the split-brain scenario, the cluster behaves as if it were two different clusters. Since two separate clusters
are not aware of each other, two nodes from different clusters can acquire the same lock. For more information
on places where split brain syndrome can be handled, please see split brain syndrome.

e Locks are not automatically removed. If a lock is not used anymore, Hazelcast will not automatically garbage
collect the lock. This can lead to an OutOfMemoryError. If you create locks on the fly, make sure they are
destroyed.

e Hazelcast IMap also provides locking support on the entry level with the method IMap.lock(key). Although
the same infrastructure is used, IMap.lock(key) is not an ILock and it is not possible to expose it directly.

6.9.1 ICondition

ICondition is the distributed implementation of the notify, notifyAll and wait operations on the Java object.
You can use it to synchronize threads across the cluster. More specifically, you use ICondition when a thread’s
work depends on another thread’s output. A good example can be producer/consumer methodology.

Please see the below code snippets for a sample producer/consumer implementation.

Producer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!shouldProduce()) {
condition.await(); // frees the lock and waits for signal
// when tt wakes up it re-acquires the lock
// tf avatilable or waits for it to become
// available
}
produce() ;
condition.signalAll();
} finally {
lock.unlock();
}

Consumer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!canConsume()) {
condition.await(); // frees the lock and waits for signal
// when it wakes up it re-acquires the lock if
// available or waits for it to become
// available
}
consume () ;
condition.signalAll();
} finally {
lock.unlock();
}

6.10. TATOMICLONG 89
6.10 TAtomicLong

Hazelcast TAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. It
offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and incrementAndGet. Since
TAtomicLong is a distributed implementation, these operations involve remote calls and hence their performances
differ from AtomicLong.

The following sample code creates an instance, increments it by a million, and prints the count.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
TAtomicLong counter = hazelcastInstance.getAtomicLong("counter");
for (int k = 0; k < 1000 * 1000; k++) {
if (k % 500000 == 0) {
System.out.println("At: " + k);

}
counter.incrementAndGet () ;
}
System.out.printf("Count is %s\n", counter.get());
}
}

When you start other instances with the code above, you will see the count as member count times a million.

You can send functions to an IAtomicLong. Function is a Hazelcast owned, single method interface. The following
sample Function implementation doubles the original value.

private static class Add2Function implements Function <Long, Long> {
@0verride
public Long apply(Long input) {
return input + 2;
X
3

You can use the following methods to execute functions on IAtomicLong.

e apply: It applies the function to the value in TAtomicLong without changing the actual value and returning
the result.

e alter: It alters the value stored in the IAtomicLong by applying the function. It will not send back a result.

e alterAndGet: It alters the value stored in the IAtomicLong by applying the function, storing the result in
the IAtomicLong and returning the result.

e getAndAlter: It alters the value stored in the IAtomicLong by applying the function and returning the
original value.

The following sample code includes these methods.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
TAtomicLong atomicLong = hazelcastInstance.getAtomicLong("counter");

atomicLong.set(1);

long result = atomicLong.apply(new Add2Function());
System.out.println("apply.result: " + result);
System.out.println("apply.value: " + atomicLong.get());

90 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

atomicLong.set(1);
atomicLong.alter(new Add2Function());
System.out.println("alter.value: " + atomicLong.get());

atomicLong.set(1);

result = atomicLong.alterAndGet(new Add2Function());
System.out.println("alterAndGet.result: " + result);
System.out.println("alterAndGet.value: " + atomicLong.get());

atomicLong.set(1);

result = atomicLong.getAndAlter(new Add2Function());
System.out.println("getAndAlter.result: " + result);
System.out.println("getAndAlter.value: " + atomicLong.get());

The reason for using a function instead of a simple code line like atomicLong.set(atomicLong.get() + 2)); is
that the TAtomicLong read and write operations are not atomic. Since IAtomicLong is a distributed implementation,
those operations can be remote ones, which may lead to race problems. By using functions, the data is not pulled
into the code, but the code is sent to the data. This makes it more scalable.

I NOTE: [AtomicLong has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

6.11 ISemaphore

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore. Semaphores offer
permits to control the thread counts in the case of performing concurrent activities. To execute a concurrent
activity, a thread grants a permit or waits until a permit becomes available. When the execution is completed, the
permit is released.

l NOTE: Semaphore with a single permit may be considered as a lock. But unlike the locks, when semaphores
are used, any thread can release the permit and semaphores can have multiple permits.

When a permit is acquired on ISemaphore:

NOTE: Hazelcast Semaphore does not support fairness.

e if there are permits, the number of permits in the semaphore is decreased by one and the calling thread
performs its activity. If there is contention, the longest waiting thread will acquire the permit before all other
threads.

e if no permits are available, the calling thread blocks until a permit becomes available. When a timeout
happens during this block, the thread is interrupted. In the case where the semaphore is destroyed, an
InstanceDestroyedException is thrown.

The following sample code uses an IAtomicLong resource 1000 times, increments the resource when a thread starts
to use it, and decrements it when the thread completes.

public class SemaphoreMember {
public static void main(String[] args) throws Exception{
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getSemaphore("semaphore");
TAtomicLong resource = hazelcastInstance.getAtomicLong("resource");
for (int k = 0 ; k < 1000 ; k++) {

6.11. ISEMAPHORE 91

System.out.println("At iteration: " + k + ", Active Threads: " + resource.get());
semaphore.acquire() ;
try {

resource.incrementAndGet () ;
Thread.sleep(1000);
resource.decrementAndGet () ;
} finally {
semaphore.release() ;
}
}
System.out.println("Finished");
}
}

Let’s limit the concurrent access to this resource by allowing at most 3 threads. You can configure it declaratively
by setting the initial-permits property, as shown below.

<semaphore name="semaphore'">
<initial-permits>3</initial-permits>
</semaphore>

. NOTE: If there is a shortage of permits while the semaphore is being created, value of this property can be
set to a negative number.

If you execute the above SemaphoreMember class 5 times, the output will be similar to the following:
At iteration: O, Active Threads: 1
At iteration: 1, Active Threads: 2
At iteration: 2, Active Threads: 3
At iteration: 3, Active Threads: 3
At iteration: 4, Active Threads: 3

As can be seen, the maximum count of concurrent threads is equal or smaller than 3. If you remove the semaphore
acquire/release statements in SemaphoreMember, you will see that there is no limitation on the number of concurrent
usages.

Hazelcast also provides backup support for ISemaphore. When a member goes down, another member can
take over the semaphore with the permit information (permits are automatically released when a member goes
down). To enable this, configure synchronous or asynchronous backup with the properties backup-count and
async-backup-count(by default, synchronous backup is already enabled).

A sample configuration is shown below.

<semaphore name="semaphore'">
<initial-permits>3</initial-permits>
<backup-count>1</backup-count>
</semaphore>

. NOTE: If high performance is more important (than not losing the permit information), you can disable the
backups by setting backup-count to 0.

RELATED INFORMATION

Please refer to the Semaphore Configuration section for a full description of Hazelcast Distributed Semaphore
configuration.

92 CHAPTER 6. DISTRIBUTED DATA STRUCTURES
6.12 TAtomicReference

The IAtomicLong is very useful if you need to deal with a long, but in some cases you need to deal with a
reference. That is why Hazelcast also supports the IAtomicReference which is the distributed version of the
java.util.concurrent.atomic.AtomicReference.

Here is an TAtomicReference example.

public class Member {
public static void main(String[] args) {
Config config = new Config();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

TIAtomicReference<String> ref = hz.getAtomicReference('"reference");
ref.set("foo");

System.out.println(ref.get());

System.exit (0);

When you execute the above example, you will see the following output.
foo

Just like TAtomicLong, TAtomicReference has methods that accept a ‘function’ as an argument, such as alter,
alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

e From a performance point of view, it is better to send the function to the data then the data to the function.
Often the function is a lot smaller than the data and therefore cheaper to send over the line. Also the function
only needs to be transferred once to the target machine, and the data needs to be transferred twice.

e You do not need to deal with concurrency control. If you would perform a load, transform, store, you could
run into a data race since another thread might have updated the value you are about to overwrite.

There are some issues you need to know, described below.

e TAtomicReference works based on the byte-content and not on the object-reference. If you use the
compareAndSet method, do not change to original value because its serialized content will then be dif-
ferent. It is also important to know that if you rely on Java serialization, sometimes (especially with
hashmaps) the same object can result in different binary content.

e TAtomicReference will always have 1 synchronous backup.

e All methods returning an object will return a private copy. You can modify the private copy, but the rest of
the world will be shielded from your changes. If you want these changes to be visible to the rest of the world,
you need to write the change back to the TAtomicReference; but be careful with introducing a data-race.

e The ‘in memory format’ of an IAtomicReference is binary. The receiving side does not need to have the
class definition available, unless it needs to be deserialized on the other side (e.g. because a method like ‘alter’
is executed). This deserialization is done for every call that needs to have the object instead of the binary
content, so be careful with expensive object graphs that need to be deserialized.

e If you have an object with many fields or an object graph, and you only need to calculate some information
or need a subset of fields, you can use the apply method. With the apply method, the whole object does not
need to be sent over the line, only the information that is relevant.

6.13 ICountDownLatch

Hazelcast ICountDownLatch is the distributed implementation of java.util.concurrent.CountDownLatch. As
you may know, CountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads
to wait for other threads to complete their operations.

6.14. IDGENERATOR 93

The following code samples describe the mechanism of ICountDownLatch. Assume that there is a leader process
and there are follower processes that will wait until the leader completes. Here is the leader:

public class Leader {
public static void main(String[] args) throws Exception {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Starting");
latch.trySetCount(1);
Thread.sleep(30000);
latch.countDown() ;
System.out.println("Leader finished");
latch.destroy();

Since only a single step is needed to be completed as a sample, the above code initializes the latch with 1. Then,
the code sleeps for a while to simulate a process and starts the countdown. Finally, it clears up the latch. Let’s
write a follower:

public class Follower {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Waiting");
boolean success = latch.await(10, TimeUnit.SECONDS);
System.out.println("Complete: " + success);

The follower class above first retrieves ICountDownLatch and then calls the await method to enable the thread
to listen for the latch. The method await has a timeout value as a parameter. This is useful when countDown
method fails. To see ICountDownLatch in action, start the leader first and then start one or more followers. You
will see that the followers will wait until the leader completes.

In a distributed environment, the counting down cluster member may go down. In this case, all listeners are notified
immediately and automatically by Hazelcast. The state of the current process just before the failure should be
verified and ‘how to continue now’ should be decided (e.g. restart all process operations, continue with the first
failed process operation, throw an exception, etc.).

Although the ICountDownLatch is a very useful synchronization aid, you will probably not use it on a daily basis.
Unlike Java’s implementation, Hazelcast’s ICountDownLatch count can be re-set after a countdown has finished
but not during an active count.

l NOTE: ICountDownLatch has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable. Also, the count cannot be re-set during an active count, it should be re-set after the countdown is
finished.

6.14 IdGenerator

Hazelcast IdGenerator is used to generate cluster-wide unique identifiers. Generated identifiers are long type
primitive values between 0 and Long.MAX_VALUE.

ID generation occurs almost at the speed of AtomicLong.incrementAndGet (). A group of 1 million identifiers is
allocated for each cluster member. In the background, this allocation takes place with an TAtomicLong incremented
by 1 million. Once a cluster member generates IDs (allocation is done), IdGenerator increments a local counter. If

94 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

a cluster member uses all IDs in the group, it will get another 1 million IDs. By this way, only one time of network
traffic is needed, meaning that 999,999 identifiers are generated in memory instead of over the network. This is fast.

Let’s write a sample identifier generator.

public class IdGeneratorExample {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IdGenerator idGen = hazelcastInstance.getIdGenerator("newId");
while (true) {
Long id = idGen.newId();
System.err.println("Id: " + id);
Thread.sleep(1000);
3
X
b

Let’s run the above code two times. The output will be similar to the following.

Members [1] {
Member [127.0.0.1]:5701 this

}

Id: 1
Id: 2
Id: 3

Members [2] {
Member [127.0.0.1]:5701
Member [127.0.0.1]:5702 this

}

Id: 1000001
Id: 1000002
Id: 1000003

You can see that the generated IDs are unique and counting upwards. If you see duplicated identifiers, it means
your instances could not form a cluster.

! NOTE: Generated IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs
start from 0 again or you can initialize to a value using the init () method of IdGenerator.

! NOTE: IdGenerator has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable.

6.15 Replicated Map

A replicated map is a weakly consistent, distributed key-value data structure provided by Hazelcast.

All other data structures are partitioned in design. A replicated map does not partition data (it does not spread
data to different cluster members); instead, it replicates the data to all nodes.

This leads to higher memory consumption. However, a replicated map has faster read and write access since the
data are available on all nodes and writes take place on local nodes, eventually being replicated to all other nodes.

Weak consistency compared to eventually consistency means that replication is done on a best efforts basis. Lost
or missing updates are neither tracked nor resent. This kind of data structure is suitable for immutable objects,
catalogue data, or idempotent calculable data (like HTML pages).

6.15. REPLICATED MAP 95

Replicated map nearly fully implements the java.util.Map interface, but it lacks the methods from
java.util.concurrent.ConcurrentMap since there are no atomic guarantees to writes or reads.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;
import java.util.Collection;

import java.util.Map;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<String, Customer> customers = hazelcastInstance.getReplicatedMap("customers");
customers.put("1", new Customer("Joe", "Smith"));

customers.put("2", new Customer("Ali", "Selam"));

customers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = customers.values();
for (Customer customer : colCustomers) {
// process customer

}

HazelcastInstance: :getReplicatedMap returns com.hazelcast.core.ReplicatedMap which, as stated above,
extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry listeners or
retrieving values in an expected order.

l NOTE: Replicated Map is in the beta stage.

6.15.1 For Consideration

A replicated map does not support ordered writes! In case of a conflict caused by two nodes simultaneously
written to the same key, a vector clock algorithm resolves and decides on one of the values.

Due to the weakly consistent nature and the previously mentioned behaviors of replicated map, there is a chance of
reading stale data at any time. There is no read guarantee like there is for repeatable reads.

6.15.2 Breakage of the Map-Contract

Replicated Map offers a distributed java.util.Map: :clear implementation, but due to the asynchronous nature
and the weakly consistency of this implementation, there is no point in time where you can say the map is empty.
Every node applies that to its local dataset in “a near point in time”. If you need a definite point in time to empty
the map, you may want to consider using a lock around the clear operation.

You can simulate the clear method by locking your user codebase and executing a remote operation
that uses DistributedObject::destroy to destroy the node’s own proxy and storage of the Replicated
Map. A new proxy instance and storage will be created on the next retrieval of the Replicated Map using
HazelcastInstance: :getReplicatedMap. You will have to reallocate the Replicated Map in your code.
Afterwards, just release the lock when finished.

6.15.3 Technical Design

There are several technical design decisions for configurable behavior.
Initial provisioning

If a new member joins, there are two ways you can handle the initial provisioning that is executed to replicate all
existing values to the new member.

96 CHAPTER 6. DISTRIBUTED DATA STRUCTURES

First, you can have an async fill up, which does not block reads while the fill up operation is underway. That way,
you have immediate access on the new member, but it will take time until all values are eventually accessible. Not
yet replicated values are returned as non-existing (null). Write operations to already existing keys during this async
phase can be lost, since the vector clock for an entry might not be initialized by another member yet, and it might
be seen as an old update by other members.

Second, you can perform a synchronous initial fill up, which blocks every read or write access to the map until the
fill up operation is finished. Use this way with caution since it might block your application from operating.

Replication delay

By default, the replication of values is delayed by 100 milliseconds when no current waiting replication is found. This
collects multiple updates and minimizes the operations overhead on replication. A hard limit of 1000 replications is
built into the system to prevent OutOfMemory situations where you put lots of data into the replicated map in a
very short time. The delay is configurable. A value of “0” means immediate replication. You can configure the
trade off between replication overhead and the time for the value to be replicated.

Concurrency Level

The concurrency level configuration defines the number of mutexes and segments inside the replicated map storage.
A mutex/segment is chosen by calculating the hashCode of the key and using the module by the concurrency level.
If multiple keys fall into the same mutex, they will wait for other mutex holders on the same mutex to finish their
operation.

For a high amount of values, or for high contention on the mutexes, this value can be changed.

6.15.4 Replicated Map Configuration

Replicated Map can be configured using the following two ways (as with most other features in Hazelcast):

e Programmatic: the typical Hazelcast way, using the Config API seen above.
e Declarative: using hazelcast.xml.

6.15.4.1 Replicated Map Declarative Configuration

You can declare your Replicated Map configuration in the Hazelcast configuration file hazelcast.xml. You can
use the configuration to tune the behavior of the internal replication algorithm, such as the replication delay which
batches up the replication for better network utilization. See the following example declarative configuration.

<replicatedmap name="default">
<in-memory-format>BINARY</in-memory-format>
<concurrency-level>32</concurrency-level>
<replication-delay-millis>100</replication-delay-millis>
<async-fillup>true</async-fillup>
<statistics-enabled>true</statistics-enabled>
<entry-listeners>
<entry-listener include-value="true">
com.hazelcast.examples.EntryListener
</entry-listener>
</entry-listeners>
</replicatedmap>

e in-memory-format: Defines the internal storage format. Please see the In-Memory Format section. The
default value is BINARY.

e concurrency-level: Number of parallel mutexes to minimize the contention on the keys. The default value
is 32, which is a good number for lots of applications. If higher contention is seen on writes to values inside
the replicated map, this value can be adjusted according to the needs.

6.15. REPLICATED MAP 97

e replication-delay-millis: Defines the period in milliseconds after a put is executed that the put value is
replicated to other nodes. During this time, multiple puts can be operated and the values are cached up to be
sent all at once. This increases the latency for eventual consistency, but it lowers the I/O operations. The
default value is 100ms before a replication is operated. If replication-delay-millis is set to 0, no delay is
used (not cached) and all values are replicated one by one.

e async-fillup: Defines if the replicated map is available for reads before the initial replication is completed.
The default value is true. If set to false (i.e. synchronous initial fill up), no exception will be thrown when
the replicated map is not yet ready, but the call will block until it is finished.

e statistics-enabled: If set to true, the statistics such as cache hits and misses are collected. The default
value is false.

e entry-listener: The value of this element is the full canonical classname of the EntryListener implemen-
tation.

— entry-listener#include-value: This attribute defines if the event will include the value or not.
Sometimes the key is enough to react on an event. In those situations, setting this value to false will
save a deserialization cycle. The default value is true.

— entry-listener#local: This attribute is not used for Replicated Map since listeners are always local.

6.15.4.2 Replicated Map Programmatic Configuration
You can use the Config API for programmatic configuration, as you can for all other data structures in Hazelcast.
You must create the configuration upfront, when you instantiate the HazelcastInstance.

A basic example on how to configure the Replicated Map using the programmatic approach is shown in the following
snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
config.getReplicatedMapConfig("default");

replicatedMapConfig.setInMemoryFormat (InMemoryFormat.BINARY);
replicatedMapConfig.setConcurrencylLevel(32);

All properties that can be configured using the declarative configuration are also available using programmatic
configuration by transforming the tag names into getter or setter names.

6.15.4.3 In-Memory Format on Replicated Map

Currently, two in-memory-format values are usable with the Replicated Map.

e OBJECT (default): The data will be stored in deserialized form. This configuration is the default choice since
the data replication is mostly used for high speed access. Please be aware that changing the values without a
Map: :put is not reflected on the other nodes but is visible on the changing nodes for later value accesses.

e BINARY: The data is stored in serialized binary format and has to be deserialized on every request. This
option offers higher encapsulation since changes to values are always discarded as long as the newly changed
object is not explicitly Map: :put into the map again.

6.15.5 EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a Replicated Map serves the same purpose as it would on other
data structures in Hazelcast. You can use it to react on add, update, and remove operations. Replicated maps do
not yet support eviction.

The fundamental difference in Replicated Map behavior, compared to the other data structures, is that an
EntryListener only reflects changes on local data. Since replication is asynchronous, all listener events are fired only
when an operation is finished on a local node. Events can fire at different times on different nodes.

98

import
import
import
import
import

com
com
com
com
com

.hazelcast.
.hazelcast.

.hazelcast

.hazelcast.
.hazelcast.

CHAPTER 6. DISTRIBUTED DATA STRUCTURES

core.EntryEvent;
core.EntryListener;
.core.Hazelcast;
core.HazelcastInstance;
core.ReplicatedMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ReplicatedMap<String, Customer> customers =
hazelcastInstance.getReplicatedMap("customers");

customers.addEntryListener(new EntryListener<String, Customer>() {
@0verride
public void entryAdded(EntryEvent<String, Customer> event) {
log("Entry added: " + event);

}

@0verride
public void entryUpdated(EntryEvent<String, Customer>
log("Entry updated: " + event);

}

@0verride

public void entryRemoved(EntryEvent<String, Customer>
log("Entry removed: " + event);

3

@0verride

public void entryEvicted(EntryEvent<String, Customer>
// Currently not supported, will never fire

}
s

customers.put("1",
customers.put("1",
customers.remove("1"); // remove event

new Customer("Joe", "Smith")); //
new Customer("Ali", "Selam")); //

event) {

event) {

event) {

add event
update event

Chapter 7

Distributed Events

You can register for Hazelcast entry events so you will be notified when those events occur. Event Listeners
are cluster-wide: when a listener is registered in one member of cluster, it is actually registered for events that
originated at any member in the cluster. When a new member joins, events originated at the new member will also
be delivered.

An Event is created only if you registered an event listener. If no listener is registered, then no event will be created.
If you provided a predicate when you registered the event listener, pass the predicate before sending the event to
the listener (node/client).

As a rule of thumb, your event listener should not implement heavy processes in its event methods which block
the thread for a long time. If needed, you can use ExecutorService to transfer long running processes to another
thread and thus offload the current listener thread.

7.1 Event Listeners for Hazelcast Nodes
Hazelcast offers the following event listeners:

Membership Listener for cluster membership events.

Distributed Object Listener for distributed object creation and destroy events.

Migration Listener for partition migration start and complete events.

Partition Lost Listener for partition lost events.

Lifecycle Listener for HazelcastInstance lifecycle events.

Entry Listener for IMap and MultiMap entry events (please refer to the Map Listener section).

Item Listener for IQueue, ISet and IList item events (please refer to the Event Registration and Configu-
ration parts of the sections Set and List).

Message Listener for ITopic message events.

e Client Listener for client connection events.

7.1.1 Membership Listener

The Membership Listener allows to get notified for the following events.

e A new member is added to the cluster.

e An existing member leaves the cluster.

e An attribute of a member is changed. Please refer to the Member Attributes section to learn about member
attributes.

The following is an example Membership Listener class.

99

100 CHAPTER 7. DISTRIBUTED EVENTS

public class ClusterMembershipListener
implements MembershipListener {

public void memberAdded(MembershipEvent membershipEvent) {
System.err.println("Added: " + membershipEvent);
}

public void memberRemoved(MembershipEvent membershipEvent) {
System.err.println("Removed: " + membershipEvent) ;

}

public void memberAttributeChanged(MemberAttributeEvent memberAttributeEvent) {
System.err.println("Member attribute changed: " + memberAttributeEvent) ;

}

When a respective event is fired, the membership listener outputs the addresses of the members that joined and
left, and also which attribute changed on which member.

7.1.2 Distributed Object Listener

The Distributed Object Listener notifies when a distributed object is created or destroyed throughout the cluster.

The following is an example Distributed Object Listener class.

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
}
}

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

When a respective event is fired, the distributed object listener outputs the event type, and the name, service (for
example, if a Map service provides the distributed object, than it is a Map object), and ID of the object.

7.1. EVENT LISTENERS FOR HAZELCAST NODES 101

7.1.3 Migration Listener

The Migration Listener notifies for the following events:
e A partition migration is started.
e A partition migration is completed.
e A partition migration is failed.

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {

@0verride

public void migrationStarted(MigrationEvent migrationEvent) {
System.err.println("Started: " + migrationEvent) ;

}

@0verride

public void migrationCompleted(MigrationEvent migrationEvent) {
System.err.println("Completed: " + migrationEvent);

}

@0verride

public void migrationFailed(MigrationEvent migrationEvent) {
System.err.println("Failed: " + migrationEvent);

}

When a respective event is fired, the migration listener outputs the partition ID, status of the migration, the old
member and the new member. The following is an example output.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

7.1.4 Partition Lost Listener

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one of your nodes
become owner and some of the other nodes become replica nodes based on your configuration. Nevertheless, data
loss may occur if a few nodes crash simultaneously.

Let‘s consider the following example with three nodes: N1, N2, N3 for a given partition-0. N1 is owner of partition-0,
N2 and N3 are the first and second replicas respectively. If N1 and N2 crash simultaneously, partition-0 loses its
data that is configured with less than 2 backups. For instance, if we configure a map with 1 backup, that map loses
its data in partition-0 since both owner and first replica of partition-0 have crashed. However, if we configure our
map with 2 backups, it does not lose any data since a copy of partition-0’s data for the given map also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how many replicas are
lost for a partition. It listens to PartitionLostEvent instances. Partition lost events are dispatched per partition.

Partition loss detection is done after a node crash is detected by the other nodes and the crashed node is removed
from the cluster. Please note that false-positive PartitionLostEvent instances may be fired on partial network
split errors.

The following is an example of Partition Lost Listener.

public class ConsoleloggingPartitionLostListener implements PartitionLostListener {
@0verride
public void partitionLost(PartitionLostEvent event) {
System.out.println(event);

3

102 CHAPTER 7. DISTRIBUTED EVENTS

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID, the replica
index that is lost and the node that has detected the partition loss. The following is an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49] :5701}

7.1.5 Lifecycle Listener

The Lifecycle Listener notifies for the following events:

A member is starting.

A member started.

A member is shutting down.

A member’s shutdown has completed.

A member is merging with the cluster.

A member’s merge operation has completed.

A Hazelcast Client connected to the cluster.

A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

public class NodeLifecycleListener implements LifecycleListener {
@0verride
public void stateChanged(LifecycleEvent event) {
System.err.println(event);

}

This listener is local to an individual node. It notifies the application that uses Hazelcast about the events mentioned
above for a particular node.

7.1.6 Item Listener

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces. It notifies when an item is added or
removed.

The following is an example Item Listener class.

public class Sample implements ItemListener {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISet<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sample, true);

Price price = new Price(10, timel)
set.add(price);
set.remove(price);

}

public void itemAdded(Object item) {
System.out.println("Item added = " + item);

3

7.2. EVENT LISTENERS FOR HAZELCAST CLIENTS 103

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);

}
}

7.1.7 Message Listener

The Message Listener is used by the ITopic interface. It notifies when a message is received for the registered topic.

The following is an example Message Listener class.

public class Sample implements MessagelListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessagelistener(sample);
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);
}
s
}
3

7.1.8 Client Listener

The Client Listener is used by the Hazelcast nodes. It notifies the nodes when a client is connected to or disconnected
from the cluster.

l NOTE: You can also add event listeners to a Hazelcast client. Please refer to Client Listenerconfig for the
related information.

7.2 Event Listeners for Hazelcast Clients

You can add event listeners to a Hazelcast Java client. You can configure the following listeners to listen to the
events on the client side. Please see the respective sections under the Event Listeners for Hazelcast Nodes section
for example code.

e Lifecycle Listener: Notifies when the client is starting, started, shutting down and shutdown.

e Membership Listener: Notifies when a node joins to/leaves the cluster to which the client is connected, or
when an attribute is changed in a node.

e DistributedObject Listener: Notifies when a distributed object is created or destroyed throughout the
cluster to which the client is connected.

104 CHAPTER 7. DISTRIBUTED EVENTS

RELATED INFORMATION
Please refer to the Client Listenerconfig section for more information.
RELATED INFORMATION

Please refer to the Listener Configurations section for a configuration wrap-up of event listeners.

7.3 Global Event Configuration

e hazelcast.event.queue.capacity: default value is 1000000
e hazelcast.event.queue.timeout.millis: default value is 250
e hazelcast.event.thread.count: default value is 5

A striped executor in each node controls and dispatches the received events. This striped executor also guarantees
the event order. For all events in Hazelcast, the order in which events are generated and the order in which they
are published are guaranteed for given keys. For map and multimap, the order is preserved for the operations on
the same key of the entry. For list, set, topic and queue, the order is preserved for events on that instance of the
distributed data structure.

You achieve the order guarantee by making only one thread responsible for a particular set of events (entry events
of a key in a map, item events of a collection, etc.) in StripedExecutor.

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be put into
the event queue for the period specified in hazelcast.event.queue.timeout.millis, these events will be dropped
with a warning message, such as “EventQueue overloaded”.

If event listeners perform a computation that takes a long time, the event queue can reach its maximum capacity
and lose events. For map and multimap, you can configure hazelcast.event.thread.count to a higher value so
that fewer collisions occur for keys, and therefore worker threads will not block each other in StripedExecutor.
For list, set, topic and queue, you should offload heavy work to another thread. To preserve order guarantee, you
should implement similar logic with StripedExecutor in the offloaded thread pool.

RELATED INFORMATION

Please refer to the Listener Configurations section on how to configure each listener.

Chapter 8

Distributed Computing

From Wikipedia: Distributed computing refers to the use of distributed systems to solve computational problems.
In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers.

8.1 Executor Service

One of the coolest features of Java 1.5 is the Executor framework, which allows you to asynchronously execute your
tasks (logical units of work), such as database query, complex calculation, and image rendering.

8.1.1 Executor Overview

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a single JVM.
In distributed systems, this implementation is not desired since you may want a task submitted in one JVM
and processed in another one. Hazelcast offers IExecutorService for you to use in distributed environments: it
implements java.util.concurrent.ExecutorService to serve the applications requiring computational and data
processing power.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If your task
execution takes longer than expected, you can cancel the task execution. Tasks should be Serializable since they
will be distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

e Callable: If you need to return a value and submit to Executor, implement the task as java.util.concurrent.Callable.
e Runnable: If you do not need to return a value, implement the task as java.util.concurrent.Runnable.

8.1.1.1 Callable

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a value), you
implement Callable and Serializable.

Below is an example of a Callable.

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.HazelcastInstanceAware;
import com.hazelcast.core.IMap;

import java.io.Serializable;
import java.util.concurrent.Callable;

public class SumTask

105

106

pr

CHAPTER 8. DISTRIBUTED COMPUTING

implements Callable<Integer>, Serializable, HazelcastInstanceAware {

ivate transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {

}

this.hazelcastInstance = hazelcastInstance;

public Integer call() throws Exception {

3
}

IMap<String, Integer> map = hazelcastInstance.getMap("map");
int result = 0O;
for (String key : map.localKeySet()) {
System.out.println("Calculating for key: " + key);
result += map.get(key);
¥
System.out.println("Local Result: " + result);
return result;

Another example is the Echo callable below. In its call() method, it returns the local member and the input
passed in. Remember that instance.getCluster() .getLocalMember () returns the local member and toString()
returns the member’s address (IP + port) in String form, just to see which member actually executed the code for
our example. Of course, the call() method can do and return anything you like.

impo

rt java.util.concurrent.Callable;

import java.io.Serializable;

public class Echo implements Callable<String>, Serializable {

String input = null;

public Echo() {
}

public Echo(String input) {
this.input = input;

}

public String call() {
Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
return instance.getCluster().getLocalMember().toString() + ":" + input;

To execute a task with the executor framework:

Obtain an ExecutorService instance (generally via Executors).

Submit a task which returns a Future.

After executing the task, you do not have to wait for the execution to complete, you can process other things.
When ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Echo("myinput"));

8.1. EXECUTOR SERVICE 107

//while it is executing, do some useful stuff
//when ready, get the result of your execution
String result = future.get();

Please note that the Echo callable in the above code sample also implements a Serializable interface, since it may
be sent to another JVM to be processed.

. NOTE: When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the task should
implement HazelcastInstancedAware interface. Please see the HazelcastinstanceAware Interface section for more
information.

8.1.1.2 Runnable

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not return a
value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

public class EchoTask implements Runnable, Serializable {
private final String msg;

public EchoTask(String msg) {
this.msg = msg;

}

Q@0verride
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.println("echo:" + msg);
}
}

To execute the task: * Retrieve the Executor from HazelcastInstance. * Submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class MasterMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executor = hazelcastInstance.getExecutorService("exec");
for (int k = 1; k <= 1000; k++) {
Thread.sleep(1000);
System.out.println("Producing echo task: " + k);
executor.execute(new EchoTask(String.valueOf(k)));
}
System.out.println("EchoTaskMain finished!");
X
}

8.1.1.3 Executor Thread Configuration

By default, Executor is configured to have 8 threads in the pool. You can change that with the pool-size property
in the declarative configuration (hazelcast.xml). An example is shown below (using the above Executor).

108 CHAPTER 8. DISTRIBUTED COMPUTING

<executor-service name='"exec'">
<pool-size>1</pool-size>
</executor-service>

RELATED INFORMATION

Please refer to the Fxecutor Service Configuration section for a full description of Hazelcast Distributed FExecutor
Service configuration.

8.1.1.4 Scaling

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the JVM. You can do this by increasing the pool-size
property mentioned in the Executor Thread Configuration section (i.e., increasing the thread count). However,
please be aware of your JVM’s capacity. If you think it cannot handle such an additional load caused by increasing
the thread count, you may want to consider improving the JVM’s resources (CPU, memory, etc.). As an example,
set the pool-size to 5 and run the above MasterMember. You will see that EchoTask is run as soon as it is
produced.

To scale out, more JVMs should be added instead of increasing only one JVM’s capacity. In reality, you may want
to expand your cluster by adding more physical or virtual machines. For example, in the EchoTask example in the
Runnable section, you can create another Hazelcast instance. That instance will automatically get involved in the
executions started in MasterMember and start processing.

8.1.2 Execution

The distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It
allows you to execute your code in the cluster. In this section, the code examples are based on the Echo class above
(please note that the Echo class is Serializable). The code examples show how Hazelcast can execute your code
(Runnable, Callable):

on a specific cluster member you choose,
on the member owning the key you choose,
on the member Hazelcast will pick, and

on all or subset of the cluster members.

import com.hazelcast.core.Member;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;

import java.util.Set;

public void echoOnTheMember(String input, Member member) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToMember (task, member);
String echoResult = future.get();
}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

8.1. EXECUTOR SERVICE 109

IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToKeyOwner(task, key);
String echoResult = future.get();
}

public void echoOnSomewhere(String input) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submit(new Echo(input));
String echoResult = future.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Map<Member, Future<String>> futures = executorService
.submitToMembers(new Echo(input), members);

for (Future<String> future : futures.values()) {
String echoResult = future.get();

/.
}
}
l NOTE: You can obtain the set of cluster members via HazelcastInstance#getCluster().getMembers ()
call.

8.1.3 Execution Cancellation

A task in the code you execute in a cluster might take longer than expected. If you cannot stop/cancel that task, it
will keep eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API. This framework encourages
us to code and design for cancellations, a highly ignored part of software development.

8.1.3.1 Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the calculate method,
we check if the current thread is interrupted so that the code can respond to cancellations once the execution is
started.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0O;

public Fibonacci() {
}

public Fibonacci(int input) {
this.input = input;

}

110 CHAPTER 8. DISTRIBUTED COMPUTING

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (Thread.currentThread().isInterrupted()) {
return O;
}
if (n<=1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}

8.1.3.2 Example Method to Execute and Cancel the Task

The £ib() method below submits the Fibonacci calculation task above for number ‘n’ and waits a maximum
of 3 seconds for the result. If the execution does not completed in 3 seconds, future.get() will throw a
TimeoutException and upon catching it, we cancel the execution, saving some CPU cycles.

long fib(int n) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();
Future future = es.submit(new Fibonacci(n));
try {
return future.get(3, TimeUnit.SECONDS);
} catch (TimeoutException e) {
future.cancel(true);
}

return -1;

£ib(20) will probably take less than 3 seconds. However, £ib(50) will take much longer. (This is not an example
for writing better Fibonacci calculation code, but for showing how to cancel a running execution that takes
too long.) The method future.cancel(false) can only cancel execution before it is running (executing), but
future.cancel (true) can interrupt running executions if your code is able to handle the interruption. If you
are willing to cancel an already running task, then your task should be designed to handle interruptions. If
the calculate (int n) method did not have the (Thread.currentThread() .isInterrupted()) line, then you
would not be able to cancel the execution after it is started.

8.1.4 Execution Callback

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the execution is
done.

8.1.4.1 Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that will be executed.
Note that it is Callable and Serializable.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

8.1. EXECUTOR SERVICE 111

public Fibonacci() {
}

public Fibonacci(int input) {
this.input = input;

}

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (n <= 1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}
}

8.1.4.2 Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the result asyn-
chronously. ExecutionCallback has the methods onResponse and onFailure. In this example code, onResponse
is called upon a valid response and prints the calculation result, whereas onFailure is called upon a failure and
prints the stacktrace.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Future;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();

Callable<Long> task = new Fibonacci(10);

es.submit(task, new ExecutionCallback<Long> () {

@0verride
public void onResponse(Long response) {
System.out.println("Fibonacci calculation result = " + response);
X
@0verride

public void onFailure(Throwable t) {
t.printStackTrace();
}
}

8.1.5 Execution Member Selection

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or Callable is
executed. Usually, you will execute these in the cluster based on the location of a key, set of keys or just allow
Hazelcast to select a member.

If want more control over where your code runs, you can use the MemberSelector interface. For example, you
may want certain tasks to run only on certain members, or you may wish to implement some form of custom

112 CHAPTER 8. DISTRIBUTED COMPUTING

load balancing regime. The MemberSelector is an interface that you can implement and then provide to the
IExecutorService when you submit or execute.

The select (Member) method is called for every available member in the cluster and it is up to the implementation
to decide if the member is going to be used or not.

In a simple example shown below, we select the cluster members based on the presence of an attribute.

public class MyMemberSelector implements MemberSelector {
public boolean select(Member member) {
return Boolean.TRUE.equals (member.getAttribute("my.special.executor"));

}

8.2 Entry Processor

Hazelcast supports entry processing. An entry processor is a function that executes your code on a map entry in an
atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually, you perform a loop
of keys: executing IMap.get (key), mutating the value, and finally putting the entry back in the map using
IMap.put (key,value). If you perform this process from a client or from a member where the keys do not exist,
you effectively perform 2 network hops for each update: the first to retrieve the data and the second to update the
mutated value.

If you are doing the above, you should consider using entry processors. An entry processor executes a read and
updates upon the member where the data resides. This eliminates the costly network hops described previously.

8.2.1 Entry Processor Overview

An entry processor enables fast in-memory operations on your map without you having to worry about locks or
concurrency issues. It can be applied to a single map entry or to all map entries. It supports choosing target entries
using predicates. You do not need any explicit lock on entry: Hazelcast locks the entry, runs the EntryProcessor,
and then unlocks the entry.

Hazelcast sends the entry processor to each cluster member and these members apply it to map entries. Therefore,
if you add more members, your processing is completed faster.

If entry processing is the major operation for a map and if the map consists of complex objects, you should use
OBJECT as the in-memory-format to minimize serialization cost. By default, the entry value is stored as a byte
array (BINARY format). When it is stored as an object (OBJECT format), then the entry processor is applied directly
on the object. In that case, no serialization or deserialization is performed. But if there is a defined event listener,
a new entry value will be serialized when passing to the event publisher service.

NOTE: When in-memory-format is OBJECT, old value of the updated entry will be null.

8.2.1.1 Entry Processing with IMap

The methods below are in the IMap interface for entry processing.

executeOnKey processes an entry mapped by a key.

executeOnKeys processes entries mapped by a collection of keys.

submitToKey processes an entry mapped by a key while listening to event status.
executeOnEntries processes all entries in a map.

executeOnEntries can also process all entries in a map with a defined predicate.

8.2. ENTRY PROCESSOR 113

VAL

* Applies the user defined EntryProcessor to the entry mapped by the key.

* Returns the object which is the result of the process() method of EntryProcessor.
*/

Object executeOnKey(K key, EntryProcessor entryProcessor);

VAL

* Applies the user defined EntryProcessor to the entries mapped by the collection of keys.
* Returns the results mapped by each key in the collection.

*/

Map<K, Object> executeOnKeys(Set<K> keys, EntryProcessor entryProcessor);

Kk

* Applies the user defined EntryProcessor to the entry mapped by the key with
* specified ExecutionCallback to listen to event status and return immediately.
*/

void submitToKey(K key, EntryProcessor entryProcessor, ExecutionCallback callback);

Jk*
* Applies the user defined EntryProcessor to all entries in the map.
* Returns the results mapped by each key in the map.
*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor);

Jkx

* Applies the user defined EntryProcessor to the entries in the map which satisfies
provided predicate.

* Returns the results mapped by each key in the map.

*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor, Predicate predicate);

8.2.1.2 Entry Processing with EntryProcessor

And, here is the EntryProcessor interface:

public interface EntryProcessor<K, V> extends Serializable {
Object process(Map.Entry<K, V> entry);

EntryBackupProcessor<K, V> getBackupProcessor();
}

. NOTE: If you want to execute a task on a single key, you can also use ezxecuteOnKeyOuner provided by
Ezecutor Service. But, in this case, you need to perform a lock and serialization.

When using executeOnEntries method, if the number of entries is high and you do need the results, then returning
null in process() method is a good practice. By this way, results of the processing is not stored in the map and
hence out of memory errors are eliminated.

8.2.1.3 Processing Backup Entries

If your code modifies the data, then you should also provide a processor for backup entries. This is required to
prevent the primary map entries from having different values than the backups; it causes the entry processor to be
applied both on the primary and backup entries.

114 CHAPTER 8. DISTRIBUTED COMPUTING

public interface EntryBackupProcessor<K, V> extends Serializable {
void processBackup(Map.Entry<K, V> entry);
}

l NOTE: You should explicitly call setValue method of Map.Entry when modifying data in Entry Processor.
Otherwise, Entry Processor will be accepted as read-only.

l NOTE: An EntryProcessor instance is not thread safe. If you are storing partition specific state between
invocations be sure to register this in a thread-local. A EntryProcessor instance can be used by multiple partition
threads.

l NOTE: EntryProcessors run via Operation Threads that are dedicated to specific partitions. Therefore with
long running EntryProcessor executions other partition operations cannot be processed, such as a ‘map.put(key)’
With this is in mind it is good practice to make your EntryProcessor erecutions as quick as possible

8.2.2 Sample Entry Processor Code

The EntryProcessorTest class has the following methods.

e testMapEntryProcessor puts one map entry and calls executeOnKey to process that map entry.
e testMapEntryProcessor puts all the entries in a map and calls executeOnEntries to process all the entries.

The static class IncrementingEntryProcessor creates an entry processor to process the map entries in the
EntryProcessorTest class.

public class EntryProcessorTest {

Q@Test
public void testMapEntryProcessor() throws InterruptedException {
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.0OBJECT);

HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel.getMap("mapEntryProcessor");
map.put(1, 1);

EntryProcessor entryProcessor = new IncrementingEntryProcessor();
map.executeOnKey(1, entryProcessor);

assertEquals(map.get(1), (Object) 2);
hazelcastInstancel.getLifecycleService() .shutdown();
hazelcastInstance2.getLifecycleService() .shutdown() ;

QTest
public void testMapEntryProcessorAllKeys() throws InterruptedException {
StaticNodeFactory factory = new StaticNodeFactory(2);
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.OBJECT);

HazelcastInstance hazelcastInstancel = factory.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = factory.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel

.getMap("mapEntryProcessorAllKeys");

8.2. ENTRY PROCESSOR 115

int size = 100;
for (int 1 = 0; i < size; i++) {
map.put(i, i);
}
EntryProcessor entryProcessor = new IncrementingEntryProcessor();
Map<Integer, Object> res = map.executeOnEntries(entryProcessor);
for (int i = 0; i < size; i++) {
assertEquals(map.get(i), (Object) (i + 1));
3
for (int 1 = 0; i < size; i++) {
assertEquals(map.get(i) + 1, res.get(i));
}
hazelcastInstancel.getLifecycleService() .shutdown();
hazelcastInstance2.getLifecycleService().shutdown() ;

static class IncrementingEntryProcessor
implements EntryProcessor, EntryBackupProcessor, Serializable {

public Object process(Map.Entry entry) {
Integer value = (Integer) entry.getValue();
entry.setValue(value + 1);
return value + 1;

3

public EntryBackupProcessor getBackupProcessor() {
return IncrementingEntryProcessor.this;

3

public void processBackup(Map.Entry entry) {
entry.setValue((Integer) entry.getValue() + 1);
}
}
}

8.2.3 Abstract Entry Processor

You can use the AbstractEntryProcessor when the same processing will be performed both on the primary and
backup map entries (i.e. the same logic applies to them). If you use EntryProcessor, you need to apply the same
logic to the backup entries separately. The AbstractEntryProcessor class makes this primary/backup processing
easier.

Please see the example code below.

public abstract class AbstractEntryProcessor <K, V>
implements EntryProcessor <K, V> {

private final EntryBackupProcessor <K,V> entryBackupProcessor;
public AbstractEntryProcessor() {

this(true);
}

public AbstractEntryProcessor(boolean applyOnBackup) {
if (applyOnBackup) {
entryBackupProcessor = new EntryBackupProcessorImpl();
} else {
entryBackupProcessor = null;

}

116 CHAPTER 8. DISTRIBUTED COMPUTING

@0verride
public abstract Object process(Map.Entry<K, V> entry);

@0verride
public final EntryBackupProcessor <K, V> getBackupProcessor() {
return entryBackupProcessor;

b

private class EntryBackupProcessorImpl implements EntryBackupProcessor <K,V>{
@0verride
public void processBackup(Map.Entry<K, V> entry) {

process(entry) ;

¥

3

b

In the above example, the method getBackupProcessor returns an EntryBackupProcessor instance. This means
the same processing will be applied to both the primary and backup entries. If you want to apply the processing
only upon the primary entries, then make the getBackupProcessor method return null.

Chapter 9

Distributed Query

Distributed queries access data from multiple data sources stored on either the same or different computers.

9.1 Query Overview

Hazelcast partitions your data and spreads it across cluster of servers. You can iterate over the map entries and
look for certain entries (specified by predicates) you are interested in. However, this is not very efficient because
you will have to bring the entire entry set and iterate locally. Instead, Hazelcast allows you to run distributed
queries on your distributed map.

9.1.1 How It Works

1. The requested predicate is sent to each member in the cluster.

2. Each member looks at its own local entries and filters them according to the predicate. At this stage, key/value
pairs of the entries are deserialized and then passed to the predicate.

3. The predicate requester merges all the results coming from each member into a single set.

If you add new members to the cluster, the partition count for each member is reduced and hence the time spent by
each member on iterating its entries is reduced. Therefore, the above querying approach is highly scalable. Another
reason it is highly scalable is the pool of partition threads that evaluates the entries concurrently in each member.
The network traffic is also reduced since only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:

e Criteria API
e Distributed SQL Query
9.1.2 Employee Map Query Example

Assume that you have an “employee” map containing values of Employee objects, as coded below.

import java.io.Serializable;

public class Employee implements Serializable {
private String name;

private int age;

private boolean active;

private double salary;

117

118 CHAPTER 9. DISTRIBUTED QUERY

public Employee(String name, int age, boolean live, double price) {
this.name = name;
this.age = age;
this.active = live;
this.salary = price;

}

public Employee() {
}

public String getName() {
return name;

}

public int getAge() {
return age;

}

public double getSalary() {
return salary;

}

public boolean isActive() {
return active;

}

}

Now, let’s look for the employees who are active and have an age less than 30 using the aforementioned APIs
(Criteria API and Distributed SQL Query). The following subsections describe each query mechanism for this
example.

. NOTE: When using Portable objects, if one field of an object exists on one node but does not exist on another
one, Hazelcast does not throw an unknown field exception. Instead, Hazelcast treats that predicate, which tries to
perform a query on an unknown field, as an always false predicate.

9.1.3 Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence Query Language
(JPQL). Below is the code for the above example query.

import com.hazelcast.core.IMap;

import com.hazelcast.query.Predicate;

import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;
import com.hazelcast.config.Config;

IMap<String, Employee> map = hazelcastInstance.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = map.values(predicate);

In the above example code, predicate verifies whether the entry is active and its age value is less than 30. This
predicate is applied to the employee map using the map.values(predicate) method. This method sends the

9.1. QUERY OVERVIEW 119

predicate to all cluster members and merges the results coming from them. Since the predicate is communicated
between the members, it needs to be serializable.

map.

NOTE: Predicates can also be applied to keySet, entrySet and localKeySet of Hazelcast distributed

9.1.3.1 Predicates Class

The Predicates class offered by Hazelcast includes many operators for your query requirements. Some of them are
explained below.

equal: checks if the result of an expression is equal to a given value.

notEqual: checks if the result of an expression is not equal to a given value.

instanceOf: checks if the result of an expression has a certain type.

like: checks if the result of an expression matches some string pattern. % (percentage sign) is placeholder
for many characters, (underscore) is placeholder for only one character.

greaterThan: checks if the result of an expression is greater than a certain value.
greaterEqual: checks if the result of an expression is greater than or equal to a certain value.
lessThan: checks if the result of an expression is less than a certain value.

lessEqual: checks if the result of an expression is less than or equal to a certain value.
between: checks if the result of an expression is between 2 values (this is inclusive).

in: checks if the result of an expression is an element of a certain collection.

isNot: checks if the result of an expression is false.

regex: checks if the result of an expression matches some regular expression.

RELATED INFORMATION

Please see the Predicates class for all predicates provided.

9.1.3.2 Joining Predicates with AND, OR, NOT

Predicates can be joined using the and, or and not operators, as shown in the below examples.

public Set<Person> getWithNameAndAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age'", age);
Predicate predicate = Predicates.and(namePredicate, agePredicate);
return personMap.values(predicate);

public Set<Person> getWithNameOrAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age", age);
Predicate predicate = Predicates.or(namePredicate, agePredicate);
return personMap.values(predicate);

public Set<Person> getNotWithName(String name) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate predicate = Predicates.not(namePredicate);
return personMap.values(predicate);

}

https://github.com/hazelcast/hazelcast/blob/2709bc81cd499a3160827de24422cdb6cf98fe36/hazelcast/src/main/java/com/hazelcast/query/Predicates.java

120 CHAPTER 9. DISTRIBUTED QUERY

9.1.3.3 PredicateBuilder

You can simplify predicate usage with the PredicateBuilder class, which offers simpler predicate building. Please
see the below example code which selects all people with a certain name and age.

public Set<Person> getWithNameAndAgeSimplified(String name, int age) {
EntryObject e = new PredicateBuilder().getEntryObject();
Predicate agePredicate = e.get("age").equal(age);
Predicate predicate = e.get("name").equal(name).and(agePredicate);
return personMap.values(predicate);

9.1.4 Distributed SQL Query

com.hazelcast.query.SqlPredicate takes the regular SQL where clause. Here is an example:

IMap<Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(new SqlPredicate("active AND age < 30"));

9.1.4.1 Supported SQL Syntax

AND/OR: <expression> AND <expression> AND <expression>...

e active AND age>30
e active=false OR age = 45 OR name = ’Joe’
e active AND (age > 20 OR salary < 60000)

Equality: =, !'=, <, <=, >, >=

e <expression> = value
e age <= 30

e name = "Joe"

e salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <valuel> AND <value2>

e age BETWEEN 20 AND 33 (same as age >= 20 AND age <= 33)
e age NOT BETWEEN 30 AND 40 (same as age < 30 OR age > 40)

LIKE: <attribute> [NOT] LIKE ’expression’

The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for only one character.

name LIKE ’Jo%’ (true for ‘Joe’, ‘Josh’, ‘Joseph’ etc.)

name LIKE ’Jo_’ (true for ‘Joe’; false for ‘Josh’)

name NOT LIKE ’Jo_’ (true for ‘Josh’; false for ‘Joe’)

name LIKE ’J_s%’ (true for ‘Josh’, ‘Joseph’; false ‘John’, ‘Joe’)

IN: <attribute> [NOT] IN (vall, val2,...)

e age IN (20, 30, 40)

e age NOT IN (60, 70)

e active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))
e age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

9.1. QUERY OVERVIEW 121

9.1.5 Paging Predicate

Hazelcast provides paging for defined predicates. With its PagingPredicate class, you can get a collection of keys,
values, or entries page by page by filtering them with predicates and giving the size of the pages. Also, you can sort
the entries by specifying comparators.

In the example code below, the greaterEqual predicate gets values from the “students” map. This predicate has a
filter to retrieve the objects with a “age” greater than or equal to 18. Then a PagingPredicate is constructed in
which the page size is 5, so there will be 5 objects in each page.

The first time the values are called creates the first page. You can get the subsequent pages by using the nextPage ()
method of PagingPredicate and querying the map again with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap("students");
Predicate greaterEqual = Predicates.greaterEqual("age", 18);
PagingPredicate pagingPredicate = new PagingPredicate(greaterEqual, 5);
// Retrieve the first page

Collection<Student> values = map.values(pagingPredicate);

// Set up next page
pagingPredicate.nextPage();

// Retrieve mext page

values = map.values(pagingPredicate);

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or values page by page,
this collection must be an instance of Comparable (i.e. it must implement java.lang.Comparable). Otherwise,
the java.lang.IllegalArgument exception is thrown.

Paging Predicate, also known as Order & Limit, is not supported in Transactional Context.

l NOTE: Currently, random page accessing is not supported.
RELATED INFORMATION

Please refer to the Javadoc for all predicates.

9.1.6 Indexing

Hazelcast distributed queries will run on each member in parallel and only results will return the conn. When a
query runs on a member, Hazelcast will iterate through the entire owned entries and find the matching ones. This
can be made faster by indexing the mostly queried fields, just like you would do for your database. Indexing will
add overhead for each write operation but queries will be a lot faster. If you query your map a lot, make sure to
add indexes for the most frequently queried fields. For example, if your active and age < 30 query, make sure
you add index for active and age fields. Here is how to do it.

IMap map = hazelcastInstance.getMap("employees");

// ordered, since we have ranged queries for this field
map.addIndex("age", true);

// not ordered, because boolean field cannot have range
map.addIndex("active", false);

IMap.addIndex(fieldName, ordered) is used for adding index. For each indexed field, if you have ranged queries
such as age>30, age BETWEEN 40 AND 60, then you should set the ordered parameter to true. Otherwise, set it
to false.

Also, you can define IMap indexes in configuration. An example is shown below.

http://hazelcast.org/docs/latest/javadoc/com/hazelcast/query/Predicates.html

122 CHAPTER 9. DISTRIBUTED QUERY

<map name="default">

<indexes>
<index ordered="false">name</index>
<index ordered="true'">age</index>
</indexes>
</map>

You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addMapIndexConfig(new MapIndexConfig("name", false));
mapConfig.addMapIndexConfig(new MapIndexConfig("age", true));

The following is the Spring declarative configuration for the same sample.

<hz:map name="default">
<hz:indexes>
<hz:index attribute="name"/>
<hz:index attribute="age" ordered="true'"/>
</hz:indexes>
</hz:map>

9.1.7 Query Thread Configuration

NOTE: Non-primitive types to be indexed should implement Comparable.

You can change the size of the thread pool dedicated to query operations using the pool-size property. Below is
an example of that declarative configuration.

<executor-service name="hz:query">
<pool-size>100</pool-size>
</executor-service>

Below is an example of the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query") .setPoolSize(100);

9.2 MapReduce

You have likely heard about MapReduce ever since Google released its research white paper on this concept. With
Hadoop as the most common and well known implementation, MapReduce gained a broad audience and made it
into all kinds of business applications dominated by data warehouses.

MapReduce is a software framework for processing large amounts of data in a distributed way. Therefore, the
processing is normally spread over several machines. The basic idea behind MapReduce is to map your source data
into a collection of key-value pairs and reducing those pairs, grouped by key, in a second step towards the final
result.

The main idea can be summarized with the following steps.
1. Read the source data.

2. Map the data to one or multiple key-value pairs.
3. Reduce all pairs with the same key.

http://research.google.com/archive/mapreduce.html

9.2. MAPREDUCE 123

Use Cases

The best known examples for MapReduce algorithms are text processing tools, such as counting the word frequency
in large texts or websites. Apart from that, there are more interesting examples of use cases listed below.

Log Analysis

Data Querying

Aggregation and summing
Distributed Sort

ETL (Extract Transform Load)
Credit and Risk management
Fraud detection

and more. ..

9.2.1 MapReduce Essentials

This section will give a deeper insight on the MapReduce pattern and helps you understand the semantics behind
the different MapReduce phases and how they are implemented in Hazelcast.

In addition to this, the following sections compare Hadoop and Hazelcast MapReduce implementations to help
adopters with Hadoop backgrounds to quickly get familiar with Hazelcast MapReduce.

9.2.1.1 MapReduce Workflow Example

The flowchart below demonstrates the basic workflow of the word count example (distributed occurrences analysis)
mentioned in the MapReduce section. From left to right, it iterates over all the entries of a data structure (in
this case an IMap). In the mapping phase, it splits the sentence into single words and emits a key-value pair per
word: the word is the key, 1 is the value. In the next phase, values are collected (grouped) and transported to their
corresponding reducers, where they are eventually reduced to a single key-value pair, the value being the number
of occurrences of the word. At the last step, the different reducer results are grouped up to the final result and
returned to the requester.

In pseudo code, the corresponding map and reduce function would look like the following. A Hazelcast code example
will be shown in the next section.

map(key:String, document:String):Void ->
for each w:word in document:
emit(w, 1)

reduce(word:String, counts:List[Int]):Int ->
return sum(counts)

9.2.1.2 MapReduce Phases

As seen in the workflow example, a MapReduce process consists of multiple phases. The original MapReduce
pattern describes two phases (map, reduce) and one optional phase (combine). In Hazelcast, these phases are
either only existing virtually to explain the data flow or are executed in parallel during the real operation while the
general idea is still persisting.

(KxV)*-> (Lx W)*
[(k1,v1), ..., (kn, vn)] -> [(11, w1), ..., (Im, wm)]
Mapping Phase

The mapping phase iterates all key-value pairs of any kind of legal input source. The mapper then analyzes the
input pairs and emits zero or more new key-value pairs.

KxV->(Lx W)*

124 CHAPTER 9. DISTRIBUTED QUERY

IMap<String, String> Mapping Grouping f Shuffling Reducing Final Result
& Saturn: 1
saturn: 1 - g \I
is: 17 s 1
a: 1 & 4 15 1
planet: 1 |° is: 1 \
4
S

saturn: 1

is: 3
Saturn

ac 3

[4 a:
A E 1 H
Saturn Is a planet l," y a 1 \‘
1 saturn:
',j: | is:

1
planet: 3 :
earth: 1 o : — a: 3
Earth is: 1 I planet: 1 .--""-f & planet: 3
— 1 —* planet: 1 earth: 1
Earth is a planet lanet: 1 " 4 planet: 1 | luta: 1
planet earth: 1 pluto:
not: 1
anymore: 1
Pt 4 earth: 1
pluto: 1
Fluto is mot a planet anymore /
pluto: 1 - pluto: ! not: 1
is: 1
not: 1
a 1T —# not: 1
planet: 1 . anymore: 1
anymore: 1 /

* anymore: 1

(k, v) -> [(11, w1), ..., (In, wn)]
Combine Phase

In the combine phase, multiple key-value pairs with the same key are collected and combined to an intermediate
result before being send to the reducers. Combine phase is also optional in Hazelcast, but is highly
recommended to lower the traffic.

In terms of the word count example, this can be explained using the sentences “Saturn is a planet but the Earth
is a planet, too”. As shown above, we would send two key-value pairs (planet, 1). The registered combiner now
collects those two pairs and combines them into an intermediate result of (planet, 2). Instead of two key-value pairs
sent through the wire, there is now only one for the key “planet”.

The pseudo code for a combiner is similar to the reducer.

combine(word:String, counts:List[Int]):Void ->
emit(word, sum(counts))

Grouping / Shuffling Phase

The grouping or shuffling phase only exists virtually in Hazelcast since it is not a real phase; emitted key-value
pairs with the same key are always transferred to the same reducer in the same job. They are grouped together,
which is equivalent to the shuffling phase.

Reducing Phase

In the reducing phase, the collected intermediate key-value pairs are reduced by their keys to build the final by-key
result. This value can be a sum of all the emitted values of the same key, an average value, or something completely
different, depending on the use case.

Here is a reduced representation of this phase.
L x W* > X*

(L, [w1, ..., wn]) -> [x1, ..., xn]

9.2. MAPREDUCE 125

Producing the Final Result

This is not a real MapReduce phase, but it is the final step in Hazelcast after all reducers are notified that reducing
has finished. The original job initiator then requests all reduced results and builds the final result.

9.2.1.3 Additional MapReduce Resources

The Internet is full of useful resources to find deeper information on MapReduce. Below is a short collection of
more introduction material. In addition, there are books written about all kinds of MapReduce patterns and how
to write a MapReduce function for your use case. To name them all is out of scope of this documentation.

e http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hei.stanford.edu/courses/cs448g/a2/files/map_ reduce_tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635

9.2.2 Introduction to MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the different API
classes, we will build the word count example that was discussed earlier and create it step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to build
and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is retrieved from
com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the name of the required
JobTracker configuration. The configuration for JobTrackers will be discussed later, for now we focus on the API
itself. In addition, the complete submission part of the API is built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar as possible to
their counterparts on Hadoop. That means while most users will recognize a lot of similar sounding classes, the
way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g. we create a specialized JobTracker
configuration (at the end). Special JobTracker configuration is not required, because for all other Hazelcast features
you can use “default” as the configuration name. However, special configurations offer better options to predict
behavior of the framework execution.

The full example is available here as a ready to run Maven project.

9.2.2.1 JobTracker

JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a single
MapReduce configuration. The same Job can be submitted multiple times, no matter if it is executed in parallel or
after the previous execution is finished.

I NOTE: After retrieving the JobTracker, be aware that it should only be used with data structures derived
from the same HazelcastInstance. Otherwise, you can get unexpected behavior.

To retrieve a JobTracker from Hazelcast, we will start by using the “default” configuration for convenience reasons
to show the basic way.

import com.hazelcast.mapreduce.*;

JobTracker jobTracker = hazelcastInstance.getJobTracker("default");

JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After building the
cluster connection, you use the created HazelcastInstance to request the configured (or default) JobTracker from
Hazelcast.

http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635
http://github.com/noctarius/hz-map-reduce

126 CHAPTER 9. DISTRIBUTED QUERY

The next step will be to create a new Job and configure it to execute our first MapReduce request against cluster
data.

9.2.2.2 Job

As mentioned in the JobTracker section, a Job is created using the retrieved JobTracker instance. A Job defines
exactly one configuration of a MapReduce task. Mapper, combiner and reducers will be defined per job but since
the Job instance is only a configuration, it is possible to be submitted multiple times, no matter if executions
happening in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker’s name and a jobld generated
on submit-time. The way for retrieving the jobld will be shown in one of the later sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a deeper
look at the KeyValueSource class in the next section, for now it is enough to know that it is used to wrap any kind
of data or data structure into a well defined set of key-value pairs.

Below example code is a direct follow up of the example of the JobTracker section and reuses the already created
HazelcastInstance and JobTracker instances.

We start by retrieving an instance of our data map and create the Job instance afterwards. Implementations used
to configure the Job will be discussed while walking further through the API documentation, they are not yet
discussed.

l NOTE: Since the Job class is highly dependent upon generics to support type safety, the generics change
over time and may not be assignment compatible to old variable types. To make use of the full potential of the fluent
API, we recommend you use fluent method chaining as shown in this example to prevent the need for too many
variables.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map) ;
Job<String, String> job = jobTracker.newJob(source);

ICompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner (new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit () ;

// Attach a callback listener
future.andThen(buildCallback());

// Wait and retrieve the result
Map<String, Long> result = future.get();

As seen above, we create the Job instance and define a mapper, combiner, reducer and eventually submit the
request to the cluster. The submit method returns an ICompletableFuture that can be used to attach our callbacks
or just to wait for the result to be processed in a blocking fashion.

There are more options available for job configurations such as defining a general chunk size or on what keys the
operation will operate. For more information, please refer to the Javadoc matching your Hazelcast version.

9.2.2.3 KeyValueSource

KeyValueSource is able to either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-value
pair input sources, or build your own custom key-value input source. The latter option makes it possible to feed
Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web page contents or data files.
People familiar with Hadoop will recognize similarities with the Input class.

9.2. MAPREDUCE 127

You can imagine a KeyValueSource as a bigger java.util.Iterator implementation. Whereas most methods are
required to be implemented, the getAl1Keys method is optional to implement. If implementation is able to gather
all keys upfront, it should be implemented and isAl1KeysSupported must return true. That way, Job configured
KeyPredicates are able to evaluate keys upfront before sending them to the cluster. Otherwise, they are serialized
and transferred as well, to be evaluated at execution time.

As shown in the example above, the abstract KeyValueSource class provides a number of static methods to easily
wrap Hazelcast data structures into KeyValueSource implementations already provided by Hazelcast. The data
structures’ generics are inherited into the resulting KeyValueSource instance. For data structures like IList or ISet,
the key type is always String. While mapping, the key is the data structure’s name whereas the value type and
value itself are inherited from the IList or ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap("my-map");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);

// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap("my-multimap");
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap(multiMap);

// KeyValueSource from com.hazelcast.core.IList
IList<String> list = hazelcastInstance.getList("my-list");
KeyValueSource<String, String> source = KeyValueSource.fromList(list);

// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet("my-set");
KeyValueSource<String, String> source = KeyValueSource.fromSet(set);

Partitionld Aware

The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource imple-
mentation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for all internal data
structures). If this interface is implemented, the same KeyValueSource instance is reused multiple times for all
partitions on the cluster node. As a consequence, the close and open methods are also executed multiple times
but once per partitionld.

9.2.2.4 Mapper

Using the Mapper interface, you will implement the mapping logic. Mappers can transform, split, calculate, aggregate
data from data sources. In Hazelcast, it is also possible to integrate data from more than the KeyValueSource
data source by implementing com.hazelcast.core.HazelcastInstanceAware and requesting additional maps,
multimaps, list, sets.

The mappers map function is called once per available entry in the data structure. If you work on distributed data
structures that operate in a partition based fashion, then multiple mappers work in parallel on the different cluster
nodes, on the nodes’ assigned partitions. Mappers then prepare and maybe transform the input key-value pair and
emit zero or more key-value pairs for reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it by splitting
the text into the available words. After that, as discussed in the pseudo code, we emit every single word with a
key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
private static final Long ONE = Long.valueOf(1L);

@0verride

128 CHAPTER 9. DISTRIBUTED QUERY

public void map(String key, String document, Context<String, Long> context) {
StringTokenizer tokenizer = new StringTokenizer(document.toLowerCase());
while (tokenizer.hasMoreTokens()) {
context.emit(tokenizer.nextToken(), ONE);
}
}
}

The code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are more tokens, and
emits a pair per word. Note that we’re not yet collecting multiple occurrences of the same word, we just fire every
word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the Mapper
implementation lifecycle aware. That means it will be notified when mapping of a partition or set of data begins
and when the last entry was mapped.

Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit additional values.

9.2.2.5 Combiner / CombinerFactory

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster nodes when
transmitting mapped values from mappers to the reducers. It does this by aggregating multiple values for the same
emitted key. This is a fully optional operation, but using it is highly recommended.

Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to the key for which
the combiner initially was created. Since combiners are created per emitted key, the Combiner implementation itself
is not defined in the jobs configuration; instead, a CombinerFactory is created that is able to create the expected
Combiner instance.

Because Hazelcast MapReduce is executing mapping and reducing phase in parallel, the Combiner implementation
must be able to deal with chunked data. Therefore, you must reset its internal state whenever you call finalizeChunk.
Calling that method creates a chunk of intermediate data to be grouped (shuffled) and sent to the reducers.

Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.

For our word count example, we are going to have a simple CombinerFactory and Combiner implementation similar
to the following example.

public class WordCountCombinerFactory
implements CombinerFactory<String, Long, Long> {

@0verride
public Combiner<Long, Long> newCombiner(String key) {
return new WordCountCombiner();

}

private class WordCountCombiner extends Combiner<Long, Long> {
private long sum = O;

@0verride
public void combine(Long value) {
sum++;

}

@0verride
public Long finalizeChunk() {
return sum;

3

9.2. MAPREDUCE 129

@0verride
public void reset() {
sum = O;
}
}
}

The Combiner must be able to return its current value as a chunk and reset the internal state by setting sum back
to 0. Since combiners are always called from a single thread, no synchronization or volatility of the variables is
necessary.

9.2.2.6 Reducer / ReducerFactory

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or any other work
that is expected from the algorithm.

Since values arrive in chunks, the reduce method is called multiple times for every emitted value of the creation
key. This also can happen multiple times per chunk if no Combiner implementation was configured for a job
configuration.

In difference of the combiners, a reducers finalizeReduce method is only called once per reducer (which means
once per key). Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation will look similar to the following code example.

public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

@0verride
public Reducer<Long, Long> newReducer(String key) {
return new WordCountReducer();

}

private class WordCountReducer extends Reducer<Long, Long> {
private volatile long sum = O;

@0verride
public void reduce(Long value) {
sum += value.longValue();

3

@0verride
public Long finalizeReduce() {
return sum;
}
}
}

Different from combiners, reducers tend to switch threads if running out of data to prevent blocking threads from
the JobTracker configuration. They are rescheduled at a later point when new data to be processed arrives but
unlikely to be executed on the same thread as before. As of Hazelcast version 3.3.3 the guarantee for memory
visibility on the new thread is ensured by the framework. This means the previous requirement for making fields
volatile is dropped.

9.2.2.7 Collator

A Collator is an optional operation that is executed on the job emitting node and is able to modify the finally
reduced result before returned to the user’s codebase. Only special use cases are likely to use collators.

130 CHAPTER 9. DISTRIBUTED QUERY

For an imaginary use case, we might want to know how many words were all over in the documents we analyzed.
For this case, a Collator implementation can be given to the submit method of the Job instance.

A collator would look like the following snippet:

public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

@0verride
public Long collate(Iterable<Map.Entry<String, Long>> values) {
long sum = 0;

for (Map.Entry<String, Long> entry : values) {
sum += entry.getValue().longValue();
by
return sum;
b
b

The definition of the input type is a bit strange, but because Combiner and Reducer implementations are optional,
the input type heavily depends on the state of the data. As stated above, collators are non-typical use cases and
the generics of the framework always help in finding the correct signature.

9.2.2.8 KeyPredicate

A XeyPredicate can be used to pre-select whether or not a key should be selected for mapping in the mapping
phase. If the KeyValueSource implementation is able to know all keys prior to execution, the keys are filtered
before the operations are divided among the different cluster nodes.

A KeyPredicate can also be used to select only a special range of data (e.g. a time-frame) or similar use cases.

A basic KeyPredicate implementation that only maps keys containing the word “hazelcast” might look like the
following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

@0verride
public boolean evaluate(String s) {
return s != null && s.toLowerCase().contains("hazelcast");
}
}

9.2.2.9 TrackableJob and Job Monitoring

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker using the
unique jobld (per JobTracker). It can be used to get runtime statistics of the job. The information available is
limited to the number of processed (mapped) records and the processing state of the different partitions or nodes
(if KeyValueSource is not Partitionld Aware).

To retrieve the jobld after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture instead
of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

The example code below gives a quick introduction on how to retrieve the instance and the runtime data. For more
information, please have a look at the Javadoc corresponding your running Hazelcast version.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);
Job<String, String> job = jobTracker.newJob(source);

9.2. MAPREDUCE 131

JobCompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner(new WordCountCombinerFactory())
.reducer(new WordCountReducerFactory())
.submit () ;

String jobId = future.getJobId();
TrackableJob trackableJob = jobTracker.getTrackableJob(jobId) ;

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log("ProcessedRecords: " + processedRecords);

JobPartitionState[] partitionStates = stats.getPartitionStates();
for (JobPartitionState partitionState : partitionStates) {
log("PartitionOwner: " + partitionState.getOwner ()
+ ", Processing state: " + partitionState.getState().name());

. NOTE: Caching of the JobProcessInformation does not work on Java native clients since current values are
retrieved while retrieving the instance to minimize traffic between executing node and client.

9.2.2.10 JobTracker Configuration

The JobTracker configuration is used to setup behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is meant as a shared
resource for all jobs created by the same JobTracker. The configuration gives full control over the expected load
behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. We will discuss the configuration properties one
by one:

<jobtracker name="default">

<max-thread-size>0</max-thread-size>

<!-- Queue size O means number of partitions * 2 —-->

<queue-size>0</queue-size>

<retry-count>0</retry-count>

<chunk-size>1000</chunk-size>

<communicate-stats>true</communicate-stats>

<topology-changed-strategy>CANCEL_RUNNING_OPERATION</topology-changed-strategy>
</jobtracker>

e max-thread-size: Configures the maximum thread pool size of the JobTracker.

e queue-size: Defines the maximum number of tasks that are able to wait to be processed. A value of 0 means
an unbounded queue. Very low numbers can prevent successful execution since job might not be correctly
scheduled or intermediate chunks might be lost.

e retry-count: Currently not used. Reserved for later use where the framework will automatically try to
restart / retry operations from an available save point.

e chunk-size: Defines the number of emitted values before a chunk is sent to the reducers. If your emitted
values are big or you want to better balance your work, you might want to change this to a lower or higher
value. A value of 0 means immediate transmission, but remember that low values mean higher traffic costs.
A very high value might cause an OutOfMemoryError to occur if the emitted values do not fit into heap
memory before being sent to the reducers. To prevent this, you might want to use a combiner to pre-reduce
values on mapping nodes.

132 CHAPTER 9. DISTRIBUTED QUERY

e communicate-stats: Defines if statistics (for example, statistics about processed entries) are transmitted to
the job emitter. This can show progress to a user inside of an UI system, but it produces additional traffic. If
not needed, you might want to deactivate this.

e topology-changed-strategy: Defines how the MapReduce framework will react on topology changes while
executing a job. Currently, only CANCEL_RUNNING__OPERATION is fully supported, which throws an
exception to the job emitter (will throw a com.hazelcast.mapreduce.TopologyChangedException).

RELATED INFORMATION

Please refer to the MapReduce Jobtracker Configuration section for a full description of Hazelcast MapReduce
JobTracker configuration (includes an example programmatic configuration).

9.2.3 Hazelcast MapReduce Architecture

This section explains some of the internals of the MapReduce framework. This is more advanced information. If
you’re not interested in how it works internally, you might want to skip this section.

9.2.3.1 Node Interoperation Example

To understand the following technical internals, we first have a short look at what happens in terms of an example
workflow.

As a simple example, think of an IMap<String, Integer> and emitted keys having the same types. Imagine you
have a three node cluster and you initiate the MapReduce job on the first node. After you requested the JobTracker
from your running / connected Hazelcast, we submit the task and retrieve the ICompletableFuture which gives us a
chance to wait for the result to be calculated or to add a callback (and being more reactive).

The example expects that the chunk size is 0 or 1, so an emitted value is directly sent to the reducers. Internally,
the job is prepared, started, and executed on all nodes as shown below. The first node acts as the job owner (job
emitter).

Nodel starts MapReduce job
Nodel emits key=Foo, value=1
Nodel does PartitionService::getKeyOwner (Foo) => results in Node3

Node2 emits key=Foo, value=14
Node2 asks jobOwner (Nodel) for keyOwner of Foo => results in Node3

Nodel sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer,
if not creates one for key=Foo

Node3 processes chunk for key=Foo

Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Node3 processes chunk for key=Foo

Nodel send LastChunk information to Node3 because processing local values finished

Node2 emits key=Foo, value=27

Node2 has cached keyOwner of Foo => results in Node3

Node2 sends chunk for key=Foo to Node3

Node3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

9.2. MAPREDUCE 133

Node3 processes chunk for key=Foo
Node2 send LastChunk information to Node3 because processing local values finished
Node3 finishes reducing for key=Foo

Nodel registers its local partitions are processed
Node2 registers its local partitions are processed

Nodel sees all partitions processed and requests reducing from all nodes

Nodel merges all reduced results together in a final structure and returns it

The flow is quite complex but extremely powerful since everything is executed in parallel. Reducers do not wait
until all values are emitted, but they immediately begin to reduce (when first chunk for an emitted key arrives).

9.2.3.2 Internal Architecture

Beginning with the package level, there is one basic package: com.hazelcast.mapreduce. This includes the
external API and the impl package which itself contains the internal implementation.

e The impl package contains all the default KeyValueSource implementations and abstract base and support
classes for the exposed API.

e The client package contains all classes that are needed on client and server (node) side when a client offers a
MapReduce job.

e The notification package contains all “notification” or event classes that notify other members about progress
on operations.

e The operation package contains all operations that are used by the workers or job owner to coordinate work
and sync partition or reducer processing.

e The task package contains all classes that execute the actual MapReduce operation. It features the supervisor,
mapping phase implementation and mapping and reducing tasks.

9.2.3.3 MapReduce Job Walk-Through

And now to the technical walk-through: a MapReduce Job is always retrieved from a named JobTracker, which is
implemented in NodeJobTracker (extends AbstractJobTracker) and is configured using the configuration DSL.
All of the internal implementation is completely ICompletableFuture-driven and mostly non-blocking in design.

On submit, the Job creates a unique UUID which afterwards acts as a jobld and is combined with the JobTracker’s
name to be uniquely identifiable inside the cluster. Then, the preparation is sent around the cluster and every
member prepares its execution by creating a JobSupervisor, MapCombineTask, and ReducerTask. The job-emitting
JobSupervisor gains special capabilities to synchronize and control JobSupervisors on other nodes for the same job.

If preparation is finished on all nodes, the job itself is started by executing a StartProcessingJobOperation on every
node. This initiates a MappingPhase implementation (defaults to KeyValueSourceMappingPhase) and starts the
actual mapping on the nodes.

The mapping process is currently a single threaded operation per node, but will be extended to run in parallel on
multiple partitions (configurable per Job) in future versions. The Mapper is now called on every available value on
the partition and eventually emits values. For every emitted value, either a configured CombinerFactory is called to
create a Combiner or a cached one is used (or the default CollectingCombinerFactory is used to create Combiners).
When the chunk limit is reached on a node, a IntermediateChunkNotification is prepared by collecting emitted
keys to their corresponding nodes. This is either done by asking the job owner to assign members or by an already
cached assignment. In later versions, a PartitionStrategy might also be configurable.

The IntermediateChunkNotification is then sent to the reducers (containing only values for this node) and is offered
to the ReducerTask. On every offer, the ReducerTask checks if it is already running and if not, it submits itself to
the configured ExecutorService (from the JobTracker configuration).

134 CHAPTER 9. DISTRIBUTED QUERY

If reducer queue runs out of work, the ReducerTask is removed from the ExecutorService to not block threads but
eventually will be resubmitted on next chunk of work.

On every phase, the partition state is changed to keep track of the currently running operations. A JobPartitionState
can be in one of the following states with self-explanatory titles: [WAITING, MAPPING, REDUCING, PROCESSED,
CANCELLED]. If you have a deeper interest of these states, look at the Javadoc.

e Node asks for new partition to process: WAITING => MAPPING
e Node emits first chunk to a reducer: MAPPING => REDUCING
e All nodes signal that they finished mapping phase and reducing is finished, too: REDUCING => PROCESSED

Eventually (or hopefully), all JobPartitionStates reach the state of PROCESSED. Then, the job emitter’s JobSu-
pervisor asks all nodes for their reduced results and executes a potentially offered Collator. With this Collator, the
overall result is calculated before it removes itself from the JobTracker, doing some final cleanup and returning the
result to the requester (using the internal TrackableJobFuture).

If a job is cancelled while execution, all partitions are immediately set to the CANCELLED state and a CancelJob-
SupervisorOperation is executed on all nodes to kill the running processes.

While the operation is running in addition to the default operations, some more operations like ProcessStatsUpda-
teOperation (updates processed records statistics) or NotifyRemoteExceptionOperation (notifies the nodes that the
sending node encountered an unrecoverable situation and the Job needs to be cancelled - e.g. NullPointerException
inside of a Mapper) are executed against the job owner to keep track of the process.

9.3 Aggregators

Based on the Hazelcast MapReduce framework, Aggregators are ready-to-use data aggregations. These are typical
operations like sum up values, finding minimum or maximum values, calculating averages, and other operations
that you would expect in the relational database world.

Aggregation operations are implemented, as mentioned above, on top of the MapReduce framework and all
operations can be achieved using pure MapReduce calls. However, using the Aggregation feature is more convenient
for a big set of standard operations.

9.3.1 Aggregations Basics

This section will quickly guide you through the basics of the Aggregations framework and some of its available
classes. We also will implement a first base example.

Aggregations are available on both types of map interfaces, com.hazelcast.core.IMap and com.hazelcast
.core.MultiMap, using the aggregate methods. Two overloaded methods are available that customize resource man-
agement of the underlying MapReduce framework by supplying a custom configured com.hazelcast.mapreduce. JobTracker
instance. To find out how to configure the MapReduce framework, please see the JobTracker Configuration section.

We will later see another way to configure the automatically used MapReduce framework if no special JobTracker

is supplied.

To make Aggregations more convenient to use and future proof, the API is heavily optimized for Java 8 and future
versions. The APT is still fully compatible with any Java version Hazelcast supports (Java 6 and Java 7). The
biggest difference is how you work with the Java generics: on Java 6 and 7, the process to resolve generics is not as
strong as on Java 8 and upcoming Java versions. In addition, the whole Aggregations API has full Java 8 Project
Lambda (or Closure, JSR 335) support.

For illustration of the differences in Java 6 and 7 in comparison to Java 8, we will have a quick look at code
examples for both. After that, we will focus on using Java 8 syntax to keep examples short and easy to understand,
and we will see some hints as to what the code looks like in Java 6 or 7.

The first example will produce the sum of some int values stored in a Hazelcast IMap. This example does not use
much of the functionality of the Aggregations framework, but it will show the main difference.

https://jcp.org/en/jsr/detail?id=335

9.3. AGGREGATORS 135

IMap<String, Integer> personAgeMapping = hazelcastInstance.getMap("person-age");
for (int 1 = 0; i < 1000; i++) {

String lastName = RandomUtil.randomLastName();

int age = RandomUtil.randomAgeBetween(20, 80);

personAgeMapping.put(lastName, Integer.valueOf(age));
}

With our demo data prepared, we can see how to produce the sums in different Java versions.

9.3.1.1 Aggregations and Java 6 or Java 7

Since Java 6 and 7 are not as strong on resolving generics as Java 8, you need to be a bit more verbose with the
code you write. You might also consider using raw types, but breaking the type safety to ease this process.

For a short introduction on what the following code example means, look at the source code comments. We will
later dig deeper into the different options.

// No filter applied, select all entries

Supplier<String, Integer, Integer> supplier = Supplier.all();

// Choose the sum aggregation

Aggregation<String, Integer, Integer> aggregation = Aggregations.integerSum();
// Ezecute the aggregation

int sum = personAgeMapping.aggregate(supplier, aggregation);

9.3.1.2 Aggregations and Java 8

With Java 8, the Aggregations API looks simpler because Java 8 can resolve the generic parameters for us. That
means the above lines of Java 6/7 example code will end up in just one easy line on Java 8.

int sum = personAgeMapping.aggregate(Supplier.all(), Aggregations.integerSum());

9.3.1.3 Quick look at the MapReduce Framework

As mentioned before, the Aggregations implementation is based on the Hazelcast MapReduce framework and
therefore you might find overlaps in their APIs. One overload of the aggregate method can be supplied with a
JobTracker which is part of the MapReduce framework.

If you implement your own aggregations, you will use a mixture of the Aggregations and the MapReduce API. If
you will implement your own aggregation, e.g. to make the life of colleagues easier, please read the Implementing
Aggregations section.

For the full MapReduce documentation please see the MapReduce section.

9.3.2 Introduction to Aggregations API

We now look into the possible options of what can be achieved using the Aggregations API. To work on some
deeper examples, let’s quickly have a look at the available classes and interfaces and discuss their usage.

9.3.2.1 Supplier

The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the aggrega-
tion operation. This class already provides a few different static methods to achieve the most common cases.
Supplier.all() accepts all incoming values and does not apply any data extraction or transformation upon them
before supplying them to the aggregation function itself.

For filtering data sets, you have two different options by default. You can either supply a com.hazelcast.query.Predicate
if you want to filter on values and / or keys, or you can supply a com.hazelcast.mapreduce.KeyPredicate if you
can decide directly on the data key without the need to deserialize the value.

136 CHAPTER 9. DISTRIBUTED QUERY

9.3.2.1.1 Basic Filtering As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let’s have
a look on how we can do basic filtering using those two options.

First, we have a look at a KeyPredicate and only accept people whose last name is “Jones”.

Supplier<...> supplier = Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName)

)

class JonesKeyPredicate implements KeyPredicate<String> {
public boolean evaluate(String key) {
return "Jones".equalsIgnoreCase(key);
}
}

Using the standard Hazelcast Predicate interface, you can also filter based on the value of a data entry. In the
following example, you can only select values which are divisible by 4 without a remainder.

Supplier<...> supplier = Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0
)s

class DivisiblePredicate implements Predicate<String, Integer> {
public boolean apply(Map.Entry<String, Integer> entry) {
return entry.getValue() % 4 == 0;
}
}

9.3.2.1.2 Extracting and Transforming Data As well as filtering, Supplier can also extract or transform
data before providing it to the aggregation operation itself. The following example shows how to transform an
input value to a string.

Supplier<String, Integer, String> supplier = Supplier.all(
value -> Integer.toString(value)

)

You can see a Java 6 / 7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see that the generic
information of the resulting Supplier has changed as well. This indicates that we now have an aggregation working
on string values.

9.3.2.1.3 Chaining Multiple Filtering Rules Another feature of Supplier is its ability to chain multiple
filtering rules. Let’s combine all of the above examples into one rule set:

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0,
Supplier.all(value -> Integer.toString(value))

9.3. AGGREGATORS 137

9.3.2.1.4 Implementing Based on Special Requirements Last but not least, you might prefer to (or need
to) implement your Supplier based on special requirements. This is a very basic task. The Supplier abstract
class has just one method.

! NOTE: Due to a limitation of the Java Lambda API, you cannot implement abstract classes using Lambdas.
Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
public String apply(Map.Entry<String, Integer> entry) {
Integer value = entry.getValue();
if (value == null) {
return null;
}
return value % 4 == 0 7 String.valueOf(value) : null;
}
}

Suppliers are expected to return null from the apply method whenever the input value should not be mapped to
the aggregation process. This can be used, as in the example above, to implement filter rules directly. Implementing
filters using the KeyPredicate and Predicate interfaces might be more convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other Suppliers.
int sum = personAgeMapping.aggregate(new MyCustomSupplier(), Aggregations.count());

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
new MyCustomSupplier()
)
int sum = personAgeMapping.aggregate(supplier, Aggregations.count());

9.3.2.2 Aggregation and Aggregations

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation itself. It
contains a set of MapReduce API implementations like Mapper, Combiner, Reducer, and Collator. These
implementations are normally unique to the chosen Aggregation. This interface can also be implemented with
your aggregation operations based on MapReduce calls. For more information, refer to Implementing Aggregations
section.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of aggrega-
tions. This class contains type safe aggregations of the following types:

Average (Integer, Long, Double, Biglnteger, BigDecimal)

Sum (Integer, Long, Double, BigInteger, BigDecimal)

Min (Integer, Long, Double, Biglnteger, BigDecimal, Comparable)
Max (Integer, Long, Double, Biglnteger, BigDecimal, Comparable)
DistinctValues

Count

Those aggregations are similar to their counterparts on relational databases and can be equated to SQL statements
as set out below.

138 CHAPTER 9. DISTRIBUTED QUERY

9.3.2.2.1 Average Calculates an average value based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerAvg());

SELECT AVG(person.age) FROM person;

9.3.2.2.2 Sum Calculates a sum based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerSum());

SELECT SUM(person.age) FROM person;

9.3.2.2.3 Minimum (Min) Finds the minimal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMin());

SELECT MIN(person.age) FROM person;

9.3.2.2.4 Maximum (Max) Finds the maximal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMax());

SELECT MAX(person.age) FROM person;

9.3.2.2.5 Distinct Values Returns a collection of distinct values over the selected values

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.distinctValues());

SELECT DISTINCT person.age FROM person;

9.3.2.2.6 Count Returns the element count over all selected values
map.aggregate(Supplier.all(), Aggregations.count());

SELECT COUNT(*) FROM person;

9.3.2.3 PropertyExtractor

We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had a look
at the example on how to use a Supplier to transform a value to another type. It can also be used to extract
attributes from values.

9.3. AGGREGATORS 139

class Person {
private String firstName;
private String lastName;
private int age;

// getters and setters
}

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();

class AgeExtractor implements PropertyExtractor<Person, Integer> {
public Integer extract(Person value) {
return value.getAge();
X
}

In this example, we extract the value from the person’s age attribute. The value type changes from Person to
Integer which is reflected in the generics information to stay type safe.

PropertyExtractors are meant to be used for any kind of transformation of data. You might even want to have
multiple transformation steps chained one after another.

9.3.2.4 Aggregation Configuration

As stated before, the easiest way to configure the resources used by the underlying MapReduce framework is to supply
a JobTracker to the aggregation call itself by passing it to either IMap: :aggregate or MultiMap: :aggregate.

There is another way to implicitly configure the underlying used JobTracker. If no specific JobTracker was passed
for the aggregation call, internally one will be created using the following naming specifications:

For IMap aggregation calls the naming specification is created as:

e hz::aggregation-map- and the concatenated name of the map.

For MultiMap it is very similar:

e hz::aggregation-multimap- and the concatenated name of the MultiMap.

Knowing that (the specification of the name), we can configure the JobTracker as expected (as described in
the Jobtracker section) using the naming spec we just learned. For more information on configuration of the
JobTracker, please see the JobTracker Configuration section.

To finish this section, let’s have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap("mymap");

// The internal JobTracker name resolves to ’hz::aggregation-map-mymap’
map.aggregate(...);

MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap("mymultimap");

// The internal JobTracker name resolves to ’hz::aggregation-multimap-mymultimap’
multimap.aggregate(...);

140 CHAPTER 9. DISTRIBUTED QUERY

9.3.3 Aggregations Examples

For the final example, imagine you are working for an international company and you have an employee database
stored in Hazelcast IMap with all employees worldwide and a MultiMap for assigning employees to their certain
locations or offices. In addition, there is another IMap which holds the salary per employee.

Let’s have a look at our data model:

class Employee implements Serializable {
private String firstName;
private String lastName;
private String companyName;
private String address;
private String city;
private String county;
private String state;
private int zip;
private String phonel;
private String phone2;
private String email;
private String web;

// getters and setters
}

class SalaryMonth implements Serializable {
private Month month;
private int salary;

// getters and setters
}

class SalaryYear implements Serializable {
private String email;
private int year;
private List<SalaryMonth> months;

// getters and setters

public int getAnnualSalary() {
int sum = O;
for (SalaryMonth salaryMonth : getMonths()) {

sum += salaryMonth.getSalary();

3
return sum;

}

}

The two IMaps and the MultiMap are keyed by the string of email. They are defined as follows:

IMap<String, Employee> employees = hz.getMap("employees");
IMap<String, SalaryYear> salaries = hz.getMap("salaries");
MultiMap<String, String> officeAssignment = hz.getMultiMap("office-employee");

So far, we know all the important information to work out some example aggregations. We will look into some
deeper implementation details and how we can work around some current limitations that will be eliminated in
future versions of the API.

Let’s start with a very basic example. We want to know the average salary of all of our employees. To do this, we
need a PropertyExtractor and the average aggregation for type Integer.

9.3. AGGREGATORS 141

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.all(extractor),
Aggregations.integerAvg());

That’s it. Internally, we created a MapReduce task based on the predefined aggregation and fired it up immediately.
Currently, all aggregation calls are blocking operations, so it is not yet possible to execute the aggregation in a
reactive way (using com.hazelcast.core.ICompletableFuture) but this will be part of an upcoming version.

9.3.3.1 Map Join Example

The following example is a little more complex. We only want to have our US based employees selected into the
average salary calculation, so we need to execute some kind of a join operation between the employees and salaries
maps.

class USEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
Employee employee = employees.get(email);
return "US".equals(employee.getCountry());
}
}

Using the HazelcastInstanceAware interface, we get the current instance of Hazelcast injected into our filter and
we can perform data joins on other data structures of the cluster. We now only select employees that work as part
of our US offices into the aggregation.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(
new USEmployeeFilter(), extractor
), Aggregations.integerAvg());

9.3.3.2 Grouping Example

For our next example, we will do some grouping based on the different worldwide offices. Currently, a group
aggregator is not yet available, so we need a small workaround to achieve this goal. (In later versions of the
Aggregations API this will not be required because it will be available out of the box in a much more convenient
way.)

Again, let’s start with our filter. This time, we want to filter based on an office name and we need to do some data
joins to achieve this kind of filtering.

A short tip: to minimize the data transmission on the aggregation we can use Data Affinity rules to influence the
partitioning of data. Be aware that this is an expert feature of Hazelcast.

class OfficeEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;
private String office;

142 CHAPTER 9. DISTRIBUTED QUERY

// Deserialization Constructor
public OfficeEmployeeFilter() {
}

public OfficeEmployeeFilter(String office) {
this.office = office;

3

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
MultiMap<String, String> officeAssignment = hazelcastInstance
.getMultiMap("office-employee");

return officeAssignment.containsEntry(office, email);
b
3

Now we can execute our aggregations. As mentioned before, we currently need to do the grouping on our own by
executing multiple aggregations in a row.

Map<String, Integer> avgSalariesPerOffice = new HashMap<String, Integer>();

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
MultiMap<String, String> officeAssignment =
hazelcastInstance.getMultiMap("office-employee");

PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();

for (String office : officeAssignment.keySet()) {
OfficeEmployeeFilter filter = new OfficeEmployeeFilter(office);
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(filter, extractor),
Aggregations.integerAvg());

avgSalariesPerOffice.put(office, avgSalary);

}

9.3.3.3 Simple Count Example

After the previous example, we want to end this section by executing one final and easy aggregation. We want to
know how many employees we currently have on a worldwide basis. Before reading the next lines of example code,
you can try to do it on your own to see if you understood how to execute aggregations.

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.size();

Ok, after that quick joke, we look at the real two code lines:

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.aggregate(Supplier.all(), Aggregations.count());

We now have an overview of how to use aggregations in real life situations. If you want to do your colleagues a favor,
you might want to write your own additional set of aggregations. If so, then read the next section, Implementing
Aggregations.

9.4. CONTINUOUS QUERY 143

9.3.4 Implementing Aggregations

This section explains how to implement your own aggregations in your own application. It is meant to be an
advanced section, so if you do not intend to implement your own aggregation, you might want to stop reading here
and come back later when you need to know how to implement your own aggregation.

The main interface for making your own aggregation is com.hazelcast.mapreduce.aggregation.Aggregation.
It consists of four methods.

interface Aggregation<Key, Supplied, Result> {
Mapper getMapper(Supplier<Key, 7, Supplied> supplier);
CombinerFactory getCombinerFactory();
ReducerFactory getReducerFactory() ;
Collator<Map.Entry, Result> getCollator();

An Aggregation implementation is just defining a MapReduce task with a small difference: the Mapper is always
expected to work on a Supplier that filters and / or transforms the mapped input value to some output value.

getMapper and getReducerFactory are expected to return non-null values. getCombinerFactory and getCollator
are optional operations and do not need to be implemented. If you can decide to implement them depending on the
use case you want to achieve.

For more information on how you implement mappers, combiners, reducers, and collators, refer to the MapReduce
section.

For best speed and traffic usage, as mentioned in the MapReduce section, you should add a Combiner to your
aggregation whenever it is possible to do some kind of pre-reduction step.

Your implementation also should use DataSerializable or IdentifiedDataSerializable for best compatibility
and speed / stream-size reasons.

9.4 Continuous Query

Continuous query enables you to listen to the modifications performed on specific map entries. It is an entry listener
with predicates. Please see the Map Listener section for information on how to add entry listeners to a map.

As an example, let’s listen to the changes made on an employee with the surname “Smith”. First, let’s create the
Employee class.

import java.io.Serializable;
public class Employee implements Serializable {
private final String surname;

public Employee(String surname) {
this.surname = surname;

}

@0verride
public String toString() {
return "Employee{" +
"surname=’" + surname + ’\’’ +

)}J;

Then, let’s create the continuous query by adding the entry listener with the surname predicate.

144 CHAPTER 9. DISTRIBUTED QUERY

import com.hazelcast.core.*;
import com.hazelcast.query.SqlPredicate;

public class ContinuousQuery {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap('"map");
map.addEntryListener (new MyEntryListener(),
new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntryListener
implements EntryListener<String, String> {
@0verride
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);
by

@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

3

@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

¥

@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

3

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

And now, let’s play with the employee “smith” and see how that employee will be listened to.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Employee> map = hz.getMap('map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));
System.out.println("done");

9.5. CONTINUOUS QUERY CACHE 145

System.exit (0);

When you first run the class ContinuousQuery and then run Modify, you will see output similar to the listing
below.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,0ldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

9.5 Continuous Query Cache

Enterprise Only

. NOTE: This feature is supported for Hazelcast Enterprise 3.5 or higher.

This feature is used to cache the result of a continuous query. After construction of a continuous query cache, all
changes on underlying IMap is immediately reflected to this cache as a stream of events. Therefore, this cache will
be an always up to date view of the IMap.

This feature is beneficial when you need to query the distributed IMap data in a very frequent and fast way. By
using continuous query cache, the result of the query will be always ready and local to the application.

You can access this continuous query cache from the server and client side respectively as shown below.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig('"map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig) ;

Config config = new Config();
config.addMapConfig(mapConfig) ;

HazelcastInstance node = Hazelcast.newHazelcastInstance(config) ;
IEnterpriseMap<Integer, String> map = (IEnterpriseMap) node.getMap("map-name");

QueryCache<Integer, String> cache = map.getQueryCache("cache-name");

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new 0ddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig) ;
IEnterpriseMap<Integer, Integer> clientMap = (IEnterpriseMap) client.getMap("map-name");

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

146 CHAPTER 9. DISTRIBUTED QUERY

9.5.1 Features of Continuous Query Cache

1. Enable/disable initial query run on the existing IMap data during construction of continuous query cache
according to the supplied predicate via QueryCacheConfig#setPopulate.

2. Indexable and queryable.

3. Evictable. Note that continuous query cache has a default maximum capacity of 10000. If you need a not
evictable one, you should configure the eviction via QueryCacheConfig#setEvictionConfig.

4. Listenable via QueryCache#addEntryListener.

5. Events on IMap are guaranteed to be reflected to this cache in the happening order. Note that this happening
order is a partition order so you can only expect ordered events from the same partition. Any loss of event
can be listened via EventLostListener and it can be recoverable with QueryCache#tryRecover method. If
your buffer size on the node side is big enough, you can recover from a possible event loss scenario. At the
moment, setting the size of QueryCacheConfig#setBufferSize is the only option for recovery because the
events which feed continuous query cache have no backups. Below snippet can be used for recovery case.

(((java

QueryCache queryCache = map.getQueryCache("cache-name", new SqlPredicate("this > 20"), true);
queryCache.addEntryListener (new EventLostListener() {
@0verride
public void eventLost(EventLostEvent event) {
queryCache.tryRecover();
}
}, false);

[N N1

6. Event batching and coalescing.
7. Declarative and programmatic configuration

8. It can be populated with only keys of entries and subsequent values can be retrieved directly via
QueryCache#get from the underlying IMap. This will help to decrease initial population time if the values
are very big in size.

Chapter 10

User Defined Services

In the case of special/custom needs, Hazelcast’s SPI (Service Provider Interface) module allows users to develop
their own distributed data structures and services.

10.1 Sample Case

Throughout this section, we create a distributed counter that will be the guide to reveal the Hazelcast SPI usage.

Here is our counter.

public interface Counter{
int inc(int amount);

}

This counter will have the following features: - It will be stored in Hazelcast. - Different cluster members can call
it. - It will be scalable, meaning that the capacity for the number of counters scales with the number of cluster
members. - It will be highly available, meaning that if a member hosting this counter goes down, a backup will be
available on a different member.

All these features will be realized with the steps below. In each step, a new functionality to this counter will be
added.

Create the class.

Enable the class.

Add properties.

Place a remote call.

Create the containers.
Enable partition migration.
Create the backups.

No Otk N

10.1.1 Creating Class

To have the counter as a functioning distributed object, we need a class. This class (named CounterService in the
following sample) will be the gateway between Hazelcast internals and the counter, allowing us to add features
to the counter. In the following sample, the class CounterService is created. Its lifecycle will be managed by
Hazelcast.

CounterService should implement the interface com.hazelcast.spi.ManagedService as shown below.

147

148 CHAPTER 10. USER DEFINED SERVICES

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;

import java.util.Properties;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

public class CounterService implements ManagedService {
private NodeEngine nodeEngine;

Q@0verride

public void init(NodeEngine nodeEngine, Properties properties) {
System.out.println("CounterService.init");
this.nodeEngine = nodeEngine;

}

@0verride
public void shutdown(boolean terminate) {
System.out.println("CounterService.shutdown");

}

@0verride
public void reset() {
}

As can be seen from the code, CounterService implements the following methods.

e init: This is called when CounterService is initialized. NodeEngine enables access to Hazelcast internals
such as HazelcastInstance and PartitionService. Also, the object Properties will provide us with the
ability to create our own properties.

e shutdown: This is called when CounterService is shutdown. It cleans up the resources.

e reset: This is called when cluster members are faced with the Split-Brain issue. This occurs when disconnected
members that have created their own cluster are merged back into the main cluster. Services can also implement
the SplitBrainHandleService to indicate that they can take part in the merge process. For CounterService
we are going to implement as a no-op.

10.1.2 Enabling Class

Now, we need to enable the class CounterService. The declarative way of doing this is shown below.

<network>
<join><multicast enabled="true"/> </join>
</network>
<services>
<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>
</service>
</services>

CounterService is declared within the services configuration element.

e Setting the enabled attribute as true enables the service.

10.1. SAMPLE CASE 149

e The name attribute defines the name of the service. It should be a unique name (CounterService in our
case) since it will be looked up when a remote call is made. Note that the value of this attribute will be sent
at each request, and that a longer name value means more data (de)serialization. A good practice is to give
an understandable name with the shortest possible length.

e class-name is the class name of the service (CounterService in our case). The class should have a no-arg
constructor. Otherwise, the object cannot be initialized.

Note that multicast is enabled as the join mechanism. In the later sections for the CounterService example, we
will see why.

RELATED INFORMATION

Please refer to the Services Configuration section for a full description of Hazelcast SPI configuration.

10.1.3 Adding Properties

The init method for CounterService takes the Properties object as an argument. This means we can add
properties to the service that are passed to the method init. You can add properties declaratively as shown below.

<service enabled="true">
<name>CounterService</name>
<class-name>CounterService</class-name>
<properties>
<someproperty>10</someproperty>
</properties>
</service>

If you want to parse a more complex XML, you can use the interface com.hazelcast.spi.ServiceConfigurationParser.
It gives you access to the XML DOM tree.

10.1.4 Starting Service

Now, let’s start a HazelcastInstance as shown below, which will start the CounterService.

import com.hazelcast.core.Hazelcast;

public class Member {
public static void main(String[] args) {
Hazelcast.newHazelcastInstance();

}

Once it is started, the CounterService#init method prints the following output.
CounterService.init

Once the HazelcastInstance is shutdown (for example with Ctrl+C), the CounterService#shutdown method prints
the following output.

CounterService.shutdown

10.1.5 Placing a Remote Call - Proxy

In the previous sections for the CounterService example, we started CounterService as part of a HazelcastInstance
startup.

Now, let’s connect the Counter interface to CounterService and perform a remote call to the cluster member
hosting the counter data. Then, we will return a dummy result.

150 CHAPTER 10. USER DEFINED SERVICES

Remote calls are performed via a proxy in Hazelcast. Proxies expose the methods at the client side. Once a method
is called, proxy creates an operation object, sends this object to the cluster member responsible from executing that
operation, and then sends the result.

10.1.5.1 Making Counter a Distributed Object

First, we need to make the Counter interface a distributed object by extending the DistributedObject interface,
as shown below.

import com.hazelcast.core.DistributedObject;

public interface Counter extends DistributedObject {
int inc(int amount);

}

10.1.5.2 Implementing ManagedService and RemoteService

Now, we need to make the CounterService class implement not only the ManagedService interface, but also the
interface com.hazelcast.spi.RemoteService. This way, a client will be able to get a handle of a counter proxy.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;

import com.hazelcast.spi.RemoteService;

import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public static final String NAME = "CounterService";

private NodeEngine nodeEngine;

@0verride
public DistributedObject createDistributedObject(String objectName) {
return new CounterProxy(objectName, nodeEngine, this);

}

@0verride
public void destroyDistributedObject(String objectName) {
// for the time being a no-op, but in the later exzamples this will be implemented

}

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;

}

@0verride
public void shutdown(boolean terminate) {

}

@0verride
public void reset() {
}

10.1. SAMPLE CASE 151

The CounterProxy returned by the method createDistributedObject is a local representation to (potentially)
remote managed data and logic.

. NOTE: Note that caching and removing the proxy instance are done outside of this service.

10.1.5.3 Implementing CounterProxy

Now, it is time to implement the CounterProxy as shown below.

import com.hazelcast.spi.AbstractDistributedObject;
import com.hazelcast.spi.InvocationBuilder;

import com.hazelcast.spi.NodeEngine;

import com.hazelcast.util.ExceptionUtil;

import java.util.concurrent.Future;

public class CounterProxy extends AbstractDistributedObject<CounterService> implements Counter {
private final String name;

public CounterProxy(String name, NodeEngine nodeEngine, CounterService counterService) {
super (nodeEngine, counterService);
this.name = name;

@0verride
public String getServiceName() {
return CounterService.NAME;

}

@0verride
public String getName() {
return name;

}

@0verride
public int inc(int amount) {
NodeEngine nodeEngine = getNodeEngine();
IncOperation operation = new IncOperation(name, amount);
int partitionId = nodeEngine.getPartitionService().getPartitionId(name);
InvocationBuilder builder = nodeEngine.getOperationService()
.createInvocationBuilder (CounterService.NAME, operation, partitionId);
try {
final Future<Integer> future = builder.invoke();
return future.get();
} catch (Exception e) {
throw ExceptionUtil.rethrow(e);

3

CounterProxy is a local representation of remote data/functionality. It does not include the counter state. Therefore,
the method inc should be invoked on the cluster member hosting the real counter. You can invoke it using Hazelcast
SPI; then it will send the operations to the correct member and return the results.

Let’s dig deeper into the method inc.

e First, we create IncOperation with a given name and amount.

152 CHAPTER 10. USER DEFINED SERVICES

e Then, we get the partition ID based on the name; by this way, all operations for a given name will result in
the same partition ID.

e Then, we create an InvocationBuilder where the connection between operation and partition is made.

e Finally, we invoke the InvocationBuilder and wait for its result. This waiting is performed with a
future.get (). In our case, timeout is not important. However, it is a good practice to use a timeout for a
real system since operations should complete in a certain amount of time.

10.1.5.4 Dealing with Exceptions

Hazelcast’s ExceptionUtil is a good solution when it comes to dealing with execution exceptions. When the
execution of the operation fails with an exception, an ExecutionException is thrown and handled with the method
ExceptionUtil.rethrow(Throwable).

If it is an InterruptedException, we have two options: Either propagating the exception or just using the
ExceptionUtil.rethrow for all exceptions. Please see below sample.

try {
final Future<Integer> future = invocation.invoke();
return future.get();
} catch(InterruptedException e){
throw e;
} catch(Exception e){
throw ExceptionUtil.rethrow(e);
X

10.1.5.5 Implementing the PartitionAwareOperation Interface

Now, let’s write the IncOperation. It implements PartitionAwareOperation interface, meaning that it will be
executed on the partition that hosts the counter.

import com.hazelcast.nio.ObjectDatalnput;

import com.hazelcast.nio.ObjectDataOutput;

import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

// Important to have a mo-arg constructor for deserialization
public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

@0verride

public void run() throws Exception {
System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
returnValue = O;

@0verride

10.1. SAMPLE CASE 153

public boolean returnsResponse() {
return true;

3

@0verride
public Object getResponse() {
return returnValue;

3

@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writelInt (amount);

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal (in);
objectId = in.readUTFQ);
amount = in.readInt();

The method run does the actual execution. Since IncOperation will return a response, the method
returnsResponse returns true. If your method is asynchronous and does not need to return a response, it is
better to return false since it will be faster. The actual response is stored in the field returnValue; you can
retrieve it with the method getResponse.

There are two more methods in the above code: writeInternal and readInternal. Since IncOperation needs to
be serialized, these two methods should be overwritten, and hence, objectId and amount will be serialized and
available when those operations are executed.

For the deserialization, note that the operation must have a no-arg constructor.

10.1.5.6 Running the Code

Now, let’s run our code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.UUID;

public class Member {
public static void main(String[] args) {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)

counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");

154 CHAPTER 10. USER DEFINED SERVICES

System.exit (0);

Once run, you will see the output as below.

Executing Ocounter.inc() on: Address[192.168.1.103]:5702
0

Executing lcounter.inc() on: Address[192.168.1.103]:5702
0

Executing 2counter.inc() on: Address[192.168.1.103]:5701
0

Executing 3counter.inc() on: Address[192.168.1.103]:5701
0

Finished

Note that counters are stored in different cluster members. Also note that increment is not active for now since the
value remains as 0.

Until now, we have performed the basics to get this up and running. In the next section, we will make a real
counter, cache the proxy instances and deal with proxy instance destruction.

10.1.6 Creating Containers

Let’s create a Container for every partition in the system. This container will contain all counters and proxies.

import java.util.HashMap;
import java.util.Map;

class Container {
private final Map<String, Integer> values = new HashMap();

int inc(String id, int amount) {
Integer counter = values.get(id);
if (counter == null) {
counter = 0;
}
counter += amount;
values.put(id, counter);
return counter;

}

public void init(String objectName) {
values.put(objectName,0) ;

3

public void destroy(String objectName) {
values.remove (objectName) ;

3

10.1. SAMPLE CASE 155

Hazelcast guarantees that a single thread will be active in a single partition. Therefore, when accessing a container,
concurrency control will not be an issue.

The code in our example uses a Container instance per partition approach. With this approach, there will not be
any mutable shared state between partitions. This approach also makes operations on partitions simpler since you
do not need to filter out data that does not belong to a certain partition.

10.1.6.1 Integrating the Container in the CounterService

Let’s integrate the Container in the CounterService, as shown below.

import com.hazelcast.spi.ManagedService;
import com.hazelcast.spi.NodeEngine;
import com.hazelcast.spi.RemoteService;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;
containers = new Container [nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)
containers[k] = new Container();

}

@0verride
public void shutdown(boolean terminate) {

3

Q@0verride
public CounterProxy createDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.init (objectName) ;
return new CounterProxy(objectName, nodeEngine, this);

O@0verride

public void destroyDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName);
Container container = containers[partitionId];
container.destroy(objectName) ;

}

Q@0verride
public void reset() {
}

public static class Container {
final Map<String, Integer> values = new HashMap<String, Integer>();

156 CHAPTER 10. USER DEFINED SERVICES

private void init(String objectName) {
values.put (objectName, 0);

3

private void destroy(String objectName){
values.remove (objectName) ;

}

We create a container for every partition with the method init. Then we create the proxy with the
method createDistributedObject. And finally, we need to remove the value of the object with the method
destroyDistributedObject, otherwise we may get an OutOfMemory exception.

10.1.6.2 Connecting the IncOperation.run Method to the Container

As the last step in creating a Container, we connect the method IncOperation.run to the Container, as shown
below.

import com.hazelcast.nio.ObjectDatalnput;

import com.hazelcast.nio.ObjectDataOutput;

import com.hazelcast.spi.AbstractOperation;
import com.hazelcast.spi.PartitionAwareOperation;

import java.io.IOException;
import java.util.Map;

class IncOperation extends AbstractOperation implements PartitionAwareOperation {
private String objectId;
private int amount, returnValue;

public IncOperation() {
}

public IncOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

}

@0verride
public void run() throws Exception {
System.out.println("Executing " + objectId + ".inc() on: " + getNodeEngine().getThisAddress());
CounterService service = getService();
CounterService.Container container = service.containers[getPartitionId()];
Map<String, Integer> valuesMap = container.values;

Integer counter = valuesMap.get(objectId);
counter += amount;

valuesMap.put(objectId, counter);
returnValue = counter;

}

@0verride
public boolean returnsResponse() {
return true;

3

10.1. SAMPLE CASE 157

@0verride
public Object getResponse() {
return returnValue;

}

Q@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writelInt (amount) ;

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal(in);
objectId = in.readUTFQ);
amount = in.readInt();

partitionId has a range between 0 and partitionCount and can be used as an index for the container array.
Therefore, you can use partitionId to retrieve the container, and once the container has been retrieved, you can
access the value.

10.1.6.3 Running the Sample Code

Let’s run the following sample code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)
counters[k] = instances[0].getDistributedObject(CounterService.NAME, k+"counter");

System.out.println("Round 1");

for (Counter counter: counters)
System.out.println(counter.inc(1));

System.out.println("Round 2");

for (Counter counter: counters)

System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit (0);

The output will be as follows. It indicates that we have now a basic distributed counter up and running.

Round 1

158

Executing
1
Executing
1
Executing
1
Executing
1

Round 2
Executing
2
Executing
2
Executing
2
Executing
2
Finished

Ocounter

1counter

2counter.

3counter.

Ocounter.

lcounter.

2counter.

3counter

.inc()

.inc()

inc()

inc()

inc()

inc()

inc()

.inc()

on:

on:

on:

on:

on:

on:

on:

on:

Address[192.

Address[192.

Address[192.

Address([192.

Address[192.

Address[192.

Address[192.

Address[192.

10.1.7 Partition Migration

168.

168.

168.

168.

168.

168.

168.

168.

.103]

.103]

.103]

.103]

.103]

.103]

.103]

.103]:

CHAPTER 10. USER DEFINED SERVICES

5702

:5702

:5701

:5701

:5702

:5702

:5701

:5701

In the previous section, we created a real distributed counter. Now, we need to make sure that the content of the
partition containers is migrated to different cluster members when a member joins or leaves the cluster. To make
this happen, first we need to add three new methods (applyMigrationData, toMigrationData and clear) to the
Container, as shown below.

import java.util.HashMap;

import java.util.Map;

class Container {

private final Map<String, Integer> values

int inc(String id, int amount) {
Integer counter
if (counter == null) {

}

counter

:O;

values.get (id);

counter += amount;
values.put(id, counter);
return counter;

}

void clear() {
values.clear();

3

void applyMigrationData(Map<String, Integer>

values.putAll(migrationData) ;

¥

Map<String, Integer> toMigrationData() {
return new HashMap(values);

}

public void init(String objectName) {

values.put (objectName,0) ;

}

new

HashMap () ;

migrationData) {

10.1. SAMPLE CASE 159

public void destroy(String objectName) {
values.remove (objectName) ;

}

e toMigrationData: This method is called when Hazelcast wants to start the partition migration from the
member owning the partition. The result of the toMigrationData method is the partition data in a form
that can be serialized to another member.

e applyMigrationData: This method is called when migrationData (created by the method toMigrationData)
will be applied to the member that will be the new partition owner.

e clear: This method is called when the partition migration is successfully completed and the old partition
owner gets rid of all data in the partition. This method is also called when the partition migration operation
fails and the to-be-the-new partition owner needs to roll back its changes.

10.1.7.1 Transferring migrationData

After you add these three methods to the Container, you need to create a CounterMigrationOperation class that
transfers migrationData from one member to another and calls the method applyMigrationData on the correct
partition of the new partition owner. A sample is shown below.

import com.hazelcast.nio.ObjectDatalnput;
import com.hazelcast.nio.ObjectDataOutput;
import com.hazelcast.spi.AbstractOperation;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class CounterMigrationOperation extends AbstractOperation {
Map<String, Integer> migrationData;

public CounterMigrationOperation() {

}

public CounterMigrationOperation(Map<String, Integer> migrationData) {
this.migrationData = migrationData;

3

@0verride

public void run() throws Exception {
CounterService service = getService();
Container container = service.containers[getPartitionId()];
container.applyMigrationData(migrationData) ;

@0verride
protected void writeInternal(ObjectDataOutput out) throws IOException {
out.writeInt(migrationData.size());
for (Map.Entry<String, Integer> entry : migrationData.entrySet()) {
out.writeUTF (entry.getKey());
out.writeInt(entry.getValue());

@0verride

160 CHAPTER 10. USER DEFINED SERVICES

protected void readInternal (ObjectDataInput in) throws IOException {
int size = in.readInt();
migrationData = new HashMap<String, Integer>();
for (int 1 = 0; i < size; i++)
migrationData.put(in.readUTF(), in.readInt());

10.1.7.2 Letting Hazelcast Know CounterService Can Do Partition Migrations

NOTE: During a partition migration, no other operations are executed on the related partition.

We need to make our CounterService class implement the MigrationAwareService interface. This will let
Hazelcast know that the CounterService can perform partition migration. See the below code.

import com.hazelcast.core.DistributedObject;
import com.hazelcast.partition.MigrationEndpoint;
import com.hazelcast.spi.x*;

import java.util.Map;
import java.util.Properties;

public class CounterService implements ManagedService, RemoteService, MigrationAwareService {
public final static String NAME = "CounterService";
Container[] containers;
private NodeEngine nodeEngine;

@0verride
public void init(NodeEngine nodeEngine, Properties properties) {
this.nodeEngine = nodeEngine;
containers = new Container[nodeEngine.getPartitionService().getPartitionCount()];
for (int k = 0; k < containers.length; k++)
containers[k] = new Container();

}

@0verride
public void shutdown(boolean terminate) {

3

Q@0verride
public DistributedObject createDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.init(objectName) ;
return new CounterProxy(objectName, nodeEngine,this);

@0verride

public void destroyDistributedObject(String objectName) {
int partitionId = nodeEngine.getPartitionService().getPartitionId(objectName) ;
Container container = containers[partitionId];
container.destroy(objectName) ;

@0verride
public void beforeMigration(PartitionMigrationEvent e) {

10.1. SAMPLE CASE 161

//no-op

@0verride

public void clearPartitionReplica(int partitionId) {
Container container = containers[partitionId];
container.clear();

@0verride
public Operation prepareReplicationOperation(PartitionReplicationEvent e) {
if (e.getReplicalndex() > 1) {
return null;
¥
Container container = containers([e.getPartitionId()];
Map<String, Integer> data = container.toMigrationData();
return data.isEmpty() ? null : new CounterMigrationOperation(data);

@0verride
public void commitMigration(PartitionMigrationEvent e) {
if (e.getMigrationEndpoint() == MigrationEndpoint.SOURCE) {
Container ¢ = containers[e.getPartitionId()];

c.clear();
}
//todo
}
@0verride

public void rollbackMigration(PartitionMigrationEvent e) {
if (e.getMigrationEndpoint() == MigrationEndpoint.DESTINATION) {
Container ¢ = containers[e.getPartitionId()];
c.clear();

}

@0verride
public void reset() {
3

With the MigrationAwareService interface, some additional methods are exposed. For example, the method
prepareMigrationOperation returns all the data of the partition that is going to be moved.

The method commitMigration commits the data, meaning in this case, it clears the partition container of the old
owner.

10.1.7.3 Running the Sample Code

We can run the following code.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class Member {
public static void main(String[] args) throws Exception {
HazelcastInstance[] instances = new HazelcastInstance[3];

162 CHAPTER 10. USER DEFINED SERVICES

for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter[] counters = new Counter[4];
for (int k = 0; k < counters.length; k++)
counters[k] = instances[0].getDistributedObject(CounterService.NAME, k + "counter");

for (Counter counter : counters)
System.out.println(counter.inc(1));

Thread.sleep(10000);
System.out.println("Creating new members");

for (int k = 0; k < 3; k++) {
Hazelcast.newHazelcastInstance();

}
Thread.sleep(10000);

for (Counter counter : counters)
System.out.println(counter.inc(1));

System.out.println("Finished");
System.exit (0);

}

And we get the following output.

Executing Ocounter.inc() on: Address[192.168.1.103]:5702
Executing backup Ocounter.inc() on: Address[192.168.1.103]:5703
1

Executing lcounter.inc() on: Address[192.168.1.103]:5703
Executing backup lcounter.inc() on: Address[192.168.1.103]:5701
1

Executing 2counter.inc() on: Address[192.168.1.103]:5701
Executing backup 2counter.inc() on: Address[192.168.1.103]:5703
1

Executing 3counter.inc() on: Address[192.168.1.103]:5701
Executing backup 3counter.inc() on: Address[192.168.1.103]:5703
1

Creating new members

Executing Ocounter.inc() on: Address[192.168.1.103]:5705
Executing backup Ocounter.inc() on: Address[192.168.1.103]:5703
2

Executing lcounter.inc() on: Address[192.168.1.103]:5703
Executing backup lcounter.inc() on: Address[192.168.1.103]:5704
2

Executing 2counter.inc() on: Address[192.168.1.103]:5705
Executing backup 2counter.inc() on: Address[192.168.1.103]:5704
2

Executing 3counter.inc() on: Address[192.168.1.103]:5704
Executing backup 3counter.inc() on: Address[192.168.1.103]:5705
2

Finished

You can see that the counters have moved. Ocounter moved from 192.168.1.103:5702 to 192.168.1.103:5705 and
it is incremented correctly. Our counters can now move around in the cluster. You will see the counters will be

10.1. SAMPLE CASE 163

redistributed once you add or remove a cluster member.

10.1.8 Creating Backups

Finally, we make sure that the data of counter is available on another node when a member goes down. We need to
have the IncOperation class implement the BackupAwareOperation interface contained in the SPI package. See
the following code.

class IncOperation extends AbstractOperation
implements PartitionAwareOperation, BackupAwareOperation {

@0verride
public int getAsyncBackupCount() {
return 0O;

3

@0verride
public int getSyncBackupCount() {
return 1;

3

@0verride
public boolean shouldBackup() {
return true;

3

@0verride
public Operation getBackupOperation() {
return new IncBackupOperation(objectId, amount);

3

The methods getAsyncBackupCount and getSyncBackupCount specify the count for asynchronous and synchronous
backups. Our sample has one synchronous backup and no asynchronous backups. In the above code, counts of the
backups are hard-coded, but they can also be passed to IncOperation as parameters.

The method shouldBackup specifies whether our Operation needs a backup or not. For our sample, it returns
true, meaning the Operation will always have a backup even if there are no changes. Of course, in real systems, we
want to have backups if there is a change. For IncOperation for example, having a backup when amount is null
would be a good practice.

The method getBackupOperation returns the operation (IncBackupOperation) that actually performs the backup
creation; the backup itself is an operation and will run on the same infrastructure.

If a backup should be made and getSyncBackupCount returns 3, then three IncBackupOperation instances are
created and sent to the three machines containing the backup partition. If fewer machines are available, then
backups need to be created. Hazelcast will just send a smaller number of operations.

10.1.8.1 Performing the Backup with IncBackupOperation

Now, let’s have a look at the IncBackupOperation.

public class IncBackupOperation
extends AbstractOperation implements BackupOperation {
private String objectId;
private int amount;

164 CHAPTER 10. USER DEFINED SERVICES

public IncBackupOperation() {
}

public IncBackupOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectld;

@0verride

protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal (out);
out.writeUTF (objectId);
out.writeInt (amount);

@0verride

protected void readInternal(ObjectDatalnput in) throws IOException {
super.readInternal (in) ;
objectId = in.readUTF(Q);
amount = in.readInt();

@0verride
public void run() throws Exception {
CounterService service = getService();
System.out.println("Executing backup " + objectId + ".inc() on: "
+ getNodeEngine() .getThisAddress());
Container ¢ = service.containers[getPartitionId()];
c.inc(objectId, amount);

. NOTE: Hazelcast will also make sure that a new IncOperation for that particular key will not be executed
before the (synchronous) backup operation has completed.

10.1.8.2 Running the Sample Code

Let’s see the backup functionality in action with the following code.

public class Member {
public static void main(String[] args) throws Exception {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();

Counter counter = instances[0].getDistributedObject(CounterService.NAME, "counter");
counter.inc(1);

System.out.println("Finished") ;
System.exit (0);

Once it is run, the following output will be seen.

Executing counter0.inc() on: Address[192.168.1.103]:5702

10.2. WAITNOTIFYSERVICE 165

Executing backup counter0.inc() on: Address[192.168.1.103]:5701
Finished

As it can be seen, both IncOperation and IncBackupOperation are executed. Notice that these operations have
been executed on different cluster members to guarantee high availability.

10.2 WaitNotifyService

WaitNotifyService is an interface offered by SPI for the objects (e.g. Lock, Semaphore) to be used when a thread
needs to wait for a lock to be released.

WaitNotifyService keeps a list of waiters. For each notify operation:

e it looks for a waiter,

e it asks the waiter whether it wants to keep waiting,

e if the waiter responds no, the service executes its registered operation (operation itself knows where to send a
response),

e it rinses and repeats until a waiter wants to keep waiting.

Each waiter can sit on a wait-notify queue for, at most, its operation’s call timeout. For example, by default, each
waiter can wait here for at most 1 minute. There is a continuous task that scans expired/timed-out waiters and
invalidates them with CallTimeoutException. Each waiter on the remote side should retry and keep waiting if it
still wants to wait. This is a liveness check for remote waiters.

This way, it is possible to distinguish an unresponsive node and a long (~infinite) wait. On the caller side, if the
waiting thread does not get a response for either a call timeout or for more than 2 times the call-timeout, it will
exit with OperationTimeoutException.

Note that this behavior breaks the fairness. Hazelcast does not support fairness for any of the data structures with
blocking operations (i.e. lock and semaphore).

166 CHAPTER 10. USER DEFINED SERVICES

Chapter 11

Transactions

You can use Hazelcast in transactional context.

11.1 Transaction Interface

You create a TransactionContext to begin, commit, and rollback a transaction. You can obtain transaction-aware
instances of queues, maps, sets, lists, multimaps via TransactionContext, work with them, and commit/rollback
in one shot.

Hazelcast supports two types of transactions: LOCAL (One Phase) and TWO_PHASE. With the type, you have
influence over how much guarantee you get when a member crashes while a transaction is committing. The default
behavior is TWO_ PHASE.

e LOCAL: Unlike the name suggests, LOCAL is a two phase commit. First, all cohorts are asked to prepare;
if everyone agrees, then all cohorts are asked to commit. A problem can happen during the commit phase: if
one or more members crash, then the system could be left in an inconsistent state.

e TWO_PHASE: The TWO_PHASE commit is more than the classic two phase commit (if you want a
regular two phase commit, use local). Before TWO_PHASE commits, it copies the commit log to other
members, so in case of member failure, another member can complete the commit.

import java.util.Queue;

import java.util.Map;

import java.util.Set;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

TransactionOptions options = new TransactionOptions()
.setTransactionType(TransactionType.LOCAL);

TransactionContext context = hazelcastInstance.newTransactionContext(options)
context.beginTransaction() ;

TransactionalQueue queue = context.getQueue("myqueue");
TransactionalMap map = context.getMap("mymap");
TransactionalSet set = context.getSet("myset");

try {
Object obj = queue.poll();
//process obj

167

168 CHAPTER 11. TRANSACTIONS

map.put("1", "valuel");
set.add("value");
//do other things..
context.commitTransaction();

} catch (Throwable t) {
context.rollbackTransaction();

In a transaction, operations will not be executed immediately. Their changes will be local to the
TransactionContext until committed. However, they will ensure the changes via locks.

For the above example, when map.put is executed, no data will be put to the map but the key will get locked for
changes. While committing, operations will be executed, the value will be put to the map, and the key will be
unlocked.

Isolation level in Hazelcast Transactions is READ_COMMITTED. If you are in a transaction, you can read the data in
your transaction and the data that is already committed. If you are not in a transaction, you can only read the
committed data.

! NOTE: The REPEATABLE__READ isolation level can also be exercised using the method getForUpdate ()
of TransactionalMap.

Implementation is different for queue/set/list and map/multimap. For queue operations (offer, poll), offered and/or
polled objects are copied to the owner member in order to safely commit/rollback. For map/multimap, Hazelcast first
acquires the locks for the write operations (put, remove) and holds the differences (what is added/removed /updated)
locally for each transaction. When the transaction is set to commit, Hazelcast will release the locks and apply the
differences. When rolling back, Hazelcast will release the locks and discard the differences.

MapStore and QueueStore does not participate in transactions. Hazelcast will suppress exceptions thrown by store
in a transaction. Please refer to the XA Transactions section for further information.

11.1.1 LOCAL versus TWO PHASE

As it can be understood from the above Transaction Interface section, when you choose LOCAL as the transaction
type, Hazelcast tracks all changes you make locally in a commit log, i.e. list of changes. In this case, all the other
members are asked to agree that the commit can succeed and once it is agreed, Hazelcast starts to write the changes.
However, if the member that initiates the commit crashes after it has written to at least one member (but has not
completed writing to all other members), your system may be left in an inconsistent state.

On the other hand, if you choose TWO__PHASE as the transaction type, the commit log is again tracked locally
but it is copied to another cluster member. Therefore, when a failure happens (e.g. the member initiating the
commit crashes), you still have the commit log in another member and that member can complete the commit.
However, copying the commit log to another member makes the TWO_ PHASE approach slow.

Consequently, it is recommended that you choose LOCAL as the transaction type if you want a better performance
and TWO_ PHASE if reliability of your system is more important than the performance.

11.2 XA Transactions

XA describes the interface between the global transaction manager and the local resource manager. XA allows
multiple resources (such as databases, application servers, message queues, transactional caches, etc.) to be accessed
within the same transaction, thereby preserving the ACID properties across applications. XA uses a two-phase
commit to ensure that all resources either commit or rollback any particular transaction consistently (all do the
same).

By implementing the XAResource interface, Hazelcast provides XA transactions. You can obtain the
HazelcastXAResource instance via HazelcastInstance. Below is example code that uses Atomikos for
transaction management.

11.3. J2EE INTEGRATION 169

UserTransactionManager tm = new UserTransactionManager();
tm.setTransactionTimeout (60);
tm.begin();

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = hazelcastInstance.getXAResource();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);
// other resources (database, app server etc...) can be enlisted

try {
TransactionContext context = xaResource.getTransactionContext();
TransactionalMap map = context.getMap('m");
map.put("key", "value");
// other resource operations

transaction.delistResource(xaResource, XAResource.TMSUCCESS);
tm.commit () ;

} catch (Exception e) {
tm.rollback();

11.3 J2EE Integration

Hazelcast can be integrated into J2EE containers via the Hazelcast Resource Adapter (hazelcast-jca-rar-version.rar).
After proper configuration, Hazelcast can participate in standard J2EE transactions.

<J,@page import="javax.resource.ResourceException" %>
<J@page import="javax.transaction.*" %>

<J@page import="javax.naming.*" %>

<J@page import="javax.resource.cci.*" %>

<J@page import="java.util.*" >

<Y@page import="com.hazelcast.core.*" %>

<,@page import="com.hazelcast.jca.*" %>

<%

UserTransaction txn = null;

HazelcastConnection conn = null;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

try {
Context context = new InitialContext();
txn = (UserTransaction) context.lookup("java:comp/UserTransaction");

txn.begin();

HazelcastConnectionFactory cf = (HazelcastConnectionFactory)
context.lookup ("java:comp/env/HazelcastCF");

conn = cf.getConnection();

TransactionalMap<String, String> txMap = conn.getTransactionalMap("default");
txMap.put("key", "value");

txn.commit () ;

} catch (Throwable e) {

170 CHAPTER 11. TRANSACTIONS

if (txn != null) {
try {
txn.rollback();
} catch (Exception ix) {
ix.printStackTrace();
s
}
e.printStackTrace() ;
} finally {
if (conn != null) {
try {
conn.close();
} catch (Exception ignored) {};
}
}

%>

11.3.1 Sample Code for J2EE Integration

Please see our sample application for J2EE Integration.

11.3.2 Resource Adapter Configuration

Deploying and configuring the Hazelcast resource adapter is no different than configuring any other resource
adapter since the Hazelcast resource adapter is a standard JCA one. However, resource adapter installation and
configuration is container specific, so please consult your J2EE vendor documentation for details. The most common
steps are:

1. Add the hazelcast-version.jar and hazelcast-jca-version. jar to the container’s classpath. Usually there
is a lib directory that is loaded automatically by the container on startup.

2. Deploy hazelcast-jca-rar-version.rar. Usually there is some kind of a deploy directory. The name of the
directory varies by container.

3. Make container specific configurations when/after deploying hazelcast-jca-rar-version.rar. Besides
container specific configurations, set the JNDI name for the Hazelcast resource.

4. Configure your application to use the Hazelcast resource. Update web.xml and/or ejb-jar.xml to let the
container know that your application will use the Hazelcast resource and define the resource reference.

5. Make the container specific application configuration to specify the JNDI name used for the resource in the
application.

11.3.3 Sample Glassfish v3 Web Application Configuration

1. Place the hazelcast-wversion. jar and hazelcast-jca-version. jar into the GLASSFISH_HOME/glassfish/
domains/domainl/lib/ext/ folder.

2. Place the hazelcast-jca-rar-version.rar into GLASSFISH_HOME/glassfish/domains/domainl/autodeploy/
folder.

3. Add the following lines to the web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast. jca.ConnectionFactoryImpl</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Notice that we did not have to put sun-ra.xml into the RAR file since it already comes with the
hazelcast-ra-version.rar file.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/jca-ra

11.3. J2EE INTEGRATION 171

If the Hazelcast resource is used from EJBs, you should configure ejb-jar.xml for resource reference and JNDI
definitions, just like for the web.xml file.

11.3.4 Sample JBoss AS 5 Web Application Configuration

e Place the hazelcast-version. jar and hazelcast-jca-version. jar into the JBOSS_HOME/server/deploy/
default/1ib folder.

e Place the hazelcast-jca-rar-version.rar into the JBOSS_HOME/server/deploy/default/deploy folder.

e Create a hazelcast-ds.xml file containing the following content in the JBOSS_HOME/server/deploy/default/deploy
folder. Make sure to set the rar-name element to hazelcast-ra-version.rar

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE connection-factories
PUBLIC "-//JBoss//DID JBOSS JCA Config 1.5//EN"
"http://www. jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>
<tx-connection-factory>
<local-transaction/>
<track-connection-by-tx>true</track-connection-by-tx>
<jndi-name>HazelcastCF</jndi-name>
<rar-name>hazelcast-jca-rar-<version>.rar</rar-name>
<connection-definition>
javax.resource.cci.ConnectionFactory
</connection-definition>
</tx-connection-factory>
</connection-factories>

e Add the following lines to the web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<res-type>com.hazelcast. jca.ConnectionFactoryImpl</res-type>
<res—auth>Container</res-auth>

</resource-ref>

e Add the following lines to the jboss-web.xml file.

<resource-ref>
<res-ref-name>HazelcastCF</res-ref-name>
<jndi-name>java:HazelcastCF</jndi-name>
</resource-ref>

If the Hazelcast resource is used from EJBs, you should configure e jb-jar.xml and jboss.xml for resource reference
and JNDI definitions.

11.3.5 Sample JBoss AS 7 / EAP 6 Web Application Configuration

Deployment on JBoss AS 7 or JBoss EAP 6 is a fairly straightforward process. The steps you perform are shown
below. The only non-trivial step is the creation of a new JBoss module with Hazelcast libraries.
e Create the folder <jboss_home>/modules/system/layers/base/com/hazelcast/main.

e Place the hazelcast-<wersion>. jar and hazelcast-jca-<wersion>. jar into the folder you created in the
previous step.

172

CHAPTER 11. TRANSACTIONS

e Create the file module.xml and place it in the same folder. This file should have the following content.

<module xmlns="urn:jboss:module:1.0" name="com.hazelcast">
<resources>

<resource-root path="."/>
<resource-root path="hazelcast-<version>.jar"/>
<resource-root path="hazelcast-jca-<version>.jar"/>

</resources>
<dependencies>

<module name="sun.jdk"/>

<module name="javax.api"/>

<module name="javax.resource.api"/>
<module name="javax.validation.api"/>
<module name="org.jboss.ironjacamar.api'"/>

</dependencies>
</module>

At this point, you have a new JBoss module with Hazelcast in it. You can now start JBoss and deploy the
hazelcast-jca-rar-<wersion>.rar file via JBoss CLI or Administration Console.

Once the Hazelcast Resource Adapter is deployed, you can start using it
inject ConnectionFactory into your beans.

package com.hazelcast.examples.rar;

import
import

import
import
import
import
import

Qjavax.

public

com.hazelcast.core.TransactionalMap;
com.hazelcast. jca.HazelcastConnection;

javax.annotation.Resource;
javax.resource.ResourceException;
javax.resource.cci.ConnectionFactory;
java.util.logging.Level;
java.util.logging.Logger;

ejb.Stateless
class ExampleBean implements ExampleInterface {

. The easiest way is to let a container

private final static Logger log = Logger.getLogger (ExampleBean.class.getName());

@Resource (mappedName = "java:/HazelcastCF")
protected ConnectionFactory connectionFactory;

public void insert(String key, String value) {

}

HazelcastConnection hzConn = null;
try {
hzConn = getConnection();

TransactionalMap<String,String> txmap = hzConn.getTransactionalMap("txmap");

txmap.put (key, value);
} finally {
closeConnection(hzConn) ;

}

private HazelcastConnection getConnection() {

try {

return (HazelcastConnection) connectionFactory.getConnection();

} catch (ResourceException e) {

throw new RuntimeException("Error while getting Hazelcast connection", e);

3

11.3. J2EE INTEGRATION 173

private void closeConnection(HazelcastConnection hzConn) {
if (hzConn != null) {
try {
hzConn.close();
} catch (ResourceException e) {
log.log(Level .WARNING, "Error while closing Hazelcast connection.", e);

3

11.3.5.1 Known Issues

e There is a regression in JBoss EAP 6.1.0 causing failure during Hazelcast Resource Adapter deployment. The
issue is fixed in JBoss EAP 6.1.1. See this for additional details.

https://bugzilla.redhat.com/show_bug.cgi?id=976294

174 CHAPTER 11. TRANSACTIONS

Chapter 12

Hazelcast JCache

This chapter describes the basics of JCache: the standardized Java caching layer API. The JCache caching API is
specified by the Java Community Process (JCP) as Java Specification Request (JSR) 107.

Caching keeps data in memory that either are slow to calculate/process or originate from another underlying
backend system whereas caching is used to prevent additional request round trips for frequently used data. In both
cases, caching could be used to gain performance or decrease application latencies.

12.1 JCache Overview

Starting with Hazelcast release 3.3.1, a specification compliant JCache implementation is offered. To show our
commitment to this important specification the Java world was waiting for over a decade, we do not just provide
a simple wrapper around our existing APIs but implemented a caching structure from ground up to optimize
the behavior to the needs of JCache. As mentioned before, the Hazelcast JCache implementation is 100% TCK
(Technology Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost all operations to
give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup Hazelcast to be
your JCache provider. It also shows examples of basic JCache usage as well as the additionally offered features
that are not part of JSR-107. To gain a full understanding of the JCache functionality and provided guarantees of
different operations, read the specification document (which is also the main documentation for functionality) at
the specification page of JSR-107:

https://www.jep.org/en/jsr/detail?7id=107

12.2 Setup and Configuration

This sub-chapter shows what is necessary to provide the JCache API and the Hazelcast JCache implementation for
your application. In addition, it demonstrates the different configuration options as well as a description of the
configuration properties.

12.2.1 Application Setup

To provide your application with this JCache functionality, your application needs the JCache API inside its
classpath. This API is the bridge between the specified JCache standard and the implementation provided by
Hazelcast.

The way to integrate the JCache API JAR into the application classpath depends on the build system used. For
Maven, Gradle, SBT, Ivy and many other build systems, all using Maven based dependency repositories, perform
the integration by adding the Maven coordinates to the build descriptor.

175

https://www.jcp.org/en/jsr/detail?id=107

176 CHAPTER 12. HAZELCAST JCACHE

As already mentioned, next to the default Hazelcast coordinates that might be already part of the application, you
have to add JCache coordinates.

For Maven users, the coordinates look like the following code:

<dependency>
<groupId>javax.cache</groupId>
<artifactId>cache-api</artifactId>
<version>1.0.0</version>
</dependency>

With other build systems, you might need to describe the coordinates in a different way.

12.2.1.1 Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all. jar or hazelcast. jar
to the classpath (if not already available) by either one of the following Maven snippets.

If you use hazelcast-all. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-all</artifactId>
<version>3.4</version>

</dependency>

If you use hazelcast. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.4</version>
</dependency>

The users of other build systems have to adjust the way of defining the dependency to their needs.

12.2.1.2 Connecting Clients to Remote Server

When the users want to use Hazelcast clients to connect to a remote cluster, the hazelcast-client. jar dependency
is also required on the client side applications. This JAR is already included in hazelcast-all.jar. Or, you can
add it to the classpath using the following Maven snippet:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>3.4</version>
</dependency>

For other build systems, e.g. ANT, the users have to download these dependencies from either the JSR-107
specification and Hazelcast community website (http://www.hazelcast.org) or from the Maven repository search
page (http://search.maven.org).

http://www.hazelcast.org
http://search.maven.org

12.2. SETUP AND CONFIGURATION 177

12.2.2 Quick Example

Before moving on to configuration, let’s have a look at a basic introductory example. The following code shows how
to use the Hazelcast JCache integration inside an application in an easy but typesafe way.

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast server or cltient provider
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache
CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
.setTypes(String.class, String.class);

// Create and get the cache

Cache<String, String> cache = cacheManager.createCache("example", config);
// Alternatively to request an already existing cache

// Cache<String, String> cache = cacheManager

/7 .getCache(name, String.class, String.class);

// Put a walue into the cache
cache.put("world", "Hello World");

// Retrieve the value again from the cache
String value = cache.get("world");

// Print the value ’Hello World’
System.out.println(value);

Although the example is simple, let’s go through the code lines one by one.

12.2.2.1 Getting the Hazelcast JCache Implementation

First of all, we retrieve the javax.cache.spi.CachingProvider using the static method from javax.cache.Caching::
getCachingManager which automatically picks up Hazelcast as the underlying JCache implementation, if available

in the classpath. This way the Hazelcast implementation of a CachingProvider will automatically start a new
Hazelcast node or client (depending on the chosen provider type) and pick up the configuration from either the
command line parameter or from the classpath. We will show how to use an existing HazelcastInstance later in
this chapter, for now we keep it simple.

12.2.2.2 Setting up the JCache Entry Point

In the next line, we ask the CachingProvider to return a javax.cache.CacheManager. This is the general
application’s entry point into JCache. The CachingProvider creates and manages named caches.

12.2.2.3 Configuring the Cache Before Creating It

The next few lines create a simple javax.cache.configuration.MutableConfiguration to configure the cache
before actually creating it. In this case, we only configure the key and value types to make the cache typesafe which
is highly recommended and checked on retrieval of the cache.

178 CHAPTER 12. HAZELCAST JCACHE

12.2.2.4 Creating the Cache

To create the cache, we call javax.cache.CacheManager: :createCache with a name for the cache and the
previously created configuration; the call returns the created cache. If you need to retrieve a previously created
cache, you can use the corresponding method overload javax.cache.CacheManager: :getCache. If the cache was
created using type parameters, you must retrieve the cache afterward using the type checking version of getCache.

12.2.2.5 get, put, and getAndPut

The following lines are simple put and get calls from the java.util.Map interface. The javax.cache.Cache: :put
has a void return type and does not return the previously assigned value of the key. To imitate the
java.util.Map: :put method, the JCache cache has a method called getAndPut.

12.2.3 JCache Configuration

Hazelcast JCache provides two different ways of cache configuration:

e programmatically: the typical Hazelcast way, using the Config API seen above,
e and declaratively: using hazelcast.xml or hazelcast-client.xml.

12.2.3.1 JCache Declarative Configuration

You can declare your JCache cache configuration using the hazelcast.xml or hazelcast-client.xml configuration
files. Using this declarative configuration makes the creation of the javax.cache.Cache fully transparent and
automatically ensures internal thread safety. You do not need a call to javax.cache.Cache: :createCache in
this case: you can retrieve the cache using javax.cache.Cache::getCache overloads and by passing in the name
defined in the configuration for the cache.

To retrieve the cache defined in the declaration files, you need only perform a simple call (example below) because
the cache is created automatically by the implementation.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager

.getCache("default", Object.class, Object.class);

Note that this section only describes the JCache provided standard properties. For the Hazelcast specific properties,
please see the ICache Configuration section.

<cache name="default">
<key-type class-name="java.lang.Object" />
<value-type class-name="java.lang.0Object" />
<statistics-enabled>false</statistics-enabled>
<management-enabled>false</management-enabled>

<read-through>true</read-through>

<write-through>true</write-through>

<cache-loader-factory
class-name="com.example.cache.MyCacheLoaderFactory" />

<cache-writer-factory
class-name="com.example.cache.MyCacheWriterFactory" />

<expiry-policy-factory
class-name="com.example.cache.MyExpirePolicyFactory" />

<cache-entry-listeners>

12.2. SETUP AND CONFIGURATION 179

<cache-entry-listener old-value-required="false" synchronous="false">
<cache-entry-listener-factory
class-name="com.example.cache.MyEntryListenerFactory" />
<cache-entry-event-filter-factory
class-name="com.example.cache.MyEntryEventFilterFactory" />
</cache-entry-listener>

</cache-entry-listeners>
</cache>

e key-type#class—-name: The fully qualified class name of the cache key type, defaults to java.lang.0bject.

e value-type#tclass-name: The fully qualified class name of the cache value type, defaults to
java.lang.0Object.

e statistics-enabled: If set to true, statistics like cache hits and misses are collected. Its default value is
false.

e management-enabled: If set to true, JMX beans are enabled and collected statistics are provided - It doesn’t
automatically enables statistics collection, defaults to false.

e read-through: If set to true, enables read-through behavior of the cache to an underlying configured
javax.cache.integration.CacheLoader which is also known as lazy-loading, defaults to false.

e write-through: If set to true, enables write-through behavior of the cache to an underlying configured
javax.cache.integration.CacheWriter which passes any changed value to the external backend resource,
defaults to false.

e cache-loader-factory#class-name: The fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheLoader instance to the cache.

e cache-writer-factory#class-name: The fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheWriter instance to the cache.

e expiry-policy-factory#-class-name: The fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.expiry.ExpiryPolicy instance to the cache.

e cache-entry-listener: A set of attributes and elements, explained below, to describe a javax.cache.event.
CacheEntryListener.

— cache-entry-listener#old-value-required: If set to true, previously assigned values for the af-
fected keys will be sent to the javax.cache.event.CacheEntryListener implementation. Setting this
attribute to true creates additional traffic, defaults to false.

— cache-entry-listener#synchronous: If set to true, the javax.cache.event.CacheEntryListener
implementation will be called in a synchronous manner, defaults to false.

— cache-entry-listener/entry-listener-factory#class-name: The fully qualified class name of the
javax.cache.configuration.Factory implementation providing a javax.cache.event.CacheEntryListener
instance.

— cache-entry-listener/entry-event-filter-factory#class-name: The fully qualified class name
of the javax.cache.configuration.Factory implementation providing a javax.cache.event.
CacheEntryEventFilter instance.

! NOTE: The JMX MBeans provided by Hazelcast JCache show statistics of the local node only. To show
the cluster-wide statistics, the user should collect statistic information from all nodes and accumulate them to the
overall statistics.

12.2.3.2 JCache Programmatic Configuration

To configure the JCache programmatically:

e cither instantiate javax.cache.configuration.MutableConfiguration if you will use only the JCache
standard configuration,
e or instantiate com.hazelcast.config.CacheConfig for a deeper Hazelcast integration.

180 CHAPTER 12. HAZELCAST JCACHE

com.hazelcast.config.CacheConfig offers additional options that are specific to Hazelcast like asynchronous
and synchronous backup counts. Both classes share the same supertype interface javax.cache.configuration.
CompleteConfiguration which is part of the JCache standard.

l NOTE: To stay vendor independent, try to keep your code as near as possible to the standard JCache API.
We recommend you to use declarative configuration and use the javaz.cache.configuration.Configuration or
javaz. cache. configuration.CompleteConfiguration interfaces in your code only when you need to pass the
configuration instance throughout your code.

If you don’t need to configure Hazelcast specific properties, it is recommended that you instantiate
javax.cache.configuration.MutableConfiguration and that you use the setters to configure Hazelcast
as shown in the example in the Quick Example section. Since the configurable properties are the same as the ones
explained in the JCache Declarative Configuration section, they are not mentioned here. For Hazelcast specific
properties, please read the ICache Configuration section section.

12.3 JCache Providers

Use JCache providers to create caches for a specification compliant implementation. Those providers abstract the
platform specific behavior and bindings, and provide the different JCache required features.

Hazelcast has two types of providers. Depending on your application setup and the cluster topology, you can use
the Client Provider (used from Hazelcast clients) or the Server Provider (used by cluster nodes).

12.3.1 Provider Configuration

You configure the JCache javax.cache.spi.CachingProvider by either specifying the provider at the command
line or by declaring the provider inside the Hazelcast configuration XML file. For more information on setting
properties in this XML configuration file, please see the JCache Declarative Configuration section.

Hazelcast implements a delegating CachingProvider that can automatically be configured for either client or server
mode and that delegates to the real underlying implementation based on the user’s choice. It is recommended that
you use this CachingProvider implementation.

The delegating CachingProviders fully qualified class name is:
com.hazelcast.cache.HazelcastCachingProvider

To configure the delegating provider at the command line, add the following parameter to the Java startup call,
depending on the chosen provider:

—-Dhazelcast. jcache.provider.type=[client|server]

By default, the delegating CachingProvider is automatically picked up by the JCache SPI and provided as
shown above. In cases where multiple javax.cache.spi.CachingProvider implementations reside on the
classpath (like in some Application Server scenarios), you can select a CachingProvider by explicitly calling
Caching: :getCachingProvider overloads and providing them using the canonical class name of the provider to
be used. The class names of server and client providers provided by Hazelcast are mentioned in the following two
subsections.

l NOTE: Hazelcast advises that you use the Caching::getCachingProvider owverloads to select a
CachingProvider explicitly. This ensures that uploading to later environments or Application Server versions
doesn’t result in unexpected behavior like choosing a wrong CachingProvider.

For more information on cluster topologies and Hazelcast clients, please see the Hazelcast Topology section.

12.4. INTRODUCTION TO THE JCACHE API 181

12.3.2 JCache Client Provider
For cluster topologies where Hazelcast light clients are used to connect to a remote Hazelcast cluster, use the Client
Provider to configure JCache.

The Client Provider provides the same features as the Server Provider. However, it does not hold data on its own
but instead delegates requests and calls to the remotely connected cluster.

The Client Provider can connect to multiple clusters at the same time. This can be achieved by scoping the client
side CacheManager with different Hazelcast configuration files. For more information, please see the Scopes and
Namespaces section.

For requesting this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.client.cache.impl.HazelcastClientCachingProvider

12.3.3 JCache Server Provider

If a Hazelcast node is embedded into an application directly and the Hazelcast client is not used, the Server Provider
is required. In this case, the node itself becomes a part of the distributed cache and requests and operations are
distributed directly across the cluster by its given key.

The Server Provider provides the same features as the Client provider, but it keeps data in the local Hazelcast node
and also distributes non-owned keys to other direct cluster members.

Like the Client Provider, the Server Provider is able to connect to multiple clusters at the same time. This can be
achieved by scoping the client side CacheManager with different Hazelcast configuration files. For more information
please see the Scopes and Namespaces section.

To request this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.cache.impl.HazelcastServerCachingProvider

12.4 Introduction to the JCache API

This section explains the JCache API by providing simple examples and use cases. While walking through the
examples, we will have a look at a couple of the standard API classes and see how these classes are used.

12.4.1 JCache API Walk-through

The code in this subsection creates a small account application by providing a caching layer over an imagined
database abstraction. The database layer will be simulated using single demo data in a simple DAO interface. To
show the difference between the “database” access and retrieving values from the cache, a small waiting time is
used in the DAO implementation to simulate network and database latency.

12.4.1.1 Basic User Class
Before we implement the JCache caching layer, let’s have a quick look at some basic classes we need for this
example.

The User class is the representation of a user table in the database. To keep it simple, it has just two properties:
userId and username.

182 CHAPTER 12. HAZELCAST JCACHE

public class User {
private int userld;
private String username;

// Getters and setters
}

12.4.1.2 DAO Interface Example

The DAO interface is also kept easy in this example. It provides a simple method to retrieve (find) a user by its
userld.

public interface UserDAO {
User findUserById(int userId);
boolean storeUser(int userId, User user);
boolean removeUser(int userId);
Collection<Integer> allUserIds();

12.4.1.3 Configuration Example

To show most of the standard features, the configuration example is a little more complex.

// Create javaz.cache.configuration.CompleteConfiguration subclass
CompleteConfiguration<Integer, User> config =
new MutableConfiguration<Integer, User>()
// Configure the cache to be typesafe
.setTypes(Integer.class, User.class)
// Configure to expire entries 30 secs after creation in the cache
.setExpiryPolicyFactory(FactoryBuilder.factoryOf (
new AccessedExpiryPolicy(new Duration(TimeUnit.SECONDS, 30))
))
// Configure read-through of the underlying store
.setReadThrough(true)
// Configure write-through to the underlying store
.setWriteThrough(true)
// Configure the javaz.cache.integration.CacheLoader
.setCacheLoaderFactory(FactoryBuilder.factory0f (
new UserCacheLoader(userDao)
))
// Configure the javaz.cache.integration.Cachelriter
.setCacheWriterFactory(FactoryBuilder.factoryOf (
new UserCacheWriter(userDao)
))
// Configure the javaz.cache.event.CacheEntryListener with no
// javazx.cache.event.CacheEntryEventFilter, to include old value
// and to be ezecuted synchronously
.addCacheEntryListenerConfiguration(
new MutableCacheEntryListenerConfiguration<Integer, User>(
new UserCacheEntryListenerFactory(),
null, true, true

)

Let’s go through this configuration line by line.

12.4. INTRODUCTION TO THE JCACHE API 183

12.4.1.4 Setting the Cache Type and Expire Policy

First, we set the expected types for the cache, which is already known from the previous example. On the next line,
an javax.cache.expiry.ExpirePolicy is configured. Almost all integration ExpirePolicy implementations are
configured using javax.cache.configuration.Factory instances. Factory and FactoryBuilder are explained
later in this chapter.

12.4.1.5 Configuring Read-Through and Write-Through

The next two lines configure the thread that will be read-through and write-through to the underlying backend
resource that is configured over the next few lines. The JCache API offers javax.cache.integration.CacheLoader
and javax.cache.integration.CacheWriter to implement adapter classes to any kind of backend resource,
e.g. JPA, JDBC, or any other backend technology implementable in Java. The interfaces provides the typical
CRUD operations like create, get, update, delete and some bulk operation versions of those common operations.
We will look into the implementation of those implementations later.

12.4.1.6 Configuring Entry Listeners

The last configuration setting defines entry listeners based on sub-interfaces of javax.cache.event.CacheEntryListener.
This config does not use a javax.cache.event.CacheEntryEventFilter since the listener is meant to be fired on
every change that happens on the cache. Again we will look in the implementation of the listener in later in this
chapter.

12.4.1.7 Full Example Code

A full running example that is presented in this subsection is available in the code samples repository. The
application is built to be a command line app. It offers a small shell to accept different commands. After startup,
you can enter help to see all available commands and their descriptions.

12.4.2 Roundup of Basics

In the Quick Example section, we have already seen a couple of the base classes and explained how those work.
Following are quick descriptions of them.

javax.cache.Caching:

The access point into the JCache API. It retrieves the general CachingProvider backed by any compliant JCache
implementation, such as Hazelcast JCache.

javax.cache.spi.CachingProvider:

The SPI that is implemented to bridge between the JCache API and the implementation itself. Hazelcast nodes
and clients use different providers chosen as seen in the Provider Configuration section which enable the JCache
APT to interact with Hazelcast clusters.

When a javax.cache.spi.CachingProvider: :getCacheManager overload is used that takes a java.lang.ClassLoader
argument, this classloader will be part of the scope of the created java.cache.Cache and it is not possible to
retrieve it on other nodes. We advise not to use those overloads, those are not meant to be used in distributed
environments!

javax.cache.CacheManager:

The CacheManager provides the capability to create new and manage existing JCache caches.

! NOTE: A javaz.cache.Cache instance created with key and value types in the configuration provides a
type checking of those types at retrieval of the cache. For that reason, all non-types retrieval methods like getCache
throw an exception because types cannot be checked.

javax.cache.configuration.Configuration, javax.cache.configuration.MutableConfiguration:

https://github.com/hazelcast/hazelcast-code-samples/tree/master/jcache/src/main/java/com/hazelcast/examples/application

184 CHAPTER 12. HAZELCAST JCACHE

These two classes are used to configure a cache prior to retrieving it from a CacheManager. The Configuration inter-
face, therefore, acts as a common super type for all compatible configuration classes such as MutableConfiguration.

Hazelcast itself offers a special implementation (com.hazelcast.config.CacheConfig) of the Configuration
interface which offers more options on the specific Hazelcast properties that can be set to configure features like
synchronous and asynchronous backups counts or selecting the underlying In Memory Format of the cache. For
more information on this configuration class, please see the reference in JCache Programmatic Configuration section.

javax.cache.Cache:

This interface represents the cache instance itself. It is comparable to java.util.Map but offers special operations
dedicated to the caching use case. Therefore, for example javax.cache.Cache: :put, unlike java.util.Map: : put,
does not return the old value previously assigned to the given key.

l NOTE: Bulk operations on the Cache interface guarantee atomicity per entry but not over all given keys in
the same bulk operations since no transactional behavior is applied over the whole batch process.

12.4.3 Factory and FactoryBuilder

The javax.cache.configuration.Factory implementations are used to configure features like CacheEntryListener,
ExpirePolicy and CacheLoaders or CacheWriters. These factory implementations are required to distribute the
different features to nodes in a cluster environment like Hazelcast. Therefore, these factory implementations have
to be serializable.

Factory implementations are easy to do: they follow the default Provider- or Factory-Pattern. The sample class
UserCacheEntryListenerFactory shown below implements a custom JCache Factory.

public class UserCacheEntryListenerFactory
implements Factory<CacheEntryListener<Integer, User>> {

@0verride
public CacheEntryListener<Integer, User> create() {
// Just create a new listener instance
return new UserCacheEntryListener();
}
}

To simplify the process for the users, JCache API offers a set of helper methods collected in javax.cache.
configuration.FactoryBuilder. In the above configuration example, FactoryBuilder: :factoryQf is used to
create a singleton factory for the given instance.

12.4.4 CacheLoader

javax.cache.integration.CacheLoader loads cache entries from any external backend resource. If the cache is
configured to be read-through, then CacheLoader: :1load is called transparently from the cache when the key or
the value is not yet found in the cache. If no value is found for a given key, it returns null.

If the cache is not configured to be read-through, nothing is loaded automatically. However, the user code must
call javax.cache.Cache: :1oadAll to load data for the given set of keys into the cache.

For the bulk load operation (1oadA11()), some keys may not be found in the returned result set. In this case, a
javax.cache.integration.CompletionListener parameter can be used as an asynchronous callback after all the
key-value pairs are loaded because loading many key-value pairs can take lots of time.

Let’s look at the UserCacheloader implementation.

public class UserCachelLoader
implements CachelLoader<Integer, User>, Serializable {

12.4. INTRODUCTION TO THE JCACHE API 185

private final UserDao userDao;

public UserCacheLoader(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

}

@0verride

public User load(Integer key) throws CacheLoaderException {
// Just call through into the dao
return userDao.findUserById(key);

}

@0verride
public Map<Integer, User> loadAll(Iterable<? extends Integer> keys)
throws CachelLoaderException {

// Create the resulting map
Map<Integer, User> loaded = new HashMap<Integer, User>();
// For every key in the given set of keys
for (Integer key : keys) {
// Try to retrieve the user
User user = userDao.findUserById(key);
// If user is not found do not add the key to the result set
if (user != null) {
loaded.put(key, user);
}
}

return loaded;

The implementation is quite straight forward. An important note is that any kind of exception has to be wrapped
into javax.cache.integration.CacheLoaderException.

12.4.5 CacheWriter

A javax.cache.integration.CacheWriter is used to update an external backend resource. If the cache is
configured to be write-through this process is executed transparently to the users code otherwise at the current
state there is no way to trigger writing changed entries to the external resource to a user defined point in time.

If bulk operations throw an exception, java.util.Collection has to be cleaned of all successfully written keys so
the cache implementation can determine what keys are written and can be applied to the cache state.

public class UserCacheWriter
implements CacheWriter<Integer, User>, Serializable {

private final UserDao userDao;

public UserCacheWriter(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

}

Q@0verride
public void write(Cache.Entry<? extends Integer, 7 extends User> entry)
throws CacheWriterException {

186 CHAPTER 12. HAZELCAST JCACHE

// Store the user using the dao

userDao.storeUser(entry.getKey(), entry.getValue());
}

@0verride
public void writeAll(Collection<Cache.Entry<...>> entries)
throws CacheWriterException {

// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<Cache.Entry<...>> iterator = entries.iterator();
while (iterator.hasNext()) {

// Write entry using dao

write(iterator.next());

// Remove from collection of keys

iterator.remove();

@0verride
public void delete(Object key) throws CacheWriterException {
// Test for key type
if (!'(key instanceof Integer)) {
throw new CacheWriterException("Illegal key type");
}
// Remove user using dao
userDao.removeUser((Integer) key);

3

@0verride
public void deleteAll(Collection<?> keys) throws CacheWriterException {
// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<?> iterator = keys.iterator();
while (iterator.hasNext()) {
// Write entry using dao
delete(iterator.next());
// Remove from collection of keys
iterator.remove();

Again the implementation is pretty straight forward and also as above all exceptions thrown by the external resource,
like java.sql.SQLException has to be wrapped into a javax.cache.integration.CacheWriterException. Note
this is a different exception from the one thrown by CacheLoader.

12.4.6 JCache EntryProcessor

With javax.cache.processor.EntryProcessor, you can apply an atomic function to a cache entry. In a distributed
environment like Hazelcast, you can move the mutating function to the node that owns the key. If the value object
is big, it might prevent traffic by sending the object to the mutator and sending it back to the owner to update it.

By default, Hazelcast JCache sends the complete changed value to the backup partition. Again, this can cause a lot
of traffic if the object is big. Another option to prevent this is part of the Hazelcast ICache extension. Further
information is available at BackupAwareEntryProcessor.

12.4. INTRODUCTION TO THE JCACHE API 187

An arbitrary number of arguments can be passed to the Cache: :invoke and Cache::invokeAll methods. All of
those arguments need to be fully serializable because in a distributed environment like Hazelcast, it is very likely
that these arguments have to be passed around the cluster.

public class UserUpdateEntryProcessor
implements EntryProcessor<Integer, User, User> {

@0verride
public User process(MutableEntry<Integer, User> entry, Object... arguments)
throws EntryProcessorException {

// Test arguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username");

}

// Get first argument and test for String type
Object argument = arguments[0];
if (!'(argument instanceof String)) {
throw new EntryProcessorException(
"First argument has wrong type, required java.lang.String");

}

// Retrieve the value from the MutableEntry
User user = entry.getValue();

// Retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// Set the new username
user.setUsername(newUsername);

// Set the changed user to mark the entry as dirty
entry.setValue(user);

// Return the changed user to return it to the caller
return user;

. NOTE: By executing the bulk Cache: :invokeAll operation, atomicity is only guaranteed for a single cache
entry. No transactional rules are applied to the bulk operation.

. NOTE: JCache EntryProcessor implementations are not allowed to call javaz.cache.Cache methods;
this prevents operations from deadlocking between different calls.

In addition, when using a Cache::invokeAll method, a java.util.Map is returned that maps the key to
its javax.cache.processor.EntryProcessorResult, and which itself wraps the actual result or a thrown
javax.cache.processor.EntryProcessorException.

12.4.7 CacheEntryListener

The javax.cache.event.CacheEntryListener implementation is straight forward. CacheEntryListener is a
super-interface which is used as a marker for listener classes in JCache. The specification brings a set of sub-interfaces.

188

e CacheEntryCreatedListener: Fires after a cache entry is added (even on read-through by a CacheLoader)

to the cache.

e CacheEntryUpdatedListener: Fires after an already existing cache entry was updates.

e CacheEntryRemovedListener: Fires after a cache entry was removed (not expired) from the cache.

e CacheEntryExpiredListener: Fires after a cache entry has been expired. Expiry does not have to be parallel
are requested by Cache: :get and some other
operations. For a full table of expiry please see the https://www.jcp.org/en/jsr/detail?id=107 point 6.

process, it is only required to be executed on the keys that

To configure CacheEntrylListener, add a javax.cache.configuration.CacheEntryListenerConfiguration in-
stance to the JCache configuration class, as seen in the above example configuration. In addition listeners can be
configured to be executed synchronously (blocking the calling thread) or asynchronously (fully running in parallel).

In this example application, the listener is implemented to print event information on the console. That visualizes

what is going on in the cache.

public class UserCacheEntryListener
implements CacheEntryCreatedListener<Integer, User>,
CacheEntryUpdatedlListener<Integer, User>,
CacheEntryRemovedListener<Integer, User>,
CacheEntryExpiredListener<Integer, User> {

@0verride
public void onCreated(Iterable<CacheEntryEvent<...>>
throws CacheEntryListenerException {

printEvents(cacheEntryEvents);

}

@0verride
public void onUpdated(Iterable<CacheEntryEvent<...>>
throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

3

@0verride
public void onRemoved(Iterable<CacheEntryEvent<...>>
throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

3
@0verride
public void onExpired(Iterable<CacheEntryEvent<...>>

throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

}

private void printEvents(Iterable<CacheEntryEvent<...

CHAPTER 12. HAZELCAST JCACHE

cacheEntryEvents

cacheEntryEvents

cacheEntryEvents

cacheEntryEvents

>> cacheEntryEvents) {

Iterator<CacheEntryEvent<...>> iterator = cacheEntryEvents.iterator();

while (iterator.hasNext()) {
CacheEntryEvent<...> event = iterator.next();
System.out.println(event.getEventType());
}
}
}

https://www.jcp.org/en/jsr/detail?id=107

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 189

12.4.8 ExpirePolicy

In JCache, javax.cache.expiry.ExpirePolicy implementations are used to automatically expire cache entries
based on different rules.

Expiry timeouts are defined using javax.cache.expiry.Duration, which is a pair of java.util.concurrent.TimeUnit,
which describes a time unit and a long, defining the timeout value. The minimum allowed TimeUnit is
TimeUnit.MILLISECONDS. The long value durationAmount must be equal or greater than zero. A value of zero (or
Duration.ZERO) indicates that the cache entry expires immediately.

By default, JCache delivers a set of predefined expiry strategies in the standard API.

e AccessedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on accessing the key.

e CreatedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is never updated.

e EternalExpiryPolicy: Never expires, this is the default behavior, similar to ExpiryPolicy to be set to null.

e ModifiedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on updating the key.

e TouchedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry, the
expiry timeout is updated on accessing or updating the key.

Because EternalExpirePolicy does not expire cache entries, it is still possible to evict values from memory if an
underlying CacheLoader is defined.

12.5 Hazelcast JCache Extension - ICache

Hazelcast provides extension methods to Cache API through the interface com.hazelcast.cache.ICache.

It has two sets of extensions:

e Asynchronous version of all cache operations.
e Cache operations with custom ExpiryPolicy parameter to apply on that specific operation.

12.5.1 Scopes and Namespaces

As mentioned before, a CacheManager can be scoped in the case of client to connect to multiple clusters, or
in the case of an embedded node, a CacheManager can be scoped to join different clusters at the same time.
This process is called scoping. To apply it, request a CacheManager by passing a java.net.URI instance to
CachingProvider: :getCacheManager. The java.net.URI instance must point to either a Hazelcast configuration
or to the name of a named com.hazelcast.core.HazelcastInstance instance.

! NOTE: Multiple requests for the same java.net.URI result in returning a CacheManager instance that
shares the same HazelcastInstance as the CacheManager returned by the previous call.

12.5.1.1 Configuration Scope

To connect or join different clusters, apply a configuration scope to the CacheManager. If the same URI is
used to request a CacheManager that was created previously, those CacheManagers share the same underlying
HazelcastInstance.

To apply a configuration scope, pass in the path of the configuration file using the location property
HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which resolves to hazelcast.config.location)
as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager(uri,
classLoader, properties) call.

Here is an example of using Configuration Scope.

190 CHAPTER 12. HAZELCAST JCACHE

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider.HAZELCAST_CONFIG_LOCATION,
"classpath://my-configs/scoped-hazelcast.xml");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider: :propertiesByLocation helper method.

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file

String configFile = "classpath://my-configs/scoped-hazelcast.xml";

Properties properties = HazelcastCachingProvider
.propertiesByLocation(configFile);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

The retrieved CacheManager is scoped to use the HazelcastInstance that was just created and was configured
using the given XML configuration file.

Available protocols for config file URL include classpath:// to point to a classpath location, file:// to point to
a filesystem location, http:// an https:// for remote web locations. In addition, everything that does not specify
a protocol is recognized as a placeholder that can be configured using a system property.

String configFile = "my-placeholder";
Properties properties = HazelcastCachingProvider
.propertiesByLocation(configFile);

Can be set on the command line by:

-Dmy-placeholder=classpath://my-configs/scoped-hazelcast.xml

l NOTE: No check is performed to prevent creating multiple CacheManagers with the same cluster configuration
on different configuration files. If the same cluster is referred from different configuration files, multiple cluster
members or clients are created.

l NOTE: The configuration file location will not be a part of the resulting identity of the CacheManager. An
attempt to create a CacheManager with a different set of properties but an already used name will result in undefined
behavior.

12.5.1.2 Named Instance Scope

A CacheManager can be bound to an existing and named HazelcastInstance instance. If the instanceName
is specified in com.hazelcast.config.Config, it can be used directly by passing it to CachingProvider imple-
mentation. Otherwise (instanceName not set or instance is a client instance) instance name must be get over
HazelcastInstance instance via String getName () method to pass the CachingProvider implementation. Please
note that instanceName is not configurable for the client side HazelcastInstance instance and is auto-generated

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 191

by using group name (if it is specified). In general, String getName () method over HazelcastInstance is more
safe and preferable way for getting name of instance. Multiple CacheManagers created using an equal java.net.URI
will share the same HazelcastInstance.

A named scope is applied nearly the same way as the configuration scope: pass in the instance name using the
HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to hazelcast.instance.name) prop-
erty as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager (uri,
classLoader, properties) call.

Here is an example of Named Instance Scope with specified name.

Config config = new Config();

config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
"my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name.

Config config = new Config();

// Create a auto-generated named HazelcastInstance

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
instanceName) ;

URI cacheManagerName = new URI("my-cache-manager");

CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name on client instance.

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("127.0.0.1", "127.0.0.2");

// Create a client stde HazelcastInstance
HazelcastInstance instance = HazelcastClient.newHazelcastClient(clientConfig);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

192 CHAPTER 12. HAZELCAST JCACHE

Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider: :propertiesByInstanceName method.

Config config = new Config();

config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties tinstance pointing to a named HazelcastInstance
Properties properties = HazelcastCachingProvider
.propertiesByInstanceName("my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManager, null, properties);

l NOTE: The instanceName will not be a part of the resulting identity of the CacheManager. An attempt to
create a CacheManager with a different set of properties but an already used name will result in undefined behavior.

12.5.1.3 Namespaces

The java.net.URIs that don’t use the above mentioned Hazelcast specific schemes are recognized as names-
pacing. Those CacheManagers share the same underlying default HazelcastInstance created (or set) by the
CachingProvider, but they cache with the same names but differently namespaces on CacheManager level, and
therefore won’t share the same data. This is useful where multiple applications might share the same Hazelcast
JCache implementation (e.g. on application or OSGi servers) but are developed by independent teams. To prevent
interfering on caches using the same name, every application can use its own namespace when retrieving the
CacheManager.

Here is an example of using namespacing.

CachingProvider cachingProvider = Caching.getCachingProvider();

URI nsAppl = new URI("application-1");
CacheManager cacheManagerAppl = cachingProvider.getCacheManager(nsAppl, null);

URI nsApp2 = new URI("application-2");
CacheManager cacheManagerApp2 = cachingProvider.getCacheManager(nsApp2, null);

That way both applications share the same HazelcastInstance instance but not the same caches.

12.5.2 Retrieving an ICache Instance

Besides Scopes and Namespaces, which are implemented using the URI feature of the specification, all other
extended operations are required to retrieve the com.hazelcast.cache.ICache interface instance from the JCache
javax.cache.Cache instance. For Hazelcast, both interfaces are implemented on the same object instance. It

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 193

is recommended that you stay with the specification way to retrieve the ICache version, since ICache might be
subject to change without notification.

To retrieve or unwrap the ICache instance, you can execute the following code snippet:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager.getCache(...);

ICache<Object, Object> unwrappedCache = cache.unwrap(ICache.class);

After unwrapping the Cache instance into an ICache instance, you have access to all of the following operations,
e.g. Async Operations and Additional Methods.

12.5.3 ICache Configuration

As mentioned in the JCache Declarative Configuration section, the Hazelcast ICache extension offers additional
configuration properties over the default JCache configuration. These additional properties include internal storage
format, backup counts and eviction policy.

The declarative configuration for ICache is a superset of the previously discussed JCache configuration:

<cache>
<!-- ... default cache configuration goes here ... -->
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<in-memory-format>BINARY</in-memory-format>
<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
</cache>

e backup-count: The number of synchronous backups. Those backups are executed before the mutating cache
operation is finished. The mutating operation is blocked. backup-count default value is 1.

e async-backup-count: The number of asynchronous backups. Those backups are executed asynchronously so
the mutating operation is not blocked and it will be done immediately. async-backup-count default value is 0.

e in-memory-format: Defines the internal storage format. For more information, please see the In Memory
Format section. Default is BINARY.

e eviction: Defines the used eviction strategies and sizes for the cache. For more information on eviction,
please see the JCache Eviction.

— size: The maximum number of records or maximum size in bytes depending on the max-size-policy
property. Size can be any integer between 0 and Integer.MAX_VALUE. Default max-size-policy is
ENTRY_COUNT and default size is 10.000.

— max-size-policy: The size policy property defines a maximum size. If maximum size is reached, the
cache is evicted based on the eviction policy. Default max-size-policy is ENTRY_COUNT and default size is
10.000. The following eviction policies are available:

* ENTRY_COUNT: Maximum number of cache entries in the cache. Available on heap based cache
record store only.

+x USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes for each instance.
Available on High-Density Memory cache record store only.

+x USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory size percentage for each instance.
Available on High-Density Memory cache record store only.

* FREE_NATIVE_MEMORY_SIZE: Maximum free native memory size in megabytes for each instance.
Available on High-Density Memory cache record store only.

* FREE_NATIVE_MEMORY_PERCENTAGE: Maximum free native memory size percentage for each instance.
Available on High-Density Memory cache record store only.

194 CHAPTER 12. HAZELCAST JCACHE

— eviction-policy: The defined eviction policy to compare values with to find the best matching eviction
candidate. Default is LRU.

x LRU: Less Recently Used - finds the best eviction candidate based on the last AccessTime.
* LFU: Less Frequently Used - finds the best eviction candidate based on the number of hits.

Since javax.cache.configuration.MutableConfiguration misses the above additional configuration properties,
Hazelcast ICache extension provides an extended configuration class called com.hazelcast.config.CacheConfig.
This class is an implementation of javax.cache.configuration.CompleteConfiguration and all the properties
shown above can be configured using its corresponding setter methods.

12.5.4 Async Operations

As another addition of Hazelcast ICache over the normal JCache specification, Hazelcast provides asynchronous
versions of almost all methods, returning a com.hazelcast.core.ICompletableFuture. By using these methods
and the returned future objects, you can use JCache in a reactive way by registering zero or more callbacks on the
future to prevent blocking the current thread.

Name of the asynchronous versions of the methods append the phrase Async to the method name. Sample code is
shown below using the method putAsync().

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
ICompletableFuture<String> future = unwrappedCache.putAsync(1, "value");
future.andThen(new ExecutionCallback<String>() {
public void onResponse(String response) {
System.out.println("Previous value: " + response) ;

}

public void onFailure(Throwable t) {
t.printStackTrace();

}
} s

Following methods are available in asynchronous versions:

o get(key):

— getAsync (key)
— getAsync(key, expiryPolicy)

put(key, value):

— putAsync(key, value)
— putAsync(key, value, expiryPolicy)

putIfAbsent(key, value):

— putIfAbsentAsync(key, value)
— putIfAbsentAsync(key, value, expiryPolicy)

getAndPut (key, value):

— getAndPutAsync (key, value)
— getAndPutAsync(key, value, expiryPolicy)

remove (key):

— removeAsync (key)

remove (key, value):

— removeAsync (key, value)

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 195

e getAndRemove (key):
— getAndRemoveAsync (key)
e replace(key, value):

— replaceAsync(key, value)
— replaceAsync(key, value, expiryPolicy)

e replace(key, oldValue, newValue):

— replaceAsync(key, oldValue, newValue)
— replaceAsync(key, oldValue, newValue, expiryPolicy)

e getAndReplace(key, value):

— getAndReplaceAsync(key, value)
— getAndReplaceAsync(key, value, expiryPolicy)

The methods with a given javax.cache.expiry.ExpiryPolicy are further discussed in the Custom ExpiryPolicy
section.

NOTE: Asynchronous versions of the methods are not compatible with synchronous events.

12.5.5 Custom ExpiryPolicy

The JCache specification has an option to configure a single ExpiryPolicy per cache. Hazelcast ICache extension
offers the possibility to define a custom ExpiryPolicy per key by providing a set of method overloads with an
expirePolicy parameter, as in the list of asynchronous methods in the Async Methods section. This means that
custom expiry policies can passed to a cache operation.

Here is how an ExpirePolicy is set on JCache configuration:

CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
setExpiryPolicyFactory(
AccessedExpiryPolicy.factory0f (Duration.ONE_MINUTE)
)3

To pass a custom ExpirePolicy, a set of overloads is provided and can be used as shown in the following code
snippet:

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
unwrappedCache.put(1, "value", new AccessedExpiryPolicy(Duration.ONE_DAY));

The ExpirePolicy instance can be pre-created, cached, and re-used, but only for each cache instance. This is
because ExpirePolicy implementations can be marked as java.io.Closeable. The following list shows the pro-
vided method overloads over javax.cache.Cache by com.hazelcast.cache.ICache featuring the ExpiryPolicy
parameter:

o get(key):

— get(key, expiryPolicy)
o getAll (keys):

— getAll(keys, expirePolicy)
e put(key, value):

— put(key, value, expirePolicy)

196 CHAPTER 12. HAZELCAST JCACHE

e getAndPut (key, value):

— getAndPut(key, value, expirePolicy)
e putAll (map):

— putAll(map, expirePolicy)
e putIfAbsent (key, value):

— putIfAbsent(key, value, expirePolicy)
e replace(key, value):

— replace(key, value, expirePolicy)
e replace(key, oldValue, newValue):

— replace(key, oldValue, newValue, expirePolicy)
e getAndReplace(key, value):

— getAndReplace(key, value, expirePolicy)

Asynchronous method overloads are not listed here. Please see the Async Operations section for the list of
asynchronous method overloads.

12.5.6 JCache Eviction

Growing to an infinite size is in general not the expected behavior of caches. Implementing an expiry policy is one
way to prevent the infinite growth but sometimes it is hard to define a meaningful expiration timeout. Therefore,
Hazelcast JCache provides the eviction feature. Eviction offers the possibility to remove entries based on the cache
size or amount of used memory (Hazelcast Enterprise Only) and not based on timeouts.

12.5.6.1 General Information

Since a cache is designed for high throughput and fast reads, a lot of effort went into designing the eviction system
as predictable as possible. All built-in implementations provide an amortized O(1) runtime. The default operation
runtime is rendered as O(1) but can be faster than the normal runtime cost if the algorithm finds an expired entry
while sampling.

Most importantly, in typical production system two common types of caches are found:

e Reference Caches: Caches for reference data are normally small and are used to speed up the de-referencing
as a lookup table. Those caches are commonly tend to be small and contain a previously known, fixed number
of elements (e.g. states of the USA or abbreviations of elements).

e Active DataSet Caches: The other type of caches normally caches an active data set. These caches run to
their maximum size and evict the oldest or not frequently used entries to keep in memory bounds. They sit
in front of a database or HTML generators to cache the latest requested data.

Hazelcast JCache eviction supports both types of caches using a slightly different approach based on the configured
maximum size of the cache. For detailed information, please see the Eviction Algorithm section.

12.5.6.2 Eviction Policies

Hazelcast JCache provides two commonly known eviction policies, LRU and LFU, but loosens the rules for predictable
runtime behavior. LRU, normally recognized as Least Recently Used, is implemented as Less Recently Used,
and LFU known as Least Frequently Used is implemented as Less Frequently Used. The details about this
difference is explained in the Eviction Algorithm section.

Eviction Policies are configured by providing the corresponding abbreviation to the configuration as shown in the
ICache Configuration section. As already mentioned, two built-in policies are available:

To configure the use of the LRU (Less Recently Used) policy:

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 197
<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />

And to configure the use of the LFU (Less Frequently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU" />

The default eviction policy is LRU. Therefore, Hazelcast JCache does not offer the possibility to perform no eviction.

12.5.6.3 Eviction Strategy

Eviction strategies implement the logic of selecting one or more eviction candidates from the underlying storage
implementation and passing them to the eviction policies. Hazelcast JCache provides an amortized O(1) cost
implementation for this strategy to select a fixed number of samples from the current partition that it is executed
against.

The default implementation is com.hazelcast.cache.impl.eviction.impl.strategy.sampling.SamplingBasedEvictionSt
which, as mentioned, samples random 15 elements. A detailed description of the algorithm will be explained in the
next section.

12.5.6.4 Eviction Algorithm

The Hazelcast JCache eviction algorithm is specially designed for the use case of high performance caches and with
predictability in mind. The built-in implementations provide an amortized O(1) runtime and therefore provide a
highly predictable runtime behavior which does not rely on any kind of background threads to handle the eviction.
Therefore, the algorithm takes some assumptions into account to prevent network operations and concurrent
accesses.

As an explanation of how the algorithm works, let’s examine the following flowchart step by step.

Eviction Y& : :
Create —» Put entry — required? — Begin sampling

l

Sample entry & \

no l |
|

Entry
expired?

yes l no
11 10 9
Use palicy to |
compare eviction

Return to user 4+ Store entry +— Remove entry candidates, 7 |I
remember best

matching

Remowve best l
matching
Loop 15 times 8

198 CHAPTER 12. HAZELCAST JCACHE

1. A new cache is created. Without any special settings, the eviction is configured to kick in when the cache
exceeds 10.000 elements and an LRU (Less Recently Used) policy is set up.
2. The user puts in a new entry (e.g. a key-value pair).
3. For every put, the eviction strategy evaluates the current cache size and decides if an eviction is necessary or
not. If not the entry is stored in step 10.
4. If eviction is required, a new sampling is started. The built-in sampler is implemented as an lazy iterator.
5. The sampling algorithm selects a random sample from the underlying data storage.
6. The eviction strategy tests the sampled entry to already be expired (lazy expiration). If expired, the sampling
stops and the entry is removed in step 9.
7. If not yet expired, the entry (eviction candidate) is compared to the last best matching candidate (based on
the eviction policy) and the new best matching candidate is remembered.
8. The sampling is repeated for 15 times and then the best matching eviction candidate is returned to the
eviction strategy.
9. The expired or best matching eviction candidate is removed from the underlying data storage.
10. The new put entry is stored.
11. The put operation returns to the user.

As seen by the flowchart, the general eviction operation is easy. As long as the cache does not reach its maximum
capacity or you execute updates (put/replace), no eviction is executed.

To prevent network operations and concurrent access, as mentioned earlier, the cache size is estimated based on the
size of the currently handled partition. Due to the imbalanced partitions, the single partitions might start to evict
earlier than the other partitions.

As mentioned in the General Information section, typically two types of caches are found in the production systems.
For small caches, referred to as Reference Caches, the eviction algorithm has a special set of rules depending on the
maximum configured cache size. Please see the Reference Caches section for details. The other type of cache is
referred to as Active DataSet Cache, which in most cases makes heavy use of the eviction to keep the most active
data set in the memory. Those kinds of caches using a very simple but efficient way to estimate the cluster-wide
cache size.

All of the following calculations have a well known set of fixed variables:

GlobalCapacity: The user defined maximum cache size (cluster-wide).

PartitionCount: The number of partitions in the cluster (defaults to 271).

BalancedPartitionSize: The number of elements in a balanced partition state, BalancedPartitionSize
:= GlobalCapacity / PartitionCount.

e Deviation: An approximated standard deviation (tests proofed it to be pretty near), Deviation :=
sqrt(BalancedPartitionSize).

12.5.6.4.1 Reference Caches A Reference Cache is typically small and the number of elements to store in
the reference caches is normally known prior to creating the cache. Typical examples of reference caches are lookup
tables for abbreviations or the states of a country. They tend to have a fixed but small element number and the
eviction is an unlikely event and rather undesirable behavior.

Since an imbalanced partition is the worst problem in the small and mid-sized caches than for the caches with
millions of entries, the normal estimation rule (as discussed in a bit) is not applied to these kinds of caches. To
prevent unwanted eviction on the small and mid-sized caches, Hazelcast implements a special set of rules to estimate
the cluster size.

To adjust the imbalance of partitions as found in the typical runtime, the actual calculated maximum cache size (as
known as the eviction threshold) is slightly higher than the user defined size. That means more elements can be
stored into the cache than expected by the user. This needs to be taken into account especially for large objects,
since those can easily exceed the expected memory consumption!

Small caches:

If a cache is configured with no more than 4.000 element, this cache is considered to be a small cache. The actual
partition size is derived from the number of elements (GlobalCapacity) and the deviation using the following
formula:

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 199

MaxPartitionSize := Deviation * 5 + BalancedPartitionSize

This formula ends up with big partition sizes which summed up exceed the expected maximum cache size (set by
the user), but since the small caches typically have a well known maximum number of elements, this is not a big
issue. Only if the small caches are used for a use case other than using it as a reference cache, this needs to be
taken into account.

Mid-sized caches

A mid-sized cache is defined as a cache with a maximum number of elements that is bigger than 4.000 but not
bigger than 1.000.000 elements. The calculation of mid-sized caches is similar to that of the small caches but with
a different multiplier. To calculate the maximum number of elements per partition, the following formula is used:

MaxPartitionSize := Deviation * 3 + BalancedPartitionSize

12.5.6.4.2 Active DataSet Caches For large caches, where the maximum cache size is bigger than 1.000.000
elements, there is no additional calculation needed. The maximum partition size is considered to be equal to
BalancedPartitionSize since statistically big partitions are expected to almost balance themselves. Therefore,
the formula is as easy as the following:

MaxPartitionSize := BalancedPartitionSize

12.5.6.4.3 Cache Size Estimation As mentioned earlier, Hazelcast JCache provides an estimation algorithm
to prevent cluster-wide network operations, concurrent access to other partitions and background tasks. It also
offers a highly predictable operation runtime when the eviction is necessary.

The estimation algorithm is based on the previously calculated maximum partition size (please see the Reference
Caches section and Active DataSet Caches section) and is calculated against the current partition only.

The algorithm to reckon the number of stored entries in the cache (cluster-wide) and if the eviction is necessary is
shown in the following pseudo-code example:

RequiresEviction[Boolean] := CurrentPartitionSize >= MaxPartitionSize

12.5.7 JCache Near Cache

Cache entries in Hazelcast are stored as partitioned across the cluster. When you try to read a record with the
key k, if the current node is not the owner of that key (i.e. not the owner of partition that the key belongs to),
Hazelcast sends a remote operation to the owner node. Each remote operation means lots of network trips. If your
cache is used for mostly read operations, it is advised to use a near cache storage in front of the cache itself to read

cache records faster and consume less network traffic. l NOTE: Near cache for JCache is only available for
clients NOT servers.

However, using near cache comes with some trade-off for some cases:

e There will be extra memory consumption for storing near cache records at local.

e If invalidation is enabled and entries are updated frequently, there will be many invalidation events across the
cluster.

e Near cache does not give strong consistency but gives eventual consistency guarantees. It is possible to read
stale data.

200 CHAPTER 12. HAZELCAST JCACHE

12.5.7.1 JCache Near Cache Invalidation

Invalidation is the process of removing an entry from the near cache since the entry is not valid anymore (its value
is updated or it is removed from actual cache). Near cache invalidation happens asynchronously at the cluster level,
but synchronously in real-time at the current node. This means when an entry is updated (explicitly or via entry
processor) or removed (deleted explicitly or via entry processor, evicted, expired), it is invalidated from all near
caches asynchronously within the whole cluster but updated/removed at/from the current node synchronously.
Generally, whenever the state of an entry changes in the record store by updating its value or removing it, the
invalidation event is sent for that entry.

Invalidation events can be sent either individually or in batches. If there are lots of mutating operations such as
put/remove on the cache, sending the events in batches is advised. This reduces the network traffic and keeps the
eventing system less busy.

You can use the following system properties to configure the sending of invalidation events in batches:

e hazelcast.cache.invalidation.batch.enabled: Specifies whether the cache invalidation event batch
sending is enabled or not. The default value is true.

e hazelcast.cache.invalidation.batch.size: Defines the maximum number of cache invalidation events
to be drained and sent to the event listeners in a batch. The default value is 100.

e hazelcast.cache.invalidation.batchfrequency.seconds: Defines cache invalidation event batch sending
frequency in seconds. When event size does not reach to hazelcast.cache.invalidation.batch.size in
the given time period, those events are gathered into a batch and sent to the target. The default value is 5
seconds.

So if there are so many clients or so many mutating operations, batching should remain enabled and the batch size
should be configured with the hazelcast.cache.invalidation.batch.size system property to a suitable value.

12.5.7.2 JCache Near Cache Expiration

Expiration means the eviction of expired records. A record is expired: - if it is not touched (accessed/read) for
<max-idle-seconds>, - <time-to-live-seconds> passed since it is put to near-cache.

Expiration is performed in two cases:

e When a record is accessed, it is checked about if it is expired or not. If it is expired, it is evicted and returns
null to caller.

e In the background, there is an expiration task that periodically (currently 5 seconds) scans records and evicts
the expired records.

12.5.7.3 JCache Near Cache Eviction

In the scope of near cache, eviction means evicting (clearing) the entries selected according to the given
eviction-policy when the specified max-size-policy has been reached. Eviction is handled with max-size
policy and eviction-policy elements. Please see the JCache Near Cache Configuration section.

12.5.7.3.1 max-size-policy This element defines the state when near cache is full and whether the eviction
should be triggered. The following policies for maximum cache size are supported by the near cache eviction:

e ENTRY__COUNT: Maximum size based on the entry count in the near cache. Available only for BINARY
and OBJECT in-memory formats.

e USED_NATIVE_MEMORY_ SIZE: Maximum used native memory size of the specified near cache in
MB to trigger the eviction. If the used native memory size exceeds this threshold, the eviction is triggered.
Available only for NATIVE in-memory format. This is supported only by Hazelcast Enterprise.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 201

e USED_NATIVE_MEMORY__PERCENTAGE: Maximum used native memory percentage of the
specified near cache to trigger the eviction. If the native memory usage percentage (relative to maximum
native memory size) exceeds this threshold, the eviction is triggered. Available only for NATIVE in-memory
format. This is supported only by Hazelcast Enterprise.

e FREE__NATIVE__MEMORY_ SIZE: Minimum free native memory size of the specified near cache in
MB to trigger the eviction. If free native memory size goes down below of this threshold, eviction is triggered.
Available only for NATIVE in-memory format. This is supported only by Hazelcast Enterprise.

e FREE_NATIVE_MEMORY__PERCENTAGE: Minimum free native memory percentage of the spec-
ified near cache to trigger eviction. If free native memory percentage (relative to maximum native memory
size) goes down below of this threshold, eviction is triggered. Available only for NATIVE in-memory format.
This is supported only by Hazelcast Enterprise.

12.5.7.3.2 eviction-policy Once a near cache is full (reached to its maximum size as specified with the
max-size-policy element), an eviction policy determines which, if any, entries must be evicted. Currently, the
following eviction policies are supported by near cache eviction:

e LRU (Least Recently Used)
e LFU (Least Frequently Used)

12.5.7.4 JCache Near Cache Configuration

The following are the example configurations.

Declarative:

<hazelcast-client>

<near-cache name="myCache">
<in-memory-format>BINARY</in-memory-format>
<invalidate-on-change>true</invalidate-on-change>
<cache-local-entries>false</cache-local-entries>
<time-to-live-seconds>3600000</time-to-live-seconds>
<max-idle-seconds>600000</max-idle-seconds>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>
</near-cache>

</hazelcast-client>
Programmatic:

EvictionConfig evictionConfig = new EvictionConfig();
evictionConfig.setMaxSizePolicy(MaxSizePolicy.ENTRY_COUNT) ;
evictionConfig.setEvictionPolicy(EvictionPolicy.LFU);
evictionConfig.setSize(10000);

NearCacheConfig nearCacheConfig =
new NearCacheConfig()

.setName ("myCache")
.setInMemoryFormat (InMemoryFormat .BINARY)
.setInvalidateOnChange (true)
.setCacheLocalEntries(false)
.setTimeToLiveSeconds (60 * 60 * 1000) // 1 hour TTL
.setMaxIdleSeconds (10 * 60 * 1000) // 10 minutes moz idle seconds
.setEvictionConfig(evictionConfig) ;

clientConfig.addNearCacheConfig(nearCacheConfig) ;

202 CHAPTER 12. HAZELCAST JCACHE

The following are the definitions of the configuration elements and attributes.

e in-memory-format: Storage type of near cache entries. Available values are BINARY, OBJECT and
NATIVE_MEMORY. NATIVE_MEMORY is available only for Hazelcast Enterprise. Default value is BINARY.

e invalidate-on-change: Specifies whether the cached entries are evicted when the entries are changed
(updated or removed) on the local and global. Available values are true and false. Default value is true.

e cache-local-entries: Specifies whether the local cache entries are stored eagerly (immediately) to near
cache when a put operation from the local is performed on the cache. Available values are true and false.
Default value is false.

e time-to-live-seconds: Maximum number of seconds for each entry to stay in the near cache. Entries that
are older than <time-to-live-seconds> will be automatically evicted from the near cache. It can be any
integer between 0 and Integer.MAX_VALUE. O means infinite. Default value is 0.

e max-idle-seconds: Maximum number of seconds each entry can stay in the near cache as untouched (not-
read). Entries that are not read (touched) more than <max-idle-seconds> value will be removed from the
near cache. It can be any integer between 0 and Integer.MAX_VALUE. O means Integer.MAX_VALUE. Default
is 0.

e eviction: Specifies when the eviction is triggered (max-size policy) and which eviction policy (LRU or LFU)
is used for the entries to be evicted. The default value for max-size-policy is ENTRY_COUNT, default size is
10000 and default eviction-policy is LRU. For High-Density Memory Store near cache, since ENTRY_COUNT
eviction policy is not supported yet, eviction must be explicitly configured with one of the supported policies:

USED_NATIVE_MEMORY_SIZE
USED_NATIVE_MEMORY_PERCENTAGE
FREE_NATIVE_MEMORY_SIZE
FREE_NATIVE_MEMORY_PERCENTAGE.

Near cache can be configured only at the client side.

12.5.7.5 Notes About Client Near Cache Configuration

Near cache configuration can be defined at the client side (using hazelcast-client.xml or ClientConfig) as
independent configuration (independent from the CacheConfig). Near cache configuration lookup is handled as
described below:

e Look for near cache configuration with the name of the cache given in the client configuration.
e If a defined near cache configuration is found, use this near cache configuration defined at the client.
e Otherwise:

— If there is a defined default near cache configuration is found, use this default near cache configuration.
— If there is no default near cache configuration, it means there is no near cache configuration for cache.

12.5.8 Additional Methods

In addition to the operations explained in the Async Operations section and Custom ExpiryPolicy section, Hazelcast
ICache also provides a set of convenience methods. These methods are not part of the JCache specification.

e size(): Returns the estimated size of the distributed cache.

e destroy(): Destroys the cache and removes the data from memory. This is different from the method
javax.cache.Cache: :close.

e getLocalCacheStatistics(): Returns a com.hazelcast.cache.CacheStatistics instance providing the
same statistics data as the JMX beans. This method is not available yet on Hazelcast clients: the exception
java.lang.UnsupportedOperationException is thrown when you use this method on a Hazelcast client.

12.5. HAZELCAST JCACHE EXTENSION - ICACHE 203

12.5.9 BackupAwareEntryProcessor

Another feature, especially interesting for distributed environments like Hazelcast, is the JCache specified
javax.cache.processor.EntryProcessor. For more general information, please see the JCache EntryProcessor
section.

Since Hazelcast provides backups of cached entries on other nodes, the default way to backup an object changed by
an EntryProcessor is to serialize the complete object and send it to the backup partition. This can be a huge
network overhead for big objects.

Hazelcast offers a sub-interface for EntryProcessor called com.hazelcast.cache.BackupAwareEntryProcessor.
This allows the user to create or pass another EntryProcessor to run on backup partitions and apply delta changes
to the backup entries.

The backup partition EntryProcessor can either be the currently running processor (by returning this) or it
can be a specialized EntryProcessor implementation (other from the currently running one) which does different
operations or leaves out operations, e.g. sending emails.

If we again take the EntryProcessor example from the demonstration application provided in the JCache
EntryProcessor sectiob, the changed code will look like the following snippet.

public class UserUpdateEntryProcessor
implements BackupAwareEntryProcessor<Integer, User, User> {

@0verride
public User process(MutableEntry<Integer, User> entry, Object... arguments)
throws EntryProcessorException {

// Test arguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username');

3

// Get first argument and test for String type
Object argument = arguments[0];
if (!'(argument instanceof String)) {
throw new EntryProcessorException(
"First argument has wrong type, required java.lang.String");

}

// Retrieve the wvalue from the MutableEntry
User user = entry.getValue();

// Retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// Set the mew username
user.setUsername(newUsername);

// Set the changed user to mark the entry as dirty
entry.setValue(user);

// Return the changed user to return it to the caller
return user;

}

public EntryProcessor<K, V, T> createBackupEntryProcessor() {
return this;

}
}

204 CHAPTER 12. HAZELCAST JCACHE

You can use the additional method BackupAwareEntryProcessor: :createBackupEntryProcessor to create or
return the EntryProcessor implementation to run on the backup partition (in the example above, the same
processor again).

. NOTE: For the backup runs, the returned value from the backup processor is ignored and not returned to the
user.

12.6 JCache Specification Compliance

Hazelcast JCache is fully compliant with the JSR 107 TCK (Technology Compatibility Kit), therefore it is officially
a JCache implementation. This is tested by running the TCK against the Hazelcast implementation.

You can test Hazelcast JCache for compliance by executing the TCK. Just perform the instructions below:

1. Checkout the TCK from https://github.com/jsr107/jsr107tck.
2. Change the properties in tck-parent/pom.xml as shown below.
3. Run the TCK by mvn clean install.

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<CacheInvocationContextImpl>
javax.cache.annotation.impl.cdi.CdiCacheKeyInvocationContextImpl
</CacheInvocationContextImpl>

<domain-lib-dir>${project.build.directory}/domainlib</domain-lib-dir>
<domain-jar>domain.jar</domain-jar>

<! —— HHHHAHAHRHRHRRRRRAAAA AR AR RRRRRAARRAA AR AR BB RRRAAAAAAAA AR RRRRE ——>
<!-- Change the following properties on the command line

to override with the coordinates for your implementation——>
<implementation-groupId>com.hazelcast</implementation-groupIld>
<implementation-artifactId>hazelcast</implementation-artifactId>
<implementation-version>3.4</implementation-version>

<!-- Change the following properties to your CacheManager and
Cache implementation. Used by the unwrap tests. ——>
<CacheManagerImpl>
com.hazelcast.client.cache.impl.HazelcastClientCacheManager
</CacheManagerImpl>
<CacheImpl>com.hazelcast.cache.ICache</CacheImpl>
<CacheEntryImpl>
com.hazelcast.cache.impl.CacheEntry
</CacheEntryImpl>

<!-- Change the following to point to your MBeanServer, so that
the TCK can resolwe it. —-->
<javax.management.builder.initial>
com.hazelcast.cache.impl.TCKMBeanServerBuilder
</javax.management.builder.initial>
<org.jsrl107.tck.management.agentId>
TCKMbeanServer
</org.jsr107.tck.management.agentId>
<jsr107.api.version>1.0.0</jsr107.api.version>

https://github.com/jsr107/jsr107tck

12.6. JCACHE SPECIFICATION COMPLIANCE 205

<!—— HARBHAAHRARHRBARRBARRRRRARBAARBRAARBAARBARRRAARRBARRRAARRBAARRAAAE ——>
</properties>

This will run the tests using an embedded Hazelcast Member.

206 CHAPTER 12. HAZELCAST JCACHE

Chapter 13

Integrated Clustering

In this chapter, we show you how Hazelcast is integrated with Hibernate 2nd level cache and Spring, and how
Hazelcast helps with your Filter, Tomcat and Jetty based web session replications.

The Hibernate Second Level Cache section tells how you should configure Hazelcast and Hibernate to integrate
them. It explains the modes of Hazelcast that can be used by Hibernate and also provides how to perform advanced
settings like accessing the underlying HazelcastInstance used by Hibernate.

The Web Session Replication section provides information on how to cluster user HT TP sessions automatically.
Also, you can learn how to enable session replication for JEE web applications with Tomcat and Jetty containers.
Please note that Tomcat and Jetty based web session replications are Hazelcast Enterprise only modules.

The Spring Integration section tells how you can integrate Hazelcast into a Spring project by explaining the
Hazelcast instance and client configurations with the hazelcast namespace. It also lists the supported Spring bean
attributes.

13.1 Hibernate Second Level Cache

Hazelcast provides distributed second level cache for your Hibernate entities, collections and queries.

13.1.1 Sample Code for Hibernate

Please see our sample application for Hibernate Second Level Cache.

13.1.2 Supported Hibernate Versions

e hibernate 3.3.x+
e hibernate 4.x

13.1.3 Hibernate Configuration

To configure for Hibernate, add hazelcast-hibernate3-<hazelcastversion>. jar or hazelcast- hibernate4-<hazelcastversion
into your classpath depending on your Hibernate version.

Then add the following properties into your Hibernate configuration file (e.g. hibernate.cfg.xml).

Enabling the use of second level cache
<property name="hibernate.cache.use_second_level_cache">true</property>

Hibernate RegionFactory

207

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/hibernate-2ndlevel-cache

208 CHAPTER 13. INTEGRATED CLUSTERING

e HazelcastCacheRegionFactory

HazelcastCacheRegionFactory uses Hazelcast Distributed Map to cache the data, so all cache operations
go through the wire.

<property name="hibernate.cache.region.factory_class">
com.hazelcast.hibernate.HazelcastCacheRegionFactory
</property>

e HazelcastLocalCacheRegionFactory

You can use HazelcastLocalCacheRegionFactory which stores data in a local node and sends invalidation
messages when an entry is updated/deleted locally.

<property name="hibernate.cache.region.factory_class">

com.hazelcast.hibernate.HazelcastLocalCacheRegionFactory
</property>

Optional Settings

e To enable use of query cache:
<property name="hibernate.cache.use_query_cache'">true</property>
e To force minimal puts into query cache:

<property name="hibernate.cache.use_minimal_puts">true</property>

. NOTE: QueryCache is always LOCAL to the node and never distributed across Hazelcast Cluster.

13.1.4 Hazelcast Configuration for Hibernate

e To configure Hazelcast for Hibernate, put the configuration file named hazelcast.xml into the root of
your classpath. If Hazelcast cannot find hazelcast.xml, then it will use the default configuration from
hazelcast. jar.

e You can define a custom-named Hazelcast configuration XML file with one of these Hibernate configuration
properties.

<property name="hibernate.cache.provider_configuration_file_resource_path">
hazelcast-custom-config.xml
</property>

<property name="hibernate.cache.hazelcast.configuration_file_path">
hazelcast-custom-config.xml
</property>

Hazelcast creates a separate distributed map for each Hibernate cache region. You can easily configure these regions
via Hazelcast map configuration. You can define backup, eviction, TTL and Near Cache properties.

e Backup Configuration
e Lviction And TTL Configuration

e Near Cache Configuration

13.1. HIBERNATE SECOND LEVEL CACHE 209

13.1.5 RegionFactory Options

13.1.5.0.1 HazelcastCacheRegionFactory HazelcastCacheRegionFactory wuses standard Hazelcast
Distributed Maps. All operations like get, put, and remove will be performed using the Distributed Map
logic. The only downside of using HazelcastCacheRegionFactory may be the lower performance compared to
HazelcastLocalCacheRegionFactory since operations are handled as distributed calls.

With HazelcastCacheRegionFactory, all of the following caches are distributed across Hazelcast Cluster.

NOTE: If you use HazelcastCacheRegionFactory, you can see your maps on Management Center.

e Entity Cache
e Collection Cache
e Timestamp Cache

13.1.5.0.2 HazelcastLocalCacheRegionFactory With HazelcastLocalCacheRegionFactory, each cluster
member has a local map and each of them is registered to a Hazelcast Topic (ITopic). Whenever a put or remove
operation is performed on a member, an invalidation message is generated on the ITopic and sent to the other
members. Those other members remove the related key-value pair on their local maps as soon as they get these
invalidation messages. The new value is only updated on this member when a get operation runs on that key. In
the case of get operations, invalidation messages are not generated and reads are performed on the local map.

An illustration of the above logic is shown below.

Registerad .) Registered
* InvalidationSenderTopic +
. .
. r LN
InvalidationMessage - Invh 2 ", InvM

[Irvh} b .,
&
e

Local Map Local Map Local Map

v '
put (keyl, newvalue) (keylalnel) (kefl—waluel)
(keyl, newvalue) (key2, wvalue) (key2, wvaluei)
(key2, wvaluel) (key3, walue3l) (key3, walua3)
(key3, valuad)
Node 1 MNode 2 Made M

Figure 13.1: image

If your operations are mostly reads, then this option gives better performance.

l NOTE: If you use HazelcastLocalCacheRegionFactory, you cannot see your maps on Management
Center.

With HazelcastLocalCacheRegionFactory, all of the following caches are not distributed and are kept locally in
the Hazelcast Node.

e Entity Cache

210 CHAPTER 13. INTEGRATED CLUSTERING

e Collection Cache
e Timestamp Cache

Entity and Collection are invalidated on update. When they are updated on a node, an invalidation message is sent
to all other nodes in order to remove the entity from their local cache. When needed, each node reads that data
from the underlying DB.

Timestamp cache is replicated. On every update, a replication message is sent to all the other nodes.

Eviction support is limited to maximum size of the map (defined by max-size configuration element) and TTL
only. When maximum size is hit, 20% of the entries will be evicted automatically.

13.1.6 Hazelcast Modes for Hibernate Usage

Hibernate 2nd Level Cache can use Hazelcast in two modes: Peer-to-Peer and Client/Server.

13.1.6.1 P2P (Peer-to-Peer)

With P2P mode, each Hibernate deployment launches its own Hazelcast Instance. You can also configure Hibernate
to use an existing instance, so instead of creating a new HazelcastInstance for each SessionFactory, you can
use an existing instance by setting the hibernate.cache.hazelcast.instance_name Hibernate property to the
HazelcastInstance’s name. For more information, please see the Named HazelcastInstance section.

Disabling shutdown during SessionFactory.close()

Shutting down HazelcastInstance can be disabled during SessionFactory.close(). To achieve this set the
Hibernate property hibernate.cache.hazelcast.shutdown_on_session_factory_close to false. (In this case
Hazelcast property hazelcast.shutdownhook. enabled should not be set to false.) Default value is true.

13.1.6.2 Client/Server

e You can set up Hazelcast to connect to the cluster as Native Client. Native client is not a member; it connects
to one of the cluster members and delegates all cluster wide operations to it. When the relied cluster member
dies, client will transparently switch to another live member.

<property name="hibernate.cache.hazelcast.use_native_client">true</property>

To set up Native Client, add the Hazelcast group-name, group-password and cluster member address
properties. Native Client will connect to the defined member and will get the addresses of all members in the
cluster. If the connected member dies or leaves the cluster, the client will automatically switch to another member
in the cluster.

<property name="hibernate.cache.hazelcast.native_client_address">10.34.22.15</property>
<property name="hibernate.cache.hazelcast.native_client_group">dev</property>
<property name="hibernate.cache.hazelcast.native_client_password">dev-pass</property>

l NOTE: To use Native Client, add hazelcast-client-<version>. jar into your classpath. Refer to Clients
for more information.

13.1.7 Hibernate Concurrency Strategies

Hibernate has four cache concurrency strategies: read-only, read-write, nonstrict-read-write and transactional.
Hibernate does not force cache providers to support all those strategies. Hazelcast supports the first three: read-only,
read-write, and nonstrict-read-write. It has no support for transactional strategy yet.

13.2. WEB SESSION REPLICATION 211

e If you are using XML based class configurations, add a cache element into your configuration with the usage
attribute set to one of the read-only, read-write, or nonstrict-read-write strategies.

<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>

</class>

<class name="eg.Cat" >

<cache usage='read-write"/>

<set name="kittens" ... >
<cache usage="read-write'"/>

</set>

</class>

e If you are using Hibernate-Annotations, then you can add a class-cache or collection-cache element into your
Hibernate configuration file with the usage attribute set to read only, read/write, or nonstrict read/write.

<class-cache usage='read-only" class="eg.Immutable"/>
<class-cache usage="read-write" class="eg.Cat"/>
<collection-cache collection="eg.Cat.kittens" usage="read-write'"/>

e Or alternatively, you can put Hibernate Annotation’s @Cache annotation on your entities and collections.

Q@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Cat implements Serializable {

}

13.1.8 Advanced Settings

Accessing underlying HazelcastInstance

Using com.hazelcast.hibernate.instance.HazelcastAccessor, you can access the underlying HazelcastInstance
used by Hibernate SessionFactory.

SessionFactory sessionFactory = ...;
HazelcastInstance hazelcastInstance = HazelcastAccessor
.getHazelcastInstance(sessionFactory) ;

Changing/setting lock timeout value of read-write strategy

You can set a lock timeout value using the hibernate.cache.hazelcast.lock_timeout_in_seconds Hibernate
property. The value should be in seconds. The default value is 300 seconds.

13.2 Web Session Replication

If you are using Tomcat as your web container, please see the Tomcat based Web Session Replication section.

212 CHAPTER 13. INTEGRATED CLUSTERING

13.2.1 Filter Based Web Session Replication

Sample Code: Please see our sample application for Filter Based Web Session Replication.

Assume that you have more than one web server (A, B, C) with a load balancer in front of it. If server A goes
down, your users on that server will be directed to one of the live servers (B or C), but their sessions will be lost.

We need to have all these sessions backed up somewhere if we do not want to lose the sessions upon server crashes.
Hazelcast Web Manager (WM) allows you to cluster user HT'TP sessions automatically. The following are required
before enabling Hazelcast Session Clustering:

e Target application or web server should support Java 1.6 or higher.
e Target application or web server should support Servlet 3.0 or higher spec.
e Session objects that need to be clustered have to be Serializable.

e In the client/server architecture, session classes does not have to be present in the server classpath.
Here are the steps to setup Hazelcast Session Clustering:

e Put the hazelcast and hazelcast-wm jars in your WEB-INF/1ib directory. Optionally, if you wish to connect
to a cluster as a client, add hazelcast-client as well.

e Put the following XML into web.xml file. Make sure Hazelcast filter is placed before all the other filters if
any; for example, you can put it at the top.

<filter>
<filter-name>hazelcast-filter</filter-name>
<filter-class>com.hazelcast.web.WebFilter</filter-class>
<l--
Name of the distributed map storing
your web session objects
-—>
<init-param>
<param-name>map-name</param-name>
<param-value>my-sessions</param-value>
</init-param>
<I--
TTL value of the distributed map storing
your web session objects.
Any integer between 0 and Integer.MAX_VALUE.
Default s O which is infinite.
-—>
<init-param>
<param-name>session-ttl-seconds</param-name>
<param-value>0</param-value>
</init-param>
<I--
How is your load-balancer configured?
sticky-session means all requests of a session
ts routed to the node where the session ts first created.
This ts excellent for performance.
If sticky-session is set to false, when a sesston ©s updated
on a node, entry for this session on all other nodes ts invalidated.
You have to know how your load-balancer ts configured before
setting this parameter. Default is true.
-—>
<init-param>
<param-name>sticky-session</param-name>

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/filter-based-session-replication

13.2. WEB SESSION REPLICATION 213

<param-value>true</param-value>
</init-param>
<l--
Name of session id cookie
-—>
<init-param>
<param-name>cookie-name</param-name>
<param-value>hazelcast.sessionId</param-value>
</init-param>
<l-=
Domain of session id cookie. Default is based on incoming request.
-=>
<init-param>
<param-name>cookie-domain</param-name>
<param-value>.mywebsite.com</param-value>
</init-param>
<l--
Should cookie only be sent using a secure protocol? Default is false.
-—>
<init-param>
<param-name>cookie-secure</param-name>
<param-value>false</param-value>
</init-param>
<l--
Should HttpOnly attribute be set on cookie ? Default is false.
-—>
<init-param>
<param-name>cookie-http-only</param-name>
<param-value>false</param-value>
</init-param>
<I--=
Are you debugging? Default is false.
-=>
<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</init-param>
<l--
Configuration zml location;
* as servlet resource UR
* as classpath resource UR
* as URL
Default is one of hazelcast-default.zml
or hazelcast.zml in classpath.
-=>
<init-param>
<param-name>config-location</param-name>
<param-value>/WEB-INF/hazelcast.xml</param-value>
</init-param>
<l--
Do you want to use an existing HazelcastInstance?
Default 2s null.
-—>
<init-param>
<param-name>instance-name</param-name>
<param-value>default</param-value>
</init-param>
<!I--=

214 CHAPTER 13. INTEGRATED CLUSTERING

Do you want to conmnect as a client to an existing cluster?
Default 2s false.
-—>
<init-param>
<param-name>use-client</param-name>
<param-value>false</param-value>
</init-param>
<l--
Client configuration location;
* as servlet resource UR
* as classpath resource UR
* as URL
Default 2s null.
-—>
<init-param>
<param-name>client-config-location</param-name>
<param-value>/WEB-INF/hazelcast-client.properties</param-value>
</init-param>
<l--
Do you want to shutdown HazelcastInstance during
web application undeploy process?
Default is true.
-—=>
<init-param>
<param-name>shutdown-on-destroy</param-name>
<param-value>true</param-value>
</init-param>
<l--
Do you want to cache sesstons locally in each instance?
Default 2s false.
-—>
<init-param>
<param-name>deferred-write</param-name>
<param-value>false</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>hazelcast-filter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>

<listener>
<listener-class>com.hazelcast.web.SessionlListener</listener-class>
</listener>

e Package and deploy your war file as you would normally do.

It is that easy. All HTTP requests will go through Hazelcast WebFilter and it will put the session objects into
Hazelcast distributed map if needed.

13.2.2 Spring Security Support

Sample Code: Please see our sample application for Spring Security Support.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-security

13.2. WEB SESSION REPLICATION 215

If Spring based security is used for your application, you should use com.hazelcast.web.spring.SpringAwareWebFilter
instead of com.hazelcast.web.WebFilter in your filter definition.

<filter>
<filter-name>hazelcast-filter</filter-name>
<filter-class>com.hazelcast.web.spring.SpringAwareWebFilter</filter-class>

</filter>

SpringAwareWebFilter notifies Spring by publishing events to Spring context. These events are used by the
org.springframework.security.core.session.SessionRegistry instance.

As before, you must also define com.hazelcast.web.SessionListener in your web.xml. However, you do not
need to define org.springframework.security.web.session.HttpSessionEventPublisher in your web.xml as
before, since SpringAwareWebFilter already informs Spring about session based events like create or destroy.

13.2.2.1 Client Mode vs. P2P Mode

Hazelcast Session Replication works as P2P by default. To switch to Client/Server architecture, you need to
set the use-client parameter to true. P2P mode is more flexible and requires no configuration in advance; in
Client/Server architecture, clients need to connect to an existing Hazelcast Cluster. In case of connection problems,
clients will try to reconnect to the cluster. The default retry count is 3. In the client/server architecture, if servers
goes down, Hazelcast web manager will keep the updates in the local and after servers come back, the clients will
update the distributed map.

13.2.2.2 Caching Locally with deferred-write

If the value for deferred-write is set as true, Hazelcast will cache the session locally and will update the local
session when an attribute is set or deleted. At the end of the request, it will update the distributed map with all
the updates. It will not update the distributed map upon each attribute update, but will only call it once at the
end of the request. It will also cache it, i.e. whenever there is a read for the attribute, it will read it from the cache.

Important note about deferred-write=false setting:

If deferred-write is false, any update (i.e. setAttribute) on the session will directly be available in the cluster.
One exception to this behavior is the changes to the session attribute objects. To update an attribute cluster-wide,
setAttribute must be called after changes are made to the attribute object.

The following example explains how to update an attribute in the case of deferred-write=false setting:

session.setAttribute("myKey", new ArrayList());

List 1listl = session.getAttribute("myKey");

listl.add("myValue");

session.setAttribute ("myKey", 1listl); // changes updated in the cluster

13.2.2.3 Sessionld Generation

Sessionld generation is done by the Hazelcast Web Session Module if session replication is configured in the web
application. The default cookie name for the sessionld is hazelcast.sessionId. This name is configurable with
a cookie-name parameter in the web.xml file of the application. hazelcast.sessionId is just a UUID prefixed
with “HZ” character and without “-“ character, e.g. HZ6F2D036789E4404893E99C05D8CA70CT.

When called by the target application, the value of HttpSession.getId() is the same as the value of
hazelcast.sessionId.

216 CHAPTER 13. INTEGRATED CLUSTERING

13.2.2.4 Session Expiry

Hazelcast automatically removes sessions from the cluster if the sessions are expired on the Web Con-
tainer. This removal is done by com.hazelcast.web.SessionListener, which is an implementation of
javax.servlet.http.HttpSessionListener.

Default session expiration configuration depends on the Servlet Container that is being used. You can also define it
in your web.xml.

<session-config>
<session-timeout>60</session-timeout>
</session-config>

If you want to override session expiry configuration with a Hazelcast specific configuration, you can use
session-ttl-seconds to specify TTL on the Hazelcast Session Replication Distributed Map.

13.2.2.5 sticky-session

Hazelcast holds whole session attributes in a distributed map and in a local HTTP session. Local session is required
for fast access to data and distributed map is needed for fail-safety.

e If sticky-session is not used, whenever a session attribute is updated in a node (in both node local session
and clustered cache), that attribute should be invalidated in all other nodes’ local sessions, because now
they have dirty values. Therefore, when a request arrives at one of those other nodes, that attribute value is
fetched from clustered cache.

e To overcome the performance penalty of sending invalidation messages during updates, you can use sticky
sessions. If Hazelcast knows sessions are sticky, invalidation will not be sent because Hazelcast assumes there
is no other local session at the moment. When a server is down, requests belonging to a session hold in that
server will routed to other server, and that server will fetch session data from clustered cache. That means,
using sticky sessions, one will not suffer the performance penalty of accessing clustered data and can benefit
recover from a server failure.

13.2.2.6 transient-attributes

If you have some attributes that you do not want them to be distributed, you can mark those attributes as transient.
Transient attributes are kept in and when the server is shutdown, you lost the attribute values. You can set the
transient attributes in your web.xml file. Here is an example:

<init-param>
<param-name>transient-attributes</param-name>
<param-value>keyl,key2,key3</param-value>
</init-param>

13.2.3 Tomcat Based Web Session Replication

Enterprise Only

l NOTE: This feature is supported for Hazelcast Enterprise 3.3 or higher.

Sample Code: Please see our sample application for Tomcat Based Web Session Replication.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/enterprise-session-replication

13.2. WEB SESSION REPLICATION 217

13.2.3.1 Overview
Session Replication with Hazelcast Enterprise is a container specific module that enables session replication for
JEE Web Applications without requiring changes to the application.

Features

. Seamless Tomcat 6, 7 & 8 integration (Tomcat 8 is supported for Hazelcast Enterprise 3.5 or higher.)
. Support for sticky and non-sticky sessions
. Tomcat failover

=W N

. Deferred write for performance boost

Supported Containers

Tomcat Web Session Replication Module has been tested against the following containers.

e Tomcat 6.0.x - It can be downloaded here.
e Tomcat 7.0.x - It can be downloaded here.
e Tomcat 8.0.x - It can be downloaded here.

The latest tested versions are 6.0.39, 7.0.40 and 8.0.20.

Requirements

e Tomcat instance must be running with Java 1.6 or higher.
e Session objects that need to be clustered have to be Serializable.

13.2.3.2 How Tomcat Session Replication works

Tomcat Session Replication in Hazelcast Enterprise is a Hazelcast Module where each created HttpSession Object
is kept in the Hazelcast Distributed Map. If configured with Sticky Sessions, each Tomcat Instance has its own
local copy of the session for performance boost.

Since the sessions are in Hazelcast Distributed Map, you can use all the available features offered by Hazelcast
Distributed Map implementation, such as MapStore and WAN Replication.

Tomcat Web Sessions run in two different modes:

e P2P: all Tomcat instances launch its own Hazelcast Instance and join to the Hazelcast Cluster and,
e Client/Server: all Tomcat instances put/retrieve the session data to/from an existing Hazelcast Cluster.

13.2.3.3 P2P (Peer-to-Peer) Deployment

P2P deployment launches an embedded Hazelcast Node in each server instance.
Features

This type of deployment is simple: just configure your Tomcat and launch. There is no need for an external
Hazelcast cluster.

Sample P2P Configuration to use Hazelcast Session Replication

e Go to hazelcast.com and download the latest Hazelcast Enterprise.
e Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST _ENTERPRISE_ROOT.

e Update $HAZELCAST_ENTERPRISE_ROO0T/bin/hazelcast.xml with the provided Hazelcast Enterprise License
Key.

http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-80.cgi
http://www.hazelcast.com/products/hazelcast-enterprise/

218 CHAPTER 13. INTEGRATED CLUSTERING

e Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-all-<wersion>.jar, $HAZELCAST_
ENTERPRISE_ROOT/lib/hazelcast-enterprise-<tomcatversion>-<version>.jar and hazelcast.xml in
the folder $CATALINA_HOME/1ib/.

e Put a <Listener> element into the file $CATALINA_HOME$/conf/server.xml as shown below.

<Server>
;Listener className="com.hazelcast.session.P2PLifecycleListener"/>
</Server>
e Put a <Manager> element into the file $CATALINA_HOME$/conf/context.xml as shown below
<Context>
;Manager className="com.hazelcast.session.HazelcastSessionManager"/>
</CoA£éxt>
e Start Tomcat instances with a configured load balancer and deploy the web application.
Optional Attributes for Listener Element

e Optionally, you can add configlocation attribute into the <Listener> element. If not provided,
hazelcast.xml in the classpath is used by default. URL or full filesystem path as a configlocation value
is supported.

13.2.3.4 Client/Server Deployment

In this deployment type, Tomcat instances work as clients on an existing Hazelcast Cluster.

Features
e The existing Hazelcast cluster is used as the Session Replication Cluster.
e Offloading Session Cache from Tomcat to the Hazelcast Cluster.
e The architecture is completely independent. Complete reboot of Tomcat instances.

Sample Client/Server Configuration to use Hazelcast Session Replication

e Go to hazelcast.com and download the latest Hazelcast Enterprise.

Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.

Put $HAZELCAST_ENTERPRISE_RO0T/lib/hazelcast-client-<wersion>.jar, $HAZELCAST_ ENTERPRISE_ROOT/lib/ha
and $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-<tomcatversion>-<version>.jar in the
folder $CATALINA_HOME/1lib/.

Put a <Listener> element into the $CATALINA_HOME$/conf/server.xml as shown below.

<Server>
<Listener className="com.hazelcast.session.ClientServerLifecyclelListener"/>
</Server>

e Update the <Manager> element in the $CATALINA_HOME$/conf/context.xml as shown below.

http://www.hazelcast.com/products/hazelcast-enterprise/

13.2. WEB SESSION REPLICATION 219

<Context>
<Manager className="com.hazelcast.session.HazelcastSessionManager"
clientOnly="true"/>

</Context>

e Launch a Hazelcast Instance using $HAZELCAST_ENTERPRISE_ROOT/bin/server.sh or $HAZELCAST_
ENTERPRISE_ROOT/bin/server.bat.

e Start Tomcat instances with a configured load balancer and deploy the web application.
Optional Attributes for Listener Element

e Optionally, you can add configlocation attribute into the <Listener> element. If not provided,
hazelcast-client-default.xml in hazelcast-client-<wersion>.jar file is used by default. Any client
XML file in the classpath, URL or full filesystem path as a configlocation value is also supported.

13.2.3.5 Optional Attributes for Manager Element

<Manager> element is used both in P2P and Client/Server mode. You can use the following attributes to configure
Tomcat Session Replication Module to better serve your needs.

e Add mapName attribute into <Manager> element. Its default value is default Hazelcast Distributed Map.
Use this attribute if you have a specially configured map for special cases like WAN Replication, Eviction,
MapStore, etc.

e Add sticky attribute into <Manager> element. Its default value is true.

e Add processExpiresFrequency attribute into <Manager> element. It specifies the frequency of session
validity check, in seconds. Its default value is 6 and the minimum value that you can set is 1.

e Add deferredWrite attribute into <Manager> elemenet. Its default value is true.

13.2.3.6 Session Caching and deferred Write parameter

Tomcat Web Session Replication Module has its own nature of caching. Attribute changes during the HTTP
Request/HTTP Response cycle is cached by default. Distributing those changes to the Hazelcast Cluster is costly.
Because of that, Session Replication is only done at the end of each request for updated and deleted attributes.
The risk in this approach is losing data if a Tomcat crash happens in the middle of the HTTP Request operation.

You can change that behavior by setting deferredWrite=false in your <Manager> element. By disabling it, all
updates that are done on session objects are directly distributed into Hazelcast Cluster.

13.2.3.7 Session Expiry

Based on Tomcat configuration or sessionTimeout setting in web.xml, sessions are expired over time. This requires
a cleanup on the Hazelcast Cluster since there is no need to keep expired sessions in the cluster.

processExpiresFrequency, which is defined in <Manager>, is the only setting that controls the behavior of session
expiry policy in the Tomcat Web Session Replication Module. By setting this, you can set the frequency of the
session expiration checks in the Tomcat Instance.

13.2.3.8 Enabling Session Replication in Multi-App environment
Tomcat can be configured in two ways to enable Session Replication for deployed applications.

e Server Context.xml Configuration
e Application Context.xml Configuration

220 CHAPTER 13. INTEGRATED CLUSTERING

Server Context.zml Configuration

By configuring $CATALINA_HOME$/conf/context.xml, you can enable session replication for all applications
deployed in the Tomcat Instance.

Application Context.xml Configuration

By configuring $CATALINA_HOME/conf/ [enginename] /[hostname]/[applicationName] .xml, you can enable Ses-
sion Replication per deployed application.

13.2.3.9 Session Affinity

Sticky Sessions (default)
Sticky Sessions are used to improve the performance since the sessions do not move around the cluster.

Request goes always to the same instance where the session was firstly created. By using a sticky session, you
eliminate session replication problems mostly, except for the failover cases. In case of failovers, Hazelcast helps you
not lose existing sessions.

Non-Sticky Sessions

Non-Sticky Sessions are not good for performance because you need to move session data all over the cluster every
time a new request comes in.

However, load balancing might be super easy with Non-Sticky caches. In case of heavy load, you can distribute the
request to the least used Tomcat instance. Hazelcast supports Non-Sticky Sessions as well.

13.2.3.10 Tomcat Failover and jvmRoute Parameter
Each HTTP Request is redirected to the same Tomcat instance if sticky sessions are enabled. The parameter
jvmRoute is added to the end of session ID as a suffix, to make Load Balancer aware of the target Tomcat instance.

When Tomcat Failure happens and Load Balancer cannot redirect the request to the owning instance, it sends a
request to one of the available Tomcat instances. Since the jvmRoute parameter of session ID is different than that
of the target Tomcat instance, Hazelcast Session Replication Module updates the session ID of the session with the
new jvmRoute parameter. That means that the Session is moved to another Tomcat instance and Load Balancer
will redirect all subsequent HTTP Requests to the new Tomcat Instance.

l NOTE: If stickySession is enabled, jumRoute parameter must be set in $CATALINA_HOME$/conf/server.zml
and unique among Tomcat instances in the cluster.

<Engine name="Catalina" defaultHost="localhost" jvmRoute="tomcat-8080">

13.2.4 Jetty Based Web Session Replication

Enterprise Only

l NOTE: This feature is supported for Hazelcast Enterprise 8.4 or higher.

Sample Code: Please see our sample application for Jetty Based Web Session Replication.

13.2.4.1 Overview

Jetty Web Session Replication with Hazelcast Enterprise is a container specific module that enables session
replication for JEE Web Applications without requiring changes to the application.

Features

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/enterprise-session-replication

13.2. WEB SESSION REPLICATION 221

Jetty 7 & 8 & 9 support

Support for sticky and non-sticky sessions
Jetty failover

Deferred write for performance boost
Client/Server and P2P modes

Declarative and programmatic configuration

AR e

Supported Containers

Jetty Web Session Replication Module has been tested against the following containers.

e Jetty 7 - It can be downloaded here.
e Jetty 8 - It can be downloaded here.
e Jetty 9 - It can be downloaded here.

Latest tested versions are 7.6.16.v20140903, 8.1.16.v20140903 and 9.2.3.v20140905

Requirements

e Jetty instance must be running with Java 1.6 or higher.

e Session objects that need to be clustered have to be Serializable.

o Hazelcast Jetty-based Web Session Replication is built on top of the jetty-nosql module. This module
(jetty-nosql-<*jettyversion*>.jar) needs to be added to $JETTY_HOME/lib/ext. This module can be
found here.

13.2.4.2 How Jetty Session Replication Works

Jetty Session Replication in Hazelcast Enterprise is a Hazelcast Module where each created HttpSession Object’s
state is kept in Hazelcast Distributed Map.

Since the session data are in Hazelcast Distributed Map, you can use all the available features offered by Hazelcast
Distributed Map implementation, such as MapStore and WAN Replication.

Jetty Web Session Replication runs in two different modes:

e P2P: all Jetty instances launch its own Hazelcast Instance and join to the Hazelcast Cluster and,
e Client/Server: all Jetty instances put/retrieve the session data to/from an existing Hazelcast Cluster.

13.2.4.3 P2P (Peer-to-Peer) Deployment

P2P deployment launches embedded Hazelcast Node in each server instance.
Features

This type of deployment is simple: just configure your Jetty and launch. There is no need for an external Hazelcast
cluster.

Sample P2P Configuration to use Hazelcast Session Replication

e Go to hazelcast.com and download the latest Hazelcast Enterprise.
e Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.
e Update $HAZELCAST_ENTERPRISE_RO0T/bin/hazelcast.xml with the provided Hazelcast Enterprise License
Key.
e Put hazelcast.xml in the folder $JETTY_HOME/etc.
e Put $HAZELCAST_ENTERPRISE_ROO0T/lib/hazelcast-enterprise-all-<wersion>.jar, $HAZELCAST_
ENTERPRISE_ROO0T/lib/hazelcast-enterprise-<jetlyversion>-<wversion>. jar in the folder $JETTY_HOME/1lib/ext.
e Configure Session ID Manager and Session Manager. Please see the following explanations for configuring
these managers.

http://download.eclipse.org/jetty/stable-7/dist/
http://download.eclipse.org/jetty/stable-8/dist/
http://download.eclipse.org/jetty/stable-9/dist/
http://mvnrepository.com/artifact/org.eclipse.jetty/jetty-nosql
http://www.hazelcast.com/products/hazelcast-enterprise/

222 CHAPTER 13. INTEGRATED CLUSTERING

Configuring the HazelcastSessionldManager

You need to configure a com.hazelcast.session.HazelcastSessionIdManager instance in jetty.xml. Add the
following lines to your jetty.xml.

<Set name="sessionIdManager">
<New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">
<Arg><Ref id="Server"/></Arg>
<Set name="configlocation">etc/hazelcast.xml</Set>
</New>
</Set>

Configuring the HazelcastSessionManager

HazelcastSessionManager can be configured from a context.xml file. Each application has a context file in the
$CATALINA_HOME$/contexts folder. You need to create this context file if it does not exist. The context filename
must be the same as the application name, e.g. example.war should have a context file named example.xml.

The file context.xml should have the following content.

<Ref name="Server" id="Server">
<Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref>
<Set name="sessionHandler">
<New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg>
<New id="hazelcastMgr" class="com.hazelcast.session.HazelcastSessionManager">
<Set name="idManager">
<Ref id="hazelcastIdMgr"/>
</Set>
</New>
</Arg>
</New>
</Set>

e Start Jetty instances with a configured load balancer and deploy the web application.

. NOTE: In Jetty 9, there is no folder with the name contexts. You have to put the file context.xml* under
the webapps directory. And you need to add the following lines to contexzt.zml.*

<Ref name="Server" id="Server'">
<Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref>
<Set name="sessionHandler">
<New class="org.eclipse. jetty.server.session.SessionHandler">
<Arg>
<New id="hazelcastMgr" class="com.hazelcast.session.HazelcastSessionManager">
<Set name="sessionIdManager">
<Ref id="hazelcastIdMgr"/>
</Set>
</New>
</Arg>
</New>
</Set>

13.2. WEB SESSION REPLICATION 223

13.2.4.4 Client/Server Deployment

In client/server deployment type, Jetty instances work as clients to an existing Hazelcast Cluster.

Features

e Existing Hazelcast cluster is used as the Session Replication Cluster.
e The architecture is completely independent. Complete reboot of Jetty instances without losing data.

Sample Client/Server Configuration to use Hazelcast Session Replication

e Go to hazelcast.com and download the latest Hazelcast Enterprise.

e Unzip the Hazelcast Enterprise zip file into the folder $HAZELCAST_ENTERPRISE_ROOT.

e Update $HAZELCAST_ENTERPRISE_ROO0T/bin/hazelcast.xml with the provided Hazelcast Enterprise License
Key.

e Put hazelcast.xml in the folder $JETTY_HOME/etc.

e Put $HAZELCAST_ENTERPRISE_ROOT/lib/hazelcast-enterprise-all-<wersion>.jar, $HAZELCAST_
ENTERPRISE_ROO0T/lib/hazelcast-enterprise-<jettyversion>-<wversion>.jar in the folder $JETTY_HOME/lib/ext.

e Configure Session ID Manager and Session Manager. Please see below explanations for configuring these
managers.

Configuring the HazelcastSessionldManager

You need to configure a com.hazelcast.session.HazelcastSessionIdManager instance in jetty.xml. Add the
following lines to your jetty.xml.

<Set name='"sessionIdManager">
<New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">
<Arg><Ref id="Server"/></Arg>
<Set name="configlLocation">etc/hazelcast.xml</Set>
<Set name="clientOnly">true</Set>
</New>
</Set>

Configuring the HazelcastSessionManager

HazelcastSessionManager can be configured from a context.xml file. Each application has a context file under
the $CATALINA_HOME$/contexts folder. You need to create this context file if it does not exist. The context filename
must be the same as the application name, e.g. example.war should have a context file named example.xml.

<Ref name="Server" id="Server'">
<Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref>
<Set name="sessionHandler">
<New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg>
<New id="hazelMgr" class="com.hazelcast.session.HazelcastSessionManager">
<Set name="idManager">
<Ref id="hazelcastIdMgr"/>
</Set>
</New>
</Arg>
</New>
</Set>

. NOTE: In Jetty 9, there is no folder with name contexts. You have to put the file context.xml* file under
webapps directory. And you need to add below lines to contezt.zml.*

http://www.hazelcast.com/products/hazelcast-enterprise/

224 CHAPTER 13. INTEGRATED CLUSTERING

<Ref name="Server" id="Server'">
<Call id="hazelcastIdMgr" name="getSessionIdManager"/>
</Ref>
<Set name="sessionHandler">
<New class="org.eclipse.jetty.server.session.SessionHandler">
<Arg>
<New id="hazelMgr" class="com.hazelcast.session.HazelcastSessionManager">
<Set name="sessionIdManager">
<Ref id="hazelcastIdMgr"/>
</Set>
</New>
</Arg>
</New>
</Set>

e Launch a Hazelcast Instance using $HAZELCAST_ENTERPRISE_ROOT/bin/server.sh or $HAZELCAST_
ENTERPRISE_ROOT/bin/server.bat.

e Start Tomcat instances with a configured load balancer and deploy the web application.

13.2.4.5 Optional HazelcastSessionldManager Parameters

HazelcastSessionIdManager is used both in P2P and Client/Server mode. Use the following parameters to
configure the Jetty Session Replication Module to better serve your needs.

e workerName: Set this attribute to a unique value for each Jetty instance to enable session affinity with a
sticky-session configured load balancer.

e cleanUpPeriod: Defines the working period of session clean-up task in milliseconds.

e configlocation: specifies the location of hazelcast.xml.

13.2.4.6 Optional HazelcastSessionManager Parameters

HazelcastSessionManager is used both in P2P and Client/Server mode. Use the following parameters to configure
Jetty Session Replication Module to better serve your needs.

e savePeriod: Sets the interval of saving session data to the Hazelcast cluster. Jetty Web Session Replication
Module has its own nature of caching. Attribute changes during the HTTP Request/HTTP Response cycle
are cached by default. Distributing those changes to the Hazelcast Cluster is costly, so Session Replication is
only done at the end of each request for updated and deleted attributes. The risk with this approach is losing
data if a Jetty crash happens in the middle of the HTTP Request operation. You can change that behavior
by setting the savePeriod attribute.

Notes:

e If savePeriod is set to -2, HazelcastSessionManager.save method is called for every doPutOrRemove
operation.

e If it is set to -1, the same method is never called if Jetty is not shut down.

e If it is set to O (the default value), the same method is called at the end of request.

e If it is set to 1, the same method is called at the end of request if session is dirty.

13.2.4.7 Session Expiry

Based on Tomcat configuration or sessionTimeout setting in web.xml, the sessions are expired over time. This
requires a cleanup on Hazelcast Cluster, since there is no need to keep expired sessions in it.

cleanUpPeriod, which is defined in HazelcastSessionIdManager, is the only setting that controls the behavior of
session expiry policy in Jetty Web Session Replication Module. By setting this, you can set the frequency of the
session expiration checks in the Jetty Instance.

13.3. SPRING INTEGRATION 225

13.2.4.8 Session Affinity

HazelcastSessionIdManager can work in sticky and non-sticky setups.

The clustered session mechanism works in conjunction with a load balancer that supports stickiness. Stickiness can
be based on various data items, such as source IP address, or characteristics of the session ID, or a load-balancer
specific mechanism. For those load balancers that examine the session ID, HazelcastSessionIdManager appends
a node ID to the session ID, which can be used for routing. You must configure the HazelcastSessionIdManager
with a workerName that is unique across the cluster. Typically the name relates to the physical node on which the
instance is executed. If this name is not unique, your load balancer might fail to distribute your sessions correctly.
If sticky sessions are enabled, the workerName parameter has to be set, as shown below.

<Set name="sessionIdManager">
<New id="hazelcastIdMgr" class="com.hazelcast.session.HazelcastSessionIdManager">
<Arg><Ref id="Server"/></Arg>
<Set name="configlLocation">etc/hazelcast.xml</Set>
<Set name="workerName'">unique-worker-1</Set>
</New>
</Set>

13.3 Spring Integration

You can integrate Hazelcast with Spring and this chapter explains the configuration of Hazelcast within Spring
context.

13.3.1 Supported Versions

e Spring 2.5+

13.3.2 Spring Configuration

Sample Code: Please see our sample application for Spring Configuration.

13.3.2.1 Bean Declaration by Spring beans Namespace

Classpath Configuration

This configuration requires the following jar file in the classpath:
e hazelcast-<wersion>.jar

Bean Declaration

You can declare Hazelcast Objects using the default Spring beans namespace. You can find an example usage of
Hazelcast Instance declaration as follows:

<bean id="instance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
<constructor-arg>
<bean class="com.hazelcast.config.Config">
<property name="groupConfig">
<bean class="com.hazelcast.config.GroupConfig">
<property name="name" value="dev"/>
<property name="password" value="pwd"/>
</bean>
</property>

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-configuration

226 CHAPTER 13. INTEGRATED CLUSTERING

<!-- and so on ... —=>
</bean>
</constructor-arg>
</bean>

<bean id="map" factory-bean="instance" factory-method="getMap">
<constructor-arg value="map'"/>
</bean>

13.3.2.2 Bean Declaration by hazelcast Namespace

Classpath Configuration
Hazelcast-Spring integration requires the following JAR files in the classpath:

e hazelcast-spring-<wersion>.jar
e hazelcast-<wersion>.jar

or
e hazelcast-all-<wersion>.jar

Bean Declaration

Hazelcast has its own namespace hazelcast for bean definitions. You can easily add the namespace declaration
xmins:hz=“http: //www.hazelcast.com/schema/spring” to the beans element in the context file so that hz namespace
shortcut can be used as a bean declaration.

Here is an example schema definition for Hazelcast 3.3.x:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:hz="http://www.hazelcast.com/schema/spring"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

13.3.2.3 Supported Configurations with hazelcast Namespace

e Hazelcast Instance Configuration

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"
multicast-group="224.2.2.3"
multicast-port="54327"/>
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>
</hz:tcp-ip>
</hz:join>
</hz:network>
<hz:map name="map"
backup-count="2"

13.3. SPRING INTEGRATION

max-size="0"
eviction-percentage="30"
read-backup-data="true"
eviction-policy="NONE"

merge-policy="com.hazelcast.map.merge.PassThroughMergePolicy"/>

</hz:config>
</hz:hazelcast>

e Hazelcast Client Configuration

<hz:client id="client">

<hz:group name="${cluster.group.name}" password="${cluster.group.password}" />

<hz:network connection-attempt-limit="3"

connection-attempt-period="
connection-timeout="1000"
redo-operation="true"
smart-routing="true">
<hz:member>10.10.1.2:5701</hz:member>
<hz:member>10.10.1.3:5701</hz:member>

</hz:network>
</hz:client>

<hz
<hz

<hz

<hz:

<hz

<hz:
<hz:
<hz:

<hz:

<hz:
<hz:

3000"

e Hazelcast Supported Type Configurations and Examples

— map
— multiMap

— replicatedmap
— queue

— topic

— set

— list

— executorService
— idGenerator

— atomicLong

— atomicReference
— semaphore

— countDownLatch
— lock

:map id="map" instance-ref="client" name="map" lazy-init="true" />
:multiMap id="multiMap" instance-ref="instance" name="multiMap"

lazy-init="false" />

:replicatedmap id="replicatedmap" inst
name="replicatedmap" lazy-init="false
queue id="queue" instance-ref='"client
lazy-init="true" depends-on="instance
:topic id="topic" instance-ref="instan
depends-on="instance, client"/>

list id="list" instance-ref="instance
executorService id="executorService"
name="executorService"/>

idGenerator id="idGenerator" instance
name="idGenerator"/>

atomicReference id="atomicReference"

ance-ref="instance"
n />

" name="

l|/>

ce" name="topic"

queue"

set id="set" instance-ref="instance" name="set" />

" name="list"/>
instance-ref="client"

-ref="instance"

atomicLong id="atomicLong" instance-ref="instance" name="atomicLong"/>

instance-ref="instance"

227

228 CHAPTER 13. INTEGRATED CLUSTERING

name="atomicReference"/>
<hz:semaphore id="semaphore" instance-ref="instance" name="semaphore"/>
<hz:countDownLatch id="countDownLatch" instance-ref="instance"
name="countDownLatch"/>
<hz:lock id="lock" instance-ref="instance" name="lock"/>

e Supported Spring Bean Attributes
Hazelcast also supports lazy-init, scope and depends-on bean attributes.

<hz:hazelcast id="instance" lazy-init="true" scope="singleton">

</hz:hazelcast>
<hz:client id="client" scope='"prototype" depends-on="instance">

</hz:client>
e MapStore and NearCache Configuration
For map-store, you should set either the class-name or the implementation attribute.

<hz:config>
<hz:map name="mapl">
<hz:near-cache time-to-live-seconds="0" max-idle-seconds="60"
eviction-policy="LRU" max-size="5000" invalidate-on-change="true"/>

<hz:map-store enabled="true" class-name="com.foo.DummyStore"
write-delay-seconds="0"/>
</hz:map>

<hz:map name="map2">
<hz:map-store enabled="true" implementation="dummyMapStore"
write-delay-seconds="0"/>
</hz:map>

<bean id="dummyMapStore" class="com.foo.DummyStore" />
</hz:config>

13.3.3 Spring Managed Context with @QSpringAware

Hazelcast Distributed Objects could be marked with @SpringAware if the object wants:

e to apply bean properties,
e to apply factory callbacks such as ApplicationContextAware, BeanNameAware,
e to apply bean post-processing annotations such as InitializingBean, @PostConstruct.

Hazelcast Distributed ExecutorService, or more generally any Hazelcast managed object, can benefit from these
features. To enable SpringAware objects, you must first configure HazelcastInstance using hazelcast namespace
as explained in the Spring Configuration section and add <hz:spring-aware /> tag.

13.3.3.1 SpringAware Examples

e Configure a Hazelcast Instance (3.3.x) via Spring Configuration and define someBean as Spring Bean.
e Add <hz:spring-aware /> to Hazelcast configuration to enable @SpringAware.

13.3. SPRING INTEGRATION 229

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:hz="http://www.hazelcast.com/schema/spring"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

<context:annotation-config />

<hz:hazelcast id="instance">
<hz:config>
<hz:spring-aware />
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false" />
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>
</hz:tcp-ip>
</hz:join>
</hz:network>

</hz:config>
</hz:hazelcast>

<bean id="someBean" class="com.hazelcast.examples.spring.SomeBean"
scope="singleton" />

</beans>
Distributed Map Example:

e Create a class called SomeValue which contains Spring Bean definitions like ApplicationContext and
SomeBean.

OSpringAware

@Component ("someValue")

@Scope("prototype")

public class SomeValue implements Serializable, ApplicationContextAware {

private transient ApplicationContext context;

private transient SomeBean someBean;

private transient boolean init = false;

public void setApplicationContext(ApplicationContext applicationContext)

throws BeansException {
context = applicationContext;

Q@Autowired
public void setSomeBean(SomeBean someBean) {
this.someBean = someBean;

230 CHAPTER 13. INTEGRATED CLUSTERING

Q@PostConstruct

public void init() {
someBean.doSomethingUseful () ;
init = true;

}

e Get SomeValue Object from Context and put it into Hazelcast Distributed Map on Node-1.

HazelcastInstance hazelcastInstance =

(HazelcastInstance) context.getBean("hazelcast");
SomeValue value = (SomeValue) context.getBean("someValue")
IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
map.put("key", value);

e Read SomeValue Object from Hazelcast Distributed Map and assert that init method is called since it is
annotated with @PostConstruct.

HazelcastInstance hazelcastInstance =

(HazelcastInstance) context.getBean("hazelcast");
IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
SomeValue value = map.get("key");
Assert.assertTrue(value.init);

ExecutorService Example:

e Create a Callable Class called SomeTask which contains Spring Bean definitions like ApplicationContext,
SomeBean.

OSpringAware
public class SomeTask
implements Callable<Long>, ApplicationContextAware, Serializable {

private transient ApplicationContext context;
private transient SomeBean someBean;

public Long call() throws Exception {
return someBean.value;

}

public void setApplicationContext(ApplicationContext applicationContext)
throws BeansException {
context = applicationContext;

QAutowired
public void setSomeBean(SomeBean someBean) {
this.someBean = someBean;

}
}

e Submit SomeTask to two Hazelcast Members and assert that someBean is autowired.

13.3. SPRING INTEGRATION

HazelcastInstance hazelcastInstance =
(HazelcastInstance) context.getBean("hazelcast");
SomeBean bean = (SomeBean) context.getBean("someBean");

Future<Long> f = hazelcastInstance.getExecutorService() .submit(new SomeTask());
Assert.assertEquals(bean.value, f.get().longValue());

// choose a member
Member member = hazelcastInstance.getCluster().getMembers().iterator() .next();

Future<Long> f2 = (Future<Long>) hazelcast.getExecutorService()

.submitToMember (new SomeTask(), member);
Assert.assertEquals(bean.value, f2.get().longValue());

13.3.4 Spring Cache

NOTE: Spring managed properties/fields are marked as transient.

Sample Code: Please see our sample application for Spring Cache.

As of version 3.1, Spring Framework provides support for adding caching into an existing Spring application.

13.3.4.1 Declarative Spring Cache Configuration
<cache:annotation-driven cache-manager="cacheManager" />
<hz:hazelcast id="hazelcast">

</hz:hazelcast>

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">

<constructor-arg ref="instance"/>
</bean>

13.3.4.2 Annotation Based Spring Cache Configuration

Annotation Based Configuration does not require any XML definition.
e Implement a CachingConfiguration class with related Annotations.

@Configuration
©@EnableCaching
public class CachingConfiguration implements CachingConfigurer{
@Bean
public CacheManager cacheManager() {
ClientConfig config = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(config);
return new HazelcastCacheManager(client);
}
©@Bean
public KeyGenerator keyGenerator() {
return null;

3

e Launch Application Context and register CachingConfiguration.

231

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-cache-manager

232 CHAPTER 13. INTEGRATED CLUSTERING

AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext() ;
context.register(CachingConfiguration.class);
context.refresh();

For more information about Spring Cache, please see Spring Cache Abstraction.

13.3.5 Hibernate 2nd Level Cache Config

Sample Code: Please see our sample application for Hibernate 2nd Level Cache Config.

If you are using Hibernate with Hazelcast as 2nd level cache provider, you can easily create RegionFactory instances
within Spring configuration (by Spring version 3.1). That way, you can use the same HazelcastInstance as
Hibernate L2 cache instance.

<hz:hibernate-region-factory id="regionFactory" instance-ref="instance"
mode="LOCAL" />

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"
scope="singleton">
<property name='"dataSource" ref="dataSource"/>
<property name="cacheRegionFactory" ref="regionFactory" />
</bean>
Hibernate RegionFactory Modes

e LOCAL
e DISTRIBUTED

Please refer to the Hibernate RegionFactory Options section for more information.

13.3.6 Best Practices
13.3.6.1 Avoid Out of Memory Error with Large Distributed Data Structures

Spring tries to create a new Map/Collection instance and fill the new instance by iterating and converting values
of the original Map/Collection (IMap, IQueue, etc.) to required types when generic type parameters of the original
Map/Collection and the target property/attribute do not match.

Since Hazelcast Maps/Collections are designed to hold very large data which a single machine cannot carry,
iterating through whole values can cause out of memory errors.

To avoid this issue, the target property/attribute can be declared as un-typed Map/Collection as shown below.

public class SomeBean {
Q@Autowired
IMap map; // instead of IMap<K, V> map

QAutowired
IQueue queue; // instead of IQueue<E> queue

Or, parameters of injection methods (constructor, setter) can be un-typed as shown below.

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-hibernate-2ndlevel-cache

13.3. SPRING INTEGRATION 233

public class SomeBean {
IMap<K, V> map;
IQueue<E> queue;

// Instead of IMap<K, V> map
public SomeBean(IMap map) {
this.map = map;

}

// Instead of IQueue<E> queue
public void setQueue(IQueue queue) {
this.queue = queue;

}

RELATED INFORMATION

For more information please see Spring issue-3407.

https://jira.springsource.org/browse/SPR-3407

234 CHAPTER 13. INTEGRATED CLUSTERING

Chapter 14

Storage

This chapter describes Hazelcast’s High-Density Memory Store and its configuration and provides information on
the High-Density Memory First Generation, also known as Hazelcast Elastic Memory. It also gives recommendations
on the storage sizing.

14.1 High-Density Memory Store

Enterprise Only

Hazelcast High-Density Memory Store, the successor to Hazelcast Elastic Memory, is Hazelcast’s new enterprise
grade backend storage solution. This solution is used with the Hazelcast JCache implementation.

By default, Hazelcast offers a production ready, low garbage collection (GC) pressure, storage backend. Serialized
keys and values are still stored in the standard Java map, such as data structures on the heap. The data structures
are stored in serialized form for the highest data compaction, and are still subject to Java Garbage Collection.

In Hazelcast Enterprise, the High-Density Memory Store is built around a pluggable memory manager which
enables multiple memory stores. These memory stores are all accessible using a common access layer that scales
up to Terabytes of main memory on a single JVM. At the same time, by further minimizing the GC pressure,
High-Density Memory Store enables predictable application scaling and boosts performance and latency while
minimizing pauses for Java Garbage Collection.

This foundation includes, but is not limited to, storing keys and values next to the heap in a native memory region.
RELATED INFORMATION

Please refer to the Hazelcast JCache chapter for the details of Hazelcast JCache implementation. As mentioned,
High-Density Memory Store is used with Hazelcast JCache implementation.

14.1.1 Configuring Hi-Density Memory Store

To use the Hi-Density memory storage, the native memory usage must be enabled using the programmatic or
declarative configuration. Also, you can configure its size, memory allocator type, minimum block size, page size
and metadata space percentage.

e size: Size of the total native memory to allocate. Default value is 512 MB.
e allocator type: Type of the memory allocator. Available values are:

— STANDARD: allocate/free memory using default OS memory manager.
— POOLED: manage memory blocks in thread local pools.

Default value is POOLED.

235

236 CHAPTER 14. STORAGE

e minimum block size: Minimum size of the blocks in bytes to split and fragment a page block to assign to
an allocation request. It is used only by the POOLED memory allocator. Default value is 16.

e page size: Size of the page in bytes to allocate memory as a block. It is used only by the POOLED memory
allocator. Default value is 1 << 22 = 4194304 Bytes, about 4 MB.

e metadata space percentage: Defines the percentage of the allocated native memory that is used for the
metadata such as indexes, offsets, etc. It is used only by the POOLED memory allocator. Default value is
12.5.

The following is the programmatic configuration example.

MemorySize memorySize = new MemorySize(512, MemoryUnit.MEGABYTES);
NativeMemoryConfig nativeMemoryConfig =
new NativeMemoryConfig()
.setAllocatorType (NativeMemoryConfig.MemoryAllocatorType.POOLED)
.setSize(memorySize)
.setEnabled (true)
.setMinBlockSize (16)
.setPageSize (1 << 20);

The following is the declarative configuration example.

<native-memory enabled="true" allocator-type="POOLED">
<size value="512" unit="MEGABYTES"/>
</native-memory>

14.2 Elastic Memory (High-Density Memory First Generation)

By default, Hazelcast stores your distributed data (map entries, queue items) into Java heap which is subject to
garbage collection (GC). As your heap gets bigger, garbage collection might cause your application to pause tens of
seconds, badly effecting your application performance and response times. Elastic Memory (High-Density Memory
First Generation) is Hazelcast with off-heap memory storage to avoid GC pauses. Even if you have terabytes of
cache in-memory with lots of updates, GC will have almost no effect; resulting in more predictable latency and
throughput.

Here are the steps to enable Elastic Memory:

e Set the maximum direct memory JVM can allocate, e.g. java -XX:MaxDirectMemorySize=60G.

e Enable Elastic Memory by setting the hazelcast.elastic.memory.enabled property to true.

e Set the total direct memory size for HazelcastInstance by setting the hazelcast.elastic.memory.total.size
property. Size can be in MB or GB and abbreviation can be used, such as 60G and 500M.

e Set the chunk size by setting the hazelcast.elastic.memory.chunk.size property. Hazelcast will partition
the entire off-heap memory into chunks. Default chunk size is 1K.

e You can enable sun.misc.Unsafe based off-heap storage implementation instead of java.nio.DirectByteBuffer
based one, by setting the hazelcast.elastic.memory.unsafe.enabled property to true. Default value is
false.

e Configure maps that will use Elastic Memory by setting InMemoryFormat to NATIVE. Default value is

BINARY.
Below is the declarative configuration.
<hazelcast>
;I;Jz;p name="default">
<iI-1—memory—f ormat>NATIVE</in-memory-format>

</map>
</hazelcast>

14.3. SIZING PRACTICES

And, the programmatic configuration:

MapConfig mapConfig = new MapConfig();
mapConfig.setInMemoryFormat(InMemoryFormat.NATIVE);

And, the following are the High-Density Memory First Generation related system properties.

Property Default Value Type
hazelcast.elastic.memory.enabled false bool
hazelcast.elastic.memory.total.size 128 int
hazelcast.elastic.memory.chunk.size 1 int
hazelcast.elastic.memory.shared.storage false bool
hazelcast.elastic.memory.unsafe.enabled false bool

14.3 Sizing Practices

237

Data in Hazelcast is both active data and backup data for high availability, so the total memory footprint is the
size of active data plus the size of backup data. If you use a single backup, it means the total memory footprint
is two times the active data (active data 4+ backup data). If you use, for example, two backups, then the total

memory footprint is three times the active data (active data + backup data + backup data).

If you use only heap memory, each Hazelcast node with a 4 GB heap should accommodate a maximum of 3.5 GB
of total data (active and backup). If you use the High-Density Memory Store, up to 75% of your physical memory
footprint may be used for active and backup data, with headroom of 25% for normal fragmentation. In both
cases, however, you should also keep some memory headroom available to handle any node failure or explicit node
shutdown. When a node leaves the cluster, the data previously owned by the newly offline node will be distributed
among the remaining servers. For this reason, we recommend that you plan to use only 60% of available memory,
with 40% headroom to handle node failure or shutdown.

238 CHAPTER 14. STORAGE

Chapter 15

Hazelcast Java Client

There are currently three ways to connect to a running Hazelcast cluster:

e Native Clients (Java, C++, .NET)
e Memcache Client

e REST Client

Native Clients enable you to perform almost all Hazelcast operations without being a member of the cluster. It
connects to one of the cluster members and delegates all cluster wide operations to it (dummy client), or it connects
to all of them and delegates operations smartly (smart client). When the relied cluster member dies, the client will
transparently switch to another live member.

There can be hundreds, even thousands of clients connected to the cluster. By default, there are core count * 10
threads on the server side that will handle all the requests (e.g. if the server has 4 cores, it will be 40).

Imagine a trading application where all the trading data are stored and managed in a Hazelcast cluster with tens of
nodes. Swing/Web applications at the traders’ desktops can use Native Clients to access and modify the data in
the Hazelcast cluster.

Currently, Hazelcast has Native Java, C+4 and .NET Clients available. This chapter describes the Java Client.

! IMPORTANT: Starting with the Hazelcast 3.5. release, a new client library is introduced in the release
package: hazelcast-client-new-<version>. jar. This new Java native client library has the support for different
versions of clients in a Hazelcast cluster. This support is not valid for the releases before 3.5.

15.1 Hazelcast Clients Feature Comparison

Before detailing the Java Client, this section provides the below comparison matrix to show which features are
supported by the Hazelcast clients.

Feature Java Client .NET Client
Map Yes Yes
Queue Yes Yes
Set Yes Yes
List Yes Yes
MultiMap Yes Yes
Replicated Map Yes No
Topic Yes Yes

239

240 CHAPTER 15. HAZELCAST JAVA CLIENT

Feature Java Client .NET Client
MapReduce Yes No
Lock Yes Yes
Semaphore Yes Yes
AtomicLong Yes Yes
AtomicReference Yes Yes
IdGenerator Yes Yes
CountDownLatch Yes Yes
Transactional Map Yes Yes
Transactional MultiMap Yes Yes
Transactional Queue Yes Yes
Transactional List Yes Yes
Transactional Set Yes Yes
JCache Yes No
Ringbuffer Yes No
Reliable Topic No No
Client Configuration Import Yes No
Hazelcast Client Protocol Yes Yes
Fail Fast on Invalid Conviguration Yes No
Sub-Listener Interfaces for Map ListenerMap Yes No
Continuous Query Caching Yes No
Distributed Executor Service Yes No
Query Yes Yes
Near Cache Yes Yes
Heartbeat Yes Yes
Declarative Configuration Yes Yes
Programmatic Configuration Yes Yes
SSL Support Yes No
XA Transactions Yes No
Smart Client Yes Yes
Dummy Client Yes Yes
Lifecycle Service Yes Yes
Event Listeners Yes Yes
DataSerializable Yes Yes
IdentifiedDataSerializable Yes Yes

Portable Yes Yes

15.2. JAVA CLIENT OVERVIEW 241
15.2 Java Client Overview

The Java client is the most full featured client. It is offered both with Hazelcast and Hazelcast Enterprise. The
main idea behind the Java client is to provide the same Hazelcast functionality by proxying each operation through
a Hazelcast node. It can access and change distributed data, and it can listen to distributed events of an already
established Hazelcast cluster from another Java application.

15.2.1 Java Client Dependencies

You should include two dependencies in your classpath to start using the Hazelcast client: hazelcast.jar and
hazelcast-client. jar.

After adding these dependencies, you can start using the Hazelcast client as if you are using the Hazelcast API.
The differences are discussed in the below sections.

If you prefer to use maven, add the following lines to your pom.xml.

<dependency>
<groupIld>com.hazelcast</groupld>
<artifactId>hazelcast-client</artifactId>
<version>$LATEST_VERSION$</version>
</dependency>
<dependency>
<groupIld>com.hazelcast</groupld>
<artifactId>hazelcast</artifactId>
<version>$LATEST _VERSION$</version>
</dependency>

15.2.2 Getting Started with Client API

The first step is configuration. You can configure the Java client declaratively or programmatically. We will use the
programmatic approach throughout this tutorial. Please refer to the Java Client Declarative Configuration section
for details.

ClientConfig clientConfig = new ClientConfig();

clientConfig.getGroupConfig() .setName("dev") .setPassword("dev-pass");
clientConfig.getNetworkConfig() .addAddress("10.90.0.1", "10.90.0.2:5702");

The second step is to initialize the HazelcastInstance to be connected to the cluster.

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

This client interface is your gateway to access all Hazelcast distributed objects.

Let’s create a map and populate it with some data.

IMap<String, Customer> mapCustomers = client.getMap('customers"); //creates the map prozy
mapCustomers.put("1", new Customer("Joe", "Smith"));

mapCustomers.put("2", new Customer("Ali", "Selam"));

mapCustomers.put("3", new Customer("Avi", "Noyan"));

As a final step, if you are done with your client, you can shut it down as shown below. This will release all the used

resources and will close connections to the cluster.

client.shutdown();

242 CHAPTER 15. HAZELCAST JAVA CLIENT

15.2.3 Java Client Operation modes

The client has two operation modes because of the distributed nature of the data and cluster.

Smart Client: In smart mode, clients connect to each cluster node. Since each data partition uses the well known
and consistent hashing algorithm, each client can send an operation to the relevant cluster node, which increases
the overall throughput and efficiency. Smart mode is the default mode.

Dummy Client: For some cases, the clients can be required to connect to a single node instead of to each node in
the cluster. Firewalls, security, or some custom networking issues can be the reason for these cases.

In dummy client mode, the client will only connect to one of the configured addresses. This single node will behave
as a gateway to the other nodes. For any operation requested from the client, it will redirect the request to the
relevant node and return the response back to the client returned from this node.

15.2.4 Failure Handling

There are two main failure cases you should be aware of, and configurations you can perform to achieve proper
behavior.

15.2.4.1 Client Connection Failure

While the client is trying to connect initially to one of the members in the ClientNetworkConfig.addressList,
all the members might be not available. Instead of giving up, throwing an exception and stopping the client, the
client will retry as many as connectionAttemptLimit times. Please see the Connection Attempt Limit section.

The client executes each operation through the already established connection to the cluster. If this connection(s)
disconnects or drops, the client will try to reconnect as configured.

15.2.4.2 Retry-able Operation Failure

While sending the requests to related nodes, operation can fail due to various reasons. Read-only operations are
retried by default. If you want to enable this for the other operations, set the redoOperation to true. Please see
the Redo Operation section.

The number of retries is given with the property hazelcast.client.request.retry.count in ClientProperties.
The client will resend the request as many as RETRY-COUNT, then it will throw an exception. Please see the
Client System Properties section.

15.2.5 Supported Distributed Data Structures
Most of the Distributed Data Structures are supported by the client. Please check for the exceptions for the clients
in other languages.

As a general rule, you configure these data structures on the server side and access them through a proxy on the
client side.

Map:

You can use any Distributed Map object with the client, as shown below.
Imap<Integer, String> map = client.getMap("myMap");
map.put(l, "Ali");

String value= map.get(1);
map.remove (1) ;

15.2. JAVA CLIENT OVERVIEW 243

Locality is ambiguous for the client, so addEntryListener and localKeySet are not supported. Please see the
Distributed Map section for more information.

MultiMap:

A MultiMap usage example is shown below.

MultiMap<Integer, String> multiMap = client.getMultiMap("myMultiMap") ;

multiMap.put(1,"ali");
multiMap.put(1,"veli");

Collection<String> values = multiMap.get(1);

addEntryListener, localKeySet and getLocalMultiMapStats are not supported because locality is ambiguous
for the client. Please see the Distributed MultiMap section for more information.

Queue:

A sample usage is shown below.

IQueue<String> myQueue = client.getQueue("theQueue");
myQueue.offer("ali")

getLocalQueueStats is not supported because locality is ambiguous for the client. Please see the Distributed
Queue section for more information.

Topic:
getLocalTopicStats is not supported because locality is ambiguous for the client.
Other Supported Distributed Structures:

The distributed data structures listed below are also supported by the client. Since their logic is the same in both
the node side and client side, you can refer to their sections as listed below.

Replicated Map
MapReduce

List

Set

[AtomicLong
[AtomicReference
[CountDownLatch
[Semaphore
IdGenerator

Lock

15.2.6 Client Services

Below services are provided for some common functionalities on the client side.
Distributed Executor Service:

The distributed executor service is for distributed computing. It can be used to execute tasks on the cluster on
a designated partition or on all the partitions. It can also be used to process entries. Please see the Distributed
Executor Service section for more information.

IExecutorService executorService = client.getExecutorService("default");

244 CHAPTER 15. HAZELCAST JAVA CLIENT

After getting an instance of IExecutorService, you can use the instance as the interface with the one provided on
the server side. Please see the Distributed Computing chapter chapter for detailed usage.

. NOTE: This service is only supported by the Java client.
Client Service:

If you need to track clients and you want to listen to their connection events, you can use the clientConnected
and clientDisconnected methods of the ClientService class. This class must be run on the node side. The
following is an example code.

final ClientService clientService = hazelcastInstance.getClientService();
final Collection<Client> connectedClients = clientService.getConnectedClients();

clientService.addClientListener (new ClientListener() {
@0verride
public void clientConnected(Client client) {
//Handle client comnected event

3

@0verride
public void clientDisconnected(Client client) {
//Handle client disconnected event

}
B

Partition Service:

You use partition service to find the partition of a key. It will return all partitions. See the example code below.

PartitionService partitionService = client.getPartitionService();

//partition of a key
Partition partition = partitionService.getPartition(key);

//all partitions
Set<Partition> partitions = partitionService.getPartitions();

Lifecycle Service:

Lifecycle handling performs the following;:

checks to see if the client is running,

shuts down the client gracefully,

terminates the client ungracefully (forced shutdown), and
adds/removes lifecycle listeners.

LifecycleService lifecycleService = client.getLifecycleService();

if (lifecycleService.isRunning()){
//it is running

}

//shutdoun client gracefully
lifecycleService.shutdown() ;

15.3. JAVA CLIENT CONFIGURATION 245

15.2.7 Client Listeners

You can configure listeners to listen to various event types on the client side. You can configure global events not
relating to any distributed object through Client ListenerConfig. You should configure distributed object listeners
like map entry listeners or list item listeners through their proxies. You can refer to the related sections under each
distributed data structure in this reference manual.

15.2.8 Client Transactions

Transactional distributed objects are supported on the client side. Please see the Transactions chapter on how to
use them.

15.3 Java Client Configuration

Hazelcast Java Client can be configured declaratively (XML) or programmatically (API).

For declarative configuration, the Hazelcast client looks into the following places for the client configuration file

e System property: The client first checks if hazelcast.client.config system property is set to a file path,
e.g. -Dhazelcast.client.config=C:/myhazelcast.xml.

e Classpath: If config file is not set as a system property, the client checks the classpath for
hazelcast-client.xml file.

If the client does not find any configuration file, it starts with the default configuration (hazelcast-client-default.xml)
located in the hazelcast-client. jar library. Before configuring the client, please try to work with the default
configuration to see if it works for you. Default should be just fine for most of the users. If not, then consider
custom configuration for your environment.

If you want to specify your own configuration file to create a Config object, the Hazelcast client supports the
following.

e Config cfg = new XmlClientConfigBuilder (xmlFileName) .build();

e Config cfg = new XmlClientConfigBuilder (inputStream).build();

For programmatic configuration of the Hazelcast Java Client, just instantiate a ClientConfig object and configure
the desired aspects, a sample of which is shown below.

ClientConfig clientConfig = new ClientConfig();
clientConfig.setGroupConfig(new GroupConfig("dev","dev-pass");
clientConfig.setLoadBalancer (yourLoadBalancer) ;

15.3.1 Client Network Configuration

All network related configuration of Hazelcast Java Client is performed via the network element in the declarative
configuration file or the class ClientNetworkConfig when using programmatic configuration. Let’s first give the
examples for these two approaches. Then we will look at its sub-elements and attributes.

Declarative:

246 CHAPTER 15. HAZELCAST JAVA CLIENT

<hazelcast-client xsi:schemalocation=
"http://www.hazelcast.com/schema/client-config hazelcast-client-config-<version>.xsd"
xmlns="http://www.hazelcast.com/schema/client-config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<network>

<cluster-members>

<address>127.0.0.1</address>
<address>127.0.0.2</address>

</cluster-members>

<smart-routing>true</smart-routing>

<redo-operation>true</redo-operation>

<socket-interceptor enabled="true">

<class-name>com.hazelcast.XYZ</class-name>
<properties>
<property name="kerberos-host">kerb-host-name</property>
<property name="kerberos-config-file">kerb.conf</property>
</properties>
</socket-interceptor>
<aws enabled="true" connection-timeout-seconds="11">
<inside-aws>false</inside-aws>
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>

</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();

15.3.1.1 Address List

Address List is the initial list of cluster addresses to which the client will connect. The client uses this list to
find an alive node. Although it may be enough to give only one address of a node in the cluster (since all nodes
communicate with each other), it is recommended that you give all the nodes’ addresses.

Declarative:
<hazelcast-client>
<network>
<cluster-members>
<address>10.1.1.21</address>
<address>10.1.1.22:5703</address>
</cluster-members>
</network>

</hazelcast-client>

Programmatic:

15.3. JAVA CLIENT CONFIGURATION 247

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig() .addAddress("10.1.1.21", "10.1.1.22:5703");

If the port part is omitted, then 5701, 5702, and 5703 will be tried in random order.

You can provide multiple addresses with ports provided or not as seen above. The provided list is shuffled and tried
in random order. Default value is localhost.

15.3.1.2 Smart Routing

It defines whether the client mode is smart or dummy. The following are the example configurations.

Declarative:

<network>
<smart-routing>true</smart-routing>

</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig() .setSmartRouting(true) ;

The default is smart client mode.

15.3.1.3 Redo Operation

It enables/disables redo-able operations as described in Retry-able Operation Failure. The following are the example
configurations.

Declarative:

<network>
<redo-operation>true</redo-operation>

</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig() .setRedoOperation(true);

Default is disabled.

248 CHAPTER 15. HAZELCAST JAVA CLIENT

15.3.1.4 Connection Timeout

It is the timeout value in milliseconds for nodes to accept client connection requests. The following are the example
configurations.

Declarative:

;ﬁétwork>
;connection—timeout>5000</connection—timeout>

;)ﬁetwork>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig() .setConnectionTimeout (5000) ;

The default value is 5000 milliseconds.

15.3.1.5 Connection Attempt Limit
While the client is trying to connect initially to one of the members in the ClientNetworkConfig.addressList,
all members might be not available. Instead of giving up, throwing an exception and stopping the client, the client

will retry as many as ClientNetworkConfig. connectionAttemptLimit times. The following are the example
configurations.

Declarative:

<network>
<connection-attempt-limit>5</connection-attempt-limit>

</network>

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig() .setConnectionAttemptLimit (5);

Default value is 2.

15.3.1.6 Connection Attempt Period

It is the duration in milliseconds between the connection attempts defined by ClientNetworkConfig.connectionAttemptLimit.
The following are the example configurations.

Declarative:

<network>
<connection-attempt-period>5000</connection-attempt-period>

</network>

15.3. JAVA CLIENT CONFIGURATION 249

Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig() .setConnectionAttemptPeriod(5000) ;

Default value is 3000.

15.3.1.7 Client Socket Interceptor

Enterprise Only

Following is a client configuration to set a socket intercepter. Any class implementing com.hazelcast.nio.SocketInterceptor
is a socket Interceptor.

public interface SocketInterceptor {
void init(Properties properties);
void onConnect(Socket connectedSocket) throws IOException;

SocketInterceptor has two steps. First, it will be initialized by the configured properties. Second, it will be
informed just after the socket is connected using onConnect.

SocketInterceptorConfig socketInterceptorConfig = clientConfig
.getNetworkConfig() .getSocketInterceptorConfig() ;

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();

socketInterceptorConfig.setEnabled(true);
socketInterceptorConfig.setImplementation(myClientSocketInterceptor);

If you want to configure the socket connector with a class name instead of an instance, see the example below.

SocketInterceptorConfig socketInterceptorConfig = clientConfig
.getNetworkConfig() .getSocketInterceptorConfig();

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();
socketInterceptorConfig.setEnabled(true);

//These properties are provided to interceptor during init
socketInterceptorConfig.setProperty("kerberos-host","kerb-host-name");

socketInterceptorConfig.setProperty("kerberos-config-file","kerb.conf");
socketInterceptorConfig.setClassName (myClientSocketInterceptor) ;
RELATED INFORMATION

Please see the Socket Interceptor section for more information.

15.3.1.8 Client Socket Options

You can configure the network socket options using SocketOptions. It has the following methods.

e socketOptions.setKeepAlive(x): Enables/disables the SO _KEEPALIVE socket option. The default value
is true.

250 CHAPTER 15. HAZELCAST JAVA CLIENT

e socketOptions.setTcpNoDelay(x): Enables/disables the TCP_NODELAY socket option. The default
value is true.

e socketOptions.setReuseAddress(x): Enables/disables the SO _REUSEADDR socket option. The default
value is true.

e socketOptions.setLingerSeconds(x): Enables/disables SO_LINGER with the specified linger time in
seconds. The default value is 3.

e socketOptions.setBufferSize(x): Sets the SO_SNDBUF and SO_RCVBUF options to the specified
value in KB for this Socket. The default value is 32.

SocketOptions socketOptions = clientConfig.getNetworkConfig() .getSocketOptions();
socketOptions.setBufferSize(32);

socketOptions.setKeepAlive(true);

socketOptions.setTcpNoDelay (true);

socketOptions.setReuseAddress(true);

socketOptions.setLingerSeconds(3);

15.3.1.9 Client SSL

Enterprise Only

You can use SSL to secure the connection between the client and the nodes. If you want SSL enabled for the
client-cluster connection, you should set SSLConfig. Once set, the connection (socket) is established out of an SSL
factory defined either by a factory class name or factory implementation. Please see the SSLConfig class in the
com.hazelcast.config package at the JavaDocs page of the Hazelcast Documentation web site.

15.3.1.10 Client Configuration for AWS

The example declarative and programmatic configurations below show how to configure a Java client for connecting
to a Hazelcast cluster in AWS.

Declarative:

<network>

<aws enabled="true">
<inside-aws>false</inside-aws>
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-nodes</tag-value>

</aws>

</network>
Programmatic:

ClientConfig clientConfig = new ClientConfig();
ClientAwsConfig clientAwsConfig = new ClientAwsConfig();
clientAwsConfig.setInsideAws(false)

.setAccessKey("my-access-key")

http://www.hazelcast.org/documentation

15.3. JAVA CLIENT CONFIGURATION 251

.setSecretKey("my-secret-key")

.setRegion("us-west-1")

.setHostHeader("ec2.amazonaws.com")

.setSecurityGroupName (">hazelcast-sg")

.setTagKey("type")

.setTagValue("hz-nodes");
clientConfig.getNetworkConfig() .setAwsConfig(clientAwsConfig);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

l NOTE: If the inside-aws™ parameter is not set, the private addresses of nodes will always be converted
to public addresses. Also, the client will use public addresses to connect to the nodes. In order to use private
addresses, set the inside-aws parameter to true. Also note that, when connecting outside from AWS, setting the
inside—aws parameter to true will cause the client to not be able to reach the nodes.*

15.3.2 Client Load Balancer Configuration

LoadBalancer allows you to send operations to one of a number of endpoints (Members). Its main purpose is to
determine the next Member if queried. It is up to your implementation to use different load balancing policies. You
should implement the interface com.hazelcast.client.LoadBalancer for that purpose.

If the client is configured in smart mode, only the operations that are not key-based will be routed to the endpoint
that is returned by the LoadBalancer. If the client is not a smart client, LoadBalancer will be ignored.

The following are the example configurations.
Declarative:
<hazelcast-client>
<load-balancer type="random">
yourLoadBalancer

</load-balancer>

</hazelcast-client>
Programmatic:

ClientConfig clientConfig = new ClientConfig();
clientConfig.setLoadBalancer (yourLoadBalancer) ;

15.3.3 Client Near Cache Configuration

Hazelcast distributed map has a Near Cache feature to reduce network latencies. Since the client always requests
data from the cluster nodes, it can be helpful for some of your use cases to configure a near cache on the client side.
The client supports the same Near Cache that is used in Hazelcast distributed map.

You can create Near Cache on the client side by providing a configuration per map name, as shown below.

ClientConfig clientConfig = new ClientConfig();
CacheConfig nearCacheConfig = new NearCacheConfig();
nearCacheConfig.setName ("mapName") ;
clientConfig.addNearCacheConfig(nearCacheConfig) ;

You can use wildcards for the map name, as shown below.

252 CHAPTER 15. HAZELCAST JAVA CLIENT

nearCacheConfig.setName ("map*") ;
nearCacheConfig.setName ("*map") ;

And, the following is an example declarative configuration for Near Cache.

</hazelcast-client>

<near-cache name="MENU">
<max-size>2000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LFU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<in-memory-format>0BJECT</in-memory-format>

</near-cache>

</hazelcast-client>

Name of Near Cache on client side must be the same as the name of IMap on server for which this Near Cache is
being created.

Near Cache can have its own in-memory-format which is independent of the in-memory-format of the servers.

15.3.4 Client Group Configuration

Clients should provide a group name and password in order to connect to the cluster. You can configure them
using GroupConfig, as shown below.

clientConfig.setGroupConfig(new GroupConfig("dev","dev-pass"));

15.3.5 Client Security Configuration
In the cases where the security established with GroupConfig is not enough and you want your clients connecting

securely to the cluster, you can use ClientSecurityConfig. This configuration has a credentials parameter to
set the IP address and UID. Please see ClientSecurityConfig. java in our code.

15.3.6 Client Serialization Configuration

For the client side serialization, use Hazelcast configuration. Please refer to the Serialization chapter.

15.3.7 Client Listener Configuration

You can configure global event listeners using ListenerConfig as shown below.

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig(LifecycleListenerImpl);
clientConfig.addListenerConfig(listenerConfig);

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig('"com.hazelcast.example.MembershipListenerImpl");
clientConfig.addListenerConfig(listenerConfig);

You can add three types of event listeners.

15.5. SAMPLE CODES FOR CLIENT 253

e LifecycleListener
e MembershipListener
e DistributedObjectListener

RELATED INFORMATION

Please refer to Hazelcast JavaDocs and see LifecycleListener, MembershipListener and DistributedObjectListener in
the com. hazelcast. core package.

15.3.8 ExecutorPoolSize

Hazelcast has an internal executor service (different from the data structure Ezecutor Service) that has threads and
queues to perform internal operations such as handling responses. This parameter specifies the size of the pool of
threads which perform these operations laying in the executor’s queue. If not configured, this parameter has the
value as 5 * core size of the client (i.e. it is 20 for a machine that has 4 cores).

15.3.9 ClassLoader

You can configure a custom classLoader. It will be used by the serialization service and to load any class configured
in configuration, such as event listeners or ProxyFactories.

15.4 Client System Properties

There are some advanced client configuration properties to tune some aspects of Hazelcast Client. You can set
them as property name and value pairs through declarative configuration, programmatic configuration, or JVM
system property. Please see the System Properties section to learn how to set these properties.

The table below lists the client configuration properties with their descriptions.

Property Name Default Value Type Description

hazelcast.client.event.queue.capacity 1000000 string The default value of the capacity of executor
hazelcast.client.event.thread.count) string The thread count for handling incoming even
hazelcast.client.heartbeat.interval 10000 string The frequency of heartbeat messages sent by
hazelcast.client.heartbeat.timeout 300000 string Timeout for the heartbeat messages sent by t
hazelcast.client.invocation.timeout.seconds 120 string Time to give up the invocation when a memb
hazelcast.client.shuffle.member.list true string The client shuffles the given member list to p:

15.5 Sample Codes for Client

Please refer to Client Code Samples.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/clients

254 CHAPTER 15. HAZELCAST JAVA CLIENT

Chapter 16

Other Client Implementations

This chapter describes the clients other than the Hazelcast Java Client.
16.1 C++4 Client

Enterprise Only

You can use Native C++ Client to connect to Hazelcast nodes and perform almost all operations that a node
can perform. Clients differ from nodes in that clients do not hold data. The C++ Client is by default a smart
client, i.e. it knows where the data is and asks directly for the correct node. You can disable this feature (using the
ClientConfig: :setSmart method) if you do not want the clients to connect to every node.

The features of C++ Clients are:

Access to distributed data structures (IMap, IQueue, MultiMap, ITopic, etc.).

Access to transactional distributed data structures (TransactionalMap, TransactionalQueue, etc.).
Ability to add cluster listeners to a cluster and entry/item listeners to distributed data structures.
Distributed synchronization mechanisms with ILock, ISemaphore and ICountDownLatch.

16.1.1 How to Setup

Hazelcast C++ Client is shipped with 32/64 bit, shared and static libraries. You only need to include the boost
shared__ptr.hpp header in your compilation since the API makes use of the boost shared_ptr.

The downloaded release folder consists of:

Mac_ 64/

Windows__ 32/

Windows_ 64/

Linux_ 32/

Linux_ 64/

docs/ (HTML Dozygen documents are here)

Each of the folders above contains the following;:

e examples/

— testApp.exe => example command line client tool to connect hazelcast servers.
— TestApp.cpp => code of the example command line tool.

255

256 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

e hazelcast/

— lib/ => Contains both shared and static library of hazelcast.
— include/ => Contains headers of client.

e external/

— include/ => Contains headers of dependencies. (boost::shared_ ptr)

16.1.2 Platform Specific Installation Guides
The C++ Client is tested on Linux 32/64-bit, Mac 64-bit and Windows 32/64-bit machines. For each of the

headers above, it is assumed that you are in the correct folder for your platform. Folders are Mac_ 64, Windows_ 32,
Windows_ 64, Linux_ 32 or Linux_ 64.

16.1.2.1 Linux

For Linux, there are two distributions: 32 bit and 64 bit.

Here is an example script to build with static library:

g++ main.cpp -pthread -I./external/include -I./hazelcast/include ./hazelcast/lib/static/libHazelcastClie
Here is an example script to build with shared library:

g++ main.cpp -lpthread -Wl,-no-as-needed -lrt -I./external/include -I./hazelcast/include
-L./hazelcast/lib/shared -1HazelcastClientShared_64

16.1.2.2 Mac

For Mac, there is one distribution: 64 bit.

Here is an example script to build with static library:

g++ main.cpp -I./external/include -I./hazelcast/include ./hazelcast/lib/static/libHazelcastClientStatic_
Here is an example script to build with shared library:

g++ main.cpp -I./external/include -I./hazelcast/include -L./hazelcast/lib/shared -1HazelcastClientShared

16.1.2.3 Windows

For Windows, there are two distributions; 32 bit and 64 bit.

16.1.3 Code Examples

A Hazelcast node should be running to make the code examples work.
! NOTE: The license key should be provided in the configuration as config->getGroupConfig().setLicenseKey (PROVIDE

16.1.3.1 Map Example

#include <hazelcast/client/HazelcastAll.h>
#include <iostream>

using namespace hazelcast::client;

int main() {
ClientConfig clientConfig;

16.1. C++ CLIENT

clientConfig->getGroupConfig() .setLicenseKey (PROVIDED_ENTERPRISE_KEY) ;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IMap<int,int> myMap = hazelcastClient.getMap<int ,int>("myIntMap");
myMap.put(1,3);
boost::shared_ptr<int> value = myMap.get(1);
if(value.get() != NULL) {
//process the item
}

return 0O;

16.1.3.2 Queue Example

#include <hazelcast/client/HazelcastAll.h>
#include <iostream>
#include <string>

using namespace hazelcast::client;

int main() {
ClientConfig clientConfig;
clientConfig->getGroupConfig() .setLicenseKey (PROVIDED_ENTERPRISE_KEY) ;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IQueue<std::string> queue = hazelcastClient.getQueue<std::string>("q");
queue.offer("sample");
boost: :shared_ptr<std::string> value = queue.poll();
if(value.get() != NULL) {
//process the item
X

return 0O;

16.1.3.3 Entry Listener Example

#include "hazelcast/client/ClientConfig.h"
#include "hazelcast/client/EntryEvent.h"
#include "hazelcast/client/IMap.h"

#include "hazelcast/client/Address.h"
#include "hazelcast/client/HazelcastClient.h"
#include <iostream>

#include <string>

using namespace hazelcast::client;

class SampleEntryListener {
public:

void entryAdded(EntryEvent<std::string, std::string> &event) {

257

258 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

std::cout << "entry added " << event.getKey() << " "
<< event.getValue() << std::endl;
};

void entryRemoved(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "
<< event.getValue() << std::endl;

3

void entryUpdated(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "
<< event.getValue() << std::endl;

3

void entryEvicted(EntryEvent<std::string, std::string> &event) {
std::cout << "entry added " << event.getKey() << " "
<< event.getValue() << std::endl;
}
};

int main(int argc, char **argv) {
ClientConfig clientConfig;
Address address("localhost", 5701);
clientConfig.addAddress(address);

HazelcastClient hazelcastClient(clientConfig);

IMap<std::string,std::string> myMap = hazelcastClient
.getMap<std::string ,std::string>("myIntMap");
SampleEntrylListener * listener = new SampleEntryListener();

std::string id = myMap.addEntryListener(*listener, true);
// Prints entryAdded

myMap.put("keyl", "valuel");

// Prints updated

myMap.put("keyl", "value2");

// Prints entryRemoved

myMap.remove("keyl");

// Prints entryEvicted after 1 second

myMap.put("key2", "value2", 1000);

// WARNING: deleting listemer before removing it from hazelcast leads to crashes.
myMap.removeEntryListener(id);

// Delete listener after remove it from hazelcast.

delete listener;

return 0O;

};

16.1.3.4 Serialization Example

Assume that you have the following two classes in Java and you want to use them with a C++ client.

class Foo implements Serializable {
private int age;
private String name;

}

16.1. C++ CLIENT

class Bar implements Serializable {
private float x;
private float y;

}

First, let them implement Portable or IdentifiedDataSerializable as shown below.

class Foo implements Portable {
private int age;
private String name;

public int getFactoryId() {
// a positive td that you choose
return 123;

}

public int getClassId() {
// a positive td that you choose
return 2;

}

public void writePortable(PortableWriter writer) throws IOException {
writer.writeUTF("n", name);
writer.writeInt("a", age);

}

public void readPortable(PortableReader reader) throws IOException {
name = reader.readUTF("n");
age = reader.readInt("a");

}
}

class Bar implements IdentifiedDataSerializable {
private float x;
private float y;

public int getFactoryId() {
// a positive td that you choose
return 4;

}

public int getId() {
// a positive td that you choose
return 5;

}

public void writeData(ObjectDataOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);

}

public void readData(ObjectDataInput in) throws IOException {
x = in.readFloat();
y = in.readFloat();
}
}

Then, implement the corresponding classes in C++ with same factory and class ID as shown below.

259

260 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

class Foo : public Portable {
public:
int getFactoryId() const {
return 123;

};

int getClassId() const {
return 2;

};

void writePortable(serialization::PortableWriter &writer) const {
writer.writeUTF("n", name);
writer.writeInt("a", age);

};

void readPortable(serialization::PortableReader &reader) {
name = reader.readUTF("n");
age = reader.readInt("a");

};

private:
int age;
std::string name;

};

class Bar : public IdentifiedDataSerializable {
public:
int getFactoryId() const {
return 4;

};

int getClassId() const {
return 2;

};

void writeData(serialization::0bjectDataOutput& out) const {
out.writeFloat (x);
out.writeFloat (y);

+;

void readData(serialization::ObjectDataInput& in) {
x = in.readFloat();
y = in.readFloat();

s

private:

float x;

float y;
};

Now, you can use the classes Foo and Bar in distributed structures. For example, use as Key or Value of IMap or
as an Item in IQueue.

16.2 .NET Client

You can use the native .NET client to connect to Hazelcast nodes. All you need is to add HazelcastClient3x.d1l1l
into your .NET project references. The API is very similar to the Java native client.

16.2. .NET CLIENT 261

Enterprise Only

.NET Client has the following distributed objects.

IMap<K,V>
IMultiMap<K,V>
IQueue<E>
ITopic<E>
IHList<E>
IHSet<E>
IIdGenerator
ILock
ISemaphore
ICountDownLatch
TAtomicLong

ITransactionContext
ITransactionContext can be used to obtain:

ITransactionalMap<K, V>,
ITransactionalMultiMap<K,V>,
ITransactionalList<E>, and
ITransactionalSet<E>.

At present the following features are not available as in the Java Client:

e Distributed Executor Service
e Replicated Map
e JCache

A code example is shown below.

using Hazelcast.Config;

using Hazelcast.Client;

using Hazelcast.Core;

using Hazelcast.IO0.Serialization;

using System.Collections.Generic;

namespace Hazelcast.Client.Example
{
public class SimpleExample

{

public static void Test()

{
var clientConfig = new ClientConfig();
clientConfig.GetNetworkConfig() .AddAddress("10.0.0.1");
clientConfig.GetNetworkConfig() .AddAddress("10.0.0.2:5702");

// Portable Serialization setup up for Customer Class
clientConfig.GetSerializationConfig()
.AddPortableFactory(MyPortableFactory.FactoryId, new MyPortableFactory());

262

3

CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

IHazelcastInstance client = HazelcastClient.NewHazelcastClient(clientConfig);
// All cluster operations that you can do with ordinary HazelcastInstance
IMap<string, Customer> mapCustomers = client.GetMap<string, Customer>("customers");

mapCustomers.Put("1", new Customer("Joe", "Smith"));
mapCustomers.Put("2", new Customer("Ali", "Selam"));
mapCustomers.Put("3", new Customer("Avi", "Noyan"));

ICollection<Customer> customers = mapCustomers.Values();
foreach (var customer in customers)
{
//process customer
}
3

public class MyPortableFactory : IPortableFactory

{

public const int Factoryld = 1;

public IPortable Create(int classId) {
if (Customer.Id == classId)
return new Customer();
else
return null;

public class Customer : IPortable

{

private string name;
private string surname;

public const int Id = 5;

public Customer(string name, string surname)
{

this.name = name;

this.surname = surname;

}
public Customer() {}

public int GetFactoryId()
{
return MyPortableFactory.Factoryld;

3

public int GetClassId()
{

return Id;

3

public void WritePortable(IPortableWriter writer)
{

writer.WriteUTF("n", name);

writer.WriteUTF("s", surname);

3

16.3. REST CLIENT 263

public void ReadPortable(IPortableReader reader)
{

name = reader.ReadUTF("n");
surname = reader.ReadUTF("s");

16.2.1 Client Configuration

You can configure the Hazelcast .NET client via API or XML. To start the client, you can pass a configuration or
leave it empty to use default values.

! NOTE: NET and Java clients are similar in terms of configuration. Therefore, you can refer to Java Client
section for configuration aspects. For information on .NET API documentation, please refer to the API document
provided along with the Hazelcast Enterprise license.

16.2.2 Client Startup

After configuration, you can obtain a client using one of the static methods of Hazelcast, as shown below.

IHazelcastInstance client = HazelcastClient.NewHazelcastClient(clientConfig) ;

IHazelcastInstance defaultClient = HazelcastClient.NewHazelcastClient();

IHazelcastInstance xmlConfClient = Hazelcast
.NewHazelcastClient (@"..\Hazelcast.Net\Resources\hazelcast-client.xml");

The IHazelcastInstance interface is the starting point where all distributed objects can be obtained.

var map = client.GetMap<int,string>("mapName");

var lock= client.GetLock("thelock");

16.3 REST Client

Hazelcast provides a REST interface, i.e. it provides an HTTP service in each node so that you can access your map
and queue using HTTP protocol. Assuming mapName and queueName are already configured in your Hazelcast, its
structure is shown below.

http://node IP address:port/hazelcast/rest/maps/mapName/key
http://node IP address:port/hazelcast/rest/queues/queueName
For the operations to be performed, standard REST conventions for HT'TP calls are used.

Assume that your cluster members are as shown below.

264 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

Members [5] {
Member [10.20.17.1:5701]
Member [10.20.17.2:5701]
Member [10.20.17.4:5701]
Member [10.20.17.3:5701]
Member [10.20.17.5:57011]

NOTE: All of the requests below can return one of the following responses in case of a failure.
o If the HTTP request syntax is not known, the following response will be returned.

HTTP/1.1 400 Bad Request
Content-Length: 0

e In case of an unexpected exception, the following response will be returned.

< HTTP/1.1 500 Internal Server Error
< Content-Length: O

Creating/Updating Entries in a Map

You can put a new keyl/valuel entry into a map by using POST call to http://10.20.17.1:5701/hazelcast/
rest/maps/mapName/keyl URL. This call’s content body should contain the value of the key. Also, if the call
contains the MIME type, Hazelcast stores this information, too.

A sample POST call is shown below.

$ curl -v -X POST -H "Content-Type: text/plain" -d "bar"
http://10.20.17.1:5701/hazelcast/rest/maps/mapName/foo

It will return the following response if successful:

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

Retrieving Entries from a Map

If you want to retrieve an entry, you can use a GET call tohttp://10.20.17.1:5701/hazelcast/rest/maps/mapName/key1.
You can also retrieve this entry from another member of your cluster, such as http://10.20.17.3:5701/hazelcast/rest/
maps/mapName/key1.

An example of a GET call is shown below.

$ curl -X GET http://10.20.17.3:5701/hazelcast/rest/maps/mapName/foo
It will return the following response if there is a corresponding value:

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 3
bar

16.3. REST CLIENT 265

This GET call returned a value, its length, and also the MIME type (text/plain) since the POST call example
shown above included the MIME type.

It will return the following if there is no mapping for the given key:

< HTTP/1.1 204 No Content
< Content-Length: 0O

Removing Entries from a Map

You can use a DELETE call to remove an entry. A sample DELETE call is shown below with its response.
$ curl -v -X DELETE http://10.20.17.1:5701/hazelcast/rest/maps/mapName/foo

< HTTP/1.1 200 0K
< Content-Type: text/plain
< Content-Length: 0

If you leave the key empty as follows, DELETE will delete all entries from the map.
$ curl -v -X DELETE http://10.20.17.1:5701/hazelcast/rest/maps/mapName

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 0

Offering Items on a Queue

You can use a POST call to create an item on the queue. A sample is shown below.

$ curl -v -X POST -H "Content-Type: text/plain" -d "foo"
http://10.20.17.1:5701/hazelcast/rest/queues/myEvents

The above call is equivalent to HazelcastInstance#getQueue("myEvents") .offer("foo");.

It will return the following if successful:

< HTTP/1.1 200 0K
< Content-Type: text/plain
< Content-Length: 0

It will return the following if the queue is full and the item is not able to be offered to the queue:

< HTTP/1.1 503 Service Unavailable
< Content-Length: 0

Retrieving Items from a Queue

You can use a DELETE call for retrieving items from a queue. Note that you should state the poll timeout while
polling for queue events by an extra path parameter.

An example is shown below (10 being the timeout value).
$ curl -v -X DELETE \http://10.20.17.1:5701/hazelcast/rest/queues/myEvents/10

The above call is equivalent to HazelcastInstance#getQueue ("myEvents") .pol1(10, SECONDS) ;. Below is the
response.

266 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

< HTTP/1.1 200 OK

< Content-Type: text/plain
< Content-Length: 3

foo

When the timeout is reached, the response will be No Content success, i.e. there is no item on the queue to be
returned.

< HTTP/1.1 204 No Content
< Content-Length: 0

Getting the size of the queue

$ curl -v -X GET \http://10.20.17.1:5701/hazelcast/rest/queues/myEvents/size

The above call is equivalent to HazelcastInstance#getQueue ("myEvents") .size() ;. Below is a sample response.
< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 1

5

RESTful access is provided through any member of your cluster. You can even put an HTTP load-balancer in front
of your cluster members for load balancing and fault tolerance.

NOTE: You need to handle the failures on REST polls as there is no transactional guarantee.

16.4 Memcache Client

A Memcache client written in any language can talk directly to a Hazelcast cluster. No additional configuration is
required.

NOTE: Hazelcast Memcache Client only supports ASCII protocol. Binary Protocol is not supported.

Assume that your cluster members are as shown below.

Members [5] {
Member [10.20.17.1:5701]
Member [10.20.17.2:5701]
Member [10.20.17.4:5701]
Member [10.20.17.3:5701]
Member [10.20.17.5:5701]
}

Assume that you have a PHP application that uses PHP Memcache client to cache things in Hazelcast. All you
need to do is have your PHP Memcache client connect to one of these members. It does not matter which member
the client connects to because the Hazelcast cluster looks like one giant machine (Single System Image). Here is a
PHP client code example.

<7php
$memcache = new Memcache;
$memcache->connect(’10.20.17.1°, 5701) or die ("Could not connect");
$memcache->set(’keyl’, ’valuel’, 0, 3600);
$get_result = $memcache->get(’keyl’); // retrieve your data
var_dump($get_result); // show it
7>

16.4. MEMCACHE CLIENT 267

Notice that Memcache client connects to 10.20.17.1 and uses port5701. Here is a Java client code example with
SpyMemcached client:

MemcachedClient client = new MemcachedClient (
AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));

client.set("keyl", 3600, "valuel");

System.out.println(client.get("keyl"));

If you want your data to be stored in different maps (e.g. to utilize per map configuration), you can do that with a
map name prefix as in the following example code.

MemcachedClient client = new MemcachedClient(

AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("mapl:keyl", 3600, "valuel"); // store to *hz_memcache_mapl
client.set("map2:keyl", 3600, "valuel"); // store to hz_memcache_map2
System.out.println(client.get("keyl")); // get from hz_memcache_mapl
System.out.println(client.get("key2")); // get from hz_memcache_map2

hz_memcache prefiz_ separates Memcache maps from Hazelcast maps. If no map name is given, it will be stored in
a default map named hz _memcache__default.

An entry written with a Memcache client can be read by another Memcache client written in another language.

16.4.1 Unsupported Operations

e CAS operations are not supported. In operations that get CAS parameters, such as append, CAS values are
ignored.

e Only a subset of statistics are supported. Below is the list of supported statistic values.

- cmd_set

- cmd_get

- incr_hits

- incr_misses
- decr_hits

- decr_misses

268 CHAPTER 16. OTHER CLIENT IMPLEMENTATIONS

Chapter 17

Serialization

17.1 Serialization Overview

You need to serialize the Java objects that you put into Hazelcast because Hazelcast is a distributed system. The
data and its replicas are stored in different partitions on multiple nodes. The data you need may not be present on
the local machine, and in that case, Hazelcast retrieves that data from another machine. This requires serialization.

Hazelcast serializes all your objects into an instance of com.hazelcast.nio.serialization.Data. Data is the
binary representation of an object.

Serialization is used when:

key/value objects are added to a map,

items are put in a queue/set/list,

a runnable is sent using an executor service,
an entry processing is performed within a map,
an object is locked, and

a message is sent to a topic.

Hazelcast optimizes the serialization for the below types. You cannot override this behavior.

Byte Boolean Character short
Integer Long Float Double
byvtel[] char|[] short[] int[]

long|] float|] double[] String

Figure 17.1: image

Hazelcast also optimizes the following types. However, you can override these types by creating a custom serializer
and registering it. See Custom Serialization for more information.

Hazelcast optimizes all of the above object types. You do not need to worry about their (de)serializations.

17.2 Serialization Interfaces

For complex objects, the following interfaces are used for serialization and deserialization.

269

270 CHAPTER 17. SERIALIZATION

Date BigInteger BigDhecimal

Class Externalizable Serializable

Figure 17.2: image

e java.io.Serializable

e java.io.Externalizable

e com.hazelcast.nio.serialization.DataSerializable

e com.hazelcast.nio.serialization.IdentifiedDataSerializable
e com.hazelcast.nio.serialization.Portable, and

e Custom Serialization (using StreamSerializer, ByteArraySerializer)

When Hazelcast serializes an object into Data:
(1) Tt first checks whether the object is an instance of com.hazelcast.nio.serialization.DataSerializable.
(2) If the above check fails, then Hazelcast checks if it is an instance of com.hazelcast.nio.serialization.Portable.

(3) If the above check fails, then Hazelcast checks whether the object is a well-known type like String, Long, or
Integer, or if it is a user-specified type like ByteArraySerializer or StreamSerializer.

(4) If the above checks fail, Hazelcast will use Java serialization.

If all of the above checks do not work, then serialization will fail. When a class implements multiple interfaces,
the above steps are important to determine the serialization mechanism that Hazelcast will use. When a class
definition is required for any of these serializations, all the classes needed by the application should be on the
classpath because Hazelcast does not download them automatically.

17.3 Comparison Table

Below table provides a comparison between the interfaces listed in the previous section to help you in deciding
which interface to use in your applications.

Serialization Interface Advantages

Serializable - A standard and basic Java interface - Requires no implementation

Externalizable - A standard Java interface - More CPU and memory usage efficient than Serializable
DataSerializable - More CPU and memory usage efficient than Serializable

IdentifiedDataSerializable - More CPU and memory usage efficient than Serializable - Reflection is not used during des
Portable - More CPU and memory usage efficient than Serializable - Reflection is not used during des

Custom Serialization - Does not require class to implement an interface - Convenient and flexible - Can be based

Let’s dig into the details of the above serialization mechanisms in the following sections.

17.4 Serializable & Externalizable

A class often needs to implement the java.io.Serializable interface; native Java serialization is the easiest way
to do serialization. Let’s take a look at the example code below.

public class Employee implements Serializable {
private static final long serialVersionUID = 1L;
private String surname;

17.5. DATASERIALIZABLE 271

Here, the fields that are non-static and non-transient are automatically serialized. To eliminate class compatibility
issues, it is recommended that you add a serialVersionUID, as shown above. Also, when you are using methods
that perform byte-content comparisons (e.g. IMap.replace()) and if byte-content of equal objects is different, you
may face unexpected behaviors. Therefore, if the class relies on, for example, a hash map, replace method may
fail. The reason for this is the hash map is a serialized data structure with unreliable byte-content.

Hazelcast also supports java.io.Externalizable. This interface offers more control on the way fields are serialized
or deserialized. Compared to native Java serialization, it also can have a positive effect on performance. With
java.io.Externalizable, there is no need to add serialVersionUID.

Let’s take a look at the example code below.

public class Employee implements Externalizable {
private String surname;
public Employee(String surname) {
this.surname = surname;

}

@0verride
public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {
this.surname = in.readUTF();

}

@0verride
public void writeExternal(ObjectOutput out)
throws IOException {
out.writeUTF (surname) ;
}
}

Writing and reading of fields are performed explicitly. Note that reading should be performed in the same order as
writing.

17.5 DataSerializable

As mentioned in the Serializable & Externalizable section, Java serialization is an easy mechanism. However, we
do not have a control on how fields are serialized or deserialized. Moreover, this mechanism can lead to excessive
CPU loads since it keeps track of objects to handle the cycles and streams class descriptors. These are performance
decreasing factors; thus, serialized data may not have an optimal size.

The DataSerializable interface of Hazelcast overcomes these issues. Here is an example of a class implementing
the com.hazelcast.nio.serialization.DataSerializable interface.

public class Address implements DataSerializable {
private String street;
private int zipCode;
private String city;
private String state;

public Address() {}

//getters setters..

272 CHAPTER 17. SERIALIZATION

public void writeData(ObjectDataOutput out) throws IOException {
out.writeUTF (street);
out.writeInt(zipCode);
out.writeUTF (city);
out.writeUTF (state);
}

public void readData(ObjectDataInput in) throws IOException {
street = in.readUTF();
zipCode = in.readInt();
city = in.readUTF(Q);
state = in.readUTF(Q);
}

Let’s take a look at another example which encapsulates a DataSerializable field.

public class Employee implements DataSerializable {
private String firstName;
private String lastName;
private int age;
private double salary;
private Address address; //address itself is DataSerializable

public Employee() {}
//getters setters..

public void writeData(ObjectDataOutput out) throws IOException {
out.writeUTF (firstName) ;
out.writeUTF (lastName) ;
out.writeInt(age) ;
out.writeDouble (salary);
address.writeData (out);

3

public void readData(ObjectDataIlnput in) throws I0OException {
firstName = in.readUTF();
lastName = in.readUTF();
age = in.readInt();
salary = in.readDouble();
address = new Address();
// since Address is DataSerializable let it read its own internal state
address.readData(in);

As you can see, since address field itself is DataSerializable, it is calling address.writeData(out) when writing
and address.readData(in) when reading. Also note that, the order of writing and reading fields should be the
same. While Hazelcast serializes a DataSerializable, it writes the className first. When Hazelcast de-serializes
it, className is used to instantiate the object using reflection.

. NOTE: Since Hazelcast needs to create an instance during deserialization,DataSerializable class has a
no-arg constructor.

NOTE: DataSerializable is a good option if serialization is only needed for in-cluster communication.

17.5. DATASERIALIZABLE 273

17.5.1 IdentifiedDataSerializable

For a faster serialization of objects, avoiding reflection and long class names, Hazelcast recommends you imple-
ment com.hazelcast.nio.serialization.IdentifiedDataSerializable which is a slightly better version of
DataSerializable.

DataSerializable uses reflection to create a class instance, as mentioned in the DataSerializable section. But,
IdentifiedDataSerializable uses a factory for this purpose and it is faster during deserialization which requires
new instance creations.

IdentifiedDataSerializable extends DataSerializable and introduces two new methods.

e int getId();
e int getFactoryId();

IdentifiedDataSerializable uses getId() instead of class name, and it uses getFactoryId() to load the class
when given the Id. To complete the implementation, com.hazelcast.nio.serialization.DataSerializableFactory
should also be implemented and registered into SerializationConfig which can be accessed from
Config.getSerializationConfig(). Factory’s responsibility is to return an instance of the right
IdentifiedDataSerializable object, given the Id. So far this is the most efficient way of Serialization
that Hazelcast supports off the shelf.

Let’s take a look at the example code below and configuration to see IdentifiedDataSerializable in action.

public class Employee
implements IdentifiedDataSerializable {

private String surname;
public Employee() {}

public Employee(String surname) {
this.surname = surname;

}

@0verride
public void readData(ObjectDataInput in)
throws IOException {
this.surname = in.readUTF();

}

@0verride
public void writeData(ObjectDatalutput out)
throws IOException {
out.writeUTF(surname);

3

@0verride
public int getFactoryId() {

return EmployeeDataSerializableFactory.FACTORY_ID;
b

@0verride
public int getId() {

return EmployeeDataSerializableFactory.EMPLOYEE_TYPE;
b

@0verride
public String toString() {

274 CHAPTER 17. SERIALIZATION

return String.format("Employee(surname=%s)", surname) ;
}
}

The methods getId and getFactoryld return a unique positive number within the EmployeeDataSerializableFactory.
Now, let’s create an instance of this EmployeeDataSerializableFactory

public class EmployeeDataSerializableFactory
implements DataSerializableFactory{

public static final int FACTORY_ID = 1;
public static final int EMPLOYEE_TYPE = 1;

@0verride
public IdentifiedDataSerializable create(int typeId) {
if (typeld == EMPLOYEE_TYPE) {
return new Employee();
} else {
return null;
}
}
}

The only method that should be implemented is create, as seen in the above example. It is recommended that
you use a switch-‘case statement instead of multiple if-else blocks if you have a lot of subclasses. Hazelcast
throws an exception if null is returned for typeId.

As the last step, you need to register EmployeeDataSerializableFactory declaratively (declare in the configuration
file hazelcast.xml) as shown below. Note that factory-id has the same value of FACTORY_ID in the above code.
This is crucial to enable Hazelcast to find the correct factory.

<hazelcast>

<serialization>
<data-serializable-factories>
<data-serializable-factory
factory-id="1">EmployeeDataSerializableFactory
</data-serializable-factory>
</data-serializable-factories>
</serialization>

</hazelcast>

RELATED INFORMATION

Please refer to the Serialization Configuration section for a full description of Hazelcast Serialization configuration.

17.6 Portable

As an alternative to the existing serialization methods, Hazelcast offers a language/platform independent Portable
serialization that has the following advantages:

e Supports multi-version of the same object type.
e Fetches individual fields without having to rely on reflection.
e Queries and indexing support without de-serialization and/or reflection.

17.6. PORTABLE 275

In order to support these features, a serialized Portable object contains meta information like the version and the
concrete location of the each field in the binary data. This way, Hazelcast navigates in the byte[] and de-serializes
only the required field without actually de-serializing the whole object. This improves the Query performance.

With multi-version support, you can have two nodes where each of them have different versions of the same object.
Hazelcast will store both meta information and use the correct one to serialize and de-serialize Portable objects
depending on the node. This is very helpful when you are doing a rolling upgrade without shutting down the
cluster.

Portable serialization is totally language independent and is used as the binary protocol between Hazelcast server
and clients.

A sample Portable implementation of a Foo class would look like the following.

public class Foo implements Portableq{
final static int ID = 5;

private String foo;

public String getFoo() {
return foo;

3

public void setFoo(String foo) {
this.foo = foo;

}

@0verride
public int getFactoryId() {
return 1;

}

@Override
public int getClassId() {
return ID;

}

@0verride
public void writePortable(PortableWriter writer) throws IOException {
writer.writeUTF("foo", foo);

}

@0verride
public void readPortable(PortableReader reader) throws IOException {
foo = reader.readUTF("foo");
}
}

Similar to IdentifiedDataSerializable, a Portable Class must provide classId andfactoryId. The Factory
object will create the Portable object given the classId.

An example Factory could be implemented as following;:

public class MyPortableFactory implements PortableFactory {

@0verride
public Portable create(int classId) {
if (Foo.ID == classId)
return new Foo();
else

276 CHAPTER 17. SERIALIZATION

return null;

The last step is to register the Factory to the SerializationConfig. Below are the programmatic and declarative
configurations for this step.

Config config = new Config();
config.getSerializationConfig() .addPortableFactory(1, new MyPortableFactory());

<hazelcast>
<serialization>
<portable-version>0</portable-version>
<portable-factories>
<portable-factory factory-id="1">
com.hazelcast.nio.serialization.MyPortableFactory
</portable-factory>
</portable-factories>
</serialization>
</hazelcast>

Note that the id that is passed to the SerializationConfig is the same as the factoryId that the Foo class
returns.

17.6.1 Versions

More than one version of the same class may need to be serialized and deserialized. For example, a client may have
an older version of a class, and the node to which it is connected can have a newer version of the same class.

Portable serialization supports versioning. You can declare Version in the configuration file hazelcast.xml using
the portable-version element, as shown below

<serialization>
<portable-version>1</portable-version>
<portable-factories>
<portable-factory factory-id="1">
PortableFactoryImpl
</portable-factory>
</portable-factories>
</serialization>

You should consider the following when you perform versioning.

e It is important to change the version whenever an update is performed in the serialized fields of a class
(e.g. increment the version).

e If a client performs a Portable deserialization on a field, and then that Portable is updated by removing that
field on the cluster side, this may lead to a problem.

e Portable serialization does not use reflection and hence, fields in the class and in the serialized content are not
automatically mapped. Field renaming is a simpler process. Also, since the class ID is stored, renaming the
Portable does not lead to problems.

e Types of fields need to be updated carefully. Hazelcast performs basic type upgradings (e.g. int to float).

17.7. CUSTOM SERIALIZATION 277

17.6.2 Null Portable Serialization

Be careful when serializing null portables. Hazelcast lazily creates a class definition of portable internally when
the user first serializes. This class definition is stored and used later for deserializing that portable class. When
the user tries to serialize a null portable when there is no class definition at the moment, Hazelcast throws
an exception saying that com.hazelcast.nio.serialization.HazelcastSerializationException: Cannot
write null portable without explicitly registering class definition!.

There are two solutions to get rid of this exception. Either put a non-null portable class of the same type before
any other operation, or manually register a class definition in serialization configuration as shown below.

Config config = new Config();

final ClassDefinition classDefinition = new ClassDefinitionBuilder(Foo.factoryId, Foo.getClassId)
.addUTFField("foo") .build();

config.getSerializationConfig() .addClassDefinition(classDefinition);

Hazelcast.newHazelcastInstance (conf ig) ;

17.6.3 DistributedObject Serialization

Putting a DistributedObject (e.g. Hazelcast Semaphore, Queue, etc.) in a machine and getting it from another
one is not a straightforward operation. Passing the ID and type of the DistributedObject can be a solution. For
deserialization, you can get the object from HazelcastInstance. For instance, if your distributed object is an instance
of IQueue, you can either use HazelcastInstance.getQueue(id) or Hazelcast.getDistributedObject.

You can use the HazelcastInstanceAware interface in the case of a deserialization of a Portable DistributedObject
if it gets an ID to be looked up. HazelcastInstance is set after deserialization, so you first need to store the ID and
then retrieve the DistributedObject using the setHazelcastInstance method.

RELATED INFORMATION

Please refer to the Serialization Configuration section for a full description of Hazelcast Serialization configuration.

17.7 Custom Serialization

Hazelcast lets you plug a custom serializer for serializing objects. You can use StreamSerializer and
ByteArraySerializer interfaces for this purpose.

17.7.1 StreamSerializer
You can use a stream to serialize and deserialize data by using StreamSerializer. This is a good option for your

own implementations. It can also be adapted to external serialization libraries like Kryo, JSON, and protocol
buffers.

17.7.1.1 StreamSerializer Example 1

First, let’s create a simple object.

public class Employee {
private String surname;

public Employee(String surname) {
this.surname = surname;
}
}

Now, let’s implement StreamSerializer for Employee class.

278 CHAPTER 17. SERIALIZATION

public class EmployeeStreamSerializer
implements StreamSerializer<Employee> {

@0verride
public int getTypeld () {
return 1;

}

@0verride
public void write(ObjectDataOutput out, Employee employee)
throws IOException {
out.writeUTF (employee.getSurname());
X

@0verride
public Employee read(ObjectDataInput in)
throws IOException {
String surname = in.readUTF();
return new Employee(surname) ;

}

@0verride
public void destroy () {
}

In practice, classes may have many fields. Just make sure the fields are read in the same order as they are written.
The type ID must be unique and greater than or equal to 1. Uniqueness of the type ID enables Hazelcast to
determine which serializer will be used during deserialization.

As the last step, let’s register the EmployeeStreamSerializer in the configuration file hazelcast.xml, as shown
below.

<serialization>
<serializers>
<serializer type-class="Employee" class-name="EmployeeStreamSerializer" />
</serializers>
</serialization>

. NOTE: StreamSerializer cannot be created for well-known types (e.g. Long, String) and primitive arrays.
Hazelcast already registers these types.

17.7.1.2 StreamSerializer Example 2
Let’s take a look at another example implementing StreamSerializer.

public class Foo {
private String foo;

public String getFoo() {
return foo;

}

public void setFoo(String foo) {
this.foo = foo;
}
}

17.7. CUSTOM SERIALIZATION 279

Assume that our custom serialization will serialize Foo into XML. First we need to implement a
com.hazelcast.nio.serialization.StreamSerializer. A very simple one that uses XMLEncoder and
XMLDecoder could look like the following:

public static class FooXmlSerializer implements StreamSerializer<Foo> {

@Override
public int getTypeId() {
return 10;

}

@0verride
public void write(ObjectDataOutput out, Foo object) throws IOException {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
XMLEncoder encoder = new XMLEncoder(bos);
encoder.writeObject(object);
encoder.close();
out.write(bos.toByteArray());

@0verride

public Foo read(ObjectDatalnput in) throws IOException {
InputStream inputStream = (InputStream) in;
XMLDecoder decoder = new XMLDecoder(inputStream);
return (Foo) decoder.readObject();

}

@0verride
public void destroy() {
¥

Note that typeId must be unique because Hazelcast will use it to look up the StreamSerializer while it de-
serializes the object. The last required step is to register the StreamSerializer to the Configuration. Below are
the programmatic and declarative configurations for this step.

SerializerConfig sc = new SerializerConfig()
.setImplementation(new FooXmlSerializer())
.setTypeClass(Foo.class);

Config config = new Config();

config.getSerializationConfig() .addSerializerConfig(sc);

<hazelcast>
<serialization>
<serializers>
<serializer type-class="com.www.Foo">com.www.FooXmlSerializer</serializer>
</serializers>
</serialization>
</hazelcast>

From now on, Hazelcast will use FooXmlSerializer to serialize Foo objects. This way one can write an adapter
(StreamSerializer) for any Serialization framework and plug it into Hazelcast.

RELATED INFORMATION

Please refer to the Serialization Configuration section for a full description of Hazelcast Serialization configuration.

280 CHAPTER 17. SERIALIZATION

17.7.2 ByteArraySerializer

ByteArraySerializer exposes the raw ByteArray used internally by Hazelcast. It is a good option if the serialization
library you are using deals with ByteArrays instead of streams.

Let’s implement ByteArraySerializer for the Employee class mentioned in the StreamSerializer section.

public class EmployeeByteArraySerializer
implements ByteArraySerializer<Employee> {

@0verride
public void destroy () {
}

@0verride
public int getTypeld () {
return 1;

3

@0verride
public byte[] write(Employee object)
throws IOException {
return object.getName() .getBytes();
}

@0verride
public Employee read(byte[] buffer)
throws IOException {
String surname = new String(buffer);
return new Employee(surname);
}
}

As usual, let’s register the EmployeeByteArraySerializer in the configuration file hazelcast.xml, as shown
below.

<serialization>
<serializers>
<serializer type-class="Employee">EmployeeByteArraySerializer</serializer>
</serializers>
</serialization>

RELATED INFORMATION

Please refer to the Serialization Configuration section for a full description of Hazelcast Serialization configuration.

17.8 HazelcastInstanceAware Interface

You can implement the HazelcastInstanceAware interface to access distributed objects for cases where an object
is deserialized and needs access to HazelcastInstance.

Let’s implement it for the Employee class mentioned in the Custom Serialization section.

public class Employee
implements Serializable, HazelcastInstanceAware {

private static final long serialVersionUID = 1L;

17.8. HAZELCASTINSTANCEAWARE INTERFACE 281

private String surname;
private transient HazelcastInstance hazelcastInstance;

public Person(String surname) {
this.surname = surname;

}

@0verride

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;
System.out.println("HazelcastInstance set");

}

@0verride
public String toString() {
return String.format("Person(surname=Js)", surname) ;

}
}

After deserialization, the object is checked if it implements HazelcastInstanceAware and the method
setHazelcastInstance is called. Notice the hazelcastInstance is transient. This is because this field should
not be serialized.

It may be a good practice to inject a HazelcastInstance into a domain object (e.g. Employee in the above
sample) when used together with Runnable/Callable implementations. These runnables/callables are executed
by IExecutorService which sends them to another machine. And after a task is deserialized, run/call method
implementations need to access HazelcastInstance.

We recommend you only to set the HazelcastInstance field while using setHazelcastInstance method and
not to execute operations on the HazelcastInstance. Because, when HazelcastInstance is injected for a
HazelcastInstanceAware implementation, it may not be up and running at the injection time.

282 CHAPTER 17. SERIALIZATION

Chapter 18

Management

18.1 Statistics API per Node

You can gather various statistics from your distributed data structures via Statistics API. Since the data structures
are distributed in the cluster, the Statistics API provides statistics for the local portion (1/Number of Nodes) of
data on each node.

18.1.1 Map Statistics

The IMap interface has a getLocalMapStats() method which returns a LocalMapStats object that holds local
map statistics.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

IMap<String, Customer> customers = hazelcastInstance.getMap("customers");

LocalMapStats mapStatistics = customers.getLocalMapStats();

System.out.println("number of entries owned on this node =
+ mapStatistics.getOwnedEntryCount());

n

Below is the list of metrics that you can access via the LocalMapStats object.

VAL
* Returns the number of entries owned by this member.
*/

long getOwnedEntryCount () ;

VLT

* Returns the number of backup entries hold by this member.
*/
long getBackupEntryCount() ;

VLT
* Returns the number of backups per eniry.
*/

int getBackupCount () ;

VLT

* Returns memory cost (number of bytes) of owned entries in this member.
*/

long getOwnedEntryMemoryCost();

Rk

283

284 CHAPTER 18.

* Returns memory cost (number of bytes) of backup entries in this member.
*/
long getBackupEntryMemoryCost();

VELS
* Returns the creation time of this map on this member.
*/

long getCreationTime();

/kk
* Returns the last access (read) time of the locally owned entries.
*/

long getLastAccessTime();

/kk
* Returns the last update time of the locally owned entries.
*/

long getlastUpdateTime() ;

J**
* Returns the number of hits (reads) of the locally owned entries.
*/

long getHits();

J**
* Returns the number of currently locked locally owned keys.
*/

long getLockedEntryCount () ;

J**
* Returns the number of entries that the member owns and are dirty (updated
* but not persisted yet).
* dirty entry count is meaningful when there is a persistence defined.
*/
long getDirtyEntryCount();

VELS
* Returns the number of put operations
*/

long getPutOperationCount();

/kk
* Returns the number of get operations
*/

long getGetOperationCount();

/kk
* Returns the number of Remove operations
*/

long getRemoveOperationCount () ;

Jk*
* Returns the total latency of put operations. To get the average latency,
* divide by number of puts
*/

long getTotalPutLatency();

Jkx

MANAGEMENT

18.1. STATISTICS API PER NODE

* Returns the total latency of get operations. To get the average latency,
* divide by number of gets
*/

long getTotalGetLatency();

VAL
* Returns the total latency of remove operations. To get the average latency,
* divide by number of gets
*/

long getTotalRemoveLatency();

VLS
* Returns the mazimum latency of put operations. To get the average latency,
* divide by number of puts
*/

long getMaxPutLatency();

/%%
* Returns the mazimum latency of get operations. To get the average latency,
* divide by number of gets
*/

long getMaxGetLatency();

/%%
* Returns the mazimum latency of remove operations. To get the average latency,
* divide by number of gets
*/

long getMaxRemoveLatency();

J**
* Returns the number of Events Received
*/

long getEventOperationCount();

Jk*
* Returns the total number of Other Uperations
*/

long getOtherOperationCount();

/%%
* Returns the total number of total operations
*/

long total();

/%%
* Cost of map & near cache & backup in bytes
* todo in object mode object size ts zero.
*/

long getHeapCost();

VLTS
* Returns statistics related to the Near Cache.
*/

NearCacheStats getNearCacheStats();

285

286 CHAPTER 18. MANAGEMENT

18.1.1.1 Near Cache Statistics

You can access Near Cache statistics from the LocalMapStats object via the getNearCacheStats() method, which
returns a NearCacheStats object.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IMap<String, Customer> customers = node.getMap("customers");
LocalMapStats mapStatistics = customers.getLocalMapStats();
NearCacheStats nearCacheStatistics = mapStatistics.getNearCacheStats();
System.out.println("near cache hit/miss ratio= "

+ nearCacheStatistics.getRatio());

Below is the list of metrics that you can access via the NearCacheStats object. This behavior applies to both
client and node near caches.

VAL
* Returns the creation time of this NearCache on this member
*/

long getCreationTime();

VAL
* Returns the number of entries owned by this member.
*/

long getOwnedEntryCount () ;

VLT
* Returns memory cost (number of bytes) of entries in this cache.
*/

long getOwnedEntryMemoryCost();

VLT
* Returns the number of hits (reads) of the locally owned entries.
*/

long getHits();

VLT
* Returns the number of misses of the locally owned entries.
*/

long getMisses();

Jk*
* Returns the hit/miss ratio of the locally owned entries.
*/

double getRatio();

18.1.2 Multimap Statistics

The MultiMap interface has a getLocalMultiMapStats() method which returns a LocalMultiMapStats object
that holds local MultiMap statistics.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
MultiMap<String, Customer> customers = node.getMultiMap("customers");
LocalMultiMapStats multiMapStatistics = customers.getLocalMultiMapStats();
System.out.println("last update time = "

+ multiMapStatistics.getLastUpdateTime());

Below is the list of metrics that you can access via the LocalMultiMapStats object.

18.1. STATISTICS API PER NODE

/**
* Returns the number of entries owned by this member.
*/

long getOwnedEntryCount () ;

VAL
* Returns the number of backup entries hold by this member.
*/

long getBackupEntryCount() ;

VAL
* Returns the number of backups per eniry.
*/

int getBackupCount () ;

VAL
* Returns memory cost (number of bytes) of owned entries in this member.
*/

long getOwnedEntryMemoryCost();

VLT

* Returns memory cost (number of bytes) of backup entries in this member.

*/
long getBackupEntryMemoryCost();

/kk
* Returns the creation time of thtis map on this member.
*/

long getCreationTime();

/kk
* Returns the last access (read) time of the locally owned entries.
*/

long getlastAccessTime();

J**
* Returns the last update time of the locally owned entries.
*/

long getlastUpdateTime() ;

J**
* Returns the number of hits (reads) of the locally owned entries.
*/

long getHits();

J**
* Returns the number of currently locked locally owned keys.
*/

long getLockedEntryCount() ;

Jk*

* Returns the number of entries that the member owns and are dirty (updated

* but not persisted yet).
* dirty entry count is meaningful when a persistence is defined.
*/

long getDirtyEntryCount();

Jkx

287

288 CHAPTER 18. MANAGEMENT

* Returns the number of put operations
*/
long getPutOperationCount();

VELS
* Returns the number of get operations
*/

long getGetOperationCount();

/kk
* Returns the number of Remove operations
*/

long getRemoveOperationCount();

/kk
* Returns the total latency of put operations. To get the average latency,
* divide by number of puts
*/

long getTotalPutLatency();

/kk
* Returns the total latency of get operations. To get the average latency,
* divide by number of gets
*/

long getTotalGetLatency();

VAL
* Returns the total latency of remove operations. To get the average latency,
* divide by number of gets
*/

long getTotalRemovelLatency() ;

VLS
* Returns the mazimum latency of put operations. To get the average latency,
* divide by number of puts
*/

long getMaxPutLatency();

VAL
* Returns the mazimum latency of get operations. To get the average latency,
* divide by number of gets
*/

long getMaxGetLatency();

%k
* Returns the mazimum latency of remove operations. To get the average latency,
* divide by number of gets
*/

long getMaxRemoveLatency() ;

Jk*
* Returns the number of Events Recetived
*/

long getEventOperationCount();

%k
* Returns the total number of Other Operations

*/

18.1. STATISTICS API PER NODE 289

long getOtherOperationCount();

Jk*
* Returns the total number of total operations
*/

long total();

Jk*
* Cost of map & near cache & backup in bytes
* todo im object mode object size ts zero.
*/

long getHeapCost();

18.1.3 Queue Statistics

The IQueue interface has a getLocalQueueStats() method which returns a LocalQueueStats object that holds
local queue statistics.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IQueue<Order> orders = node.getQueue("orders");
LocalQueueStats queueStatistics = orders.getLocalQueueStats();
System.out.println("average age of items = "

+ queueStatistics.getAvgAge());

Below is the list of metrics that you can access via the LocalQueueStats object.

/%%
* Returns the number of owned ttems in this member.
*/

long getOwnedItemCount () ;

VAL
* Returns the number of backup items in this member.
*/

long getBackupItemCount();

J**
* Returns the min age of the items in this member.
*/

long getMinAge();

J**
* Returns the maz age of the items in this member.
*/

long getMaxAge();

VELS
* Returns the average age of the items in this member.
*/

long getAvghge();

VLT
* Returns the number of offer/put/add operations.
* Offers returning false will be included.
#getRejectedUf ferUperationCount can be used
* to get the rejected offers.

*/

*

290 CHAPTER 18. MANAGEMENT

long getOfferOperationCount();

Jk*
* Returns the number of rejected offers. Offer
* can be rejected because of mar-size limit
* on the queue.
*/
long getRejected0fferOperationCount();

Jk*
* Returns the number of poll/take/remove operations.
* Polls returning null (empty) will be included.
* #getEmptyPollOperationCount can be used to get the
* number of polls returned null.
*/

long getPollOperationCount();

VAL
* Returns number of null returning poll operations.
* Poll operation might return null, if the queue is empty.
*/

long getEmptyPollOperationCount() ;

VLTS
* Returns number of other operations
*/

long getOtherOperationsCount();

Jk*
* Returns number of event operations
*/

long getEventOperationCount() ;

18.1.4 Topic Statistics

The ITopic interface has a getLocalTopicStats() method which returns a LocalTopicStats object that holds
local topic statistics.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
ITopic<Object> news = node.getTopic("news");
LocalTopicStats topicStatistics = news.getLocalTopicStats();
System.out.println("number of publish operations = "

+ topicStatistics.getPublishOperationCount());

Below is the list of metrics that you can access via the LocalTopicStats object.

VELS
* Returns the creation time of this topic on this member
*/

long getCreationTime();

VLT
* Returns the total number of published messages of this topic on this member
*/

long getPublishOperationCount();

Jkx

18.2. JMX API PER NODE 291

* Returns the total number of received messages of this topic on this member
*/

long getReceiveOperationCount () ;

18.1.5 Executor Statistics

The IExecutorService interface has a getLocalExecutorStats() method which returns a LocalExecutorStats
object that holds local executor statistics.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IExecutorService orderProcessor = node.getExecutorService("orderProcessor");
LocalExecutorStats executorStatistics = orderProcessor.getLocalExecutorStats();
System.out.println("completed task count = "

+ executorStatistics.getCompletedTaskCount ());

Below is the list of metrics that you can access via the LocalExecutorStats object.

VAL
* Returns the number of pending operations of the executor service
*/

long getPendingTaskCount () ;

VAL
* Returns the number of started operations of the executor service
*/

long getStartedTaskCount () ;

VLT
* Returns the number of completed operations of the exzecutor service
*/

long getCompletedTaskCount () ;

VEZ:
* Returns the number of cancelled operations of the executor service
*/

long getCancelledTaskCount () ;

J**
* Returns the total start latency of operations started
*/

long getTotalStartLatency();

k%
* Returns the total execution time of operations finished
*/

long getTotalExecutionLatency();

18.2 JMX API per Node

Hazelcast members expose various management beans which include statistics about distributed data structures
and the states of Hazelcast node internals.

The metrics are local to the nodes, i.e. they do not reflect cluster wide values.
You can find the JMX API definition below with descriptions and the API methods in parenthesis.
Atomic Long (IAtomicLong)

292

Name (name)

Current Value (currentValue)

Set Value (set(v))

Add value and Get (addAndGet (v))
Compare and Set (compareAndSet(e,v))
Decrement and Get (decrementAndGet ())
Get and Add (getAndAdd(v))

Get and Increment (getAndIncrement ())
Get and Set (getAndSet(v))

Increment and Get (incrementAndGet ())
Partition key (partitionKey)

Atomic Reference (IAtomicReference)

Name (name)
Partition key (partitionKey)

Countdown Latch (ICountDownLatch)

Name (name)

Current count (count)
Countdown (countDown())
Partition key (partitionKey)

Executor Service (IExecutorService)

List

Local pending operation count (localPendingTaskCount)
Local started operation count (localStartedTaskCount)
Local completed operation count (localCompletedTaskCount)
Local cancelled operation count (localCancelledTaskCount)
Local total start latency (localTotalStartLatency)

Local total execution latency (localTotalExecutionLatency)

(IList)

Name (name)

Clear list (clear)

Total added item count (totalAddedItemCount)
Total removed item count (totalRemovedItemCount)

Lock (ILock)

Name (name)
Lock Object (LockObject)
Partition key (partitionKey)

Map (IMap)

Name (name)

Size (size)

Config (config)

Owned entry count (localOwnedEntryCount)

Owned entry memory cost (localOwnedEntryMemoryCost)

CHAPTER 18. MANAGEMENT

18.2. JMX API PER NODE 293

Backup entry count (localBackupEntryCount)
Backup entry cost (localBackupEntryMemoryCost)
Backup count (localBackupCount)

Creation time (localCreationTime)

Last access time (localLastAccessTime)

Last update time (localLastUpdateTime)

Hits (localHits)

Locked entry count (localLockedEntryCount)

Dirty entry count (localDirtyEntryCount)

Put operation count (localPutOperationCount)

Get operation count (localGetOperationCount)
Remove operation count (localRemoveOperationCount)
Total put latency (localTotalPutLatency)

Total get latency (localTotalGetLatency)

Total remove latency (localTotalRemoveLatency)
Max put latency (localMaxPutLatency)

Max get latency (localMaxGetLatency)

Max remove latency (localMaxRemoveLatency)

Event count (localEventOperationCount)

Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
Total operation count (localTotal)

Heap Cost (localHeapCost)

Total added entry count (totalAddedEntryCount)
Total removed entry count (totalRemovedEntryCount)
Total updated entry count (totalUpdatedEntryCount)
Total evicted entry count (totalEvictedEntryCount)
Clear (clear())

Values (values(p))

Entry Set (entrySet(p))

MultiMap (MultiMap)

Name (name)

Size (size)

Owned entry count (localOwnedEntryCount)
Owned entry memory cost (localOwnedEntryMemoryCost)
Backup entry count (localBackupEntryCount)
Backup entry cost (localBackupEntryMemoryCost)
Backup count (localBackupCount)

Creation time (localCreationTime)

Last access time (localLastAccessTime)

Last update time (localLastUpdateTime)

Hits (localHits)

Locked entry count (localLockedEntryCount)

Put operation count (localPutOperationCount)
Get operation count (localGetOperationCount)
Remove operation count (localRemoveOperationCount)
Total put latency (localTotalPutLatency)

Total get latency (localTotalGetLatency)

Total remove latency (localTotalRemoveLatency)
Max put latency (localMaxPutLatency)

Max get latency (localMaxGetLatency)

Max remove latency (localMaxRemoveLatency)

Event count (localEventOperationCount)

294 CHAPTER 18. MANAGEMENT

e Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
e Total operation count (localTotal)
e Clear (clear())

Replicated Map (ReplicatedMap)

Name (name)

Size (size)

Config (config)

Owned entry count (localOwnedEntryCount)

Creation time (localCreationTime)

Last access time (localLastAccessTime)

Last update time (localLastUpdateTime)

Hits (localHits)

Put operation count (localPutOperationCount)

Get operation count (localGetOperationCount)
Remove operation count (localRemoveOperationCount)
Total put latency (localTotalPutLatency)

Total get latency (localTotalGetLatency)

Total remove latency (localTotalRemovelatency)

Max put latency (localMaxPutLatency)

Max get latency (localMaxGetLatency)

Max remove latency (localMaxRemoveLatency)

Event count (localEventOperationCount)

Replication event count (localReplicationEventCount)
Other (keySet,entrySet etc..) operation count (localOtherOperationCount)
Total operation count (localTotal)

Total added entry count (totalAddedEntryCount)
Total removed entry count (totalRemovedEntryCount)
Total updated entry count (totalUpdatedEntryCount)
Clear (clear())

Values (values())

Entry Set (entrySet())

Queue (IQueue)

Name (name)

Config (QueueConfig)

Partition key (partitionKey)

Owned item count (localOwnedItemCount)

Backup item count (localBackupItemCount)

Minimum age (localMinAge)

Maximum age (localMaxAge)

Average age (localAveAge)

Offer operation count (localOfferOperationCount)

Rejected offer operation count (localRejected0fferOperationCount)
Poll operation count (localPollOperationCount)

Empty poll operation count (localEmptyPollOperationCount)
Other operation count (localOtherOperationsCount)

Event operation count (localEventOperationCount)

Total added item count (totalAddedItemCount)

Total removed item count (totalRemovedItemCount)

Clear (clear())

18.2. JMX API PER NODE 295
Semaphore (ISemaphore)

Name (name)

Available permits (available)

Partition key (partitionKey)

Drain (drain())

Shrink available permits by given number (reduce(v))

Release given number of permits (release(v))
Set (ISet)

Name (name)

Partition key (partitionKey)

Total added item count (totalAddedItemCount)
Total removed item count (totalRemovedItemCount)
Clear (clear())

Topic (ITopic)

Name (name)

Config (config)

Creation time (localCreationTime)

Publish operation count (localPublishOperationCount)
Receive operation count (localReceiveOperationCount)
Total message count (totalMessageCount)

Hazelcast Instance (HazelcastInstance)

e Name (name)

e Version (version)

e Build (build)

e Configuration (config)

e Configuration source (configSource)
e Group name (groupName)

e Network Port (port)

e Cluster-wide Time (clusterTime)
e Size of the cluster (memberCount)
e List of members (Members)

e Running state (running)

e Shutdown the member (shutdown())

— Node (HazelcastInstance.Node)

* Address (address)
* Master address (masterAddress)

e Event Service (HazelcastInstance.EventService)

— Event thread count (eventThreadCount)

296 CHAPTER 18. MANAGEMENT

— Event queue size (eventQueueSize)
— Event queue capacity (eventQueueCapacity)

e Operation Service (HazelcastInstance.OperationService)

Response queue size (responseQueueSize)
Operation executor queue size (operationExecutorQueueSize)

Running operation count (runningOperationsCount)
— Remote operation count (remoteOperationCount)

Executed operation count (executedOperationCount)

Operation thread count (operationThreadCount)

Proxy Service (HazelcastInstance.ProxyService)

— Proxy count (proxyCount)

Partition Service (HazelcastInstance.PartitionService)

Partition count (partitionCount)

Active partition count (activePartitionCount)
Cluster Safe State (isClusterSafe)
LocalMember Safe State (isLocalMemberSafe)

Connection Manager (HazelcastInstance.ConnectionManager)

— Client connection count (clientConnectionCount)
— Active connection count (activeConnectionCount)
— Connection count (connectionCount)

Client Engine (HazelcastInstance.ClientEngine)

— Client endpoint count (clientEndpointCount)

System Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)

— Work queue size (queueSize)

— Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)

— Remaining capacity of the work queue (remainingQueueCapacity)
— Is shutdown (isShutdown)

— Is terminated (isTerminated)

— Completed task count (completedTaskCount)

e Operation Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)

— Work queue size (queueSize)

— Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)

— Remaining capacity of the work queue (remainingQueueCapacity)
— Is shutdown (isShutdown)

— Is terminated (isTerminated)

— Completed task count (completedTaskCount)

e Async Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)
— Work queue size (queueSize)

18.3. MONITORING WITH JMX 297

Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)
Remaining capacity of the work queue (remainingQueueCapacity)
Is shutdown (isShutdown)

Is terminated (isTerminated)

Completed task count (completedTaskCount)
e Scheduled Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)

— Work queue size (queueSize)

— Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)

— Remaining capacity of the work queue (remainingQueueCapacity)
— Is shutdown (isShutdown)

— Is terminated (isTerminated)

— Completed task count (completedTaskCount)

e Client Executor (HazelcastInstance.ManagedExecutorService)

Name (name)

Work queue size (queueSize)
Thread count of the pool (poolSize)
Maximum thread count of the pool (maximumPoolSize)

Remaining capacity of the work queue (remainingQueueCapacity)
Is shutdown (isShutdown)

Is terminated (isTerminated)

Completed task count (completedTaskCount)

e Query Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)

— Work queue size (queueSize)

— Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)

— Remaining capacity of the work queue (remainingQueueCapacity)
— Is shutdown (isShutdown)

— Is terminated (isTerminated)

— Completed task count (completedTaskCount)

e IO Executor (HazelcastInstance.ManagedExecutorService)

— Name (name)

— Work queue size (queueSize)

— Thread count of the pool (poolSize)

— Maximum thread count of the pool (maximumPoolSize)

— Remaining capacity of the work queue (remainingQueueCapacity)
— Is shutdown (isShutdown)

— Is terminated (isTerminated)

— Completed task count (completedTaskCount)

18.3 Monitoring with JMX

You can monitor your Hazelcast members via the JMX protocol.

e Add the following system properties to enable JMX agent:

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

298 CHAPTER 18. MANAGEMENT

— -Dcom.sun.management. jmxremote
— -Dcom.sun.management . jmxremote.port=_portNo_ (to specify JMX port) (optional)
— -Dcom.sun.management . jmxremote.authenticate=false (to disable JMX auth) (optional)

e Enable the Hazelcast property hazelcast.jmx (please refer to the System Properties section):

— using Hazelcast configuration (API, XML, Spring).
— or by setting the system property -Dhazelcast. jmx=true

e Use jeonsole, jvisualvin (with mbean plugin) or another JMX compliant monitoring tool.

18.4 Cluster Utilities

18.4.1 Cluster Interface

Hazelcast allows you to register for membership events so you will be notified when members are added or removed.
You can also get the set of cluster members.

import com.hazelcast.core.*;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Cluster cluster = hazelcastInstance.getCluster();
cluster.addMembershipListener(new MembershipListener() {
public void memberAdded(MembershipEvent membershipEvent) {
System.out.println("MemberAdded " + membershipEvent);
}

public void memberRemoved(MembershipEvent membershipEvent) {
System.out.println("MemberRemoved " + membershipEvent) ;
}
)

Member localMember = cluster.getLocalMember();
System.out.println ("my inetAddress= " + localMember.getInetAddress());

Set setMembers = cluster.getMembers();

for (Member member : setMembers) {
System.out.println("isLocalMember " + member.localMember());
System.out.println("member.inetaddress " + member.getInetAddress());
System.out.println("member.port " + member.getPort());

}

RELATED INFORMATION

Please refer to the Membership Listener section for more information on membership events.

18.4.2 Member Attributes

You can define various member attributes on your Hazelcast members. You can use these member attributes to tag
your members as your business logic requirements.

In order to define member attribute on a member you can either:

e provide MemberAttributeConfig to your Config object,

e or provide member attributes at runtime via attribute setter methods on the Member interface.

18.4. CLUSTER UTILITIES 299

For example, you can tag your members with their CPU characteristics and you can route CPU intensive tasks to
those CPU-rich members.

MemberAttributeConfig fourCore = new MemberAttributeConfig();
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 4);
MemberAttributeConfig twelveCore = new MemberAttributeConfig();
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 12);
MemberAttributeConfig twentyFourCore = new MemberAttributeConfig() ;
memberAttributeConfig.setIntAttribute("CPU_CORE_COUNT", 24);

Config memberiConfig = new Config();
config.setMemberAttributeConfig(fourCore);
Config member2Config = new Config();
config.setMemberAttributeConfig(twelveCore);
Config member3Config = new Config();
config.setMemberAttributeConfig(twentyFourCore);

HazelcastInstance memberl = Hazelcast.newHazelcastInstance(memberiConfig) ;
HazelcastInstance member2 = Hazelcast.newHazelcastInstance(member2Config) ;
HazelcastInstance member3 = Hazelcast.newHazelcastInstance(member3Config) ;

IExecutorService executorService = memberl.getExecutorService("processor");

executorService.execute(new CPUIntensiveTask(), new MemberSelector() {
@0verride
public boolean select(Member member) {
int coreCount = (int) member.getIntAttribute("CPU_CORE_COUNT");
// Task will be executed at either member2 or member3
if (coreCount > 8) {
return true;
}
return false;
¥
});

HazelcastInstance member4 = Hazelcast.newHazelcastInstance();
// We can also set member attributes at runtime.
member4.setIntAttribute("CPU_CORE_COUNT", 2);

18.4.3 Cluster-Member Safety Check

To prevent data loss when shutting down a node, Hazelcast provides a graceful shutdown feature. You perform
this by calling the method HazelcastInstance.shutdown(). Once this method is called, it checks the following
conditions to ensure the node is safe to shutdown.

e There is no active migration.
e At least one backup of partitions are synced with primary ones.

Even if the above conditions are not met, HazelcastInstance.shutdown() will force them to be completed.
Eventually, when this method returns, it means the node has been brought to a safe state and it can be shut down
without any data loss.

What if you want to be sure that your cluster is in a safe state? What does it mean that cluster is safe to shutdown
without any data loss?

There may be some use cases like rolling upgrades, development /testing or any logic that require a cluster/member
to be safe. To provide this, Hazelcast offers the PartitionService interface with the methods isClusterSafe,
isMemberSafe, isLocalMemberSafe and forceLocalMemberToBeSafe. These methods can be deemed as decoupled
pieces from the method Hazelcast.shutdown.

300 CHAPTER 18. MANAGEMENT

public interface PartitionService {

boolean isClusterSafe();

boolean isMemberSafe(Member member) ;

boolean isLocalMemberSafe();

boolean forceLocalMemberToBeSafe(long timeout, TimeUnit unit);

The method isClusterSafe checks whether the cluster is in a safe state. It returns true if there are no active
partition migrations and there are sufficient backups for each partition. Once it returns true, the cluster is safe
and a node can be shut down without data loss.

The method isMemberSafe checks whether a specific node is in a safe state. This check controls if the first backups
of partitions of the given node are synced with the primary ones. Once it returns true, the given node is safe and it
can be shut down without data loss. Similarly, the method isLocalMemberSafe does the same check for the local
member. The method forceLocalMemberToBeSafe forces the owned and backup partitions to be synchronized,
making the local member safe.

l NOTE: These methods are available from Hazelcast 3.3.

18.4.3.1 Sample Codes

PartitionService partitionService = hazelcastInstance.getPartitionService().isClusterSafe()
if (partitionService().isClusterSafe()) {
hazelcastInstance.shutdown(); // or terminate

}
OR

PartitionService partitionService = hazelcastInstance.getPartitionService().isClusterSafe()
if (partitionService().isLocalMemberSafe()) {
hazelcastInstance.shutdown(); // or terminate

}

RELATED INFORMATION

For more code samples please refer to PartitionService Code Samples.

18.4.4 Cluster Quorum

Hazelcast Cluster Quorum enables you to define the minimum number of machines required in a cluster for the
cluster to remain in an operational state. If the number of machines is below the defined minimum at any time, the
operations are rejected and the rejected operations return a QuorumException to their callers.

When a network partitioning happens, by default Hazelcast chooses to be available. With Cluster Quorum, you can
tune your Hazelcast instance towards to achieve better consistency, by rejecting updates with a minimum threshold,
this reduces the chance that number of concurrent updates to an entry from two partitioned clusters . Note that
the consistency defined here is best effort not full or strong consistency.

Hazelcast initiates a quorum when a change happens on the member list.

l NOTE: Currently cluster quorum only applies to the Map and Transactional Map, support for other data
structures will be added soon. Also lock methods in the IMap interface do not participate in a quorum.

https://github.com/hazelcast/hazelcast-code-samples/tree/master/monitoring/cluster/src/main/java

18.4. CLUSTER UTILITIES 301

18.4.4.1 Configuration

You can set up Cluster Quorum using either declarative or programmatic configuration.

Assume that you have a 5-node Hazelcast Cluster and you want to set the minimum number of 3 nodes for cluster
to continue operating. The following are example configurations for this scenario.

18.4.4.1.1 Declarative Configuration

<hazelcast>

<quorum name="quorumRuleWithThreeNodes" enabled=true>
<quorum-size>3</quorum-size>
</quorum>

<map name='"default">
<quorum-name>quorumRuleWithThreeNodes</quorum-name>
</map>

</hazelcast>
18.4.4.1.2 Programmatic Configuration

QuorumConfig quorumConfig = new QuorumConfig();
quorumConfig.setName ("quorumRuleWithThreeNodes")
quorumConfig.setEnabled(true);
quorumConfig.setSize(3);

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName ("quorumRuleWithThreeNodes") ;

Config config = new Config();
config.addQuorumConfig(quorumConfig) ;
config.addMapConfig(mapConfig) ;

18.4.4.2 Quorum Listeners

You can register quorum listeners to be notified about quorum results. Quorum listeners are local to the node that
they are registered, so they receive only events occurred on that local node.

Quorum listeners can be configured via declarative or programmatic configuration. The following are the example
configurations.

18.4.4.2.1 Declarative Configuration

<hazelcast>

<quorum name="quorumRuleWithThreeNodes" enabled=true>
<quorum-size>3</quorum-size>
<quorum-listeners>
<quorum-listener>com.company.quorum.ThreeNodeQuorumListener </quorum-listener>
</quorum-listeners>
</quorum>

<map name='"default">
<quorum-name>quorumRuleWithThreeNodes</quorum-name>

302 CHAPTER 18. MANAGEMENT
</map>

</hazelcast>

18.4.4.2.2 Programmatic Configuration

QuorumListenerConfig listenerConfig = new QuorumListenerConfig();
// You can either directly set quorum listener implementation of your oun
listenerConfig.setImplementation(new QuorumListener() {
@0verride
public void onChange (QuorumEvent quorumEvent) {
if (QuorumResult.PRESENT.equals(quorumEvent.getType())) {
// handle quorum presence
} else if (QuorumResult.ABSENT.equals(quorumEvent.getType())) {
// handle quorum absence
+
3
s
// Or you can give the name of the class that implements QuorumListener interface.
listenerConfig.setClassName ("com.company.quorum.ThreeNodeQuorumListener");

QuorumConfig quorumConfig = new QuorumConfig() ;
quorumConfig.setName ("quorumRuleWithThreeNodes")
quorumConfig.setEnabled(true);
quorumConfig.setSize(3);
quorumConfig.addListenerConfig(listenerConfig) ;

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName ("quorumRuleWithThreeNodes") ;
Config config = new Config();

config.addQuorumConfig(quorumConfig) ;
config.addMapConfig(mapConfig) ;

18.4.4.3 Quorum Service

Quorum service gives an ability to query quorum results over the Quorum instances.

18.4.4.3.1 Quorum Quorum instances let you to query quorum result of a particular quorum.

Here is the Quorum interface that you can interact with.

Jk*
{@link Quorum} provides access to the current status of a quorum.
*/
public interface Quorum {
VAL
* Returns true <f quorum is present, false if absent.
*
* @return boolean presence of the quorum
*/
boolean isPresent();
b

You can retrieve quorum instance for a particular quorum over the quorum service. An example can be seen below

18.5. MANAGEMENT CENTER 303

String quorumName = "at-least-one-storage-member";
QuorumConfig quorumConfig = new QuorumConfig() ;
quorumConfig.setName (quorumName)
quorumConfig.setEnabled(true);

MapConfig mapConfig = new MapConfig();
mapConfig.setQuorumName (quorumName) ;

Config config = new Config();
config.addQuorumConfig(quorumConfig) ;
config.addMapConfig(mapConfig) ;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
QuorumService quorumService = hazelcastInstance.getQuorumService();
Quorum quorum = quorumService.getQuorum(quorumName) ;

boolean quorumPresence = quorum.isPresent();

18.5 Management Center

18.5.1 Introduction

Hazelcast Management Center enables you to monitor and manage your nodes running Hazelcast. In addition to
monitoring overall state of your clusters, you can also analyze and browse your data structures in detail, update
map configurations and take thread dump from nodes. With its scripting and console module, you can run scripts
(JavaScript, Groovy, etc.) and commands on your nodes.

18.5.1.1 Installation

You have two options for installing Hazelcast Management Center. You can either deploy the mancenter-version .war
application into your Java application server/container or you can start Hazelcast Management Center from the
command line and then have the Hazelcast nodes communicate with that web application. This means that your
Hazelcast nodes should know the URL of the mancenter application before they start.

Here are the steps:

e Download the latest Hazelcast ZIP from hazelcast.org. The ZIP contains the mancenter-version.war file.
e You can directly start mancenter-version.war file from the command line. The following command will start
Hazelcast Management Center on port 8080 with context root ‘mancenter’ (http://localhost:8080/mancenter).

java -jar mancenter-*version*.war 8080 mancenter

e Or, you can deploy it to your web server (Tomcat, Jetty, etc.). Let us say it is running at
http://localhost:8080/mancenter.

e After you perform the above steps, make sure that http://localhost:8080/mancenter is up.

e Configure your Hazelcast nodes by adding the URL of your web application to your hazelcast.xml. Hazelcast
nodes will send their states to this URL.

<management-center enabled="true">
http://localhost:8080/mancenter
</management-center>

e Start your Hazelcast cluster.
e Browse to http://localhost:8080/mancenter and login. Initial login username/password is
admin/admin

http://www.hazelcast.org/download/

304 CHAPTER 18. MANAGEMENT

The Management Center creates a folder with the name “mancenter” under your “user/home” folder to save data
files. You can change the data folder by setting the hazelcast.mancenter.home system property.

RELATED INFORMATION

Please refer to the Management Center Configuration section for a full description of Hazelcast Management Center
configuration.

18.5.2 Tool Overview

Once the page is loaded after selecting a cluster, the tool’s home page appears as shown below.

s hazelcast

O]
]
]

g B e F B W OE

T N S

This page provides the fundamental properties of the selected cluster which are explained in the Home Page section.
The page has a toolbar on the top and a menu on the left.

18.5.2.1 Toolbar

The toolbar has the following buttons:

e Home: Loads the home page shown above. Please see the Home Page section.

e Scripting: Loads the page used to write and execute user‘s own scripts on the cluster. Please see the
Scripting section.

e Console: Loads the page used to execute commands on the cluster. Please see the Console section.
e Alerts: Creates alerts by specifying filters. Please see the Alerts section.

e Documentation: Opens the Management Center documentation in a window inside the tool. Please see the
Documentation section.

e Administration: Used by the admin users to manage users in the system. Please see the Administration
section.

e Time Travel: Sees the cluster’s situation at a time in the past. Please see the Time Travel section.

18.5. MANAGEMENT CENTER 305

Id - Cluster Mame
dev - 2d718112e9c743b0beB5 76945457174

184.72.160.48 - 184.72.160.48

I Rl mswnmane = @M1 KAR Ewmm Almnmesmeme « AET MK Bl e Bllmoswn o o

e Cluster Selector: Switches between clusters. When the mouse is moved onto this item, a drop down list of
clusters appears.

The user can select any cluster and once selected, the page immediately loads with the selected cluster’s
information.

e Logout: Closes the current user’s session.

I NOTE: Some of the above listed toolbar items are not visible to users who are not admin or who have
read-only permission. Also, some of the operations explained in the later sections cannot be performed by users
with read-only permission. Please see the Administration section for details.

18.5.2.2 Menu

The Home page includes a menu on the left which lists the distributed data structures in the cluster and all the
cluster members (nodes), as shown below.

You can expand and collapse menu items by clicking on them. Below is the list of menu items with links to their
explanations.

NOTE: Distributed data structures will be shown there when the prozies are created for them.

Caches
Maps
Queues
Topics
MultiMaps
Executors

Members

18.5.2.3 Tabbed View

Each time you select an item from the toolbar or menu, the item is added to the main view as a tab, as shown
below.

In the above example, Home, Scripting, Console, queuel and mapl windows can be seen as tabs. Windows can be
closed using the # icon on each tab (except the Home Page; it cannot be closed).

18.5.3 Home Page

This is the first page appearing after logging in. It gives an overview of the connected cluster. The following
subsections describe each portion of the page.

306 CHAPTER 18. MANAGEMENT

ls hazelcast

Caches w
Maps w
Queuesw
Topics =
MultiMaps »
Executors -

Members [20 | =

Version 3.3

#Home </ Seripting $Eu:nn5|:n|n: — queusi %E map1

18.5. MANAGEMENT CENTER 307
18.5.3.1 CPU Utilization

This part of the page provides load and utilization information for the CPUs for each node, as shown below.
GFU Ui ateon

Nooe 1 nndim iin 15min Lihart

18 1648, 2. 500570 1.43 1.35

The first column lists the nodes with their IPs and ports. The next columns list the loads on each CPU for the last
1, 5 and 15 minutes. The last column (Chart) graphically shows the utilization of CPUs. When you move the
mouse cursor on a desired graph, you can see the CPU utilization at the time where the cursor is placed. Graphs
under this column shows the CPU utilizations approximately for the last 2 minutes.

18.5.3.2 Memory Utilization
This part of the page provides information related to memory usages for each node, as shown below.

NMemory LUiliz aton

Mode Used Total Max Fercemt Chart

182 168, 2. 50: 5701 240 ME 118 ME 1820 MB

The first column lists the nodes with their IPs and ports. The next columns show the used and free memories
out of the total memory reserved for Hazelcast usage, in real-time. The Max column lists the maximum memory
capacity of each node and the Percent column lists the percentage value of used memory out of the maximum
memory. The last column (Chart) shows the memory usage of nodes graphically. When you move the mouse
cursor on a desired graph, you can see the memory usage at the time where the cursor is placed. Graphs under this
column shows the memory usages approximately for the last 2 minutes.

308 CHAPTER 18. MANAGEMENT

18.5.3.3 Memory Distribution

This part of the page graphically provides the cluster wise breakdown of memory, as shown below. The blue area is
the memory used by maps, the dark yellow area is the memory used by non-Hazelcast entities, and the green area
is the free memory out of the whole cluster‘s memory capacity.

Memory Distriburtion

In the above example, you can see 0.32% of the total memory is used by Hazelcast maps (it can be seen by placing
the mouse cursor on it), 58.75% is used by non-Hazelcast entities and 40.85% of the total memory is free.

18.5.3.4 Map Memory Distribution

This part is the breakdown of the blue area shown in the Memory Distribution graph explained above. It
provides the percentage values of the memories used by each map, out of the total cluster memory reserved for all
Hazelcast maps.

Map Memory Distribution

In the above example, you can see 49.55% of the total map memory is used by map1 and 49.55% is used by map2.

18.5.3.5 Partition Distribution

This pie chart shows what percentage of partitions each node has, as shown below.

Fartibion Distribution

You can see each node’s partition percentages by placing the mouse cursor on the chart. In the above example, you
can see the node “127.0.0.1:5708” has 5.64% of the total partition count (which is 271 by default and configurable,
please see the hazelcast.partition.count property explained in the System Properties section).

18.5. MANAGEMENT CENTER 309

18.5.4 Caches

You can monitor your caches’ metrics by clicking the cache name listed on the left panel under Caches menu item.
A new tab for monitoring that cache instance is opened on the right, as shown below.

AHome i= /hz/default
Gets < | v | Puts " ¥ Removals <" v Evictions O B
1000 = 1000 — 400 1
L] L] 300 - = 05 -
500 500 200 0
100 -05
0 0 0 -1
14:40:30 14:41:00 14:41:30 14:40:30 14:41:00 14:41:30 14:40:30 14:41:00 14:41:30 14:40:30 14:41:00 14:41:30
Cache Statistics Data Table
#S Members a Gets = Puts = Removals $ Evictions$ Hits = Misses Avg Get Time $© Avg Put Time $
1 127.0.0.1:5701 1028947 1030484 342694 0 683262 345685 0.00 1.43
2 TOTAL 1028947 1030484 342694 0 683262 345685 - -

On top of the page, four charts monitor the Gets, Puts, Removals and Evictions in real-time. The X-axis of all

the charts show the current system time. To open a chart as a separate dialog, click on the " button placed at
the top right of each chart.

Under these charts is the Cache Statistics Data Table. From left to right, this table lists the IP addresses and ports
of each node, get, put, removal, eviction, hit and miss count per second in real-time.

You can navigate through the pages using the buttons at the bottom right of the table (First, Previous, Next,
Last). You can ascend or descend the order of the listings in each column by clicking on column headings.

18.5.5 Maps

Map instances are listed under the Maps menu item on the left. When you click on a map, a new tab for monitoring
that map instance opens on the right, as shown below. In this tab, you can monitor metrics and also re-configure
the selected map.

#Home {= map1
Size Pl - o4 Throughput & Memory Pl - .4 B Map Browser £} Map Config
- - Backups v | O
- X
0ap30 104 a1:00 013 Caz00 | | 104080 104100 10:41:30 104200 [| 1040:30 10 41:00 a1:3 Caz00 | | 10 40:30 0:41:00 a:3 0a2:00
Map Memory Data Table
LI Members B Entries B Entry Memoary B Backups ¥ Backup Memary B Events ¥ Hits | lLocks ¥ Dirty Entries B

=

12| 3||Next || Last
Map Throughput Data Table $HLast Minute™
s Members = Putsfs = Gets/s s Removes/s ¥ AvgPutlat ¥ Avg Getlat. ¥ Avg Remove Lat = Max Put Lat. = Max Getlat. ¥ Max Remove Lat. =

The below subsections explain the portions of this window.

310 CHAPTER 18. MANAGEMENT

18.5.5.1 Map Browser

Map Browser is a tool you can use to retrieve properties of the entries stored in the selected map. To open it, click
on the Map Browser button, located at the top right of the window. Once opened, the tool appears as a dialog,
as shown below.

Map Browser
2 Inesger ¥ Birowse
VW alue: 2 Class: java.lang. Integer
- Greation Fri Feb 21 15:17:58 UTC
Cost: 0.12 KB e S
Tiinme: 2014
b Expiration Thwa Jan O D000 00 o
- e Hits: 6589
Tiinne: LITC 1970
ACcess kom Mar 03 090751 Update Mon kar 03 09:07-51
Tiinne: LTC 2014 Tiinnee: LTC 2014
Wersiom: 33135 Walid:
i i T3 e T

Once the key and key’s type is specified and the Browse button is clicked, the key’s properties along with its value
are listed.

18.5.5.2 Map Config

By using the Map Config tool, you can set selected map’s attributes like the backup count, TTL, and eviction
policy. To open it, click on the Map Config button, located at the top right of the window. Once opened, the
tool appears as a dialog, as shown below.

Change any attribute as required and click the Update button to save changes.

18.5.5.3 Map Monitoring

Besides Map Browser and Map Config tools, this page has monitoring options explained below. All of these options
perform real-time monitoring.

On top of the page, small charts monitor the size, throughput, memory usage, backup size, etc. of the selected map
in real-time. The X-axis of all the charts show the current system time. You can select other small monitoring

charts using the O button at the top right of each chart. When you click the button, the monitoring options are
listed, as shown below.

When you click on a desired monitoring, the chart is loaded with the selected option. To open a chart as a separate

IF
dialog, click on the ¥ button placed at the top right of each chart. The monitoring charts below are available:

e Size: Monitors the size of the map. Y-axis is the entry count (should be multiplied by 1000).
e Throughput: Monitors get, put and remove operations performed on the map. Y-axis is the operation
count.

18.5. MANAGEMENT CENTER

Map Config
Mame: m | Max Sizec 2147483647
Backup Count: | 1 |#Y Async Backup Count: [O [
Max ldiefgeconds) |0 TTL {seconds): a
Eviction Policy: N = :;:::hmPementage e 2k
Read Backup J =)
4 Falze -
| Data:
Update
e = mapl ¥
Pl -
Size
Throughput
Mermory
230 111900 11:18:30 11:20:00| Beckup Size
Backup Mem.
iemory Data Table Hits "
& Members Locked Entr. |E
127.0.0.1:5701 Puts/s
127.0.0.1:5703 Gataln
Removes's
127.0.0.1:5702

311

312 CHAPTER 18. MANAGEMENT

e Memory: Monitors the memory usage on the map. Y-axis is the memory count.

e Backups: It is the chart loaded when “Backup Size” is selected. Monitors the size of the backups in the
map. Y-axis is the backup entry count (should be multiplied by 1000).

e Backup Memory: It is the chart loaded when “Backup Mem.” is selected. Monitors the memory usage of
the backups. Y-axis is the memory count.

e Hits: Monitors the hit count of the map.

e Puts/s, Gets/s, Removes/s: These three charts monitor the put, get and remove operations (per second)
performed on the selected map.

Under these charts are Map Memory and Map Throughput data tables. The Map Memory data table provides
memory metrics distributed over nodes, as shown below.

Map Memory Data Table

i - Members — Entries ¥ Entry Memory — Backups ¥ Backup Memory ¥ | Event$ Hits * | Locké Dirty Entries &
1 127.0.0.1:5701 515 64.38 KB 51 64.88 KB 0 3765 0 0
2 98 62.25 KB 488 61 KB 0 1604 0 0
3 525 65.62 KB 53 67.38 KB 0 5729 0 0
4 542 67.75 KB 54 67.5 KB 0 7484 0 0
5 489 61.12 KB 45 57.38 KB 0 0175 0 0
6 494 61.75 KB 49 61.25 KB 0 1020 0 0
7 486 60.75 KB 49 62 KB 0 0392 0 0
8 516 64.5 KB 501 62,62 KB 0 74064 0 0
9 511 63.88 KB 49 6212 KB 0 3329 0 0
10 468 58.5 KB 433 61.62 KB 0 7414 0 0

1 2 3 Next Last

From left to right, this table lists the IP address and port, entry counts, memory used by entries, backup entry
counts, memory used by backup entries, events, hits, locks and dirty entries (in the cases where MapStore is enabled,
these are the entries that are put to/removed from the map but not written to/removed from a database yet) of
each node in the map. You can navigate through the pages using the buttons at the bottom right of the table
(First, Previous, Next, Last). You can ascend or descend the order of the listings by clicking on the column
headings.

Map Throughput data table provides information about the operations (get, put, remove) performed on each node
in the map, as shown below.

Map Throughput Data Table LHLast 10 Minute™
&9 Members % | Puts/s¢ | Gets/s¢ | Removes/s% Avg Put Lat. = Avg Get Lat. 3 Avg Remove Lat. ¥ Max Put Lat. 3 Max Get Lat. ¥ Max Remove Lat. ¥
8 2.30 2.30 0 2.03m 0 10 ms 0.85 ms 0
17 2.30 2.30 0 201 ms 0 349 m 1.36 ms 0
7 127.0.0.1:570 2.30 2.30 0 1.99ms 0 233 m 0

127.0.0.1:5713 2.27 227 0 1.97 ms 0 201 m 0

13 127.0.0.1:5711 2.30 2.30 0 1.90ms 0 2.47 ms 0
1 127 1:5701 2.27 2.27 0 1.87m 0 2.24ms 0
18 127 1:5718 2.28 2.28 0 1.84m 0 3.24ms 0
20 127 1:572 2.30 2.30 0 1.80m 0 1.88 ms 0
5 227 227 0 1.79ms 0 248 m 0
2.30 230 0 1.78m 0 3.91 ms 0

1 2 Next Last

From left to right, this table lists the IP address and port of each node, the put, get and remove operations on each
node, the average put, get, remove latencies, and the maximum put, get, remove latencies on each node.

You can select the period in the combo box placed at the top right corner of the window, for which the table data
will be shown. Available values are Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). To ascend or descent the order of the listings, click on the column headings.

18.5. MANAGEMENT CENTER 313

18.5.6 Queues

Using the menu item Queues, you can monitor your queues data structure. When you expand this menu item and
click on a queue, a new tab for monitoring that queue instance is opened on the right, as shown below.

#Home = queuel |
Size o | & | | Offers - L Foils Rl -
[} 1 =
40 i
0 i
0F:48:30 059:49:00 09 49:30 106 50 i 09:48:30 Odedd:00 00 0 4930 0% 48:30 094900 08 14930
Queus Statistics
¥ - Members - ems H Backups = Max Age = Min Age = Average Age 5
GA9E:
G495
1 2 Mext Last
Queue Oparation Statistics $Last Minute™
g & Member - Offersis ¥ Aejected Offers H Polis/s = Poil Misses = Others ¥ Events ¥

1 2 Mext Last

On top of the page, small charts monitor the size, offers and polls of the selected queue in real-time. The X-axis of

all the charts shows the current system time. To open a chart as a separate dialog, click on the " button placed
at the top right of each chart. The monitoring charts below are available:

e Size: Monitors the size of the queue. Y-axis is the entry count (should be multiplied by 1000).
e Offers: Monitors the offers sent to the selected queue. Y-axis is the offer count.
e Polls: Monitors the polls sent to the selected queue. Y-axis is the poll count.

Under these charts are Queue Statistics and Queue Operation Statistics tables. The Queue Statistics table
provides item and backup item counts in the queue and age statistics of items and backup items at each node, as
shown below.

From left to right, this table lists the IP address and port, items and backup items on the queue of each node, and
maximum, minimum and average age of items in the queue. You can navigate through the pages using the buttons
placed at the bottom right of the table (First, Previous, Next, Last). The order of the listings in each column
can be ascended or descended by clicking on column headings.

Queue Operations Statistics table provides information about the operations (offers, polls, events) performed on
the queues, as shown below.

314

Queue Statistics

? a Members

ra

[}

2}

=}

8 127.0.0.1:5704
9 127.0.0.1:5713
10 127.0.0.1:5716

Queue Operation Statistics
Member
1 127.0.0.1:5701

2 127.0.0.1:5703

Items

Offers/s

Backups]

] Rejected Offers

Max Age

Polls/s

0ms

0ms

-

CHAPTER 18. MANAGEMENT

Average Age]

L1

Min Age

71 ms 4317038 ms
Oms
Oms
0ms
1 2 Next Last
LHLast Minute™
Poll Misses ¥ Others = Events ¥

1 2 Next Last

From left to right, this table lists the IP address and port of each node, and counts of offers, rejected offers, polls,

poll misses and events.

You can select the period in the combo box placed at the top right corner of the window to show the table data.
Available values are Since Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). Click on the column headings to ascend or descend the order of the listings.

18.5.7 Topics

To monitor your topics’ metrics, click the topic name listed on the left panel under the Topics menu item. A new
tab for monitoring that topic instance opens on the right, as shown below.

1 192.168.2.49:5701

#Home ®; default
Publishes il Receives P e 1)
1 1
0.5 0.5
0 0
-0.5 -0.5
= =
15:54:00 15:54:30 55:00 15:55:30 15:54:00 15:54:30 15:55:00 15:55:30
Topic Operation Statistics £FLast Minute™
a Member H Publishes/s - Receives/s -

18.5. MANAGEMENT CENTER 315

On top of the page, two charts monitor the Publishes and Receives in real-time. They show the published and
received message counts of the cluster, nodes of which are subscribed to the selected topic. The X-axis of both

A
charts show the current system time. To open a chart as a separate dialog, click on the ¥ button placed at the
top right of each chart.

Under these charts is the Topic Operation Statistics table. From left to right, this table lists the IP addresses and
ports of each node, and counts of message published and receives per second in real-time. You can select the period
in the combo box placed at top right corner of the table to show the table data. The available values are Since
Beginning, Last Minute, Last 10 Minutes and Last 1 Hour.

You can navigate through the pages using the buttons placed at the bottom right of the table (First, Previous,
Next, Last). Click on the column heading to ascend or descend the order of the listings.

18.5.8 MultiMaps
MultiMap is a specialized map where you can associate a key with multiple values. This monitoring option is

similar to the Maps option: the same monitoring charts and data tables monitor MultiMaps. The differences are
that you cannot browse the MultiMaps and re-configure it. Please see the Maps section.

18.5.9 Executors

Executor instances are listed under the Executors menu item on the left. When you click on a executor, a new
tab for monitoring that executor instance opens on the right, as shown below.

#Home = executort

Pending ¥ -2 Started Pl - .4 Completed Compl. Time {msec) |

f¥Last Minute™

- Pending ¥ Started/s ¥ Completed/s Avg Start Latency s
2.28 228
1.80 1.80
2.28 228
1.98 1.98

2.13 213

1.90

230

2.28 228
3

=sle (e alalelala|ala
=

1.93

1 2 Next Last

On top of the page, small charts monitor the pending, started, completed, etc. executors in real-time. The X-axis
of all the charts shows the current system time. You can select other small monitoring charts using the W button
placed at the top right of each chart. When it is clicked, the monitoring options are listed, as shown below.

When you click on a desired monitoring, the chart loads with the selected option. To open a chart as a separate

dialog, click on the ¥ button placed at top right of each chart. The below monitoring charts are available:

e Pending: Monitors the pending executors. Y-axis is the executor count.

e Started: Monitors the started executors. Y-axis is the executor count.

e Start Lat. (msec): Shows the latency when executors are started. Y-axis is the duration in milliseconds.
e Completed: Monitors the completed executors. Y-axis is the executor count.

316 CHAPTER 18. MANAGEMENT

1w = axecutori

Pending

Started

Start Lat.[msec)

Completed

i 10:42:30
Comp. Time[msec)
tor Operation St

e Comp. Time (msec): Shows the completion period of executors. Y-axis is the duration in milliseconds.

Under these charts is the Executor Operation Statistics table, as shown below.

Executor Operation Statistics LkLast Minute™

=~ Member - Pending = Started/s = Completed/s - Execution Time = Avg Start Latency =

228 228 91.70 ms 023 ms

[T Ry

1.80 1.80 0.02 ms 020 ms
298 298 0.05

£.8 £.28 0.05 ms Uzams

1.98 1.98 0.08 ms

tn

213 2,13 0.08 ms

1.90 1.90

~ @

217 217

232 232

1.93 1.93 0.02 ms 0.13 ms

1 2 Mext Last

From left to right, this table lists the IP address and port of nodes, the counts of pending, started and completed
executors per second, and the execution time and average start latency of executors on each node. You can navigate
through the pages using the buttons placed at the bottom right of the table (First, Previous, Next, Last). Click
on the column heading to ascend or descend the order of the listings.

18.5.10 Members

Use this menu item to monitor each cluster member (node) and perform operations like running garbage collection
(GC) and taking a thread dump. Once you select a member from the menu, a new tab for monitoring that member
opens on the right, as shown below.

The CPU Utilization chart shows the percentage of CPU usage on the selected member. The Memory
Utilization chart shows the memory usage on the selected member with three different metrics (maximum, used

and total memory). You can open both of these charts as separate windows using the L button placed at top
right of each chart; this gives you a clearer view of the chart.

The window titled Partitions shows which partitions are assigned to the selected member. Runtime is a
dynamically updated window tab showing the processor number, the start and up times, and the maximum, total
and free memory sizes of the selected member. Next to this, the Properties tab shows the system properties. The
Member Configuration window shows the connected Hazelcast cluster’s XML configuration.

The List of Slow Operations gives an overview of detected slow operations which occurred on that member.
The data is collected by the SlowOperationDetector.

18.5. MANAGEMENT CENTER 317
#iHome & 127.0.0.1:5701 & 127.0.0.1:5702 » & 127.0.0.1:5703 »
CPU Utilization «” | | Memory Utilization o« £+ Run GC Q, Thread Dump () Shutdown node
% 80 2000MB
Number of Owned Partitions : 68
% 60 1500ME
% 40 1000MB
%20 S00MB
%0 OME
11:05:00 11:05:00
Runtime Properties Member Configuration
AT AR & <hazelcast xmlns="http://www.hazelcast.com/schema/config" xmlns:xsi="http://www.w3.org/2081
Start Time: Thu May 07 11:05:02 /¥MLSchema-instance xsuéchenaanatmn: thp://M.hazelcast.com/schema/conflg http:/ www.
CEST 2015 hazelcast.com/schema/config/hazelcast-config-3.5.xsd">
<group>
Up Time: 0 days, 0 hours, 0 <name>workers</name>
minutes, 25 seconds <p =] d>
</group=
Maximum Memory: 178 GB <management-center enabled="true" update-interval="3">http://localhost:8883/mancenter<
/management -center>
Total Memory: 178 MB <network=
<port port-count="200" auto-increment="true">5701</port>
Free Memory: 150.01 MB <join>
<multicast enabled="false" loopbackModeEnabled="false">
List of Slow Operations
No slow operafions detected on this member.
List of Slow Operations
Operation - Stacktrace ¥ | Numberof =
com.hazelcast map.impl.operation.GetOperation java.lang.Thread sleep(Native Method), at java.lang.Thread.sleep(Thread.java:340), at 5
java.util.concurrent.TimeUnit.sleep(TimeUnit java:386), (...)
com.hazelcast.map.impl.operation.PutOperation java.lang.Thread.sleep(Native Method), at java.lang. Thread.sleep(Thread java:340), at 5

java.util.concurrent.TimeUnit.sleep(TimeUnit java:386), (...)

Showing 1 to 2 of 2 entries

318 CHAPTER 18. MANAGEMENT

By clicking on an entry you can open a dialog which shows the stacktrace and detailed information about each slow
invocation of this operation.

nsole A Alerts [Documentation £ Administration M4 Time Travel

&121 Details of com.hazelcast.map.impl.operation.GetOperation (24 invocations)

[Thread
Stacktrace java.lang.Thread.sleep(Mative Method)

at java.lang.Thread.sleep(Thread.java:340)

at java.util.concurrent. TimeUnit.sleep(TimeUnit. java: 386)

at com.hazelcast.simulator.utils. CommonUtils. sleepSeconds (CommonUtils.java: 221)

at com.hazelcast.simulator.tests. slow. SlowOperationMapTest$SlowMaplinterceptor. sleepRecursion(SlowOperationMapTest. java:231)
I at com.hazelcast.simulator.tests. slow. SlowOperationMapTest$SlowMaplnterceptor. sleepRecursion(SlowOperationMapTest. java:234)

at com.hazelcast.simulator.tests. slow. SlowOperationMapTest$SlowMaplnterceptor. sleepRecursion(SlowOperationMapTest. java:234)

at com.hazelcast.simulator.tests. slow. SlowOperationMapTest$SlowMaplinterceptor. sleepRecursion(SlowOperationMapTest. java:234)

at com.hazelcast.simulator.tests. slow. SlowOperationMapTest$SlowMaplinterceptor. afterGet(SlowOperationMapTest. java: 207)

at com.hazelcast. map.impl.MapServiceContextimpl.interceptAfterGet(MapServiceContextimpl. java: 345)

at com.hazelcast. map.impl.operation.GetOperation. afterRun(GetOperation.java:53)

at com.hazelcast.spl.impl.operationservice.impl.OperationRunnerimpl.afterRun(OperationRunnerimpl.java:209) hema-

at com.hazelcast.spl.impl.operationservice.impl.OperationRunnerimpl.run(OperationRunnerimpl.java: 139)

at com.hazelcast.spi.impl.operationexecutor.classic. OperationT hread. processOperation(OperationThread. java: 154)

at com.hazelcast.spi.impl.operationexecutor.classic. OperationT hread. process(OperationThread. java: 110)

at com.hazelcast.spi.impl.operationexecutor.classic. OperationT hread.doRun(OperationThread. java: 101)

at com.hazelcast.spi.impl.operationexecutor.classic. OperationThread. run{OperationThread. java: 76)

Partitic

jement
Operation GetOperation{SlowOperationMapTest}
Start Time Wednesday. May 6th 2015, 3:54:06 pm
Duration 14006 ms
Operation GetOperation{SlowOperationMapTest}
Start Time Wednesday, May 6th 2015, 3:55:21 pm
Operati
Duration 14010 ms
Operati
Operation GetOperation{SlowOperationMapTest}
Start Time Wednesday, May 6th 2015, 3:54:06 pm
Duration 14006 ms
4

Besides the aforementioned monitoring charts and windows, you can also perform operations on the selected member
through this page. The operation buttons are located at the top right of the page, as explained below:

e Run GC: When pressed, garbage collection is executed on the selected member. A notification stating that
the GC execution was successful will be shown.

e Thread Dump: When pressed, thread dump of the selected member is taken and shown as a separate dialog
to the user.

e Shutdown Node: It is used to shutdown the selected member.

18.5.11 Scripting

You can use the scripting feature of this tool to execute codes on the cluster. To open this feature as a tab, select
Scripting located at the toolbar on top. Once selected, the scripting feature opens as shown below.

In this window, the Scripting part is the actual coding editor. You can select the members on which the code
will execute from the Members list shown at the right side of the window. Below the members list, a combo
box enables you to select a scripting language: currently, JavaScript, Ruby, Groovy and Python languages are
supported. After you write your script and press the Execute button, you can see the execution result in the
Result part of the window.

18.5. MANAGEMENT CENTER 319

#Home <> Scripting
Seripting Seript Mame £ Save | W Deletz | | Members
1| function echo{} { =
2 = hazelcast.getiame(};
o
3 = hazelc {lus {}.getlocalMembery};
4 | return + ! H Kl
K } o
6| echol); +

Result

_hzinstance_1_184.72.160.48 == Member [127.0.0.11:5719 this @
_hzinstance_1_184.72.160.48 => Member [127.0.0.11:5720 this
_hzinstance_1_184.72.160.48 => Member [127.0.0.11:5710 this
_hzinstance_1_184.72.160.48 == Member [127.0.0.11:5704 this
_hzinstance_1_184.72.160.48 => Member [127.0.0.11:5703 this “
_hzinstance_1_184.72.160.48 == Member [127.0.0.11:5702 this 7

hzinstance_1_184.72.160.48 == Membear [127.0.0.1):5717 this & 1 -
hzinstance_1_184.72.160.48 == Member [127.0.0.1):5706 this [

hzinstance_1_184.72.160.48 == Member [127.0.0.1):5716 this Javascript ¥
hainstance_1_184.72.160.48 => Member [127.0.0.1}:5705 this
hzinstance_1_184.72.160.48 == Member [127.0.0.1}:5715 this

Saved Scripts

. NOTE: To use the scripting languages other than JavaScript on a member, the libraries for those languages
should be placed in the classpath of that member.

There are Save and Delete buttons on the top right of the scripting editor. To save your scripts, press the Save
button after you type a name for your script into the field next to this button. The scripts you saved are listed in
the Saved Scripts part of the window, located at the bottom right of the page. Click on a saved script from this
list to execute or edit it. If you want to remove a script that you wrote and saved before, select it from this list and
press the Delete button.

In the scripting engine you have a HazelcastInstance bonded to a variable named hazelcast. You can invoke
any method that HazelcastInstance has via the hazelcast variable. You can see example usage for JavaScript
below.

var name = hazelcast.getName();

var node = hazelcast.getCluster() .getLocalMember();
var employees = hazelcast.getMap("employees");
employees.put("1","John Doe");

employees.get("1"); // will return "John Doe"

18.5.12 Console

The Management Center has a console feature that enables you to execute commands on the cluster. For example,
you can perform puts and gets on a map, after you set the namespace with the command ns <name of your
map>. The same is valid for queues, topics, etc. To execute your command, type it into the field below the console
and press Enter. Type help to see all the commands that you can use.

Open a console window by clicking on the Console button located on the toolbar. Below is a sample view with
some executed commands.

320 CHAPTER 18. MANAGEMENT

#Home S Console

Console

> Type help for command list

default> s map1

> Current Namespace:map 1
map 1> namaspace: map 1
map1> m.siza

map1> Size = 10000

map1> ns queua’l

> Current Namespace:queua1
queuel> namespace: quaue
queuel> q.size

queue 1> Size = 200001

18.5.13 Alerts

You can use the alerts feature of this tool to receive alerts by creating filters. In these filters, you can specify criteria
for cluster, nodes or data structures. When the specified criteria are met for a filter, the related alert is shown as a
pop-up message on the top right of the page.

Once you click the Alerts button located on the toolbar, the page shown below appears.

#Haome B nierts
Filters Graats New Filter

To create an automated alert , choose what you want to check.

Creating Filters for Cluster

Select the Cluster Alerts check box to create a cluster wise filter. Once selected, the next screen asks for the
items for which alerts will be created, as shown below.

Select the desired items and click the Next button. On the next page (shown below), specify the frequency of

18.5. MANAGEMENT CENTER 321

Ghuster Fiter

Choose alert items
| Members
| Connections
| Locks
| Migration

| Partitions

= -

checks in hour and min fields, give a name for the filter, select whether notification e-mails will be sent (to no one,
only admin or to all users) and select whether the alert data will be written to the disk (if checked, you can see the
alert log at the folder /users//mancenter).

Glhuster Filter

Alert Check Frequency

0 G hiour 10 * min
Alert Actions

Fiter Mame: | ShowPartitionStatus

Send Emall To: g No One & Admin Only A

[Persiat data on disk

= -

Click on the Save button; your filter will be saved and put into the Filters part of the page, as shown below.

To edit the filter, click on the ~ icon. To delete the filter, click on the * icon.
Creating Filters for Cluster Members

Select Member Alerts check box to create filters for some or all members in the cluster. Once selected, the next
screen asks for which members the alert will be created. Select the desired members and click on the Next button.
On the next page (shown below), specify the criteria.

Alerts can be created when:

322 CHAPTER 18. MANAGEMENT

ShowPartitionStates o »x

Create New Filter

Alert Criteria
¥ Free Memory i less than a2 ME
Used Heap Memory is larger than | 50 ME

[# of Active Theeads are lesa than

[} # of Daesmon Threads are larger than

il

18.5. MANAGEMENT CENTER 323

free memory on the selected nodes is less than the specified number.
used heap memory is larger than the specified number.
the number of active threads are less than the specified count.

the number of daemon threads are larger than the specified count.

When two or more criteria is specified they will be bound with the logical operator AND.

On the next page, give a name for the filter, select whether notification e-mails will be sent (to no one, only admin,
or to all users) and select whether the alert data will be written to the disk (if checked, you can see the alert log at
the folder /users//mancenter).

Click on the Save button; your filter will be saved and put into the Filters part of the page. To edit the filter,
click on the >~ icon. To delete it, click on the ® icon.
Creating Filters for Data Types

Select the Data Type Alerts check box to create filters for data structures. The next screen asks for which data
structure (maps, queues, multimaps, executors) the alert will be created. Once a structure is selected, the next
screen immediately loads and you then select the data structure instances (i.e. if you selected Maps, it will list all
the maps defined in the cluster, you can select one map or more). Select as desired, click on the Next button, and
select the members on which the selected data structure instances will run.

The next screen, as shown below, is the one where you specify the criteria for the selected data structure.

Lata Type Filter

Data Type Settings

You will be alerted, when :

¥ of Locks > 291198 | Add
¥ of Entries . »
of Locks . 1719 b4

=~

As the screen shown above shows, you will select an item from the left combo box, select the operator in the middle
one, specify a value in the input field, and click on the Add button. You can create more than one criteria in this
page; those will be bound by the logical operator AND.

After you specify the criteria and click the Next button, give a name for the filter, select whether notification
e-mails will be sent (to no one, only admin or to all users) and select whether the alert data will be written to the
disk (if checked, you can see the alert log at the folder /users//mancenter).

Click on the Save button; your filter will be saved and put into the Filters part of the page. To edit the filter,

click on the # icon. To delete it, click on the * icon.

18.5.14 Administration

. NOTE: This toolbar item is available only to admin users, i.e. the users who initially have admin* as their
both usernames and passwords.*

The Admin user can add, edit, and remove users and specify the permissions for the users of Management Center.
To perform these operations, click on the Administration button located on the toolbar. The page below appears.

324 CHAPTER 18. MANAGEMENT

#Home & Administration
Uszears Add'Edit User
& admin Username:
&= Add Maw User
Email:
Password :

Fassword|again) :
is Admin:

DB ® FRead Only Read

To add a user to the system, specify the username, e-mail and password in the Add/Edit User part of the page.
If the user to be added will have administrator privileges, select isAdmin checkbox. Permissions checkboxes
have two values:

e Read Only: If this permission is given to the user, only Home, Documentation and Time Travel items
will be visible at the toolbar at that user’s session. Also, users with this permission cannot update a map
configuration, run a garbage collection and take a thread dump on a node, or shutdown a node (please see
the Members section).

e Read/Write: If this permission is given to the user, Home, Scripting, Console, Documentation and Time
Travel items will be visible. The users with this permission can update a map configuration and perform
operations on the nodes.

After you enter /select all fields, click Save button to create the user. You will see the newly created user’s username
on the left side, in the Users part of the page.

To edit or delete a user, select a username listed in the Users. Selected user information appears on the right side
of the page. To update the user information, change the fields as desired and click the Save button. To delete the
user from the system, click the Delete button.

18.5.15 Time Travel

Time Travel is used to check the status of the cluster at a time in the past. When this item is selected on the
toolbar, a small window appears on top of the page, as shown below.

l W h aze I cast & Homa ing SConscle MMerts [Documentation @ Administration MM Time Travel

#RHnma A niarte IS dafalt

To see the cluster status in a past time, Time Travel should be enabled first. Click on the area where it says OFF
(on the right of Time Travel window). It will turn to ON after it asks whether to enable the Time Travel with a
dialog: click on Enable in the dialog to enable Time Travel.

Once it is ON, the status of your cluster will be stored on your disk as long as your web server is alive.

You can go back in time using the slider and/or calendar and check your cluster’s situation at the selected time.
All data structures and members can be monitored as if you are using the management center normally (charts and

18.6. CLUSTERED JMX 325

data tables for each data structure and members). Using the arrow buttons placed at both sides of the slider, you
can go back or further with steps of 5 seconds. It will show status if Time Travel has been ON at the selected time
in past; otherwise, all the charts and tables will be shown as empty.

The historical data collected with Time Travel feature are stored in a file database on the disk. These files can
be found in the folder <User’s Home Directory>/mancenter<Hazelcast version>, e.g. /home/mancenter3.5.
This folder can be changed using the hazelcast.mancenter.home property on the server where Management
Center is running.

Time travel data files are created monthly. Their file name format is [group-name]-[year] [month].db and
[group—name] - [year] [month] .1g. Time travel data is kept in the *.db files. The files with the extension 1g are
temporary files created internally and you do not have to worry about them.

Management Center has no automatic way of removing or archiving old time travel data files. They remain in the
aforementioned folder until you delete or archive them.

18.5.16 Documentation

To see the documentation, click on the Documentation button located at the toolbar. Management Center
manual will appear as a tab.

18.5.17 Suggested Heap Size

For 2 Nodes

Mancenter Heap Size # of Maps # of Queues # of Topics

256m 3k 1k 1k
1024m 10k 1k 1k

For 10 Nodes

Mancenter Heap Size # of Maps # of Queues # of Topics

256m 50 30 30
1024m 2k 1k 1k

For 20 Nodes

Mancenter Heap Size | # of Maps | # of Queues | # of Topics |

| | - | |
256m* | N/A | N/A | N/A |
1024m | 1k | 1k | 1k |

* With 256m heap, management center is unable to collect statistics.

18.6 Clustered JMX

Enterprise Only

Clustered JMX via Management Center allows you to monitor clustered statistics of distributed objects from a
JMX interface.

326 CHAPTER 18. MANAGEMENT

18.6.1 Clustered JMX Configuration

In order to configure Clustered JMX, use two command line parameters for your Management Center deployment.

e -Dhazelcast.mc.jmx.enabled=true (default is false)
e -Dhazelcast.mc. jmx.port=9000 (optional, default is 9999)

With embedded Jetty, you do not need to deploy your Management Center application to any container or
application server.

You can start Management Center application with Clustered JMX enabled as shown below.
java -Dhazelcast.mc.jmx.enabled=true -Dhazelcast.mc.jmx.port=9999 -jar mancenter-3.3.jar
Once Management Center starts, you should see a log similar to below.

INFO: Management Center 3.3
Jun 05, 2014 11:55:32 AM com.hazelcast.webmonitor.service.jmx.impl.JMXService
INFO: Starting Management Center JMX Service on port :9999

You should be able to connect to Clustered JMX interface from the address localhost:9999.

You can use jconsole or any other JMX client to monitor your Hazelcast Cluster. As a sample, below is the
jconsole screenshot of the Clustered JMX hierarchy.

18.6.2 API Documentation

The management beans are exposed with the following object name format.

ManagementCenter [cluster name] :type=<object type>,name=<object name>,member="<cluster member IP ad-
dress>"

Object name starts with ManagementCenter prefix. Then it has the cluster name in brackets followed by a colon.
After that, type,name and member attributes follows, each separated with a comma.

e type is the type of object. Values are Clients, Executors, Maps, Members, MultiMaps, Queues, Services,
and Topics.
e name is the name of object.

e member is the node address of object (only required if the statistics are local to the node).
A sample bean is shown below.
ManagementCenter [dev] : type=Services,name=0OperationService,member="192.168.2.79:5701"
Here is the list of attributes that are exposed from the Clustered JMX interface.

e ManagementCenter|[ClusterName]
Clients

Address

ClientType

Uuid

Executors

Cluster

— Name

18.6. CLUSTERED JMX 327

¥] ManagementCenter[dev]
¥ i Clients
b @@ “192.168.2.79:56678"
¥ | Executors
3 testExecutor
¥ L Maps
b @ a
» @b
b @@ testMap
b @ testMap3
¥ [Members
B @ "192.168.2.79:5701"
B @@ "192.168.2.79:5702"
b @ “192.168.2.79:5703"
b @ “192.168.2.79:5704"
¥ [MultiMaps
b 63 testMultiMap
¥ | Queues
b @@ testQueue
¥ [Services
> "ManagedExecutor[hz:async]”
» "ManagedExecutor[hz:client]”
» "ManagedExecutor[hz:global-operation]”
» ["ManagedExecutor[hz:io]"
» ["ManagedExecutor[hz:query]"
» ["ManagedExecutor[hz:scheduled]”
> "ManagedExecutor[hz:system]”
» [ConnectionManager
» [EventService
» [] OperationService
» [] PartitionService
» [ProxyService
¥ W Topics
> @ testTopic
> @@ day

328

Started TaskCount
Completed TaskCount
CancelledTaskCount
PendingTaskCount

e Maps

Cluster

Name
BackupEntryCount
BackupEntryMemoryCost
CreationTime
DirtyEntryCount
Events
GetOperationCount
HeapCost

Hits

Last AccessTime
LastUpdateTime
LockedEntryCount
MaxGetLatency
MaxPutLatency
MaxRemoveLatency
OtherOperationCount
OwnedEntryCount
PutOperationCount
RemoveOperationCount

e Members

ConnectedClientCount
HeapFreeMemory
HeapMaxMemory
HeapTotalMemory
HeapUsedMemory
IsMaster
OwnedPartitionCount

e MultiMaps

Cluster

Name
BackupEntryCount
BackupEntryMemoryCost
CreationTime
DirtyEntryCount
Events
GetOperationCount
HeapCost

Hits

LastAccessTime
LastUpdateTime
LockedEntryCount
MaxGetLatency
MaxPutLatency
MaxRemoveLatency
OtherOperationCount
OwnedEntryCount

CHAPTER 18. MANAGEMENT

18.6. CLUSTERED JMX

PutOperationCount
RemoveOperationCount

e Queues

Cluster

Name

MinAge

MaxAge

AvgAge

OwnedItemCount
BackupltemCount
OfferOperationCount
OtherOperationsCount
PollOperationCount
RejectedOfferOperationCount
EmptyPollOperationCount
EventOperationCount
CreationTime

e Services

ConnectionManager
x ActiveConnectionCount
x ClientConnectionCount
* ConnectionCount
EventService
* EventQueueCapacity
x EventQueueSize
* EventThreadCount

OperationService

*

ExecutedOperationCount
OperationExecutorQueueSize
OperationThreadCount
RemoteOperationCount
ResponseQueueSize
RunningOperationsCount

EE I

PartitionService
x ActivePartitionCount
x PartitionCount
ProxyService
x ProxyCount
ManagedExecutor|[hz::async]
* Name
x CompletedTaskCount
* MaximumPoolSize
* PoolSize
* QueueSize
* RemainingQueueCapacity
x Terminated
ManagedExecutor[hz::client]
* Name
* Completed TaskCount
* MaximumPoolSize
* PoolSize

329

330 CHAPTER 18. MANAGEMENT

x QueueSize
* RemainingQueueCapacity
* Terminated

— ManagedExecutor[hz::global-operation]

Name

Completed TaskCount
MaximumPoolSize
PoolSize

QueueSize
RemainingQueueCapacity
Terminated

* X X X X X X

— ManagedExecutor[hz::io]

* Name

x Completed TaskCount

* MaximumPoolSize

* PoolSize

* QueueSize

* RemainingQueueCapacity
* Terminated

— ManagedExecutor[hz::query]

Name

Completed TaskCount
MaximumPoolSize
PoolSize

QueueSize
RemainingQueueCapacity
Terminated

* X X X X X X

— ManagedExecutor[hz::scheduled]

* Name

*x Completed TaskCount

* MaximumPoolSize

x PoolSize

x QueueSize

* RemainingQueueCapacity
* Terminated

— ManagedExecutor[hz::system]
Name

Completed TaskCount
MaximumPoolSize
PoolSize

QueueSize
RemainingQueueCapacity

* X X X X X X

Terminated

e Topics

— Cluster

— Name

— CreationTime

— PublishOperationCount
— ReceiveOperationCount

18.6. CLUSTERED JMX 331

18.6.3 New Relic Integration

Use the Clustered JMX interface to integrate Hazelcast Management Center with New Relic. To perform this
integration, attach New Relic Java agent and provide an extension file that describes which metrics will be sent to
New Relic.

Please see Custom JMX instrumentation by YAML on the New Relic webpage.

Below is an example Map monitoring .yml file for New Relic.

name: Clustered JMX
version: 1.0
enabled: true

jmx:
- object_name: ManagementCenter [clustername] :type=Maps,name=mapname
metrics:
- attributes: PutOperationCount, GetOperationCount, RemoveOperationCount, Hits,\
BackupEntryCount, OwnedEntryCount, LastAccessTime, LastUpdateTime
type: simple
- object_name: ManagementCenter [clustername] :type=Members,name="node address in\
double quotes"
metrics:
- attributes: OwnedPartitionCount
type: simple

Put the .yml file in the extensions folder in your New Relic installation. If an extensions folder does not exist
there, create one.

After you set your extension, attach the New Relic Java agent and start Management Center as shown below.

java -javaagent:/path/to/newrelic.jar -Dhazelcast.mc.jmx.enabled=true\
-Dhazelcast.mc. jmx.port=9999 -jar mancenter-3.3.jar

If your logging level is set as FINER, you should see the log listing in the file newrelic_agent.log, which is located
in the logs folder in your New Relic installation. Below is an example log listing.

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINE:
JMX Service : querying MBeans (1)

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
JMX Service : MBeans query ManagementCenter [dev]:type=Members,
name="192.168.2.79:5701", matches 1

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric OwnedPartitionCount : 68

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
JMX Service : MBeans query ManagementCenter[dev] :type=Maps,name=orders,
matches 1

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric Hits : 46,593

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric BackupEntryCount : 1,100

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric OwnedEntryCount : 1,100

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric RemoveOperationCount : O

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric PutOperationCount : 118,962

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:

http://docs.newrelic.com/docs/java/custom-jmx-instrumentation-by-yml

332 CHAPTER 18. MANAGEMENT

Recording JMX metric GetOperationCount : O

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric LastUpdateTime : 1,401,962,426,811

Jun 5, 2014 14:18:43 +0300 [72696 62] com.newrelic.agent.jmx.JmxService FINER:
Recording JMX metric LastAccessTime : 1,401,962,426,811

Then you can navigate to your New Relic account and create Custom Dashboards. Please see Creating custom
dashboards.

While you are creating the dashboard, you should see the metrics that you are sending to New Relic from
Management Center in the Metrics section under the JMX folder.

18.6.4 AppDynamics Integration

Use the Clustered JMX interface to integrate Hazelcast Management Center with AppDynamics. To perform this
integration, attach AppDynamics Java agent to the Management Center.

For agent installation, refer to Install the App Agent for Java page.
For monitoring on AppDynamics, refer to Using AppDynamics for JMX Monitoring page.

After installing AppDynamics agent, you can start Management Center as shown below.

java -javaagent:/path/to/javaagent.jar -Dhazelcast.mc.jmx.enabled=true\
-Dhazelcast.mc. jmx.port=9999 -jar mancenter-3.3.jar

When Management Center starts, you should see the logs below.

Started AppDynamics Java Agent Successfully.
Hazelcast Management Center starting on port 8080 at path : /mancenter

18.7 Clustered REST

Enterprise Only

The Clustered REST API is exposed from Management Center to allow you to monitor clustered statistics of
distributed objects.

18.7.1 Enabling Clustered REST

To enable Clustered REST on your Management Center, pass the following system property at startup. This
property is disabled by default.

-Dhazelcast.mc.rest.enabled=true

18.7.2 Clustered REST API Root

The entry point for Clustered REST API is /rest/.

This resource does not have any attributes.

18.7.3 Clusters Resource

This resource returns a list of clusters that are connected to the Management Center.

http://docs.newrelic.com/docs/dashboards-menu/creating-custom-dashboards
http://docs.newrelic.com/docs/dashboards-menu/creating-custom-dashboards
http://docs.appdynamics.com/display/PRO14S/Install+the+App+Agent+for+Java
http://docs.appdynamics.com/display/PRO14S/Monitor+JMX+MBeans#MonitorJMXMBeans-UsingAppDynamicsforJMXMonitoring

18.7. CLUSTERED REST 333
18.7.3.0.1 Retrieve Clusters

e Request Type: GET
e URL: /rest/clusters

e Request:
curl http://localhost:8083/mancenter/rest/clusters

e Response: 200 (application/json)

e Body:

[Hdevll s ||qa|l]

18.7.4 Cluster Resource

This resource returns information related to the provided cluster name.

18.7.4.0.2 Retrieve Cluster Information

e Request Type: GET
e URL: /rest/clusters/{clustername}

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/

e Response: 200 (application/json)
e Body:

{"masterAddress":"192.168.2.78:5701"}

18.7.5 Members Resource

This resource returns a list of members belonging to the provided clusters.

18.7.5.0.3 Retrieve Members [GET] [/rest/clusters/{clustername}/members]

e Request Type: GET
o URL: /rest/clusters/{clustername}/members

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/members

e Response: 200 (application/json)
e Body:

["192.168.2.78:5701","192.168.2.78:5702","192.168.2.78:5703","192.168.2.78:5704"]

334 CHAPTER 18. MANAGEMENT

18.7.6 Member Resource

This resource returns information related to the provided member.

18.7.6.0.4 Retrieve Member Information

e Request Type: GET
e URL: /rest/clusters/{clustername}/members/{member}

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701

e Response: 200 (application/json)
e Body:

{
"cluster":"dev",
"name":"192.168.2.78:5701",
"maxMemory" :129957888,
"ownedPartitionCount":68,
"usedMemory" :60688784,
"freeMemory" :24311408,
"totalMemory" :85000192,
"connectedClientCount":1,
"master":true

18.7.6.0.5 Retrieve Connection Manager Information

e Request Type: GET
e URL: /rest/clusters/{clustername}/members/{member}/connectionManager

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/connectionManager
e Response: 200 (application/json)
e Body:

{
"clientConnectionCount":2,
"activeConnectionCount":5,
"connectionCount":5

18.7.6.0.6 Retrieve Operation Service Information

e Request Type: GET
e URL: /rest/clusters/{clustername}/members/{member}/operationService

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/operationService

18.7. CLUSTERED REST 335

e Response: 200 (application/json)

e Body:
"responseQueueSize": 0,
"operationExecutorQueueSize":0,
"runningOperationsCount":0,
"remoteOperationCount":1,

"executedOperationCount":461139,
"operationThreadCount":8

18.7.6.0.7 Retrieve Event Service Information

e Request Type: GET
o URL: /rest/clusters/{clustername}/members/{member}/eventService

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/eventService

e Response: 200 (application/json)

e Body:

"eventThreadCount":5,
"eventQueueCapacity":1000000,
"eventQueueSize":0

}

18.7.6.0.8 Retrieve Partition Service Information

e Request Type: GET
e URL: /rest/clusters/{clustername}/members/{member}/partitionService

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/partitionService
e Response: 200 (application/json)

e Body:

"partitionCount":271,
"activePartitionCount":68

336

CHAPTER 18. MANAGEMENT

18.7.6.0.9 Retrieve Proxy Service Information

Request Type: GET

URL: /rest/clusters/{clustername}/members/{member}/proxyService

Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/proxyService
Response: 200 (application/json)

Body:

{

"proxyCount":8
X

18.7.6.0.10 Retrieve All Managed Executors

Request Type: GET
URL: /rest/clusters/{clustername}/members/{member}/managedExecutors

Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701/managedExecutors

Response: 200 (application/json)
Body:

["hz:system","hz:scheduled","hz:client","hz:query","hz:io","hz:async"]

18.7.6.0.11 Retrieve a Managed Executor

Request Type: GET
URL: /rest/clusters/{clustername}/members/{member}/managedExecutors/{managedExecutor}

Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/members/192.168.2.78:5701
/managedExecutors/hz:system

Response: 200 (application/json)
Body:

{
"name":"hz:system",
"queueSize":0,
"poolSize":0,
"remainingQueueCapacity":2147483647,
"maximumPoolSize":4,
"completedTaskCount":12,
"terminated":false

18.7. CLUSTERED REST 337

18.7.7 Clients Resource

This resource returns a list of clients belonging to the provided cluster.

18.7.7.0.12 Retrieve List of Clients

e Request Type: GET
o URL: /rest/clusters/{clustername}/clients

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/clients
e Response: 200 (application/json)
e Body:

["192.168.2.78:61708"]

18.7.7.0.13 Retrieve Client Information

e Request Type: GET
e URL: /rest/clusters/{clustername}/clients/{client}

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/clients/192.168.2.78:61708
e Response: 200 (application/json)
e Body:

{
"yuid":"6fae7af6-7a7c-4fab-b165-cde24cf070£5",
"address":"192.168.2.78:61708",
"clientType":"JAVA"

}

18.7.8 Maps Resource

This resource returns a list of maps belonging to the provided cluster.

18.7.8.0.14 Retrieve List of Maps

e Request Type: GET
e URL: /rest/clusters/{clustername}/maps

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/maps

e Response: 200 (application/json)
e Body:

["customers","orders"]

338

18.7.8.0.15 Retrieve Map Information

Request Type: GET

URL: /rest/clusters/{clustername}/maps/{mapName}

Request:

CHAPTER 18. MANAGEMENT

curl http://localhost:8083/mancenter/rest/clusters/dev/maps/customers

e Response: 200 (application/json)

Body:

{
"cluster":"dev",
"name" :"customers",
"ownedEntryCount":1000,
"backupEntryCount":1000,
"ownedEntryMemoryCost":157890,
"backupEntryMemoryCost":113683,
"heapCost":297005,
"lockedEntryCount":0,
"dirtyEntryCount":0,
"hits":3001,
"lastAccessTime":1403608925777,
"lastUpdateTime" :1403608925777,
"creationTime":1403602693388,
"putOperationCount":110630,
"getOperationCount":165945,
"removeOperationCount":55315,
"otherOperationCount":0,
"events":0,
"maxPutLatency":52,
"maxGetLatency":30,
"maxRemoveLatency":21

18.7.9 MultiMaps Resource

This resource returns a list of multimaps belonging to the provided cluster.

18.7.9.0.16 Retrieve List of MultiMaps

e Request Type: GET
e URL: /rest/clusters/{clustername}/multimaps

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/multimaps

e Response: 200 (application/json)

e Body:

["customerAddresses"]

18.7. CLUSTERED REST

18.7.9.0.17 Retrieve MultiMap Information

Request Type: GET

URL: /rest/clusters/{clustername}/multimaps/{multimapname}

Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/multimaps/customerAddresses

e Response: 200 (application/json)

Body:

{
"cluster":"dev",
"name" :"customerAddresses",
"ownedEntryCount":996,
"backupEntryCount":996,
"ownedEntryMemoryCost":0,
"backupEntryMemoryCost":0,
"heapCost":0,
"lockedEntryCount":0,
"dirtyEntryCount":0,
"hits":0,
"lastAccessTime":1403603095521,
"lastUpdateTime":1403603095521,
"creationTime":1403602694158,
"putOperationCount":166041,
"getOperationCount":110694,
"removeOperationCount":55347,
"otherOperationCount":0,
"events":0,
"maxPutLatency":77,
"maxGetLatency":69,
"maxRemoveLatency" :42

18.7.10 Queues Resource

This resource returns a list of queues belonging to the provided cluster.

18.7.10.0.18 Retrieve List of Queues

e Request Type: GET
o URL: /rest/clusters/{clustername}/queues

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/queues

e Response: 200 (application/json)

e Body:

["messages"]

339

340

18.7.10.0.19 Retrieve Queue Information

Request Type: GET

e URL: /rest/clusters/{clustername}/queues/{queueName}

Request:

CHAPTER 18. MANAGEMENT

curl http://localhost:8083/mancenter/rest/clusters/dev/queues/messages

e Response: 200 (application/json)

Body:

"cluster":"dev",
"name":"messages",
"ownedItemCount" :55408,
"backupItemCount":55408,

"minAge":0,
"maxAge": 0,
"aveAge": 0,

"number0f0ffers" :55408,
"number0OfRejected0ffers":0,
"number0fPolls":0,
"number0fEmptyPolls": 0,
"number0f0therOperations":0,
"number0fEvents":0,
"creationTime":1403602694196

18.7.11 Topics Resource

This resource returns a list of topics belonging to the provided cluster.

18.7.11.0.20 Retrieve List of Topics

e Request Type: GET
e URL: /rest/clusters/{clustername}/topics

e Request:

curl http://localhost:8083/mancenter/rest/clusters/dev/topics

e Response: 200 (application/json)

e Body:

["news"]

18.7. CLUSTERED REST 341

18.7.11.0.21 Retrieve Topic Information

Request Type: GET

URL: /rest/clusters/{clustername}/topics/{topicName}

Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/topics/nevs

e Response: 200 (application/json)

Body:

{

"cluster":"dev",

"name" :"news",

"number0fPublishes" :56370,
"totalReceivedMessages":56370,
"creationTime":1403602693411

18.7.12 Executors Resource

This resource returns a list of executors belonging to the provided cluster.

18.7.12.0.22 Retrieve List of Executors

e Request Type: GET
e URL: /rest/clusters/{clustername}/executors

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/executors

e Response: 200 (application/json)

e Body:

["order-executor"]

18.7.12.0.23 Retrieve Executor Information [GET] [/rest/clusters/{clustername}/executors/{executorName

e Request Type: GET
o URL: /rest/clusters/{clustername}/executors/{executorName}

e Request:
curl http://localhost:8083/mancenter/rest/clusters/dev/executors/order-executor

e Response: 200 (application/json)

e Body:

342 CHAPTER 18. MANAGEMENT

"cluster":"dev",

"name" :"order-executor",
"creationTime":1403602694196,
"pendingTaskCount":0,
"startedTaskCount":1241,
"completedTaskCount":1241,
"cancelledTaskCount":0

Chapter 19

Security

19.1 Enabling Security for Hazelcast Enterprise

Enterprise Only

Hazelcast has an extensible, JAAS based security feature you can use to authenticate both cluster members and
clients, and to perform access control checks on client operations. Access control can be done according to endpoint
principal and/or endpoint address.

You can enable security declaratively or programmatically, as shown below.

<hazelcast xsi:schemalocation="http://www.hazelcast.com/schema/config
http://www.hazelcast.com/schema/config/hazelcast-config-3.3.xsd"
xmlns="http://www.hazelcast.com/schema/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<security enabled="true">

</security>
</hazelcast>

Config cfg = new Config();
SecurityConfig securityCfg = cfg.getSecurityConfig();
securityCfg.setEnabled(true);

Also, see Setting License Key.
19.2 Socket Interceptor

Enterprise Only

Hazelcast allows you to intercept socket connections before a node joins to cluster or a client connects to a
node. This provides the ability to add custom hooks to join and perform connection procedures (like identity
checking using Kerberos, etc.). Implement com.hazelcast.nio.MemberSocketInterceptor for members and
com.hazelcast.nio.SocketInterceptor for clients.

343

344 CHAPTER 19.

public class MySocketInterceptor implements MemberSocketInterceptor {
public void init(SocketInterceptorConfig socketInterceptorConfig) {
// tnitialize interceptor

}

void onConnect(Socket connectedSocket) throws IOException {
// do something meaningful when connected

3

public void onAccept(Socket acceptedSocket) throws IOException {
// do something meaningful when accepted a connection

b
}
<hazelcast>
<network>
<socket-interceptor enabled="true">
<class-name>com.hazelcast.examples.MySocketInterceptor</class—-name>
<properties>
<property name="kerberos-host">kerb-host-name</property>
<property name="kerberos-config-file">kerb.conf</property>
</properties>
</socket-interceptor>
</network>
</hazelcast>

public class MyClientSocketInterceptor implements SocketInterceptor {
void onConnect(Socket connectedSocket) throws IOException {
// do something meaningful when connected

3
}

ClientConfig clientConfig = new ClientConfig();
clientConfig.setGroupConfig(new GroupConfig("dev", "dev-pass"))
.addAddress("10.10.3.4");
MyClientSocketInterceptor clientSocketInterceptor = new MyClientSocketInterceptor();

clientConfig.setSocketInterceptor(clientSocketInterceptor);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

19.3 Security Interceptor

Enterprise Only

SECURITY

Hazelcast allows you to intercept every remote operation executed by the client. This lets you add a very flexible

custom security logic. To do this, implement com.hazelcast.security.SecurityInterceptor.

public class MySecurityInterceptor implements SecurityInterceptor {

public void before(Credentials credentials, String serviceName,
String methodName, Parameters parameters)
throws AccessControlException {

19.4. ENCRYPTION 345

// credentials: client credentials

// serviceName: MapService.SERVICE NAME, QueueService.SERVICE NAME, ... etc
// methodName: put, get, offer, poll, ... etc
// parameters: holds parameters of the exzecuted method, titerable.

}

public void after(Credentials credentials, String serviceName,
String methodName, Parameters parameters) {
// can be used for logging etc.
}

The before method will be called before processing the request on the remote server. The after method will be
called after the processing. Exceptions thrown while executing the before method will propagate to the client, but
exceptions thrown while executing the after method will be suppressed.

19.4 Encryption

Enterprise Only

Hazelcast allows you to encrypt the entire socket level communication among all Hazelcast members. Encryption is
based on Java Cryptography Architecture. In symmetric encryption, each node uses the same key, so the key is
shared. Here is an example configuration for symmetric encryption.

<hazelcast>
<network>
<I--
Make sure to set enabled=true
Make sure this configuration is exactly the same on
all members
-—>
<symmetric-encryption enabled="true">
<I--
encryption algorithm such as
DES/ECB/PKCS5Padding,
PBEWi thMD5AndDES,
Blowfish,
DESede
-—>
<algorithm>PBEWithMD5AndDES</algorithm>

<!-- salt value to use when generating the secret key —-->
<salt>thesalt</salt>
<!-- pass phrase to use when generating the secret key -->

<password>thepass</password>

<!-- 4dteration count to use when generating the secret key -->
<iteration-count>19</iteration-count>
</symmetric-encryption>
</network>

</hazelcast>

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

346 CHAPTER 19. SECURITY

RELATED INFORMATION
Please see the SSL section.

19.5 SSL

Enterprise Only

Hazelcast allows you to use SSL socket communication among all Hazelcast members. To use it, you need to
implement com.hazelcast.nio.ssl.SSLContextFactory and configure the SSL section in network configuration.

public class MySSLContextFactory implements SSLContextFactory {
public void init(Properties properties) throws Exception {

}
public SSLContext getSSLContext() {

SSLContext sslCtx = SSLContext.getInstance(protocol);
return sslCtx;
}
}

<hazelcast>
<network>
<ssl enabled="true">
<factory-class-name>
com.hazelcast.examples.MySSLContextFactory
</factory-class-name>
<properties>
<property name="foo">bar</property>
</properties>

</ssl>
</network>

</hazelcast>

Hazelcast provides a default SSLContextFactory, com.hazelcast.nio.ssl.BasicSSLContextFactory, which uses
configured keystore to initialize SSLContext. You define keyStore and keyStorePassword, and you can set
keyManagerAlgorithm (default SunX509), trustManagerAlgorithm (default SunX509) and protocol (default
TLS).

<hazelcast>
<network>
<ssl enabled="true'">
<factory-class-name>
com.hazelcast.nio.ssl.BasicSSLContextFactory
</factory-class-name>
<properties>
<property name="keyStore'">keyStore</property>

<property name='"keyStorePassword">keyStorePassword</property>
<property name="keyManagerAlgorithm">SunX509</property>

19.6. CREDENTIALS 347

<property name="trustManagerAlgorithm">SunX509</property>
<property name="protocol">TLS</property>
</properties>
</ssl>
</network>

</hazelcast>
Hazelcast client also has SSL support. You can configure Client SSL programmatically as shown below.

Properties props = new Properties();

ClientConfig config = new ClientConfig();
config.getSocketOptions() .setSocketFactory(new SSLSocketFactory(props));

You can also set keyStore and keyStorePassword with the following system properties.

e javax.net.ssl.keyStore
e javax.net.ssl.keyStorePassword

. NOTE: You cannot use SSL when Hazelcast Encryption is enabled.
19.6 Credentials

Enterprise Only

One of the key elements in Hazelcast security is the Credentials object, which is used to carry all credentials of
an endpoint (member or client). Credentials is an interface which extends Serializable and has three methods
to implement. You can either implement the Credentials interface or extend the AbstractCredentials class,
which is an abstract implementation of Credentials.

package com.hazelcast.security;

public interface Credentials extends Serializable {
String getEndpoint();
void setEndpoint(String endpoint) ;
String getPrincipal() ;

}

Hazelcast calls the Credentials.setEndpoint () method when an authentication request arrives at the node before
authentication takes place.

package com.hazelcast.security;

public abstract class AbstractCredentials implements Credentials, DataSerializable {
private transient String endpoint;
private String principal;

UsernamePasswordCredentials, a custom implementation of Credentials, is in the Hazelcast com.hazelcast.security
package. UsernamePasswordCredentials is used for default configuration during the authentication process of
both members and clients.

348 CHAPTER 19. SECURITY

package com.hazelcast.security;

public class UsernamePasswordCredentials extends Credentials {
private byte[] password;

19.7 ClusterLoginModule

Enterprise Only

All security attributes are carried in the Credentials object. Credentials is used by LoginModules during
the authentication process. User supplied attributes from LoginModules are accessed by CallbackHandlers. To
access the Credentials object, Hazelcast uses its own specialized CallbackHandler. During initialization of
LoginModules, Hazelcast passes this special CallbackHandler into the LoginModule.initialize() method.

LoginModule implementations should create an instance of com.hazelcast.security.CredentialsCallback and
call the handle(Callback[] callbacks) method of CallbackHandler during the login process.

CredentialsCallback.getCredentials() returns the supplied Credentials object.

public class CustomLoginModule implements LoginModule {
CallbackHandler callbackHandler;
Subject subject;

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map<String, 7> sharedState, Map<String, 7> options) {
this.subject = subject;
this.callbackHandler = callbackHandler;
b

public final boolean login() throws LoginException {
CredentialsCallback callback = new CredentialsCallback();
try {
callbackHandler.handle(new Callback[] { callback });
credentials = cb.getCredentials();
} catch (Exception e) {
throw new LoginException(e.getMessage());

}

To use the default Hazelcast permission policy, you must create an instance of com.hazelcast.security.ClusterPrincipal
that holds the Credentials object, and you must add it to Subject.principals onLoginModule.commit () as
shown below.

public class MyCustomLoginModule implements LoginModule {
public boolean commit() throws LoginException {

Principal principal = new ClusterPrincipal(credentials);
subject.getPrincipals().add(principal);

return true;

http://docs.oracle.com/javase/7/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/7/docs/api/javax/security/auth/callback/CallbackHandler.html

19.8. CLUSTER MEMBER SECURITY 349

Hazelcast has an abstract implementation of LoginModule that does callback and cleanup operations and holds the
resulting Credentials instance. LoginModules extending ClusterLoginModule can access Credentials, Subject,
LoginModule instances and options, and sharedState maps. Extending the ClusterLoginModule is recommended
instead of implementing all required stuff.

package com.hazelcast.security;
public abstract class ClusterLoginModule implements LoginModule {

protected abstract boolean onLogin() throws LoginException;
protected abstract boolean onCommit() throws LoginException;
protected abstract boolean onAbort() throws LoginException;
protected abstract boolean onLogout() throws LoginException;

19.7.1 Enterprise Integration

Using the above API, it should be possible to implement a LoginModule that performs authentication against the
Security System of your choice, possibly an LDAP store like Apache Directory or some other corporate standard
you have. For example, you may wish to have your clients send an identification token in the Credentials object.
This token can then be sent to your back-end security system via the LoginModule that runs on the cluster side.

Additionally, the same system may authenticate the user and also then return the roles that are attributed to the
user. These roles can then be used for data structure authorization.

RELATED INFORMATION
Please refer to JAAS Reference Guide for further information.

19.8 Cluster Member Security

Enterprise Only

Hazelcast supports standard Java Security (JAAS) based authentication between cluster members. To implement
it, you configure one or more LoginModules and an instance of com.hazelcast.security.ICredentialsFactory.
Although Hazelcast has default implementations using cluster group and group-password and UsernamePass-
wordCredentials on authentication, it is recommended that you implement the LoginModules and an instance of
com.hazelcast.security.ICredentialsFactory according to your specific needs and environment.

<security enabled="true">
<member-credentials-factory
class-name="com.hazelcast.examples.MyCredentialsFactory">
<properties>
<property name="propertyl">valuel</property>
<property name="property2">value2</property>
</properties>
</member-credentials-factory>
<member-login-modules>
<login-module usage="required"
class-name="com.hazelcast.examples.MyRequiredLoginModule">
<properties>

https://directory.apache.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

350 CHAPTER 19. SECURITY

<property name="property3">value3</property>
</properties>
</login-module>
<login-module usage="sufficient"
class-name="com.hazelcast.examples.MySufficientLoginModule">
<properties>
<property name="property4'">valued4</property>
</properties>
</login-module>
<login-module usage="optional"
class-name="com.hazelcast.examples.MyOptionallLoginModule">
<properties>
<property name="property5">value5</property>
</properties>
</login-module>
</member-login-modules>

</security>
You can define as many asLoginModules you wanted in configuration. They are executed in the given

order. The usage attribute has 4 values: ‘required’, ‘requisite’, ‘sufficient’ and ‘optional’ as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

package com.hazelcast.security;

Jk*
* ICredentialsFactory is used to create Credentials objects to be used
* during node authentication before connection accepted by master node.
*/

public interface ICredentialsFactory {
void configure(GroupConfig groupConfig, Properties properties);
Credentials newCredentials();

void destroy();
}

Properties defined in configuration are passed to the ICredentialsFactory.configure() method as
java.util.Properties and to the LoginModule.initialize () method as java.util.Map.

19.9 Native Client Security

Enterprise Only

Hazelcast’s Client security includes both authentication and authorization.

19.9.1 Authentication

The authentication mechanism works the same as cluster member authentication. To implement client authentication,
configure a Credential and one or more LoginModules. The client side does not have and does not need a factory
object to create Credentials objects like ICredentialsFactory. Credentials must be created at the client side and
sent to the connected node during the connection process.

19.9. NATIVE CLIENT SECURITY 351

<security enabled="true">
<client-login-modules>
<login-module usage="required"
class-name="com.hazelcast.examples.MyRequiredClientLoginModule">
<properties>
<property name="property3">value3</property>
</properties>
</login-module>
<login-module usage="sufficient"
class-name="com.hazelcast.examples.MySufficientClientLoginModule">
<properties>
<property name="property4'">valued4</property>
</properties>
</login-module>
<login-module usage="optional"
class-name="com.hazelcast.examples.MyOptionalClientLoginModule">
<properties>
<property name="property5">value5</property>
</properties>
</login-module>
</client-login-modules>

</security>

You can define as many as LoginModules as you want in configuration. Those are executed in the given
order. The usage attribute has 4 values: ‘required’, ‘requisite’, ‘sufficient’ and ‘optional’ as defined in
javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag.

ClientConfig clientConfig = new ClientConfig();
clientConfig.setCredentials(new UsernamePasswordCredentials("dev", "dev-pass"));
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

19.9.2 Authorization

Hazelcast client authorization is configured by a client permission policy. Hazelcast has a default permission
policy implementation that uses permission configurations defined in the Hazelcast security configuration. Default
policy permission checks are done against instance types (map, queue, etc.), instance names (map, queue, name,
etc.), instance actions (put, read, remove, add, etc.), client endpoint addresses, and client principal defined by the
Credentials object. Instance and principal names and endpoint addresses can be defined as wildcards(*). Please see
the Network Configuration section and Using Wildcard section.

<security enabled="true">
<client-permissions>
<!-- Principal ’admin’ from endpoint ’127.0.0.1° has all permissions. —->
<all-permissions principal="admin">
<endpoints>
<endpoint>127.0.0.1</endpoint>
</endpoints>
</all-permissions>

<!-- Principals named ’dev’ from all endpoints have ’create’, ’destroy’,
‘put’, ’read’ permisstions for map named ’default’. -->
<map-permission name="default" principal="dev">
<actions>

<action>create</action>
<action>destroy</action>
<action>put</action>

352 CHAPTER 19. SECURITY

<action>read</action>
</actions>
</map-permission>

<I-- A1l principals from endpoints ’127.0.0.1° or matching to ’10.10.%.%’
have ’put’, ’read’, ’remove’ permissions for map

whose name matches to ’com.foo.entity.*’. —-->
<map-permission name="com.foo.entity.x*">
<endpoints>

<endpoint>10.10.*.*</endpoint>
<endpoint>127.0.0.1</endpoint>
</endpoints>
<actions>
<action>put</action>
<action>read</action>
<action>remove</action>
</actions>
</map-permission>

<!-- Principals named ’dev’ from endpoints matching to either
7192.168.1.1-100° or ’192.168.2.*’
have ’create’, ’add’, ’remove’ permissions for all queues. —-->
<queue-permission name="*" principal="dev">
<endpoints>
<endpoint>192.168.1.1-100</endpoint>
<endpoint>192.168.2.*</endpoint>
</endpoints>
<actions>
<action>create</action>
<action>add</action>
<action>remove</action>
</actions>
</queue-permission>

<I-- A1l principals from all endpoints have transaction permission.-——>
<transaction-permission />
</client-permissions>
</security>

Users can also define their own policy by implementing com.hazelcast.security.IPermissionPolicy.

package com.hazelcast.security;
VAL
* IPermissionPolicy ts used to determine any Subject’s
* permissions to perform a security sensitive Hazelcast operation.
*
*/
public interface IPermissionPolicy {
void configure(SecurityConfig securityConfig, Properties properties);

PermissionCollection getPermissions(Subject subject,
Class<? extends Permission> type);

void destroy();
}

Permission policy implementations can access client-permissions in configuration by using SecurityConfig.
getClientPermissionConfigs () during configure(SecurityConfig securityConfig, Properties properties)
method is called by Hazelcast.

19.9. NATIVE CLIENT SECURITY 353

The IPermissionPolicy.getPermissions(Subject subject, Class<? extends Permission> type) method
is used to determine a client request that has been granted permission to perform a security-sensitive operation.

Permission policy should return a PermissionCollection containing permissions of the given type for the given
Subject. The Hazelcast access controller will call PermissionCollection.implies(Permission) on returning
PermissionCollection and will decide if the current Subject has permission to access the requested resources or
not.

19.9.3 Permissions

e All Permission

<all-permissions principal="principal">
<endpoints>

</endpoints>
</all-permissions>

e Map Permission

<map-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</map-permission>

Actions: all, create, destroy, put, read, remove, lock, intercept, index, listen
e Queue Permission

<queue-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</queue-permission>

Actions: all, create, destroy, add, remove, read, listen
e Multimap Permission

<multimap-permission name="name" principal="principal'">
<endpoints>

</endpoints>
<actions>

</actions>
</multimap-permission>

Actions: all, create, destroy, put, read, remove, listen, lock

354 CHAPTER 19.

e Topic Permission

<topic-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</topic-permission>

Actions: create, destroy, publish, listen
e List Permission

<list-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</list-permission>

Actions: all, create, destroy, add, read, remove, listen
e Set Permission

<set-permission name='"name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</set-permission>

Actions: all, create, destroy, add, read, remove, listen
e Lock Permission

<lock-permission name="name" principal="principal'">
<endpoints>

</endpoints>
<actions>

</actions>
</lock-permission>

Actions: all, create, destroy, lock, read

e AtomicLong Permission

SECURITY

19.9. NATIVE CLIENT SECURITY

<atomic-long-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</atomic-long-permission>

Actions: all, create, destroy, read, modify
e CountDownLatch Permission

<countdown-latch-permission name='"name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</countdown-latch-permission>

Actions: all, create, destroy, modify, read
e Semaphore Permission

<semaphore-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</semaphore-permission>

Actions: all, create, destroy, acquire, release, read
e Executor Service Permission

<executor-service-permission name="name" principal="principal">
<endpoints>

</endpoints>
<actions>

</actions>
</executor-service-permission>

Actions: all, create, destroy
e Transaction Permission

<transaction-permission principal="principal">
<endpoints>
</endpoints>

</transaction-permission>

355

356 CHAPTER 19. SECURITY

Chapter 20

Performance

20.1 Data Affinity

Data affinity ensures that related entries exist on the same node. If related data is on the same node, operations
can be executed without the cost of extra network calls and extra wire data. This feature is provided by using the
same partition keys for related data.

Co-location of related data and computation

Hazelcast has a standard way of finding out which member owns/manages each key object. The following operations
will be routed to the same member, since all of them are operating based on the same key "key1".

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapA = hazelcastInstance.getMap("mapA");
Map mapB = hazelcastInstance.getMap("mapB");
Map mapC = hazelcastInstance.getMap("mapC");

// since map names are different, operation will be manipulating
// different entries, but the operation will take place on the
// same member since the keys ("keyl") are the same

mapA.put("keyl", value);

mapB.get ("keyl");

mapC.remove("keyl");

// lock operation will still execute on the same member
// of the cluster since the key ("keyl") is same
hazelcastInstance.getLock("keyl").lock();

// distributed execution will execute the ’runnable’ on the
// same member since "keyl" is passed as the key.
hazelcastInstance.getExecutorService() .executeOnKeyOwner (runnable, "keyl");

When the keys are the same, entries are stored on the same node. But we sometimes want to have related entries
stored on the same node, such as a customer and his/her order entries. We would have a customers map with
customerld as the key and an orders map with orderld as the key. Since customerld and orderld are different keys,
a customer and his/her orders may fall into different members/nodes in your cluster. So how can we have them
stored on the same node? We create an affinity between customer and orders. If we make them part of the same
partition then these entries will be co-located. We achieve this by making orderlds PartitionAware.

public class OrderKey implements Serializable, PartitionAware {
private final long customerId;

357

358 CHAPTER 20. PERFORMANCE

private final long orderId;

public OrderKey(long orderId, long customerId) {
this.customerId = customerld;
this.orderId = orderId;

}

public long getCustomerId() {
return customerld;

}

public long getOrderId() {
return orderId;

3

public Object getPartitionKey() {
return customerld;

3

@0verride
public String toString() {
return "OrderKey{"
+ "customerId=" + customerId
+ ", orderId=" + orderId
+)}J;

Notice that OrderKey implements PartitionAware and that getPartitionKey() returns the customerId. This
will make sure that the Customer entry and its Orders will be stored on the same node.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapCustomers = hazelcastInstance.getMap("customers");
Map mapOrders = hazelcastInstance.getMap("orders");

// create the customer entry with customer id = 1
mapCustomers.put(1, customer);

// now create the orders for this customer

mapOrders.put(new OrderKey(21, 1), order);
mapOrders.put(new OrderKey(22, 1), order);
mapOrders.put(new OrderKey(23, 1), order);

Assume that you have a customers map where customerId is the key and the customer object is the value. You
want to remove one of the customer orders and return the number of remaining orders. Here is how you would
normally do it.

public static int removeOrder(long customerId, long orderId) throws Exception {
IMap<Long, Customer> mapCustomers = instance.getMap("customers");
IMap mapOrders = hazelcastInstance.getMap("orders");

mapCustomers.lock(customerId);

mapOrders.remove(orderId);

Set orders = orderMap.keySet(Predicates.equal("customerId", customerId));
mapCustomers.unlock(customerId);

return orders.size();

20.1. DATA AFFINITY 359
There are couple of things you should consider.

1. There are four distributed operations there: lock, remove, keySet, unlock. Can you reduce the number of
distributed operations?

2. The customer object may not be that big, but can you not have to pass that object through the wire? Think
about a scenario where you set order count to the customer object for fast access, so you should do a get and
a put, and as a result, the customer object is passed through the wire twice.

Instead, why not move the computation over to the member (JVM) where your customer data resides. Here is how
you can do this with distributed executor service.

1. Send a PartitionAware Callable task.

2. Callable does the deletion of the order right there and returns with the remaining order count.

3. Upon completion of the Callable task, return the result (remaining order count). You do not have to wait
until the task is completed; since distributed executions are asynchronous, you can do other things in the
meantime.

Here is some example code.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

public int removeOrder(long customerId, long orderId) throws Exception {
IExecutorService executorService
= hazelcastInstance.getExecutorService("ExecutorService");

OrderDeletionTask task new OrderDeletionTask(customerId, orderId);
Future<Integer> future = executorService.submit(task);
int remainingOrders = future.get();

return remainingOrders;

public static class OrderDeletionTask
implements Callable<Integer>, PartitionAware, Serializable {

private long customerId;
private long orderId;

public OrderDeletionTask() {
}

public OrderDeletionTask(long customerId, long orderId) {
super () ;
this.customerId = customerld;
this.orderId = orderld;

}

@0verride

public Integer call() {
Map<Long, Customer> customerMap = hazelcastInstance.getMap("customers");
IMap<OrderKey, Order> orderMap = hazelcastInstance.getMap("orders");

mapCustomers.lock(customerId);

Customer customer = mapCustomers.get(customerId);

Predicate predicate = Predicates.equal("customerId", customerId);
Set<OrderKey> orderKeys = orderMap.localKeySet(predicate);

int orderCount = orderKeys.size();

360 CHAPTER 20. PERFORMANCE

for (OrderKey key : orderKeys) {
if (key.orderId == orderId) {
orderCount--;
orderMap.delete(key);
}
}

mapCustomers.unlock(customerId);

return orderCount;

@0verride
public Object getPartitionKey() {
return customerld;

}
}

The benefits of doing the same operation with distributed ExecutorService based on the key are:

e Only one distributed execution (executorService.submit (task)), instead of four.

e Less data is sent over the wire.

e Since lock/update/unlock cycle is done locally (local to the customer data), lock duration for the Customer
entry is much less, thus enabling higher concurrency.

20.2 Back Pressure

Hazelcast uses operations to make remote calls. For example, a map.get is an operation and a map.put is one
operation for the primary and one operation for each of the backups, i.e. map.put is executed for the primary and
also for each backup. In most cases, there will be a natural balance between the number of threads performing
operations and the number of operations being executed. However, there are two situations where this balance and
operations can pile up and eventually lead to Out of Memory Exception (OOME):

e Asynchronous calls: With async calls, the system may be flooded with the requests.

e Asynchronous backups: The asynchronous backups may be piling up.
To prevent the system from crashing, Hazelcast provides back pressure. Back pressure works by:

e limiting the number of concurrent operation invocations,

e periodically making an async backup sync.

Back pressure is disabled by default and you can enable it using the following system property:
hazelcast.backpressure.enabled

To control the number of concurrent invocations, you can configure the number of invocations allowed per partition
using the following system property:

hazelcast.backpressure.max.concurrent.invocations.per.partition

The default value of this system property is 100. Using a default configuration a system is allowed to have (271 +
1) * 100 = 27200 concurrent invocations (271 partitions + 1 for generic operations).

Back pressure is only applied to normal operations. System operations like heart beats and partition migration
operations are not influenced by back pressure. 27200 invocations might seem like a lot, but keep in mind that
executing a task on IExecutor or acquiring a lock also requires an operation.

20.3. THREADING MODEL 361

If the maximum number of invocations has been reached, Hazelcast will automatically apply an exponential back
off policy. This gives the system some time to deal with the load. Using the following system property, you can
configure the maximum time to wait before a HazelcastOverloadException is thrown:

hazelcast.backpressure.backoff.timeout.millis
This system property’s default value is 60000 ms.

The Health Monitor keeps an eye on the usage of the invocations. If it sees a member has consumed 70% or more
of the invocations, it starts to log health messages.

Apart from controlling the number of invocations, you also need to control the number of pending async backups.
This is done by periodically making these backups sync instead of async. This forces all pending backups to get
drained. For this, Hazelcast tracks the number of asynchronous backups for each partition. At every Nth call, one
synchronization is forced. This N is controlled through the following property:

hazelcast.backpressure.syncwindow

This system property’s default value is 100. It means, out of 100 asynchronous backups, Hazelcast makes 1 of them
a synchronous one. A randomization is added, so the sync window with default configuration will be between 75
and 125 invocations.

RELATED INFORMATION

Please refer to the System Properties section to learn how to configure the system properties.

20.3 Threading Model

Your application server has its own threads. Hazelcast does not use these - it manages its own threads.

20.3.1 I/0O Threading

Hazelcast uses a pool of threads for I/O. A single thread does not do all the IO: instead, multiple threads do the
10. On each cluster member, the IO-threading is split up in 3 types of IO-threads:

e [O-thread that takes care of accept requests,
o IO-threads that take care of reading data from other members/clients,
o 1O-threads that take care of writing data to other members/clients.

You can configure the number of IO-threads using the hazelcast.io.thread.count system property. Its default
value is 3 per member. This means that if 3 is used, in total there are 7 IO-threads; 1 accept-IO-thread, 3 read-I1O-
threads, and 3 write-IO-threads. Each IO-thread has its own Selector instance and waits on Selector.select if
there is nothing to do.

In case of the read-IO-thread, when sufficient bytes for a packet have been received, the Packet object is created.
This Packet is then sent to the System where it is de-multiplexed. If the Packet header signals that it is an
operation/response, the Packet is handed over to the operation service (please see the Operation Threading section).
If the Packet is an event, it is handed over to the event service (please see the Event Threading section).

20.3.2 Event Threading

Hazelcast uses a shared event system to deal with components that rely on events, such as topic, collections,
listeners, and Near Cache.

Each cluster member has an array of event threads and each thread has its own work queue. When an event is
produced, either locally or remotely, an event thread is selected (depending on if there is a message ordering) and
the event is placed in the work queue for that event thread.

The following properties can be set to alter the behavior of the system.

362 CHAPTER 20. PERFORMANCE

e hazelcast.event.thread.count: Number of event-threads in this array. Its default value is 5.

e hazelcast.event.queue.capacity: Capacity of the work queue. Its default value is 1000000.

e hazelcast.event.queue.timeout.millis: Timeout for placing an item on the work queue. Its default
value is 250.

If you process a lot of events and have many cores, changing the value of hazelcast.event.thread.count property
to a higher value is a good idea. This way, more events can be processed in parallel.

Multiple components share the same event queues. If there are 2 topics, say A and B, for certain messages they
may share the same queue(s) and hence the same event thread. If there are a lot of pending messages produced by
A, then B needs to wait. Also, when processing a message from A takes a lot of time and the event thread is used
for that, B will suffer from this. That is why it is better to offload processing to a dedicated thread (pool) so that
systems are better isolated.

If events are produced at a higher rate than they are consumed, the queue will grow in size. To prevent overloading
the system and running into an OutOfMemoryException, the queue is given a capacity of 1 million items. When
the maximum capacity is reached, the items are dropped. This means that the event system is a ‘best effort’ system.
There is no guarantee that you are going to get an event. Topic A might have a lot of pending messages, and
therefore B cannot receive messages because the queue has no capacity and messages for B are dropped.

20.3.3 IExecutor Threading

Executor threading is straight forward. When a task is received to be executed on Executor E, then E will have its
own ThreadPoolExecutor instance and the work is put on the work queue of this executor. Thus, Executors are
fully isolated, but still share the same underlying hardware; most importantly the CPUs.

You can configure the IExecutor using the ExecutorConfig (programmatic configuration) or using <executor>
(declarative configuration).

20.3.4 Operation Threading

There are 2 types of operations:

e Operations that are aware of a certain partition, e.g. IMap.get (key).
e Operations that are not partition aware, such as the IExecutorService.executeOnMember (command,
member) operation.

Each of these operation types has a different threading model, explained below.

20.3.4.1 Partition-aware Operations

To execute partition-aware operations, an array of operation threads is created. The size of this array has a
default value of two times the number of cores and a minimum value of 2. This value can be changed using the
hazelcast.operation.thread.count property.

Each operation-thread has its own work queue and it will consume messages from this work queue. If a partition-
aware operation needs to be scheduled, the right thread is found using the formula below.

threadIndex = partitionId % partition-thread-count

After the threadIndex is determined, the operation is put in the work queue of that operation-thread. This means
that:

e a single operation thread executes operations for multiple partitions; if there are 271 partitions and 10
partition-threads, then roughly every operation-thread will execute operations for 27 partitions.

e cach partition belongs to only 1 operation thread. All operations for a partition will always be handled by
exactly the same operation-thread.

20.3. THREADING MODEL 363

e no concurrency control is needed to deal with partition-aware operations because once a partition-aware
operation is put on the work queue of a partition-aware operation thread, only 1 thread is able to touch that
partition.

Because of this threading strategy, there are two forms of false sharing you need to be aware of:

e false sharing of the partition: two completely independent data structures share the same partitions; e.g. if
there is a map employees and a map orders, the method employees.get ("peter") running on partition
25 may be blocked by a map.get () of orders.get(1234) also running on partition 25. If independent data
structure share the same partition, a slow operation on one data structure can slow down the other data
structures.

e false sharing of the partition-aware operation-thread: each operation-thread is responsible for executing
operations of a number of partitions. For example, thread-1 could be responsible for partitions 0,10,20,. ..
thread-2 for partitions 1,11,21,... etc. If an operation for partition 1 takes a lot of time, it will block the
execution of an operation of partition 11 because both of them are mapped to exactly the same operation-
thread.

You need to be careful with long running operations because you could starve operations of a thread. As a general
rule, the partition thread should be released as soon as possible because operations are not designed to execute
long running operations. That is why, for example, it is very dangerous to execute a long running operation using
AtomicReference.alter() or an IMap.executeOnKey (), because these operations will block other operations to
be executed.

Currently, there is no support for work stealing. Different partitions that map to the same thread may need to wait
till one of the partitions is finished, even though there are other free partition-operation threads available.

Example:

Take a 3 node cluster. Two members will have 90 primary partitions and one member will have 91 primary partitions.
Let’s say you have one CPU and 4 cores per CPU. By default, 8 operation threads will be allocated to serve 90 or
91 partitions.

20.3.4.2 Non Partition-aware Operations

To execute non partition-aware operations, e.g. IExecutorService.executeOnMember (command, member), generic
operation threads are used. When the Hazelcast instance is started, an array of operation threads is created. The
size of this array has a default value of the number of cores divided by two with a minimum value of 2. It can be
changed using the hazelcast.operation.generic.thread.count property. This means that:

e a non partition-aware operation-thread will never execute an operation for a specific partition. Only partition-
aware operation-threads execute partition-aware operations.

Unlike the partition-aware operation threads, all the generic operation threads share the same work queue:
genericWorkQueue.

If a non partition-aware operation needs to be executed, it is placed in that work queue and any generic operation
thread can execute it. The big advantage is that you automatically have work balancing since any generic operation
thread is allowed to pick up work from this queue.

The disadvantage is that this shared queue can be a point of contention. We do not practically see this in production
because performance is dominated by I/O and the system is not executing very many non partition-aware operations.

20.3.4.3 Priority Operations

In some cases, the system needs to execute operations with a higher priority, e.g. an important system operation.
To support priority operations, we do the following:

364 CHAPTER 20. PERFORMANCE

e For partition-aware operations: each partition thread has its own work queue. But apart from that, it also
has a priority work queue. It will always check this priority queue before it processes work from its normal
work queue.

e For non partition-aware operations: next to the genericWorkQueue, there also is a genericPriorityWorkQueue.
So when a priority operation needs to be executed, it is put in this genericPriorityWorkQueue.
And just like the partition-aware operation threads, a generic operation thread will first check the
genericPriorityWorkQueue for work.

Because a worker thread will block on the normal work queue (either partition specific or generic), a priority
operation may not be picked up because it will not be put on the queue where it is blocking. We always send a
‘kick the worker’ operation that does nothing else than trigger the worker to wake up and check the priority queue.

20.3.4.4 Operation-response and Invocation-future

When an Operation is invoked, a Future is returned. Let’s take the example code below.

GetOperation operation = new GetOperation(mapName, key);
Future future = operationService.invoke(operation);
future.get();

The calling side blocks for a reply. In this case, GetOperation is set in the work queue for the partition of key,
where it eventually is executed. On execution, a response is returned and placed on the genericWorkQueue where
it is executed by a “generic operation thread”. This thread will signal the future and notifies the blocked thread
that a response is available. In the future, we will expose this Future to the outside world, and we will provide the
ability to register a completion listener so you can do asynchronous calls.

20.3.4.5 Local Calls

When a local partition-aware call is done, an operation is made and handed over to the work queue of the correct
partition operation thread, and a future is returned. When the calling thread calls get on that future, it will acquire
a lock and wait for the result to become available. When a response is calculated, the future is looked up, and the
waiting thread is notified.

In the future, this will be optimized to reduce the amount of expensive systems calls, such as lock.acquire() /notify ()
and the expensive interaction with the operation-queue. Probably, we will add support for a caller-runs mode, so
that an operation is directly executed on the calling thread.

20.4 SlowOperationDetector

The SlowOperationDetector monitors the operation threads and collects information about all slow operations.
An Operation is a task executed by a generic or partition thread (see Operation Threading). An operation is
considered as slow when it takes more computation time than the configured threshold.

The SlowOperationDetector stores the fully qualified classname of the operation and its stacktrace as well as
operation details, start time and duration of each slow invocation. All collected data is available in the Management
Center.

The SlowOperationDetector is configured via the following system properties.

e hazelcast.slow.operation.detector.enabled

e hazelcast.slow.operation.detector.log.purge.interval.seconds
e hazelcast.slow.operation.detector.log.retention.seconds

e hazelcast.slow.operation.detector.stacktrace.logging.enabled
e hazelcast.slow.operation.detector.threshold.millis

Please refer to the System Properties section for explanations of these properties.

20.5. HAZELCAST PERFORMANCE ON AWS 365

20.4.1 Logging of Slow Operations

The detected slow operations are logged as warnings in the Hazelcast log files:

WARN 2015-05-07 11:05:30,890 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
Hint: You can enable the logging of stacktraces with the following config
property: hazelcast.slow.operation.detector.stacktrace.logging.enabled
WARN 2015-05-07 11:05:30,891 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
(2 invocations)
WARN 2015-05-07 11:05:30,892 SlowOperationDetector: [127.0.0.1]:5701
Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
(3 invocations)

Stacktraces are always reported to the Management Center, but by default they are not printed to keep the log size
small. If logging of stacktraces is enabled, the full stacktrace is printed every 100 invocations. All other invocations
print a shortened version.

20.4.2 Purging of Slow Operation Logs

Since a Hazelcast cluster can run for a very long time, Hazelcast purges the slow operation logs periodically to
prevent an OOME. You can configure the purge interval and the retention time for each invocation.

The purging removes each invocation whose retention time is exceeded. When all invocations are purged from a
slow operation log, the log is deleted.

20.5 Hazelcast Performance on AWS

Amazon Web Services (AWS) platform can be an unpredictable environment compared to traditional in-house data
centers. This is because the machines, databases or CPUs are shared with other unknown applications in the cloud,
causing fluctuations. When you gear up your Hazelcast application from a physical environment to Amazon EC2,
you should configure it so that any network outage or fluctuation is minimized and its performance is maximized.
This section provides notes on improving the performance of Hazelcast on AWS.

20.5.1 Selecting EC2 Instance Type

Hazelcast is an in-memory data grid that distributes the data and computation to the nodes that are connected
with a network, making Hazelcast very sensitive to the network. Not all EC2 Instance types are the same in terms
of the network performance. It is recommended that you choose instances that have 10 Gigabit or High network
performance for Hazelcast deployments. Please see the below table for the recommended instances.

Instance Type Network Performance

m3.2xlarge High
ml.xlarge High
c3.2xlarge High
c3.4xlarge High
c3.8xlarge 10 Gigabit
cl.xlarge High
cc2.8xlarge 10 Gigabit
m2.4xlarge High

crl.8xlarge 10 Gigabit

366 CHAPTER 20. PERFORMANCE

20.5.2 Dealing with Network Latency

Since data is sent and received very frequently in Hazelcast applications, latency in the network becomes a crucial
issue. In terms of the latency, AWS cloud performance is not the same for each region. There are vast differences in
the speed and optimization from region to region.

When you do not pay attention to AWS regions, Hazelcast applications may run tens or even hundreds of times
slower than necessary. The following notes are potential workarounds.

e Create a cluster only within a region. It is not recommended that you deploy a single cluster that spans
across multiple regions.

e If a Hazelcast application is hosted on Amazon EC2 instances in multiple EC2 regions, you can reduce the
latency by serving the end users‘ requests from the EC2 region which has the lowest network latency. Changes
in network connectivity and routing result in changes in the latency between hosts on the Internet. Amazon
has a web service (Route 53) that lets the cloud architects use DNS to route end-user requests to the EC2
region that gives the fastest response. This latency-based routing is based on latency measurements performed
over a period of time. Please have a look at Route53.

e Move the deployment to another region. The CloudPing tool gives instant estimates on the latency from your
location. By using it frequently, CloudPing can be helpful to determine the regions which have the lowest
latency.

e The SpeedTest tool allows you to test the network latency and also the downloading/uploading speeds.

20.5.3 Selecting Virtualization

AWS uses two virtualization types to launch the EC2 instances: Para-Virtualization (PV) and Hardware-assisted
Virtual Machine (HVM). According to the tests we performed, HVM provided up to three times higher throughput
than PV. Therefore, we recommend you use HVM when you run Hazelcast on EC2.

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/HowDoesRoute53Work.html
http://www.cloudping.info/
http://cloudharmony.com/speedtest

Chapter 21

Hazelcast Simulator

21.1 Simulator Overview

Hazelcast Simulator is a production simulator used to test Hazelcast and Hazelcast-based applications in clustered
environments. It also allows you to create your own tests and perform them on your Hazelcast clusters and
applications that are deployed to cloud computing environments. In your tests, you can provide any property that
can be specified on these environments (Amazon EC2, Google Compute Engine(GCE), or your own environment):
properties such as hardware specifications, operating system, Java version, etc.

Hazelcast Simulator allows you to add potential production problems, such as real-life failures, network problems,
overloaded CPU, and failing nodes to your tests. It also provides a benchmarking and performance testing platform
by supporting performance tracking and also supporting various out-of-the-box profilers.

Hazelcast Simulator makes use of Apache jclouds®), an open source multi-cloud toolkit that is primarily designed
for testing on the clouds like Amazon EC2 and GCE.

You can use Hazelcast Simulator for the following use cases:

e In your pre-production phase to simulate the expected throughput/latency of Hazelcast with your specific
requirements.

e To test if Hazelcast behaves as expected when you implement a new functionality in your project.

e As part of your test suite in your deployment process.

e When you upgrade your Hazelcast version.

Hazelcast Simulator is available as a downloadable package on the Hazelcast web site. Please refer to the Installing
Simulator section for more information.

21.2 Key Concepts

The following are the key concepts mentioned with Hazelcast Simulator.

e Test - A test class for the functionality you want to test, such as a Hazelcast map. This test class may
seem like a JUnit test, but it uses custom annotations to define methods for different test phases (e.g. setup,
warmup, run, verify).

e TestSuite - A property file that contains the name of the test class and the properties you want to set
on that test class instance. In most cases, a TestSuite contains a single test class, but you can configure
multiple tests within a single TestSuite.

e Failure - An indication that something has gone wrong. Failures are picked up by the Agent and sent back
to the Coordinator. Please see the descriptions below for the Agent and Coordinator.

367

http://www.hazelcast.org/download

368 CHAPTER 21. HAZELCAST SIMULATOR
e Worker - A Java Virtual Machine (JVM) responsible for running a TestSuite. It can be configured to
spawn a Hazelcast client or member instance.

e Agent - A JVM installed on a piece of hardware. Its main responsibility is spawning, monitoring and
terminating Workers.

e Coordinator - A JVM that can run anywhere, such as on your local machine. Coordinator is actually
responsible for running the test using the Agents. You configure it with a list of Agent IP addresses, and you
run it by sending a command like “run this testsuite with 10 worker JVMs for 2 hours”.

e Provisioner - Spawns and terminates cloud instances, and installs Agents on the remote machines. It can
be used in combination with EC2 (or any other cloud), but it can also be used in a static setup, such as a
local machine or a cluster of machines in your data center.

e Communicator - A JVM that enables the communication between the Agents and Workers.

e simulator.properties - The configuration file you use to adapt the Hazelcast Simulator to your business
needs (e.g. cloud selection and configuration).

21.3 Installing Simulator

Hazelcast Simulator needs a Unix shell to run. Ensure that your local and remote machines are running under Unix,
Linux or Mac OS. Hazelcast Simulator may work with Windows using a Unix-like environment such as Cygwin,
but that is not officially supported at the moment.

21.3.1 Firewall settings

Please ensure that all remote machines are reachable via TCP ports 22, 9000 and 5701 to 5751 on their external
network interface (for example, eth0). The first two ports are used by Hazelcast Simulator. The other ports are
used by Hazelcast itself. Port 9001 is used on the loopback device on all remote machines for local communication.

21.3.2 Setup of local machine (Coordinator)

Hazelcast Simulator is provided as a separate downloadable package, in zip or tar.gz format. You can download
either one here.

After the download is completed, follow the below steps.

e Unpack the tar.gz or zip file to a folder that you prefer to be the home folder for Hazelcast Simulator.
The file extracts with the name hazelcast-simulator-<wversion>. (If you are updating Hazelcast Simulator,
perform this same unpacking, but skip the following steps.)

e Add the following lines to the file ~/.bashrc (for Unix/Linux) or to the file ~/.profile (for Mac OS).

export SIMULATOR_HOME=<extracted folder path>/hazelcast-simulator-<version>
PATH=$SIMULATOR_HOME/bin:$PATH

e Create a working folder for your Simulator TestSuite (tests is an example name in the following commands).
mkdir ~/tests
e Copy the simulator.properties file to your working folder.

cp $SIMULATOR_HOME/conf/simulator.properties ~/tests

http://www.hazelcast.org/download

21.3. INSTALLING SIMULATOR

Local machine!

TCP

TCP 9000

TCP 9001 LIS

Server 1

VM|

Worker

Waorker

i
TCP 5701..5751 " TCP 5701..5751

I

TCP 9001

TCP 9000

TCP 9001

Server 2

Waorker

Hazelcast Instance -
A

> Hazelcast Instance <€
A

1
1
1
1
1
1
1
1
| 1
- 1
1
T
1
1
]

A

> Hazelcast Instance <&

A

Jvmi

TCP 5701..5751

h

I
I
I
I
I
I
I
I
I
I
I
I
L
E
I
!

Hazelcast Instance

A

b

Worker

JvMmi

A

TCP 5701.5751

TCP5701.5751

TCP 5701..5751

21.3.3 Setup of remote machines (Agents, Workers)

After you have installed Hazelcast Simulator as described in the previous section, make sure you create a user on

the remote machines upon which you want to run Agents and Workers. The default username used by Hazelcast

Simulator is simulator. You can change this in the simulator.properties file in your working folder.

Please ensure that you can connect to the remote machines with the configured username and without password
authentication (see the next section). The Provisioner terminates when it needs to access the remote machines and

cannot connect automatically.

21.3.4 Setup of public/private key pair

The preferred method for password free authentication is using an RSA (Rivest,Shamir and Adleman cryptosystem)
public/private key pair. The RSA key should not require you to enter the pass-phrase manually. A key with a

pass-phrase and ssh-agent-forwarding is strongly recommended, but a key without a pass-phrase also works.

21.3.4.1 Local machine (Coordinator)

Make sure you have the files id_rsa.pub and id_rsa in your local ~/.ssh folder.

If you do not have the RSA keys, you can generate a public/private key pair using the following command.

ssh-keygen -t rsa -C "your_email@example.com"

Press [Enter] for all questions. The value for the e-mail address is not relevant in this case. After you execute this
command, you should have the files id_rsa.pub and id_rsa in your ~/.ssh folder.

370 CHAPTER 21. HAZELCAST SIMULATOR

21.3.4.2 Remote machines (Agents, Workers)

Please ensure you have appended the public key (id_rsa.pub) to the ~/.ssh/authorized_keys file on all remote
machines (Agents and Workers). You can copy the public key to all your remote machines using the following
command.

ssh-copy-id -i ~/.ssh/id_rsa.pub simulator@remote-ip-address

21.3.4.3 SSH connection test

You can check if the connection works as expected using the following command from the Coordinator machine (it
will print ok if everything is fine).

ssh -o BatchMode=yes simulator@remote-ip-address "echo ok" 2>&1

21.4 Setting Up For Amazon EC2

Having installed the Simulator, this section describes how to prepare the Simulator for testing a Hazelcast cluster
deployed at Amazon EC2.

To do this, copy the file SIMULATOR_HOME/conf/simulator.properties to your working folder and edit this file.
You should set the values for the following parameters that are included in this file.

e CLOUD_PROVIDER: Maven artifact ID of the cloud provider. In this case it is aws-ec2 for Amazon EC2.
Please refer to the Simulator.Properties File Description section for a full list of cloud providers.

e CLOUD_IDENTITY: The path to the file that contains your EC2 access key.

e CLOUD__CREDENTIAL: The path to the file that contains your EC2 secret key.

e MACHINE_SPEC: The parameter by which you can specify the EC2 instance type, operating system of the
instance, EC2 region, etc.

The following is an example of a simulator.properties file with the parameters explained above. For this example,
you should have created the files ~/ec2.identity and ~/ec2.credential that contain your EC2 access key and
secret key, respectively.

CLOUD_PROVIDER=aws-ec?2

CLOUD_IDENTITY=~/ec2.identity

CLOUD_CREDENTIAL=~/ec2.credential
MACHINE_SPEC=hardwareld=c3.xlarge,imageld=us-east-1/ami-1b3b2472

! NOTE: Creating these files in your working folder instead of just setting the access and secret keys in the
simulator.properties file is for security reasons. It is too easy to share your credentials with the outside world;
now you can safely add the simulator.properties file in your source repository or share it with other people.

! NOTE: For the full description of the simulator.properties file, please refer to the Simulator. Properties
File Description section.

21.5 Setting Up For Google Compute Engine

To prepare the Simulator for testing a Hazelcast cluster deployed at Google Compute Engine (GCE), first you
need an e-mail address to be used as a GCE service account. You can obtain this e-mail address in the Admin
GUI console of GCE. In this console, select Credentials in the menu API & Auth. Then, click the Create

21.6. SETTING UP MACHINES MANUALLY 371

New Client ID button and select Service Account. Usually, this e-mail address is in this form: <your account
ID>@developer.gserviceaccount.com.

Save the p12 keystore fil