Hazelcast Documentation

version 3.7.7

Apr 04, 2017

In-Memory Data Grid - Hazelcast | Documentation: version 3.7.7
Publication date Apr 04, 2017
Copyright (©) 2017 Hazelcast, Inc.

Permission to use, copy, modify and distribute this document for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Contents

1 Preface

1.1 Hazelcast Editions o e
1.2 Hagelcast Architecture e
1.3 Hazelcast Plugins L
1.4 Licensing o o e e e e e e
1.5 Trademarks L e
1.6 Customer Support
1.7 Release Notes L e
1.8 Contributing to Hazelcast
1.9 Partners L e e
1.10 Phone Home e
1.11 Typographical Conventions i

2 Document Revision History

3 Getting Started

3.1

3.2
3.3
3.4
3.5
3.6
3.7

Installation L e
3.1.1 Hazelcast e
3.1.2 Hazelcast Enterprise e
3.1.3 Setting the License Key o . L
3.1.4 Upgrading from 3.Xo e e
3.1.5 Upgrading from 2.X L. e e
Starting the Member and Client L
Using the Scripts In The Package
Deploying On Amazon EC2 0 L e
Deploying On Microsoft Azure
Deploying On Pivotal Cloud Foundry

Deploying using Docker e e e

17
17
17
17
18
18
18
18
19
19
19
20

21

23

4 CONTENTS

4 Hazelcast Overview 33
4.1 Sharding in Hazelcast e 34
4.2 Hazelcast Topology o L e 34
4.3 Why Hazelcast? L e 35
4.4 Data Partitioning 36

4.4.1 How the Data is Partitioned 38
4.4.2 Partition Table oL 38
4.4.3 Repartitioning Lo 39
4.5 Use Cases . . . v v v v v e e e 39
4.6 Resources L e e 39

5 Understanding Configuration 41

5.1 Configuring Declaratively 41

5.1.1 Composing Declarative Configuration 42
5.2 Configuring Programmatically L 43
5.3 Configuring with System Properties 44
5.4 Configuring within Spring Context 45
5.5 Checking Configuration L 45
5.6 Using Wildcards o e 46
5.7 Using Variables 46

6 Setting Up Clusters 49

6.1 Discovering Cluster Members e 49
6.1.1 Discovering Members by Multicast o 49
6.1.2 Discovering Members by TCP 50
6.1.3 Discovering Members within EC2 Cloud 51
6.1.4 Discovering Members within Azure Cloud 51
6.1.5 Discovering Members with jelouds oo 51
6.1.6 Discovering Native Clients o1

6.2 Creating Cluster Groups o e e 52

6.3 Partition Group Configuration L 53
6.3.1 Grouping Types e e 53

6.4 Logging Configuration e 55

6.5 Other Network Configurations 57
6.5.1 Public Address 57
6.5.2 Port e e 57
6.5.3 Outbound Ports e 58
6.5.4 Reuse Address e 58
6.5.5 Join e e e 59
6.5.6 Interfaces L 61

6.5.7 IPv6 Support e 62

CONTENTS 5
7 Distributed Data Structures 63
T1 Map . . . o e 64
7.1.1 Getting a Map and Putting an Entry oo oo 64
7.1.2 Backing Up Maps e e 68
7.1.3 Map Eviction oL 69
7.1.4 Evicting Map Entrieso 69
7.1.5 Setting In-Memory Format 74
7.1.6 Using High-Density Memory Store with Map 75
7.1.7 Loading and Storing Persistent Data oo 0oL 76
7.1.8 Creating Near Cache for Map 82
7.1.9 Using High-Density Memory Store with Near Cache 84
7.1.10 Locking Maps« . L e 85
7.1.11 Accessing Entry Statistics e 87
7.1.12 Map Listener L e 88
7.1.13 Listening to Map Entries with Predicates, 88
7.1.14 Adding Interceptors 90
7.1.15 Preventing Out of Memory Exceptions oo 93

T2 QUEUE e e 94
7.2.1 Getting a Queue and Putting Items oo oL 94
7.2.2 Creating an Example Queue L L 95
7.2.3 Setting a Bounded Queue 97
7.2.4 Queueing with Persistent Datastore o o oL 97
7.2.5 Configuring Queue L e 99

7.3 MultiMapo 100
7.3.1 Getting a MultiMap and Putting an Entryo oo 100
7.3.2 Configuring MultiMap L 101

T4 Set . .o e 102
7.4.1 Getting a Set and Putting Itemso oL 102
7.4.2 Configuring Set L 102

75 LAst . . L e 103
7.5.1 Getting a List and Putting Items oo 103
7.5.2 Configuring List 104

7.6 Ringbuffer 104
7.6.1 Getting a Ringbuffer and Reading Items oL 105
7.6.2 Adding Items to a Ringbuffer o oo L 105
7.6.3 IQueue vs. Ringbuffer 105
7.6.4 Configuring Ringbuffer Capacity L oo oL 105
7.6.5 Backing Up Ringbuffer 106
7.6.6 Configuring Ringbuffer Time To Live 106

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

CONTENTS

7.6.7 Setting Ringbuffer Overflow Policy 106
7.6.8 Configuring Ringbuffer In-Memory Format 107
7.6.9 Adding Batched Ttems L 107
7.6.10 Reading Batched Items 107
7.6.11 Using Async Methods e 108
7.6.12 Ringbuffer Configuration Examples L o 108
Topic . . . o o 109
7.7.1 Getting a Topic and Publishing Messages 109
7.7.2 Getting Topic Statistics L 110
7.7.3 Understanding Topic Behavior L 110
7.7.4 Configuring Topic L 111
Reliable Topic L 112
7.8.1 Sample Reliable ITopic Code e 112
7.8.2 Slow Consumers 113
7.8.3 Configuring Reliable Topic 113
Lock . . o e 114
7.9.1 Using Try-Catch Blocks with Locks 114
7.9.2 Releasing Locks with tryLock Timeout 114
7.9.3 Avoiding Waiting Threads with Lease Time 115
7.9.4 Understanding Lock Behavior L oo 115
7.9.5 Synchronizing Threads with ICondition 115
TAtomicLong e 116
7.10.1 Sending Functions to IAtomicLong L 117
7.10.2 Executing Functions on IAtomicLong o 117
7.10.3 Reasons to Use Functions with TAtomic 118
ISemaphore L 118
7.11.1 Controlling Thread Counts with Permits 118
7.11.2 Example Semaphore Code 118
7.11.3 Configuring Semaphore e e 119
TAtomicReference L 120
7.12.1 Sending Functions to IAtomicReference, 120
7.12.2 Using TAtomicReference L 121
ICountDownLatch e 121
7.13.1 Gate-Keeping Concurrent Activities oo 121
7.13.2 Recovering From Failure o 122
7.13.3 Using ICountDownLatch 122
IdGenerator L e 122
7.14.1 Generating Cluster-Wide IDs 122

7.14.2 Unique IDs and Duplicate IDs o 123

CONTENTS

7.15 Replicated Map L e e e
7.15.1 Replicating Instead of Partitioning oL
7.15.2 Example Replicated Map Code
7.15.3 Considerations for Replicated Map o
7.15.4 Configuration Design for Replicated Map,
7.15.5 Configuring Replicated Map e
7.15.6 Using EntryListener on Replicated Map L L.

8 Distributed Events

8.1 Event Listeners for Hazelcast Members oo
8.1.1 Listening for Member Events
8.1.2 Listening for Distributed Object Events
8.1.3 Listening for Migration Events
8.1.4 Listening for Partition Lost Events o o
8.1.5 Listening for Lifecycle Events o
8.1.6 Listening for Map Events L
8.1.7 Listening for MultiMap Events
8.1.8 Listening for Item Events
8.1.9 Listening for Topic Messages e
8.1.10 Listening for Clients L

8.2 Event Listeners for Hazelcast Clients

8.3 Global Event Configuration

9 Distributed Computing

9.1 Executor Service e
9.1.1 Implementing a Callable Task L
9.1.2 Implementing a Runnable Task oL
9.1.3 Scaling The Executor Service e
9.1.4 Executing Code in the Cluster
9.1.5 Canceling an Executing Task L
9.1.6 Callback When Task Completes
9.1.7 Selecting Members for Task Execution
9.1.8 Configuring Executor Service e

9.2 Durable Executor Service
9.2.1 Configuring Durable Executor Service

9.3 Entry Processor
9.3.1 Performing Fast In-Memory Map Operations
9.3.2 Using Indexes
9.3.3 Using OBJECT In-Memory Format

9.3.4 EntryProcessor Interface L Lo

123
123
124
124
125
125
126

129
129
129
131
132
133
134
135
139
140
142
143
144
144

8 CONTENTS
9.3.5 Processing Backup Entries. L 155
9.3.6 Creating an Entry Processoro 156
9.3.7 Abstract Entry Processor 157

10 Distributed Query 159

10.1 How Distributed Query Works e 159
10.1.1 Employee Map Query Example Lo 159
10.1.2 Querying with Criteria API 160
10.1.3 Querying with SQL o 162
10.1.4 Filtering with Paging Predicates o . 163
10.1.5 Indexing Queries e e 164
10.1.6 Configuring Query Thread Pool 165

10.2 Querying in Collections and Arrays oL 165
10.2.1 Indexing in Collections and Arrays o e 166
10.2.2 COrner Cases v v v v i i e e e e e e e 166

10.3 Custom Attributes L 167
10.3.1 Implementing a ValueExtractor 167
10.3.2 Extraction Arguments e 169
10.3.3 Configuring a Custom Attribute Programmatically 169
10.3.4 Configuring a Custom Attribute Declaratively 170
10.3.5 Indexing Custom Attributes 170

10.4 MapReduce e e 170
10.4.1 Understanding MapReduce 171
10.4.2 Using the MapReduce API 173
10.4.3 Hazelcast MapReduce Architecture L 180

10.5 Aggregators e 182
10.5.1 Aggregations Basics e 182
10.5.2 Using the Aggregations APT 183
10.5.3 Aggregations Examples L 188
10.5.4 Implementing Aggregations L L 191

10.6 Continuous Query Cache 191
10.6.1 Keeping Query Results Local and Ready 192
10.6.2 Accessing Continuous Query Cache from Member 192
10.6.3 Accessing Continuous Query Cache from Client Side 192
10.6.4 Features of Continuous Query Cache L o o 192

11 Transactions 195

11.1 Creating a Transaction Interface 195
11.1.1 Queue/Set/List vs. Map/Multimap L 196
11.1.2 ONE_PHASE vs. TWO_PHASE s 196

11.2 Providing XA Transactions i i e e e 197

11.3 Imtegrating into J2EEo 197

CONTENTS 9

12 Hazelcast JCache 199
12.1 JCache Overview o L 199
12.2 JCache Setup and Configuration L L 199

12.2.1 Setting up Your Applicationo 199
12.2.2 Example JCache Application L 201
12.2.3 Configuring for JCache L 202
12.3 JCache Providers 204
12.3.1 Configuring JCache Provider 204
12.3.2 Configuring JCache with Client Provider 205
12.3.3 Configuring JCache with Server Provider 205
12.4 JCache APIL e 205
12.4.1 JCache API Application Example 205
12.4.2 JCache Base Classes« . . 0 e 207
12.4.3 Implementing Factory and FactoryBuilder 0oL 208
12.4.4 Implementing CacheLoader 208
12.4.5 CacheWriter e 209
12.4.6 Implementing EntryProcessor Lo 211
12.4.7 CacheEntryListener e 212
12.4.8 ExpirePolicy e 213
12.5 JCache - Hazelcast Instance Integration L 0oL 213
12.5.1 JCache and Hazelcast Instance Awareness 214
12.6 Hazelcast JCache Extension - ICache L L 214
12.6.1 Scoping to Join Clusters e 214
12.6.2 Namespacing v v v vt e e e e e e e e 217
12.6.3 Retrieving an ICache Instance oL 218
12.6.4 ICache Configuration e 218
12.6.5 ICache Async Methods e 219
12.6.6 Defining a Custom ExpiryPolicy 221
12.6.7 JCache Eviction e 222
12.6.8 JCache Near Cache e 227
12.6.9 ICache Convenience Methods 230
12.6.10 Implementing BackupAwareEntryProcessor L. 230
12.6.111Cache Partition Lost Listener 231
12.6.12JCache Split-Brain L 232

12.7 Testing for JCache Specification Complianceo oo 234

10 CONTENTS

13 Integrated Clustering 235
13.1 Hibernate Second Level Cache 235
13.2 Web Session Replication 235

13.2.1 Filter Based Web Session Replication 235
13.2.2 Tomcat Based Web Session Replication 236
13.2.3 Jetty Based Web Session Replication L oo 236
13.3 Spring Integration 236
13.3.1 Supported Versionso 236
13.3.2 Configuring Spring e 236
13.3.3 Enabling SpringAware Objects L 239
13.3.4 Adding Caching to Spring 242
13.3.5 Configuring Hibernate Second Level Cache 244
13.3.6 Configuring Hazelcast Transaction Manager 244
13.3.7 Best Practices L 245
14 Storage 247
14.1 High-Density Memory Store 247
14.1.1 Configuring High-Density Memory Store 247
14.2 Sizing Practices Lo e 248
14.3 Hot Restart Persistence e 249
14.3.1 Hot Restart Persistence Overview 249
14.3.2 Configuring Hot Restart 250
14.3.3 Hot Restart and IP Address-Port 251
14.3.4 Hot Restart Persistence Design Details L. 251
14.3.5 Concurrent, Incremental, Generational GC 252
14.3.6 Hot Restart Performance Considerations 253

15 Hazelcast Java Client 257
15.1 Hagzelcast Clients Feature Comparison ittt 257
15.2 Java Client Overview 0 e e 259

15.2.1 Including Dependencies for Java Clients 259
15.2.2 Getting Started with Client APT 259
15.2.3 Java Client Operation Modes e 260
15.2.4 Handling Failures L e 260
15.2.5 Using Supported Distributed Data Structures 260
15.2.6 Using Client Services 0 e e 262
15.2.7 Client Listeners e 263
15.2.8 Client Transactions 0 ot 263
15.3 Configuring Java Client 263

15.3.1 Configuring Client Network 264

CONTENTS

154
15.5
15.6

15.3.2 Configuring Client Load Balancer
15.3.3 Configuring Client Near Cache
15.3.4 Client Group Configuration o e
15.3.5 Client Security Configuration L
15.3.6 Client Serialization Configuration L oo o
15.3.7 Configuring Client Listeners
15.3.8 ExecutorPoolSize
15.3.9 ClassLoader e
Client System Properties L
Sample Codes for Client o e
Using High-Density Memory Store with Java Client

16 Other Client and Language Implementations

16.1
16.2
16.3

16.4

CH+ Client e
NET Client 0 o e
REST Client e
16.3.1 REST Client GET/POST/DELETE Examples
16.3.2 Checking the Status of the Cluster for REST Client
Memcache Client
16.4.1 Memcache Client Code Examples
16.4.2 Unsupported Operations for Memcache

17 Serialization

17.1

17.2

17.3

17.4

17.5

17.6

17.7

17.8
17.9

Serialization Interface Types. e
Comparing Serialization Interfaces L
Implementing Java Serializable and Externalizable
17.3.1 Implementing Java Externalizableo Lo
Implementing DataSerializable L
17.4.1 IdentifiedDataSerializable
Implementing Portable Serialization
17.5.1 Portable Serialization Example Code Lo o
17.5.2 Registering the Portable Factory
17.5.3 Versioning for Portable Serialization L o
17.5.4 Null Portable Serialization
17.5.5 DistributedObject Serialization
Custom Serialization L e
17.6.1 Implementing StreamSerializer L L
17.6.2 Implementing ByteArraySerializer L L
Global Serializer e
17.7.1 Sample Global Serializer
Implementing HazelcastInstanceAware e

Serialization Configuration Wrap-Up o o

11

269
270
270
271
271
271
271
271
271
272
272

275
275
275
276
276
279
279
279
280

12 CONTENTS

18 Management 299
18.1 Getting Member Statistics Lo 299
18.1.1 Map Statistics e 299
18.1.2 Multimap Statistics L e 302
18.1.3 Queue Statistics L 305
18.1.4 Topic Statistics o . L e 306
18.1.5 Executor Statistics L 307

18.2 JMX API per Member e 308
18.3 Monitoring with JMX oL 314
18.3.1 MBean Naming for Hazelcast Data Structures. 314
18.3.2 Connecting to JMX Agent L 314

18.4 Cluster Utilities o o o 315
18.4.1 Getting Member Events and Member Sets L. 315
18.4.2 Managing Cluster and Member States 316
18.4.3 Using the Script cluster.sh 317
18.4.4 Using REST API for Cluster Management 318
18.4.5 Enabling Lite Members 319
18.4.6 Defining Member Attributes L 319
18.4.7 Safety Checking Cluster Members 320
18.4.8 Defining a Cluster Quorum L e 321

18.5 Hazelcast CLI o e 324
18.6 Management Center L 324
18.6.1 Installing Management Center 324
18.6.2 Getting Started to Management Center 325
18.6.3 Management Center Tools L 326
18.6.4 Management Center Home Page L o 330
18.6.5 Monitoring Caches 332
18.6.6 Managing Maps 334
18.6.7 Monitoring Replicated Maps L 338
18.6.8 Monitoring Queues e 339
18.6.9 Monitoring Topics L e 341
18.6.10 Monitoring MultiMaps L 341
18.6.11 Monitoring Executorso 341
18.6.12Monitoring WAN Replication e 343
18.6.13 Monitoring Members L 344
18.6.14Scripting e 346
18.6.15 Executing Console Commands L L 348
18.6.16 Creating Alerts« . L e e 348

18.6.17 Administering Management Center 352

CONTENTS 13

18.6.18 Hot Restart o . 353
18.6.19 Checking Past Status with Time Travel 357
18.6.20 Management Center Documentation L oL oL 357
18.6.21 Suggested Heap Size e 357

18.7 Clustered JMX via Management Center 358
18.7.1 Configuring Clustered JMX« . e 358
18.7.2 Clustered JIMX APIL e 358
18.7.3 Imtegrating with New Relic 363
18.7.4 Integrating with AppDynamics 364

18.8 Clustered REST via Management Center 365
18.8.1 Emabling Clustered REST o 365
18.8.2 Clustered REST API Root e 365
18.8.3 Clusters Resource e 365
18.8.4 Cluster Resource e 365
18.8.5 Members Resource e 366
18.8.6 Member Resource e 366
18.8.7 Clients Resource e 369
18.8.8 Maps Resource L e 370
18.8.9 MultiMaps Resource L 371
18.8.10Queues Resourceo 372
18.8.11 Topics Resource o e e 373
18.8.12 Executors Resource 374

19 Security 375
19.1 Enabling Security for Hazelcast Enterprise oo 375
19.2 Socket Interceptor L 375
19.3 Security Interceptor L 376
19.4 Encryption 377
19.5 SSL .« o e 378
19.5.1 SSL for Hazelcast Members 378
19.5.2 SSL for Hazelcast Clients o 379

19.6 Credentials e 379
19.7 ClusterLoginModule 380
19.7.1 Enterprise Integration Lo L 381

19.8 Cluster Member Security« . . e 381
19.9 Native Client Security« . o e 383
19.9.1 Authentication oL 383
19.9.2 Authorization 383

19.9.3 Permissions s 385

14 CONTENTS
20 Performance 389
20.1 Data Affinity 389
20.2 Back Pressure 392
20.3 Threading Model e 393
20.3.1 I/O Threading o 393

20.3.2 Event Threading« . . e 394

20.3.3 IExecutor Threading e 394

20.3.4 Operation Threading 394

20.4 SlowOperationDetector e 396
20.4.1 Logging of Slow Operations e 397

20.4.2 Purging of Slow Operation Logs 397

21 Hazelcast Simulator 399
22 WAN 401
22.1 WAN Replication 401
22.1.1 Defining WAN Replication e 401

22.1.2 WanBatchReplication Implementation 0L 403

22.1.3 Configuring WAN Replication for IMap and ICache 403

22.1.4 Batch Size 405

22.1.5 Batch Maximum Delay 406

22.1.6 Response Timeout e 406

22.1.7 Queue Capacity e 407

22.1.8 Queue Full Behavior 407

22.1.9 Event Filtering API 408

22.1.10 Acknowledgment Types L e 409

22.1.11 Synchronizing WAN Target Cluster 410
22.1.12WAN Replication Additional Information 410

22.2 Solace Integration 410
22.2.1 Imstalling Solace JARS 411

22.2.2 Enabling Integration L 411

23 OSGI 413
23.1 OSGI Support e 413
23.2 APL . o e 413
23.3 Configuring Hazelcast OSGI Support 413
23.4 Design e e e e 414
23.5 Using Hazelcast OSGI Service o o e 414
23.5.1 Getting Hazelcast OSGI Service Instances 414

CONTENTS

24 Extending Hazelcast
24.1 User Defined Services 0 o i
24.1.1 Creating the Service Class
24.1.2 Enabling the Service Class
24.1.3 Adding Properties to the Service
24.1.4 Starting the Service L
24.1.5 Placing a Remote Call via Proxy
24.1.6 Creating Containers e
24.1.7 Partition Migration oL L
24.1.8 Creating Backups. L
24.2 WaitNotifyService e
24.3 Discovery SPL L e
24.3.1 Discovery SPI Interfaces and Classes o
24.3.2 Discovery Strategyo
24.3.3 DiscoveryService (Framework integration) Lo Lo
24.4 Config Properties SPI o
24.4.1 Config Properties SPI Classes i
24.4.2 Config Properties SPI Example oo

25 Network Partitioning - Split Brain Syndrome
25.1 Understanding Partition Recreation Lo o
25.2 Understanding Backup Partition Creation
25.3 Understanding The Update Overwrite Scenario
25.4 What Happens When The Network Failure Is Fixed
25.5 How Hazelcast Split Brain Merge Happens,
25.6 Specifying Merge Policies L

26 System Properties
27 Common Exception Types

28 License Questions
28.1 Embedded Dependencies

28.2 Runtime Dependencies e e e e

29 Frequently Asked Questions

29.3 What happens when a member goes down? Lo

29.4 How do I test the connectivity? L

15

417
417
417
418
419
419
419
424
428
432
435
435
435
437
441
441
441
442

445
445
445
445
446
446
447

449

453

455
455
455

458

16 CONTENTS

29.7 How do I test my Hazelcast cluster?
29.8 Does Hazelcast support hundreds of members?

29.9 Does Hazelcast support thousands of clients?

29.15How can I see debug level logs? L
29.16Client-server vs. embedded topologies? L L

29.17How do I know it is safe to kill the second member?

29.24Does repartitioning wait for Entry Processor? oo
29.25Instances on different machines cannot see each other? L.

29.26What Does “Replica: 1 has no owner” Mean? o ..

30 Glossary

461
461

463

Chapter 1

Preface

Welcome to the Hazelcast Reference Manual. This manual includes concepts, instructions, and samples to guide
you on how to use Hazelcast and build Hazelcast applications.

As the reader of this manual, you must be familiar with the Java programming language and you should have
installed your preferred Integrated Development Environment (IDE).

1.1 Hazelcast Editions

This Reference Manual covers all editions of Hazelcast. Throughout this manual:

e Hazelcast refers to the open source edition of Hazelcast in-memory data grid middleware. It is also the
name of the company (Hazelcast, Inc.) providing the Hazelcast product.

e Hazelcast Enterprise is a commercially licensed edition of Hazelcast which provides high-value enterprise
features in addition to Hazelcast.

e Hazelcast Enterprise HD is a commercially licensed edition of Hazelcast which provides High-Density
(HD) Memory Store and Hot Restart Persistence features in addition to Hazelcast Enterprise.

1.2 Hazelcast Architecture

You can see the features for all Hazelcast editions in the following architecture diagram.

! NOTE You can see small “HD” boxes for some features in the above diagram. Those features can use
High-Density (HD) Memory Store when it is available. It means if you have Hazelcast Enterprise HD, you can use
those features with HD Memory Store.

For more information on Hazelcast’s Architecture, please see the white paper An Architect’s View of Hazelcast.

1.3 Hazelcast Plugins

You can extend Hazelcast’s functionality by using its plugins. These plugins have their own lifecycles. Please see
Plugins page to learn about Hazelcast plugins you can use. Hazelcast plugins are marked with label throughout
this manual.

17

18 CHAPTER 1. PREFACE

oy o | oo | rowen || e | o |

Open Client Network Protocol
lB-a-kwaru &Forward Compalibility, Binary Proiocol)

Serialization
{Serialzable, Extemalzable, DataSerakzable, ldentfiedDataSaerializable, Portable, Custom)

Wob Sessions Hibarmate 2= LI“I Continuous
(Tomealt! Jelty/Ganeric) = Cache Ouery Cache

eplicated Fllﬂﬂ
mn . Toe
e | T] o | s

Low-Lavel Services API

Node Engine
(Threads, Instances, Evanling, WailNobly, Invocaton)

Partition Illnlalm
[Moembars, Lite Members, Master Prartition, Replicas, Mgrations, Parition Groups, Pardition Aware]

Cluster Management with Cloud Discovery 5P|
(fclouds, WS, Azure, Consul, eicd, IP List, Kubsmeles, Multicas!t, Zookeeper)

MHatwork
(1P, PG}

g
[
2
w
[
H

WEEL T

JOYLT JLIBLL

Slorage
Hot Hn-—Lﬂl lull.-

JVM
(08 6, 7, 8, Vendors: Orscle JDK, Opan JDI. IBM JOK, Azul Zing & Zubu)

Operating Systermn
{Linux, Oracke thr!Ew-’nm L A, Unnix)

Hardware/VM/Container
[On Premise, AWS, Azure, Docker, Cloud Foundry, OpenShifl, Vidware)

B
:;
3
-
i
g
P
2
E
£
:
i
g
3
0
g
g
i
|

B Open Source [l Enterprise Editon] Enterprise HD Edition @ HD-Enabled Feature

Figure 1.1: Hazelcast Architecture

1.4 Licensing

Hazelcast and Hazelcast Reference Manual are free and provided under the Apache License, Version 2.0. Hazelcast
Enterprise is commercially licensed by Hazelcast, Inc.

For more detailed information on licensing, please see the License Questions appendix.

1.5 Trademarks

Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this manual are held by their
respective owners.

1.6 Customer Support

Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow

For information on the commercial support for Hazelcast and Hazelcast Enterprise, please see hazelcast.com.

1.7 Release Notes

Please refer to the Release Notes document for the new features, enhancements and fixes performed for each
Hazelcast release.

1.8. CONTRIBUTING TO HAZELCAST 19
1.8 Contributing to Hazelcast

You can contribute to the Hazelcast code, report a bug, or request an enhancement. Please see the following
resources.

e Developing with Git: Document that explains the branch mechanism of Hazelcast and how to request changes.

e Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and send back to
Hazelcast.

e Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests are managed.

1.9 Partners

Hazelcast partners with leading hardware and software technologies, system integrators, resellers and OEMs
including Amazon Web Services, Vert.x, Azul Systems, C2B2. Please see the Partners page for the full list of and
information on our partners.

1.10 Phone Home

Hazelcast uses phone home data to learn about usage of Hazelcast.

Hazelcast member instances call our phone home server initially when they are started and then every 24 hours.
This applies to all the instances joined to the cluster.

What is sent in?

The following information is sent in a phone home:

Hazelcast version

Local Hazelcast member UUID

Download 1D

A hash value of the cluster ID

Cluster size bands for 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600

Number of connected clients bands of 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600
Cluster uptime

Member uptime

Environment Information:

— Name of operating system

Kernel architecture (32-bit or 64-bit)
Version of operating system

Version of installed Java

Name of Java Virtual Machine

e Hazelcast Enterprise specific:

— Number of clients by language (Java, C++, C#)
— Flag for Hazelcast Enterprise

— Hash value of license key

— Native memory usage

Phone Home Code
The phone home code itself is open source. Please see here.
Disabling Phone Homes

Set the hazelcast.phone.home.enabled system property to false either in the config or on the Java command
line. Please see the System Properties section for information on how to set a property.

https://hazelcast.com/partners/

20

Phone Home URLs

CHAPTER 1. PREFACE

For versions 1.x and 2.x: http://www.hazelcast.com/version.jsp.

For versions 3.x up to 3.6: http://versioncheck.hazelcast.com/version.jsp.

For versions after 3.6: http://phonehome.hazelcast.com/ping.

1.11 Typographical Conventions

Below table shows the conventions used in this manual.

Convention

Description

bold font
italic font
monospace

RELATED INFORMATION

! NOTFE

element & attribute

- Indicates part of a sentence that requires the reader’s specific attention. - Also indicate
- When italicized words are enclosed with “<” and “>”, it indicates a variable in the cor
Indicates files, folders, class and library names, code snippets, and inline code words in a

Indicates a resource that is relevant to the topic, usually with a link or cross-reference.

Indicates information that is of special interest or importance, for example an additional

Mostly used in the context of declarative configuration that you perform using Hazelcast

Chapter 2

Document Revision History

This chapter lists the changes made to this document from the previous release.

Hazelcast release.

NOTE: Please refer to the Release Notes for the new features, enhancements and fizes performed for each

Chapter

Section

Description

Chapter 1 - Preface

Chapter 3 - Getting Started

Chapter 5 - Understanding Configuration
Chapter 6 - Setting Up Clusters

Chapter 7 - Distributed Data Structures

Chapter 9 - Distributed Computing

Chapter 10 - Distributed Query

Chapter 11 - Transactions

Chapter 12 - Hazelcast JCache

Chapter 13 - Integrated Clustering

Chapter 14 - Storage

21

Discovering Native Clients

Discovering Members with jclouds
Discovering Members within EC2 Cloud
Discovering Members within Azure Cloud
Partition Group Configuration
Replicated Map

Lock

Map

Using Indexes

Durable Executor Service

ValueExtractor with Portable Serialization

Integrating into J2EE

[Cache Configuration

JCache - Hazelcast Instance Integration
JCache Eviction

Web Session Replication

Hibernate Second Level Cache

Spring Integration

Hot Restart Persistence

Configuring High-Density Memory Store

Updated the archi
Deploying on Micr
Added as a new ct
Added as a new cl
Added as a new se
Section’s content 1
Section’s content 1
Added as a new se
Added explanatior
Replicating insteac
Added explanatior
Added the new sec
Added as a new se
Added as a new se
Added as a new se
Explanation for th
Added informatior
Added description
Added as a new se
Custom Eviction I
Updated Tomcat &
Section’s content 1
Configuring Hazel
Added the new sec
Enhanced the cont

22

CHAPTER 2. DOCUMENT REVISION HISTORY

Chapter

Section

Description

Chapter 15 - Hazelcast Java Client

Chapter 16 - Other Client and Language Implementations
Chapter 17 - Serialization
Chapter 18 - Management

Chapter 19 - Security

Chapter 21 - Hazelcast Simulator
Chapter 22 - WAN

Chapter 26 - System Properties
Chapter 29 - FAQ
Chapter 30 - Glossary

Feature Comparison

Client System Properties

Management Center

Clustered JMX via Management Center
Hazelcast CLI

Safety Checking Cluster Members

SSL

Encryption

Synchronizing WAN Target Cluster

Solace Integration

Enhanced the defis
Updated to reflect
Added description
Content of C++ a
Removed java.la
Added informatior
List of attributes 1
Added as a new se
Updated the conte
Added informatior
Added a note abot
Moved the content
Updated to reflect
Added as a new se
Added as a new se
Added definitions
Added new questic
Added new glossar

https://github.com/hazelcast/hazelcast-simulator/blob/master/README.md

Chapter 3

Getting Started

This chapter explains how to install Hazelcast and start a Hazelcast member and client. It describes the executable
files in the download package and also provides the fundamentals for configuring Hazelcast and its deployment
options.

3.1 Installation

The following sections explain the installation of Hazelcast and Hazelcast Enterprise. It also includes notes and
changes to consider when upgrading Hazelcast.

3.1.1 Hazelcast

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need to add
additional repositories to your pom.xml or add hazelcast-<version>. jar file into your classpath (Maven does
that for you). Just add the following lines to your pom.xml:

<dependencies>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast</artifactId>
<version>3.7</version>
</dependency>
</dependencies>

As an alternative, you can download and install Hazelcast yourself. You only need to:

e Download the package hazelcast-<version>.zip or hazelcast-<version>.tar.gz from hazelcast.org.
e Extract the downloaded hazelcast-<version>.zip or hazelcast-<version>.tar.gz.

e Add the file hazelcast-<version>.jar to your classpath.

3.1.2 Hazelcast Enterprise

There are two Maven repositories defined for Hazelcast Enterprise:

<repository>
<id>Hazelcast Private Snapshot Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/snapshot/</url>

23

24 CHAPTER 3. GETTING STARTED

</repository>
<repository>
<id>Hazelcast Private Release Repository</id>
<url>https://repository-hazelcast-1337.forge.cloudbees.com/release/</url>
</repository>

Hazelcast Enterprise customers may also define dependencies, a sample of which is shown below.

<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-tomcat6</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-tomcat7</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>com.hazelcast</groupld>
<artifactId>hazelcast-enterprise-all</artifactId>
<version>${project.version}</version>
</dependency>

3.1.3 Setting the License Key

Hazelcast Enterprise offers you two types of licenses: Enterprise and Enterprise HD. The supported features
differ in your Hazelcast setup according to the license type you own.

e Enterprise license: In addition to the open source edition of Hazelcast, Enterprise features are the following:

Security

WAN Replication
Continuous Query Cache
Clustered REST
Clustered JMX

— Web Sessions

e Enterprise HD license: In addition to the Enterprise features, Enterprise HD features are the following:

— High-Density Memory Store
— Hot Restart Persistence

To use Hazelcast Enterprise, you need to set the provided license key using one of the configuration methods shown
below.

Declarative Configuration:

Add the below line to any place you like in the file hazelcast.xml. This XML file offers you a declarative way to
configure your Hazelcast. It is included in the Hazelcast download package. When you extract the downloaded
package, you will see the file hazelcast.xml under the /bin directory.

3.1. INSTALLATION 25

<hazelcast>
<license-key>Your Enterprise License Key</license-key>
</hazelcast>

Client Declarative Configuration:

Native client distributions (Java, C++, .NET) of Hazelcast are open source. However, there are some Hazelcast
Enterprise features which can be used with the Java Client such as SSL, Socket Interceptors, High-Density backed
Near Cache, etc. In that case, you also need to have a Hazelcast Enterprise license and you should include this
license in the file hazelcast-client-full.xml which is located under the directory src/main/resources of your
hazelcast-client package. Set the license key in the hazelcast-client-full.xml as shown below.

<hazelcast-client>
<license-key>Your Enterprise License Key</license-key>

</hazelcast-client>

Programmatic Configuration:

Alternatively, you can set your license key programmatically as shown below.

Config config = new Config();
config.setLicenseKey("Your Enterprise License Key");

Spring XML Configuration:

If you are using Spring with Hazelcast, then you can set the license key using the Spring XML schema, as shown
below.

<hz:config>
<hz:license-key>Your Enterprise License Key</hz:license-key>
</hz:config>

JVM System Property:

As another option, you can set your license key using the below command (the “-D” command line option).

-Dhazelcast.enterprise.license.key=Your Enterprise License Key

3.1.4 Upgrading from 3.x

e Upgrading from 3.6.x to 3.7.x when using JCache: Hazelcast 3.7 introduced changes in JCache
implementation which broke compatibility of 3.6.x clients to 3.7-3.7.2 cluster members and vice versa, so
3.7-3.7.2 clients are also incompatible with 3.6.x cluster members. This issue only affects Java clients which
use JCache functionality.

Starting with Hazelcast version 3.7.3, a compatibility option is provided which can be used to ensu

In order to upgrade a 3.6.x cluster and clients to 3.7.3 (or later), you will need to use this compatibility option
on either the member or the client side, depending on which one is upgraded first: * first upgrade your cluster
members to 3.7.3, adding property hazelcast.compatibility.3.6.client=true to your configuration;
when started with this property, cluster members are compatible with 3.6.x and 3.7.3+ clients but not with

26 CHAPTER 3. GETTING STARTED

3.7-3.7.2 clients. Once your cluster is upgraded, you may upgrade your applications to use client version 3.7.3+.
* upgrade your clients from 3.6.x to 3.7.3, adding property hazelcast.compatibility.3.6.server=true to
your Hazelcast client configuration. A 3.7.3 client started with this compatibility option is compatible with
3.6.x and 3.7.3+ cluster members but incompatible with 3.7-3.7.2 cluster members. Once your clients are
upgraded, you may then proceed to upgrade your cluster members to version 3.7.3 or later.

You may use any of the supported ways [as described in System Properties section] (#system-propertie:

upgrading your cluster and clients, you may remove the compatibility property from your Hazelcast member
configuration.

e Introducing the spring-aware element: Before the release 3.5, Hazelcast uses SpringManagedContext
to scan SpringAware annotations by default. This may cause some performance overhead for the users who
do not use SpringAware. This behavior has been changed with the release of Hazelcast 3.5. SpringAware
annotations are disabled by default. By introducing the spring-aware element, now it is possible to enable
it by adding the <hz:spring-aware /> tag to the configuration. Please see the Spring Integration section.

e Introducing new configuration options for WAN replication: Starting with the release 3.6, WAN
replication related system properties, which are configured on a per member basis, can now be configured per
target cluster. The 4 system properties below are no longer valid.

— hazelcast.enterprise.wanrep.batch.size, please see the WAN Replication Batch Size.

— hazelcast.enterprise.wanrep.batchfrequency.seconds, please see the WAN Replication Batch
Maximum Delay.

— hazelcast.enterprise.wanrep.optimeout.millis, please see the WAN Replication Response Time-
out.

— hazelcast.enterprise.wanrep.queue.capacity, please see the WAN Replication Queue Capacity.

e Removal of deprecated getId() method: The method getId() in the interface DistributedObject has
been removed. Please use the method getName () instead.

e Change in the Custom Serialization in the C+4+ Client Distribution:

Before, the method getTypeId() was used to retrieve the ID of the object to be serialized. Now, the method
getHazelcastTypeId() is used and you give your object as a parameter to this new method. Also, getTypeId()
was used in your custom serializer class, now it has been renamed to getHazelcastTypeId() too. Note that, these
changes also apply when you want to switch from Hazelcast 3.6.1 to 3.6.2 too.

3.1.5 Upgrading from 2.x

¢ Removal of deprecated static methods: The static methods of Hazelcast class reaching Hazelcast data
components have been removed. The functionality of these methods can be reached from the HazelcastInstance
interface. You should replace the following:

Map<Integer, String> customers = Hazelcast.getMap("customers");
with

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

// or if you already started an instance named "instancel"

// HazelcastInstance hazelcastInstance = Hazelcast.getHazelcastInstanceByName("instancel");
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

¢ Renaming “instance” to “distributed object”: Before 3.0 there was confusion about the term “instance”:
it was used for both the cluster members and the distributed objects (map, queue, topic, etc. instances).
Starting with 3.0, the term instance will be only used for Hazelcast instances, namely cluster members. We
will use the term “distributed object” for map, queue, etc. instances. You should replace the related methods
with the new renamed ones. 3.0 clients are smart clients in that they know in which cluster member the data
is located, so you can replace your lite members with native clients.

http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-size
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#batch-maximum-delay
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#response-timeout
http://docs.hazelcast.org/docs/latest-dev/manual/html-single/index.html#queue-capacity

3.1. INSTALLATION 27

public static void main(Stringl[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hazelcastInstance.getMap("test");
Collection<Instance> instances = hazelcastInstance.getInstances();
for (Instance instance : instances) {
if (instance.getInstanceType() == Instance.InstanceType.MAP) {
System.out.println("There is a map with name: " + instance.getId());
3
3
}

with

public static void main(String[] args) throws InterruptedException {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap map = hz.getMap("test");
Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : objects) {
if (distributedObject instanceof IMap) {
System.out.println("There is a map with name: " + distributedObject.getName());
}
}
}

e Package structure change: PartitionService has been moved to package com.hazelcast.core from
com.hazelcast.partition.

e Listener API change: Before 3.0, removeListener methods were taking the Listener object as a parameter.
But this caused confusion because same listener object may be used as a parameter for different listener
registrations. So we have changed the listener API. addListener methods returns a unique ID and you can
remove a listener by using this ID. So you should do the following replacement if needed:

IMap map = hazelcastInstance.getMap("map");
map.addEntryListener(listener, true);
map.removeEntryListener(listener);

with

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

e IMap changes:
tryRemove (K key, long timeout, TimeUnit timeunit) returns boolean indicating whether operation is
successful.

tryLockAndGet (K key, long time, TimeUnit timeunit) is removed.
putAndUnlock(K key, V value) is removed.

lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.

getMapEntry (K key) is renamed as getEntryView(K key). The returned object’s type, MapEntry class is
renamed as EntryView.

e There is no predefined names for merge policies. You just give the full class name of the merge policy
implementation.

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also MergePolicy interface has been renamed to MapMergePolicy and also returning null from the implemented
merge () method causes the existing entry to be removed.

28

CHAPTER 3. GETTING STARTED

IQueue changes: There is no change on IQueue API but there are changes on how IQueue is configured.
With Hazelcast 3.0 there will be no backing map configuration for queue. Settings like backup count will be
directly configured on queue config. For queue configuration details, please see the Queue section.
Transaction API change: In Hazelcast 3.0, transaction API is completely different. Please see the
Transactions chapter.

ExecutorService API change: Classes MultiTask and DistributedTask have been removed. All the
functionality is supported by the newly presented interface IExecutorService. Please see the Executor Service
section.

LifeCycleService API: The lifecycle has been simplified. pause(), resume(), restart() methods have
been removed.

AtomicNumber: AtomicNumber class has been renamed to IAtomicLong.

ICountDownLatch: await () operation has been removed. We expect users to use await () method with
timeout parameters.

ISemaphore API: The ISemaphore has been substantially changed. attach(), detach() methods have
been removed.

In 2.x releases, the default value for max-size eviction policy was cluster__wide__map__size. In 3.x releases,
default is PER__ NODE. After upgrading, the max-size should be set according to this new default, if it is
not changed. Otherwise, it is likely that OutOfMemory exception may be thrown.

3.2 Starting the Member and Client

Having installed Hazelcast, you can get started.

In this short tutorial, you perform the following activities.

1. Create a simple Java application using the Hazelcast distributed map and queue.
2. Run our application twice to have a cluster with two members (JVMs).
3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client API.

Let’s begin.

The following code starts the first Hazelcast member and creates and uses the customers map and queue.

import com.hazelcast.core.*;
import com.hazelcast.config.*;

import java.util.Map;
import java.util.Queue;

public class GettingStarted {

public static void main(String[] args) {
Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
Map<Integer, String> mapCustomers = instance.getMap("customers");
mapCustomers.put(l, "Joe");
mapCustomers.put(2, "Ali");
mapCustomers.put(3, "Avi");

System.out.println("Customer with key 1: "+ mapCustomers.get(1));
System.out.println("Map Size:" + mapCustomers.size());

Queue<String> queueCustomers = instance.getQueue("customers");
queueCustomers.offer("Tom");

queueCustomers.offer("Mary");

queueCustomers.offer("Jane");

3.3. USING THE SCRIPTS IN THE PACKAGE 29

System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

e Now, add the hazelcast-client-<wersion>.jar library to your classpath. This is required to use a
Hazelcast client.

e The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the customers
map.

package com.hazelcast.test;

import com.hazelcast.client.config.ClientConfig;
import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class GettingStartedClient {
public static void main(String[] args) {
ClientConfig clientConfig = new ClientConfig();
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap map = client.getMap("customers");
System.out.println("Map Size:" + map.size());

e When you run it, you see the client properly connecting to the cluster and printing the map size as 3.

Hazelcast also offers a tool, Management Center, that enables you to monitor your cluster. To use it, deploy
the mancenter-<wersion> .war included in the ZIP file to your web server. You can use it to monitor your maps,
queues, and other distributed data structures and members. Please see the Management Center section for usage
explanations.

By default, Hazelcast uses Multicast to discover other members that can form a cluster. If you are working with
other Hazelcast developers on the same network, you may find yourself joining their clusters under the default
settings. Hazelcast provides a way to segregate clusters within the same network when using Multicast. Please see
the Creating Cluster Groups for more information. Alternatively, if you do not wish to use the default Multicast
mechanism, you can provide a fixed list of IP addresses that are allowed to join. Please see the Join Configuration
section for more information.

RELATED INFORMATION

You can also check the video tutorials here.

3.3 Using the Scripts In The Package

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see three scripts under the /bin
folder that provide basic functionalities for member and cluster management.

The following are the names and descriptions of each script:

e start.sh / start.bat: Starts a Hazelcast member with default configuration in the working directory™.

e stop.sh / stop.bat: Stops the Hazelcast member that was started in the current working directory.

e cluster.sh: Provides basic functionalities for cluster management, such as getting and changing the cluster
state, shutting down the cluster or forcing the cluster to clean its persisted data and make a fresh start.

30 CHAPTER 3. GETTING STARTED

! NOTE: start.sh / start.bat scripts lets you start one Hazelcast instance per folder. To start a new
instance, please unzip Hazelcast ZIP or TAR.GZ package in a new folder.

Please refer to the Using the Script cluster.sh section to learn the usage of this script.

3.4 Deploying On Amazon EC2

You can deploy your Hazelcast project onto an Amazon EC2 environment using Third Party tools such as Vagrant
and Chef.

You can find a sample deployment project (amazon-ec2-vagrant-chef) with step-by-step instructions in the
hazelcast-integration folder of the hazelcast-code-samples package, which you can download at hazelcast.org.
Please refer to this sample project for more information.

3.5 Deploying On Microsoft Azure

You can deploy your Hazelcast cluster onto a Microsoft Azure environment. For this, your cluster should make
use of Hazelcast Discovery Plugin for Microsoft Azure. You can find information about this plugin on its GitHub
repository at Hazelcast Azure.

For information on how to automatically deploy your cluster onto Azure, please see the Deployment section of
Hazelcast Azure plugin repository.

3.6 Deploying On Pivotal Cloud Foundry

Starting with Hazelcast 3.7, you can deploy your Hazelcast cluster onto Cloud Foundry. This deployment enables
Hazelcast to be used in multiple ways on Cloud Foundry platform. You can deploy Hazelcast in the following ways:

e Unmanaged/User Managed Service: In this way of deployment, Hazelcast members run as a service.
This service is hosted in an environment outside of Cloud Foundry platform and bound to the applications
pushed to Cloud Foundry by the User Provided Services framework.

e Embedded: Applications with Hazelcast embedded topology are pushed onto Cloud Foundry as individual
instances. These instances discover each other using the Discovery SPI implementation. This implementation
is integrated with a registration service such as Consul and Eureka.

e Hazelcast Service Broker: In this way of deployment, Hazelcast runs as a native Cloud Foundry service.
Using the Hazelcast Service Broker implementation, this service is provisioned and maintained by the Cloud
Foundry platform itself.

Integration between Hazelcast and Pivotal Cloud Foundry is provided as a Hazelcast plugin. Please see its own
GitHub repo at Hazelcast Cloud Foundry for details on configurations and usages.

3.7 Deploying using Docker
You can deploy your Hazelcast projects using the Docker containers. Hazelcast has the following images on Docker:

Hazelcast

Hazelcast Enterprise
Hazelcast Management Center
Hazelcast OpenShift

https://github.com/hazelcast/hazelcast-azure
https://github.com/hazelcast/hazelcast-azure/blob/master/README.md#automated-deployment
https://github.com/hazelcast/hazelcast-azure

3.7. DEPLOYING USING DOCKER 31

After you pull an image from the Docker registry, you can run your image to start the management center or a
Hazelcast instance with Hazelcast’s default configuration. All repositories provide the latest stable releases but you
can pull a specific release too. You can also specify environment variables when running the image.

If you want to start a customized Hazelcast instance, you can extend the Hazelcast image by providing your own
configuration file.

This feature is provided as a Hazelcast plugin. Please see its own GitHub repo at Hazelcast Docker for details on
configurations and usages.

32

CHAPTER 3. GETTING STARTED

Chapter 4

Hazelcast Overview

Hazelcast is an open source In-Memory Data Grid (IMDG). It provides elastically scalable distributed In-Memory
computing, widely recognized as the fastest and most scalable approach to application performance. Hazelcast
does this in open source. More importantly, Hazelcast makes distributed computing simple by offering distributed
implementations of many developer-friendly interfaces from Java such as Map, Queue, ExecutorService, Lock,
and JCache. For example, the Map interface provides an In-Memory Key Value store which confers many of the
advantages of NoSQL in terms of developer friendliness and developer productivity.

In addition to distributing data In-Memory, Hazelcast provides a convenient set of APIs to access the CPUs in your
cluster for maximum processing speed. Hazelcast is designed to be lightweight and easy to use. Since Hazelcast is
delivered as a compact library (JAR) and since it has no external dependencies other than Java, it easily plugs into
your software solution and provides distributed data structures and distributed computing utilities.

Hazelcast is highly scalable and available (100% operational, never failing). Distributed applications can use
Hazelcast for distributed caching, synchronization, clustering, processing, pub/sub messaging, etc. Hazelcast is
implemented in Java and has clients for Java, C/C++, .NET and REST. Hazelcast also speaks memcache protocol.
It plugs into Hibernate and can easily be used with any existing database system.

If you are looking for In-Memory speed, elastic scalability, and the developer friendliness of NoSQL, Hazelcast is a
great choice.

Hazelcast is Simple

Hazelcast is written in Java with no other dependencies. It exposes the same API from the familiar Java util
package, exposing the same interfaces. Just add hazelcast. jar to your classpath and you can quickly enjoy JVMs
clustering and start building scalable applications.

Hazelcast is Peer-to-Peer

Unlike many NoSQL solutions, Hazelcast is peer-to-peer. There is no master and slave; there is no single point of
failure. All members store equal amounts of data and do equal amounts of processing. You can embed Hazelcast in
your existing application or use it in client and server mode where your application is a client to Hazelcast members.

Hazelcast is Scalable

Hazelcast is designed to scale up to hundreds and thousands of members. Simply add new members and they will
automatically discover the cluster and will linearly increase both memory and processing capacity. The members
maintain a TCP connection between each other and all communication is performed through this layer.

Hazelcast is Fast
Hazelcast stores everything in-memory. It is designed to perform very fast reads and updates.
Hazelcast is Redundant

Hazelcast keeps the backup of each data entry on multiple members. On a member failure, the data is restored
from the backup and the cluster will continue to operate without downtime.

33

34 CHAPTER 4. HAZELCAST OVERVIEW

4.1 Sharding in Hazelcast

Hazelcast shards are called Partitions. By default, Hazelcast has 271 partitions. Given a key, we serialize, hash and
mode it with the number of partitions to find the partition which the key belongs to. The partitions themselves
are distributed equally among the members of the cluster. Hazelcast also creates the backups of partitions and
distributes them among members for redundancy.

RELATED INFORMATION

Please refer to the Data Partitioning section for more information on how Hazelcast partitions your data.

4.2 Hazelcast Topology

You can deploy a Hazelcast cluster in two ways: Embedded or Client/Server.

If you have an application whose main focal point is asynchronous or high performance computing and lots of task
executions, then Embedded deployment is useful. In Embedded deployment, members include both the application
and Hazelcast data and services. The advantage of the Embedded deployment is having a low-latency data access.

See the below illustration.

.- Node
TCP/P
: . TCP/IP
Node
“seeweest Node
TCP/IP

Figure 4.1: Embedded Deployment

In the Client/Server deployment, Hazelcast data and services are centralized in one or more server members and they
are accessed by the application through clients. You can have a cluster of server members that can be independently
created and scaled. Your clients communicate with these members to reach to Hazelcast data and services on them.
Hazelcast provides native clients (Java, .NET and C++), Memcache clients and REST clients. See the illustration
at the end of this section.

Client/Server deployment has advantages including more predictable and reliable Hazelcast performance, easier
identification of problem causes, and most importantly, better scalability. When you need to scale in this deployment
type, just add more Hazelcast server members. You can address client and server scalability concerns separately.

If you want low-latency data access, as in the Embedded deployment, and you also want the scalability advantages
of the Client/Server deployment, you can consider defining near caches for your clients. This enables the frequently
used data to be kept in the client’s local memory. Please refer to Configuring Client Near Cache.

4.3. WHY HAZELCAST? 35

o Java,
Jative EIIF:I"I"-_ELH—IEE_P. L or Ce

‘;N At —— Client

- Node
TCPAP
: " TCP/IP

: - p Memchache Protocol Memcache

. Client

Mode
Treesemet Mode
R .
TCP/IP T Protocy,
— REST
Client

Figure 4.2: Client/Server Deployment

4.3 Why Hazelcast?

A Glance at Traditional Data Persistence

Data is at the core of software systems. In conventional architectures, a relational database persists and provides
access to data. Applications are talking directly with a database which has its backup as another machine. To
increase performance, tuning or a faster machine is required. This can cost a large amount of money or effort.

There is also the idea of keeping copies of data next to the database, which is performed using technologies like
external key-value stores or second level caching that help offload the database. However, when the database
is saturated or the applications perform mostly “put” operations (writes), this approach is of no use because it
insulates the database only from the “get” loads (reads). Even if the applications are read-intensive there can be
consistency problems—when data changes, what happens to the cache, and how are the changes handled? This is
when concepts like time-to-live (TTL) or write-through come in.

In the case of TTL, if the access is less frequent than the TTL, the result will always be a cache miss. On the
other hand, in the case of write-through caches, if there are more than one of these caches in a cluster, we again
will have consistency issues. This can be avoided by having the nodes communicate with each other so that entry
invalidations can be propagated.

We can conclude that an ideal cache would combine TTL and write-through features. There are several cache
servers and in-memory database solutions in this field. However, these are stand-alone single instances with a
distribution mechanism that is provided by other technologies to an extent. So, we are back to square one; we
experience saturation or capacity issues if the product is a single instance or if consistency is not provided by the
distribution.

And, there is Hazelcast

Hazelcast, a brand new approach to data, is designed around the concept of distribution. Hazelcast shares data
around the cluster for flexibility and performance. It is an in-memory data grid for clustering and highly scalable
data distribution.

One of the main features of Hazelcast is that it does not have a master member. Each cluster member is configured
to be the same in terms of functionality. The oldest member (the first member created in the cluster) automatically
performs the data assignment to cluster members. If the oldest member dies, the second oldest member takes over.

Another main feature of Hazelcast is that the data is held entirely in-memory. This is fast. In the case of a failure,

36 CHAPTER 4. HAZELCAST OVERVIEW

such as a member crash, no data will be lost since Hazelcast distributes copies of the data across all the cluster
members.

As shown in the feature list in the Hazelcast Overview, Hazelcast supports a number of distributed data structures
and distributed computing utilities. These provide powerful ways of accessing distributed clustered memory and
accessing CPUs for true distributed computing.

Hazelcast’s Distinctive Strengths

Hazelcast is open source.

Hazelcast is only a JAR file. You do not need to install software.

Hazelcast is a library, it does not impose an architecture on Hazelcast users.

Hazelcast provides out of the box distributed data structures, such as Map, Queue, MultiMap, Topic, Lock

and Executor.

e There is no “master,” meaning no single point of failure in a Hazelcast cluster; each member in the cluster is
configured to be functionally the same.

e When the size of your memory and compute requirements increase, new members can be dynamically joined

to the Hazelcast cluster to scale elastically.

e Data is resilient to member failure. Data backups are distributed across the cluster. This is a big benefit
when a member in the cluster crashes as data will not be lost.

e Members are always aware of each other unlike in traditional key-value caching solutions.

e You can build your own custom-distributed data structures using the Service Programming Interface (SPI) if
you are not happy with the data structures provided.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

analytic applications requiring big data processing by partitioning the data.

to retain frequently accessed data in the grid.

a cache, particularly an open source JCache provider with elastic distributed scalability.

a primary data store for applications with utmost performance, scalability and low-latency requirements.
an In-Memory NoSQL Key Value Store.

publish /subscribe communication at highest speed and scalability between applications.

applications that need to scale elastically in distributed and cloud environments.

a highly available distributed cache for applications.

an alternative to Coherence and Terracotta.

4.4 Data Partitioning

As you read in the Sharding in Hazelcast section, Hazelcast shards are called Partitions. Partitions are memory
segments that can contain hundreds or thousands of data entries each, depending on the memory capacity of your
system.

By default, Hazelcast offers 271 partitions. When you start a cluster member, it starts with these 271 partitions.
The following illustration shows the partitions in a Hazelcast cluster with single member.

When you start a second member on that cluster (creating a Hazelcast cluster with two members), the partitions
are distributed as shown in the illustration here.

In the illustration, the partitions with black text are primary partitions and the partitions with blue text are replica
partitions (backups). The first member has 135 primary partitions (black), and each of these partitions are backed
up in the second member (blue). At the same time, the first member also has the replica partitions of the second
member’s primary partitions.

As you add more members, Hazelcast moves some of the primary and replica partitions to the new members one by
one, making all members equal and redundant. Only the minimum amount of partitions will be moved to scale out
Hazelcast. The following is an illustration of the partition distributions in a Hazelcast cluster with four members.

4.4. DATA PARTITIONING

L |

P2

P_3

P 269

P_270

P 271

Made

Figure 4.3: Single Member with Partitions

P1 P 136

P2 P 137

P_271 P 135

Figure 4.4: Cluster with Two Members - Backups are Created

38 CHAPTER 4. HAZELCAST OVERVIEW

P_1 P_&9 P_137 P_205
P2 P_70 P_138 206
P_&3 P_13& P_204 P_ZM
P_137 P_205 P P_&Y
P 138 P_20& P_Z P_T0
P_204 P_2M P_&H P_136

Figure 4.5: Cluster with Four Members

Hazelcast distributes the partitions equally among the members of the cluster. Hazelcast creates the backups of
partitions and distributes them among the members for redundancy.

Partition distributions in the above illustrations are for your convenience and descriptive purposes. Normally, the
partitions are not distributed in an order (as they are shown in these illustrations), but are distributed randomly.
The important point here is that Hazelcast equally distributes the partitions and their backups among the members.

Starting with Hazelcast 3.6, lite members are introduced. Lite members are a new type of members that do not own
any partition. Lite members are intended for use in computationally-heavy task executions and listener registrations.
Although they do not own any partitions, they can access partitions that are owned by other members in the
cluster.

RELATED INFORMATION

Please refer to the Enabling Lite Members section.

4.4.1 How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key (for example,
for a map) or an object name (for example, for a topic or list):

e the key or name is serialized (converted into a byte array),
e this byte array is hashed, and
e the result of the hash is mod by the number of partitions.

The result of this modulo - MOD (hash result, partition count) - is the partition in which the data will be stored,
that is the partition ID. For ALL members you have in your cluster, the partition ID for a given key will always
be the same.

4.4.2 Partition Table

When you start a member, a partition table is created within it. This table stores the partition IDs and the cluster
members to which they belong. The purpose of this table is to make all members (including lite members) in the
cluster aware of this information, making sure that each member knows where the data is.

4.5. USE CASES 39

The oldest member in the cluster (the one that started first) periodically sends the partition table to all members.
In this way each member in the cluster is informed about any changes to partition ownership. The ownerships may
be changed when, for example, a new member joins the cluster, or when a member leaves the cluster.

! NOTE: If the oldest member of the cluster goes down, the next oldest member sends the partition table
information to the other ones.

You can configure the frequency (how often) that the member sends the partition table the information by using
the hazelcast.partition.table.send.interval system property. The property is set to every 15 seconds by
default.

4.4.3 Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the repartitioning in the
following cases:

e When a member joins to the cluster.
e When a member leaves the cluster.

In these cases, the partition table in the oldest member is updated with the new partition ownerships.

Note that if a lite member joins or leaves a cluster, repartitioning is not triggered since lite members do not own
any partitions.

4.5 Use Cases

Hazelcast can be used:

e to share server configuration/information to see how a cluster performs.

e to cluster highly changing data with event notifications (e.g., user based events), and to queue and distribute
background tasks.

e as a simple Memcache with near cache.

e as a cloud-wide scheduler of certain processes that need to be performed on some members.

e to share information (user information, queues, maps, etc.) on the fly with multiple members in different
installations under OSGI environments.

e to share thousands of keys in a cluster where there is a web service interface on an application server and
some validation.

e as a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones.

e as a front layer for a Cassandra back-end.

e to distribute user object states across the cluster, to pass messages between objects, and to share system data
structures (static initialization state, mirrored objects, object identity generators).

e as a multi-tenancy cache where each tenant has its own map.

e to share datasets (e.g., table-like data structure) to be used by applications.

e to distribute the load and collect status from Amazon EC2 servers where the front-end is developed using, for
example, Spring framework.

e as a real-time streamer for performance detection.

e as storage for session data in web applications (enables horizontal scalability of the web application).

4.6 Resources

e Hazelcast source code can be found at Github/Hazelcast.
e Hazelcast API can be found at Hazelcast.org/docs/Javadoc.

40

CHAPTER 4. HAZELCAST OVERVIEW

e Code samples can be downloaded from Hazelcast.org/download.
e More use cases and resources can be found at Hazelcast.com.
e Questions and discussions can be posted at the Hazelcast mail group.

Chapter 5

Understanding Configuration

This chapter describes the options to configure your Hazelcast applications and explains the utilities which you can
make use of while configuring. You can configure Hazelcast using one or mix of the following options:

Declarative way

Programmatic way

Using Hazelcast system properties
Within the Spring context

5.1 Configuring Declaratively

This is the configuration option where you use an XML configuration file. When you download and unzip
hazelcast-<version>.zip, you will see the following files present in /bin folder, which are standard XML-
formatted configuration files:

e hazelcast.xml: Default declarative configuration file for Hazelcast. The configuration in this XML file
should be fine for most of the Hazelcast users. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties.

e hazelcast-full-example.xml: Configuration file which includes all Hazelcast configuration ele-
ments and attributes with their descriptions. It is the “superset” of hazelcast.xml. You can use
hazelcast-full-example.xml as a reference document to learn about any element or attribute, or you can
change its name to hazelcast.xml and start to use it as your Hazelcast configuration file.

A part of hazelcast.xml is shown as an example below.

<group>
<name>dev</name>
<password>dev-pass</password>
</group>
<management-center enabled="false">http://localhost:8080/mancenter</management-center>
<network>
<port auto-increment="true" port-count="100">5701</port>
<outbound-ports>
<l--
Allowed port range when connecting to other members.
0 or * means the port provided by the system.
-—>
<ports>0</ports>
</outbound-ports>
<join>

41

42 CHAPTER 5. UNDERSTANDING CONFIGURATION

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>

<tcp-ip enabled="false">

5.1.1 Composing Declarative Configuration

You can compose the declarative configuration of your Hazelcast member or Hazelcast client from multiple declarative
configuration snippets. In order to compose a declarative configuration, you can use the <import/> element to load
different declarative configuration files.

Let’s say you want to compose the declarative configuration for Hazelcast out of two configurations:
development-group-config.xml and development-network-config.xml. These two configurations are shown
below.

development-group-config.xml:

<hazelcast>
<group>
<name>dev</name>
<password>dev-pass</password>
</group>
</hazelcast>

development-network-config.xml:

<hazelcast>
<network>
<port auto-increment="true" port-count="100">5701</port>
<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
</join>
</network>
</hazelcast>

To get your example Hazelcast declarative configuration out of the above two, use the <import/> element as shown
below.

<hazelcast>
<import resource="development-group-config.xml"/>
<import resource="development-network-config.xml"/>
</hazelcast>

This feature also applies to the declarative configuration of Hazelcast client. Please see the following examples.

client-group-config.xml:

<hazelcast-client>
<group>
<name>dev</name>
<password>dev-pass</password>
</group>
</hazelcast-client>

5.2. CONFIGURING PROGRAMMATICALLY 43

client-network-config.xml:

<hazelcast-client>
<network>
<cluster-members>
<address>127.0.0.1:7000</address>
</cluster-members>
</network>
</hazelcast-client>

To get a Hazelcast client declarative configuration from the above two examples, use the <import/> element as
shown below.

<hazelcast-client>
<import resource="client-group-config.xml"/>
<import resource="client-network-config.xml"/>
</hazelcast>

. NOTE: Use <import/> element on top level of the XML hierarchy.

Using the element <import>, you can also load XML resources from classpath and file system:

<hazelcast>
<import resource="file:///etc/hazelcast/development-group-config.xml"/> </-- loaded from filesystem —-
<import resource="classpath:development-network-config.xml"/> </-- loaded from classpath —->
</hazelcast>

The element <import> supports placeholders too. Please see the following example snippet:

<hazelcast>
<import resource="${environmentl}-group-config.xml"/>
<import resource="${environment}-network-config.xml"/>
</hazelcast>

5.2 Configuring Programmatically

Besides declarative configuration, you can configure your cluster programmatically. For this you can create a
Config object, set/change its properties and attributes, and use this Config object to create a new Hazelcast
member. Following is an example code which configures some network and Hazelcast Map properties.

Config config = new Config();
config.getNetworkConfig() .setPort(5900)
.setPortAutoIncrement(false);

MapConfig mapConfig = new MapConfig() ;

mapConfig.setName("testMap")
.setBackupCount(2);
.setTimeToLiveSeconds(300);

config.addMapConfig(mapConfig);
To create a Hazelcast member with the above example configuration, pass the configuration object as shown below:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);

44 CHAPTER 5. UNDERSTANDING CONFIGURATION

! NOTE: The Config must not be modified after the Hazelcast instance is started. In other words, all
configuration must be completed before creating the HazelcastInstance.

You can also create a named Hazelcast member. In this case, you should set instanceName of Config object as
shown below:

Config config = new Config();
config.setInstanceName("my-instance");
Hazelcast.newHazelcastInstance(config);

To retrieve an existing Hazelcast member by its name, use the following:
Hazelcast.getHazelcastInstanceByName("my-instance");
To retrieve all existing Hazelcast members, use the following:

Hazelcast.getAllHazelcastInstances() ;

! NOTE: Hazelcast performs schema validation through the file hazelcast-config-<version>.zsd which
comes with your Hazelcast libraries. Hazelcast throws a meaningful exception if there is an error in the declarative
or programmatic configuration.

If you want to specify your own configuration file to create Config, Hazelcast supports several ways including
filesystem, classpath, InputStream, and URL:

Config cfg = new XmlConfigBuilder (xmlFileName) .build();
Config cfg = new XmlConfigBuilder (inputStream).build();
Config cfg = new ClasspathXmlConfig(xmlFileName) ;
Config cfg = new FileSystemXmlConfig(configFilename) ;
Config cfg = new UrlXmlConfig(url);

Config cfg = new InMemoryXmlConfig(xml);

5.3 Configuring with System Properties

You can use system properties to configure some aspects of Hazelcast. You set these properties as name and
value pairs through declarative configuration, programmatic configuration or JVM system property. Following are
examples for each option.

Declaratively:

<properties>
<property name="hazelcast.property.foo">value</property>

</properties>
</hazelcast>

Programmatically:

Config config = new Config() ;
config.setProperty("hazelcast.property.foo", "value");

5.4. CONFIGURING WITHIN SPRING CONTEXT 45

Using JVM’s Systen class or -D argument:
System.setProperty("hazelcast.property.foo", "value");
or

java -Dhazelcast.property.foo=value

You will see Hazelcast system properties mentioned throughout this Reference Manual as required in some of the
chapters and sections. All Hazelcast system properties are listed in the System Properties appendix with their
descriptions, default values and property types as a reference for you.

5.4 Configuring within Spring Context

If you use Hazelcast with Spring you can declare beans using the namespace hazelcast. When you add the
namespace declaration to the element beans in the Spring context file, you can start to use the namespace shortcut
hz to be used as a bean declaration. Following is an example Hazelcast configuration when integrated with Spring:

<hz:hazelcast id="instance">
<hz:config>
<hz:group name="dev" password="password"/>
<hz:network port="5701" port-auto-increment="false">
<hz:join>
<hz:multicast enabled="false"/>
<hz:tcp-ip enabled="true">
<hz:members>10.10.1.2, 10.10.1.3</hz:members>
</hz:tcp-ip>
</hz:join>
</hz:network>
</hz:config>
</hz:hazelcast>

Please see the Spring Integration section for more information on Hazelcast-Spring integration.

5.5 Checking Configuration

When you start a Hazelcast member without passing a Config object, as explained in the Configuring Program-
matically section, Hazelcast checks the member’s configuration as follows:

e First, it looks for the hazelcast.config system property. If it is set, its value is used as the path. This
is useful if you want to be able to change your Hazelcast configuration; you can do this because it is not
embedded within the application. You can set the config option with the following command:

- Dhazelcast.config=<path to the hazelcast.zml>.

The path can be a regular one or a classpath reference with the prefix classpath:.

e If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml file in the
working directory.

e If not, it then checks whether hazelcast.xml exists on the classpath.
e If none of the above works, Hazelcast loads the default configuration (hazelcast.xml) that comes with your

Hazelcast package.

Before configuring Hazelcast, please try to work with the default configuration to see if it works for you. This
default configuration should be fine for most of the users. If not, you can consider to modify the configuration to be
more suitable for your environment.

https://spring.io/

46 CHAPTER 5. UNDERSTANDING CONFIGURATION

5.6 Using Wildcards

Hazelcast supports wildcard configuration for all distributed data structures that can be configured using Config,
that is, for all except IAtomicLong, IAtomicReference. Using an asterisk (*) character in the name, different
instances of maps, queues, topics, semaphores, etc. can be configured by a single configuration.

A single asterisk (*) can be placed anywhere inside the configuration name.

For instance, a map named com.hazelcast.test.mymap can be configured using one of the following configurations.

<map name='"com.hazelcast.test.*x">
</map>

<map name='"com.hazel*">

</map>

<map name="*.test.mymap">

</map>

<map name='"com.x*test.mymap">

</nap>

Or a queue ‘com.hazelcast.test.myqueue’:
<queue name="*hazelcast.test.myqueue">
;)éueue>

<queue name="com.hazelcast.*.myqueue">

;)éueue>
5.7 Using Variables

In your Hazelcast and/or Hazelcast Client declarative configuration, you can use variables to set the values of the
elements. This is valid when you set a system property programmatically or you use the command line interface.
You can use a variable in the declarative configuration to access the values of the system properties you set.

For example, see the following command that sets two system properties.
-Dgroup.name=dev -Dgroup.password=somepassword
Let’s get the values of these system properties in the declarative configuration of Hazelcast, as shown below.

<hazelcast>
<group>
<name>${group.name}</name>
<password>${group.password}</password>
</group>
</hazelcast>

5.7. USING VARIABLES 47
This also applies to the declarative configuration of Hazelcast Client, as shown below.

<hazelcast-client>
<group>
<name>${group.name}</name>
<password>${group.password}</password>
</group>
</hazelcast-client>

If you do not want to rely on the system properties, you can use the XmlConfigBuilder and explicitly set a
Properties instance, as shown below.

Properties properties = new Properties();
// fill the properties, e.g. from database/LDAP, etc.

XmlConfigBuilder builder = new XmlConfigBuilder();
builder.setProperties(properties)

Config config = builder.build();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

48

CHAPTER 5. UNDERSTANDING CONFIGURATION

Chapter 6

Setting Up Clusters

This chapter describes Hazelcast clusters and the methods cluster members and native clients use to form a Hazelcast
cluster.

6.1 Discovering Cluster Members

A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members (also called nodes)
automatically join together to form a cluster. This automatic joining takes place with various discovery mechanisms
that the cluster members use to find each other. Hazelcast uses the following discovery mechanisms:

e Multicast
e TCP

e EC2 Cloud
e jclouds®

Each discovery mechanism is explained in the following sections.

! NOTE: After a cluster is formed, communication between cluster members is always via TCP/IP, regardless
of the discovery mechanism used.

6.1.1 Discovering Members by Multicast
With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other using multicast
communication. The cluster members do not need to know the concrete addresses of the other members, as they

just multicast to all the other members for listening. Whether multicast is possible or allowed depends on your
environment.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. Please refer to the
multicast element section for the full description of the multicast discovery configuration elements.

e Set the enabled attribute of the multicast element to “true”.
e Set multicast-group, multicast-port, multicast-time-to-live, etc. to your multicast values.
e Set the enabled attribute of both tcp-ip and aws elements to “false”.

The following is an example declarative configuration.
<hazelcast>
<network>

49

50 CHAPTER 6. SETTING UP CLUSTERS

<join>
<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>
<interface>192.168.1.102</interface>
</trusted-interfaces>
</multicast>
<tcp-ip enabled="false">
</tcp-ip>
<aws enabled="false">
</aws>
</join>
<network>

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the time in
seconds that a member should wait for a valid multicast response from another member running in the network
before declaring itself the leader member (the first member joined to the cluster) and creating its own cluster.
This only applies to the startup of members where no leader has been assigned yet. If you specify a high value to
multicast-timeout-seconds, such as 60 seconds, it means that until a leader is selected, each member will wait
60 seconds before moving on. Be careful when providing a high value. Also, be careful not to set the value too low,
or the members might give up too early and create their own cluster.

l NOTE: Multicast auto-discovery is not supported for Hazelcast native clients yet. However, we offer Multicast
Discovery Plugin for this purpose. Please refer to the Discovering Native Clients section.

6.1.2 Discovering Members by TCP

If multicast is not the preferred way of discovery for your environment, then you can configure Hazelcast to be a
full TCP/IP cluster. When you configure Hazelcast to discover members by TCP /IP, you must list all or a subset
of the members’ hostnames and/or IP addresses as cluster members. You do not have to list all of these cluster
members, but at least one of the listed members has to be active in the cluster when a new member joins.

To set your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. Please refer to the
tep-ip element section for the full description of the TCP/IP discovery configuration elements.

Set the enabled attribute of the multicast element to “false”.
Set the enabled attribute of the aws element to “false”.

Set the enabled attribute of the tcp-ip element to “true”

Set your member elements within the tcp-ip element.

The following is an example declarative configuration.

<hazelcast>
<network>
<join>
<multicast enabled="false">
</multicast>
<tcp-ip enabled="true">

<member>machinel</member>
<member>machine2</member>

6.1. DISCOVERING CLUSTER MEMBERS o1

<member>machine3:5799</member>

<member>192.168.1.0-7</member>

<member>192.168.1.21</member>
</tcp-ip>

</join>
</network>
</hazelcast>

As shown above, you can provide IP addresses or hostnames for member elements. You can also give a range of IP
addresses, such as 192.168.1.0-7.

Instead of providing members line-by-line as shown above, you also have the option to use the members element
and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>
If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702, and so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can change this behavior
using the system property hazelcast.socket.bind.any. If you set this property to false, Hazelcast uses the
interfaces specified in the interfaces element (please refer to the Interfaces Configuration section). If no interfaces
are provided, then it will try to resolve one interface to bind from the member elements.

6.1.3 Discovering Members within EC2 Cloud

Hazelcast supports EC2 auto-discovery. It is useful when you do not want to provide or you cannot provide the list
of possible IP addresses. This discovery feature is provided as a Hazelcast plugin. Please see its own GitHub repo
at Hazelcast AWS for information on configuring and using it.

! NOTE: hazelcast-cloud module has been renamed as hazelcast-aws module (starting with Hazelcast 3.7.3). If
you want to use AWS Discovery, you should add the library hazelcast-aws JAR to your environment. For more
information please look see the README of Hazelcast AWS repo.

6.1.4 Discovering Members within Azure Cloud

Hazelcast offers a discovery strategy for your Hazelcast applications running on Azure. This strategy provides all
of your Hazelcast instances by returning the virtual machines within your Azure resource group that are tagged
with a specified value. This discovery feature is provided as a Hazelcast plugin. Please see its own GitHub repo at
Hazelcast Azure for information on configuring and using it.

6.1.5 Discovering Members with jclouds

Hazelcast members and native clients support jclouds®) for discovery. It is useful when you do not want to provide
or you cannot provide the list of possible IP addresses on various cloud providers. This discovery feature is provided
as a Hazelcast plugin. Please see its own GitHub repo at Hazelcast JClouds for information on configuring and
using it.

6.1.6 Discovering Native Clients

Hazelcast members and native clients can find each other with multicast discovery plugin. This plugin is implemented
using Hazelcast Discovery SPI. You should configure the plugin both at Hazelcast members and clients in order to
use multicast discovery.

To configure your cluster to have the multicast discovery plugin, follow these steps:

https://github.com/hazelcast/hazelcast-aws/blob/master/README.md

52 CHAPTER 6. SETTING UP CLUSTERS

e Disable the multicast and TCP/IP join mechanisms. To do this, set the enabled attributes of the multicast
and tcp-ip elements to false in your hazelcast.xml configuration file

e Set the enabled attribute of the hazelcast.discovery.enabled property to true

e Add multicast discovery strategy configuration to your XML file, i.e., <discovery-strategies> element.

The following is an example declarative configuration.

<properties>

<property name="hazelcast.discovery.enabled">true</property>
</properties>
<join>

<multicast enabled="false">

</multicast>

<tcp-ip enabled="false'">

</tcp-ip>

<discovery-strategies>

<discovery-strategy class="com.hazelcast.spi.discovery.multicast.MulticastDiscoveryStrategy" ena

<properties>
<property name="group'">224.2.2.3</property>
<property name="port'">54327</property>
</properties>
</discovery-strategy>
</discovery-strategies>
</join>

The table below lists the multicast discovery plugin configuration properties with their descriptions.

Property Name Type Description

group String String value that is used to set the multicast group, so that you can isolate your clusters.

port Integer Integer value that is used to set the multicast port.

6.2 Creating Cluster Groups

You can create cluster groups. To do this, use the group configuration element.

By specifying a group name and group password, you can separate your clusters in a simple way. Example groupings
can be by development, production, test, app, etc. The following is an example declarative configuration.

<hazelcast>
<group>
<name>appl</name>
<password>appl-pass</password>
</group>

</hazelcast>

You can also define the cluster groups using the programmatic configuration. A JVM can host multiple Hazelcast
instances. Fach Hazelcast instance can only participate in one group. Each Hazelcast instance only joins to its
own group and does not interact with other groups. The following code example creates three separate Hazelcast
instances-h1 belongs to the appl cluster, while h2 and h3 belong to the app2 cluster.

6.3. PARTITION GROUP CONFIGURATION 93

Config configAppl = new Config();
confighppl.getGroupConfig() .setName("appl").setPassword("appl-pass");

Config confighApp2 = new Config();
configApp2.getGroupConfig() .setName("app2").setPassword("app2-pass");

HazelcastInstance hl = Hazelcast.newHazelcastInstance(confighAppl);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(confighApp2);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configApp2);

6.3 Partition Group Configuration

Hazelcast distributes key objects into partitions using a consistent hashing algorithm. Those partitions are assigned
to members. An entry is stored in the member that owns the partition to which the entry’s key is assigned. The total
partition count is 271 by default; you can change it with the configuration property hazelcast.partition.count.
Please see the System Properties section.

Along with those partitions, there are also copies of the partitions as backups. Backup partitions can have multiple
copies due to the backup count defined in configuration, such as first backup partition, second backup partition, etc.
A member cannot hold more than one copy of a partition (ownership or backup). By default, Hazelcast distributes
partitions and their backup copies randomly and equally among cluster members, assuming all members in the
cluster are identical.

But what if some members share the same JVM or physical machine or chassis and you want backups of these
members to be assigned to members in another machine or chassis? What if processing or memory capacities of
some members are different and you do not want an equal number of partitions to be assigned to all members?

You can group members in the same JVM (or physical machine) or members located in the same chassis. Or you
can group members to create identical capacity. We call these groups partition groups. Partitions are assigned
to those partition groups instead of to single members. Backups of these partitions are located in another partition

group.

6.3.1 Grouping Types

When you enable partition grouping, Hazelcast presents the following choices for you to configure partition groups.
1. HOST_AWARE:

You can group members automatically using the IP addresses of members, so members sharing the same network
interface will be grouped together. All members on the same host (IP address or domain name) will be a single
partition group. This helps to avoid data loss when a physical server crashes, because multiple replicas of the
same partition are not stored on the same host. But if there are multiple network interfaces or domain names per
physical machine, that will make this assumption invalid.

Following are declarative and programmatic configuration snippets that show how to enable HOST__AWARE
grouping.

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.HOST_AWARE) ;

2. CUSTOM:

You can do custom grouping using Hazelcast’s interface matching configuration. This way, you can add different
and multiple interfaces to a group. You can also use wildcards in the interface addresses. For example, the users
can create rack-aware or data warehouse partition groups using custom partition grouping.

54 CHAPTER 6. SETTING UP CLUSTERS

Following are declarative and programmatic configuration examples that show how to enable and use CUSTOM
grouping.

<partition-group enabled="true" group-type="CUSTOM">

<member-group>
<interface>10.10.0.*</interface>
<interface>10.10.3.#*</interface>
<interface>10.10.5.*</interface>

</member-group>

<member-group>
<interface>10.10.10.10-100</interface>
<interface>10.10.1.*</interface>
<interface>10.10.2.*</interface>

</member-group

</partition-group>

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig() ;
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.CUSTOM);

MemberGroupConfig memberGroupConfig = new MemberGroupConfig() ;
memberGroupConfig.addInterface("10.10.0.%")
.addInterface("10.10.3.%").addInterface("10.10.5.%");

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface("10.10.10.10-100")
.addInterface("10.10.1.%").addInterface("10.10.2.%");

partitionGroupConfig.addMemberGroupConfig(memberGroupConfig);
partitionGroupConfig.addMemberGroupConfig(memberGroupConfig2) ;

3. PER__MEMBER:

You can give every member its own group. Each member is a group of its own and primary and backup partitions
are distributed randomly (not on the same physical member). This gives the least amount of protection and is
the default configuration for a Hazelcast cluster. This grouping type provides good redundancy when Hazelcast
members are on separate hosts. However, if multiple instances run on the same host, this type is not a good option.

Following are declarative and programmatic configuration snippets that show how to enable PER_ MEMBER
grouping.

<partition-group enabled="true" group-type="PER_MEMBER" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.PER_MEMBER) ;

4. ZONE__ AWARE:
You can use ZONE__AWARE configuration with Hazelcast jclouds or Hazelcast Azure Discovery Service plugins.

As discovery services, these plugins put zone, rack, and host information to the Hazelcast member attributes map
during the discovery process. Hazelcast creates the partition groups with respect to member attributes map entries
that include zone, rack, and host information.

When using ZONE__AWARE configuration, backups are created in the other zones. Each zone will be accepted as
one partition group.

6.4. LOGGING CONFIGURATION 95

! NOTE: Some cloud providers have rack information instead of zone information. In such cases, Hazelcast
looks for zone, rack, and host information in the given order.

Following are declarative and programmatic configuration snippets that show how to enable ZONE_AWARE
grouping.

<partition-group enabled="true" group-type="ZONE_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)

.setGroupType (MemberGroupType.ZONE_AWARE) ;

! NOTE: Currently ZONE_AWARE configuration works only with Hazelcast jclouds and Hazelcast Azure
Discovery Service plugins. Please refer to their GitHub repositories at Hazelcast jclouds and Hazelcast Azure for
more information on these plugins.

5. SPI:

You can provide your own partition group implementation using the SPI configuration. To create your par-
tition group implementation, you need to first extend the DiscoveryStrategy class of the discovery service
plugin, override the method public PartitionGroupStrategy getPartitionGroupStrategy(), and return the
PartitionGroupStrategy configuration in that overridden method.

Following is a sample code covering the implementation steps mentioned in the above paragraph:

public class CustomDiscovery extends JCloudsDiscoveryStrategy {

public CustomDiscovery(Map<String, Comparable> properties) {
super (properties) ;

}

©@0verride
public PartitionGroupStrategy getPartitionGroupStrategy() {
return new CustomPartitionGroupStrategy();

}

private class CustomPartitionGroupStrategy implements PartitionGroupStrategy {
@0verride
public Iterable<MemberGroup> getMemberGroups() {

6.4 Logging Configuration

Hazelcast has a flexible logging configuration and does not depend on any logging framework except JDK logging.
It has built-in adapters for a number of logging frameworks and it also supports custom loggers by providing logging
interfaces.

To use built-in adapters, set the hazelcast.logging.type property to one of the predefined types below.

e jdk: JDK logging (default)

https://github.com/hazelcast/hazelcast-jclouds
https://github.com/hazelcast/hazelcast-azure

56 CHAPTER 6. SETTING UP CLUSTERS

e log4j: Logdj
o slf4j: Slf4j

e none: disable logging

You can set hazelcast.logging.type through declarative configuration, programmatic configuration, or JVM
system property.

Declarative Configuration

NOTE: If you choose to use Log4j or slf4j, you should include the proper dependencies in the classpath.

<properties>
<property name="hazelcast.logging.type">jdk</property>

</properties>
</hazelcast>

Programmatic Configuration

Config config = new Config() ;
config.setProperty("hazelcast.logging.type", "logdj");

System Property

e Using JVM parameter: java -Dhazelcast.logging.type=slf4j
e Using System class: System.setProperty("hazelcast.logging.type", "none");

If the provided logging mechanisms are not satisfactory, you can implement your own using the custom logging fea-
ture. To use it, implement the com.hazelcast.logging.LoggerFactory and com.hazelcast.logging.ILogger
interfaces and set the system property hazelcast.logging.class as your custom LoggerFactory class name.

-Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

LogListener listener = new LogListener() {

public void log(LogEvent logEvent) {

// do something

3
b
HazelcastInstance instance = Hazelcast.newHazelcastInstance();
LoggingService loggingService = instance.getLoggingService();
loggingService.addLogListener(Level.INFO, listener);

Through the LoggingService, you can get the currently used ILogger implementation and log your own messages
too.

! NOTE: If you are not using command line for configuring logging, you should be careful about Hazelcast
classes. They may be defaulted to jdk logging before newly configured logging is read. When logging mechanism is
selected, it will not change.

6.5. OTHER NETWORK CONFIGURATIONS o7

6.5 Other Network Configurations

All network related configurations are performed via the network element in the Hazelcast XML configuration file
or the class NetworkConfig when using programmatic configuration. Following subsections describe the available
configurations that you can perform under the network element.

6.5.1 Public Address

public-address overrides the public address of a member. By default, a member selects its socket address as its
public address. But behind a network address translation (NAT), two endpoints (members) may not be able to
see/access each other. If both members set their public addresses to their defined addresses on NAT, then that way
they can communicate with each other. In this case, their public addresses are not an address of a local network
interface but a virtual address defined by NAT. It is optional to set and useful when you have a private cloud. Note
that, the value for this element should be given in the format host IP address:port number. See the following
examples.

Declarative:

<network>
<public-address>11.22.33.44:5555</public-address>
</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig()
.setPublicAddress("11.22.33.44", "5555");

6.5.2 Port

You can specify the ports that Hazelcast will use to communicate between cluster members. Its default value is
5701. The following are example configurations.

Declarative:

<network>
<port port-count="20" auto-increment="false">5701</port>
</network>

Programmatic:

Config config = new Config();
config.getNetworkConfig() .setPort("5701");
.setPortCount("20").setPortAutoIncrement(false);

port has the following attributes.

e port-count: By default, Hazelcast will try 100 ports to bind. Meaning that, if you set the value of port as
5701, as members are joining to the cluster, Hazelcast tries to find ports between 5701 and 5801. You can
choose to change the port count in the cases like having large instances on a single machine or willing to have
only a few ports to be assigned. The parameter port-count is used for this purpose, whose default value is
100.

e auto-increment: According to the above example, Hazelcast will try to find free ports between 5701 and
5801. Normally, you will not need to change this value, but it will come very handy when needed. You may
also want to choose to use only one port. In that case, you can disable the auto-increment feature of port by
setting auto-increment to false.

The parameter port-count is ignored when the above configuration is made.

o8 CHAPTER 6. SETTING UP CLUSTERS

6.5.3 Outbound Ports

By default, Hazelcast lets the system pick up an ephemeral port during socket bind operation. But security
policies/firewalls may require you to restrict outbound ports to be used by Hazelcast-enabled applications. To
fulfill this requirement, you can configure Hazelcast to use only defined outbound ports. The following are example
configurations.

Declarative:

<network>
<outbound-ports>
<!-- ports between 33000 and 35000 -->
<ports>33000-35000</ports>
<!-- comma separated ports -->
<ports>37000,37001,37002,37003</ports>
<ports>38000,38500-38600</ports>
</outbound-ports>
</network>

Programmatic:

NetworkConfig networkConfig = config.getNetworkConfig();

// ports between 35000 and 35100
networkConfig.addOutboundPortDefinition("35000-35100");

// comma separated ports
networkConfig.addOutboundPortDefinition("36001, 36002, 36003");
networkConfig.addOutboundPort (37000) ;
networkConfig.addOutboundPort (37001) ;

Note: You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one port. If you
need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port definitions.

6.5.4 Reuse Address

When you shutdown a cluster member, the server socket port will be in the TIME_WAIT state for the next couple
of minutes. If you start the member right after shutting it down, you may not be able to bind it to the same
port because it is in the TIME_WAIT state. If you set the reuse-address element to true, the TIME_WAIT state is
ignored and you can bind the member to the same port again.

The following are example configurations.
Declarative:
<network>
<reuse-address>true</reuse-address>

</network>

Programmatic:

NetworkConfig networkConfig = config.getNetworkConfig();

networkConfig.setReuseAddress(true);

6.5. OTHER NETWORK CONFIGURATIONS 99

6.5.5 Join

The join configuration element is used to discover Hazelcast members and enable them to form a cluster. Hazelcast
provides multicast, TCP/IP, EC2, and jclouds® discovery mechanisms. These mechanisms are explained the
Discovering Cluster Members section. This section describes all the sub-elements and attributes of join element.
The following are example configurations.

Declarative:

<network>
<join>

<multicast enabled="true">
<multicast-group>224.2.2.3</multicast-group>
<multicast-port>54327</multicast-port>
<multicast-time-to-1live>32</multicast-time-to-live>
<multicast-timeout-seconds>2</multicast-timeout-seconds>
<trusted-interfaces>

<interface>192.168.1.102</interface>

</trusted-interfaces>

</multicast>

<tcp-ip enabled="false">
<required-member>192.168.1.104</required-member>
<member>192.168.1.104</member>
<members>192.168.1.105,192.168.1.106</members>

</tcp-ip>

<aws enabled="false'">
<access-key>my-access-key</access-key>
<secret-key>my-secret-key</secret-key>
<region>us-west-1</region>
<host-header>ec2.amazonaws.com</host-header>
<security-group-name>hazelcast-sg</security-group-name>
<tag-key>type</tag-key>
<tag-value>hz-members</tag-value>

</aws>

<discovery-strategies>

<discovery-strategy ... />
</discovery-strategies>
</join>
<network>

Programmatic:

Config config = new Config();

NetworkConfig network = config.getNetworkConfig();

JoinConfig join = network.getJoin();

join.getMulticastConfig() .setEnabled(false)
.addTrustedInterface("192.168.1.102");

join.getTcpIpConfig() .addMember("10.45.67.32").addMember("10.45.67.100")
.setRequiredMember("192.168.10.100").setEnabled(true);

The join element has the following sub-elements and attributes.
6.5.5.1 multicast element
The multicast element includes parameters to fine tune the multicast join mechanism.

e enabled: Specifies whether the multicast discovery is enabled or not, true or false.

60

CHAPTER 6. SETTING UP CLUSTERS

multicast-group: The multicast group IP address. Specify it when you want to create clusters within the
same network. Values can be between 224.0.0.0 and 239.255.255.255. Default value is 224.2.2.3.
multicast-port: The multicast socket port that the Hazelcast member listens to and sends discovery
messages through. Default value is 54327.

multicast-time-to-live: Time-to-live value for multicast packets sent out to control the scope of multicasts.
See more information here.

multicast-timeout-seconds: Only when the members are starting up, this timeout (in seconds) specifies
the period during which a member waits for a multicast response from another member. For example, if you
set it as 60 seconds, each member will wait for 60 seconds until a leader member is selected. Its default value
is 2 seconds.

trusted-interfaces: Includes IP addresses of trusted members. When a member wants to join to the
cluster, its join request will be rejected if it is not a trusted member. You can give an IP addresses range
using the wildcard (*) on the last digit of IP address (e.g. 192.168.1.* or 192.168.1.100-110).

6.5.5.2 tcp-ip element

The tcp-ip element includes parameters to fine tune the TCP/IP join mechanism.

e enabled: Specifies whether the TCP/IP discovery is enabled or not. Values can be true or false.
e required-member: IP address of the required member. Cluster will only formed if the member with this IP

address is found.

e member: IP address(es) of one or more well known members. Once members are connected to these well

known ones, all member addresses will be communicated with each other. You can also give comma separated
IP addresses using the members element.

NOTE: tcp-ip element also accepts the interface parameter. Please refer to the Interfaces element

description.

e connection-timeout-seconds: Defines the connection timeout. This is the maximum amount of time

Hazelcast is going to try to connect to a well known member before giving up. Setting it to a too low value
could mean that a member is not able to connect to a cluster. Setting it to a too high value means that
member startup could slow down because of longer timeouts (e.g. when a well known member is not up).
Increasing this value is recommended if you have many IPs listed and the members cannot properly build up
the cluster. Its default value is 5.

6.5.5.3 aws element

The aws element includes parameters to allow the members to form a cluster on the Amazon EC2 environment.

enabled: Specifies whether the EC2 discovery is enabled or not, true or false.

access-key, secret-key: Access and secret keys of your account on EC2.

region: The region where your members are running. Default value is us-east-1. You need to specify this
if the region is other than the default one.

host-header: The URL that is the entry point for a web service. It is optional.

security-group-name: Name of the security group you specified at the EC2 management console. It is used
to narrow the Hazelcast members to be within this group. It is optional.

tag-key, tag-value: To narrow the members in the cloud down to only Hazelcast members, you can set
these parameters as the ones you specified in the EC2 console. They are optional.
connection-timeout-seconds: The maximum amount of time Hazelcast will try to connect to a well known
member before giving up. Setting this value too low could mean that a member is not able to connect to a
cluster. Setting the value too high means that member startup could slow down because of longer timeouts
(for example, when a well known member is not up). Increasing this value is recommended if you have many
IPs listed and the members cannot properly build up the cluster. Its default value is 5.

http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

6.5. OTHER NETWORK CONFIGURATIONS 61

! NOTE: If you are using a cloud provider other than AWS, you can use the programmatic configuration to
specify a TCP/IP cluster. The members will need to be retrieved from that provider (e.g. JClouds).

6.5.5.4 discovery-strategies element

The discovery-strategies element configures internal or external discovery strategies based on the Hazelcast
Discovery SPI. For further information, please refer to the Discovery SPI section and the vendor documentation of
the used discovery strategy.

6.5.5.4.1 AWSClient Configuration To make sure EC2 instances are found correctly, you can use the
AWSClient class. It determines the private IP addresses of EC2 instances to be connected. Give the AWSClient
class the values for the parameters that you specified in the aws element, as shown below. You will see whether
your EC2 instances are found.

public static void main(String[] args)throws Exception{
AwsConfig config = new AwsConfig();

config.setSecretKey(...) ;
config.setSecretKey(...);
config.setRegion(...);
config.setSecurityGroupName(...);
config.setTagKey(...);
config.setTagValue(...);

config.setEnabled(true);
AwSClient client = new AWSClient(config);
List<String> ipAddresses = client.getPrivateIpAddresses();
System.out.println("addresses found:" + ipAddresses);
for (String ip: ipAddresses) {
System.out.println(ip);
3
}

6.5.6 Interfaces

You can specify which network interfaces that Hazelcast should use. Servers mostly have more than one network
interface, so you may want to list the valid IPs. Range characters (‘*’ and ‘-’) can be used for simplicity. For
instance, 10.3.10.* refers to IPs between 10.3.10.0 and 10.3.10.255. Interface 10.3.10.4-18 refers to IPs between
10.3.10.4 and 10.3.10.18 (4 and 18 included). If network interface configuration is enabled (it is disabled by default)
and if Hazelcast cannot find an matching interface, then it will print a message on the console and will not start on
that member.

The following are example configurations.

Declarative:

<hazelcast>
<network>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>192.168.1.3</interface>

</interfaces>
</network>

</hazelcast>

62 CHAPTER 6. SETTING UP CLUSTERS
Programmatic:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
InterfacesConfig interface = network.getInterfaces();
interface.setEnabled(true)

.addInterface("192.168.1.3");

6.5.7 IPv6 Support

Hazelcast supports IPv6 addresses seamlessly (This support is switched off by default, please see the note at the
end of this section).

All you need is to define IPv6 addresses or interfaces in network configuration. The only current limitation is
that you cannot define wildcard IPv6 addresses in the TCP/IP join configuration (tcp-ip element). Interfaces
configuration does not have this limitation, you can configure wildcard IPv6 interfaces in the same way as IPv4
interfaces.

<hazelcast>
<network>
<port auto-increment="true">5701</port>
<join>
<multicast enabled="false">
<multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
<multicast-port>54327</multicast-port>
</multicast>
<tcp-ip enabled="true">
<member>[fe80::223:6cff:fe93:7c7e] :5701</member>
<interface>192.168.1.0-7</interface>
<interface>192.168.1.*</interface>
<interface>fe80:0:0:0:45c5:47ee:fel5:493a</interface>
</tcp-ip>
</join>
<interfaces enabled="true">
<interface>10.3.16.*</interface>
<interface>10.3.10.4-18</interface>
<interface>fe80:0:0:0:45c5:47ee:felb5:*</interface>
<interface>fe80::223:6cff:fe93:0-5555</interface>
</interfaces>

</network>
</hazelcast>

JVM has two system properties for setting the preferred protocol stack (IPv4 or IPv6) as well as the preferred
address family types (inet4 or inet6). On a dual stack machine, IPv6 stack is preferred by default, you can change
this through the java.net.preferIPv4Stack=<true|false> system property. When querying name services, JVM
prefers IPv4 addresses over IPv6 addresses and will return an IPv4 address if possible. You can change this through
java.net.preferIPv6Addresses=<true|false> system property.

Also see additional details on ITPv6 support in Java.

l NOTE: IPv6 support has been switched off by default, since some platforms have issues using the IPv6 stack.
Some other platforms such as Amazon AWS have no support at all. To enable IPv6 support, just set configuration
property hazelcast.prefer. ipu.stack to false. Please refer to the System Properties section for details.

Chapter 7

Distributed Data Structures

As mentioned in the Overview section, Hazelcast offers distributed implementations of Java interfaces. Below is the
list of these implementations with links to the corresponding sections in this manual.

e Standard utility collections

Map is the distributed implementation of java.util.Map. It lets you read from and write to a Hazelcast
map with methods such as get and put.

Queue is the distributed implementation of java.util.concurrent.BlockingQueue. You can add an
item in one member and remove it from another one.

Ringbuffer is implemented for reliable eventing system. It is also a distributed data structure.

Set is the distributed and concurrent implementation of java.util.Set. It does not allow duplicate
elements and does not preserve their order.

List is similar to Hazelcast Set. The only difference is that it allows duplicate elements and preserves
their order.

MultiMap is a specialized Hazelcast map. It is a distributed data structure where you can store multiple
values for a single key.

Replicated Map does not partition data. It does not spread data to different cluster members. Instead,
it replicates the data to all members.

e Topic is the distributed mechanism for publishing messages that are delivered to multiple subscribers. It
is also known as the publish/subscribe (pub/sub) messaging model. Please see the Topic section for more
information. Hazelcast also has a structure called Reliable Topic which uses the same interface of Hazelcast
Topic. The difference is that it is backed up by the Ringbuffer data structure. Please see the Reliable Topic
section.

e Concurrency utilities

Lock is the distributed implementation of java.util.concurrent.locks.Lock. When you use lock,
the critical section that Hazelcast Lock guards is guaranteed to be executed by only one thread in the
entire cluster.

Semaphore is the distributed implementation of java.util.concurrent.Semaphore. When performing
concurrent activities, semaphores offer permits to control the thread counts.

AtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. Most
of AtomicLong’s operations are available. However, these operations involve remote calls and hence their
performances differ from AtomicLong, due to being distributed.

AtomicReference is the distributed implementation of java.util.concurrent.atomic.AtomicReference.
When you need to deal with a reference in a distributed environment, you can use Hazelcast AtomicRef-
erence.

IdGenerator is used to generate cluster-wide unique identifiers. ID generation occurs almost at the speed
of AtomicLong.incrementAndGet ().

CountdownLatch is the distributed implementation of java.util.concurrent.CountDownLatch. Hazel-
cast CountDownLatch is a gate keeper for concurrent activities. It enables the threads to wait for other
threads to complete their operations.

63

64 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
Common Features of all Hazelcast Data Structures

e If a member goes down, its backup replica (which holds the same data) will dynamically redistribute the
data, including the ownership and locks on them, to the remaining live members. As a result, there will not
be any data loss.

e There is no single cluster master that can be a single point of failure. Every member in the cluster has equal
rights and responsibilities. No single member is superior. There is no dependency on an external ‘server’ or
‘master’.

Here is an example of how you can retrieve existing data structure instances (map, queue, set, lock, topic, etc.) and
how you can listen for instance events, such as an instance being created or destroyed.

import java.util.Collection;
import com.hazelcast.config.Config;
import com.hazelcast.core.*;

public class Sample implements DistributedObjectListener {
public static void main(String[] args) {
Sample sample = new Sample();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
X
b

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

3

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

7.1 Map

Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence java.util.Map.
It is the distributed implementation of Java map. You can perform operations like reading and writing from/to a
Hazelcast map with the well known get and put methods.

7.1.1 Getting a Map and Putting an Entry

Hazelcast will partition your map entries and almost evenly distribute them onto all Hazelcast members. Each
member carries approximately “(1/n * total-data) + backups”, n being the number of members in the cluster. For
example, if you have a member with 1000 objects to be stored in the cluster, and then you start a second member,
each member will both store 500 objects and back up the 500 objects in the other member.

7.1. MAP 65

Let’s create a Hazelcast instance and fill a map named Capitals with key-value pairs using the following code. Use
the HazelcastInstance getMap method to get the map, then use the map put method to put an entry into the map.

public class FillMapMember {
public static void main(String[] args) {

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
capitalcities.put("1", "Tokyo");
capitalcities.put("2", "Paris");
capitalcities.put("3", "Washington");
capitalcities.put("4", "Ankara");
capitalcities.put("5", "Brussels");
capitalcities.put("6", "Amsterdam");
capitalcities.put("7", "New Delhi");
capitalcities.put("8", "London");
capitalcities.put("9", "Berlin");
capitalcities.put("10", "Oslo");
capitalcities.put("11", "Moscow");

capitalcities.put("120", "Stockholm")

9

When you run this code, a cluster member is created with a map whose entries are distributed across the members
partitions. See the below illustration. For now, this is a single member cluster.

! NOTE: Please note that some of the partitions will not contain any data entries since we only have 120
objects and the partition count is 271 by default. This count is configurable and can be changed using the system
property hazelcast.partition. count. Please see the System Properties section.

7.1.1.1 Creating A Member for Map Backup

Now let’s create a second member by running the above code again. This will create a cluster with two members.
This is also where backups of entries are created—remember the backup partitions mentioned in the Hazelcast
Overview section. The following illustration shows two members and how the data and its backup is distributed.

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in the cluster.
Eventually, it will carry almost “(1/n * total-data) + backups” of the data, reducing the load on other members.

HazelcastInstance: : getMap returns an instance of com.hazelcast.core.IMap which extends the java.util.concurrent.Cc
interface. Methods like ConcurrentMap.putIfAbsent(key,value) and ConcurrentMap.replace(key,value)
can be used on the distributed map, as shown in the example below.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Customer getCustomer(String id) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
Customer customer = customers.get(id);
if (customer == null) {
customer = new Customer(id);
customer = customers.putIfAbsent(id, customer);

66 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

(”3”, “Washington”)
{#1 " , “Tﬂkl’ﬂ'"]

{u‘ln , “Mkﬂ.’l’.‘ﬂ”}

{"12 i s ”Pragua”}

-["19" , #RDIIIE"]

("2, "“Paris”)
("5, “Brussels”)

{#Er.r , "Mtﬂr@”}

Figure 7.1: Map Entries in a Single Member

7.1. MAP

("3, “Washington”)
(1", “Tokyo”)

("6", "Amsterdam"”)

(4", “Ankara”™)

(72", "Paris")
(“5", “"Brussels”)

("12", "Prague")

("19", "Rome")

(19", "Rome”)

("3”, “Washington”)
{J.l'lﬂ' . I“Tﬂkrc”]

b i
("2", “Paris”)
("5", “Brussels”)

("12", "Prague"”)

("6”, "Amsterdam”)

Figure 7.2: Map Entries with Backups in Two Members

68 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

return customer;

}

public boolean updateCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return (customers.replace(customer.getId(), customer) != null);

}

public boolean removeCustomer(Customer customer) {
ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap("customers");
return customers.remove(customer.getId(), customer);

All ConcurrentMap operations such as put and remove might wait if the key is locked by another thread in the
local or remote JVM. But, they will eventually return with success. ConcurrentMap operations never throw a
java.util.ConcurrentModificationException.

Also see:

e Data Affinity section.
e Map Configuration with wildcards.

7.1.2 Backing Up Maps

Hazelcast distributes map entries onto multiple cluster members (JVMs). Each member holds some portion of the
data.

Distributed maps have one backup by default. If a member goes down, you do not lose data. Backup operations
are synchronous, so when a map.put(key, value) returns, it is guaranteed that the map entry is replicated to
one other member. For the reads, it is also guaranteed that map.get (key) returns the latest value of the entry.
Consistency is strictly enforced.

7.1.2.1 Creating Sync Backups

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to have. That way,
data on a cluster member will be copied onto other member(s).

To create synchronous backups, select the number of backup copies using the backup-count property.

<hazelcast>
<map name="default">
<backup-count>1</backup-count>
</map>
</hazelcast>

When this count is 1, a map entry will have its backup on one other member in the cluster. If you set it to 2, then
a map entry will have its backup on two other members. You can set it to 0 if you do not want your entries to be
backed up, e.g., if performance is more important than backing up. The maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations are synchronous
and configured with backup-count. In this case, backup operations block operations until backups are successfully
copied to backup members (or deleted from backup members in case of remove) and acknowledgements are received.
Therefore, backups are updated before a put operation is completed. Sync backup operations have a blocking cost
which may lead to latency issues.

7.1. MAP 69

7.1.2.2 Creating Async Backups

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do not require
acknowledgements; the backup operations are performed at some point in time.

To create asynchronous backups, select the number of async backups with the async-backup-count property. An
example is shown below.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</map>
</hazelcast>

NOTE: Backups increase memory usage since they are also kept in memory.
NOTE: A map can have both sync and aysnc backups at the same time.

7.1.2.3 Enabling Backup Reads

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each member will
carry both owned entries and backup copies of other members. So for the map.get (key) call, it is possible that
the calling member has a backup copy of that key. By default, map.get (key) will always read the value from the
actual owner of the key for consistency.

To enable backup reads (read local backup entries), set the value of the read-backup-data property to true. Its
default value is false for strong consistency. Enabling backup reads can improve performance.

<hazelcast>
<map name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<read-backup-data>true</read-backup-data>
</map>
</hazelcast>

This feature is available when there is at least one sync or async backup.

Please note that if you are performing a read from a backup, you should take into account that your hits to the
keys in the backups are not reflected as hits to the original keys on the primary members. This has an impact on
IMap’s maximum idle seconds or time-to-live seconds expiration. Therefore, even though there is a hit on a key in
backups, your original key on the primary member may expire.

7.1.3 Map Eviction

! NOTE: Starting with Hazelcast 3.7, Hazelcast Map uses a new eviction mechanism which is based on the
sampling of entries. Please see the Eviction Algorithm section for details.

7.1.4 Evicting Map Entries

Unless you delete the map entries manually or use an eviction policy, they will remain in the map. Hazelcast
supports policy-based eviction for distributed maps. Currently supported policies are LRU (Least Recently Used)
and LFU (Least Frequently Used).

70 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.1.4.1 Understanding Map Eviction

Hazelcast Map performs eviction based on partitions. For example, when you specify a size using the PER_NODE
attribute for max-size (please see Configuring Map Eviction), Hazelcast internally calculates the maximum size for
every partition. Hazelcast uses the following equation to calculate the maximum size of a partition:

partition maximum size = max-size * member-count / partition-count

The eviction process starts according to this calculated partition maximum size when you try to put an entry.
When entry count in that partition exceeds partition maximum size, eviction starts on that partition.

Assume that you have the following figures as examples:

e Partition count: 200
e Entry count for each partition: 100
e max-size (PER_NODE): 20000

The total number of entries here is 20000 (partition count * entry count for each partition). This means you are at
the eviction threshold since you set the max-size to 20000. When you try to put an entry

1. the entry goes to the relevant partition;
2. the partition checks whether the eviction threshold is reached (max-size);
3. only one entry will be evicted.

As a result of this eviction process, when you check the size of your map, it is 19999. After this eviction, subsequent
put operations will not trigger the next eviction until the map size is again close to the max-size.

! NOTE: The above scenario is simply an example that describes how the eviction process works. Hazelcast
finds the most optimum number of entries to be evicted according to your cluster size and selected policy.

7.1.4.2 Configuring Map Eviction

The following is an example declarative configuration for map eviction.

<hazelcast>
<map name="default">

<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>0</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<max-size policy="PER_NODE">5000</max-size>
</map>
</hazelcast>

Let’s describe each element:

e time-to-live. Maximum time in seconds for each entry to stay in the map. If it is not 0, entries that
are older than this time and not updated for this time are evicted automatically. Valid values are integers
between 0 and Integer.MAX VALUE. Default value is 0, which means infinite. If it is not 0, entries are evicted
regardless of the set eviction-policy.

e max-idle-seconds. Maximum time in seconds for each entry to stay idle in the map. Entries that are idle
for more than this time are evicted automatically. An entry is idle if no get, put, EntryProcessor.process
or containsKey is called. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0,
which means infinite.

7.1. MAP 71

e eviction-policy. Valid values are described below.

— NONE: Default policy. If set, no items will be evicted and the property max-size will be ignored. You
still can combine it with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

e max-size. Maximum size of the map. When maximum size is reached, the map is evicted based on the
policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Default value is 0. If you
want max-size to work, set the eviction-policy property to a value other than NONE. Its attributes are
described below.

— PER_NODE. Maximum number of map entries in each cluster member. This is the default policy. If you
use this option, please note that you cannot set the max-size to a value lower than the partition count
(which is 271 by default).
<max-size policy="PER_NODE">5000</max-size>

— PER_PARTITION. Maximum number of map entries within each partition. Storage size depends on the
partition count in a cluster member. This attribute should not be used often. For instance, avoid using
this attribute with a small cluster. If the cluster is small, it will be hosting more partitions, and therefore
map entries, than that of a larger cluster. Thus, for a small cluster, eviction of the entries will decrease
performance (the number of entries is large).

<max-size policy="PER_PARTITION">27100</max-size>
— USED_HEAP_SIZE. Maximum used heap size in megabytes per map for each Hazelcast instance. Please

note that this policy does not work when in-memory format is set to 0BJECT, since the memory footprint
cannot be determined when data is put as OBJECT.

<max-size policy="USED_HEAP_SIZE">4096</max-size>
— USED_HEAP_PERCENTAGE. Maximum used heap size percentage per map for each Hazelcast instance. If,
for example, a JVM is configured to have 1000 MB and this value is 10, then the map entries will be

evicted when used heap size exceeds 100 MB. Please note that this policy does not work when in-memory
format is set to OBJECT, since the memory footprint cannot be determined when data is put as OBJECT.

<max-size policy="USED_HEAP_PERCENTAGE">10</max-size>

— FREE_HEAP_SIZE. Minimum free heap size in megabytes for each JVM.
<max-size policy="FREE_HEAP_SIZE">512</max-size>
— FREE_HEAP_PERCENTAGE. Minimum free heap size percentage for each JVM. If, for example, a JVM is

configured to have 1000 MB and this value is 10, then the map entries will be evicted when free heap
size is below 100 MB.

<max-size policy="FREE_HEAP_PERCENTAGE">10</max-size>

— USED_NATIVE_MEMORY_SIZE. (Hazelcast Enterprise HD) Maximum used native memory size in
megabytes per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_SIZE">1024</max-size>

— USED_NATIVE_MEMORY_PERCENTAGE. (Hazelcast Enterprise HD) Maximum used native memory size
percentage per map for each Hazelcast instance.
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">65</max-size>

— FREE_NATIVE_MEMORY_SIZE. (Hazelcast Enterprise HD) Minimum free native memory size in
megabytes for each Hazelcast instance.
<max-size policy="FREE_NATIVE_MEMORY_SIZE">256</max-size>

— FREE_NATIVE_MEMORY_PERCENTAGE. (Hazelcast Enterprise HD) Minimum free native memory size
percentage for each Hazelcast instance.
<max-size policy="FREE_NATIVE_MEMORY_PERCENTAGE">5</max-size>

! NOTE: As of Hazelcast 3.7, the elements eviction-percentage and min-eviction-check-millis are
deprecated. They will be ignored if configured since map eviction is based on the sampling of entries. Please see the
Eviction Algorithm section for details.

72 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.1.4.3 Example Eviction Configurations

<map name='"documents">
<max-size policy="PER_NODE">10000</max-size>
<eviction-policy>LRU</eviction-policy>
<max-idle-seconds>60</max-idle-seconds>
</map>

In the above example, documents map starts to evict its entries from a member when the map size exceeds 10000
in that member. Then the entries least recently used will be evicted. The entries not used for more than 60 seconds
will be evicted as well.

And the following is an example eviction configuration for a map having NATIVE as the in-memory format:

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-policy>LFU</eviction-policy>
<max-size policy="USED_NATIVE_MEMORY_PERCENTAGE">99</max-size>
</map>

7.1.4.4 Evicting Specific Entries
The eviction policies and configurations explained above apply to all the entries of a map. The entries that meet
the specified eviction conditions are evicted.

You may also want to evict some specific map entries. To do this, you can use the ttl and timeunit parameters of
the method map.put (). An example code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key “1” will be evicted 50 seconds after it is put into myMap.

7.1.4.5 Evicting All Entries

To evict all keys from the map except the locked ones, use the method evictAl1(). If a MapStore is defined for
the map, deleteAll is not called by evictAll. If you want to call the method deleteAll, use clear().

An example is given below.

public class EvictAll {

public static void main(String[] args) {
final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance nodel = Hazelcast.newHazelcastInstance();
HazelcastInstance node2 Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = nodel.getMap(EvictAll.class.getCanonicalName());
for (int i = 0; i < numberOfEntriesToAdd; i++) {

map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {
map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

7.1. MAP 73

System.out.printf ("# After calling evictAll...\n");
System.out.printf ("# Expected map size\t: %d\n", numberOfKeysToLock);
System.out.printf ("# Actual map size\t: %d\n", map.size());

. NOTE: Only EVICT _ALL event is fired for any registered listeners.

7.1.4.6 Custom Eviction Policy

. NOTE: This section is valid for Hazelcast 3.7 and higher releases.

Apart from the policies such as LRU and LFU, which Hazelcast provides out of the box, you can develop and use
your own eviction policy.

To achieve this, you need to provide an implementation of MapEvictionPolicy as in the following 0ddEvictor
example:

public class MapCustomEvictionPolicy {

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("test")
.setMapEvictionPolicy(new OddEvictor())
.getMaxSizeConfig()
.setMaxSizePolicy (PER_NODE) .setSize (10000) ;

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = instance.getMap("test");

final Queue<Integer> oddKeys = new ConcurrentLinkedQueue<Integer>();
final Queue<Integer> evenKeys = new ConcurrentLinkedQueue<Integer>();

map.addEntryListener(new EntryEvictedListener<Integer, Integer>() {
@0verride
public void entryEvicted(EntryEvent<Integer, Integer> event) {
Integer key = event.getKey();
if (key % 2 == 0) {
evenKeys.add (key) ;
} else {
oddKeys.add (key) ;
}
}
}, false);

// Wait some more time to receive evicted events.
parkNanos (SECONDS. toNanos(5)) ;

for (int i = 0; i < 15000; i++) {
map.put(i, i);
}

String msg = "IMap uses sampling based eviction. After eviction is completed, we are expecting
"number of evicted-odd-keys should be greater than number of evicted-even-keys" +

n

74 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

"\nNumber of evicted-odd-keys = %d, number of evicted-even-keys = %d";
out.println(format(msg, oddKeys.size(), evenKeys.size()));

instance.shutdown() ;

}

JH*
* 0dd evictor tries to evict odd keys first.
*/

private static class 0ddEvictor extends MapEvictionPolicy {

@0verride
public int compare(EntryView ol, EntryView 02) {
Integer key = (Integer) ol.getKey();
if (key % 2 !'=0) {
return -1;

}

return 1;

Then you can enable your policy by setting it via the method MapConfig#setMapEvictionPolicy programmatically
or via XML declaratively. Following is the example declarative configuration for the eviction policy 0ddEvictor
implemented above:

<map name="test'">
<map-eviction-policy-class-name>com.package.0ddEvictor</map-eviction-policy-class—-name>

</m;§;'

If you Hazelcast with Spring, you can enable your policy as shown below.

<hz:map name="test">
<hz:map-eviction-policy class-name="com.package.0ddEvictor"/>
</hz:map>

7.1.5 Setting In-Memory Format

IMap (and a few other Hazelcast data structures, such as ICache) has an in-memory-format configuration option.
By default, Hazelcast stores data into memory in binary (serialized) format. Sometimes it can be efficient to store
the entries in their object form, especially in cases of local processing, such as entry processor and queries.

To set how the data will be stored in memory, set in-memory-format in the configuration. You have the following
format options:

e BINARY (default). The data will be stored in serialized binary format. You can use this option if you mostly
perform regular map operations, such as put and get.

e OBJECT. The data will be stored in deserialized form. This configuration is good for maps where entry processing
and queries form the majority of all operations and the objects are complex, making the serialization cost
comparatively high. By storing objects, entry processing will not contain the deserialization cost.

e NATIVE: (Hazelcast Enterprise HD) This option is used to enable the map to use Hazelcast’s High-Density
Memory Store. Please refer to the Using High-Density Memory Store with Map section.

7.1. MAP 75

Regular operations like get rely on the object instance. When the 0BJECT format is used and a get is performed,
the map does not return the stored instance, but creates a clone. Therefore, this whole get operation first includes
a serialization on the member owning the instance, and then a deserialization on the member calling the instance.
When the BINARY format is used, only a deserialization is required; BINARY is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, the map would
create a clone of the instance, and there would first be a serialization and then a deserialization. When BINARY is
used, only a deserialization is needed.

! NOTE: If a value is stored in OBJECT format, a change on a returned value does not affect the stored
instance. In this case, the returned instance is not the actual one but a clone. Therefore, changes made on an object
after it is returned will not reflect on the actual stored data. Similarly, when a value is written to a map and the
value is stored in OBJECT format, it will be a copy of the put value. Therefore, changes made on the object after it
1s stored will not reflect on the stored data.

7.1.6 Using High-Density Memory Store with Map

Hazelcast Enterprise HD

Hazelcast instances are Java programs. In case of BINARY and OBJECT in-memory formats, Hazelcast stores your
distributed data into the heap of its server instances. Java heap is subject to garbage collection (GC). In case of
larger heaps, garbage collection might cause your application to pause for tens of seconds (even minutes for really
large heaps), badly affecting your application performance and response times.

As the data gets bigger, you either run the application with larger heap, which would result in longer GC pauses
or run multiple instances with smaller heap which can turn into an operational nightmare if the number of such
instances becomes very high.

To overcome this challenge, Hazelcast offers High-Density Memory Store for your maps. You can configure your
map to use High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<map name='"nativeMap*'">
<in-memory-format>NATIVE</in-memory-format>
</map>

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see Configuring High-Density Memory Store section.

7.1.6.1 Required configuration changes when using NATIVE

Note that the eviction mechanism is different for NATIVE in-memory format. The new eviction algorithm for map
with High-Density Memory Store is similar to that of JCache with High-Density Memory Store and is described
here.

- Eviction percentage has no effect.
¢ {Xml

<map name="nativeMap*">
<in-memory-format>NATIVE</in-memory-format>
<eviction-percentage>25</eviction-percentage> <-- NO IMPACT with NATIVE

</map>

[N

- These IMap eviction policies for ‘max-size‘ cannot be used: ‘FREE_HEAP_PERCENTAGE‘, ‘FREE_HEAP_SIZE®,

- Near cache eviction configuration is also different for ‘NATIVE‘ in-memory format.

76 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

For a near cache configuration with in-memory format set to ‘BINARY‘:

(tlxml

<map name="nativeMap*">

<near-cache>
<in-memory-format>BINARY</in-memory-format>
<max-size>10000</max-size> <-- NO IMPACT with NATIVE
<eviction-policy>LFU</eviction-policy> <-- NO IMPACT with NATIVE
</near-cache>

</map>

[N N1

the equivalent configuration for ‘NATIVE‘ in-memory format would be similar to the following:
¢ ‘Xml
<map name='"nativeMap*">

<near-cache>

<in-memory-format>NATIVE</in-memory-format>

<eviction size="10000" eviction-policy="LFU" max-size-policy="USED_NATIVE_MEMORY_SIZE"/>
</near-cache>

</map>

[N N1
- Near cache eviction policy ‘ENTRY_COUNT‘ cannot be used for ‘max-size-policy°‘.

RELATED INFORMATION

Please refer to the High-Density Memory Store section for more information.

7.1.7 Loading and Storing Persistent Data
Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a
relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory,
MapLoader’s load or loadAll methods will load that entry from the data store. This loaded entry is placed into
the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

! NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast members. Persistence
to a local file system is not supported.

code.

NOTE: Also note that the MapStore interface extends the MapLoader interface as you can see in the interface

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
private final Connection con;

public PersonMapStore() {
try {
con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/core/MapStore.java

7.1. MAP

con.createStatement () .executeUpdate (
"create table if not exists person (id bigint, name varchar(45))");
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void delete(Long key) {
System.out.println("Delete:" + key);
try {
con.createStatement () .executeUpdate (
format("delete from person where id = 7s", key));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void store(Long key, Person value) {
try {
con.createStatement () .executeUpdate (
format("insert into person values(%s,’%s’)", key, value.name));
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized void storeAll(Map<Long, Person> map) {
for (Map.Entry<Long, Person> entry : map.entrySet())
store(entry.getKey(), entry.getValue());
}

public synchronized void deleteAll(Collection<Long> keys) {
for (Long key : keys) delete(key);
}

public synchronized Person load(Long key) {
try {
ResultSet resultSet = con.createStatement().executeQuery(
format("select name from person where id =Ys", key));
try {
if ('resultSet.next()) return null;
String name = resultSet.getString(1);
return new Person(name);
} finally {
resultSet.close();
}
} catch (SQLException e) {
throw new RuntimeException(e);
}
}

public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
Map<Long, Person> result = new HashMap<Long, Person>();
for (Long key : keys) result.put(key, load(key));
return result;

3

public Iterable<Long> loadAllKeys() {

7

78 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

return null;

! NOTE: During the initial loading process, MapStore uses a thread different from the partition threads that
are used by the ExrecutorService. After the initialization is completed, the map.get method looks up any nonezistent
value from the database in a partition thread, or the map.put method looks up the database to return the previously
associated value for a key also in a partition thread.

RELATED INFORMATION
For more MapStore/MapLoader code samples, please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes, which are explained in the
subsections below.

7.1.7.1 Using Read-Through Persistence

If an entry does not exist in memory when an application asks for it, Hazelcast asks the loader implementation
to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to
Hazelcast, and Hazelcast puts it into memory. This is read-through persistence mode.

7.1.7.2 Setting Write-Through Persistence

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means
the entries will be put to the data store synchronously.

In this mode, when the map.put (key,value) call returns:

e MapStore.store(key,value) is successfully called so the entry is persisted.

e In-Memory entry is updated.

e In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than
0).

The same behavior goes for a map.remove (key) call. The only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in
the form of RuntimeException.

7.1.7.3 Setting Write-Behind Persistence

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than
0. This means the modified entries will be put to the data store asynchronously after a configured delay.

! NOTE: In write-behind mode, Hazelcast coalesces updates on a specific key by default, which means it applies
only the last update on that key. However, you can set MapStoreConfig#setiWriteCoalescing to FALSE and you
can store all updates performed on a key to the data store.

! NOTE: When you set MapStoreConfig#setiWriteCoalescing to FALSE, after you reached per-node max-
imum write-behind-queue capacity, subsequent put operations will fail with ReachedMazSizeException. This
exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per-node mazximum
capacity using the system property hazelcast.map.write.behind. queue. capacity. Please refer to the System
Properties section for information on this property and how to set the system properties.

In write-behind mode, when the map.put (key,value) call returns:

7.1. MAP 79

In-Memory entry is updated.

In-Memory backup copies are successfully created on other cluster members (if backup-count is greater than

0).

The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store (key,value)
call.

For fault tolerance, dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove (key), the only difference is that MapStore.delete(key) is called
when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a
log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll (map)
and MapStore.deleteAll(collection) to do all writes in a single call.

! NOTE: If a map entry is marked as dirty, meaning that it is waiting to be persisted to the MapStore in a
write-behind scenario, the eviction process forces the entry to be stored. This way you have control over the number
of entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

! NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queve/MultiMap/List/Set
operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock
situations.

Here is a sample configuration:

<hazelcast>
<map name="default">

<map-store enabled="true" initial-mode="LAZY">
<class-name>com.hazelcast.examples.DummyStore</class-name>
<write-delay-seconds>60</write-delay-seconds>
<write-batch-size>1000</write-batch-size>
<write-coalescing>true</write-coalescing>

</map-store>

</map>
</hazelcast>

The following are the descriptions of MapStore configuration elements and attributes:

e class-name: Name of the class implementing MapLoader and/or MapStore.

e write-delay-seconds: Number of seconds to delay to call the MapStore.store(key, value). If the value is zero
then it is write-through so MapStore.store(key, value) will be called as soon as the entry is updated. Otherwise
it is write-behind so updates will be stored after write-delay-seconds value by calling Hazelcast.storeAll(map).
Default value is 0.

e write-batch-size: Used to create batch chunks when writing map store. In default mode, all map entries will
be tried to be written in one go. To create batch chunks, the minimum meaningful value for write-batch-size
is 2. For values smaller than 2, it works as in default mode.

e write-coalescing: In write-behind mode, Hazelcast coalesces updates on a specific key by default; it applies
only the last update on it. You can set this element to false to store all updates performed on a key to the
data store.

e enabled: True to enable this map-store, false to disable. Default value is true.

e initial-mode: Sets the initial load mode. LAZY is the default load mode, where load is asynchronous.
EAGER means load is blocked till all partitions are loaded.

80 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.1.7.4 Storing Entries to Multiple Maps

A configuration can be applied to more than one map using wildcards (see Using Wildcards), meaning that the
configuration is shared among the maps. But MapStore does not know which entries to store when there is one
configuration applied to multiple maps.

To store entries when there is one configuration applied to multiple maps, use Hazelcast’s MapStoreFactory interface.
Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is
used. Example code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig() ;
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
@0verride
public MapLoader<Object, Object> newMapStore(String mapName, Properties properties) {
return null;
3
B

To initialize the MapLoader implementation with the given map name, configuration properties, and the Hazelcast
instance, implement the MapLoaderLifecycleSupport interface. This interface has the methods init() and
destroy () as shown below.

public interface MapLoaderLifecycleSupport {
void init(HazelcastInstance hazelcastInstance, Properties properties, String mapName) ;

void destroy(Q);
}

The method init() initializes the MapLoader implementation. Hazelcast calls this method when the map is
first used on the Hazelcast instance. The MapLoader implementation can initialize the required resources for
implementing MapLoader such as reading a configuration file or creating a database connection.

Hazelcast calls the method destroy () before shutting down. You can override this method to cleanup the resources
held by this MapLoader implementation, such as closing the database connections.

7.1.7.5 Initializing Map on Startup

To pre-populate the in-memory map when the map is first touched/used, use the MapLoader.loadAl1Keys APIL

If MapLoader.loadAllKeys returns NULL, then nothing will be loaded. Your MapLoader.loadAllKeys imple-
mentation can return all or some of the keys. For example, you may select and return only the hot keys.
MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast will optimize the loading
process by having each cluster member load its owned portion of the entries.

The InitialloadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If
InitiallLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, all the data is
loaded while the map is created, and everything becomes ready to use. Also, if you add indices to your map with
the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig
behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any member, initialization will start depending on the value of
InitiallLoadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start
but data is loaded each time a partition loading completes.

2. Hazelcast will call MapLoader.loadAl1Keys () to get all your keys on one of the members.

7.1. MAP 81

3. That member will distribute keys to all other members in batches.
4. Each member will load values of all its owned keys by calling MapLoader.loadAll (keys).
5. Each member puts its owned entries into the map by calling IMap.putTransient (key,value).

! NOTE: If the load mode is LAZY and the clear () method is called (which triggers MapStore.deleteAll()),
Hazelcast will remove ONLY the loaded entries from your map and datastore. Since all the data is not loaded in
this case (LAZY mode), please note that there may still be entries in your datastore.

! NOTE: The return type of loadAllKeys () is changed from Set to Iterable with the release of Hazelcast
3.5. MapLoader implementations from previous releases are also supported and do not need to be adapted.

#+#4#4# Loading Keys Incrementally

If the number of keys to load is large, it is more efficient to load them incrementally rather than loading them all at
once. To support incremental loading, the MapLoader.loadAl11Keys () method returns an Iterable which can be
lazily populated with the results of a database query.

Hazelcast iterates over the Iterable and, while doing so, sends out the keys to their respective owner members.
The Iterator obtained from MapLoader.loadAllKeys() may also implement the Closeable interface, in which
case Iterator is closed once the iteration is over. This is intended for releasing resources such as closing a JDBC
result set.

7.1.7.6 Forcing All Keys To Be Loaded

The method 1loadAll loads some or all keys into a data store in order to optimize the multiple load operations.
The method has two signatures; the same method can take two different parameter lists. One signature loads the
given keys and the other loads all keys. Please see the example code below.

public class LoadAll {

public static void main(String[] args) {
final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName() ;
final Config config = createNewConfig(mapName) ;
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName) ;

populateMap (map, numberOfEntriesToAdd);
System.out.printf ("# Map store has 7%d elements\n", numberOfEntriesToAdd) ;

map.evictAll();
System.out.printf ("# After evictAll map size\t: %d\n", map.size());

map.loadAll(true);
System.out.printf ("# After loadAll map size\t: %d\n", map.size());

7.1.7.7 Post-Processing Objects in Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can get
an ID or version auto-generated by your database and then need to modify your object stored in the distributed
map, but not to break the synchronization between the database and the data grid.

To post-process an object in the map store, implement the PostProcessingMapStore interface to put the modified
object into the distributed map. This will trigger an extra step of Serialization, so use it only when needed.
(This is only valid when using the write-through map store configuration.)

82 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
@0verride
public void store(Integer key, Employee employee) {
Employeeld id = saveEmployee();
employee.setId(id.getId());
}
}

I NOTE: Please note that if you are using a post processing map store in combination with entry processors,
post-processed values will not be carried to backups.

7.1.8 Creating Near Cache for Map

Map entries in Hazelcast are partitioned across the cluster. Suppose you read the key k a number of times and k is
owned by another member in your cluster. Each map.get (k) will be a remote operation, meaning lots of network
trips. If you have a map that is read-mostly, then you should consider creating a near cache for the map so that
reads can be much faster and consume less network traffic. These benefits do not come free; when using near cache,
you should consider the following issues:

e Cluster members will have to hold extra cached data, which increases memory consumption.
e If invalidation is turned on and entries are updated frequently, then invalidations will be costly.
e Near cache breaks the strong consistency guarantees; you might be reading stale data.

Near cache is highly recommended for the maps that are read-mostly. The following is the configuration example
for map’s near cache in the Hazelcast configuration file.

<hazelcast>
<map name='"my-read-mostly-map">

<near-cache name="default">
<in-memory-format>BINARY</in-memory-format>
<max-size>5000</max-size>
<time-to-live-seconds>0</time-to-live-seconds>
<max-idle-seconds>60</max-idle-seconds>
<eviction-policy>LRU</eviction-policy>
<invalidate-on-change>true</invalidate-on-change>
<cache-local-entries>false</cache-local-entries>

</near-cache>

</map>
</hazelcast>

The element <near-cache> has an optional attribute “name” whose default value is default. Following are the
descriptions of all configuration elements:

e <max-size>: Maximum size of the near cache. When this is reached, near cache is evicted based on the policy
defined. Any integer between 0 and Integer. MAX_VALUE. 0 means Integer.MAX_VALUE. Its default value is
0.

e <time-to-live-seconds>: Maximum number of seconds for each entry to stay in the near cache. Entries
that are older than this period are automatically evicted from the near cache. Regardless of the eviction
policy used, <time-to-live-seconds> still applies. Any integer between 0 and Integer .MAX_VALUE. 0 means
infinite. Its default value is 0.

7.1. MAP 83

<max-idle-seconds>: Maximum number of seconds each entry can stay in the near cache as untouched (not
read). Entries that are not read more than this period are removed from the near cache. Any integer between
0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Its default value is 0.

e <eviction-policy>: Eviction policy configuration. Its default values is NONE. Available values are as
follows:

— NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

<invalidate-on-change>: Specifies whether the cached entries are evicted when the entries are updated or
removed. Its default value is true.

e <in-memory-format>: Specifies in which format data will be stored in your near cache. Note that a map’s
in-memory format can be different from that of its near cache. Available values are as follows:

— BINARY: Data will be stored in serialized binary format. It is the default option.

— OBJECT: Data will be stored in deserialized form.

— NATIVE: Data will be stored in the near cache that uses Hazelcast’s High-Density Memory Store feature.
This option is available only in Hazelcast Enterprise HD. Note that a map and its near cache can
independently use High-Density Memory Store. For example, while your map does not use High-Density
Memory Store, its near cache can use it.

e <cache-local-entries>: Specifies whether the local entries will be cached. It can be useful when in-memory
format for near cache is different from that of the map. By default, it is disabled.

! NOTE: If you use High-Density Memory Store for your near cache, the elements <maz-size> and
<eviction-policy> do not have any impact. In this case, you need to use the element <eviction> to spec-
ify the eviction behavior. Please refer to the Using High-Density Memory Store with Near Cache section.

Programmatically, you configure near cache by using the class NearCacheConfig. This class is used both in the
cluster members and clients. In a client/server system, you must enable the near cache separately on the client,
without you needing to configure it on the member. For information on how to create a near cache on a client
(native Java client), please see Configuring Client Near Cache. Please note that near cache configuration is specific
to the member or client itself, a map in a member may not have near cache configured while the same map in a
client may have near cache configured.

If you are using near cache, you should take into account that your hits to the keys in near cache are not reflected
as hits to the original keys on the primary members; this has an impact on IMap’s maximum idle seconds or
time-to-live seconds expiration. Therefore, even though there is a hit on a key in near cache, your original key on
the primary member may expire.

! NOTE: Near cache works only when you access data via map.get (k) methods. Data returned using a
predicate is not stored in the near cache.

! NOTE: Even though lite members do not store any data for Hazelcast data structures, you can enable near
cache on lite members for faster reads.

7.1.8.1 Near Cache Invalidation

When you enable invalidations on near cache, either programmatically via NearCacheConfig#setInvalidateOnChange
or declaratively via <invalidate-on-change>true</invalidate-on-change>, when entires are updated or
removed from an entry in the underlying IMap, corresponding entries are removed from near caches to prevent
stale reads. This is called near cache invalidation.

Invalidation can be sent from members to client near caches or to member near caches, either individually or in
batches. Default behavior is sending in batches. If there are lots of mutating operations such as put/remove on

84 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
IMap, it is advised that you make invalidations in batches. This reduces the network traffic and keeps the eventing
system less busy.

You can use the following system properties to configure the near cache invalidation:

e hazelcast.map.invalidation.batch.enabled: Enable or disable batching. Default value is true. When it
is set to false, all invalidations are sent immediately.

e hazelcast.map.invalidation.batch.size: Maximum number of invalidations in a batch. Default value is
100.

e hazelcast.map.invalidation.batchfrequency.seconds: If we cannot reach the configured batch size, a
background process sends invalidations periodically. Default value is 10 seconds.

If there are a lot of clients or many mutating operations, batching should remain enabled and the batch size should
be configured with the hazelcast.map.invalidation.batch.size system property to a suitable value.

7.1.9 Using High-Density Memory Store with Near Cache

Hazelcast Enterprise HD

Hazelcast offers High-Density Memory Store for the near caches in your maps. You can enable your near cache
to use the High-Density Memory Store by setting the in-memory format to NATIVE. The following snippet is the
declarative configuration example.

<hazelcast>
<map name="my-read-mostly-map">
<near-cache>

<in-memory-format>NATIVE</in-memory-format>
<eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>

</near-cache>
</map>
</hazelcast>

The element <eviction> is used to specify the eviction behavior when you use High-Density Memory Store for
your near cache. It has the following attributes:

e size: Maximum size (entry count) of the near cache.
e max-size-policy: Maximum size policy for eviction of the near cache. Available values are as follows:

ENTRY__COUNT: Maximum entry count per member.
USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes.
USED_NATIVE_MEMORY__PERCENTAGE: Maximum used native memory percentage.
FREE_NATIVE MEMORY_SIZE: Minimum free native memory size to trigger cleanup.

FREE_NATIVE_MEMORY__PERCENTAGE: Minimum free native memory percentage to trigger
cleanup.

e eviction-policy: Eviction policy configuration. Its default values is NONE. Available values are as follows:

— NONE: No items will be evicted and the property max-size will be ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds.

— LRU: Least Recently Used.

— LFU: Least Frequently Used.

7.1. MAP 85

Keep in mind that you should have already enabled the High-Density Memory Store usage for your cluster. Please
see the Configuring High-Density Memory Store section.

Note that a map and its near cache can independently use High-Density Memory Store. For example, if your map
does not use High-Density Memory Store, its near cache can still use it.

7.1.10 Locking Maps

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When these requirements
increase or you want to have more control on the concurrency, consider the Hazelcast solutions described here.

Let’s work on a sample case as shown below.

public class RacyUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k % 100 == 0) System.out.println("At: " + k);
Value value = map.get(key);
Thread.sleep(10);
value.amount++;
map.put(key, value);
}
System.out.println("Finished! Result = " + map.get(key).amount);
3

static class Value implements Serializable {
public int amount;

}

If the above code is run by more than one cluster member simultaneously, a race condition is likely. You can solve
this condition with Hazelcast using either pessimistic locking or optimistic locking.

7.1.10.1 Pessimistic Locking

One way to solve the race issue is by using pessimistic locking—lock the map entry until you are finished with it.

To perform pessimistic locking, use the lock mechanism provided by the Hazelcast distributed map, i.e., the
map.lock and map.unlock methods. See the below example code.

public class PessimisticUpdateMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
map.lock(key);
try {
Value value = map.get(key);
Thread.sleep(10);

86 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

value.amount++;
map.put(key, value);
} finally {
map.unlock(key);
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
3

static class Value implements Serializable {
public int amount;

}

The IMap lock will automatically be collected by the garbage collector when the lock is released and no other
waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

Another way to solve the race issue is by acquiring a predictable Lock object from Hazelcast. This way, every value
in the map can be given a lock, or you can create a stripe of locks.

7.1.10.2 Optimistic Locking

In Hazelcast, you can apply the optimistic locking strategy with the map’s replace method. This method compares
values in object or data forms depending on the in-memory format configuration. If the values are equal, it replaces
the old value with the new one. If you want to use your defined equals method, in-memory-format should be
OBJECT. Otherwise, Hazelcast serializes objects to BINARY forms and compares them.

See the below example code.

public class OptimisticMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, Value> map = hz.getMap("map");
String key = "1";
map.put(key, new Value());
System.out.println("Starting");
for (int k = 0; k < 1000; k++) {
if (k% 10 == 0) System.out.println("At: " + k);
for (5 ;) {
Value oldValue = map.get(key);
Value newValue = new Value(oldValue);
Thread.sleep(10);
newValue.amount++;
if (map.replace(key, oldValue, newValue))
break;
}
}
System.out.println("Finished! Result = " + map.get(key).amount);
}

static class Value implements Serializable {
public int amount;

public Value() {
}

public Value(Value that) {

7.1. MAP 87

this.amount = that.amount;

3

public boolean equals(Object o) {
if (o == this) return true;
if ('(o instanceof Value)) return false;
Value that = (Value) o;
return that.amount == this.amount;

NOTE: The above example code is intentionally broken.

7.1.10.3 Pessimistic vs. Optimistic Locking

The locking strategy you choose will depend on your locking requirements.
Optimistic locking is better for mostly read-only systems. It has a performance boost over pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than optimistic locking
from the perspective of data consistency.

In Hazelcast, use IExecutorService to submit a task to a key owner, or to a member or members. This is the
recommended way to perform task executions, rather than using pessimistic or optimistic locking techniques.
IExecutorService will have fewer network hops and less data over wire, and tasks will be executed very near to
the data. Please refer to the Data Affinity section.

7.1.10.4 Solving the ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple threads. Even if
one thread sees the same value for a particular key in consecutive reads, it does not mean that nothing has changed
between the reads. Another thread may change the value, do work, and change the value back, while the first
thread thinks that nothing has changed.

To prevent these kind of problems, you can assign a version number and check it before any write to be sure that
nothing has changed between consecutive reads. Although all the other fields will be equal, the version field will
prevent objects from being seen as equal. This is the optimistic locking strategy, and it is used in environments
that do not expect intensive concurrent changes on a specific key.

In Hazelcast, you can apply the optimistic locking strategy with the map replace method.

7.1.11 Accessing Entry Statistics

Hazelcast keeps statistics about each map entry, such as creation time, last update time, last access time, number
of hits, and version. To access the map entry statistics, use an IMap.getEntryView(key) call. Here is an example.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.EntryView;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory : " + entry.getCost());
System.out.println (+ entry.getCreationTime());
System.out.println ("expirationTime : " + entry.getExpirationTime());
System.out.println ("number of hits : " + entry.getHits());
System.out.println (" + entry.getLastAccessTime());

"creationTime "

"lastAccessedTime:

88 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key : " + entry.getKey());
System.out.println ("value : " + entry.getValue());

7.1.12 Map Listener

Please refer to the Listening for Map Events section.

7.1.13 Listening to Map Entries with Predicates

You can listen to the modifications performed on specific map entries. You can think of it as an entry listener with
predicates. Please see the Listening for Map Events section for information on how to add entry listeners to a map.

! IMPORTANT: The default backwards-compatible event publishing strategy only publishes UPDATED events
when map entries are updated to a value that matches the predicate with which the listener was registered. This
implies that when using the default event publishing strateqy, your listener will not be notified about an entry whose
value is updated from one that matches the predicate to a new value that does not match the predicate.

Since version 3.7, when you configure Hazelcast members with property hazelcast.map.entry.filtering.natural.event.typ
set to true, handling of entry updates conceptually treats value transition as entry, update or exit with re-
gards to the predicate value space. The following table compares how a listener is notified about an
update to a map entry value under the default backwards-compatible Hazelcast behavior (when property
hazelcast.map.entry.filtering.natural.event.types is not set or is set to false) versus when set to true:

Default
When old value matches predicate,new value does not match predicate No event is delivered to entry listener
When old value matches predicate,new value matches predicate UPDATED event is delivered to entry listener

When old value does not match predicate,new value does not match predicate No event is delivered to entry listener

When old value does not match predicate,new value matches predicate UPDATED event is delivered to entry listener

As an example, let’s listen to the changes made on an employee with the surname “Smith”. First, let’s create the
Employee class.

import java.io.Serializable;
public class Employee implements Serializable {
private final String surname;
public Employee(String surname) {
this.surname = surname;
by
Q@0verride
public String toString() {
return "Employee{" +

"surname=’" + surname + ’\’’ +

)}7;

Then, let’s create a listener with predicate by adding a listener that tracks ADDED, UPDATED and REMOVED entry

7.1. MAP

events with the surname predicate.

import com.hazelcast.core.*;
import com.hazelcast.query.SqlPredicate;

public class ListenerWithPredicate {

public static void main(String[] args) {
Config config = new Config();
config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true");
HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
IMap<String, String> map = hz.getMap('"map") ;
map.addEntryListener (new MyEntryListener(),
new SqlPredicate("surname=smith"), true);
System.out.println("Entry Listener registered");

}

static class MyEntryListener
implements EntryAddedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryRemovedListener<String, String> {
@0verride
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);
X

Q@0verride
public void entryRemoved(EntryEvent<String, String> event); {
System.out.println("Entry Removed:" + event);

}

Q@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

}

And now, let’s play with the employee “smith” and see how that employee will be listened to.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Modify {

public static void main(String[] args) {
Config config = new Config();
config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true");
HazelcastInstance hz = Hazelcast.newHazelcastInstance(config) ;
IMap<String, Employee> map = hz.getMap('map");

map.put("1", new Employee("smith"));
map.put("2", new Employee("jordan"));
System.out.println("done");
System.exit (0);

89

90 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

When you first run the class ListenerWithPredicate and then run Modify, you will see output similar to the
listing below.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,0ldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

RELATED INFORMATION

Please refer to Continuous Query Cache for more information.

7.1.14 Adding Interceptors

You can add intercept operations and execute your own business logic synchronously blocking the operations. You
can change the returned value from a get operation, change the value in put, or cancel operations by throwing an
exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has been completed.
Interceptor actions are synchronous and you can alter the behavior of operation, change its values, or totally cancel
it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can result in duplicate
effects. This can easily happen when the interceptor is added to the map at member initialization, so that each
member adds the same interceptor. When you add the interceptor in this way, be sure to implement the hashCode ()
method to return the same value for every instance of the interceptor. It is not strictly necessary, but it is a good
idea to also implement equals() as this will ensure that the map interceptor can be removed reliably.

The IMap API has two methods for adding and removing an interceptor to the map: addInterceptor and
removelnterceptor.

Jk*
* Adds an interceptor for the map. Added interceptor intercepts operations
* and executes user defined methods and cancels operations tf
* user defined methods throw exzceptions.
*
@param interceptor map interceptor.
* Q@return td of registered interceptor.

*/
String addInterceptor(MapInterceptor interceptor);

k%

* Removes the given interceptor for this map. So it does not
* intercept operations anymore.

*

* @param id registration ID of the map interceptor.

*/

void removelnterceptor(String id);
Here is the MapInterceptor interface:

public interface MapInterceptor extends Serializable {

Jk*

* Intercept the get operation before it returns a wvalue.

* Return another object to change the return value of get().

* Returning null causes the get() operation to return the original value,

7.1. MAP

namely return null <f you do mot want to change anything.

@param value the original value to be returned as the result of get() operation.

*
*
*
*
* Q@return the new wvalue that is returned by get() operation.

*/
Object interceptGet(Object value);

VLT
Called after get() operation is completed.

* %

*
* @param value the value returned as the result of get() operation.
*/

void afterGet(Object value);

VLS
* Intercept put operation before modifying map data.
* Return the object to be put into the map.
* Returning null causes the put() operation to operate as ezpected,
* namely no interception. Throwing an exception cancels the put operation.
*
*
* Qparam oldValue the wvalue currently ezisting in the map.
* Q@param newValue the new wvalue to be put.
* Q@return new value after intercept operation.
*/
Object interceptPut(Object oldValue, Object newValue);
VLT
* Called after put() operation is completed.
*
*

* Qparam value the value returned as the result of put() operation.
*/
void afterPut(Object value);

VLS

Intercept remove operation before removing the data.

Return the object to be returned as the result of remove operation.
Throwing an exception cancels the remove operation.

*
*
*
*
*
* @param removedValue the exzisting value to be removed.

* Q@return the walue to be returned as the result of remove operation.
*/

Object interceptRemove(Object removedValue);

VLS
* Called after remove() operation is completed.
*
*
* @param value the value returned as the result of remove(.) operation
*/
void afterRemove(Object value);

3

Example Usage:

92

public class InterceptorTest {

Q@Test
public void testMapInterceptor() throws InterruptedException {
HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance();
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance();
IMap<Object, Object> map = hazelcastInstancel.getMap("testMapInterceptor");

}

SimpleInterceptor interceptor =

map.
map . put (
map . put (
map . put (
map . put (
map . put (
map . put (
map . put (

try {

map.remove(1);

} catch (Exception ignore) {

}
try {

map.remove(2);

} catch (Exception ignore) {

}
assertEquals(

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map.

map

map.
.get(3

map

map.
.get(5

map

map.
map.

size(), 6)

.get(1

get(2
get(4

get(6
get(7

null);
"ISTANBUL:");
"TOKYO:");
"LONDON:");
"PARIS:");
"CAIRO:");
"HONG KONG:");

map.removelnterceptor(interceptor);
map.put(8, "Moscow");

assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(
assertEquals(

map

map.
.get(2

map

map.
map.
map.
map.
.get(7

map

.get(8

get(1

get(3
get(4
get(5
get(6

"Moscow");
null);
"ISTANBUL");
"TOKYO");
"LONDON");
"PARIS");
"CAIRO");
"HONG KONG");

CHAPTER 7. DISTRIBUTED DATA STRUCTURES

new SimplelInterceptor();
addInterceptor(interceptor);
"New York");
, "Istanbul");
, "Tokyo");
"London");
, "Paris");
, "Cairo");
, "Hong Kong");

static class SimpleInterceptor implements MapInterceptor, Serializable {

@0verride

public Object interceptGet(Object value) {

if (value == null)
return null;

return value + ":

3

".
’

7.1. MAP 93

@0verride
public void afterGet(Object value) {
}

@0verride
public Object interceptPut(Object oldValue, Object newValue) {
return newValue.toString() .toUpperCase() ;

3

@0verride
public void afterPut(Object value) {
}

@0verride
public Object interceptRemove(Object removedValue) {
if (removedValue.equals("ISTANBUL"))
throw new RuntimeException("you can not remove this");
return removedValue;

3

@0verride
public void afterRemove(Object value) {
// do something
¥
3
}

7.1.15 Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query-based map methods, especially with
large clusters or heap sizes. For example, on a cluster with five members having 10 GB of data and 25 GB heap
size per member, a single call of IMap.entrySet() fetches 50 GB of data and crashes the calling instance.

A call of IMap.values() may return too much data for a single member. This can also happen with a real query
and an unlucky choice of predicates, especially when the parameters are chosen by a user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is not a limit like
SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A maximum result size limit for
query based operations is meant to be a last line of defense to prevent your members from retrieving more data
than they can handle.

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

7.1.15.1 Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each QueryOperation
runs on all partitions of a member, so it collects result entries as long as the member limit is not exceeded. If that
happens, a QueryResultSizeExceededException is thrown and propagated to the calling instance.

This feature depends on an equal distribution of the data on the cluster members to calculate the result size limit per
member. Therefore, there is a minimum value defined in QueryResultSizeLimiter .MINIMUM_MAX_RESULT_LIMIT.
Configured values below the minimum will be increased to the minimum.

7.1.15.1.1 Local Pre-check In addition to the distributed result size check in the QueryOperations, there is
a local pre-check on the calling instance. If you call the method from a client, the pre-check is executed on the
member that invokes the QueryOperations.

Since the local pre-check can increase the latency of a QueryOperation, you can configure how many local partitions
should be considered for the pre-check, or you can deactivate the feature completely.

94 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.1.15.1.2 Scope of Result Size Limit Besides the designated query operations, there are other operations
that use predicates internally. Those method calls will throw the QueryResultSizeExceededException as well.
Please see the following matrix to see the methods that are covered by the query result size limit.

Method MapProxyImpl | ClientMapProxyImpl|TransactionalMapProxy |ClientTxnMapProxy
values() 7 7 7 7
keyset ()

v v

entrySet()

values(predicate)

keySet (predicate)

SISN|S|S S

entrySet(predicate)

localKeySet ()

SISIS|IS|IS|S| S

localKeySet (predicate)

Interfaces: | IMap || TransactionalMap

Figure 7.3: Methods Covered by Query Result Size Limit

7.1.15.1.3 Configuring Query Result Size The query result size limit is configured via the following system
properties.

e hazelcast.query.result.size.limit: Result size limit for query operations on maps. This value defines
the maximum number of returned elements for a single query result. If a query exceeds this number of
elements, a QueryResultSizeExceededException is thrown.

e hazelcast.query.max.local.partition.limit.for.precheck: Maximum value of local partitions to trig-
ger local pre-check for TruePredicate query operations on maps.

Please refer to the System Properties section to see the full descriptions of these properties and how to set them.

7.2 Queue

Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being distributed,
Hazelcast distributed queue enables all cluster members to interact with it. Using Hazelcast distributed queue, you
can add an item in one cluster member and remove it from another one.

7.2.1 Getting a Queue and Putting Items

Use the Hazelcast instance’s getQueue method to get the queue, then use the queue’s put method to put items
into the queue.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

public class SampleQueue {

public static void main(String[] args) throws Exception {

7.2. QUEUE 95

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put(new MyTask());

MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {
//process task
}
}
}

FIFO ordering will apply to all queue operations across the cluster. The user objects (such as MyTask in the
example above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items will be copied locally
and iteration will occur locally.

Hazelcast distributed queue uses ItemListener to listen to the events that occur when items are added to and
removed from the queue. Please refer to the Listening for Item Events section for information on how to create an
item listener class and register it.

7.2.2 Creating an Example Queue

The following example code illustrates a distributed queue that connects a producer and consumer.

7.2.2.1 Putting Items on the Queue

Let’s put one integer on the queue every second, 100 integers total.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ProducerMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
for (int k = 1; k < 100; k++) {
queue.put(k);
System.out.println("Producing: " + k);
Thread.sleep(1000);
}
queue.put(-1);
System.out.println("Producer Finished!");
}
}

Producer puts a -1 on the queue to show that the puts are finished.

7.2.2.2 Taking Items off the Queue

Now, let’s create a Consumer class to take a message from this queue, as shown below.

96 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IQueue;

public class ConsumerMember {
public static void main(Stringl[] args) throws Exception {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IQueue<Integer> queue = hz.getQueue("queue");
while (true) {
int item = queue.take();
System.out.println("Consumed: " + item);
if (item == -1) {
queue.put(-1);
break;
}
Thread.sleep(5000);
}
System.out.println("Consumer Finished!");
}
}

As seen in the above example code, Consumer waits five seconds before it consumes the next message. It stops once
it receives -1. Also note that Consumer puts -1 back on the queue before the loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be consumed from the
same queue.

7.2.2.3 Balancing the Queue Operations

From the above example code, you can see that an item is produced every second and consumed every five seconds.
Therefore, the consumer keeps growing. To balance the produce/consume operation, let’s start another consumer.
This way, consumption is distributed to these two consumers, as seen in the sample outputs below.

The second consumer is started. After a while, here is the first consumer output:

Consumed 13
Consumed 15
Consumer 17

Here is the second consumer output:

Consumed 14
Consumed 16
Consumer 18

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the queue bottlenecks.
In this case, be aware that the order of the messages sent to different queues is not guaranteed. Since in most cases
strict ordering is not important, a list of queues is a good solution.

! NOTE: The items are taken from the queue in the same order they were put on the queue. However, if
there is more than one consumer, this order is not guaranteed.

7.2. QUEUE 97

7.2.2.4 TItemIDs When Offering Items

Hazelcast gives an itemId for each item you offer, which is an incrementing sequence identification for the queue
items. You should consider the following to understand the itemId assignment behavior:

e When a Hazelcast member has a queue, and that queue is configured to have at least one backup, and that
member is restarted, the itemId assignment resumes from the last known highest itemId before the restart;
itemId assignment does not start from the beginning for the new items.

e When the whole cluster is restarted, the same behavior explained in the above consideration applies if your
queue has a persistent data store (QueueStore). If the queue has QueueStore, the itemId for the new items
are given, starting from the highest itemId found in the IDs returned by the method loadAllKeys. If the
method loadAllKeys does not return anything, the itemIds will started from the beginning after a cluster
restart.

e The above two considerations mean there will be no duplicated itemIds in the memory or in the persistent
data store.

7.2.3 Setting a Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more items can be put
into the queue until some items are taken out.

To turn a Hazelcast distributed queue into a bounded queue, set the capacity limit with the max-size property.
You can set the max-size property in the configuration, as shown below. max-size specifies the maximum size of
the queue. Once the queue size reaches this value, put operations will be blocked until the queue size goes below
max-size, which happens when a consumer removes items from the queue.

Let’s set 10 as the maximum size of our example queue in Creating an Example Queue.

<hazelcast>

<queue name="queue'">
<max-size>10</max-size>
</queue>

</hazelcast>

When the producer is started, ten items are put into the queue and then the queue will not allow more put
operations. When the consumer is started, it will remove items from the queue. This means that the producer can
put more items into the queue until there are ten items in the queue again, at which point the put operation again
becomes blocked.

In this example code, the producer is five times faster than the consumer. It will effectively always be waiting for
the consumer to remove items before it can put more on the queue. For this example code, if maximum throughput
is the goal, it would be a good option to start multiple consumers to prevent the queue from filling up.

7.2.4 Queueing with Persistent Datastore

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore using the interface
QueueStore. If queue store is enabled, each item added to the queue will also be stored at the configured queue
store. When the number of items in the queue exceeds the memory limit, the subsequent items are persisted in the
queue store, they are not stored in the queue memory.

The QueueStore interface enables you to store, load, and delete queue items with methods like store, storeAll,
load and delete. The following example class includes all of the QueueStore methods.

public class TheQueueStore implements QueueStore<Item> {
Q@0verride

98 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

public void delete(Long key) {
System.out.println("delete");

3

Q@0verride
public void store(Long key, Item value) {
System.out.println("store");

3

@0verride
public void storeAll(Map<Long, Item> map) {
System.out.println("store all");

}

@0verride

public void deleteAll(Collection<Long> keys) {
System.out.println("deleteAll");

}

@0verride

public Item load(Long key) {
System.out.println("load");
return null;

3

@0verride

public Map<Long, Item> loadAll(Collection<Long> keys) {
System.out.println("loadAll");
return null;

}

Q@0verride

public Set<Long> loadAllKeys() {
System.out.println("loadAllKeys") ;
return null;

Item must be serializable. The following is an example queue store configuration.

<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-1limit">1000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

Let’s explain the queue store properties.

e Binary: By default, Hazelcast stores the queue items in serialized form, and before it inserts the queue items
into the , it deserializes them. If you are not reaching the queue store from an external application, you might
prefer that the items be inserted in binary form. Do this by setting the binary property to true: then you
can get rid of the deserialization step, which is a performance optimization. The binary property is false by
default.

e Memory Limit: This is the number of items after which Hazelcast will store items only to the datastore.
For example, if the memory limit is 1000, then the 1001st item will be put only to the datastore. This feature

7.2. QUEUE 99

is useful when you want to avoid out-of-memory conditions. If you want to always use memory, you can set it
to Integer .MAX_VALUE. The default number for memory-1imit is 1000.

e Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load is the size
of these bulks. The default value of bulk-load is 250.

7.2.5 Configuring Queue

The following are examples of queue configurations. It includes the QueueStore configuration, which is explained
in the Queueing with Persistent Datastore section.

Declarative:

<queue name="default">
<max-size>0</max-size>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<empty-queue-ttl>-1</empty-queue-ttl>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
<item-listeners>
</queue>
<queue-store>
<class-name>com.hazelcast.QueueStoreImpl</class-name>
<properties>
<property name="binary">false</property>
<property name="memory-1limit">10000</property>
<property name="bulk-load">500</property>
</properties>
</queue-store>

Programmatic:

Config config = new Config();
QueueConfig queueConfig = config.getQueueConfig();
queueConfig.setName("MyQueue") .setBackupCount("1")
.setMaxSize("0").setStatisticsEnabled("true");
queueConfig.getQueueStoreConfig()
.setEnabled ("true")
.setClassName("com.hazelcast.QueueStoreImpl")
.setProperty("binary", "false");

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a cluster member
with a queue goes down, another member having the backup of that queue will continue. Therefore, no items
are lost. You can define the number of synchronous backups for a queue using the backup-count element in the
declarative configuration. A queue can also have asynchronous backups: you can define the number of asynchronous
backups using the async-backup-count element.

To set the maximum size of the queue, use the max-size element. To purge unused or empty queues after a
period of time, use the empty-queue-ttl element. If you define a value (time in seconds) for the empty-queue-ttl
element, then your queue will be destroyed if it stays empty or unused for the time in seconds that you give.

The following is the full list of queue configuration elements with their descriptions.
e max-size: Maximum number of items in the queue. It is used to set an upper bound for the queue. You will

not be able to put more items when the queue reaches to this maximum size whether you have a queue store
configured or not.

100

7.3

CHAPTER 7. DISTRIBUTED DATA STRUCTURES

backup-count: Number of synchronous backups. Queue is a non-partitioned data structure, so all entries of
a queue reside in one partition. When this parameter is ‘1’, it means there will be one backup of that queue
in another member in the cluster. When it is ‘2’, two members will have the backup.

async-backup-count: Number of asynchronous backups.

empty-queue-ttl: Used to purge unused or empty queues. If you define a value (time in seconds) for this
element, then your queue will be destroyed if it stays empty or unused for that time.

item-listeners: Adds listeners (listener classes) for the queue items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local member.

queue-store: Includes the queue store factory class name and the properties binary, memory limit and bulk
load. Please refer to Queueing with Persistent Datastore.

statistics-enabled: If set to true, you can retrieve statistics for this queue using the method
getLocalQueueStats().

MultiMap

Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just like any other
distributed data structure implementation in Hazelcast, MultiMap is distributed and thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method signatures. It
supports most features of Hazelcast Map except for indexing, predicates and MapLoader/MapStore. Yet, like
Hazelcast Map, entries are almost evenly distributed onto all cluster members. When a new member joins the
cluster, the same ownership logic used in the distributed map applies.

7.3.1 Getting a MultiMap and Putting an Entry

The following example creates a MultiMap and puts items into it. Use the HazelcastInstance getMultiMap method
to get the MultiMap, then use the MultiMap put method to put an entry into the MultiMap.

public class PutMember {
public static void main(String[] args) {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String , String > map = hazelcastInstance.getMultiMap("map");

map.put(nan’ o) ;
mapput(||a||’ non) ;
mapput(”b”, ||3||),
System.out.println("PutMember:Done");

Now let’s print the entries in this MultiMap.

public class PrintMember {
public static void main(String[] args) {

3

}

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap <String, String > map = hazelcastInstance.getMultiMap("map");
for (String key : map.keySet()){

Collection <String > values = map.get(key);

System.out.println("%s -> %s\n",key, values);

3

7.3. MULTIMAP 101

After you run the first code sample, run the PrintMember sample. You will see the key a has two values, as shown
below.

b —> [3]
a —> [2, 1]

Hazelcast MultiMap uses EntryListener to listen to events which occur when entries are added to, updated in or
removed from the MultiMap. Please refer to the Listening for MultiMap Events section for information on how to
create an entry listener class and register it.

7.3.2 Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. Configure the collection type
with the valueCollectionType parameter. If you choose Set, duplicate and null values are not allowed in your
collection and ordering is irrelevant. If you choose List, ordering is relevant and your collection can include
duplicate and null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you enable
statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

The following are the example MultiMap configurations.

NOTE: Currently, eviction is not supported for the MultiMap data structure.

Declarative:

<hazelcast>
<multimap name="default">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
<value-collection-type>SET</value-collection-type>
<entry-listeners>
<entry-listener include-value="false" local="false">
com.hazelcast.examples.EntryListener
</entry-listener>
</entry-listeners>
</map>
</hazelcast>

Programmatic:

MultiMapConfig mmConfig = new MultiMapConfig();
mmConfig.setName("default");

mmConfig.setBackupCount("0").setAsyncBackupCount("1");

mmConfig.setValueCollectionType("SET");
The following are the configuration elements and their descriptions:

e backup-count: Defines the number of asynchronous backups. For example, if it is set to 1, backup of a
partition will be placed on one other member. If it is 2, it will be placed on two other members.

e async-backup-count: The number of synchronous backups. Behavior is the same as that of the backup-count
element.

e statistics-enabled: You can retrieve some statistics such as owned entry count, backup entry count, last
update time, and locked entry count by setting this parameter’s value as “true”. The method for retrieving
the statistics is getLocalMultiMapStats().

102 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

e value-collection-type: Type of the value collection. It can be Set or List.

e entry-listeners: Lets you add listeners (listener classes) for the map entries. You can also set the attribute
include-value to true if you want the item event to contain the entry values, and you can set local to true if
you want to listen to the entries on the local member.

7.4 Set

Hazelcast Set is a distributed and concurrent implementation of java.util.Set.

e Hazelcast Set does not allow duplicate elements.

e Hazelcast Set does not preserve the order of elements.

e Hazelcast Set is a non-partitioned data structure—all the data that belongs to a set will live on one single
partition in that member.

e Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives on a single
partition, storing a large amount of data on a single set may cause memory pressure. Therefore, you should
use multiple sets to store a large amount of data. This way, all the sets will be spread across the cluster,
sharing the load.

e A backup of Hazelcast Set is stored on a partition of another member in the cluster so that data is not lost in
the event of a primary member failure.

e All items are copied to the local member and iteration occurs locally.

e The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as opposed to
java.util.HashSet.

7.4.1 Getting a Set and Putting Items

Use the HazelcastInstance getSet method to get the Set, then use the set put method to put items into the Set.

import com.hazelcast.core.Hazelcast;
import java.util.Set;
import java.util.Iterator;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Set<Price> set = hazelcastInstance.getSet("IBM-Quote-History");
set.add(new Price(10, timel));
set.add(new Price(11, time2));
set.add(new Price(12, time3));
set.add(new Price(11, time4));
V2
Iterator<Price> iterator = set.iterator();
while (iterator.hasNext()) {
Price price = iterator.next();

//analyze
}

Hazelcast Set uses ItemListener to listen to events that occur when items are added to and removed from the Set.
Please refer to the Listening for Item Events section for information on how to create an item listener class and
register it.

7.4.2 Configuring Set

The following are the example set configurations.

Declarative:

7.5. LIST 103

<set name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
<item-listeners>
</set>

Programmatic:

Config config = new Config();

CollectionConfig collectionSet = config.getCollectionConfig();

collectionSet.setName("MySet").setBackupCount("1")
.setMaxSize("10");

Set configuration has the following elements.

e statistics-enabled: True (default) if statistics gathering is enabled on the Set, false otherwise.

e backup-count: Count of synchronous backups. Set is a non-partitioned data structure, so all entries of a Set
reside in one partition. When this parameter is ‘1’, it means there will be one backup of that Set in another
member in the cluster. When it is ‘2’, two members will have the backup.

e async-backup-count: Count of asynchronous backups.

e max-size: The maximum number of entries for this Set.

e item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attributes
include-value to true if you want the item event to contain the item values, and you can set local to true
if you want to listen to the items on the local member.

7.5 List

Hazelcast List is similar to Hazelcast Set, but Hazelcast List also allows duplicate elements.

Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

Hazelcast List is a non-partitioned data structure where values and each backup are represented by their own
single partition.

Hazelcast List cannot be scaled beyond the capacity of a single machine.

All items are copied to local and iteration occurs locally.

7.5.1 Getting a List and Putting Items

Use the HazelcastInstance getList method to get the list, then use the list put method to put items into the List.

import com.hazelcast.core.Hazelcast;
import java.util.List;
import java.util.Iterator;

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

List<Price> list = hz.getList("IBM-Quote-Frequency");
list.add(new Price(10));
list.add(new Price(11));
list.add(new Price(12));

104 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

list.add(new Price(11));
list.add(new Price(12));

Y/
Iterator<Price> iterator = list.iterator();
while (iterator.hasNext()) {

Price price = iterator.next();

//analyze
}

Hazelcast List uses ItemListener to listen to events that occur when items are added to and removed from the
List. Please refer to the Listening for Item Events section for information on how to create an item listener class
and register it.

7.5.2 Configuring List

The following are example list configurations.

Declarative:

<list name="default">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<max-size>10</max-size>
<item-listeners>
<item-listener>
com.hazelcast.examples.ItemListener
</item-listener>
</item-listeners>
</list>

Programmatic:

Config config = new Config();

CollectionConfig collectionlList = config.getCollectionConfig() ;

collectionList.setName("MyList").setBackupCount("1")
.setMaxSize("10");

List configuration has the following elements.

e statistics-enabled: True (default) if statistics gathering is enabled on the list, false otherwise.

e backup-count: Number of synchronous backups. List is a non-partitioned data structure, so all entries of
a List reside in one partition. When this parameter is ‘1’, there will be one backup of that List in another
member in the cluster. When it is ‘2’; two members will have the backup.

e async-backup-count: Number of asynchronous backups.

e max-size: The maximum number of entries for this List.

e item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the attribute
include-value to true if you want the item event to contain the item values, and you can set the attribute
local to true if you want to listen the items on the local member.

7.6 Ringbuffer

Hazelcast Ringbuffer is a distributed data structure that stores its data in a ring-like structure. You can think of it
as a circular array with a given capacity. Each Ringbuffer has a tail and a head. The tail is where the items are
added and the head is where the items are overwritten or expired. You can reach each element in a Ringbuffer
using a sequence ID, which is mapped to the elements between the head and tail (inclusive) of the Ringbuffer.

7.6. RINGBUFFER 105

7.6.1 Getting a Ringbuffer and Reading Items

Reading from Ringbuffer is simple: get the Ringbuffer with the HazelcastInstance getRingbuffer method, get its
current head with the headSequence method, and start reading. Use the method readOne to return the item at
the given sequence; readOne blocks if no item is available. To read the next item, increment the sequence by one.

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true){
String item = ringbuffer.readOne(sequence);
sequence++;
. process item

By exposing the sequence, you can now move the item from the Ringbuffer as long as the item is still available. If
the item is not available any longer, StaleSequenceException is thrown.

7.6.2 Adding Items to a Ringbuffer
Adding an item to a Ringbuffer is also easy with the Ringbuffer add method:

Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
ringbuffer.add("someitem")

Use the method add to return the sequence of the inserted item; the sequence value will always be unique. You can
use this as a very cheap way of generating unique IDs if you are already using Ringbuffer.

7.6.3 IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike IQueue, Ringbuffer
does not remove the items, it only reads items using a certain position. There are many advantages to this approach:

e The same item can be read multiple times by the same thread. This is useful for realizing semantics of
read-at-least-once or read-at-most-once.

e The same item can be read by multiple threads. Normally you could use an IQueue per thread for the same
semantic, but this is less efficient because of the increased remoting. A take from an IQueue is destructive,
so the change needs to be applied for backup also, which is why a queue.take() is more expensive than a
ringBuffer.read(...).

e Reads are extremely cheap since there is no change in the Ringbuffer. Therefore no replication is required.

e Reads and writes can be batched to speed up performance. Batching can dramatically improve the performance
of Ringbuffer.

7.6.4 Configuring Ringbuffer Capacity

By default, a Ringbuffer is configured with a capacity of 10000 items. This creates an array with a size of 10000.
If a time-to-live is configured, then an array of longs is also created that stores the expiration time for every
item. In a lot of cases you may want to change this capacity number to something that better fits your needs.

Below is a declarative configuration example of a Ringbuffer with a capacity of 2000 items.
<ringbuffer name="rb">

<capacity>2000</capacity>
</ringbuffer>

Currently, Hazelcast Ringbuffer is not a partitioned data structure; its data is stored in a single partition and the
replicas are stored in another partition. Therefore, create a Ringbuffer that can safely fit in a single cluster member.

106 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.6.5 Backing Up Ringbuffer

Hazelcast Ringbuffer has a single synchronous backup by default. You can control the Ringbuffer backup just like
most of the other Hazelcast distributed data structures by setting the synchronous and asynchronous backups:
backup-count and async-backup-count. In the example below, a Ringbuffer is configured with no synchronous
backups and one asynchronous backup:

<ringbuffer name="rb">
<backup-count>0</backup-count>
<async-backup-count>1</async-backup-count>
</ringbuffer>

An asynchronous backup will probably give you better performance. However, there is a chance that the item
added will be lost when the member owning the primary crashes before the backup could complete. You may want
to consider batching methods if you need high performance but do not want to give up on consistency.

7.6.6 Configuring Ringbuffer Time To Live

You can configure Hazelcast Ringbuffer with a time to live in seconds. Using this setting, you can control how long
the items remain in the Ringbuffer before they are expired. By default, the time to live is set to 0, meaning that
unless the item is overwritten, it will remain in the Ringbuffer indefinitely. If you set a time to live and an item is
added, then, depending on the Overflow Policy, either the oldest item is overwritten, or the call is rejected.

In the example below, a Ringbuffer is configured with a time to live of 180 seconds.

<ringbuffer name="rb">
<time-to-live-seconds>180</time-to-live-seconds>
</ringbuffer>

7.6.7 Setting Ringbuffer Overflow Policy

Using the overflow policy, you can determine what to do if the oldest item in the Ringbuffer is not old enough to
expire when more items than the configured Ringbuffer capacity are being added. The below options are currently
available.

e OverflowPolicy.OVERWRITE: The oldest item is overwritten.
e OverflowPolicy.FAIL: The call is aborted. The methods that make use of the OverflowPolicy return -1 to
indicate that adding the item has failed.

Overflow policy gives you fine control on what to do if the Ringbuffer is full. You can also use the overflow policy
to apply a back pressure mechanism. The following example code shows the usage of an exponential backoff.

long sleepMs = 100;

for (5 ;) o
long result = ringbuffer.addAsync(item, OverflowPolicy.FAIL).get();
if (result != -1) {
break;
}

TimeUnit.MILLISECONDS.sleep (sleepMs) ;
sleepMs = min(5000, sleepMs * 2);

7.6. RINGBUFFER 107

7.6.8 Configuring Ringbuffer In-Memory Format

You can configure Hazelcast Ringbuffer with an in-memory format that controls the format of the Ringbuffer’s
stored items. By default, BINARY in-memory format is used, meaning that the object is stored in a serialized
form. You can select the OBJECT in-memory format, which is useful when filtering is applied or when the OBJECT
in-memory format has a smaller memory footprint than BINARY.

In the declarative configuration example below, a Ringbuffer is configured with the OBJECT in-memory format:

<ringbuffer name="rb">
<in-memory-format>BINARY</in-memory-format>
</ringbuffer>

7.6.9 Adding Batched Items

In the previous examples, the method ringBuffer.add() is used to add an item to the Ringbuffer. The problems
with this method are that it always overwrites and that it does not support batching. Batching can have a huge
impact on the performance. You can use the method addA11Async to support batching.

Please see the following example code.

List<String> items = Arrays.asList("1","2", "3");
ICompletableFuture<Long> f = rb.addAllAsync(items, OverflowPolicy.OVERWRITE) ;
f.get(

In the above case, three strings are added to the Ringbuffer using the policy OverflowPolicy.OVERWRITE. Please
see the Overflow Policy section for more information.

7.6.10 Reading Batched Items

In the previous example, the readOne method read items from the Ringbuffer. readOne is simple but not very
efficient for the following reasons:

e readOne does not use batching.
e readOne cannot filter items at the source; the items need to be retrieved before being filtered.

The method readManyAsync can read a batch of items and can filter items at the source.

Please see the following example code.

ICompletableFuture<ReadResultSet<E>> readManyAsync(
long startSequence,
int minCount,
int maxCount,
IFunction<E, Boolean> filter);

The meanings of the readManyAsync arguments are given below.

e startSequence: Sequence of the first item to read.

e minCount: Minimum number of items to read. If you do not want to block, set it to 0. If you want to block
for at least one item, set it to 1.

e maxCount: Maximum number of the items to retrieve. Its value cannot exceed 1000.

e filter: A function that accepts an item and checks if it should be returned. If no filtering should be applied,
set it to null.

A full example is given below.

108 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

long sequence = rb.headSequence();
for(;;) {
ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 1, 10, null);
ReadResultSet<String> rs = f.get();
for (String s : rs) {
System.out.println(s);
+

sequence+=rs.readCount () ;

Please take a careful look at how your sequence is being incremented. You cannot always rely on the number of
items being returned if the items are filtered out.

7.6.11 Using Async Methods

Hazelcast Ringbuffer provides asynchronous methods for more powerful operations like batched writing or batched
reading with filtering. To make these methods synchronous, just call the method get () on the returned future.

Please see the following example code.

ICompletableFuture f = ringbuffer.addAsync(item, OverflowPolicy.FAIL);
f.get();

However, you can also use ICompletableFuture to get notified when the operation has completed. The advantage
of ICompletableFuture is that the thread used for the call is not blocked till the response is returned.

Please see the below code as an example of when you want to get notified when a batch of reads has completed.

ICompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, min, max, someFilter);
f.andThen(new ExecutionCallback<ReadResultSet<String>>() {
@0verride
public void onResponse(ReadResultSet<String> response) {
for (String s : response) {
System.out.println("Received:" + s);

}

@0verride
public void onFailure(Throwable t) {
t.printStackTrace();
}
b;

7.6.12 Ringbuffer Configuration Examples

The following shows the declarative configuration of a Ringbuffer called rb. The configuration is modeled after the
Ringbuffer defaults.

<ringbuffer name="rb">
<capacity>10000</capacity>
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<time-to-live-seconds>0</time-to-live-seconds>
<in-memory-format>BINARY</in-memory-format>
</ringbuffer>

7.7. TOPIC 109

You can also configure a Ringbuffer programmatically. The following is a programmatic version of the above
declarative configuration.

RingbufferConfig rbConfig = new RingbufferConfig("rb")
.setCapacity(10000)
.setBackupCount (1)
.setAsyncBackupCount (0)
.setTimeToLiveSeconds (0)
.setInMemoryFormat (InMemoryFormat .BINARY) ;
Config config = new Config();
config.addRingbufferConfig(rbConfig) ;

7.7 Topic

Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple subscribers.
This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and subscribing operations are
cluster wide. When a member subscribes to a topic, it is actually registering for messages published by any member
in the cluster, including the new members that joined after you add the listener.

I NOTE: Publish operation is async. It does not wait for operations to run in remote members; it works as
fire and forget.

7.7.1 Getting a Topic and Publishing Messages

Use the HazelcastInstance getTopic method to get the Topic, then use the topic publish method to publish your
messages (messageObject).

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessagelListener;

public class Sample implements MessagelListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(sample) ;
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);

}
}
}
}

/e

110 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

private final Executor messageExecutor = Executors.newSingleThreadExecutor();

}

Hazelcast Topic uses the MessageListener interface to listen for events that occur when a message is received.
Please refer to the Listening for Topic Messages section for information on how to create a message listener class
and register it.

7.7.2 Getting Topic Statistics

Topic has two statistic variables that you can query. These values are incremental and local to the member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic("myTopicName");

myTopic.getLocalTopicStats() .getPublishOperationCount () ;
myTopic.getLocalTopicStats() .getReceiveOperationCount () ;

getPublishOperationCount and getReceiveOperationCount returns the total number of published and received
messages since the start of this member, respectively. Please note that these values are not backed up, so if the
member goes down, these values will be lost.

You can disable this feature with topic configuration. Please see the Configuring Topic section.

NOTE: These statistics values can be also viewed in Management Center. Please see Monitoring Topics.

7.7.3 Understanding Topic Behavior

Each cluster member has a list of all registrations in the cluster. When a new member is registered for a topic,
it sends a registration message to all members in the cluster. Also, when a new member joins the cluster, it will
receive all registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter globalOrderEnabled.

7.7.3.1 Ordering Messages as Published

If globalOrderEnabled is disabled, messages are not ordered and listeners (subscribers) process the messages in
the order that the messages are published. If cluster member M publishes messages m1, m2, m3, ..., mn to a
topic T, then Hazelcast makes sure that all of the subscribers of topic T will receive and process m1, m2, m3, ...,
mn in the given order.

Here is how it works. Let’s say that we have three members (memberl, member2 and member3) and that member!
and member2 are registered to a topic named news. Note that all three members know that member! and member2
are registered to news.

In this example, member! publishes two messages, al and a2, and members publishes two messages, c1 and c2.
When member! and member3 publish a message, they will check their local list for registered members, they will
discover that member! and member2 are in their lists, and then they will fire messages to those members. One
possible order of the messages received could be the following.

memberl -> c1, al, a2, c2

member2 -> cl1, c2, al, a2

7.7. TOPIC 111

7.7.3.2 Ordering Messages for Members

If globalOrderEnabled is enabled, all members listening to the same topic will get its messages in the same order.

Here is how it works. Let’s say that we have three members (member1, member2 and member3) and that member!
and member?2 are registered to a topic named news. Note that all three members know that member! and member2
are registered to news.

In this example, member! publishes two messages: al and a2, and member3 publishes two messages: c1 and c2.
When a member publishes messages over the topic news, it first calculates which partition the news ID corresponds
to. Then it sends an operation to the owner of the partition for that member to publish messages. Let’s assume that
news corresponds to a partition that member2 owns. member! and member3 first sends all messages to member?2.
Assume that the messages are published in the following order:

memberl -> al, cl1, a2, c2

member2 then publishes these messages by looking at registrations in its local list. It sends these messages to
memberl and member2 (it makes a local dispatch for itself).

memberl -> al, cl, a2, c2
member2 -> al, c1, a2, c2

This way we guarantee that all members will see the events in the same order.

7.7.3.3 Keeping Generated and Published Order the Same

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the received message.
For all events in Hazelcast, the order that events are generated and the order they are published to the user are
guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property hazelcast.event.thread.count
(default is five). For a specific event source (for a particular topic name), hash of that source’s name % 5 gives the
ID of the responsible thread. Note that there can be another event source (entry listener of a map, item listener of a
collection, etc.) corresponding to the same thread. In order not to make other messages to block, heavy processing
should not be done in this thread. If there is time-consuming work that needs to be done, the work should be
handed over to another thread. Please see the Getting a Topic and Publishing Messages section.

7.7.4 Configuring Topic

To configure a topic, set the topic name, decide on statistics and global ordering, and set message listeners. Default
values are:

e global-ordering is false, meaning that by default, there is no guarantee of global order.
e statistics is true, meaning that by default, statistics are calculated.

You can see the example configuration snippets below.

Declarative:

<hazelcast>

<topic name="yourTopicName">
<global-ordering-enabled>true</global-ordering-enabled>
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>MessagelListenerImpl</message-listener>
</message-listeners>
</topic>

</hazelcast>

112 CHAPTER 7. DISTRIBUTED DATA STRUCTURES
Programmatic:

TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled(true);
topicConfig.setStatisticsEnabled(true);
topicConfig.setName("yourTopicName");
MessageListener<String> implementation = new MessageListener<String>() {

@0verride

public void onMessage(Message<String> message) {

// process the message

}
};
topicConfig.addMessageListenerConfig(new ListenerConfig(implementation));
HazelcastInstance instance = Hazelcast.newHazelcastInstance()

Topic configuration has the following elements.

e statistics-enabled: Default is true, meaning statistics are calculated.
e global-ordering-enabled: Default is false, meaning there is no global order guarantee.
e message-listeners: Lets you add listeners (listener classes) for the topic messages.

Besides the above elements, there are the following system properties that are topic related but not topic specific:

- ‘hazelcast.event.queue.capacity‘ with a default value of 1,000,000
- ‘hazelcast.event.queue.timeout.millis‘ with a default value of 250
- ‘hazelcast.event.thread.count‘ with a default value of 5

For a description of these parameters, please see the Global Event Configuration section.

7.8 Reliable Topic

The Reliable Topic data structure was introduced in Hazelcast 3.5. The Reliable Topic uses the same ITopic
interface as a regular topic. The main difference is that Reliable Topic is backed up by the Ringbuffer (also
introduced with Hazelcast 3.5) data structure. The following are the advantages of this approach:

e Events are not lost since the Ringbuffer is configured with one synchronous backup by default.

e Fach Reliable ITopic gets its own Ringbuffer; if a topic has a very fast producer, it will not lead to problems
at topics that run at a slower pace.

e Since the event system behind a regular ITopic is shared with other data structures (e.g., collection listeners),
you can run into isolation problems. This does not happen with the Reliable ITopic.

7.8.1 Sample Reliable I'Topic Code

import com.hazelcast.core.Topic;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.MessagelListener;

public class Sample implements MessagelListener<MyEvent> {

public static void main(String[] args) {
Sample sample = new Sample();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getReliableTopic("default");
topic.addMessagelistener(sample);

7.8. RELIABLE TOPIC 113

topic.publish(new MyEvent());
}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());

}

You can configure the Reliable ITopic using its Ringbuffer. If a Reliable Topic has the name Foo, then you
can configure this topic by adding a ReliableTopicConfig for a Ringbuffer with the name Foo. By default, a
Ringbuffer does not have any TTL (time to live) and it has a limited capacity; you may want to change that
configuration.

By default, the Reliable ITopic uses a shared thread pool. If you need better isolation, you can configure a custom
executor on the ReliableTopicConfig.

Because the reads on a Ringbuffer are not destructive, batching is easy to apply. ITopic uses read batching and
reads ten items at a time (if available) by default.

7.8.2 Slow Consumers

The Reliable ITopic provides control and a way to deal with slow consumers. It is unwise to keep events for a slow
consumer in memory indefinitely since you do not know when the slow consumer is going to catch up. You can
control the size of the Ringbuffer by using its capacity. For the cases when a Ringbuffer runs out of its capacity,
you can specify the following policies for the TopicOverloadPolicy configuration:

e DISCARD_OLDEST: Overwrite the oldest item, even if a TTL is set. In this case the fast producer supersedes a
slow consumer.

e DISCARD_NEWEST: Discard the newest item.

e BLOCK: Wait until the items are expired in the Ringbuffer.

e ERROR: Immediately throw TopicOverloadException if there is no space in the Ringbuffer.

7.8.3 Configuring Reliable Topic

The following are example Reliable Topic configurations.

Declarative:

<reliable-topic name="default">
<statistics-enabled>true</statistics-enabled>
<message-listeners>
<message-listener>

</message-listener>
</message-listeners>
<read-batch-size>10</read-batch-size>
<topic-overload-policy>BLOCK</topic-overload-policy>
</reliable-topic>

Programmatic:

Config config = new Config();
ReliableTopicConfig rtConfig = config.getReliableTopicConfig();
rtConfig.setTopicOverloadPolicy(TopicOverloadPolicy.BLOCK)
.setReadBatchSize(10)
.setStatisticsEnabled(true);

114 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Reliable Topic configuration has the following elements.

e statistics-enabled: Enables or disables the statistics collection for the Reliable Topic. The default value
is true.

e message-listener: Message listener class that listens to the messages when they are added or removed.

e read-batch-size: Minimum number of messages that Reliable Topic will try to read in batches. The default
value is 10.

e topic-overload-policy: Policy to handle an overloaded topic. Available values are DISCARD_QOLDEST,
DISCARD_NEWEST, BLOCK and ERROR. The default value is ‘BLOCK. See Slow Consumers for definitions of
these policies.

7.9 Lock

ILock is the distributed implementation of java.util.concurrent.locks.Lock, meaning that if you lock using
an [Lock, the critical section that it guards is guaranteed to be executed by only one thread in the entire cluster.
Even though locks are great for synchronization, they can lead to problems if not used properly. Also note that
Hazelcast Lock does not support fairness.

7.9.1 Using Try-Catch Blocks with Locks

Always use locks with ¢ry-catch blocks. This will ensure that locks are released if an exception is thrown from the
code in a critical section. Also note that the lock method is outside the try-catch block because we do not want to
unlock if the lock operation itself fails.

import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLock");
lock.lock();
try {
// do something here
} finally {
lock.unlock();
¥

7.9.2 Releasing Locks with tryLock Timeout

If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever. To avoid this,
use tryLock with a timeout value. You can set a high value (normally it should not take that long) for tryLock.
You can check the return value of tryLock as follows:

if (lock.tryLock (10, TimeUnit.SECONDS)) {
try {
// do some stuff here..
} finally {
lock.unlock();
}
} else {
// warning

}

7.9. LOCK 115

7.9.3 Avoiding Waiting Threads with Lease Time

You can also avoid indefinitely waiting threads by using lock with lease time—the lock will be released in the given
lease time. The lock can be safely unlocked before the lease time expires. Note that the unlock operation can
throw an I1legalMonitorStateException if the lock is released because the lease time expires. If that is the case,
critical section guarantee is broken.

Please see the below example.

lock.lock(5, TimeUnit.SECONDS)
try {
// do some stuff here..
} finally {
try {
lock.unlock();
} catch (IllegalMonitorStateException ex){
// WARNING Critical section guarantee can be broken
}
}

You can also specify a lease time when trying to acquire a lock: tryLock(time, unit, leaseTime, leaseUnit).
In that case, it tries to acquire the lock within the specified lease time. If the lock is not available, the current
thread becomes disabled for thread scheduling purposes until either it acquires the lock or the specified waiting
time elapses. Note that this lease time cannot be longer than the time you specify with the system property
hazelcast.lock.max.lease.time.seconds. Please see the System Properties section to see the description of
this property and to learn how to set a system property.

7.9.4 Understanding Lock Behavior

e Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will keep your
locks safe and available. Moreover, when a member leaves the cluster, all the locks acquired by that dead
member will be removed so that those locks are immediately available for live members.

e Locks are re-entrant. The same thread can lock multiple times on the same lock. Note that for other threads
to be able to require this lock, the owner of the lock must call unlock as many times as the owner called lock.

e In the split-brain scenario, the cluster behaves as if it were two different clusters. Since two separate clusters
are not aware of each other, two members from different clusters can acquire the same lock. For more
information on places where split brain syndrome can be handled, please see split brain syndrome.

e Locks are not automatically removed. If a lock is not used anymore, Hazelcast will not automatically garbage
collect the lock. This can lead to an OutOfMemoryError. If you create locks on the fly, make sure they are
destroyed.

e Hazelcast IMap also provides locking support on the entry level with the method IMap.lock(key). Although
the same infrastructure is used, IMap.lock(key) is not an ILock and it is not possible to expose it directly.

7.9.5 Synchronizing Threads with ICondition

ICondition is the distributed implementation of the notify, notifyAll and wait operations on the Java object.
You can use it to synchronize threads across the cluster. More specifically, you use ICondition when a thread’s
work depends on another thread’s output. A good example is producer/consumer methodology.

Please see the below code examples for a producer/consumer implementation.

Producer thread:

116 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!shouldProduce()) {
condition.await(); // frees the lock and waits for signal
// when it wakes up it re-acquires the lock
// if available or waits for it to become
// available
}
produce() ;
condition.signalAll();
} finally {
lock.unlock();
}

. NOTE: The method await () takes time value and time unit as arguments. If you specify a negative value
for the time, it is interpreted as infinite.

Consumer thread:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock("myLockId");
ICondition condition = lock.newCondition("myConditionId");

lock.lock();
try {
while (!canConsume()) {
condition.await(); // frees the lock and waits for signal
// when it wakes up it re-acquires the lock if
// available or waits for it to become
// available
}
consume () ;
condition.signalAll();
} finally {
lock.unlock();
}

7.10 TAtomicLong

Hazelcast TAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong. It
offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and incrementAndGet. Since
TAtomicLong is a distributed implementation, these operations involve remote calls and thus their performances
differ from AtomicLong.

The following example code creates an instance, increments it by a million, and prints the count.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong counter = hazelcastInstance.getAtomicLong("counter");
for (int k = 0; k < 1000 * 1000; k++) {
if (k % 500000 == 0) {

7.10. IATOMICLONG 117

System.out.println("At: " + k);

}
counter.incrementAndGet () ;
}
System.out.printf("Count is %s\n", counter.get());
}
}

When you start other instances with the code above, you will see the count as member count times a million.

7.10.1 Sending Functions to IAtomicLong

You can send functions to an IAtomicLong. IFunction is a Hazelcast owned, single method interface. The following
sample IFunction implementation adds two to the original value.

private static class Add2Function implements IFunction <Long, Long> {
@0verride
public Long apply(Long input) {
return input + 2;
b
3

7.10.2 Executing Functions on IAtomicLong

You can use the following methods to execute functions on IAtomicLong.

e apply: Applies the function to the value in IAtomicLong without changing the actual value and returning
the result.

e alter: Alters the value stored in the IAtomicLong by applying the function. It will not send back a result.

e alterAndGet: Alters the value stored in the TAtomicLong by applying the function, storing the result in the
TAtomicLong and returning the result.

e getAndAlter: Alters the value stored in the IAtomicLong by applying the function and returning the original
value.

The following sample code includes these methods.

public class Member {
public static void main(String[] args) {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
TAtomicLong atomicLong = hazelcastInstance.getAtomicLong("counter");

atomicLong.set(1);

long result = atomicLong.apply(new Add2Function());
System.out.println("apply.result: " + result);
System.out.println("apply.value: " + atomicLong.get());

atomicLong.set(1);
atomicLong.alter(new Add2Function());
System.out.println("alter.value: " + atomicLong.get());

atomicLong.set(1);

result = atomicLong.alterAndGet(new Add2Function());
System.out.println("alterAndGet.result: " + result);
System.out.println("alterAndGet.value: " + atomicLong.get());

118 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

atomicLong.set(1);

result = atomicLong.getAndAlter(new Add2Function());
System.out.println("getAndAlter.result: " + result);
System.out.println("getAndAlter.value: " + atomicLong.get());

7.10.3 Reasons to Use Functions with IAtomic

The reason for using a function instead of a simple code line like atomicLong.set (atomicLong.get() + 2)); is
that the IAtomicLong read and write operations are not atomic. Since IAtomicLong is a distributed implementation,
those operations can be remote ones, which may lead to race problems. By using functions, the data is not pulled
into the code, but the code is sent to the data. This makes it more scalable.

! NOTE: IAtomicLong has one synchronous backup and no asynchronous backups. Its backup count is not
configurable.

7.11 ISemaphore

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore.

7.11.1 Controlling Thread Counts with Permits

Semaphores offer permits to control the thread counts when performing concurrent activities. To execute a
concurrent activity, a thread grants a permit or waits until a permit becomes available. When the execution is
completed, the permit is released.

! NOTE: Semaphore with a single permit may be considered a lock. Unlike the locks, however, when semaphores
are used, any thread can release the permit, and semaphores can have multiple permits.

! NOTE: Hazelcast ISemaphore does not support fairness at all times. There are some edge cases where the
fairness is not honored, e.g., when the permit becomes available at the time when an internal timeout occurs.

When a permit is acquired on ISemaphore:

e if there are permits, the number of permits in the semaphore is decreased by one and the calling thread
performs its activity. If there is contention, the longest waiting thread will acquire the permit before all other
threads.

e if no permits are available, the calling thread blocks until a permit becomes available. When a
timeout happens during this block, the thread is interrupted. When the semaphore is destroyed, an
InstanceDestroyedException is thrown.

7.11.2 Example Semaphore Code

The following example code uses an IAtomicLong resource 1000 times, increments the resource when a thread
starts to use it, and decrements it when the thread completes.

public class SemaphoreMember {
public static void main(String[] args) throws Exception{
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getSemaphore("semaphore");
TAtomicLong resource = hazelcastInstance.getAtomicLong("resource");

7.11. ISEMAPHORE 119

for (int k = 0 ; k < 1000 ; k++) {

System.out.println("At iteration: " + k + ", Active Threads: " + resource.get());
semaphore.acquire() ;
try {

resource.incrementAndGet () ;
Thread.sleep(1000);
resource.decrementAndGet () ;
} finally {
semaphore.release();
}
}
System.out.println("Finished");
}
}

Let’s limit the concurrent access to this resource by allowing at most three threads. You can configure it declaratively
by setting the initial-permits property, as shown below.

<semaphore name="semaphore">
<initial-permits>3</initial-permits>
</semaphore>

l NOTE: If there is a shortage of permits while the semaphore is being created, value of this property can be
set to a negative number.

If you execute the above SemaphoreMember class 5 times, the output will be similar to the following:
At iteration: O, Active Threads: 1
At iteration: 1, Active Threads: 2
At iteration: 2, Active Threads: 3
At iteration: 3, Active Threads: 3
At iteration: 4, Active Threads: 3

As you can see, the maximum count of concurrent threads is equal or smaller than three. If you remove the
semaphore acquire/release statements in SemaphoreMember, you will see that there is no limitation on the number
of concurrent usages.

Hazelcast also provides backup support for ISemaphore. When a member goes down, you can have another member
take over the semaphore with the permit information (permits are automatically released when a member goes
down). To enable this, configure synchronous or asynchronous backup with the properties backup-count and
async-backup-count (by default, synchronous backup is already enabled).

7.11.3 Configuring Semaphore

The following are example semaphore configurations.

Declarative:

<semaphore name='"semaphore">
<backup-count>1</backup-count>
<async-backup-count>0</async-backup-count>
<initial-permits>3</initial-permits>
</semaphore>

Programmatic:

120 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Config config = new Config();

SemaphoreConfig semaphoreConfig = config.getSemaphoreConfig();

semaphoreConfig.setName("semaphore").setBackupCount("1")
.setInitialPermits("3");

Semaphore configuration has the below elements.

e initial-permits: the thread count to which the concurrent access is limited. For example, if you set it to
“3”, concurrent access to the object is limited to 3 threads.

e backup-count: Number of synchronous backups.

e async-backup-count: Number of asynchronous backups.

! NOTE: If high performance is more important than not losing the permit information, you can disable the
backups by setting backup-count to 0.

7.12 TAtomicReference

The IAtomicLong is very useful if you need to deal with a long, but in some cases you need to deal with a
reference. That is why Hazelcast also supports the IAtomicReference which is the distributed version of the
java.util.concurrent.atomic.AtomicReference.

Here is an TAtomicReference example.

public class Member {
public static void main(String[] args) {
Config config = new Config();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config) ;

TIAtomicReference<String> ref = hz.getAtomicReference("reference");
ref.set("foo");

System.out.println(ref.get());

System.exit (0);

When you execute the above example, you will see the following output.

foo

7.12.1 Sending Functions to IAtomicReference

Just like TAtomicLong, TAtomicReference has methods that accept a ‘function’ as an argument, such as alter,
alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

e From a performance point of view, it is better to send the function to the data then the data to the function.
Often the function is a lot smaller than the data and therefore cheaper to send over the line. Also the function
only needs to be transferred once to the target machine, and the data needs to be transferred twice.

e You do not need to deal with concurrency control. If you would perform a load, transform, store, you could
run into a data race since another thread might have updated the value you are about to overwrite.

7.13. ICOUNTDOWNLATCH 121

7.12.2 Using IAtomicReference

Below are some issues you need to know when you use IAtomicReference.

e TAtomicReference works based on the byte-content and not on the object-reference. If you use the
compareAndSet method, do not change to original value because its serialized content will then be dif-
ferent. It is also important to know that if you rely on Java serialization, sometimes (especially with
hashmaps) the same object can result in different binary content.

e TAtomicReference will always have one synchronous backup.

e All methods returning an object will return a private copy. You can modify the private copy, but the rest of
the world will be shielded from your changes. If you want these changes to be visible to the rest of the world,
you need to write the change back to the TAtomicReference; but be careful about introducing a data-race.

e The ‘in-memory format’ of an IAtomicReference is binary. The receiving side does not need to have the
class definition available unless it needs to be deserialized on the other side (e.g., because a method like ‘alter’
is executed). This deserialization is done for every call that needs to have the object instead of the binary
content, so be careful with expensive object graphs that need to be deserialized.

e If you have an object with many fields or an object graph, and you only need to calculate some information
or need a subset of fields, you can use the apply method. With the apply method, the whole object does not
need to be sent over the line; only the information that is relevant is sent.

7.13 ICountDownLatch

Hazelcast ICountDownLatch is the distributed implementation of java.util.concurrent.CountDownLatch.

7.13.1 Gate-Keeping Concurrent Activities

CountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads to wait for other
threads to complete their operations.

The following code samples describe the mechanism of ICountDownLatch. Assume that there is a leader process
and there are follower processes that will wait until the leader completes. Here is the leader:

public class Leader {
public static void main(String[] args) throws Exception {

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Starting");
latch.trySetCount(1);
Thread.sleep(30000);
latch.countDown() ;
System.out.println("Leader finished");
latch.destroy();

Since only a single step is needed to be completed as a sample, the above code initializes the latch with 1. Then,
the code sleeps for a while to simulate a process and starts the countdown. Finally, it clears up the latch. Let’s
write a follower:

public class Follower {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICountDownLatch latch = hazelcastInstance.getCountDownLatch("countDownLatch");
System.out.println("Waiting");
boolean success = latch.await(10, TimeUnit.SECONDS);

122 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

System.out.println("Complete: " + success);
}
}

The follower class above first retrieves ICountDownLatch and then calls the await method to enable the thread to
listen for the latch. The method await has a timeout value as a parameter. This is useful when the countDown
method fails. To see ICountDownLatch in action, start the leader first and then start one or more followers. You
will see that the followers will wait until the leader completes.

7.13.2 Recovering From Failure

In a distributed environment, the counting down cluster member may go down. In this case, all listeners are notified
immediately and automatically by Hazelcast. The state of the current process just before the failure should be
verified and ‘how to continue now’ should be decided (e.g. restart all process operations, continue with the first
failed process operation, throw an exception, etc.).

7.13.3 Using ICountDownLatch

Although the ICountDownLatch is a very useful synchronization aid, you will probably not use it on a daily basis.
Unlike Java’s implementation, Hazelcast’s ICountDownLatch count can be reset after a countdown has finished,
but not during an active count.

! NOTE: ICountDownLatch has 1 synchronous backup and no asynchronous backups. Its backup count is not
configurable. Also, the count cannot be re-set during an active count, it should be re-set after the countdown is
finished.

7.14 1dGenerator

Hazelcast IdGenerator is used to generate cluster-wide unique identifiers. Generated identifiers are long type
primitive values between 0 and Long.MAX_VALUE.

7.14.1 Generating Cluster-Wide IDs

ID generation occurs almost at the speed of AtomicLong.incrementAndGet(). A group of 10,000 identifiers is
allocated for each cluster member. In the background, this allocation takes place with an ITAtomicLong incremented
by 10,000. Once a cluster member generates IDs (allocation is done), IdGenerator increments a local counter. If a
cluster member uses all IDs in the group, it will get another 10,000 IDs. This way, only one time of network traffic
is needed, meaning that 9,999 identifiers are generated in memory instead of over the network. This is fast.

Let’s write a sample identifier generator.

public class IdGeneratorExample {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IdGenerator idGen = hazelcastInstance.getIdGenerator("newId");
while (true) {
Long id = idGen.newIdQ);
System.err.println("Id: " + id);
Thread.sleep(1000);
}
}
}

Let’s run the above code two times. The output will be similar to the following.

7.15. REPLICATED MAP 123

Members [1] {
Member [127.0.0.1]:5701 this

}

Id: 1
Id: 2
Id: 3

Members [2] {
Member [127.0.0.1]:5701
Member [127.0.0.1]1:5702 this

b

Id: 10001
Id: 10002
Id: 10003

7.14.2 Unique IDs and Duplicate IDs

You can see that the generated IDs are unique and counting upwards. If you see duplicated identifiers, it means
your instances could not form a cluster.

! NOTE: Generated IDs are unique during the life cycle of the cluster. If the entire cluster is restarted, IDs
start from 0, again or you can initialize to a value using the init () method of IdGenerator.

! NOTE: IdGenerator has one synchronous backup and no asynchronous backups. Its backup count is not
configurable.

7.15 Replicated Map

A Replicated Map is a distributed key-value data structure where the data is replicated to all members in the
cluster. It provides full replication of entries to all members for high speed access. The following are its features:

When you have a Replicated Map in the cluster, your clients can communicate with any cluster member.
All cluster members are able to perform write operations.

It supports all methods of the interface java.util.Map.

It supports automatic initial fill up when a new member is started.

It provides statistics for entry access, write and update so that you can monitor it using Hazelcast Management
Center.

New members joining to the cluster pull all the data from the existing members.
e You can listen to entry events using listeners. Please refer to Using EntryListener on Replicated Map.

7.15.1 Replicating Instead of Partitioning

A Replicated Map does not partition data (it does not spread data to different cluster members); instead, it
replicates the data to all members. All other data structures are partitioned in design.

Replication leads to higher memory consumption. However, a Replicated Map has faster read and write access
since the data is available on all members.

Writes could take place on local/remote members in order to provide write-order, eventually being replicated to all
other members.

Replicated Map is suitable for objects, catalog data, or idempotent calculable data (such as HTML pages). It fully
implements the java.util.Map interface, but it lacks the methods from java.util.concurrent.ConcurrentMap
since there are no atomic guarantees to writes or reads.

124 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

! NOTE: If Replicated Map is used from a dummy client and this dummy client is connected to a lite member,
the entry listeners cannot be registered/de-registered.

! NOTE: You cannot use Replicated Map from a lite member. A com.hazelcast.replicatedmap.ReplicatedMapCantBeC
is thrown if com.hazelcast.core.HazelcastInstance#getReplicatedMap (name) is invoked on a lite member.

7.15.2 Example Replicated Map Code

Here is an example of Replicated Map code. The HazelcastInstance’s getReplicatedMap method gets the Replicated
Map, and the Replicated Map’s put method creates map entries.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;
import java.util.Collection;

import java.util.Map;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<String, Customer> customers = hazelcastInstance.getReplicatedMap("customers");
customers.put("1", new Customer("Joe", "Smith"));

customers.put("2", new Customer("Ali", "Selam"));

customers.put("3", new Customer("Avi", "Noyan"));

Collection<Customer> colCustomers = customers.values();
for (Customer customer : colCustomers) {
// process customer

}

HazelcastInstance: :getReplicatedMap returns com.hazelcast.core.ReplicatedMap which, as stated above,
extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry listeners or
retrieving values in an expected order.

7.15.3 Considerations for Replicated Map

If you have a large cluster or very high occurrences of updates, the Replicated Map may not scale linearly as
expected since it has to replicate update operations to all members in the cluster.

Since the replication of updates is performed in an asynchronous manner, we recommend you enable back pressure
in case your system has high occurrences of updates. Please refer to the Back Pressure section to learn how to
enable it.

Replicated Map has an anti-entropy system that will converge values to a common one if some of the members are
missing replication updates.

Replicated Map does not guarantee eventual consistency because there are some edge cases that fail to provide
consistency.

Replicated Map uses the internal partition system of Hazelcast in order to serialize updates happening on the same
key at the same time. This happens by sending updates of the same key to the same Hazelcast member in the
cluster.

b2

Due to the asynchronous nature of replication, a Hazelcast member could die before successfully replicating a “write
operation to other members after sending the “write completed” response to its caller during the write process. In
this scenario, Hazelcast’s internal partition system will promote one of the replicas of the partition as the primary
one. The new primary partition will not have the latest “write” since the dead member could not successfully
replicate the update. (This will leave the system in a state that the caller is the only one that has the update and

7.15. REPLICATED MAP 125

the rest of the cluster have not.) In this case even the anti-entropy system simply could not converge the value
since the source of true information is lost for the update. This leads to a break in the eventual consistency because
different values can be read from the system for the same key.

Other than the aforementioned scenario, the Replicated Map will behave like an eventually consistent system with
read-your-writes consistency.

7.15.4 Configuration Design for Replicated Map

There are several technical design decisions you should consider when you configure a Replicated Map.
Initial Provisioning

If a new member joins the cluster, there are two ways you can handle the initial provisioning that is executed to
replicate all existing values to the new member. Each involves how you configure the async fill up.

First, you can configure async fill up to true, which does not block reads while the fill up operation is underway.
That way, you have immediate access on the new member, but it will take time until all the values are eventually
accessible. Not yet replicated values are returned as non-existing (null).

Second, you can configure for a synchronous initial fill up (by configuring the async fill up to false), which blocks
every read or write access to the map until the fill up operation is finished. Use this with caution since it might
block your application from operating.

7.15.5 Configuring Replicated Map

Replicated Map can be configured programmatically or declaratively.

7.15.5.1 Replicated Map Declarative Configuration

You can declare your Replicated Map configuration in the Hazelcast configuration file hazelcast.xml. Please see
the following example.

<replicatedmap name="default">
<in-memory-format>BINARY</in-memory-format>
<async-fillup>true</async-fillup>
<statistics-enabled>true</statistics-enabled>
<entry-listeners>
<entry-listener include-value="true">
com.hazelcast.examples.EntryListener
</entry-listener>
</entry-listeners>
</replicatedmap>

e in-memory-format: Internal storage format. Please see the In-Memory Format section. The default value is
OBJECT.

e async-fillup: Specifies whether the Replicated Map is available for reads before the initial replication is
completed. The default value is true. If set to false (i.e., synchronous initial fill up), no exception will be
thrown when the Replicated Map is not yet ready, but null values can be seen until the initial replication is
completed.

e statistics-enabled: If set to true, the statistics such as cache hits and misses are collected. The default
value is true.

e entry-listener: Full canonical classname of the EntryListener implementation.

— entry-listener#include-value: Specifies whether the event includes the value or not. Sometimes
the key is enough to react on an event. In those situations, setting this value to false will save a
deserialization cycle. The default value is true.

— entry-listener#local: Not used for Replicated Map since listeners are always local.

126 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

7.15.5.2 Replicated Map Programmatic Configuration

You can configure a Replicated Map programmatically, as you can do for all other data structures in Hazelcast.
You must create the configuration upfront, when you instantiate the HazelcastInstance. A basic example of how
to configure the Replicated Map using the programmatic approach is shown in the following snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
config.getReplicatedMapConfig("default");

replicatedMapConfig.setInMemoryFormat (InMemoryFormat.BINARY);

All properties that can be configured using the declarative configuration are also available using programmatic
configuration by transforming the tag names into getter or setter names.

7.15.5.3 In-Memory Format on Replicated Map

Currently, two in-memory-format values are usable with the Replicated Map.

e OBJECT (default): The data will be stored in deserialized form. This configuration is the default choice since
the data replication is mostly used for high speed access. Please be aware that changing the values without
a Map: :put is not reflected on the other members but is visible on the changing members for later value
accesses.

e BINARY: The data is stored in serialized binary format and has to be deserialized on every request. This
option offers higher encapsulation since changes to values are always discarded as long as the newly changed
object is not explicitly Map: :put into the map again.

7.15.6 Using EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a Replicated Map serves the same purpose as it would on other
data structures in Hazelcast. You can use it to react on add, update, and remove operations. Replicated Maps do
not yet support eviction.

7.15.6.1 Difference in EntryListener on Replicated Map

The fundamental difference in Replicated Map behavior, compared to the other data structures, is that an
EntryListener only reflects changes on local data. Since replication is asynchronous, all listener events are fired only
when an operation is finished on a local member. Events can fire at different times on different members.

7.15.6.2 Example of Replicated Map EntryListener

Here is a code example for using EntryListener on a Replicated Map.

The HazelcastInstance’s getReplicatedMap method gets a Replicated Map (customers), and the
ReplicatedMap’s addEntryListener method adds an entry listener to the Replicated Map. Then, the
ReplicatedMap’s put method adds a Replicated Map entry and updates it. The method remove removes the entry.

import com.hazelcast.core.EntryEvent;

import com.hazelcast.core.EntryListener;
import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.ReplicatedMap;

7.15. REPLICATED MAP 127

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ReplicatedMap<String, Customer> customers =
hazelcastInstance.getReplicatedMap("customers");

customers.addEntryListener(new EntryListener<String, Customer>() {
@0verride
public void entryAdded(EntryEvent<String, Customer> event) {
log("Entry added: " + event);
}

@0verride
public void entryUpdated(EntryEvent<String, Customer> event) {
log("Entry updated: " + event);

}

@0verride

public void entryRemoved(EntryEvent<String, Customer> event) {
log("Entry removed: " + event);

}

@0verride

public void entryEvicted(EntryEvent<String, Customer> event) {
// Currently not supported, will never fire

}
b
customers.put("1", new Customer("Joe", "Smith")); // add event
customers.put("1", new Customer("Ali", "Selam")); // update event

customers.remove("1"); // remove event

128 CHAPTER 7. DISTRIBUTED DATA STRUCTURES

Chapter 8

Distributed Events

You can register for Hazelcast entry events so you will be notified when those events occur. Event Listeners are
cluster-wide—when a listener is registered in one member of cluster, it is actually registered for events that originated
at any member in the cluster. When a new member joins, events originated at the new member will also be
delivered.

An Event is created only if you registered an event listener. If no listener is registered, then no event will be created.
If you provided a predicate when you registered the event listener, pass the predicate before sending the event to
the listener (member/client).

As a rule of thumb, your event listener should not implement heavy processes in its event methods that block the
thread for a long time. If needed, you can use ExecutorService to transfer long running processes to another
thread and thus offload the current listener thread.

! NOTE: In a failover scenario, events are mot highly available and may get lost. Eventing mechanism is
being improved for failover scenarios.

8.1 Event Listeners for Hazelcast Members
Hazelcast offers the following event listeners:

Membership Listener for cluster membership events.

Distributed Object Listener for distributed object creation and destroy events.
Migration Listener for partition migration start and complete events.
Partition Lost Listener for partition lost events.

Lifecycle Listener for HazelcastInstance lifecycle events.

Entry Listener for IMap and MultiMap entry events.

Item Listener for IQueue, ISet and IList item events.

Message Listener for ITopic message events.

Client Listener for client connection events.

8.1.1 Listening for Member Events

The Membership Listener interface has methods that are invoked for the following events.

e memberAdded: A new member is added to the cluster.

e memberRemoved: An existing member leaves the cluster.

e memberAttributeChanged: An attribute of a member is changed. Please refer to Defining Member Attributes
to learn about member attributes.

129

130 CHAPTER 8. DISTRIBUTED EVENTS

To write a Membership Listener class, you implement the MembershipListener interface and its methods.

The following is an example Membership Listener class.

public class ClusterMembershipListener
implements MembershipListener {

public void memberAdded(MembershipEvent membershipEvent) {
System.err.println("Added: " + membershipEvent) ;
}

public void memberRemoved(MembershipEvent membershipEvent) {
System.err.println("Removed: " + membershipEvent) ;

}

public void memberAttributeChanged(MemberAttributeEvent memberAttributeEvent) {
System.err.println("Member attribute changed: " + memberAttributeEvent);

}

}

When a respective event is fired, the membership listener outputs the addresses of the members that joined and
left, and also which attribute changed on which member.

8.1.1.1 Registering Membership Listeners

After you create your class, you can configure your cluster to include the membership listener. Below is an example
using the method addMembershiplListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getCluster () .addMembershiplListener(new ClusterMembershipListener());

With the above approach, there is the possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in the configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

Config config = new Config();
config.addListenerConfig(
new ListenerConfig("com.your-package.ClusterMembershipListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener type="membership-listener">
com.your—-package.ClusterMembershipListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.
<hz:listeners>
<hz:listener class-name="com.your-package.ClusterMembershipListener"/>

<hz:listener implementation="MembershipListener"/>
</hz:listeners>

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 131

8.1.2 Listening for Distributed Object Events

The Distributed Object Listener methods distributedObjectCreated and distributedObjectDestroyed are
invoked when a distributed object is created and destroyed throughout the cluster. To write a Distributed Object
Listener class, you implement the DistributedObjectListener interface and its methods.

The following is an example Distributed Object Listener class.

public class SampleDistObjListener implements DistributedObjectListener {
public static void main(String[] args) {
SampleDistObjListener sample = new SampleDistObjListener();

Config config = new Config();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
hazelcastInstance.addDistributedObjectListener (sample) ;

Collection<DistributedObject> distributedObjects = hazelcastInstance.getDistributedObjects();
for (DistributedObject distributedObject : distributedObjects) {
System.out.println(distributedObject.getName() + "," + distributedObject.getId());
}
}

@0verride

public void distributedObjectCreated(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Created " + instance.getName() + "," + instance.getId());

}

@0verride
public void distributedObjectDestroyed(DistributedObjectEvent event) {
DistributedObject instance = event.getDistributedObject();
System.out.println("Destroyed " + instance.getName() + "," + instance.getId());
}
}

When a respective event is fired, the distributed object listener outputs the event type, and the name, service (for
example, if a Map service provides the distributed object, than it is a Map object), and ID of the object.

8.1.2.1 Registering Distributed Object Listeners

After you create your class, you can configure your cluster to include distributed object listeners. Below is an
example using the method addDistributedObjectListener. You can also see this portion in the above class
creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
SampleDistObjListener sample = new SampleDistObjListener();

hazelcastInstance.addDistributedObjectListener(sample) ;

With the above approach, there is the possibility of missing events between the creation of the instance and
registering the listener. To overcome this race condition, Hazelcast allows you to register the listeners in the
configuration. You can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.SampleDistObjListener"));

132 CHAPTER 8. DISTRIBUTED EVENTS

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.your-package.SampleDistObjListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.SampleDistObjListener"/>
<hz:listener implementation="DistributedObjectListener"/>
</hz:listeners>

8.1.3 Listening for Migration Events
The Migration Listener interface has methods that are invoked for the following events:

e migrationStarted: A partition migration is started.
e migrationCompleted: A partition migration is completed.
e migrationFailed: A partition migration failed.

To write a Migration Listener class, you implement the DistributedObjectListener interface and its methods.

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {

@0verride

public void migrationStarted(MigrationEvent migrationEvent) {
System.err.println("Started: " + migrationEvent);

}

@0verride

public void migrationCompleted(MigrationEvent migrationEvent) {
System.err.println("Completed: " + migrationEvent);

}

@0verride

public void migrationFailed(MigrationEvent migrationEvent) {
System.err.println("Failed: " + migrationEvent);

}

When a respective event is fired, the migration listener outputs the partition ID, status of the migration, the old
member and the new member. The following is an example output.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 133

8.1.3.1 Registering Migration Listeners

After you create your class, you can configure your cluster to include migration listeners. Below is an example
using the method addMigrationListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

PartitionService partitionService = hazelcastInstance.getPartitionService();
partitionService.addMigrationListener(new ClusterMigrationListener) ;

With the above approach, there is the possibility of missing events between the creation of the instance and
registering the listener. To overcome this race condition, Hazelcast allows you to register the listeners in the
configuration. You can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.ClusterMigrationListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.your—-package.ClusterMigrationListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.ClusterMigrationListener"/>
<hz:listener implementation="MigrationListener"/>

</hz:listeners>

8.1.4 Listening for Partition Lost Events

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one of your cluster
members becomes the owner and some of the other members become replica members, based on your configuration.
Nevertheless, data loss may occur if a few members crash simultaneously.

Let‘s consider the following example with three members: N1, N2, N3 for a given partition-0. N1 is owner of
partition-0, and N2 and N3 are the first and second replicas respectively. If N1 and N2 crash simultaneously,
partition-0 loses its data that is configured with less than two backups. For instance, if we configure a map with
one backup, that map loses its data in partition-0 since both owner and first replica of partition-0 have crashed.
However, if we configure our map with two backups, it does not lose any data since a copy of partition-0’s data for
the given map also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how many replicas are
lost for a partition. It listens to PartitionLostEvent instances. Partition lost events are dispatched per partition.

Partition loss detection is done after a member crash is detected by the other members and the crashed member
is removed from the cluster. Please note that false-positive PartitionLostEvent instances may be fired on the
network split errors.

134 CHAPTER 8. DISTRIBUTED EVENTS

8.1.4.1 Writing a Partition Lost Listener Class

To write a Partition Lost Listener, you implement the PartitionLostListener interface and its partitionLost
method, which is invoked when a partition loses its owner and all backups.

The following is an example Partition Lost Listener class.

public class ConsoleLoggingPartitionLostListener implements PartitionLostListener {
@0verride
public void partitionLost(PartitionLostEvent event) {
System.out.println(event) ;

3

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID, the replica
index that is lost, and the member that has detected the partition loss. The following is an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49] :5701}

8.1.4.2 Registering Partition Lost Listeners

After you create your class, you can configure your cluster programmatically or declaratively to include the partition
lost listener. Below is an example of its programmatic configuration.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getPartitionService() .addPartitionLostListener(new ConsolelLoggingPartitionLostListene

The following is an example of the equivalent declarative configuration.

<hazelcast>

<partition-lost-listeners>
<partition-lost-listener>
com.your-package.ConsolelLoggingPartitionLostListener
</partition-lost-listener>
</partition-lost-listeners>

</hazelcast>

8.1.5 Listening for Lifecycle Events

The Lifecycle Listener notifies for the following events:

STARTING: A member is starting.

STARTED: A member started.

SHUTTING_DOWN: A member is shutting down.

SHUTDOWN: A member’s shutdown has completed.

MERGING: A member is merging with the cluster.

MERGED: A member’s merge operation has completed.

CLIENT_CONNECTED: A Hazelcast Client connected to the cluster.
CLINET_DISCONNECTED: A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 135

public class NodeLifecycleListener implements LifecycleListener {
@0verride
public void stateChanged(LifecycleEvent event) {
System.err.println(event) ;

}

This listener is local to an individual member. It notifies the application that uses Hazelcast about the events
mentioned above for a particular member.

8.1.5.1 Registering Lifecycle Listeners

After you create your class, you can configure your cluster to include lifecycle listeners. Below is an example using
the method addLifecycleListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getLifecycleService() .addLifecycleListener(new NodeLifecycleListener());

With the above approach, there is the possibility of missing events between the creation of the instance and
registering the listener. To overcome this race condition, Hazelcast allows you to register the listeners in the
configuration. You can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.your-package.NodeLifecycleListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>

<listeners>
<listener>
com.your-package.NodeLifecycleListener
</listener>
</listeners>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:listeners>
<hz:listener class-name="com.your-package.NodeLifecycleListener"/>
<hz:listener implementation="LifecycleListener"/>

</hz:listeners>

8.1.6 Listening for Map Events
You can listen to map-wide or entry-based events using the listeners provided by the Hazelcast’s eventing framework.
To listen to these events, implement a MapListener sub-interface.

A map-wide event is fired as a result of a map-wide operation. For example, IMap#clear or IMap#evictAll. An
entry-based event is fired after the operations that affect a specific entry. For example, IMap#remove or IMap#evict.

136 CHAPTER 8. DISTRIBUTED EVENTS

8.1.6.1 Catching a Map Event

To catch an event, you should explicitly implement a corresponding sub-interface of a MapListener, such as
EntryAddedListener or MapClearedListener

l NOTE: * The EntryListener interface still can be implemented (we kept it for backward compatibility
reasons). However, if you need to listen to a different event, one that is not available in the EntryListener interface,
you should also implement a relevant MapListener sub-interface.*

Let’s take a look at the following class example.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

static class MyEntryListener implements EntryAddedListener<String, String>,

EntryRemovedListener<String, String>,
EntryUpdatedListener<String, String>,
EntryEvictedListener<String, String> ,
MapEvictedListener,
MapClearedListener {

Q@0verride

public void entryAdded(EntryEvent<String, String> event) {

System.out.println("Entry Added:" + event);
by

Q@Override
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);

3

Q@0verride

public void entryUpdated(EntryEvent<String, String> event) {
System.out.println("Entry Updated:" + event);

¥

@0verride
public void entryEvicted(EntryEvent<String, String> event) {
System.out.println("Entry Evicted:" + event);

3

@0verride
public void mapEvicted(MapEvent event) {
System.out.println("Map Evicted:" + event);

3

@0verride
public void mapCleared(MapEvent event) {
System.out.println("Map Cleared:" + event);

3

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 137

Now, let’s perform some modifications on the map entries using the following example code.

public class Modify {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
String key = "" + System.nanoTime();
String value = "1";
map.put(key, value);
map.put(key, "2");
map.delete(key);

If you execute the Listen class and then the Modify class, you get the following output produced by the Listen
class.

entryAdded:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=null, value=1, event=ADDED, by Member [192.168.1.100]:5702

entryUpdated:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=1, value=2, event=UPDATED, by Member [192.168.1.100]:5702

entryRemoved:EntryEvent {Address[192.168.1.100]:5702} key=251359212222282,
oldValue=2, value=2, event=REMOVED, by Member [192.168.1.100]:5702

public class MyEntryListener implements EntryListener{
private Executor executor = Executors.newFixedThreadPool(5);

@0verride
public void entryAdded(EntryEvent event) {
executor.execute (new DoSomethingWithEvent (event)) ;

}

! NOTE: Please note that the method IMap.clear() does not fire an “EntryRemoved” event, but fires a
“MapCleared” event.

8.1.6.2 Partitions and Entry Listeners

A map listener runs on the event threads that are also used by the other listeners. For example, the collection
listeners and pub/sub message listeners. This means that the entry listeners can access other partitions. Consider
this when you run long tasks, since listening to those tasks may cause the other map/event listeners to starve.

8.1.6.3 Listening for Lost Map Partitions

You can listen to MapPartitionLostEvent instances by registering an implementation of MapPartitionLostListener,
which is also a sub-interface of MapListener.

Let‘s consider the following example code:

138 CHAPTER 8. DISTRIBUTED EVENTS

public static void main(String[] args) {
Config config = new Config();
config.getMapConfig("map") .setBackupCount(1); // might lose data if any member crashes

HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance(config);

IMap<Object, Object> map = instancel.getMap('"map");
map.put (0, 0);

map.addPartitionLostListener (new MapPartitionLostListener() {
@0verride
public void partitionLost(MapPartitionLostEvent event) {
System.out.println(event);
}
19N

Within this example code, a MapPartitionLostListener implementation is registered to a map that is configured
with one backup. For this particular map and any of the partitions in the system, if the partition owner member
and its first backup member crash simultaneously, the given MapPartitionLostListener receives a corresponding
MapPartitionLostEvent. If only a single member crashes in the cluster, there will be no MapPartitionLostEvent
fired for this map since backups for the partitions owned by the crashed member are kept on other members.

Please refer to Listening for Partition Lost Events for more information about partition lost detection and partition
lost events.

8.1.6.4 Registering Map Listeners

After you create your listener class, you can configure your cluster to include map listeners using the method
addEntryListener (as you can see in the example Listen class above). Below is the related portion from this
code, showing how to register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);

With the above approach, there is the possibility of missing events between the creation of the instance and
registering the listener. To overcome this race condition, Hazelcast allows you to register listeners in configuration.
You can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

mapConfig.addEntryListenerConfig(
new EntryListenerConfig("com.yourpackage.MyEntryListener",
false, false));

The following is an example of the equivalent declarative configuration.

<hazelcast>
<map name='"somemap'">

<entry-listeners>

<entry-listener include-value="false" local="false">
com.your—package.MyEntryListener
</entry-listener>
</entry-listeners>

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 139

</map>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:map name='"somemap">
<hz:entry-listeners>
<hz:entry-listener include-value="true"
class-name="com.hazelcast.spring.DummyEntryListener"/>
<hz:entry-listener implementation="dummyEntryListener" local="true"/>
</hz:entry-listeners>
</hz:map>

8.1.6.5 Map Listener Attributes

As you see, there are attributes of the map listeners in the above examples: include-value and local. The
attribute include-value is a boolean attribute that is optional, and if you set it to true, the map event will
contain the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen to the map
on the local member. Its default value is false.

8.1.7 Listening for MultiMap Events

You can listen to entry-based events in the MultiMap using EntryListener. The following is an example listener
class for MultiMap.

public class Listen {

public static void main(String[] args) {
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap("somemap");
map.addEntryListener(new MyEntryListener(), true);
System.out.println("EntryListener registered");

}

static class SampleEntryListener implements EntryListener<String, String>{
Q@0verride
public void entryAdded(EntryEvent<String, String> event) {
System.out.println("Entry Added:" + event);
+

@0verride
public void entryRemoved(EntryEvent<String, String> event) {
System.out.println("Entry Removed:" + event);
}
}
}

8.1.7.1 Registering MultiMap Listeners

After you create your listener class, you can configure your cluster to include MultiMap listeners using the method
addEntryListener (as you can see in the example Listen class above). Below is the related portion from this
code, showing how to register a map listener.

140 CHAPTER 8. DISTRIBUTED EVENTS

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap("somemap");
map.addEntryListener(new MyEntryListener(), true);

With the above approach, there is the possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in the configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

multiMapConfig.addEntryListenerConfig(
new EntryListenerConfig("com.your-package.SampleEntryListener",
false, false));

The following is an example of the equivalent declarative configuration.

<hazelcast>

<multimap name="somemap">
<value-collection-type>SET</value-collection-type>
<entry-listeners>
<entry-listener include-value="false" local="false">
com.your-package.SampleEntryListener
</entry-listener>
</entry-listeners>
</multimap>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:multimap name="default" value-collection-type="LIST">
<hz:entry-listeners>
<hz:entry-listener include-value="false"
class-name="com.your-package.SampleEntryListener" />
<hz:entry-listener implementation="EntryListener" local="false"/>
</hz:entry-listeners>
</hz:multimap>

8.1.7.2 MultiMap Listener Attributes

As you see, there are attributes of the MultiMap listeners in the above examples: include-value and local. The
attribute include-value is a boolean attribute that is optional, and if you set it to true, the MultiMap event will
contain the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen to the
MultiMap on the local member. Its default value is false.

8.1.8 Listening for Item Events

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces.

To write an Item Listener class, you implement the ItemListener interface and its methods itemAdded and
itemRemoved. These methods are invoked when an item is added or removed.

The following is an example Item Listener class for an ISet structure.

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 141

public class SampleltemListener implements ItemListener {

public static void main(String[] args) {
SampleltemListener sampleltemListener = new SampleIltemListener();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ICollection<Price> set = hazelcastInstance.getSet("default");
set.addItemListener(sampleltemListener, true);

Price price = new Price(10, timel)
set.add(price);
set.remove(price);

}

public void itemAdded(Object item) {
System.out.println("Item added = " + item);

}

public void itemRemoved(Object item) {
System.out.println("Item removed = " + item);
}
}

l NOTE: You can use ICollection when creating any of the collection (queue, set and list) data structures,
as shown above. You can also use IQueue, ISet or IList instead of ICollection.

8.1.8.1 Registering Item Listeners

After you create your class, you can configure your cluster to include item listeners. Below is an example using
the method addItemListener for ISet (it applies also to IQueue and IList). You can also see this portion in the
above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ICollection<Price> set = hazelcastInstance.getSet("default");
// or ISet<Prices> set = hazelcastInstance.getSet("default");
default.addItemListener(sampleltemListener, true);

With the above approach, there is the possibility of missing events between the creation of the instance and registering
the listener. To overcome this race condition, Hazelcast allows you to register listeners in the configuration. You
can register listeners using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

setConfig.addItemListenerConfig(
new ItemListenerConfig("com.your-package.SampleItemListener", true));

The following is an example of the equivalent declarative configuration.
<hazelcast>
<item-listeners>
<item-listener include-value="true">
com.your-package.SampleItemListener
</item-listener>

</item-listeners>

</hazelcast>

142 CHAPTER 8. DISTRIBUTED EVENTS

The following is an example of the equivalent Spring configuration.

<hz:set name="default" >
<hz:item-listeners>
<hz:item-listener include-value="true"
class-name="com.your-package.SampleItemListener"/>
</hz:item-listeners>
</hz:set>

8.1.8.2 Item Listener Attributes

As you see, there is an attribute in the above examples: include-value. It is a boolean attribute that is optional,
and if you set it to true, the item event will contain the item value. Its default value is true.

There is also another attribute called local, which is not shown in the above examples. It is also a boolean
attribute that is optional, and if you set it to true, you can listen to the items on the local member. Its default
value is false.

8.1.9 Listening for Topic Messages

The Message Listener is used by the ITopic interface. It notifies when a message is received for the registered topic.

To write a Message Listener class, you implement the MessageListener interface and its method onMessage, which
is invoked when a message is received for the registered topic.

The following is an example Message Listener class.
public class SampleMessagelistener implements MessageListener<MyEvent> {

public static void main(String[] args) {
SampleMessagelListener sample = new SampleMessageListener();
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(sample) ;
topic.publish(new MyEvent());

}

public void onMessage(Message<MyEvent> message) {
MyEvent myEvent = message.getMessageObject();
System.out.println("Message received = " + myEvent.toString());
if (myEvent.isHeavyweight()) {
messageExecutor.execute(new Runnable() {
public void run() {
doHeavyweightStuff (myEvent);
}
s
}
}

8.1.9.1 Registering Message Listeners

After you create your class, you can configure your cluster to include message listeners. Below is an example using
the method addMessageListener. You can also see this portion in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessagelistener(sample);

8.1. EVENT LISTENERS FOR HAZELCAST MEMBERS 143

With the above approach, there is the possibility of missing messaging events between the creation of the instance
and registering the listener. To overcome this race condition, Hazelcast allows you to register this listener in the
configuration. You can register it using declarative, programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

topicConfig.addMessageListenerConfig(
new ListenerConfig("com.your-package.SampleMessageListener"));

The following is an example of the equivalent declarative configuration.

<hazelcast>

<topic name="default">
<message-listeners>
<message-listener>
com.your-package.SampleMessagelListener
</message-listener>
</message-listeners>
</topic>

</hazelcast>
The following is an example of the equivalent Spring configuration.

<hz:topic name="default">
<hz:message-listeners>
<hz:message-listener
class-name="com.your-package.SampleMessageListener"/>
</hz:message-listeners>
</hz:topic>

8.1.10 Listening for Clients

The Client Listener is used by the Hazelcast cluster members. It notifies the cluster members when a client is
connected to or disconnected from the cluster.

To write a client listener class, you implement the ClientListener interface and its methods clientConnected
and clientDisconnected, which are invoked when a client is connected to or disconnected from the cluster. You
can add your client listener as shown below.

hazelcast.getClientService() .addClientListener (SampleClientListener);
The following is the equivalent declarative configuration.

<listeners>
<listener>
com.your—package.SampleClientListener
</listener>
</listeners>

The following is the equivalent configuration in the Spring context.

<hz:listeners>
<hz:listener class-name="com.your-package.SampleClientListener"/>
<hz:listener implementation="com.your-package.SampleClientListener"/>
</hz:listeners>

144 CHAPTER 8. DISTRIBUTED EVENTS

! NOTE: You can also add event listeners to a Hazelcast client. Please refer to Client Listenerconfig for the
related information.

8.2 Event Listeners for Hazelcast Clients

You can add event listeners to a Hazelcast Java client. You can configure the following listeners to listen to the
events on the client side. Please see the respective sections under the Event Listeners for Hazelcast Members section
for example code.

e Lifecycle Listener: Notifies when the client is starting, started, shutting down, and shutdown.

e Membership Listener: Notifies when a member joins to/leaves the cluster to which the client is connected, or
when an attribute is changed in a member.

e DistributedObject Listener: Notifies when a distributed object is created or destroyed throughout the cluster
to which the client is connected.

RELATED INFORMATION

Please refer to the Client Listenerconfig section for more information.

8.3 Global Event Configuration

e hazelcast.event.queue.capacity: default value is 1000000
e hazelcast.event.queue.timeout.millis: default value is 250
e hazelcast.event.thread.count: default value is 5

A striped executor in each cluster member controls and dispatches the received events. This striped executor also
guarantees the event order. For all events in Hazelcast, the order in which events are generated and the order in
which they are published are guaranteed for given keys. For map and multimap, the order is preserved for the
operations on the same key of the entry. For list, set, topic and queue, the order is preserved for events on that
instance of the distributed data structure.

To achieve the order guarantee, you make only one thread responsible for a particular set of events (entry events of
a key in a map, item events of a collection, etc.) in StripedExecutor (within com.hazelcast.util.executor).

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be put into
the event queue for the period specified in hazelcast.event.queue.timeout.millis, these events will be dropped
with a warning message, such as “EventQueue overloaded”.

If event listeners perform a computation that takes a long time, the event queue can reach its maximum capacity
and lose events. For map and multimap, you can configure hazelcast.event.thread.count to a higher value so
that fewer collisions occur for keys, and therefore worker threads will not block each other in StripedExecutor.
For list, set, topic and queue, you should offload heavy work to another thread. To preserve order guarantee, you
should implement similar logic with StripedExecutor in the offloaded thread pool.

Chapter 9

Distributed Computing

This chapter explains Hazelcast’s executor service, durable executor service, and entry processor implementations.

9.1 Executor Service

One of the coolest features of Java 1.5 is the Executor framework, which allows you to asynchronously execute your
tasks (logical units of work), such as database queries, complex calculations, and image rendering,.

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a single JVM (cluster
member). In distributed systems, this implementation is not desired since you may want a task submitted in one
JVM and processed in another one. Hazelcast offers IExecutorService for you to use in distributed environments.
It implements java.util.concurrent.ExecutorService to serve the applications requiring computational and
data processing power.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If your task
execution takes longer than expected, you can cancel the task execution. Tasks should be Serializable since they
will be distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

e Callable: If you need to return a value and submit it to Executor, implement the task as java.util.concurrent.Callable.
e Runnable: If you do not need to return a value, implement the task as java.util.concurrent.Runnable.
9.1.1 Implementing a Callable Task

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a value), you
implement Callable and Serializable.

Below is an example of a Callable task. SumTask prints out map keys and returns the summed map values.

import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.HazelcastInstanceAware;
import com.hazelcast.core.IMap;

import java.io.Serializable;
import java.util.concurrent.Callable;

public class SumTask
implements Callable<Integer>, Serializable, HazelcastInstanceAware {

private transient HazelcastInstance hazelcastInstance;

145

146 CHAPTER 9. DISTRIBUTED COMPUTING

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

3

public Integer call() throws Exception {
IMap<String, Integer> map = hazelcastInstance.getMap("map");
int result = 0;
for (String key : map.localKeySet()) {
System.out.println("Calculating for key: " + key);
result += map.get(key);
}
System.out.println("Local Result: " + result);
return result;

}
}

Another example is the Echo callable below. In its call() method, it returns the local member and the input
passed in. Remember that instance.getCluster() .getLocalMember () returns the local member and toString()
returns the member’s address (IP + port) in String form, just to see which member actually executed the code for
our example. Of course, the call() method can do and return anything you like.

import java.util.concurrent.Callable;
import java.io.Serializable;

public class Echo implements Callable<String>, Serializable {
String input = null;

public Echo() {
}

public Echo(String input) {
this.input = input;

3

public String call() {
Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
return instance.getCluster().getLocalMember().toString() + ":" + input;

9.1.1.1 Executing a Callable Task

To execute a callable task with the executor framework:

Obtain an ExecutorService instance (generally via Executors).

Submit a task which returns a Future.

After executing the task, you do not have to wait for the execution to complete, you can process other things.
When ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(new Echo("myinput"));
//while it is ezecuting, do some useful stuff

//when ready, get the result of your execution

String result = future.get();

9.1. EXECUTOR SERVICE 147

Please note that the Echo callable in the above code sample also implements a Serializable interface, since it may
be sent to another member to be processed.

! NOTE: When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the task should
implement HazelcastInstancedware interface. Please see the HazelcastInstanceAware Interface section for more
information.

9.1.2 Implementing a Runnable Task

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not return a
value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

public class EchoTask implements Runnable, Serializable {
private final String msg;

public EchoTask(String msg) {
this.msg = msg;

}

Q@0verride
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.println("echo:" + msg);
}
}

9.1.2.1 Executing a Runnable Task

To execute the runnable task:

e Retrieve the Executor from HazelcastInstance.
e Submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class MasterMember {
public static void main(String[] args) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executor = hazelcastInstance.getExecutorService("exec");
for (int k = 1; k <= 1000; k++) {
Thread.sleep(1000);
System.out.println("Producing echo task: " + k);
executor.execute(new EchoTask(String.valueOf(k)));
}
System.out.println("EchoTaskMain finished!");

148 CHAPTER 9. DISTRIBUTED COMPUTING

9.1.3 Scaling The Executor Service

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the cluster member (JVM). You can do this by increasing
the pool-size property mentioned in Configuring Executor Service (i.e., increasing the thread count). However,
please be aware of your member’s capacity. If you think it cannot handle such an additional load caused by
increasing the thread count, you may want to consider improving the member’s resources (CPU, memory, etc.). As
an example, set the pool-size to 5 and run the above MasterMember. You will see that EchoTask is run as soon
as it is produced.

To scale out, add more members instead of increasing only one member’s capacity. In reality, you may want to
expand your cluster by adding more physical or virtual machines. For example, in the EchoTask example in the
Runnable section, you can create another Hazelcast instance. That instance will automatically get involved in the
executions started in MasterMember and start processing.

9.1.4 Executing Code in the Cluster

The distributed executor service is a distributed implementation of java.util.concurrent.ExecutorService. It
allows you to execute your code in the cluster. In this section, the code examples are based on the Echo class above
(please note that the Echo class is Serializable). The code examples show how Hazelcast can execute your code
(Runnable, Callable):

e echoOnTheMember: On a specific cluster member you choose with the IExecutorService submitToMember
method.

e echoOnTheMemberOwningTheKey: On the member owning the key you choose with the IExecutorService
submitToKeyOwner method.

e echoOnSomewhere: On the member Hazelcast picks with the IExecutorService submit method.

e echoOnMembers: On all or a subset of the cluster members with the IExecutorService submitToMembers
method.

import com.hazelcast.core.Member;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;

import java.util.Set;

public void echoOnTheMember (String input, Member member) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToMember(task, member) ;
String echoResult = future.get();
}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
Callable<String> task = new Echo(input);
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submitToKeyOwner(task, key);
String echoResult = future.get();

9.1. EXECUTOR SERVICE 149

public void echoOnSomewhere(String input) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Future<String> future = executorService.submit(new Echo(input));
String echoResult = future.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService executorService =
hazelcastInstance.getExecutorService("default");

Map<Member, Future<String>> futures = executorService
.submitToMembers(new Echo(input), members);

for (Future<String> future : futures.values()) {
String echoResult = future.get();

/7
}
}
! NOTE: You can obtain the set of cluster members via HazelcastInstance#getCluster().getMembers ()
call.

9.1.5 Canceling an Executing Task

A task in the code that you execute in a cluster might take longer than expected. If you cannot stop/cancel that
task, it will keep eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API. This framework encourages
us to code and design for cancellations, a highly ignored part of software development.

9.1.5.1 Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the calculate method,
we check if the current thread is interrupted so that the code can respond to cancellations once the execution is
started.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

public Fibonacci() {
}

public Fibonacci(int input) {
this.input = input;

3

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (Thread.currentThread().isInterrupted()) {

150 CHAPTER 9. DISTRIBUTED COMPUTING

return 0O;
}
if (n<=1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}
}

9.1.5.2 Example Method to Execute and Cancel the Task

The £ib() method below submits the Fibonacci calculation task above for number ‘n’ and waits a maximum
of 3 seconds for the result. If the execution does not completed in three seconds, future.get () will throw a
TimeoutException and upon catching it, we cancel the execution, saving some CPU cycles.

long fib(int n) throws Exception {
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();
Future future = es.submit(new Fibonacci(n));
try {
return future.get(3, TimeUnit.SECONDS) ;
} catch (TimeoutException e) {
future.cancel(true);
}

return -1;

£ib(20) will probably take less than 3 seconds. However, £ib(50) will take much longer. (This is not an example
for writing better Fibonacci calculation code, but for showing how to cancel a running execution that takes
too long.) The method future.cancel(false) can only cancel execution before it is running (executing), but
future.cancel(true) can interrupt running executions provided that your code is able to handle the interruption.
If you are willing to cancel an already running task, then your task should be designed to handle interruptions. If
the calculate (int n) method did not have the (Thread.currentThread() .isInterrupted()) line, then you
would not be able to cancel the execution after it is started.

9.1.6 Callback When Task Completes

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the execution is
done.

e To be notified when your task completes without an error, implement the onResponse method.
e To be notified when your task completes with an error, implement the onFailure method.

9.1.6.1 Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that will be executed.
Note that it is Callable and Serializable.

public class Fibonacci<Long> implements Callable<Long>, Serializable {
int input = 0;

public Fibonacci() {
}

9.1. EXECUTOR SERVICE 151

public Fibonacci(int input) {
this.input = input;

3

public Long call() {
return calculate(input);

}

private long calculate(int n) {
if (n <= 1) {
return n;
} else {
return calculate(n - 1) + calculate(n - 2);
}
}
}

9.1.6.2 Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the result asyn-
chronously. ExecutionCallback has the methods onResponse and onFailure. In this example code, onResponse
is called upon a valid response and prints the calculation result, whereas onFailure is called upon a failure and
prints the stacktrace.

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.IExecutorService;
import java.util.concurrent.Future;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService es = hazelcastInstance.getExecutorService();

Callable<Long> task = new Fibonacci(10);

es.submit(task, new ExecutionCallback<Long> () {

@0verride
public void onResponse(Long response) {
System.out.println("Fibonacci calculation result = " + response);
X
Q@0verride

public void onFailure(Throwable t) {
t.printStackTrace();
}
+

9.1.7 Selecting Members for Task Execution

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or Callable is
executed. Usually you execute these in the cluster based on the location of a key or a set of keys, or you allow
Hazelcast to select a member.

If you want more control over where your code runs, use the MemberSelector interface. For example, you may want
certain tasks to run only on certain members, or you may wish to implement some form of custom load balancing
regime. The MemberSelector is an interface that you can implement and then provide to the IExecutorService
when you submit or execute.

152 CHAPTER 9. DISTRIBUTED COMPUTING

The select (Member) method is called for every available member in the cluster. Implement this method to decide
if the member is going to be used or not.

In a simple example shown below, we select the cluster members based on the presence of an attribute.

public class MyMemberSelector implements MemberSelector {
public boolean select(Member member) {
return Boolean.TRUE.equals (member.getAttribute("my.special.executor"));

}

You can use MemberSelector instances provided by the com.hazelcast.cluster.memberselector.MemberSelectors
class. For example, you can select a lite member for running a task using com.hazelcast.cluster.memberselector.MemberSel.

9.1.8 Configuring Executor Service

The following are example configurations for executor service.

Declarative:

<executor-service name="exec">
<pool-size>1</pool-size>
<queue-capacity>10</queue-capacity>
<statistics-enabled>true</statistics-enabled>
</executor-service>

Programmatic:

Config config = new Config();

ExecutorConfig executorConfig = config.getExecutorConfig("exec");

executorConfig.setPoolSize("1").setQueueCapacity("10")
.setStatisticsEnabled(true);

Executor service configuration has the following elements.

e pool-size: The number of executor threads per Member for the Executor. By default, Executor is configured
to have 16 threads in the pool. You can change that with this element.

e queue-capacity: Executor’s task queue capacity; the number of tasks this queue can hold.

e statistics-enabled: You can retrieve some statistics (such as pending operations count, started operations
count, completed operations count, and cancelled operations count) by setting this parameter’s value to true.
The method for retrieving the statistics is getLocalExecutorStats().

9.2 Durable Executor Service

Hazelcast’s durable executor service is a data structure which is able to store an execution task both on the
executing Hazelcast member and its backup member(s), if configured. By this way, you do not lose any tasks if a
member goes down or any results if the submitter (member or client) goes down while executing the task. When
using the durable executor service you can either submit or execute a task randomly or on the owner of a provided
key. Note that in executor service, you can submit or execute tasks to/on the selected member(s).

Processing of the tasks when using durable executor service involves two invocations:

1. Sending the task to primary Hazelcast member (primary partition) and to its backups, if configured, and
executing the task.
2. Retrieving the result of the task.

9.3. ENTRY PROCESSOR 153

As you may already know, Hazelcast’s executor service returns a future representing the task to the user. With
the above two-invocations approach, it is guaranteed that the task is executed before the future returns and you
can track the response of a submitted task with a unique ID. Hazelcast stores the task on both primary and backup
members, and starts the execution also.

With the first invocation, a Ringbuffer stores the task and a generated sequence for the task is returned to the
caller as a result. In addition to the storing, the task is executed on the local execution service for the primary
member. By this way, the task is now resilient to member failures and you are able to track the task with its ID.

After the first invocation has completed and the sequence of task is returned, second invocation starts to retrieve
the result of task with that sequence. This retrieval waits in the waiting operations queue until notified, or it runs
immediately if the result is already available.

When task execution is completed, Ringbuffer replaces the task with the result for the given task sequence. This
replacement notifies the waiting operations queue.

9.2.1 Configuring Durable Executor Service

This section presents example configurations for durable executor service along with the descriptions of its
configuration elements and attributes.

Declarative:

<durable-executor-service name="myDurableExecSvc">
<pool-size>8</pool-size>
<durability>1</durability>
<capacity>1</capacity>

</durable-executor-service>

Programmatic:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();
DurableExecutorService durableExecSvc = hazelcast.getDurableExecutorService("myDurableExecSvc") ;

Config config = new Config();
config.getDurableExecutorConfig("myDurableExecSvc").
.setPoolSize ("8")
.setDurability("1")
.setCapacity("1");

Following are the descriptions of each configuration element and attribute:

e name: Name of the executor task.

e pool-size: Number of executor threads per member for the executor.

e durability: Durability of the executor.

e capacity: Capacity of the executor task. 0 means Integer. MAX_VALUE.

9.3 Entry Processor

Hazelcast supports entry processing. An entry processor is a function that executes your code on a map entry in an
atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually you perform a loop
of keys— executing IMap.get (key), mutating the value, and finally putting the entry back in the map using
IMap.put (key,value). If you perform this process from a client or from a member where the keys do not exist,
you effectively perform two network hops for each update: the first to retrieve the data and the second to update
the mutated value.

154 CHAPTER 9. DISTRIBUTED COMPUTING

If you are doing the process described above, you should consider using entry processors. An entry processor
executes a read and updates upon the member where the data resides. This eliminates the costly network hops
described above.

! NOTE: Entry processor is meant to process a single entry per call. Processing multiple entries and data
structures in an entry processor is not supported as it may result in deadlocks.

9.3.1 Performing Fast In-Memory Map Operations

An entry processor enables fast in-memory operations on your map without you having to worry about locks or
concurrency issues. You can apply it to a single map entry or to all map entries. Entry processors support choosing
target entries using predicates. You do not need any explicit lock on entry thanks to the isolated threading model:
Hazelcast runs the EntryProcessor for all entries on a partitionThread so there will NOT be any interleaving of
the EntryProcessor and other mutations.

Hazelcast sends the entry processor to each cluster member and these members apply it to map entries. Therefore,
if you add more members, your processing completes faster.

9.3.2 Using Indexes

Entry processors can be used with predicates. Predicates help to process a subset of data by selecting eligible
entries. This selection can happen either by doing a full-table scan or by using indexes. To accelerate entry selection
step, you can consider to add indexes. If indexes are there, entry processor will automatically use them.

9.3.3 Using OBJECT In-Memory Format

If entry processing is the major operation for a map and if the map consists of complex objects, you should use
OBJECT as the in-memory-format to minimize serialization cost. By default, the entry value is stored as a byte
array (BINARY format). When it is stored as an object (0BJECT format), then the entry processor is applied directly
on the object. In that case, no serialization or deserialization is performed. However, if there is a defined event
listener, a new entry value will be serialized when passing to the event publisher service.

NOTE: When in-memory-format is OBJECT, the old value of the updated entry will be null.

9.3.3.1 Entry Processing with IMap Methods

The methods below are in the IMap interface for entry processing.

executeOnKey processes an entry mapped by a key.

executelOnKeys processes entries mapped by a collection of keys.

submitToKey processes an entry mapped by a key while listening to event status.
executeOnEntries processes all entries in a map.

executeOnEntries can also process all entries in a map with a defined predicate.

Jk*

* Applies the user defined EntryProcessor to the entry mapped by the key.

* Returns the object which is the result of the process() method of EntryProcessor.
*/

Object executeOnKey(K key, EntryProcessor entryProcessor);

Kk
* Applies the user defined EntryProcessor to the entries mapped by the collection of keys.
* Returns the results mapped by each key in the collection.

9.3. ENTRY PROCESSOR 155

*/
Map<K, Object> executeOnKeys(Set<K> keys, EntryProcessor entryProcessor);

Kk
* Applies the user defined EntryProcessor to the entry mapped by the key with
* specified EzecutionCallback to listen to event status and return immediately.
*/

void submitToKey(K key, EntryProcessor entryProcessor, ExecutionCallback callback) ;

VAL
* Applies the user defined EntryProcessor to all entries in the map.
* Returns the results mapped by each key in the map.
*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor);

VAL

* Applies the user defined EntryProcessor to the entries in the map which satisfies
provided predicate.

* Returns the results mapped by each key in the map.

*/

Map<K, Object> executeOnEntries(EntryProcessor entryProcessor, Predicate predicate);

. NOTE: Entry Processors run via Operation Threads that are dedicated to specific partitions. Therefore, with
long running Entry Processor executions, other partition operations such as map.put (key) cannot be processed.
With this in mind, it is good practice to make your Entry Processor executions as quick as possible.

9.3.4 EntryProcessor Interface

The following is the EntryProcessor interface:

public interface EntryProcessor<K, V> extends Serializable {
Object process(Map.Entry<K, V> entry);

EntryBackupProcessor<K, V> getBackupProcessor();
}

. NOTE: If you want to execute a task on a single key, you can also use executeOnKeyOuner provided by
Executor Service. However, in this case you need to perform a lock and serialization.

When using the executeOnEntries method, if the number of entries is high and you need the results, then returning
null with the process () method is a good practice. By returning null, results of the processing is not stored in the
map and thus out of memory errors are eliminated.

9.3.5 Processing Backup Entries

If your code modifies the data, then you should also provide a processor for backup entries. This is required to
prevent the primary map entries from having different values than the backups because it causes the entry processor
to be applied both on the primary and backup entries.

public interface EntryBackupProcessor<K, V> extends Serializable {
void processBackup(Map.Entry<K, V> entry);
}

156 CHAPTER 9. DISTRIBUTED COMPUTING

! NOTE: It is possible that an Entry Processor could see that a key exists though its backup processor may
not find it at the run time due to an unsent backup of a previous operation (e.g., a previous put operation). In
those situations, Hazelcast internally/eventually will synchronize those owner and backup partitions so you will
not lose any data. When coding an EntryBackupProcessor, you should take that case into account, otherwise
NullPointerEzception can be seen since Map.Entry.getValue() may return null.

9.3.6 Creating an Entry Processor

The EntryProcessorTest class has the following methods.

e testMapEntryProcessor puts one map entry and calls executeOnKey to process that map entry.
e testMapEntryProcessor puts all the entries in a map and calls executeOnEntries to process all the entries.

The static class IncrementingEntryProcessor creates an entry processor to process the map entries in the
EntryProcessorTest class. It creates the entry processor class by:

implementing the map interfaces EntryProcessor and EntryBackupProcessor.
implementing the java.io.Serializable interface.
implementing the EntryProcessor methods process and getBackupProcessor.
implementing the EntryBackupProcessor method processBackup.

public class EntryProcessorTest {

Q@Test
public void testMapEntryProcessor() throws InterruptedException {
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.0OBJECT);

HazelcastInstance hazelcastInstancel = Hazelcast.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = Hazelcast.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel.getMap("mapEntryProcessor");
map.put(1, 1);

EntryProcessor entryProcessor = new IncrementingEntryProcessor();
map.executeOnKey(1, entryProcessor);

assertEquals(map.get(1), (Object) 2);
hazelcastInstancel.getLifecycleService() .shutdown();
hazelcastInstance2.getLifecycleService().shutdown();

QTest
public void testMapEntryProcessorAllKeys() throws InterruptedException {
StaticNodeFactory factory = new StaticNodeFactory(2);
Config config = new Config().getMapConfig("default")
.setInMemoryFormat (MapConfig.InMemoryFormat.0BJECT) ;

HazelcastInstance hazelcastInstancel = factory.newHazelcastInstance(config);
HazelcastInstance hazelcastInstance2 = factory.newHazelcastInstance(config);
IMap<Integer, Integer> map = hazelcastInstancel

.getMap("mapEntryProcessorAllKeys");

int size = 100;

for (int 1 = 0; i < size; i++) {
map.put(i, i);

}

EntryProcessor entryProcessor = new IncrementingEntryProcessor();

9.3. ENTRY PROCESSOR 157

Map<Integer, Object> res = map.executeOnEntries(entryProcessor);
for (int 1 = 0; i < size; i++) {
assertEquals(map.get(i), (Object) (i + 1));
}
for (int 1 = 0; i < size; i++) {
assertEquals(map.get(i) + 1, res.get(i));
}
hazelcastInstancel.getLifecycleService().shutdown();
hazelcastInstance2.getLifecycleService().shutdown() ;

static class IncrementingEntryProcessor
implements EntryProcessor, EntryBackupProcessor, Serializable {

public Object process(Map.Entry entry) {
Integer value = (Integer) entry.getValue();
entry.setValue(value + 1);
return value + 1;

3

public EntryBackupProcessor getBackupProcessor() {
return IncrementingEntryProcessor.this;

}

public void processBackup(Map.Entry entry) {
entry.setValue((Integer) entry.getValue() + 1);
}
}
}

! NOTE: You should explicitly call the setValue method of Map . Entry when modifying data in Entry Processor.
Otherwise, Entry Processor will be accepted as read-only.

! NOTE: An Entry Processor instance is not thread safe. If you are storing a partition specific state between
invocations, be sure to register this in a thread-local. An Entry Processor instance can be used by multiple partition
threads.

9.3.7 Abstract Entry Processor

You can use the AbstractEntryProcessor class when the same processing will be performed both on the primary
and backup map entries (i.e. the same logic applies to them). If you use Entry Processor, you need to apply
the same logic to the backup entries separately. The AbstractEntryProcessor class makes this primary/backup
processing easier.

The code below shows the Hazelcast AbstractEntryProcessor class. You can use it to create your own Abstract
Entry Processor.

public abstract class AbstractEntryProcessor <K, V>
implements EntryProcessor <K, V> {

private final EntryBackupProcessor <K,V> entryBackupProcessor;
public AbstractEntryProcessor() {

this(true);
¥

public AbstractEntryProcessor(boolean applyOnBackup) {

158 CHAPTER 9. DISTRIBUTED COMPUTING

if (applyOnBackup) {
entryBackupProcessor = new EntryBackupProcessorImpl();
} else {
entryBackupProcessor = null;
}
}

@0verride
public abstract Object process(Map.Entry<K, V> entry);

@0verride
public final EntryBackupProcessor <K, V> getBackupProcessor() {
return entryBackupProcessor;

X

private class EntryBackupProcessorImpl implements EntryBackupProcessor <K,V>{
@0verride
public void processBackup(Map.Entry<K, V> entry) {

process(entry);

¥

X

}

In the above code, the method getBackupProcessor returns an EntryBackupProcessor instance. This means the
same processing will be applied to both the primary and backup entries. If you want to apply the processing only
upon the primary entries, make the getBackupProcessor method return null.

! NOTE: Beware of the null issue described in the note in the Processing Backup FEntries section.
Due to a yet unsent backup from a previous operation, an EntryBackupProcessor may temporarily receive
null from Map.Entry.getValue() even though the wvalue actually exists in the map. If you decide to use
AbstractEntryProcessor, make sure your code logic is not sensitive to null values, or you may encounter
NullPointerEzception during runtime.

Chapter 10

Distributed Query

Distributed queries access data from multiple data sources stored on either the same or different members.

Hazelcast partitions your data and spreads it across cluster of members. You can iterate over the map entries and
look for certain entries (specified by predicates) you are interested in. However, this is not very efficient because
you will have to bring the entire entry set and iterate locally. Instead, Hazelcast allows you to run distributed
queries on your distributed map.

10.1 How Distributed Query Works

1. The requested predicate is sent to each member in the cluster.

2. Each member looks at its own local entries and filters them according to the predicate. At this stage, key/value
pairs of the entries are deserialized and then passed to the predicate.

3. The predicate requester merges all the results coming from each member into a single set.

Distributed query is highly scalable. If you add new members to the cluster, the partition count for each member
is reduced and thus the time spent by each member on iterating its entries is reduced. In addition, the pool of
partition threads evaluates the entries concurrently in each member, and the network traffic is also reduced since
only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:

e Criteria API
e Distributed SQL Query

10.1.1 Employee Map Query Example

Assume that you have an “employee” map containing values of Employee objects, as coded below.

import java.io.Serializable;

public class Employee implements Serializable {
private String name;

private int age;

private boolean active;

private double salary;

public Employee(String name, int age, boolean live, double price) {
this.name = name;
this.age = age;
this.active = live;

159

160 CHAPTER 10. DISTRIBUTED QUERY

this.salary = price;

}

public Employee() {
}

public String getName() {
return name;

}

public int getAge() {
return age;

}

public double getSalary() {
return salary;

}

public boolean isActive() {
return active;

}
}

Now let’s look for the employees who are active and have an age less than 30 using the aforementioned APIs
(Criteria API and Distributed SQL Query). The following subsections describe each query mechanism for this
example.

l NOTE: When using Portable objects, if one field of an object exists on one member but does not exist on
another one, Hazelcast does not throw an unknown field exception. Instead, Hazelcast treats that predicate, which
tries to perform a query on an unknown field, as an always false predicate.

10.1.2 Querying with Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence Query Language
(JPQL). Below is the code for the above example query.

import com.hazelcast.core.IMap;

import com.hazelcast.query.Predicate;

import com.hazelcast.query.PredicateBuilder;
import com.hazelcast.query.EntryObject;
import com.hazelcast.config.Config;

IMap<String, Employee> map = hazelcastInstance.getMap("employee");

EntryObject e = new PredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Set<Employee> employees = map.values(predicate);

In the above example code, predicate verifies whether the entry is active and its age value is less than 30. This
predicate is applied to the employee map using the map.values(predicate) method. This method sends the
predicate to all cluster members and merges the results coming from them. Since the predicate is communicated
between the members, it needs to be serializable.

l NOTE: Predicates can also be applied to keySet, entrySet and localKeySet of the Hazelcast distributed
map.

10.1. HOW DISTRIBUTED QUERY WORKS 161

10.1.2.1 Predicates Class Operators

The Predicates class offered by Hazelcast includes many operators for your query requirements. Some of them are
explained below.

equal: Checks if the result of an expression is equal to a given value.

notEqual: Checks if the result of an expression is not equal to a given value.

instance0f: Checks if the result of an expression has a certain type.

like: Checks if the result of an expression matches some string pattern. % (percentage sign) is the placeholder
for many characters, (underscore) is placeholder for only one character.

o greaterThan: Checks if the result of an expression is greater than a certain value.

e greaterEqual: Checks if the result of an expression is greater than or equal to a certain value.
e lessThan: Checks if the result of an expression is less than a certain value.

e lessEqual: Checks if the result of an expression is less than or equal to a certain value.

e between: Checks if the result of an expression is between two values (this is inclusive).

e in: Checks if the result of an expression is an element of a certain collection.

e isNot: Checks if the result of an expression is false.

e regex: Checks if the result of an expression matches some regular expression.

RELATED INFORMATION

Please see the Predicates class for all predicates provided.

10.1.2.2 Combining Predicates with AND, OR, NOT
You can combine predicates using the and, or, and not operators, as shown in the below examples.

public Set<Person> getWithNameAndAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age", age);
Predicate predicate = Predicates.and(namePredicate, agePredicate)
return personMap.values(predicate);

}

public Set<Person> getWithNameOrAge(String name, int age) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate agePredicate = Predicates.equal("age'", age);
Predicate predicate = Predicates.or(namePredicate, agePredicate);
return personMap.values(predicate);

}

public Set<Person> getNotWithName(String name) {
Predicate namePredicate = Predicates.equal("name", name);
Predicate predicate = Predicates.not(namePredicate);
return personMap.values(predicate);

}

10.1.2.3 Simplifying with PredicateBuilder

You can simplify predicate usage with the PredicateBuilder class, which offers simpler predicate building. Please
see the below example code which selects all people with a certain name and age.

public Set<Person> getWithNameAndAgeSimplified(String name, int age) {
EntryObject e = new PredicateBuilder().getEntryObject();
Predicate agePredicate = e.get("age").equal(age);
Predicate predicate = e.get("name").equal(name).and(agePredicate);
return personMap.values(predicate);

162 CHAPTER 10. DISTRIBUTED QUERY

10.1.3 Querying with SQL

com.hazelcast.query.SqlPredicate takes the regular SQL where clause. Here is an example:

IMap<Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(new SqlPredicate("active AND age < 30"));

10.1.3.1 Supported SQL Syntax

AND/OR: <expression> AND <expression> AND <expression>...

e active AND age>30
e active=false OR age = 45 OR name = ‘Joe®
e active AND (age > 20 OR salary < 60000)

Equality: =, !'=, <, <=, >, >=

e <expression> = value
e age <= 30

e name = ‘Joe’

e salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <valuel> AND <value2>

e age BETWEEN 20 AND 33 (same as age >= 20 AND age <= 33)
e age NOT BETWEEN 30 AND 40 (same as age < 30 OR age > 40)

IN: <attribute> [NOT] IN (vall, val2,...)

age IN (20, 30, 40)

age NOT IN (60, 70)

active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))
age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

LIKE: <attribute> [NOT] LIKE "expression"
The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for only one character.
e name LIKE ‘Jo%¢ (true for ‘Joe’; ‘Josh’, ‘Joseph’ etc.)
e name LIKE ‘Jo_¢ (true for ‘Joe’; false for ‘Josh’)
e name NOT LIKE ‘Jo_¢ (true for ‘Josh’; false for ‘Joe’)
e name LIKE ‘J_s%‘ (true for ‘Josh’, ‘Joseph’; false ‘John’, ‘Joe’)

ILIKE: <attribute> [NOT] ILIKE ‘expression’

Similar to LIKE predicate but in a case-insensitive manner.

e name ILIKE ‘Jo%‘ (true for ‘Joe’, ‘joe’, ‘jOe’,‘Josh’ ‘joSH’, etc.)
e name ILIKE ‘Jo_¢ (true for ‘Joe’ or ‘jJOE’; false for ‘Josh’)

REGEX: <attribute> [NOT] REGEX ‘expression’

e name REGEX ‘abc-.*‘ (true for ‘abc-123’; false for ‘abx-123’)

10.1. HOW DISTRIBUTED QUERY WORKS 163

10.1.3.2 Querying Entry Keys with Predicates

You can use __key attribute to perform a predicated search for entry keys. Please see the following example:

IMap<String, Person> personMap = hazelcastInstance.getMap(persons);
personMap.put("Alice", new Person("Alice", 35, Gender.FEMALE));
personMap.put ("Andy", mnew Person("Andy", 37, Gender.MALE));
personMap.put ("Bob", new Person("Bob", 22, Gender.MALE));

[...]

Predicate predicate = new SqlPredicate("__key like A%");
Collection<Person> startingWithA = personMap.values(predicate);

In this example, the code creates a collection with the entries whose keys start with the letter “A”.

10.1.4 Filtering with Paging Predicates

Hazelcast provides paging for defined predicates. With its PagingPredicate class, you can get a collection of keys,
values, or entries page by page by filtering them with predicates and giving the size of the pages. Also, you can sort
the entries by specifying comparators.

In the example code below:

e The greaterEqual predicate gets values from the “students” map. This predicate has a filter to retrieve the
objects with an “age” greater than or equal to 18.

e Then a PagingPredicate is constructed in which the page size is 5, so there will be five objects in each page.
The first time the values are called creates the first page.

e It gets subsequent pages with the nextPage () method of PagingPredicate and querying the map again
with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap("students");
Predicate greaterEqual = Predicates.greaterEqual("age", 18);
PagingPredicate pagingPredicate = new PagingPredicate(greaterEqual, 5);
// Retrieve the first page

Collection<Student> values = map.values(pagingPredicate);

// Set up nexzt page
pagingPredicate.nextPage();

// Retrieve next page

values = map.values(pagingPredicate);

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or values page
by page, this collection must be an instance of Comparable (i.e., it must implement java.lang.Comparable).
Otherwise, the java.lang.IllegalArgument exception is thrown.

Starting with Hazelcast 3.6, you can also access a specific page more easily with the help of the method setPage ().
This way, if you make a query for the hundredth page, for example, it will get all 100 pages at once instead of
reaching the hundredth page one by one using the method nextPage(). Please note that this feature tires the
memory and refer to the PagingPredicate class.

Paging Predicate, also known as Order & Limit, is not supported in Transactional Context.
RELATED INFORMATION

Please see the Predicates class for all predicates provided.

https://github.com/hazelcast/hazelcast/blob/66263987a7bf4bec20217f3c555381a51712d017/hazelcast/src/main/java/com/hazelcast/query/PagingPredicate.java

164 CHAPTER 10. DISTRIBUTED QUERY

10.1.5 Indexing Queries

Hazelcast distributed queries will run on each member in parallel and will return only the results to the caller.
Then, on the caller side, the results will be merged.

When a query runs on a member, Hazelcast will iterate through all the owned entries and find the matching ones.
This can be made faster by indexing the mostly queried fields, just like you would do for your database. Indexing
will add overhead for each write operation but queries will be a lot faster. If you query your map a lot, make
sure to add indexes for the most frequently queried fields. For example, if you do an active and age < 30 query,
make sure you add an index for the active and age fields. The following example code does that by:

e getting the map from the Hazelcast instance, and
e adding indexes to the map with the IMap addIndex method.

IMap map = hazelcastInstance.getMap("employees");

// ordered, since we have ranged querties for this field
map.addIndex("age", true);

// not ordered, because boolean field cannot have range
map.addIndex("active", false);

10.1.5.1 Indexing Ranged Queries

IMap.addIndex(fieldName, ordered) is used for adding index. For each indexed field, if you have ranged queries
such as age>30, age BETWEEN 40 AND 60, then you should set the ordered parameter to true. Otherwise, set it
to false.

10.1.5.2 Configuring IMap Indexes

Also, you can define IMap indexes in configuration. An example is shown below.

<map name="default">

<indexes>
<index ordered="false">name</index>
<index ordered="true'">age</index>
</indexes>
</map>

You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addMapIndexConfig(new MapIndexConfig('"name", false));
mapConfig.addMapIndexConfig(new MapIndexConfig("age", true));

The following is the Spring declarative configuration for the same sample.

<hz:map name="default">
<hz:indexes>
<hz:index attribute='"name"/>
<hz:index attribute="age" ordered="true"/>
</hz:indexes>
</hz:map>

NOTE: Non-primitive types to be indexed should implement Comparable.

10.2. QUERYING IN COLLECTIONS AND ARRAYS 165

10.1.6 Configuring Query Thread Pool

You can change the size of thread pool dedicated to query operations using the pool-size property. Each query
consumes a single thread from a Generic Operations ThreadPool on each Hazelcast member - let’s call it the
query-orchestrating thread. That thread is blocked throughout the whole execution-span of a query on the member.

The query-orchestrating thread will use the threads from the query-thread pool in two cases:

e if you run a PagingPredicate - since each page is run as a separate task,
e if you set the system property hazelcast.query.predicate.parallel.evaluation to true - since the
predicates are evaluated in parallel.

Please see Filtering with Paging Predicates and System Properties sections for information on paging predicates
and for description of the above system property.

Below is an example of that declarative configuration.
<executor-service name="hz:query">

<pool-size>100</pool-size>
</executor-service>

Below is the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query") .setPoolSize (100);

10.2 Querying in Collections and Arrays

Hazelcast allows querying in collections and arrays. Querying in collections and arrays is compatible with all
Hazelcast serialization methods, including the Portable serialization.

Let’s have a look at the following data structure expressed in pseudo-code:

class Motorbike {
Wheel wheels[2];
}

class Wheel {
String name;

}

In order to query a single element of a collection/array, you can execute the following query:
// it matches all motorbikes where the zero wheel’s name ts ’front-wheel’
Predicate p = Predicates.equals(’wheels[0] .name’, ’front-wheel’);
Collection<Motorbike> result = map.values(p);

It is also possible to query a collection/array using the any semantic as shown below:

// tt matches all motorbikes where any wheel’s name s ’front-wheel’
Predicate p = Predicates.equals(’wheels[any] .name’, ’front’);
Collection<Motorbike> result = map.values(p);

The exact same query may be executed using the SQLPredicate as shown below:

Predicate p = new SQLPredicate(’wheels[any].name’, ’front’);
Collection<Motorbike> result = map.values(p);

[1 notation applies to both collections and arrays.

166 CHAPTER 10. DISTRIBUTED QUERY

10.2.1 Indexing in Collections and Arrays

You can also create an index using a query in collections and arrays.

Please note that in order to leverage the index, the attribute name used in the query has to be the same as the one
used in the index definition.

Let’s assume you have the following index definition:

<indexes>
<index ordered="false'">wheels[any] .name</index>
</indexes>

The following query will use the index:
Predicate p = Predicates.equals(’wheels[any] .name’, ’front-wheel’);

The following query, however, will NOT leverage the index, since it does not use exactly the same attribute name
that was used in the index:

Predicates.equals(’wheels[0] .name’, ’front-wheel’)
In order to use the index in the case mentioned above, you have to create another index, as shown below:

<indexes>
<index ordered="false'">wheels[0] .name</index>
</indexes>

10.2.2 Corner cases

Handling of corner cases may be a bit different than in a programming language like Java.

Let’s have a look at the following examples in order to understand the differences. To make the analysis simpler,
let’s assume that there is only one Motorbike object stored in a Hazelcast Map.

Id Query Data state Extraction Result Match
1 Predicates.equals(‘wheels[7].name’, ‘front-wheel’) wheels.size() == null No
2 Predicates.equals(‘wheels[7].name’, null) wheels.size() == 1 null Yes
3 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels[0].name == null null No
4 Predicates.equals(‘wheels[0].name’, null) wheels[0].name == null null Yes
5 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels[0] == null null No
6 Predicates.equals(‘wheels[0].name’, null) wheels[0] == null null Yes
7 Predicates.equals(‘wheels[0].name’, ‘front-wheel’) wheels == null null No
8 Predicates.equals(‘wheels[0].name’, null) wheels == null null Yes

As you can see, no NullPointerExceptions or IndexOutOfBoundExceptions are thrown in the extraction process,
even though parts of the expression are null.

Looking at examples 4, 6 and 8, we can also easily notice that it is impossible to distinguish which part of the
expression was null. If we execute the following query wheels[1].name = null, it may be evaluated to true
because:

10.3. CUSTOM ATTRIBUTES 167

e wheels collection/array is null.
e index == 1 is out of bound.
e name attribute of the wheels[1] object is null.

In order to make the query unambiguous, extra conditions would have to be added, e.g., wheels != null AND
wheels[1] .name = null.

10.3 Custom Attributes

It is possible to define a custom attribute that may be referenced in predicates, queries and indexes.

A custom attribute is a “synthetic” attribute that does not exist as a field or a getter in the object that it is
extracted from. Thus, it is necessary to define the policy on how the attribute is supposed to be extracted. Currently
the only way to extract a custom attribute is to implement a com.hazelcast.query.extractor.ValueExtractor
that encompasses the extraction logic.

Custom Attributes are compatible with all Hazelcast serialization methods, including the Portable serialization.

10.3.1 Implementing a ValueExtractor

In order to implement a ValueExtractor, extend the abstract com.hazelcast.query.extractor.ValueExtractor
class and implement the extract () method.

The ValueExtractor interface looks as follows:

VLIS
* Common superclass for all extractors.

@param <T> type of the target object to extract the value from
@param <A> type of the extraction argument object passed to the extract() method

* ¥ ¥ x

*/
public abstract class ValueExtractor<T, A> {

VEL

Exztracts custom attribute’s value from the given target object.

@param argument exztraction argument

*
*

* Qparam target object to extract the walue from

*

* @param collector collector of the extracted wvalue(s)
*

*/

public abstract void extract(T target, A argument, ValueCollector collector);

The extract () method does not return any value since the extracted value is collected by the ValueCollector. In
order to return multiple results from a single extraction, invoke the ValueCollector.collect() method multiple
times, so that the collector collects all results.

Here is the ValueCollector contract:

VAL
* Enables collecting values extracted by a {@see com.hazelcast.query.ezxtractor.ValueEztractor}
*/

public abstract class ValueCollector {

168 CHAPTER 10. DISTRIBUTED QUERY

/%%

* Collects a wvalue extracted by a ValueExztractor.

* <p/>

* More than one value may be collected in a single extraction
*

* @param value value to be collected

x/

public abstract void addObject(Object value);

10.3.1.1 ValueExtractor with Portable Serialization

Portable serialization is a special kind of serialization where there is no need to have the class of the serialized
object on the classpath in order to read its attributes. That is the reason why the target object passed to the
ValueExtractor.extract () method will not be of the exact type that has been stored. Instead, an instance of a
com.hazelcast.query.extractor.ValueReader will be passed. ValueReader enables reading the attributes of a
Portable object in a generic and type-agnostic way. It contains two methods:

e read(String path, ValueCollector<T> collector) - enables passing all results directly to the
ValueCollector.

e read(String path, ValueCallback<T> callback) - enables filtering, transforming and grouping the result
of the read operation and manually passing it to the ValueCollector.

Here is the ValueReader contract:

Jk*
* Enables reading the wvalue of the attribute specified by the path
* <p>
* The path may be:
* - simple -> it includes a single attribute only, like "name"
* — nested -> it includes more then a single attribute separated with a dot (.), e.g. person.address.ci
* <p>
* The path may also includes array cells:
* - specific quantifier, like person.leg[l] -> returns the leg with index 1
* - wildcard quantifier, like person.leglany] -> returns all legs
* <p>
* The wildcard quantifier may be used a couple of times, like person.leglany].finger[any] which returns
* from all legs.

*/

public abstract class ValueReader {

/%%

* Read the value of the attribute specified by the path and returns the result via the callback.

*

*/

public abstract <T> void read(String path, ValueCallback<T> callback) throws ValueReadingException;

/%%

* Read the value of the attribute specified by the path and returns the result directly to the coll
*

*/

public abstract <T> void read(String path, ValueCollector<T> collector) throws ValueReadingException

10.3. CUSTOM ATTRIBUTES 169

10.3.1.2 Returning Multiple Values from a Single Extraction

It sounds counter-intuitive, but a single extraction may return multiple values when arrays or collections are
involved. Let’s have a look at the following data structure in pseudo-code:

class Motorbike {
Wheel wheell2];
}

class Wheel {
String name;

}

Let’s assume that we want to extract the names of all wheels from a single motorbike object. Each motorbike has
two wheels so there are two names for each bike. In order to return both values from the extraction operation,
collect them separately using the ValueCollector. Collecting multiple values in this way allows you to operate on
these multiple values as if they were single values during the evaluation of the predicates.

Let’s assume that we registered a custom extractor with the name wheelName and executed the following query:
wheelName = front-wheel.

The extraction may return up to two wheel names for each Motorbike since each Motorbike has up to two wheels.
In such a case, it is enough if a single value evaluates the predicate’s condition to true to return a match, so it will
return a Motorbike if “any” of the wheels matches the expression.

10.3.2 Extraction Arguments
A ValueExtractor may use a custom argument if it is specified in the query. The custom argument may be passed
within the square brackets located after the name of the custom attribute, e.g., customAttribute [argument].

Let’s have a look at the following query: currency[incoming] == EUR The currency is a custom attribute that
uses a com.test.CurrencyExtractor for extraction.

The string incoming is an argument that will be passed to the ArgumentParser during the extraction. The parser
will parse the string according to the parser’s custom logic and it will return a parsed object. The parsed object
may be a single object, array, collection, or any arbitrary object. It is up to the ValueExtractor’s implementor to
understand the semantics of the parsed argument object.

For now it is not possible to register a custom ArgumentParser, thus a default parser is used. It follows a
pass-through semantic, which means that the string located in the square brackets is passed “as is” to the
ValueExtractor.extract () method.

Please note that using square brackets within the argument string is not allowed.

10.3.3 Configuring a Custom Attribute Programmatically

The following snippet demonstrates how to define a custom attribute using a ValueExtractor.

MapAttributeConfig attributeConfig = new MapAttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractor("com.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addMapAttributeConfig(attributeConfig) ;

currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Keep in mind that an extractor may not be added after the map has been instantiated. All extractors have to be
defined upfront in the map’s initial configuration.

170 CHAPTER 10. DISTRIBUTED QUERY

10.3.4 Configuring a Custom Attribute Declaratively

The following snippet demonstrates how to define a custom attribute in the Hazelcast XML Configuration.

<map name="trades">
<attributes>
<attribute extractor="com.bank.CurrencyExtractor">currency</attribute>
</attributes>
</map>

Analogous to the example above, currency is the name of the custom attribute that will be extracted using the
CurrencyExtractor class.

Please note that an attribute name may begin with an ASCII letter [A-Za-z] or digit [0-9] and may contain ASCII
letters [A-Za-z], digits [0-9] or underscores later on.

10.3.5 Indexing Custom Attributes

You can create an index using a custom attribute.
The name of the attribute used in the index definition has to match the one used in the attributes configuration.

Defining indexes with extraction arguments is allowed, as shown in the example below:

<indexes>
<!-- custom attribute without an extraction argument -->
<index ordered="true'">currency</index>

<!-- custom attridbute using an extraction argument -->
<index ordered="true">currency[EUR]</index>
</indexes>

10.4 MapReduce

You have likely heard about MapReduce ever since Google released its research white paper on this concept. With
Hadoop as the most common and well known implementation, MapReduce gained a broad audience and made it
into all kinds of business applications dominated by data warehouses.

MapReduce is a software framework for processing large amounts of data in a distributed way. Therefore, the
processing is normally spread over several machines. The basic idea behind MapReduce is that source data is
mapped into a collection of key-value pairs and reducing those pairs, grouped by key, in a second step towards the
final result.

The main idea can be summarized with the following steps.

1. Read the source data.
2. Map the data to one or multiple key-value pairs.
3. Reduce all pairs with the same key.

Use Cases

The best known examples for MapReduce algorithms are text processing tools, such as counting the word frequency
in large texts or websites. Apart from that, there are more interesting examples of use cases listed below.

e Log Analysis
e Data Querying
e Aggregation and summing

10.4. MAPREDUCE 171

Distributed Sort

ETL (Extract Transform Load)
Credit and Risk management
Fraud detection

and more.

10.4.1 Understanding MapReduce

This section will give deeper insight into the MapReduce pattern and will help you understand the semantics behind
the different MapReduce phases and how they are implemented in Hazelcast.

In addition to this, the following sections compare Hadoop and Hazelcast MapReduce implementations to help
adopters with Hadoop backgrounds quickly get familiar with Hazelcast MapReduce.

10.4.1.1 MapReduce Workflow Example

The flowchart below demonstrates the basic workflow of the word count example (distributed occurrences analysis)
mentioned in the MapReduce section introduction. From left to right, it iterates over all the entries of a data
structure (in this case an IMap). In the mapping phase, it splits the sentence into single words and emits a key-value
pair per word: the word is the key, 1 is the value. In the next phase, values are collected (grouped) and transported
to their corresponding reducers, where they are eventually reduced to a single key-value pair, the value being the
number of occurrences of the word. At the last step, the different reducer results are grouped up to the final result
and returned to the requester.

IMap<String, String> Mapping Grouping f Shuffling Reducing Final Result
& Saturn: 1
saturn: 1 . \‘ saturn: 1
is: 17 s 1
a: 1 & d is: 1
planet: 1 is: 1 \
f." is: 3
Saturn T a: 1
| o & 1T —» a 3
Saturn is a planet a 1
hoA saturm: 1
[) planet: 3 = :
s LY » - — -
Earth :E;:”th' :II {4 planet: 1 ____.-""f Tk :ianet: g
—_— 1 —*| planet: 1 th: 1
Earth is a planet lanet: A planet: 1 T
planet: 1 I " sarth: 1 b pluto: 1
not: 1
/ anymore: 1
Sl A parth: 1
pluto: 1
Pluto is mot a planet anymore /
pluto: 1 e phrin: ! not: 1
is: 1
not: 1 -
a: 15 —& not: 1
planet: 1 ., anymore: 1
anymore: 1 - /

b anymore: 1

Figure 10.1: MapReduce Workflow Example

In pseudo code, the corresponding map and reduce function would look like the following. A Hazelcast code example
will be shown in the next section.

map(key:String, document:String):Void ->

172 CHAPTER 10. DISTRIBUTED QUERY

for each w:word in document:
emit(w, 1)

reduce(word:String, counts:List[Int]):Int ->
return sum(counts)

10.4.1.2 MapReduce Phases

As seen in the workflow example, a MapReduce process consists of multiple phases. The original MapReduce
pattern describes two phases (map, reduce) and one optional phase (combine). In Hazelcast, these phases either
only exist virtually to explain the data flow, or are executed in parallel during the real operation while the general
idea is still persisting.

(Kx V)*-> (Lx W)*
[(k1,v1), ..., (kn, vn)] -> [(11, w1), ..., (Im, wm)]
Mapping Phase

The mapping phase iterates all key-value pairs of any kind of legal input source. The mapper then analyzes the
input pairs and emits zero or more new key-value pairs.

KxV->(LxW)*
(k, v) -> [(11, w1), ..., (In, wn)]
Combine Phase

In the combine phase, multiple key-value pairs with the same key are collected and combined to an intermediate
result before being sent to the reducers. Combine phase is also optional in Hazelcast, but is highly
recommended to lower the traffic.

In terms of the word count example, this can be explained using the sentences “Saturn is a planet but the Earth
is a planet, too”. As shown above, we would send two key-value pairs (planet, 1). The registered combiner now
collects those two pairs and combines them into an intermediate result of (planet, 2). Instead of two key-value pairs
sent through the wire, there is now only one for the key “planet”.

The pseudo code for a combiner is similar to the reducer.

combine(word:String, counts:List[Int]):Void ->
emit(word, sum(counts))

Grouping / Shuffling Phase

The grouping or shuffling phase only exists virtually in Hazelcast since it is not a real phase; emitted key-value
pairs with the same key are always transferred to the same reducer in the same job. They are grouped together,
which is equivalent to the shuffling phase.

Reducing Phase

In the reducing phase, the collected intermediate key-value pairs are reduced by their keys to build the final by-key
result. This value can be a sum of all the emitted values of the same key, an average value, or something completely
different, depending on the use case.

Here is a reduced representation of this phase.
L x W* > X*

(L, [wi1, ..., wn]) -> [x1, ..., xn]

Producing the Final Result

This is not a real MapReduce phase, but it is the final step in Hazelcast after all reducers are notified that reducing
has finished. The original job initiator then requests all reduced results and builds the final result.

10.4. MAPREDUCE 173

10.4.1.3 Additional MapReduce Resources

The Internet is full of useful resources for finding deeper information on MapReduce. Below is a short collection of
more introduction material. In addition, there are books written about all kinds of MapReduce patterns and how
to write a MapReduce function for your use case. To name them all is out of the scope of this documentation, but
here are some resources:

http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce
http://hci.stanford.edu/courses/cs448¢g/a2/files/map_ reduce_ tutorial.pdf
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://www.slideshare.net/franebandov/an-introduction-to-mapreduce-6789635

10.4.2 Using the MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the different API
classes, we will build the word count example that was discussed earlier and create it step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to build
and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is retrieved from
com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the name of the required
JobTracker configuration. The configuration for JobTrackers will be discussed later; for now we focus on the API
itself. In addition, the complete submission part of the API is built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar as possible to
their counterparts on Hadoop. That means while most users will recognize a lot of similar sounding classes, the
way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g., we will create a specialized
JobTracker configuration (at the end). Special JobTracker configuration is not required, because for all other
Hazelcast features you can use “default” as the configuration name. However, special configurations offer better
options to predict behavior of the framework execution.

The full example is available here as a ready to run Maven project.

10.4.2.1 Retrieving a JobTracker Instance

JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a single
MapReduce configuration. The same Job can be submitted multiple times regardless of whether it is executed in
parallel or after the previous execution is finished.

! NOTE: After retrieving the JobTracker, be aware that it should only be used with data structures derived
from the same HazelcastInstance. Otherwise, you can get unexpected behavior.

To retrieve a JobTracker from Hazelcast, we will start by using the “default” configuration for convenience reasons
to show the basic way.

import com.hazelcast.mapreduce. *;

JobTracker jobTracker = hazelcastInstance.getJobTracker("default");

JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After building the
cluster connection, you use the created HazelcastInstance to request the configured (or default) JobTracker from
Hazelcast.

The next step will be to create a new Job and configure it to execute our first MapReduce request against cluster
data.

174 CHAPTER 10. DISTRIBUTED QUERY

10.4.2.2 Creating a Job

As mentioned in Retrieving a JobTracker Instance, you create a Job using the retrieved JobTracker instance. A
Job defines exactly one configuration of a MapReduce task. Mapper, combiner and reducers will be defined per job.
However, since the Job instance is only a configuration, it can be submitted multiple times, regardless of whether
executions happen in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker’s name and a jobld generated
on submit-time. The way to retrieve the jobld will be shown in one of the later sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a deeper
look at the KeyValueSource class in the next section. KeyValueSource is used to wrap any kind of data or data
structure into a well defined set of key-value pairs.

The example code below is a direct follow up to the example in Retrieving a JobTracker Instance, and it reuses the
already created HazelcastInstance and JobTracker instances.

The example starts by retrieving an instance of our data map, and then it creates the Job instance. Implementations
used to configure the Job will be discussed while walking further through the API documentation.

! NOTE: Since the Job class is highly dependent upon generics to support type safety, the generics change
over time and may not be assignment compatible to old variable types. To make use of the full potential of the fluent
API, we recommend you use fluent method chaining as shown in this example to prevent the need for too many
variables.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map) ;
Job<String, String> job = jobTracker.newJob(source);

ICompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner (new WordCountCombinerFactory())
.reducer (new WordCountReducerFactory())
.submit () ;

// Attach a callback listener
future.andThen(buildCallback());

// Wait and retrieve the result
Map<String, Long> result = future.get();

As seen above, we create the Job instance and define a mapper, combiner, and reducer. Then we submit the request
to the cluster. The submit method returns an ICompletableFuture that can be used to attach our callbacks or to
wait for the result to be processed in a blocking fashion.

There are more options available for job configurations, such as defining a general chunk size or on what keys the
operation will operate. For more information, please refer to the Hazelcast source code for Job.java.

10.4.2.3 Creating Key-Value Input Sources with KeyValueSource

KeyValueSource can either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-value pair
input sources, or build your own custom key-value input source. The latter option makes it possible to feed
Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web page contents or data files.
People familiar with Hadoop will recognize similarities with the Input class.

You can imagine a KeyValueSource as a bigger java.util.Iterator implementation. Whereas most methods
must be implemented, implementing the getAl1Keys method is optional. If implementation is able to gather all
keys upfront, it should be implemented and isAl1KeysSupported must return true. That way, Job configured
KeyPredicates are able to evaluate keys upfront before sending them to the cluster. Otherwise they are serialized
and transferred as well, to be evaluated at execution time.

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/mapreduce/Job.java

10.4. MAPREDUCE 175

As shown in the example above, the abstract KeyValueSource class provides a number of static methods to easily
wrap Hazelcast data structures into KeyValueSource implementations already provided by Hazelcast. The data
structures’ generics are inherited by the resulting KeyValueSource instance. For data structures like IList or ISet,
the key type is always String. While mapping, the key is the data structure’s name, whereas the value type and
value itself are inherited from the IList or ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap("my-map");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map) ;

// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap("my-multimap");
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap(multiMap) ;

// KeyValueSource from com.hazelcast.core.IList
IList<String> list = hazelcastInstance.getList("my-list");
KeyValueSource<String, String> source = KeyValueSource.fromList(list);

// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet("my-set");
KeyValueSource<String, String> source = KeyValueSource.fromSet(set);

Partitionld Aware

The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource imple-
mentation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for all internal data
structures). If this interface is implemented, the same KeyValueSource instance is reused multiple times for all
partitions on the cluster member. As a consequence, the close and open methods are also executed multiple times
but once per partitionld.

10.4.2.4 Implementing Mapping Logic with Mapper

Using the Mapper interface, you will implement the mapping logic. Mappers can transform, split, calculate, and
aggregate data from data sources. In Hazelcast you can also integrate data from more than the KeyValueSource
data source by implementing com.hazelcast.core.HazelcastInstanceAware and requesting additional maps,
multimaps, list, and/or sets.

The mappers map function is called once per available entry in the data structure. If you work on distributed data
structures that operate in a partition-based fashion, multiple mappers work in parallel on the different cluster
members on the members’ assigned partitions. Mappers then prepare and maybe transform the input key-value
pair and emit zero or more key-value pairs for the reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it by splitting
the text into the available words. After that, as discussed in the pseudo code, we emit every single word with a
key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
private static final Long ONE = Long.valueOf(1L);

@0verride

public void map(String key, String document, Context<String, Long> context) {
StringTokenizer tokenizer = new StringTokenizer(document.toLowerCase());
while (tokenizer.hasMoreTokens()) {

context.emit(tokenizer.nextToken(), ONE);

3

}

}

176 CHAPTER 10. DISTRIBUTED QUERY

This code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are more tokens,
and emits a pair per word. Note that we're not yet collecting multiple occurrences of the same word, we just fire
every word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the Mapper
implementation lifecycle aware. That means it will be notified when mapping of a partition or set of data begins
and when the last entry was mapped.

Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit additional values.

10.4.2.5 Minimizing Cluster Traffic with Combiner

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster members when
transmitting mapped values from mappers to the reducers. It does this by aggregating multiple values for the same
emitted key. This is a fully optional operation, but using it is highly recommended.

Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to the key for which
the combiner initially was created. Since combiners are created per emitted key, the Combiner implementation itself
is not defined in the jobs configuration; instead, a CombinerFactory that is able to create the expected Combiner
instance is created.

Because Hazelcast MapReduce is executing the mapping and reducing phases in parallel, the Combiner implemen-
tation must be able to deal with chunked data. Therefore, you must reset its internal state whenever you call
finalizeChunk. Calling the finalizeChunk method creates a chunk of intermediate data to be grouped (shuffled)
and sent to the reducers.

Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.

For our word count example, we are going to have a simple CombinerFactory and Combiner implementation similar
to the following example.

public class WordCountCombinerFactory
implements CombinerFactory<String, Long, Long> {

@0verride
public Combiner<Long, Long> newCombiner(String key) {
return new WordCountCombiner();

}

private class WordCountCombiner extends Combiner<Long, Long> {
private long sum = O;

Q@0verride
public void combine(Long value) {
sum++;

3

@0verride
public Long finalizeChunk() {
return sum;

3

@0verride
public void reset() {
sum = 0;

3

10.4. MAPREDUCE 177

The Combiner must be able to return its current value as a chunk and reset the internal state by setting sum back
to 0. Since combiners are always called from a single thread, no synchronization or volatility of the variables is
necessary.

10.4.2.6 Doing Algorithm Work with Reducer

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or any other work
that is expected from the algorithm.

Since values arrive in chunks, the reduce method is called multiple times for every emitted value of the creation
key. This also can happen multiple times per chunk if no Combiner implementation was configured for a job
configuration.

Uunlike combiners, a reducer’s finalizeReduce method is only called once per reducer (which means once per key).
Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation will look similar to the following code example.

public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

@0verride
public Reducer<Long, Long> newReducer(String key) {
return new WordCountReducer();

}

private class WordCountReducer extends Reducer<Long, Long> {
private volatile long sum = O;

@0verride
public void reduce(Long value) {
sum += value.longValue();

}

@0verride
public Long finalizeReduce() {
return sum;
3
}
}

10.4.2.6.1 Reducers Switching Threads Unlike combiners, reducers tend to switch threads if running out
of data to prevent blocking threads from the JobTracker configuration. They are rescheduled at a later point when
new data to be processed arrives, but are unlikely to be executed on the same thread as before. As of Hazelcast
version 3.3.3 the guarantee for memory visibility on the new thread is ensured by the framework. This means the
previous requirement for making fields volatile is dropped.

10.4.2.7 Modifying the Result with Collator
A Collator is an optional operation that is executed on the job emitting member and is able to modify the finally
reduced result before returned to the user’s codebase. Only special use cases are likely to use collators.

For an imaginary use case, we might want to know how many words were all over in the documents we analyzed.
For this case, a Collator implementation can be given to the submit method of the Job instance.

A collator would look like the following snippet:

178 CHAPTER 10. DISTRIBUTED QUERY

public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

@0verride
public Long collate(Iterable<Map.Entry<String, Long>> values) {
long sum = 0;

for (Map.Entry<String, Long> entry : values) {
sum += entry.getValue().longValue();
by
return sum;
}
}

The definition of the input type is a bit strange, but because Combiner and Reducer implementations are optional,
the input type heavily depends on the state of the data. As stated above, collators are non-typical use cases and
the generics of the framework always help in finding the correct signature.

10.4.2.8 Preselecting Keys with KeyPredicate

You can use KeyPredicate to pre-select whether or not a key should be selected for mapping in the mapping phase.
If the KeyValueSource implementation is able to know all keys prior to execution, the keys are filtered before the
operations are divided among the different cluster members.

A KeyPredicate can also be used to select only a special range of data (e.g., a time frame), or in similar use cases.

A basic KeyPredicate implementation that only maps keys containing the word “hazelcast” might look like the
following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

@0verride
public boolean evaluate(String s) {

return s != null && s.toLowerCase().contains("hazelcast");
}

}

10.4.2.9 Job Monitoring with TrackableJob

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker using the
unique jobId (per JobTracker). You can use it get runtime statistics of the job. The information available is
limited to the number of processed (mapped) records and the processing state of the different partitions or members
(if KeyValueSource is not Partitionld Aware).

To retrieve the jobld after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture instead
of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

The example code below gives a quick introduction on how to retrieve the instance and the runtime data. For more
information, please have a look at the Javadoc corresponding your running Hazelcast version.

The example performs the following steps to get the job instance.

o It gets the map with the hazelcastInstance getMap method.
e From the map, it gets the source with the KeyValueSource fromMap method.
e From the source, it gets a job with the JobTracker newJob method.

IMap<String, String> map = hazelcastInstance.getMap("articles");
KeyValueSource<String, String> source = KeyValueSource.fromMap(map);
Job<String, String> job = jobTracker.newJob(source);

10.4. MAPREDUCE 179

JobCompletableFuture<Map<String, Long>> future = job
.mapper (new TokenizerMapper())
.combiner (new WordCountCombinerFactory())
.reducer (new WordCountReducerFactory())
.submit () ;

String jobId = future.getJobId();
TrackableJob trackableJob = jobTracker.getTrackableJob(jobId) ;

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log("ProcessedRecords: " + processedRecords);

JobPartitionState[] partitionStates = stats.getPartitionStates();
for (JobPartitionState partitionState : partitionStates) {
log("PartitionOwner: " + partitionState.getOwner()
+ ", Processing state: " + partitionState.getState().name());

l NOTE: Caching of the JobProcessInformation does not work on Java native clients since current values are
retrieved while retrieving the instance to minimize traffic between executing member and client.

10.4.2.10 Configuring JobTracker

You configure JobTracker configuration to set up behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is meant as a shared
resource for all jobs created by the same JobTracker. The configuration gives full control over the expected load
behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. The configuration properties are discussed below
the example.

<jobtracker name="default">

<max-thread-size>0</max-thread-size>

<!-- (ueue size 0 means number of partitions * 2 —-->

<queue-size>0</queue-size>

<retry-count>0</retry-count>

<chunk-size>1000</chunk-size>

<communicate-stats>true</communicate-stats>

<topology-changed-strategy>CANCEL_RUNNING_OPERATION</topology-changed-strategy>
</jobtracker>

e max-thread-size: Maximum thread pool size of the JobTracker.

e queue-size: Maximum number of tasks that are able to wait to be processed. A value of 0 means an
unbounded queue. Very low numbers can prevent successful execution since the job might not be correctly
scheduled or intermediate chunks might be lost.

e retry-count: Currently not used. Reserved for later use where the framework will automatically try to
restart /retry operations from an available save point.

e chunk-size: Number of emitted values before a chunk is sent to the reducers. If your emitted values are
big or you want to better balance your work, you might want to change this to a lower or higher value. A
value of 0 means immediate transmission, but remember that low values mean higher traffic costs. A very
high value might cause an OutOfMemoryError to occur if the emitted values do not fit into heap memory
before being sent to the reducers. To prevent this, you might want to use a combiner to pre-reduce values on
mapping members.

180 CHAPTER 10. DISTRIBUTED QUERY

e communicate-stats: Specifies whether the statistics (for example, statistics about processed entries) are
transmitted to the job emitter. This can show progress to a user inside of an Ul system, but it produces
additional traffic. If not needed, you might want to deactivate this.

e topology-changed-strategy: Specifies how the MapReduce framework reacts on topology changes while
executing a job. Currently, only CANCEL_RUNNING__OPERATION is fully supported, which throws an
exception to the job emitter (will throw a com.hazelcast.mapreduce.TopologyChangedException).

10.4.3 Hazelcast MapReduce Architecture

This section explains some of the internals of the MapReduce framework. This is more advanced information. If
you're not interested in how it works internally, you might want to skip this section.

10.4.3.1 Member Interoperation Example

To understand the following technical internals, we first have a short look at what happens in terms of an example
workflow.

As a simple example, think of an IMap<String, Integer> and emitted keys having the same types. Imagine you
have a cluster with three members, and you initiate the MapReduce job on the first member. After you requested
the JobTracker from your running/connected Hazelcast, we submit the task and retrieve the ICompletableFuture,
which gives us a chance to wait for the result to be calculated or to add a callback (and being more reactive).

The example expects that the chunk size is 0 or 1, so an emitted value is directly sent to the reducers. Internally,
the job is prepared, started, and executed on all members as shown below. The first member acts as the job owner
(job emitter).

Memberl starts MapReduce job
Memberl emits key=Foo, value=1
Memberl does PartitionService::getKeyOwner(Foo) => results in Member3

Member2 emits key=Foo, value=14
Member2 asks jobOwner (Memberl) for keyOwner of Foo => results in Member3

Memberl sends chunk for key=Foo to Member3

Member3 receives chunk for key=Foo and looks if there is already a Reducer,
if not creates one for key=Foo

Member3 processes chunk for key=Foo

Member2 sends chunk for key=Foo to Member3

Member3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Member3 processes chunk for key=Foo

Memberl send LastChunk information to Member3 because processing local values finished

Member2 emits key=Foo, value=27

Member2 has cached keyOwner of Foo => results in Member3

Member2 sends chunk for key=Foo to Member3d

Member3 receives chunk for key=Foo and looks if there is already a Reducer and uses
the previous one

Member3 processes chunk for key=Foo

Member2 send LastChunk information to Member3 because processing local values finished

10.4. MAPREDUCE 181

Member3 finishes reducing for key=Foo

Memberl registers its local partitions are processed
Member2 registers its local partitions are processed

Memberl sees all partitions processed and requests reducing from all members

Memberl merges all reduced results together in a final structure and returns it

The flow is quite complex but extremely powerful since everything is executed in parallel. Reducers do not wait
until all values are emitted, but they immediately begin to reduce (when the first chunk for an emitted key arrives).

10.4.3.2 Internal MapReduce Packages

Beginning with the package level, there is one basic package: com.hazelcast.mapreduce. This includes the
external API and the impl package, which itself contains the internal implementation.

e The impl package contains all the default KeyValueSource implementations and abstract base and support
classes for the exposed API.

e The client package contains all classes that are needed on the client and member sides when a client offers a
MapReduce job.

e The notification package contains all “notification” or event classes that notify other members about progress
on operations.

e The operation package contains all operations that are used by the workers or job owner to coordinate work
and sync partition or reducer processing.

e The task package contains all classes that execute the actual MapReduce operation. It features the supervisor,
mapping phase implementation, and mapping and reducing tasks.

10.4.3.3 MapReduce Job Walk-Through

Now to the technical walk-through: A MapReduce Job is always retrieved from a named JobTracker, which is
implemented in NodeJobTracker (extends AbstractJobTracker) and is configured using the configuration DSL.
All of the internal implementation is completely ICompletableFuture-driven and mostly non-blocking in design.

On submit, the Job creates a unique UUID which afterwards acts as a jobld and is combined with the JobTracker’s
name to be uniquely identifiable inside the cluster. Then, the preparation is sent around the cluster and every
member prepares its execution by creating a JobSupervisor, MapCombineTask, and ReducerTask. The job-emitting
JobSupervisor gains special capabilities to synchronize and control JobSupervisors on other members for the same
job.

If preparation is finished on all members, the job itself is started by executing a StartProcessingJobOperation on
every member. This initiates a MappingPhase implementation (defaults to KeyValueSourceMappingPhase) and
starts the actual mapping on the members.

The mapping process is currently a single threaded operation per member, but will be extended to run in parallel on
multiple partitions (configurable per Job) in future versions. The Mapper is now called on every available value on
the partition and eventually emits values. For every emitted value, either a configured CombinerFactory is called to
create a Combiner or a cached one is used (or the default CollectingCombinerFactory is used to create Combiners).
When the chunk limit is reached on a member, a IntermediateChunkNotification is prepared by collecting emitted
keys to their corresponding members. This is either done by asking the job owner to assign members or by an
already cached assignment. In later versions, a PartitionStrategy might also be configurable.

The IntermediateChunkNotification is then sent to the reducers (containing only values for this member) and is
offered to the ReducerTask. On every offer, the ReducerTask checks if it is already running and if not, it submits
itself to the configured ExecutorService (from the JobTracker configuration).

If reducer queue runs out of work, the ReducerTask is removed from the ExecutorService to not block threads but
eventually will be resubmitted on next chunk of work.

182 CHAPTER 10. DISTRIBUTED QUERY

On every phase, the partition state is changed to keep track of the currently running operations. A JobPartitionState
can be in one of the following states with self-explanatory titles: [WAITING, MAPPING, REDUCING, PROCESSED,
CANCELLED]. If you have a deeper interest of these states, look at the Javadoc.

e Member asks for new partition to process: WAITING => MAPPING

e Member emits first chunk to a reducer: MAPPING => REDUCING

e All members signal that they finished mapping phase and reducing is finished, too: REDUCING =>
PROCESSED

Eventually, all JobPartitionStates reach the state of PROCESSED. Then, the job emitter’s JobSupervisor asks all
members for their reduced results and executes a potentially offered Collator. With this Collator, the overall result
is calculated before it removes itself from the JobTracker, doing some final cleanup and returning the result to the
requester (using the internal TrackableJobFuture).

If a job is cancelled while execution, all partitions are immediately set to the CANCELLED state and a CancelJob-
SupervisorOperation is executed on all members to kill the running processes.

While the operation is running in addition to the default operations, some more operations like ProcessStatsUpdate-
Operation (updates processed records statistics) or NotifyRemoteExceptionOperation (notifies the members that the
sending member encountered an unrecoverable situation and the Job needs to be cancelled - e.g. NullPointerException
inside of a Mapper) are executed against the job owner to keep track of the process.

10.5 Aggregators

Based on the Hazelcast MapReduce framework, Aggregators are ready-to-use data aggregations. These are typical
operations like sum up values, finding minimum or maximum values, calculating averages, and other operations
that you would expect in the relational database world.

Aggregation operations are implemented, as mentioned above, on top of the MapReduce framework, and all
operations can be achieved using pure MapReduce calls. However, using the Aggregation feature is more convenient
for a big set of standard operations.

10.5.1 Aggregations Basics

This section will quickly guide you through the basics of the Aggregations framework and some of its available
classes. We also will implement a first base example.

10.5.1.1 Aggregations and Map Interfaces

Aggregations are available on both types of map interfaces, com.hazelcast.core.IMap and com.hazelcast
.core.MultiMap, using the aggregate methods. Two overloaded methods are available that customize resource man-
agement of the underlying MapReduce framework by supplying a custom configured com.hazelcast .mapreduce. JobTracker
instance. To find out how to configure the MapReduce framework, please see Configuring JobTracker. We will later
see another way to configure the automatically used MapReduce framework if no special JobTracker is supplied.

10.5.1.2 Aggregations and Java

To make Aggregations more convenient to use and future proof, the API is heavily optimized for Java 8 and future
versions. The API is still fully compatible with any Java version Hazelcast supports (Java 6 and Java 7). The
biggest difference is how you work with the Java generics: on Java 6 and 7, the process to resolve generics is not as
strong as on Java 8 and future Java versions. In addition, the whole Aggregations API has full Java 8 Project
Lambda (or Closure, JSR 335) support.

For illustration of the differences in Java 6 and 7 in comparison to Java 8, we will have a quick look at code
examples for both. After that, we will focus on using Java 8 syntax to keep examples short and easy to understand,
and we will see some hints about what the code looks like in Java 6 or 7.

10.5. AGGREGATORS 183

The first example will produce the sum of some int values stored in a Hazelcast IMap. This example does not use
much of the functionality of the Aggregations framework, but it will show the main difference.

IMap<String, Integer> personAgeMapping = hazelcastInstance.getMap("person-age");
for (int i = 0; i < 1000; i++) {

String lastName = RandomUtil.randomLastName() ;

int age = RandomUtil.randomAgeBetween(20, 80);

personAgeMapping.put(lastName, Integer.valueOf(age));
}

With our demo data prepared, we can see how to produce the sums in different Java versions.

10.5.1.3 Aggregations and Java 6 or Java 7
Since Java 6 and 7 are not as strong on resolving generics as Java 8, you need to be a bit more verbose with the
code you write. You might also consider using raw types but breaking the type safety to ease this process.

For a short introduction on what the following code example means, look at the source code comments. We will
later dig deeper into the different options.

// No filter applied, select all entries

Supplier<String, Integer, Integer> supplier = Supplier.all();

// Choose the sum aggregation

Aggregation<String, Integer, Integer> aggregation = Aggregations.integerSum() ;
// Ezecute the aggregation

int sum = personAgeMapping.aggregate(supplier, aggregation);

10.5.1.4 Aggregations and Java 8

With Java 8, the Aggregations API looks simpler because Java 8 can resolve the generic parameters for us. That
means the above lines of Java 6/7 example code will end up in just one easy line on Java 8.

int sum = personAgeMapping.aggregate(Supplier.all(), Aggregations.integerSum());

10.5.1.5 Aggregations and the MapReduce Framework

As mentioned before, the Aggregations implementation is based on the Hazelcast MapReduce framework and
therefore you might find overlaps in their APIs. One overload of the aggregate method can be supplied with a
JobTracker, which is part of the MapReduce framework.

If you implement your own aggregations, you will use a mixture of the Aggregations and the MapReduce API. If
you do so, e.g., to make the life of colleagues easier, please read the Implementing Aggregations section.

For the full MapReduce documentation please see the MapReduce section.

10.5.2 Using the Aggregations API

We now look into what can be achieved using the Aggregations API. To work on some deeper examples, let’s
quickly have a look at the available classes and interfaces and discuss their usage.

184 CHAPTER 10. DISTRIBUTED QUERY

10.5.2.1 Supplier

The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the aggrega-
tion operation. This class already provides a few different static methods to achieve the most common cases.
Supplier.all() accepts all incoming values and does not apply any data extraction or transformation upon them
before supplying them to the aggregation function itself.

For filtering data sets, you have two different options by default:

e You can either supply a com.hazelcast.query.Predicate if you want to filter on values and/or keys, or
e You can supply a com.hazelcast.mapreduce.KeyPredicate if you can decide directly on the data key
without the need to deserialize the value.

As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let’s have a look on how we can do basic
filtering using those two options.

10.5.2.1.1 Basic Filtering with KeyPredicate First, we have a look at a KeyPredicate and we only accept
people whose last name is “Jones”.

Supplier<...> supplier = Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName)

)

class JonesKeyPredicate implements KeyPredicate<String> {
public boolean evaluate(String key) {
return "Jones'.equalsIgnoreCase(key);
}
}

10.5.2.1.2 Filtering on Values with Predicate Using the standard Hazelcast Predicate interface, we can
also filter based on the value of a data entry. In the following example, you can only select values that are divisible
by 4 without a remainder.

Supplier<...> supplier = Supplier.fromPredicate(
entry -> entry.getValue() 7% 4 ==
)3

class DivisiblePredicate implements Predicate<String, Integer> {
public boolean apply(Map.Entry<String, Integer> entry) {
return entry.getValue() % 4 == 0;
b
}

10.5.2.1.3 Extracting and Transforming Data As well as filtering, Supplier can also extract or transform
data before providing it to the aggregation operation itself. The following example shows how to transform an
input value to a string.

Supplier<String, Integer, String> supplier = Supplier.all(
value -> Integer.toString(value)

)

You can see a Java 6/7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see that the generic
information of the resulting Supplier has changed as well. This indicates that we now have an aggregation working
on string values.

10.5. AGGREGATORS 185

10.5.2.1.4 Chaining Multiple Filtering Rules Another feature of Supplier is its ability to chain multiple
filtering rules. Let’s combine all of the above examples into one rule set:

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
Supplier.fromPredicate(
entry -> entry.getValue() % 4 == 0,
Supplier.all(value -> Integer.toString(value))

)

10.5.2.1.5 Implementing Supplier with Special Requirements You might prefer or need to implement
your Supplier based on special requirements. This is a very basic task. The Supplier abstract class has just one
method: the apply method.

! NOTE: Due to a limitation of the Java Lambda API, you cannot implement abstract classes using Lambdas.
Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
public String apply(Map.Entry<String, Integer> entry) {
Integer value = entry.getValue();
if (value == null) {
return null;
}
return value % 4 == 0 7 String.valueOf(value) : null;
}
}

The Supplier apply methods are expected to return null whenever the input value should not be mapped to the
aggregation process. This can be used, as in the example above, to implement filter rules directly. Implementing
filters using the KeyPredicate and Predicate interfaces might be more convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other Suppliers.
int sum = personAgeMapping.aggregate(new MyCustomSupplier(), Aggregations.count());

Supplier<String, Integer, String> supplier =
Supplier.fromKeyPredicate(
lastName -> "Jones".equalsIgnoreCase(lastName),
new MyCustomSupplier()
)5
int sum = personAgeMapping.aggregate(supplier, Aggregations.count());

10.5.2.2 Defining the Aggregation Operation

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation itself. It
contains a set of MapReduce API implementations like Mapper, Combiner, Reducer, and Collator. These
implementations are normally unique to the chosen Aggregation. This interface can also be implemented with
your aggregation operations based on MapReduce calls. For more information, refer to Implementing Aggregations
section.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of aggrega-
tions. This class contains type safe aggregations of the following types:

e Average (Integer, Long, Double, Biglnteger, BigDecimal)

186 CHAPTER 10. DISTRIBUTED QUERY

Sum (Integer, Long, Double, BigInteger, BigDecimal)

Min (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
Max (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
DistinctValues

Count

Those aggregations are similar to their counterparts on relational databases and can be equated to SQL statements
as set out below.

10.5.2.2.1 Average Calculates an average value based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerAvg());

SELECT AVG(person.age) FROM person;

10.5.2.2.2 Sum Calculates a sum based on all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerSum());

SELECT SUM(person.age) FROM person;

10.5.2.2.3 Minimum (Min) Finds the minimal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMin());

SELECT MIN(person.age) FROM person;

10.5.2.2.4 Maximum (Max) Finds the maximal value over all selected values.

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.integerMax());

SELECT MAX(person.age) FROM person;

10.5.2.2.5 Distinct Values Returns a collection of distinct values over the selected values

map.aggregate(Supplier.all(person -> person.getAge()),
Aggregations.distinctValues());

SELECT DISTINCT person.age FROM person;

10.5.2.2.6 Count Returns the element count over all selected values
map.aggregate(Supplier.all(), Aggregations.count());

SELECT COUNT(*) FROM person;

10.5. AGGREGATORS 187

10.5.2.3 Extracting Attribute Values with PropertyExtractor

We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had a look
at the example on how to use a Supplier to transform a value to another type. It can also be used to extract
attributes from values.

class Person {
private String firstName;
private String lastName;
private int age;

// getters and setters

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();

class AgeExtractor implements PropertyExtractor<Person, Integer> {
public Integer extract(Person value) {
return value.getAge();

}
}

In this example, we extract the value from the person’s age attribute. The value type changes from Person to
Integer which is reflected in the generics information to stay type safe.

You can use PropertyExtractors for any kind of transformation of data. You might even want to have multiple
transformation steps chained one after another.

10.5.2.4 Configuring Aggregations

As stated before, the easiest way to configure the resources used by the underlying MapReduce framework is to supply
a JobTracker to the aggregation call itself by passing it to either IMap: :aggregate or MultiMap: :aggregate.

There is another way to implicitly configure the underlying used JobTracker. If no specific JobTracker was passed
for the aggregation call, internally one will be created using the following naming specifications:

For IMap aggregation calls the naming specification is created as:
e hz::aggregation-map- and the concatenated name of the map.
For MultiMap it is very similar:
e hz::aggregation-multimap- and the concatenated name of the MultiMap.
Knowing the specification of the name, we can configure the JobTracker as expected (as described in Retrieving

a JobTracker Instance) using the naming spec we just learned. For more information on configuration of the
JobTracker, please see Configuring Jobtracker.

To finish this section, let’s have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap("mymap");

// The internal JobTracker name resolves to ’hz::aggregation—-map-mymap’
map.aggregate(...);

MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap("mymultimap");

// The internal JobTracker name resolves to ’hz::aggregation-multimap-mymultimap’
multimap.aggregate(...);

188 CHAPTER 10. DISTRIBUTED QUERY
10.5.3 Aggregations Examples

For the final example, imagine you are working for an international company and you have an employee database
stored in Hazelcast IMap with all employees worldwide and a MultiMap for assigning employees to their certain
locations or offices. In addition, there is another IMap that holds the salary per employee.

10.5.3.1 Setting up the Data Model

Let’s have a look at our data model.

class Employee implements Serializable {
private String firstName;
private String lastName;
private String companyName;
private String address;
private String city;
private String county;
private String state;
private int zip;
private String phonel;
private String phone2;
private String email;
private String web;

// getters and setters
}

class SalaryMonth implements Serializable {
private Month month;
private int salary;

// getters and setters
}

class SalaryYear implements Serializable {
private String email;
private int year;
private List<SalaryMonth> months;

// getters and setters

public int getAnnualSalary() {
int sum = O;
for (SalaryMonth salaryMonth : getMonths()) {

sum += salaryMonth.getSalary();

3
return sum;

}

}

The two IMaps and the MultiMap are keyed by the string of email. They are defined as follows:

IMap<String, Employee> employees = hz.getMap("employees");
IMap<String, SalaryYear> salaries = hz.getMap("salaries");
MultiMap<String, String> officeAssignment = hz.getMultiMap("office-employee");

10.5. AGGREGATORS 189

So far, we know all the important information to work out some example aggregations. We will look into some
deeper implementation details and how we can work around some current limitations that will be eliminated in
future versions of the API.

10.5.3.2 Average Aggregation Example

Let’s start with a very basic example. We want to know the average salary of all of our employees. To do this, we
need a PropertyExtractor and the average aggregation for type Integer.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.all(extractor),
Aggregations.integerAvg());

That’s it. Internally, we created a MapReduce task based on the predefined aggregation and fired it up immediately.
Currently all aggregation calls are blocking operations, so it is not yet possible to execute the aggregation in a
reactive way (using com.hazelcast.core.ICompletableFuture), but this will be part of an upcoming version.

10.5.3.3 Map Join Example

The following example is a little more complex. We only want to have our US-based employees selected into the
average salary calculation, so we need to execute a join operation between the employees and salaries maps.

class USEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

}

public boolean evaluate(String email) {
IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
Employee employee = employees.get(email);
return "US".equals(employee.getCountry());
X
b

Using the HazelcastInstanceAware interface, we get the current instance of Hazelcast injected into our filter and
we can perform data joins on other data structures of the cluster. We now only select employees that work as part
of our US offices into the aggregation.

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(
new USEmployeeFilter(), extractor
), Aggregations.integerAvg());

10.5.3.4 Grouping Example

For our next example, we will do some grouping based on the different worldwide offices. Currently, a group
aggregator is not yet available, so we need a small workaround to achieve this goal. (In later versions of the
Aggregations API this will not be required because it will be available out of the box in a much more convenient

way.)

190 CHAPTER 10. DISTRIBUTED QUERY

Again, let’s start with our filter. This time, we want to filter based on an office name and we need to do some data
joins to achieve this kind of filtering.

A short tip: to minimize the data transmission on the aggregation we can use Data Affinity rules to influence the
partitioning of data. Be aware that this is an expert feature of Hazelcast.

class OfficeEmployeeFilter implements KeyPredicate<String>, HazelcastInstanceAware {
private transient HazelcastInstance hazelcastInstance;
private String office;

// Deserialization Constructor
public OfficeEmployeeFilter() {
}

public OfficeEmployeeFilter(String office) {
this.office = office;

}

public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
this.hazelcastInstance = hazelcastInstance;

3

public boolean evaluate(String email) {
MultiMap<String, String> officeAssignment = hazelcastInstance
.getMultiMap("office-employee");

return officeAssignment.containsEntry(office, email);
X
b

Now we can execute our aggregations. As mentioned before, we currently need to do the grouping on our own by
executing multiple aggregations in a row.

Map<String, Integer> avgSalariesPerOffice = new HashMap<String, Integer>();

IMap<String, SalaryYear> salaries = hazelcastInstance.getMap("salaries");
MultiMap<String, String> officeAssignment =
hazelcastInstance.getMultiMap("office-employee");

PropertyExtractor<SalaryYear, Integer> extractor =
(salaryYear) -> salaryYear.getAnnualSalary();

for (String office : officeAssignment.keySet()) {
OfficeEmployeeFilter filter = new OfficeEmployeeFilter(office);
int avgSalary = salaries.aggregate(Supplier.fromKeyPredicate(filter, extractor),
Aggregations.integerAvg());

avgSalariesPerOffice.put(office, avgSalary);
}

10.5.3.5 Simple Count Example

We want to end this section by executing one final and easy aggregation. We want to know how many employees
we currently have on a worldwide basis. Before reading the next lines of example code, you can try to do it on your
own to see if you understood how to execute aggregations.

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.size();

10.6. CONTINUOUS QUERY CACHE 191

Ok, after the quick joke of the previous two code lines, we look at the real two code lines:

IMap<String, Employee> employees = hazelcastInstance.getMap("employees");
int count = employees.aggregate(Supplier.all(), Aggregations.count());

We now have an overview of how to use aggregations in real life situations. If you want to do your colleagues a favor,
you might want to write your own additional set of aggregations. If so, then read the next section, Implementing
Aggregations.

10.5.4 Implementing Aggregations

This section explains how to implement your own aggregations in your own application. It is an advanced section,
so if you do not intend to implement your own aggregation, you might want to stop reading here and come back
later when you need to know how to implement your own aggregation.

An Aggregation implementation is defining a MapReduce task, but with a small difference: the Mapper is always
expected to work on a Supplier that filters and/or transforms the mapped input value to some output value.

10.5.4.1 Aggregation Methods

The main interface for making your own aggregation is com.hazelcast.mapreduce.aggregation.Aggregation.
It consists of four methods.

interface Aggregation<Key, Supplied, Result> {
Mapper getMapper(Supplier<Key, 7, Supplied> supplier);
CombinerFactory getCombinerFactory();
ReducerFactory getReducerFactory();
Collator<Map.Entry, Result> getCollator();

The getMapper and getReducerFactory methods should return non-null values. getCombinerFactory and
getCollator are optional operations and you do not need to implement them. You can decide to implement them
depending on the use case you want to achieve.

10.5.4.2 Aggregation Tips
For more information on how you implement mappers, combiners, reducers, and collators, refer to the MapReduce
section.

For best speed and traffic usage, as mentioned in the MapReduce section, you should add a Combiner to your
aggregation whenever it is possible to do some kind of pre-reduction step.

Your implementation also should use DataSerializable or IdentifiedDataSerializable for best compatibility
and speed/stream-size reasons.

10.6 Continuous Query Cache

Hazelcast Enterprise

A continuous query cache is used to cache the result of a continuous query. After the construction of a continuous
query cache, all changes on the underlying IMap are immediately reflected to this cache as a stream of events.
Therefore, this cache will be an always up-to-date view of the IMap. You can create a continuous query cache either
on the client or member.

192 CHAPTER 10. DISTRIBUTED QUERY

10.6.1 Keeping Query Results Local and Ready

A continuous query cache is beneficial when you need to query the distributed IMap data in a very frequent and fast
way. By using a continuous query cache, the result of the query will always be ready and local to the application.

10.6.2 Accessing Continuous Query Cache from Member

The following code snippet shows how you can access a continuous query cache from a member.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig('"map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig) ;

Config config = new Config();
config.addMapConfig(mapConfig) ;

HazelcastInstance node = Hazelcast.newHazelcastInstance(config) ;
IEnterpriseMap<Integer, String> map = (IEnterpriseMap) node.getMap("map-name");

QueryCache<Integer, String> cache = map.getQueryCache("cache-name");

10.6.3 Accessing Continuous Query Cache from Client Side

The following code snippet shows how you can access a continuous query cache from the client side. The difference
in this code from the member side code above is that you configure and instantiate a client instance instead of a
member instance.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig('"cache-name");
queryCacheConfig.getPredicateConfig() .setImplementation(new 0ddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig) ;
IEnterpriseMap<Integer, Integer> clientMap = (IEnterpriseMap) client.getMap("map-name") ;

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

10.6.4 Features of Continuous Query Cache

The following features of continuous query cache are valid for both the member and client.
e The initial query that is run on the existing IMap data during the continuous query cache construction can be
enabled /disabled according to the supplied predicate via QueryCacheConfig#setPopulate.
e Continuous query cache allows you to run queries with indexes, and perform event batching and coalescing.

e A continuous query cache is evictable. Note that a continuous query cache has a default maxi-
mum capacity of 10000. If you need a non-evictable cache, you should configure the eviction via
QueryCacheConfig#setEvictionConfig.

e A listener can be added to a continuous query cache using QueryCache#addEntrylListener.

10.6. CONTINUOUS QUERY CACHE 193

e IMap events are reflected in continuous query cache in the same order as they were generated on map
entries. Since events are created on entries stored in partitions, ordering of events is maintained based on
the ordering within the partition. You can add listeners to capture lost events using EventLostListener
and you can recover lost events with the method QueryCache#tryRecover. Recovery of lost events largely
depends on the size of the buffer on Hazelcast members. Default buffer size is 16 per partition; i.e. 16
events per partition can be maintained in the buffer. If the event generation is high, setting the buffer
size to a higher number will provide better chances of recovering lost events. You can set buffer size with
QueryCacheConfig#setBufferSize. You can use the following example code for a recovery case.

((fjava

QueryCache queryCache = map.getQueryCache("cache-name", new SqlPredicate("this > 20"), true);
queryCache.addEntryListener (new EventLostListener() {
@0verride
public void eventLost(EventLostEvent event) {
queryCache.tryRecover () ;
}
}, false);

[N N1

e You can configure continuous query cache declaratively or programmatically.

e You can populate a continuous query cache with only the keys of its entries and retrieve the subsequent values
directly via QueryCache#get from the underlying IMap. This helps to decrease the initial population time
when the values are very large.

194 CHAPTER 10. DISTRIBUTED QUERY

Chapter 11

Transactions

This chapter explains the usage of Hazelcast in a transactional context. It describes the Hazelcast transaction types
and how they work, how to provide XA (eXtended Architeture) transactions, and how to integrate Hazelcast with
J2EE containers.

11.1 Creating a Transaction Interface

You create a TransactionContext object to begin, commit, and rollback a transaction. You can obtain transaction-
aware instances of queues, maps, sets, lists, multimaps via TransactionContext, work with them, and com-
mit/rollback in one shot. You can see the TransactionContext source code here.

Hazelcast supports two types of transactions: ONE__PHASE and TWO_ PHASE. The type of transaction controls
what happens when a member crashes while a transaction is committing. The default behavior is TWO__PHASE.

! NOTE: Starting with Hazelcast 3.6, the transaction type LOCAL has been deprecated. Please use ONE_PHASE
for the Hazelcast releases 3.6 and higher.

e ONE__ PHASE: By selecting this transaction type, you execute the transactions with a single phase that
is committing the changes. Since a preparing phase does not exist, the conflicts are not detected. When a
conflict happens while committing the changes (e.g., due to a member crash), not all the changes are written
and this leaves the system in an inconsistent state.

e TWO__PHASE: When you select this transaction type, Hazelcast first tries to execute the prepare phase.
This phase fails if there are any conflicts. Once the prepare phase is successful, Hazelcast executes the commit
phase (writing the changes). Before TWO_PHASE commits, Hazelcast copies the commit log to other
members, so in case of a member failure, another member can complete the commit.

import java.util.Queue;

import java.util.Map;

import java.util.Set;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.Transaction;

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

TransactionOptions options = new TransactionOptions()
.setTransactionType(TransactionType.ONE_PHASE);

TransactionContext context = hazelcastInstance.newTransactionContext(options);
context.beginTransaction() ;

TransactionalQueue queue = context.getQueue("myqueue");

195

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/TransactionContext.java

196 CHAPTER 11. TRANSACTIONS

TransactionalMap map = context.getMap("mymap");
TransactionalSet set = context.getSet("myset");

try {
Object obj = queue.poll();
//process obj
map.put("1", "valuel");
set.add("value");
//do other things..
context.commitTransaction();

} catch (Throwable t) {
context.rollbackTransaction();

In a transaction, operations will not be executed immediately. = Their changes will be local to the
TransactionContext until committed. However, they will ensure the changes via locks.

For the above example, when map . put is executed, no data will be put in the map but the key will be locked against
changes. While committing, operations will be executed, the value will be put to the map, and the key will be
unlocked.

The isolation level in Hazelcast Transactions is READ_COMMITTED. If you are in a transaction, you can read the data
in your transaction and the data that is already committed. If you are not in a transaction, you can only read the
committed data.

! NOTE: The REPEATABLE_READ isolation level can also be exercised using the method getForUpdate ()
of TransactionalMap.

11.1.1 Queue/Set/List vs. Map/Multimap

Hazelcast implements queue/set/list operations differently than map/multimap operations. For queue operations
(offer, poll), offered and/or polled objects are copied to the owner member in order to safely commit/rollback. For
map/multimap, Hazelcast first acquires the locks for the write operations (put, remove) and holds the differences
(what is added /removed/updated) locally for each transaction. When the transaction is set to commit, Hazelcast
will release the locks and apply the differences. When rolling back, Hazelcast will release the locks and discard the
differences.

MapStore and QueueStore do not participate in transactions. Hazelcast will suppress exceptions thrown by the
store in a transaction. Please refer to the XA Transactions section for further information.

11.1.2 ONE_PHASE vs. TWO_PHASE

As discussed in Creating a Transaction Interface, when you choose ONE_PHASE as the transaction type, Hazelcast
tracks all changes you make locally in a commit log, i.e., a list of changes. In this case, all the other members are
asked to agree that the commit can succeed and once they agree, Hazelcast starts to write the changes. However, if
the member that initiates the commit crashes after it has written to at least one member (but has not completed
writing to all other members), your system may be left in an inconsistent state.

On the other hand, if you choose TWO_PHASE as the transaction type, the commit log is again tracked locally
but it is copied to another cluster member. Therefore, when a failure happens (e.g. the member initiating the
commit crashes), you still have the commit log in another member and that member can complete the commit.
However, copying the commit log to another member makes the TWO_ PHASE approach slow.

Consequently, it is recommended that you choose ONE_PHASE as the transaction type if you want better
performance, and that you choose TWO__PHASE if reliability of your system is more important than the
performance.

11.2. PROVIDING XA TRANSACTIONS 197

11.2 Providing XA Transactions

XA describes the interface between the global transaction manager and the local resource manager. XA allows
multiple resources (such as databases, application servers, message queues, transactional caches, etc.) to be accessed
within the same transaction, thereby preserving the ACID properties across applications. XA uses a two-phase
commit to ensure that all resources either commit or rollback any particular transaction consistently (all do the
same).

When you implement the XAResource interface, Hazelcast provides XA transactions. You can obtain the
HazelcastXAResource instance via the HazelcastInstance getXAResource method. You can see the Hazel-
castXAResource source code here.

Below is example code that uses Atomikos for transaction management.

UserTransactionManager tm = new UserTransactionManager();
tm.setTransactionTimeout (60) ;
tm.begin();

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = hazelcastInstance.getXAResource();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);
// other resources (database, app server etc...) can be enlisted

try {
TransactionContext context = xaResource.getTransactionContext();
TransactionalMap map = context.getMap('m");
map.put("key", "value");
// other resource operations

transaction.delistResource(xaResource, XAResource.TMSUCCESS);
tm.commit () ;

} catch (Exception e) {
tm.rollback();

11.3 Integrating into J2EE

You can integrate Hazelcast into J2EE containers. This integration is offered as a Hazelcast plugin. Please see
its own GitHub repository at Hazelcast Resource Adapter for information on configuring the resource adapter,
glassfish applications, and JBoss web applications.

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/HazelcastXAResource.java
https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/java/com/hazelcast/transaction/HazelcastXAResource.java

198 CHAPTER 11. TRANSACTIONS

Chapter 12

Hazelcast JCache

This chapter describes the basics of JCache, the standardized Java caching layer API. The JCache caching API is
specified by the Java Community Process (JCP) as Java Specification Request (JSR) 107.

Caching keeps data in memory that either are slow to calculate/process or originate from another underlying
backend system. Caching is used to prevent additional request round trips for frequently used data. In both cases,
caching can be used to gain performance or decrease application latencies.

12.1 JCache Overview

Starting with Hazelcast release 3.3.1, Hazelcast offers a specification-compliant JCache implementation. To show
our commitment to this important specification that the Java world was waiting for over a decade, we did not just
provide a simple wrapper around our existing APIs; we implemented a caching structure from the ground up to
optimize the behavior to the needs of JCache. The Hazelcast JCache implementation is 100% TCK (Technology
Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost all operations to
give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup Hazelcast to be
your JCache provider. It also shows examples of basic JCache usage as well as the additionally offered features
that are not part of JSR-107. To gain a full understanding of the JCache functionality and provided guarantees of
different operations, read the specification document (which is also the main documentation for functionality) at
the specification page of JSR-107.

12.2 JCache Setup and Configuration

This section shows what is necessary to provide the JCache API and the Hazelcast JCache implementation for
your application. In addition, it demonstrates the different configuration options and describes the configuration
properties.

12.2.1 Setting up Your Application

To provide your application with this JCache functionality, your application needs the JCache API inside its
classpath. This API is the bridge between the specified JCache standard and the implementation provided by
Hazelcast.

The method of integrating the JCache API JAR into the application classpath depends on the build system used.
For Maven, Gradle, SBT, Ivy, and many other build systems, all using Maven-based dependency repositories,
perform the integration by adding the Maven coordinates to the build descriptor.

199

200 CHAPTER 12. HAZELCAST JCACHE

As already mentioned, you have to add JCache coordinates next to the default Hazelcast coordinates that might be
already part of the application.

For Maven users, the coordinates look like the following code:

<dependency>
<groupId>javax.cache</groupId>
<artifactId>cache-api</artifactId>
<version>1.0.0</version>
</dependency>

With other build systems, you might need to describe the coordinates in a different way.

12.2.1.1 Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all. jar or hazelcast. jar
to the classpath (if not already available) by either one of the following Maven snippets.

If you use hazelcast-all. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-all</artifactId>
<version>"your Hazelcast version, e.g. 3.7"</version>
</dependency>

If you use hazelcast. jar:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>"your Hazelcast version, e.g. 3.7"</version>
</dependency>

The users of other build systems have to adjust the definition of the dependency to their needs.

12.2.1.2 Connecting Clients to Remote Member

When the users want to use Hazelcast clients to connect to a remote cluster, the hazelcast-client. jar dependency
is also required on the client side applications. This JAR is already included in hazelcast-all.jar. Or, you can
add it to the classpath using the following Maven snippet:

<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast-client</artifactId>
<version>"your Hazelcast version, e.g. 3.7"</version>
</dependency>

For other build systems, for instance, ANT, the users have to download these dependencies from either the JSR-107
specification and Hazelcast community website (http://www.hazelcast.org) or from the Maven repository search
page (http://search.maven.org).

12.2. JCACHE SETUP AND CONFIGURATION 201

12.2.2 Example JCache Application

Before moving on to configuration, let’s have a look at a basic introductory example. The following code shows how
to use the Hazelcast JCache integration inside an application in an easy but typesafe way.

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast member or client provider
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache
CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
.setTypes(String.class, String.class);

// Create and get the cache

Cache<String, String> cache = cacheManager.createCache("example", config);
// Alternatively to request an already existing cache

// Cache<String, String> cache = cacheManager

/7 .getCache(name, String.class, String.class);

// Put a walue into the cache
cache.put("world", "Hello World");

// Retrieve the value again from the cache
String value = cache.get("world");

// Print the value ’Hello World’
System.out.println(value);

Although the example is simple, let’s go through the code lines one by one.

12.2.2.1 Getting the Hazelcast JCache Implementation

First of all, we retrieve the javax.cache.spi.CachingProvider using the static method from javax.cache.Caching::
getCachingManager, which automatically picks up Hazelcast as the underlying JCache implementation, if available

in the classpath. This way, the Hazelcast implementation of a CachingProvider will automatically start a new
Hazelcast member or client (depending on the chosen provider type) and pick up the configuration from either the
command line parameter or from the classpath. We will show how to use an existing HazelcastInstance later in
this chapter; for now, we keep it simple.

12.2.2.2 Setting up the JCache Entry Point

In the next line, we ask the CachingProvider to return a javax.cache.CacheManager. This is the general
application’s entry point into JCache. The CachingProvider creates and manages named caches.

12.2.2.3 Configuring the Cache Before Creating It

The next few lines create a simple javax.cache.configuration.MutableConfiguration to configure the cache
before actually creating it. In this case, we only configure the key and value types to make the cache typesafe which
is highly recommended and checked on retrieval of the cache.

202 CHAPTER 12. HAZELCAST JCACHE

12.2.2.4 Creating the Cache

To create the cache, we call javax.cache.CacheManager: :createCache with a name for the cache and the
previously created configuration; the call returns the created cache. If you need to retrieve a previously created
cache, you can use the corresponding method overload javax.cache.CacheManager: :getCache. If the cache was
created using type parameters, you must retrieve the cache afterward using the type checking version of getCache.

12.2.2.5 get, put, and getAndPut

The following lines are simple put and get calls from the java.util.Map interface. The javax.cache.Cache: :put
has a void return type and does not return the previously assigned value of the key. To imitate the
java.util.Map: :put method, the JCache cache has a method called getAndPut.

12.2.3 Configuring for JCache

Hazelcast JCache provides for two different methods of cache configuration:

e programmatically: the typical Hazelcast way, using the Config API seen above, and
e declaratively: using hazelcast.xml or hazelcast-client.xml.

12.2.3.1 JCache Declarative Configuration

You can declare your JCache cache configuration using the hazelcast.xml or hazelcast-client.xml configuration
files. Using this declarative configuration makes creating the javax.cache.Cache fully transparent and automatically
ensures internal thread safety. You do not need a call to javax.cache.Cache: :createCache in this case: you
can retrieve the cache using javax.cache.Cache: :getCache overloads and by passing in the name defined in the
configuration for the cache.

To retrieve the cache that you defined in the declaration files, you need only perform a simple call (example below)
because the cache is created automatically by the implementation.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager

.getCache("default", Object.class, Object.class);

Note that this section only describes the JCache provided standard properties. For the Hazelcast specific properties,
please see the ICache Configuration section.

<cache name="default">
<key-type class-name="java.lang.Object" />
<value-type class-name="java.lang.0Object" />
<statistics-enabled>false</statistics-enabled>
<management-enabled>false</management-enabled>

<read-through>true</read-through>

<write-through>true</write-through>

<cache-loader-factory
class-name="com.example.cache.MyCacheLoaderFactory" />

<cache-writer-factory
class-name="com.example.cache.MyCacheWriterFactory" />

<expiry-policy-factory
class-name="com.example.cache.MyExpirePolicyFactory" />

<cache-entry-listeners>

12.2. JCACHE SETUP AND CONFIGURATION 203

<cache-entry-listener old-value-required="false" synchronous="false">
<cache-entry-listener-factory
class-name="com.example.cache.MyEntryListenerFactory" />
<cache-entry-event-filter-factory
class-name="com.example.cache.MyEntryEventFilterFactory" />
</cache-entry-listener>

</cache-entry-listeners>
</cache>

e key-type#class-name: Fully qualified class name of the cache key type. Its default value is
java.lang.0Object.

e value-type#class-name: Fully qualified class name of the cache value type. Its default value is
java.lang.0Object.

e statistics-enabled: If set to true, statistics like cache hits and misses are collected. Its default value is
false.

e management-enabled: If set to true, JMX beans are enabled and collected statistics are provided. It doesn’t
automatically enable statistics collection. Defaults to false.

e read-through: If set to true, enables read-through behavior of the cache to an underlying configured
javax.cache.integration.CacheLoader which is also known as lazy-loading. Its default value is false.

e write-through: If set to true, enables write-through behavior of the cache to an underlying configured
javax.cache.integration.CacheWriter which passes any changed value to the external backend resource.
Its default value is false.

e cache-loader-factory#class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheLoader instance to the cache.

e cache-writer-factory#class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.integration.CacheWriter instance to the cache.

e expiry-policy-factory#-class-name: Fully qualified class name of the javax.cache.configuration.Factory
implementation providing a javax.cache.expiry.ExpiryPolicy instance to the cache.

e cache-entry-listener: A set of attributes and elements, explained below, to describe a javax.cache.event.
CacheEntryListener.

— cache-entry-listener#old-value-required: If set to true, previously assigned values for the af-
fected keys will be sent to the javax.cache.event.CacheEntryListener implementation. Setting this
attribute to true creates additional traffic. Its default value is false.

— cache-entry-listener#synchronous: If set to true, the javax.cache.event.CacheEntryListener
implementation will be called in a synchronous manner. Its default value is false.

— cache-entry-listener/entry-listener-factory#class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a javax.cache.event.CacheEntryListener
instance.

— cache-entry-listener/entry-event-filter-factory#class-name: Fully qualified class name
of the javax.cache.configuration.Factory implementation providing a javax.cache.event.
CacheEntryEventFilter instance.

! NOTE: The JMX MBeans provided by Hazelcast JCache show statistics of the local member only. To show
the cluster-wide statistics, the user should collect statistic information from all members and accumulate them to
the overall statistics.

12.2.3.2 JCache Programmatic Configuration

To configure the JCache programmatically:

e cither instantiate javax.cache.configuration.MutableConfiguration if you will use only the JCache
standard configuration,
e or instantiate com.hazelcast.config.CacheConfig for a deeper Hazelcast integration.

204 CHAPTER 12. HAZELCAST JCACHE

com.hazelcast.config.CacheConfig offers additional options that are specific to Hazelcast, such as asynchronous
and synchronous backup counts. Both classes share the same supertype interface javax.cache.configuration.
CompleteConfiguration which is part of the JCache standard.

! NOTE: To stay vendor independent, try to keep your code as near as possible to the standard JCache API. We
recommend that you use declarative configuration and that you use the javaz. cache. configuration.Configuration
or javaz.cache. configuration.CompleteConfiguration interfaces in your code only when you need to pass the
configuration instance throughout your code.

If you don’t need to configure Hazelcast specific properties, we recommend that you instantiate javax.cache.configuration.Mu
and that you use the setters to configure Hazelcast as shown in the example in the Example JCache Application

section. Since the configurable properties are the same as the ones explained in the JCache Declarative Configuration

section, they are not mentioned here. For Hazelcast specific properties, please read the ICache Configuration

section section.

12.3 JCache Providers

Use JCache providers to create caches for a specification compliant implementation. Those providers abstract the
platform specific behavior and bindings, and provide the different JCache required features.

Hazelcast has two types of providers. Depending on your application setup and the cluster topology, you can use
the Client Provider (used by Hazelcast clients) or the Server Provider (used by cluster members).

12.3.1 Configuring JCache Provider

Configure the JCache javax.cache.spi.CachingProvider by either specifying the provider at the command line
or by declaring the provider inside the Hazelcast configuration XML file. For more information on setting properties
in this XML configuration file, please see the JCache Declarative Configuration section.

Hazelcast implements a delegating CachingProvider that can automatically be configured for either client or
member mode and that delegates to the real underlying implementation based on the user’s choice. Hazelcast
recommends that you use this CachingProvider implementation.

The delegating CachingProviders fully qualified class name is
com.hazelcast.cache.HazelcastCachingProvider

To configure the delegating provider at the command line, add the following parameter to the Java startup call,
depending on the chosen provider:

—-Dhazelcast. jcache.provider.type=[client|server]

By default, the delegating CachingProvider is automatically picked up by the JCache SPI and provided as
shown above. In cases where multiple javax.cache.spi.CachingProvider implementations reside on the
classpath (like in some Application Server scenarios), you can select a CachingProvider by explicitly calling
Caching: :getCachingProvider overloads and providing them using the canonical class name of the provider to
be used. The class names of member and client providers provided by Hazelcast are mentioned in the following two
subsections.

! NOTE: Hazelcast advises that you use the Caching::getCachingProvider owverloads to select a
CachingProvider explicitly. This ensures that uploading to later environments or Application Server versions
doesn’t result in unexpected behavior like choosing a wrong CachingProvider.

For more information on cluster topologies and Hazelcast clients, please see the Hazelcast Topology section.

12.4. JCACHE API 205

12.3.2 Configuring JCache with Client Provider

For cluster topologies where Hazelcast light clients are used to connect to a remote Hazelcast cluster, use the Client
Provider to configure JCache.

The Client Provider provides the same features as the Server Provider. However, it does not hold data on its own
but instead delegates requests and calls to the remotely connected cluster.

The Client Provider can connect to multiple clusters at the same time. This can be achieved by scoping the client
side CacheManager with different Hazelcast configuration files. For more information, please see Scoping to Join
Clusters.

To request this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.client.cache.impl.HazelcastClientCachingProvider

12.3.3 Configuring JCache with Server Provider

If a Hazelcast member is embedded into an application directly and the Hazelcast client is not used, the Server
Provider is required. In this case, the member itself becomes a part of the distributed cache and requests and
operations are distributed directly across the cluster by its given key.

The Server Provider provides the same features as the Client provider, but it keeps data in the local Hazelcast
member and also distributes non-owned keys to other direct cluster members.

Like the Client Provider, the Server Provider can connect to multiple clusters at the same time. This can be
achieved by scoping the client side CacheManager with different Hazelcast configuration files. For more information
please see Scoping to Join Clusters.

To request this CachingProvider using Caching#getCachingProvider(String) or Caching#getCachingProvider(
String, ClassLoader), use the following fully qualified class name:

com.hazelcast.cache.impl.HazelcastServerCachingProvider

12.4 JCache API

This section explains the JCache API by providing simple examples and use cases. While walking through the
examples, we will have a look at a couple of the standard API classes and see how these classes are used.

12.4.1 JCache API Application Example

The code in this subsection creates a small account application by providing a caching layer over an imagined
database abstraction. The database layer will be simulated using single demo data in a simple DAO interface. To
show the difference between the “database” access and retrieving values from the cache, a small waiting time is
used in the DAO implementation to simulate network and database latency.

12.4.1.1 Creating User Class Example
Before we implement the JCache caching layer, let’s have a quick look at some basic classes we need for this
example.

The User class is the representation of a user table in the database. To keep it simple, it has just two properties:
userId and username.

206 CHAPTER 12. HAZELCAST JCACHE

public class User {
private int userld;
private String username;

// Getters and setters
}

12.4.1.2 Creating DAO Interface Example

The DAO interface is also kept easy in this example. It provides a simple method to retrieve (find) a user by its
userld.

public interface UserDAO {
User findUserById(int userId);
boolean storeUser(int userId, User user);
boolean removeUser(int userId);
Collection<Integer> allUserIds();

12.4.1.3 Configuring JCache Example

To show most of the standard features, the configuration example is a little more complex.

// Create javaz.cache.configuration.CompleteConfiguration subclass
CompleteConfiguration<Integer, User> config =
new MutableConfiguration<Integer, User>()
// Configure the cache to be typesafe
.setTypes(Integer.class, User.class)
// Configure to expire entries 30 secs after creation in the cache
.setExpiryPolicyFactory(FactoryBuilder.factoryOf (
new AccessedExpiryPolicy(new Duration(TimeUnit.SECONDS, 30))
))
// Configure read-through of the underlying store
.setReadThrough(true)
// Configure write-through to the underlying store
.setWriteThrough(true)
// Configure the javaz.cache.integration.CacheLoader
.setCacheLoaderFactory(FactoryBuilder.factory0f (
new UserCacheLoader(userDao)
))
// Configure the javaz.cache.integration.Cachelriter
.setCacheWriterFactory(FactoryBuilder.factoryOf (
new UserCacheWriter(userDao)
))
// Configure the javaz.cache.event.CacheEntryListener with no
// javazx.cache.event.CacheEntryEventFilter, to include old value
// and to be ezecuted synchronously
.addCacheEntryListenerConfiguration(
new MutableCacheEntryListenerConfiguration<Integer, User>(
new UserCacheEntryListenerFactory(),
null, true, true

)

Let’s go through this configuration line by line.

12.4. JCACHE API 207

12.4.1.3.1 Setting the Cache Type and Expire Policy First, we set the expected types for the cache, which
is already known from the previous example. On the next line, a javax.cache.expiry.ExpirePolicy is configured.
Almost all integration ExpirePolicy implementations are configured using javax.cache.configuration.Factory
instances. Factory and FactoryBuilder are explained later in this chapter.

12.4.1.3.2 Configuring Read-Through and Write-Through The next two lines configure the thread that
will be read-through and write-through to the underlying backend resource that is configured over the next few lines.
The JCache API offers javax.cache.integration.CacheLoader and javax.cache.integration.CacheWriter
to implement adapter classes to any kind of backend resource, e.g. JPA, JDBC, or any other backend technology
implementable in Java. The interface provides the typical CRUD operations like create, get, update, delete,
and some bulk operation versions of those common operations. We will look into the implementation of those
implementations later.

12.4.1.3.3 Configuring Entry Listeners The last configuration setting defines entry listeners based on sub-

interfaces of javax.cache.event.CacheEntryListener. This config does not use a javax.cache.event.CacheEntryEventFil
since the listener is meant to be fired on every change that happens on the cache. Again we will look in the
implementation of the listener in later in this chapter.

12.4.1.3.4 Full Example Code A full running example that is presented in this subsection is available in
the code samples repository. The application is built to be a command line app. It offers a small shell to accept
different commands. After startup, you can enter help to see all available commands and their descriptions.

12.4.2 JCache Base Classes

In the Example JCache Application section, we have already seen a couple of the base classes and explained how
those work. The following are quick descriptions of them:

javax.cache.Caching:

The access point into the JCache API. It retrieves the general CachingProvider backed by any compliant JCache
implementation, such as Hazelcast JCache.

javax.cache.spi.CachingProvider:

The SPI that is implemented to bridge between the JCache API and the implementation itself. Hazelcast members
and clients use different providers chosen as seen in the Configuring JCache Provider section which enable the
JCache API to interact with Hazelcast clusters.

When a javax.cache.spi.CachingProvider: :getCacheManager overload is used that takes a java.lang.ClassLoader
argument, this classloader will be part of the scope of the created java.cache.Cache and it is not possible to
retrieve it on other members. We advise not to use those overloads, as they are not meant to be used in distributed
environments!

javax.cache.CacheManager:

The CacheManager provides the capability to create new and manage existing JCache caches.

! NOTE: A javaz.cache.Cache instance created with key and value types in the configuration provides a
type checking of those types at retrieval of the cache. For that reason, all non-types retrieval methods like getCache
throw an exception because types cannot be checked.

javax.cache.configuration.Configuration, javax.cache.configuration.MutableConfiguration:

These two classes are used to configure a cache prior to retrieving it from a CacheManager. The Configuration inter-
face, therefore, acts as a common super type for all compatible configuration classes such as MutableConfiguration.

Hazelcast itself offers a special implementation (com.hazelcast.config.CacheConfig) of the Configuration
interface which offers more options on the specific Hazelcast properties that can be set to configure features like
synchronous and asynchronous backups counts or selecting the underlying In Memory Format of the cache. For
more information on this configuration class, please see the reference in JCache Programmatic Configuration section.

208 CHAPTER 12. HAZELCAST JCACHE

javax.cache.Cache:

This interface represents the cache instance itself. It is comparable to java.util.Map but offers special operations
dedicated to the caching use case. Therefore, for example javax.cache.Cache: :put, unlike java.util.Map: :put,
does not return the old value previously assigned to the given key.

! NOTE: Bulk operations on the Cache interface guarantee atomicity per entry but not over all given keys in
the same bulk operations since no transactional behavior is applied over the whole batch process.

12.4.3 Implementing Factory and FactoryBuilder

The javax.cache.configuration.Factory implementations configure features like CacheEntryListener,
ExpirePolicy, and CacheLoaders or CacheWriters. These factory implementations are required to distribute the
different features to members in a cluster environment like Hazelcast. Therefore, these factory implementations
have to be serializable.

Factory implementations are easy to do, as they follow the default Provider- or Factory-Pattern. The sample class
UserCacheEntryListenerFactory shown below implements a custom JCache Factory.

public class UserCacheEntryListenerFactory
implements Factory<CacheEntryListener<Integer, User>> {

@0verride
public CacheEntryListener<Integer, User> create() {
// Just create a mew listener imstance
return new UserCacheEntryListener();
}
}

To simplify the process for the users, JCache API offers a set of helper methods collected in javax.cache.
configuration.FactoryBuilder. In the above configuration example, FactoryBuilder: :factory0Of creates a
singleton factory for the given instance.

12.4.4 TImplementing CacheLoader

javax.cache.integration.CacheLoader loads cache entries from any external backend resource.

12.4.4.1 Cache read-through
If the cache is configured to be read-through, then CacheLoader: :1load is called transparently from the cache
when the key or the value is not yet found in the cache. If no value is found for a given key, it returns null.

If the cache is not configured to be read-through, nothing is loaded automatically. The user code must call
javax.cache.Cache: :1oadAll to load data for the given set of keys into the cache.

For the bulk load operation (LoadA11()), some keys may not be found in the returned result set. In this case, a
javax.cache.integration.CompletionListener parameter can be used as an asynchronous callback after all the
key-value pairs are loaded because loading many key-value pairs can take lots of time.

12.4.4.2 CacheLoader Example
Let’s look at the UserCachelLoader implementation. This implementation is quite straight forward.

e It implements CacheLoader.
e It overrides the load method to compute or retrieve the value corresponding to key.

12.4. JCACHE API 209

e It overrides the 1loadAll method to compute or retrieve the values corresponding to keys.

An important note is that any kind of exception has to be wrapped into javax.cache.integration.CachelLoaderException.

public class UserCachelLoader
implements CachelLoader<Integer, User>, Serializable {

private final UserDao userDao;

public UserCacheLoader(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

3

@0verride

public User load(Integer key) throws CacheLoaderException {
// Just call through into the dao
return userDao.findUserById(key);

3

@0verride
public Map<Integer, User> loadAll(Iterable<? extends Integer> keys)
throws CacheLoaderException {

// Create the resulting map
Map<Integer, User> loaded = new HashMap<Integer, User>();
// For every key in the given set of keys
for (Integer key : keys) {
// Try to retrieve the user
User user = userDao.findUserById(key);
// If user is not found do not add the key to the result set
if (user != null) {
loaded.put(key, user);
}
}

return loaded;

12.4.5 CacheWriter

You use a javax.cache.integration.CacheWriter to update an external backend resource. If the cache is
configured to be write-through, this process is executed transparently to the user’s code. Otherwise, there is
currently no way to trigger writing changed entries to the external resource to a user-defined point in time.

If bulk operations throw an exception, java.util.Collection has to be cleaned of all successfully written keys so
the cache implementation can determine what keys are written and can be applied to the cache state.

The following example performs the following tasks:

e [t implements CacheWriter.

It overrides the write method to write the specified entry to the underlying store.

It overrides the writeAll method to write the specified entires to the underlying store.

It overrides the delete method to delete the key entry from the store.

It overrides the deleteAll method to delete the data and keys from the underlying store for the given
collection of keys, if present.

210 CHAPTER 12. HAZELCAST JCACHE

public class UserCacheWriter
implements CacheWriter<Integer, User>, Serializable {

private final UserDao userDao;

public UserCacheWriter(UserDao userDao) {
// Store the dao instance created externally
this.userDao = userDao;

3

@0verride
public void write(Cache.Entry<? extends Integer, 7 extends User> entry)
throws CacheWriterException {

// Store the user using the dao
userDao.storeUser(entry.getKey(), entry.getValue());
}

@0verride
public void writeAll(Collection<Cache.Entry<...>> entries)
throws CacheWriterException {

// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<Cache.Entry<...>> iterator = entries.iterator();
while (iterator.hasNext()) {

// Write entry using dao

write(iterator.next());

// Remove from collection of keys

iterator.remove();

Q@0verride
public void delete(Object key) throws CacheWriterException {
// Test for key type
if (!(key instanceof Integer)) {
throw new CacheWriterException("Illegal key type");
}
// Remove user using dao
userDao.removeUser((Integer) key);

@0verride
public void deleteAll(Collection<?> keys) throws CacheWriterException {
// Retrieve the iterator to clean up the collection from
// written keys in case of an exception
Iterator<?> iterator = keys.iterator();
while (iterator.hasNext()) {
// Write entry using dao
delete(iterator.next());
// Remove from collection of keys
iterator.remove();

Again, the implementation is pretty straightforward and also as above all exceptions thrown by the external resource,

12.4. JCACHE API 211

like java.sql.SQLException has to be wrapped into a javax.cache.integration.CacheWriterException. Note
this is a different exception from the one thrown by CacheLoader.

12.4.6 Implementing EntryProcessor

With javax.cache.processor.EntryProcessor, you can apply an atomic function to a cache entry. In a distributed
environment like Hazelcast, you can move the mutating function to the member that owns the key. If the value
object is big, it might prevent traffic by sending the object to the mutator and sending it back to the owner to
update it.

By default, Hazelcast JCache sends the complete changed value to the backup partition. Again, this can cause a lot
of traffic if the object is big. The Hazelcast ICache extension can also prevent this. Further information is available
at Implementing BackupAwareEntryProcessor.

An arbitrary number of arguments can be passed to the Cache: :invoke and Cache::invokeAll methods. All of
those arguments need to be fully serializable because in a distributed environment like Hazelcast, it is very likely
that these arguments have to be passed around the cluster.

The following example performs the following tasks.

e It implements EntryProcessor.
e It overrides the process method to process an entry.

public class UserUpdateEntryProcessor
implements EntryProcessor<Integer, User, User> {

@0verride
public User process(MutableEntry<Integer, User> entry, Object... arguments)
throws EntryProcessorException {

// Test arguments length
if (arguments.length < 1) {
throw new EntryProcessorException("One argument needed: username");

}

// Get first argument and test for String type
Object argument = arguments[0];
if (!'(argument instanceof String)) {
throw new EntryProcessorException(
"First argument has wrong type, required java.lang.String");

3

// Retrieve the value from the MutableEntry
User user = entry.getValue();

// Retrieve the new username from the first argument
String newUsername = (String) arguments[0];

// Set the mew username
user.setUsername (newUsername) ;

// Set the changed user to mark the entry as dirty
entry.setValue(user);

// Return the changed user to return it to the caller
return user;

212 CHAPTER 12. HAZELCAST JCACHE

! NOTE: By executing the bulk Cache: :invokedll operation, atomicity is only guaranteed for a single cache
entry. No transactional rules are applied to the bulk operation.

! NOTE: JCache EntryProcessor implementations are not allowed to call javaz.cache.Cache methods.
This prevents operations from deadlocking between different calls.

In addition, when using a Cache::invokeAll method, a java.util.Map is returned that maps the key
to its javax.cache.processor.EntryProcessorResult, which itself wraps the actual result or a thrown
javax.cache.processor.EntryProcessorException.

12.4.7 CacheEntryListener

The javax.cache.event.CacheEntryListener implementation is straight forward. CacheEntryListener is a
super-interface that is used as a marker for listener classes in JCache. The specification brings a set of sub-interfaces.

e CacheEntryCreatedListener: Fires after a cache entry is added (even on read-through by a CacheLoader)
to the cache.

e CacheEntryUpdatedListener: Fires after an already existing cache entry updates.

e CacheEntryRemovedListener: Fires after a cache entry was removed (not expired) from the cache.

e CacheEntryExpiredListener: Fires after a cache entry has been expired. Expiry does not have to be a
parallel process— it is only required to be executed on the keys that are requested by Cache: :get and some
other operations. For a full table of expiry please see the https://www.jcp.org/en/jsr/detail?id=107 point 6.

To configure CacheEntryListener, add a javax.cache.configuration.CacheEntryListenerConfiguration in-
stance to the JCache configuration class, as seen in the above example configuration. In addition, listeners can be
configured to be executed synchronously (blocking the calling thread) or asynchronously (fully running in parallel).

In this example application, the listener is implemented to print event information on the console. That visualizes
what is going on in the cache. This application performs the following tasks:

It implements CacheEntryCreatedListener.

It implements the onCreated method to call after an entry is created.
It implements the onUpdated method to call after an entry is updated.
It implements the onRemoved method to call after an entry is removed.
It implements the onExpired method to call after an entry expires.

It implements printEvents to print event information on the console.

public class UserCacheEntryListener
implements CacheEntryCreatedListener<Integer, User>,
CacheEntryUpdatedListener<Integer, User>,
CacheEntryRemovedListener<Integer, User>,
CacheEntryExpiredListener<Integer, User> {

@0verride
public void onCreated(Iterable<CacheEntryEvent<...>> cacheEntryEvents)
throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

}
@0verride
public void onUpdated(Iterable<CacheEntryEvent<...>> cacheEntryEvents)

throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

12.5. JCACHE - HAZELCAST INSTANCE INTEGRATION 213

@0verride
public void onRemoved(Iterable<CacheEntryEvent<...>> cacheEntryEvents)
throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

3

@0verride
public void onExpired(Iterable<CacheEntryEvent<...>> cacheEntryEvents)
throws CacheEntryListenerException {

printEvents(cacheEntryEvents) ;

}

private void printEvents(Iterable<CacheEntryEvent<...>> cacheEntryEvents) {
Iterator<CacheEntryEvent<...>> iterator = cacheEntryEvents.iterator();
while (iterator.hasNext()) {
CacheEntryEvent<...> event = iterator.next();
System.out.println(event.getEventType());
}
}
}

12.4.8 ExpirePolicy

In JCache, javax.cache.expiry.ExpirePolicy implementations are used to automatically expire cache entries
based on different rules.

Expiry timeouts are defined using javax.cache.expiry.Duration, which is a pair of java.util.concurrent.TimeUnit,
that describes a time unit and a long, defining the timeout value. The minimum allowed TimeUnit is
TimeUnit.MILLISECONDS. The long value durationAmount must be equal or greater than zero. A value of zero (or
Duration.ZERQ) indicates that the cache entry expires immediately.

By default, JCache delivers a set of predefined expiry strategies in the standard API.

e AccessedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry. The
expiry timeout is updated on accessing the key.

e CreatedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry. The
expiry timeout is never updated.

e EternalExpiryPolicy: Never expires. This is the default behavior, similar to ExpiryPolicy being set to
null.

e ModifiedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry. The
expiry timeout is updated on updating the key.

e TouchedExpiryPolicy: Expires after a given set of time measured from creation of the cache entry. The
expiry timeout is updated on accessing or updating the key.

Because EternalExpirePolicy does not expire cache entries, it is still possible to evict values from memory if an
underlying CacheLoader is defined.

12.5 JCache - Hazelcast Instance Integration

You can retrieve javax.cache.Cache instances directly through HazelcastInstance: :getCache(String name)
method. The parameter name in HazelcastInstance: :getCache (String name) is the full cache name except the
Hazelcast prefix, i.e., /hz/.

214 CHAPTER 12. HAZELCAST JCACHE

If you create a cache through a CacheManager which has its own specified URI scope (and/or specified
classloader), it must be prepended to the pure cache name as a prefix while retrieving the cache through
HazelcastInstance: :getCache(String name). Prefix generation for full cache name (except the Hazelcast
prefix, which is /hz/) is exposed through com.hazelcast.cache.CacheUtil#getPrefixedCacheName (String
name, java.net.URI uri, ClassLoader classloader). If the URI scope and classloader is not specified, the
pure cache name can be used directly while retrieving cache over HazelcastInstance.

If you have a cache which is not created, but is defined/exists (cache is specified in Hazelcast configuration but not
created yet), you can retrieve this cache by its name. This also triggers cache creation before retrieving it. This
retrieval is supported through HazelcastInstance. However, HazelcastInstance does not support creating a
cache by specifying configuration; this is supported by Hazelcast’s CacheManager as it is.

! NOTE: If a valid (rather than 1.0.0-PFD* or 0.z versions) JCache library does not exist on the classpath,
IllegalStateException is thrown.*

12.5.1 JCache and Hazelcast Instance Awareness

HazelcastInstance is injected into the following cache API interfaces (provided by javax.cache.Cache and
com.hazelcast.cache.ICache) if they implement HazelcastInstanceAware interface:

ExpiryPolicyFactory and ExpiryPolicy [provided by javax.cache.Cache]

CacheLloaderFactory and CacheLoader [provided by javax.cache.Cache]

CacheWriteFactory and CacheWriter [provided by javax.cache.Cache]

EntryProcessor [provided by javax.cache.Cache]

CacheEntryListener (CacheEntryCreatedListener, CacheEntryUpdatedListener, CacheEntryRemovedListener,
CacheEntryExpiredListener) [provided by javax.cache.Cache]

CacheEntryEventFilter [provided by javax.cache.Cache]
e CompletionListener [provided by javax.cache.Cache]
e CachePartitionLostListener [provided by com.hazelcast.cache.ICache]

12.6 Hazelcast JCache Extension - ICache

Hazelcast provides extension methods to Cache API through the interface com.hazelcast.cache.ICache.

It has two sets of extensions:

e Asynchronous version of all cache operations. See Async Operations.
e Cache operations with custom ExpiryPolicy parameter to apply on that specific operation. See Custom
ExpiryPolicy.

12.6.1 Scoping to Join Clusters

As mentioned before, you can scope a CacheManager in the case of a client to connect to multiple clusters. In
the case of an embedded member, you can scope a CacheManager to join different clusters at the same time.
This process is called scoping. To apply scoping, request a CacheManager by passing a java.net.URI instance to
CachingProvider: :getCacheManager. The java.net.URI instance must point to either a Hazelcast configuration
or to the name of a named com.hazelcast.core.HazelcastInstance instance.

! NOTE: Multiple requests for the same java.net.URI result in returning a CacheManager instance that
shares the same HazelcastInstance as the CacheManager returned by the previous call.

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 215

12.6.1.1 Applying Configuration Scope

To connect or join different clusters, apply a configuration scope to the CacheManager. If the same URI is
used to request a CacheManager that was created previously, those CacheManagers share the same underlying
HazelcastInstance.

To apply a configuration scope, pass in the path of the configuration file using the location property
HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which resolves to hazelcast.config.location)
as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager (uri,
classLoader, properties) call.

Here is an example of using Configuration Scope.

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider.HAZELCAST_CONFIG_LOCATION,
"classpath://my-configs/scoped-hazelcast.xml");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider: :propertiesByLocation helper method.

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file

String configFile = "classpath://my-configs/scoped-hazelcast.xml";

Properties properties = HazelcastCachingProvider
.propertiesByLocation(configFile);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

The retrieved CacheManager is scoped to use the HazelcastInstance that was just created and was configured
using the given XML configuration file.

Available protocols for config file URL include classpath:// to point to a classpath location, file:// to point to
a filesystem location, http:// an https:// for remote web locations. In addition, everything that does not specify
a protocol is recognized as a placeholder that can be configured using a system property.

String configFile = "my-placeholder";
Properties properties = HazelcastCachingProvider
.propertiesByLocation(configFile);

You can set this on the command line.
-Dmy-placeholder=classpath://my-configs/scoped-hazelcast.xml
You should consider the following rules about the Hazelcast instance name when you specify the config-
uration file location using HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which resolves to
hazelcast.config.location):

e If you also specified the HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to

hazelcast.instance.name) property, this property is used as the instance name even though you configured
the instance name in the configuration file.

216 CHAPTER 12. HAZELCAST JCACHE

e If you do not specify HazelcastCachingProvider#HAZELCAST _INSTANCE_NAME but you configure the instance
name in the configuration file using the element <instance-name>, this element’s value will be used as the
instance name.

e If you do not specify an instance name via property or in the configuration file, the URL of the configuration
file location is used as the instance name.

! NOTE: No check is performed to prevent creating multiple CacheManagers with the same cluster configuration
on different configuration files. If the same cluster is referred from different configuration files, multiple cluster
members or clients are created.

! NOTE: The configuration file location will not be a part of the resulting identity of the CacheManager. An
attempt to create a CacheManager with a different set of properties but an already used name will result in undefined
behavior.

12.6.1.2 Binding to a Named Instance

You can bind CacheManager to an existing and named HazelcastInstance instance. If the instanceName is
specified in com.hazelcast.config.Config, it can be used directly by passing it to CachingProvider implemen-
tation. Otherwise (instanceName not set or instance is a client instance) you must get the instance name from the
HazelcastInstance instance via the String getName() method to pass the CachingProvider implementation.
Please note that instanceName is not configurable for the client side HazelcastInstance instance and is auto-
generated by using group name (if it is specified). In general, String getName () method over HazelcastInstance
is safer and the preferable way to get the name of the instance. Multiple CacheManagers created using an equal
java.net.URI will share the same HazelcastInstance.

A named scope is applied nearly the same way as the configuration scope: pass in the instance name using the
HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to hazelcast.instance.name) prop-
erty as a mapping inside a java.util.Properties instance to the CachingProvider#getCacheManager (uri,
classLoader, properties) call.

Here is an example of Named Instance Scope with specified name.

Config config = new Config();

config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
"my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name.

Config config = new Config();

// Create a auto-generated named HazelcastInstance

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 217

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name on client instance.

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("127.0.0.1", "127.0.0.2");

// Create a client side HazelcastInstance
HazelcastInstance instance = HazelcastClient.newHazelcastClient(clientConfig);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties tinstance pointing to a named HazelcastInstance

Properties properties = new Properties();

properties.setProperty(HazelcastCachingProvider .HAZELCAST_INSTANCE_NAME,
instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider: :propertiesByInstanceName method.

Config config = new Config();

config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance

Properties properties = HazelcastCachingProvider
.propertiesByInstanceName("my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");

CacheManager cacheManager = cachingProvider
.getCacheManager (cacheManagerName, null, properties);

. NOTE: The instanceName will not be a part of the resulting identity of the CacheManager. An attempt to
create a CacheManager with a different set of properties but an already used name will result in undefined behavior.

12.6.2 Namespacing

The java.net.URIs that don’t use the above-mentioned Hazelcast-specific schemes are recognized as names-
pacing. Those CacheManagers share the same underlying default HazelcastInstance created (or set) by the

218 CHAPTER 12. HAZELCAST JCACHE

CachingProvider, but they cache with the same names and different namespaces on the CacheManager level,
and therefore they won’t share the same data. This is useful where multiple applications might share the same
Hazelcast JCache implementation (e.g., on application or OSGi servers) but are developed by independent teams.
To prevent interfering on caches using the same name, every application can use its own namespace when retrieving
the CacheManager.

Here is an example of using namespacing.

CachingProvider cachingProvider = Caching.getCachingProvider();

URI nsAppl = new URI("application-1");
CacheManager cacheManagerAppl = cachingProvider.getCacheManager(nsAppl, null);

URI nsApp2 = new URI("application-2");
CacheManager cacheManagerApp2 = cachingProvider.getCacheManager (nsApp2, null);

That way both applications share the same HazelcastInstance instance but not the same caches.

12.6.3 Retrieving an ICache Instance

Besides Scoping to Join Clusters and Namespacing, which are implemented using the URI feature of the specification,
all other extended operations are required to retrieve the com.hazelcast.cache.ICache interface instance from
the JCache javax.cache.Cache instance. For Hazelcast, both interfaces are implemented on the same object
instance. It is recommended that you stay with the specification method to retrieve the ICache version, since
ICache might be subject to change without notification.

To retrieve or unwrap the ICache instance, you can execute the following code example:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<0Object, Object> cache = cacheManager.getCache(...);

ICache<Object, Object> unwrappedCache = cache.unwrap(ICache.class);

After unwrapping the Cache instance into an ICache instance, you have access to all of the following operations,
e.g., ICache Async Methods and ICache Convenience Methods.

12.6.4 ICache Configuration

As mentioned in the JCache Declarative Configuration section, the Hazelcast ICache extension offers additional
configuration properties over the default JCache configuration. These additional properties include internal storage
format, backup counts, eviction policy and quorum reference.

The declarative configuration for ICache is a superset of the previously discussed JCache configuration:

<cache>
<!-- ... default cache configuration goes here ... -->
<backup-count>1</backup-count>
<async-backup-count>1</async-backup-count>
<in-memory-format>BINARY</in-memory-format>
<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
<partition-lost-listeners>
<partition-lost-listener>CachePartitionLostListenerImpl</partition-lost-listener>
</partition-lost-listeners>
<quorum-ref>quorum-name</quorum-ref>
<disable-per-entry-invalidation-events>true</disable-per-entry-invalidation-events>
</cache>

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 219

e backup-count: Number of synchronous backups. Those backups are executed before the mutating cache
operation is finished. The mutating operation is blocked. backup-count default value is 1.

e async-backup-count: Number of asynchronous backups. Those backups are executed asynchronously so
the mutating operation is not blocked and it will be done immediately. async-backup-count default value is 0.

e in-memory-format: Internal storage format. For more information, please see the In Memory Format section.
Default is BINARY.

e eviction: Defines the used eviction strategies and sizes for the cache. For more information on eviction,
please see the JCache Eviction.

— size: Maximum number of records or maximum size in bytes depending on the max-size-policy
property. Size can be any integer between 0 and Integer.MAX_VALUE. Default max-size-policy is
ENTRY_COUNT and default size is 10.000.

— max-size-policy: Maximum size. If maximum size is reached, the cache is evicted based on the eviction
policy. Default max-size-policy is ENTRY_COUNT and default size is 10.000. The following eviction policies
are available:

* ENTRY_COUNT: Maximum number of cache entries in the cache. Available on heap based cache
record store only.

USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes per cache for each

Hazelcast instance. Available on High-Density Memory cache record store only.

USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory size percentage per cache for

each Hazelcast instance. Available on High-Density Memory cache record store only.

* FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size in megabytes for each Hazelcast

instance. Available on High-Density Memory cache record store only.

FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory size percentage for each Hazelcast

instance. Available on High-Density Memory cache record store only.

*

*

*

— eviction-policy: Eviction policy that compares values to find the best matching eviction candidate.
Default is LRU.
x LRU: Less Recently Used - finds the best eviction candidate based on the last AccessTime.
* LFU: Less Frequently Used - finds the best eviction candidate based on the number of hits.

e partition-lost-listeners : Defines listeners for dispatching partition lost events for the cache. For more
information, please see the ICache Partition Lost Listener section.

e quorum-ref : Name of quorum configuration that you want this cache to use.

e disable-per-entry-invalidation-events : Disables invalidation events for each entry; but full-flush
invalidation events are still enabled. Full-flush invalidation means the invalidation of events for all entries
when clear is called. The default value is false.

Since javax.cache.configuration.MutableConfiguration misses the above additional configuration properties,
Hazelcast ICache extension provides an extended configuration class called com.hazelcast.config.CacheConfig.
This class is an implementation of javax.cache.configuration.CompleteConfiguration and all the properties
shown above can be configured using its corresponding setter methods.

NOTE: At the client side, ICache can be configured only programmatically.

12.6.5 ICache Async Methods

As another addition of Hazelcast ICache over the normal JCache specification, Hazelcast provides asynchronous
versions of almost all methods, returning a com.hazelcast.core.ICompletableFuture. By using these methods
and the returned future objects, you can use JCache in a reactive way by registering zero or more callbacks on the
future to prevent blocking the current thread.

The asynchronous versions of the methods append the phrase Async to the method name. The example code below
uses the method putAsync().

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
ICompletableFuture<String> future = unwrappedCache.putAsync(1, "value");

220

future.andThen(new ExecutionCallback<String>() {
public void onResponse(String response) {

}

System.out.println("Previous value: " + response) ;

public void onFailure(Throwable t) {

}
} s

t.printStackTrace();

Following methods are available in asynchronous versions:

get (key):

— getAsync (key)
— getAsync(key, expiryPolicy)

put(key, value):

— putAsync(key, value)
— putAsync(key, value, expiryPolicy)

putIfAbsent (key, value):

— putIfAbsentAsync(key, value)
— putIfAbsentAsync(key, value, expiryPolicy)

getAndPut (key, value):

— getAndPutAsync (key, value)
— getAndPutAsync(key, value, expiryPolicy)

remove (key):

— removeAsync (key)
remove (key, value):

— removeAsync (key, value)
getAndRemove (key):

— getAndRemoveAsync (key)
replace(key, value):

— replaceAsync(key, value)
— replaceAsync(key, value, expiryPolicy)

replace(key, oldValue, newValue):

— replaceAsync(key, oldValue, newValue)
— replaceAsync(key, oldValue, newValue, expiryPolicy)

getAndReplace(key, value):

— getAndReplaceAsync(key, value)
— getAndReplaceAsync(key, value, expiryPolicy)

CHAPTER 12. HAZELCAST JCACHE

The methods with a given javax.cache.expiry.ExpiryPolicy are further discussed in the Defining a Custom
ExpiryPolicy.

NOTE: Asynchronous versions of the methods are not compatible with synchronous events.

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 221

12.6.6 Defining a Custom ExpiryPolicy

The JCache specification has an option to configure a single ExpiryPolicy per cache. Hazelcast ICache extension
offers the possibility to define a custom ExpiryPolicy per key by providing a set of method overloads with an
expirePolicy parameter, as in the list of asynchronous methods in the Async Methods section. This means that
you can pass custom expiry policies to a cache operation.

Here is how an ExpirePolicy is set on JCache configuration:

CompleteConfiguration<String, String> config =
new MutableConfiguration<String, String>()
setExpiryPolicyFactory(
AccessedExpiryPolicy.factory0f (Duration.ONE_MINUTE)
)3

To pass a custom ExpirePolicy, a set of overloads is provided. You can use them as shown in the following code
example.

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
unwrappedCache.put(1, "value", new AccessedExpiryPolicy(Duration.ONE_DAY));

The ExpirePolicy instance can be pre-created, cached, and re-used, but only for each cache instance. This is
because ExpirePolicy implementations can be marked as java.io.Closeable. The following list shows the pro-
vided method overloads over javax.cache.Cache by com.hazelcast.cache.ICache featuring the ExpiryPolicy
parameter:

o get(key):

— get(key, expiryPolicy)
o getAll (keys):

— getAll(keys, expirePolicy)
e put(key, value):

— put(key, value, expirePolicy)
o getAndPut (key, value):

— getAndPut(key, value, expirePolicy)
e putAll (map):

— putAll(map, expirePolicy)
e putIfAbsent (key, value):

— putIfAbsent(key, value, expirePolicy)
e replace(key, value):

— replace(key, value, expirePolicy)
e replace(key, oldValue, newValue):

— replace(key, oldValue, newValue, expirePolicy)
e getAndReplace(key, value):

— getAndReplace(key, value, expirePolicy)

Asynchronous method overloads are not listed here. Please see ICache Async Methods for the list of asynchronous
method overloads.

222 CHAPTER 12. HAZELCAST JCACHE

12.6.7 JCache Eviction

Caches are generally not expected to grow to an infinite size. Implementing an expiry policy is one way you can
prevent infinite growth, but sometimes it is hard to define a meaningful expiration timeout. Therefore, Hazelcast
JCache provides the eviction feature. Eviction offers the possibility of removing entries based on the cache size or
amount of used memory (Hazelcast Enterprise Only) and not based on timeouts.

12.6.7.1 Eviction and Runtime

Since a cache is designed for high throughput and fast reads, Hazelcast put a lot of effort into designing the eviction
system to be as predictable as possible. All built-in implementations provide an amortized O(1) runtime. The
default operation runtime is rendered as O(1), but it can be faster than the normal runtime cost if the algorithm
finds an expired entry while sampling.

12.6.7.2 Cache Types

Most importantly, typical production systems have two common types of caches:

e Reference Caches: Caches for reference data are normally small and are used to speed up the de-referencing
as a lookup table. Those caches are commonly tend to be small and contain a previously known, fixed number
of elements (e.g., states of the USA or abbreviations of elements).

e Active DataSet Caches: The other type of caches normally caches an active data set. These caches run to
their maximum size and evict the oldest or not frequently used entries to keep in memory bounds. They sit
in front of a database or HTML generators to cache the latest requested data.

Hazelcast JCache eviction supports both types of caches using a slightly different approach based on the configured
maximum size of the cache. For detailed information, please see the Eviction Algorithm section.

12.6.7.3 Configuring Eviction Policies

Hazelcast JCache provides two commonly known eviction policies, LRU and LFU, but loosens the rules for predictable
runtime behavior. LRU, normally recognized as Least Recently Used, is implemented as Less Recently Used,
and LFU known as Least Frequently Used is implemented as Less Frequently Used. The details about this
difference are explained in the Eviction Algorithm section.

Eviction Policies are configured by providing the corresponding abbreviation to the configuration as shown in the
[Cache Configuration section. As already mentioned, two built-in policies are available:

To configure the use of the LRU (Less Recently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
And to configure the use of the LFU (Less Frequently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU" />

The default eviction policy is LRU. Therefore, Hazelcast JCache does not offer the possibility of performing no
eviction.

12.6.7.3.1 Custom Eviction Policies Besides out of the box eviction policies LFU and LRU, you can also
specify your custom eviction policies through the eviction configuration either programmatically or declaratively.

You can provide your com.hazelcast.cache.CacheEvictionPolicyComparator implementation to compare
com.hazelcast.cache.CacheEntryViews. Supplied CacheEvictionPolicyComparator is used to compare cache
entry views to select the one with higher priority to evict.

Here is an example for custom eviction policy comparator implementation for JCache:

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 223

public class MyCacheEvictionPolicyComparator
extends CacheEvictionPolicyComparator<Long, String> {

@0verride
public int compare(CacheEntryView<Long, String> el, CacheEntryView<Long, String> e2) {
long idl = el.getKey();
long id2 = e2.getKey();
if (idl > id2) {
return FIRST_ENTRY_HAS_HIGHER_PRIORITY_TO_BE_EVICTED; // -1
} else if (idl < id2) {
return SECOND_ENTRY HAS_HIGHER PRIORITY TO BE_EVICTED; // +1
} else {
return BOTH_OF_ENTRIES_HAVE_SAME PRIORITY TO_BE_EVICTED; // 0

3

12.6.7.3.1.1 Configuration Custom eviction policy comparator can be specified through the eviction config-
uration by giving the full class name of the EvictionPolicyComparator (CacheEvictionPolicyComparator for
JCache and its near cache) implementation or by specifying its instance itself.

Programmatic:

You can specify the full class name of custom EvictionPolicyComparator (CacheEvictionPolicyComparator
for JCache and its near cache) implementation through EvictionConfig. This approach is useful when eviction
configuration is specified at the client side and custom EvictionPolicyComparator implementation class itself
does not exist at the client but at server side.

CacheConfig cacheConfig = new CacheConfig();

EvictionConfig evictionConfig =
new EvictionConfig(50000,
MaxSizePolicy.ENTRY_COUNT,
"com.mycompany .MyEvictionPolicyComparator") ;
cacheConfig.setEvictionConfig(evictionConfig) ;

You can specify the custom EvictionPolicyComparator (CacheEvictionPolicyComparator for JCache and its
near cache) instance itself directly through EvictionConfig.

CacheConfig cacheConfig = new CacheConfig();

EvictionConfig evictionConfig =
new EvictionConfig(50000,
MaxSizePolicy.ENTRY_COUNT,
new MyEvictionPolicyComparator());
cacheConfig.setEvictionConfig(evictionConfig) ;

Declarative:

You can specify the full class name of custom EvictionPolicyComparator (CacheEvictionPolicyComparator for
JCache and its near cache) implementation in the <eviction> tag through comparator-class-name attribute in
Hazelcast configuration XML file.

<cache name="cacheWithCustomEvictionPolicyComparator">
<eviction size="50000" max-size-policy="ENTRY_COUNT" comparator-class—name="com.mycompany.MyEviction
</cache>

224 CHAPTER 12. HAZELCAST JCACHE

Declarative for Spring:

You can specify the full class name of custom EvictionPolicyComparator (CacheEvictionPolicyComparator for
JCache and its near cache) implementation in the <eviction> tag through comparator-class-name attribute in
Hazelcast Spring configuration XML file.

<hz:cache name="cacheWithCustomEvictionPolicyComparator">
<hz:eviction size="50000" max-size-policy="ENTRY_COUNT" comparator-class-name="com.mycompany.MyEvict
</hz:cache>

You can specify the custom EvictionPolicyComparator (CacheEvictionPolicyComparator for JCache and its
near cache) bean in the <eviction> tag by referencing through comparator-bean attribute in Hazelcast Spring
configuration XML file

<hz:cache name="cacheWithCustomEvictionPolicyComparator">
<hz:eviction size="50000" max-size-policy="ENTRY_COUNT" comparator-bean="myEvictionPolicyComparatorB
</hz:cache>

12.6.7.4 Eviction Strategy

Eviction strategies implement the logic of selecting one or more eviction candidates from the underlying storage
implementation and passing them to the eviction policies. Hazelcast JCache provides an amortized O(1) cost
implementation for this strategy to select a fixed number of samples from the current partition that it is executed
against.

The default implementation is com.hazelcast.cache.impl.eviction.impl.strategy.sampling.SamplingBasedEvictionSt
which, as mentioned, samples 15 random elements. A detailed description of the algorithm will be explained in the
next section.

12.6.7.5 Eviction Algorithm

The Hazelcast JCache eviction algorithm is specially designed for the use case of high performance caches and with
predictability in mind. The built-in implementations provide an amortized O(1) runtime and therefore provide a
highly predictable runtime behavior which does not rely on any kind of background threads to handle the eviction.
Therefore, the algorithm takes some assumptions into account to prevent network operations and concurrent
accesses.

As an explanation of how the algorithm works, let’s examine the following flowchart step by step.

1. A new cache is created. Without any special settings, the eviction is configured to kick in when the cache
exceeds 10.000 elements and an LRU (Less Recently Used) policy is set up.
2. The user puts in a new entry (e.g., a key-value pair).
3. For every put, the eviction strategy evaluates the current cache size and decides if an eviction is necessary or
not. If not, the entry is stored in step 10.
4. If eviction is required, a new sampling is started. The built-in sampler is implemented as an lazy iterator.
5. The sampling algorithm selects a random sample from the underlying data storage.
6. The eviction strategy tests whether the sampled entry is already expired (lazy expiration). If expired, the
sampling stops and the entry is removed in step 9.
7. If not yet expired, the entry (eviction candidate) is compared to the last best matching candidate (based on
the eviction policy) and the new best matching candidate is remembered.
8. The sampling is repeated 15 times and then the best matching eviction candidate is returned to the eviction
strategy.
9. The expired or best matching eviction candidate is removed from the underlying data storage.
10. The new put entry is stored.
11. The put operation returns to the user.

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 225

Figure 12.1: Hazelcast JCache Eviction Algorithm

226 CHAPTER 12. HAZELCAST JCACHE

As seen in the flowchart, the general eviction operation is easy. As long as the cache does not reach its maximum
capacity, or you execute updates (put/replace), no eviction is executed.

To prevent network operations and concurrent access, as mentioned earlier, the cache size is estimated based on the
size of the currently handled partition. Due to the imbalanced partitions, the single partitions might start to evict
earlier than the other partitions.

As mentioned in the Cache Types section, typically two types of caches are found in the production systems. For
small caches, referred to as Reference Caches, the eviction algorithm has a special set of rules depending on the
maximum configured cache size. Please see the Reference Caches section for details. The other type of cache is
referred to as an Active DataSet Cache, which in most cases makes heavy use of the eviction to keep the most active
data set in the memory. Those kinds of caches use a very simple but efficient way to estimate the cluster-wide
cache size.

All of the following calculations have a well known set of fixed variables:

e GlobalCapacity: User defined maximum cache size (cluster-wide).
e PartitionCount: Number of partitions in the cluster (defaults to 271).

e BalancedPartitionSize: Number of elements in a balanced partition state, BalancedPartitionSize :
GlobalCapacity / PartitionCount.

e Deviation: An approximated standard deviation (tests proofed it to be pretty near), Deviation :
sqrt(BalancedPartitionSize).

12.6.7.5.1 Reference Caches A Reference Cache is typically small and the number of elements to store in
the reference caches is normally known prior to creating the cache. Typical examples of reference caches are lookup
tables for abbreviations or the states of a country. They tend to have a fixed but small element number and the
eviction is an unlikely event, and rather undesirable behavior.

Since an imbalanced partition is a worse problem in small and mid-sized caches than in caches with millions of
entries, the normal estimation rule (as discussed in a bit) is not applied to these kinds of caches. To prevent
unwanted eviction on the small and mid-sized caches, Hazelcast implements a special set of rules to estimate the
cluster size.

To adjust the imbalance of partitions as found in the typical runtime, the actual calculated maximum cache size
(known as the eviction threshold) is slightly higher than the user defined size. That means more elements can be
stored into the cache than expected by the user. This needs to be taken into account especially for large objects,
since those can easily exceed the expected memory consumption!

Small caches:

If a cache is configured with no more than 4.000 elements, this cache is considered to be a small cache. The actual
partition size is derived from the number of elements (GlobalCapacity) and the deviation using the following
formula:

MaxPartitionSize := Deviation * 5 + BalancedPartitionSize

This formula ends up with big partition sizes which, summed up, exceed the expected maximum cache size (set by
the user). Since the small caches typically have a well known maximum number of elements, this is not a big issue.
Only if the small caches are used for a use case other than as a reference cache, this needs to be taken into account.

Mid-sized caches

A mid-sized cache is defined as a cache with a maximum number of elements that is bigger than 4.000 but not
bigger than 1.000.000 elements. The calculation of mid-sized caches is similar to that of the small caches but with
a different multiplier. To calculate the maximum number of elements per partition, the following formula is used:

MaxPartitionSize := Deviation * 3 + BalancedPartitionSize

12.6. HAZELCAST JCACHE EXTENSION - ICACHE 227

12.6.7.5.2 Active DataSet Caches For large caches, where the maximum cache size is bigger than 1.000.000
elements, there is no additional calculation needed. The maximum partition size is considered to be equal to
BalancedPartitionSize since statistically big partitions are expected to almost balance themselves. Therefore,
the formula is as easy as the following:

MaxPartitionSize := BalancedPartitionSize

12.6.7.5.3 Cache Size Estimation As mentioned earlier, Hazelcast JCache provides an estimation algorithm
to prevent cluster-wide network operations, concurrent access to other partitions and background tasks. It also
offers a highly predictable operation runtime when the eviction is necessary.

The estimation algorithm is based on the previously calculated maximum partition size (please see the Reference
Caches section and Active DataSet Caches section) and is calculated against the current partition only.

The algorithm to reckon the number of stored entries in the cache (cluster-wide) and decide if the eviction is
necessary is shown in the following pseudo-code example:

RequiresEviction[Boolean] := CurrentPartitionSize >= MaxPartitionSize

12.6.8 JCache Near Cache

Cache entries in Hazelcast are stored as partitioned across the cluster. When you try to read a record with the
key k, if the current member is not the owner of that key (i.e. not the owner of partition that the key belongs to),
Hazelcast sends a remote operation to the owner member. Each remote operation means lots of network trips. If
your cache is used for mostly read operations, it is advised to use a near cache storage in front of the cache itself to

read cache records faster and consume less network traffic. ! NOTE: Near cache for JCache is only available
for clients, NOT members.

However, using near cache comes with trade-offs in some cases:

e There will be extra memory consumption for storing near cache records at local.

