
Hazelcast IMDG 4.1.1 Reference Manual
Hazelcast IMDG Reference Manual . 1

Preface. 1

Editions. 1

Licensing . 2

Trademarks . 2

Customer Support . 2

Release Notes. 2

Contributing . 2

Partners . 2

1. Quick Start . 2

1.1. Installing . 3

1.2. Creating a Cluster . 3

1.3. Your First Client Application . 3

1.4. Connecting Management Center to the Cluster. 7

1.5. What’s Next? . 7

2. Overview . 7

2.1. What is Hazelcast IMDG? . 7

2.2. Architecture . 9

2.3. Topology . 10

2.4. Data Partitioning. 12

2.4.1. How the Data is Partitioned . 14

2.4.2. Partition Table . 14

2.4.3. Repartitioning . 14

2.5. Use Cases. 14

2.6. Resources . 15

3. Installing and Upgrading . 15

3.1. CLI . 16

3.2. Maven . 16

3.3. Docker . 17

3.4. Download Archives . 18

3.5. Hazelcast Cloud. 18

3.6. Kubernetes/OpenShift Deployment . 19

3.6.1. Quick Start . 19

3.6.2. Helm Chart . 19

3.6.3. Kubernetes/OpenShift Operator . 19

3.7. Deploying in VMware Tanzu . 20

3.8. Deploying in Cloud Providers . 20

3.8.1. Amazon Web Services . 20

3.8.2. Microsoft Azure. 20

3.8.3. Google Cloud Platform. 20

3.9. Using Pro and Enterprise editions . 20

3.9.1. Setting Up License Key. 21

3.9.2. License Key Format . 22

3.10. Rolling Member Upgrades . 22

3.10.1. Terminology. 22

3.10.2. Hazelcast Members Compatibility Guarantees . 23

3.10.3. Rolling Upgrade Procedure . 23

3.10.4. Upgrading Cluster Version . 24

3.10.5. Enabling Auto-Upgrading . 24

3.10.6. Network Partitions and Rolling Upgrades . 25

3.10.7. Rolling Upgrade FAQ . 25

3.11. Running in Modular Java . 26

3.12. Supported Java Virtual Machines. 27

4. Starting the Members and Clients . 28

4.1. Example Application . 30

5. Understanding Configuration . 32

5.1. Configuring Declaratively. 32

5.1.1. Composing Declarative Configuration. 34

5.1.2. Configuring Declaratively with YAML . 38

5.2. Configuring Programmatically . 40

5.3. Configuring with System Properties . 41

5.4. Configuring within Spring Context . 42

5.5. Overriding Configuration . 43

5.5.1. Conversion Rules. 44

5.6. Dynamically Adding Data Structure Configuration on a Cluster . 45

5.6.1. Handling Configuration Conflicts . 46

5.6.2. Dynamic Data Structure Configuration and User Customizations . 47

5.7. Checking Configuration . 48

5.8. Configuration Pattern Matcher . 48

5.9. Using Wildcards . 49

5.10. Using Variables . 51

5.11. Variable Replacers . 52

5.11.1. EncryptionReplacer . 53

5.11.2. PropertyReplacer . 55

5.11.3. Implementing Custom Replacers . 55

6. Setting Up Clusters . 55

6.1. Discovery Mechanisms . 55

6.1.1. Auto Detection . 56

6.1.2. TCP . 56

6.1.3. Multicast . 56

6.1.4. AWS Cloud Discovery. 56

6.1.5. Azure Cloud Discovery . 56

6.1.6. GCP Cloud Discovery . 56

6.1.7. Kubernetes Cloud Discovery . 57

6.1.8. Eureka Cloud Discovery . 57

6.1.9. Zookeeper Cloud Discovery . 57

6.1.10. Hazelcast for Tanzu VMware. 57

6.2. Discovering Members by Auto Detection . 57

6.3. Discovering Members by TCP . 58

6.4. Discovering Members by Multicast . 59

6.5. Discovering Native Clients . 61

6.6. Creating Clusters. 62

6.7. Deploying User Code on the Member . 63

6.7.1. Configuring User Code Deployment . 63

6.7.2. Example for Filtering of Members . 65

6.8. Deploying User Code from Clients . 66

6.8.1. Configuring Client User Code Deployment . 66

Important to Know . 68

Performance Considerations . 68

Two Versions of a Class . 68

6.8.2. Adding User Library to CLASSPATH . 68

6.9. Accessing Domain Objects without Domain Classes - BETA. 70

6.10. Partition Group Configuration . 72

6.10.1. Grouping Types . 73

HOST_AWARE . 73

CUSTOM. 73

PER_MEMBER . 75

ZONE_AWARE . 75

NODE_AWARE . 76

SPI . 76

6.11. Logging Configuration. 77

6.11.1. Example Log4j2 Configuration . 79

6.11.2. Example Log4j Configuration . 81

6.12. Other Network Configurations . 81

6.12.1. Public Address . 81

6.12.2. Port . 82

6.12.3. Outbound Ports . 83

6.12.4. Reuse Address . 85

6.12.5. Join . 85

auto-detection element . 87

multicast element . 88

tcp-ip element . 88

aws element . 89

azure element . 89

gcp element . 89

kubernetes element . 89

discovery-strategies element . 89

6.12.6. Interfaces . 89

6.12.7. IPv6 Support. 90

6.12.8. Member Address Provider SPI . 92

6.13. Failure Detector Configuration . 95

6.13.1. Deadline Failure Detector. 95

6.13.2. Phi Accrual Failure Detector . 96

6.13.3. Ping Failure Detector . 98

Requirements and Linux/Unix Configuration . 98

6.14. Advanced Network Configuration . 101

6.14.1. Setting Up Cluster Members for Advanced Network Configuration 102

6.14.2. Server Socket Endpoint Configuration . 103

6.14.3. Setting Up REST Server Socket Endpoint Configuration . 106

6.14.4. Setting Up WAN Endpoints Configuration . 107

Configuring the WAN Active Side . 107

Configuring the WAN Passive Side . 110

6.14.5. Advanced Network Configuration FAQ . 111

7. Distributed Data Structures. 112

7.1. Overview of Hazelcast Distributed Objects . 113

7.1.1. Loading and Destroying a Distributed Object . 114

7.1.2. Controlling Partitions . 115

7.1.3. Common Features of all Hazelcast Data Structures . 115

7.1.4. Example Distributed Object Code . 115

7.2. Map . 116

7.2.1. Getting a Map and Putting an Entry. 116

7.2.2. Creating A Member for Map Backup . 118

7.2.3. Backing Up Maps. 119

Creating Sync Backups . 119

Creating Async Backups . 120

Enabling Backup Reads . 121

7.2.4. Map Eviction . 122

Understanding Map Eviction . 122

Configuring Map Eviction. 123

Example Eviction Configurations . 126

Evicting Specific Entries . 127

Evicting All Entries . 128

Forced Eviction . 128

Custom Eviction Policy . 129

7.2.5. Setting In-Memory Format . 131

7.2.6. Using High-Density Memory Store with Map. 132

Required Configuration Changes When Using NATIVE . 133

7.2.7. Metadata Policy. 133

7.2.8. Loading and Storing Persistent Data . 134

Using Read-Through Persistence. 139

Setting Write-Through Persistence. 139

Setting Write-Behind Persistence . 139

Managing the Lifecycle of a MapLoader . 142

Storing Entries to Multiple Maps . 142

Initializing Map on Startup . 143

Loading Keys Incrementally . 143

Forcing All Keys To Be Loaded . 144

Post-Processing Objects in Map Store . 144

Accessing a Database Using Properties . 145

MapStore and MapLoader Methods Triggered by IMap Operations . 146

7.2.9. Creating Near Cache for Map. 147

7.2.10. Locking Maps. 148

Pessimistic Locking . 148

Optimistic Locking . 150

Pessimistic vs. Optimistic Locking . 151

Solving the ABA Problem . 152

Lock Split-Brain Protection with Pessimistic Locking . 152

7.2.11. Accessing Map and Entry Statistics . 153

7.2.12. Listening to Map Entries with Predicates. 154

7.2.13. Removing Map Entries in Bulk with Predicates . 157

7.2.14. Adding Interceptors . 157

7.2.15. Preventing Out of Memory Exceptions . 159

Setting Query Result Size Limit . 160

Local Pre-check . 160

Scope of Result Size Limit . 160

Configuring Query Result Size. 161

7.3. Queue . 161

7.3.1. Getting a Queue and Putting Items. 161

7.3.2. Creating an Example Queue. 162

Putting Items on the Queue . 162

Taking Items off the Queue . 163

Balancing the Queue Operations . 163

ItemIDs When Offering Items . 164

7.3.3. Setting a Bounded Queue . 164

7.3.4. Queueing with Persistent Datastore. 165

7.3.5. Split-Brain Protection for Queue. 168

7.3.6. Configuring Queue . 168

7.4. Priority Queue. 171

7.5. MultiMap . 172

7.5.1. Getting a MultiMap and Putting an Entry. 172

7.5.2. Configuring MultiMap . 173

7.5.3. Split-Brain Protection for MultiMap and TransactionalMultiMap . 175

7.6. Set. 176

7.6.1. Getting a Set and Putting Items . 177

7.6.2. Configuring Set . 177

7.6.3. Split-Brain Protection for ISet and TransactionalSet . 179

7.7. List . 180

7.7.1. Getting a List and Putting Items . 180

7.7.2. Configuring List. 181

7.7.3. Split-Brain Protection for IList and TransactionalList. 182

7.8. Ringbuffer . 184

7.8.1. Getting a Ringbuffer and Reading Items. 184

7.8.2. Adding Items to a Ringbuffer. 184

7.8.3. IQueue vs. Ringbuffer . 185

7.8.4. Configuring Ringbuffer Capacity . 185

7.8.5. Backing Up Ringbuffer . 186

7.8.6. Configuring Ringbuffer Time-To-Live . 186

7.8.7. Setting Ringbuffer Overflow Policy . 187

7.8.8. Ringbuffer with Persistent Datastore . 188

7.8.9. Configuring Ringbuffer In-Memory Format . 190

7.8.10. Configuring Split-Brain Protection for Ringbuffer . 190

7.8.11. Adding Batched Items . 191

7.8.12. Reading Batched Items . 192

7.8.13. Using Async Methods. 194

7.8.14. Ringbuffer Configuration Examples . 194

7.9. Topic . 195

7.9.1. Getting a Topic and Publishing Messages . 196

7.9.2. Getting Topic Statistics . 196

7.9.3. Understanding Topic Behavior . 197

Ordering Messages as Published. 197

Ordering Messages for Members . 197

Keeping Generated and Published Order the Same . 198

7.9.4. Configuring Topic . 198

7.10. Reliable Topic . 200

7.10.1. Slow Consumers . 202

7.10.2. Configuring Reliable Topic . 202

7.11. FencedLock . 204

7.11.1. Using Try-Catch Blocks with Locks. 204

7.11.2. Releasing Locks with tryLock Timeout . 204

7.11.3. Understanding Lock Behavior. 205

7.12. IAtomicLong . 205

7.12.1. Sending Functions to IAtomicLong . 206

7.12.2. Executing Functions on IAtomicLong . 206

7.12.3. Reasons to Use Functions with IAtomicLong. 207

7.13. ISemaphore . 207

7.13.1. Controlling Thread Counts with Permits . 208

7.13.2. Example Semaphore Code . 208

7.14. IAtomicReference. 209

7.14.1. Sending Functions to IAtomicReference. 209

7.14.2. Using IAtomicReference . 210

7.15. ICountDownLatch . 210

7.15.1. Gate-Keeping Concurrent Activities . 210

7.16. PN Counter. 211

7.16.1. Configuring PN Counter . 213

7.16.2. Configuring the CRDT Replication Mechanism . 214

7.17. Flake ID Generator. 215

7.17.1. Generating Cluster-Wide IDs . 215

7.17.2. Performance . 215

7.17.3. Example . 215

7.17.4. Node ID Assignment. 216

Node ID Overflow . 216

7.17.5. Configuring Flake ID Generator . 216

7.18. Replicated Map . 218

7.18.1. Replicating Instead of Partitioning. 218

7.18.2. Example Replicated Map Code . 219

7.18.3. Considerations for Replicated Map . 219

7.18.4. Configuration Design for Replicated Map . 220

7.18.5. Configuring Replicated Map . 220

In-Memory Format on Replicated Map . 222

7.18.6. Using EntryListener on Replicated Map . 222

Difference in EntryListener on Replicated Map . 222

Example of Replicated Map EntryListener. 223

7.18.7. Split-Brain Protection for Replicated Map . 224

7.19. Cardinality Estimator Service . 225

7.19.1. Split-Brain Protection for Cardinality Estimator . 226

7.20. Event Journal. 228

7.20.1. Interaction with Evictions and Expiration for IMap . 228

7.20.2. Configuring Event Journal Capacity. 229

7.20.3. Event Journal Partitioning . 230

7.20.4. Configuring Event Journal time-to-live . 231

8. Distributed Events . 231

8.1. Cluster Events . 232

8.1.1. Listening for Member Events . 232

Registering Membership Listeners. 233

8.1.2. Listening for Distributed Object Events . 234

Registering Distributed Object Listeners . 235

8.1.3. Listening for Migration Events . 236

Registering Migration Listeners . 237

8.1.4. Listening for Partition Lost Events. 238

Writing a Partition Lost Listener Class . 239

Registering Partition Lost Listeners . 239

8.1.5. Listening for Lifecycle Events . 240

Registering Lifecycle Listeners . 240

8.1.6. Listening for Clients . 241

8.2. Distributed Object Events. 242

8.2.1. Listening for Map Events . 242

Catching a Map Event . 242

8.2.2. Listening for Lost Map Partitions . 245

Registering Map Listeners . 245

Map Listener Attributes . 247

8.2.3. Listening for MultiMap Events . 247

Registering MultiMap Listeners . 247

MultiMap Listener Attributes . 249

8.2.4. Listening for Item Events . 249

Registering Item Listeners . 249

Item Listener Attributes . 251

8.2.5. Listening for Topic Messages . 251

Registering Message Listeners. 251

8.3. Event Listeners for Hazelcast Clients . 252

8.4. Global Event Configuration . 253

9. Hazelcast Jet . 254

9.1. Overview . 254

10. Distributed Computing . 254

10.1. Executor Service. 255

10.1.1. Implementing a Callable Task . 255

Executing a Callable Task . 257

10.1.2. Implementing a Runnable Task . 257

Executing a Runnable Task . 258

10.1.3. Scaling The Executor Service. 258

10.1.4. Executing Code in the Cluster . 259

10.1.5. Canceling an Executing Task . 260

Example Task to Cancel. 260

Example Method to Execute and Cancel the Task . 261

10.1.6. Callback When Task Completes . 262

Example Task to Callback . 262

Example Method to Callback the Task . 262

10.1.7. Selecting Members for Task Execution . 263

10.1.8. Configuring Executor Service . 264

10.1.9. Split-Brain Protection for IExecutorService. 265

10.2. Durable Executor Service. 266

10.2.1. Configuring Durable Executor Service . 266

10.2.2. Split-Brain Protection for Durable Executor Service . 268

10.3. Scheduled Executor Service. 269

10.3.1. Configuring Scheduled Executor Service . 270

10.3.2. Examples . 272

10.3.3. Split-Brain Protection for IScheduled Executor Service . 272

10.4. Entry Processor. 274

10.4.1. Performing Fast In-Memory Map Operations . 274

Using Indexes. 274

Using OBJECT In-Memory Format . 274

Processing Entries. 275

Respecting Locks on Single Keys . 276

Processing Backup Entries . 276

10.4.2. Creating an Entry Processor . 276

10.4.3. Entry Processor Performance Optimizations . 277

Offloadable Entry Processor . 278

ReadOnly Entry Processor . 279

ReadOnly and Offloadable Entry Processor . 280

11. SQL . 281

11.1. Example: How to Query an IMap using SQL . 281

11.2. Querying IMap . 282

11.2.1. Names . 282

11.2.2. Fields . 283

Key and Value Objects . 283

Key and Value Fields . 283

"SELECT *" Queries. 284

11.2.3. Indexes . 284

11.2.4. High-Density Memory Store. 284

11.3. Data Types . 284

11.4. SELECT . 285

11.4.1. Synopsis . 285

11.4.2. Description. 285

11.5. Expressions . 285

11.6. Lite Members . 288

11.7. How Distributed SQL Works . 288

11.8. SQL on Data Structures Backed by High-Density Memory Store . 288

12. Distributed Query . 289

12.1. How Distributed Query Works . 289

12.1.1. Employee Map Query Example. 289

12.1.2. Querying with Criteria API. 290

Predicates Class Operators . 291

Combining Predicates with AND, OR, NOT . 291

Simplifying with PredicateBuilder . 292

12.1.3. Querying with SQL . 292

Supported SQL Syntax . 293

Querying Entry Keys with Predicates . 294

12.1.4. Querying JSON Strings. 294

Metadata Creation for JSON Querying. 295

12.1.5. Filtering with Paging Predicates . 296

12.1.6. Filtering with Partition Predicate. 297

12.1.7. Indexing Queries . 297

Indexing Ranged Queries . 298

Configuring IMap Indexes . 298

Global and Partitioned Indexes. 299

Composite Indexes . 300

Bitmap Indexes . 303

Copying Indexes . 309

Indexing Attributes with ValueExtractor . 310

Using "this" as an Attribute . 310

12.1.8. Configuring Query Thread Pool . 310

Query Requests from Clients . 311

12.2. Querying in Collections and Arrays. 312

12.2.1. Indexing in Collections and Arrays . 313

12.2.2. Corner cases. 314

12.3. Custom Attributes . 315

12.3.1. Implementing a ValueExtractor . 315

ValueExtractor with Portable Serialization . 316

Returning Multiple Values from a Single Extraction . 316

12.3.2. Extraction Arguments . 316

12.3.3. Configuring a Custom Attribute Programmatically . 317

12.3.4. Configuring a Custom Attribute Declaratively . 317

12.3.5. Indexing Custom Attributes . 318

12.4. Aggregations . 319

12.4.1. Aggregator API . 319

12.4.2. Aggregations and Map Interfaces. 320

12.4.3. Example Implementation. 320

12.4.4. Built-In Aggregations . 321

12.4.5. Configuration Options . 322

12.5. Projections . 322

12.5.1. Projection API . 322

Projections and Map Interfaces. 322

12.5.2. Example implementation . 323

12.5.3. Built-In Projections. 323

12.6. Continuous Query Cache . 324

12.6.1. Keeping Query Results Local and Ready. 324

12.6.2. Accessing Continuous Query Cache from Member . 324

12.6.3. Accessing Continuous Query Cache from Client Side . 324

12.6.4. Features of Continuous Query Cache . 325

12.6.5. Configuring Continuous Query Cache . 325

12.7. MapReduce Deprecation and Removal. 328

12.7.1. Motivation . 328

12.7.2. Built-In Aggregations . 328

12.7.3. Jet Compared with New Aggregations. 329

13. CP Subsystem . 329

13.1. CP Discovery Process. 332

13.2. CP Subsystem Persistence . 332

13.2.1. CP Subsystem Persistence Overview . 332

13.2.2. CP Subsystem Persistence Behavior During CP Subsystem Reset. 334

13.2.3. Interaction with Hot Restart Persistence . 334

13.3. CP Member Shutdown . 335

13.4. CP Subsystem’s Fault Tolerance Capabilities. 336

13.5. CP Subsystem Listeners . 338

13.5.1. CP Membership Listener. 338

Registering CP Membership Listeners . 338

13.5.2. CP Group Availability Listener . 340

Registering CP Group Availability Listeners . 341

13.6. CP Sessions. 342

13.7. FencedLock . 343

13.8. Configuration . 345

13.8.1. CP Subsystem Configuration . 345

13.8.2. FencedLock Configuration . 347

13.8.3. Semaphore Configuration . 349

13.8.4. Raft Algorithm Configuration . 350

13.9. CP Subsystem Unsafe Mode . 353

13.10. CP Subsystem Management. 353

13.10.1. CP Subsystem Management APIs . 354

13.10.2. Session Management API . 360

14. Transactions . 362

14.1. Creating a Transaction Interface . 362

14.1.1. Queue/Set/List vs. Map/Multimap. 364

14.1.2. ONE_PHASE vs. TWO_PHASE . 364

14.2. Providing XA Transactions . 364

15. Hazelcast JCache . 365

15.1. JCache Overview. 365

15.1.1. Supported JCache Versions . 366

15.1.2. Upgrading from JCache 1.1.0 to 1.1.1 . 366

15.1.3. Upgrading from JCache 1.0.0 to 1.1.0 . 366

15.2. JCache Setup and Configuration . 367

15.2.1. Setting up Your Application . 367

Activating Hazelcast as JCache Provider. 367

Connecting Clients to Remote Member . 368

15.2.2. Example JCache Application . 368

Getting the Hazelcast JCache Implementation . 369

Setting up the JCache Entry Point . 369

Configuring the Cache Before Creating It . 369

Creating the Cache . 370

get, put and getAndPut . 370

15.2.3. Configuring for JCache . 370

Declarative Configuration . 370

Programmatic Configuration . 373

15.3. JCache Providers. 374

15.3.1. Configuring JCache Provider . 374

15.4. JCache API . 375

15.4.1. JCache API Application Example . 375

Creating User Class Example . 375

Creating DAO Interface Example . 376

Configuring JCache Example . 376

15.4.2. JCache Base Classes . 378

15.4.3. Implementing Factory and FactoryBuilder . 379

15.4.4. Implementing CacheLoader. 379

Cache read-through . 379

CacheLoader Example . 380

15.4.5. CacheWriter. 381

15.4.6. Implementing EntryProcessor . 383

15.4.7. CacheEntryListener . 384

15.4.8. ExpiryPolicy. 386

15.5. JCache - Hazelcast Instance Integration . 387

15.5.1. JCache and Hazelcast Instance Awareness . 388

15.6. Hazelcast JCache Extension - ICache . 388

15.6.1. Scoping to Join Clusters. 389

Examples. 389

Applying Configuration Scope . 391

Binding to a Named Instance. 393

Binding to an Existing Hazelcast Instance Object. 395

15.6.2. Namespacing . 396

15.6.3. Retrieving an ICache Instance. 396

15.6.4. ICache Configuration . 397

15.6.5. ICache Async Methods. 399

15.6.6. Defining a Custom ExpiryPolicy . 400

15.6.7. JCache Eviction . 401

Eviction and Runtime . 402

Cache Types . 402

Configuring Eviction Policies . 402

Eviction Strategy . 405

Eviction Algorithm . 405

15.6.8. JCache Near Cache . 408

15.6.9. ICache Convenience Methods . 408

15.6.10. Implementing BackupAwareEntryProcessor . 409

15.6.11. ICache Partition Lost Listener. 411

15.7. Testing for JCache Specification Compliance . 411

16. Integrated Clustering . 413

16.1. Integration with Hibernate Second Level Cache . 413

16.2. Web Session Replications . 413

16.3. Integration with Java EE. 413

16.4. Integration with Spring . 414

16.4.1. Configuring Spring . 414

Enabling Spring Integration. 414

Troubleshooting . 414

Declaring Beans by Spring beans Namespace . 415

Declaring Beans by hazelcast Namespace. 415

Supported Configurations with hazelcast Namespace . 416

16.4.2. Enabling SpringAware Objects . 419

SpringAware Examples . 419

16.4.3. Adding Caching to Spring . 422

Declarative Spring Cache Configuration . 423

Defining Timeouts for Cache Read Operation . 423

Declarative Hazelcast JCache Based Caching Configuration . 424

Annotation-Based Spring Cache Configuration . 424

16.4.4. Configuring Hibernate Second Level Cache. 425

16.4.5. Configuring Hazelcast Transaction Manager . 426

Example Configuration for Hazelcast Transaction Manager . 426

Example Transactional Method . 427

16.4.6. Best Practices . 427

17. Storage . 428

17.1. High-Density Memory Store . 428

17.1.1. Configuring High-Density Memory Store . 429

17.1.2. Using Persistent Memory . 432

Allocation Strategies . 434

Allocation Overflowing . 435

On the Performance of Persistent Memory . 436

17.2. Sizing Practices . 436

17.3. Hot Restart Persistence . 437

17.3.1. Hot Restart Persistence Overview . 437

17.3.2. Hot Restart Types . 437

17.3.3. Restart Process . 438

Restart of a Member in Running Cluster. 438

17.3.4. Force Start . 439

17.3.5. Partial Start . 439

17.3.6. Configuring Hot Restart . 440

Global Hot Restart Configuration . 440

Per Data Structure Hot Restart Configuration . 442

Hot Restart Configuration Examples . 442

Configuring Hot Restart Store on Intel® Optane™ DC Persistent Memory 444

17.3.7. Moving/Copying Hot Restart Data . 444

17.3.8. Hot Restart Persistence Design Details . 445

17.3.9. Concurrent, Incremental, Generational GC . 445

I/O Minimization Scheme . 446

Cost-Benefit Factor . 446

17.3.10. Hot Restart Performance Considerations . 446

Performance on a Physical Server . 447

Performance on AWS R3 . 447

17.3.11. Hot Backup. 448

Configuring Hot Backup . 448

Using Hot Backup . 449

Starting the Cluster From a Hot Backup . 450

Achieving High Consistency of Backup Data . 451

Achieving High Performance of Backup Process . 452

Backup Process Progress and Completion . 452

Backup Task Interruption and Cancellation . 453

17.3.12. Encryption at Rest . 453

Configuring Encryption at Rest . 454

Configuring a Secure Store . 455

18. Database CDC Integration using Striim Hot Cache . 459

18.1. Introduction. 459

18.2. Supported Versions . 459

18.3. Logging . 459

18.4. Full Worked Example Application . 460

18.5. Further Resources . 460

19. Hazelcast Clients . 460

19.1. Java Client . 461

19.1.1. Getting Started with Java Client . 461

Client API . 462

Java Client Operation Modes . 462

Handling Failures . 463

Using Supported Distributed Data Structures . 464

Using Client Services . 465

Defining Client Labels . 467

Client Listeners . 468

Client Transactions. 468

Async Start and Reconnect Modes . 468

19.1.2. Configuring Java Client . 469

Client Network. 470

Configuring Client Load Balancer. 483

Configuring Client Listeners . 484

Configuring Client Near Cache . 484

Configuring Client Cluster . 484

Configuring Client Security . 485

Client Serialization Configuration . 485

Configuring ClassLoader. 485

Configuring Reliable Topic on the Client Side . 485

19.1.3. Java Client Connection Strategy . 486

Configuring Client Connection Retry . 487

19.1.4. Blue-Green Deployment and Disaster Recovery . 489

Blue-Green Mechanism . 489

Disaster Recovery Mechanism. 490

Ordering of Clusters When Clients Try to Connect. 490

Configuring Using CNAME . 491

Configuring Without CNAME. 495

19.1.5. Java Client Failure Detectors . 497

Client Deadline Failure Detector . 497

Client Ping Failure Detector . 498

19.1.6. Client System Properties . 501

19.1.7. Using High-Density Memory Store with Java Client. 505

19.2. C++ Client . 506

19.3. .NET Client . 507

19.4. REST Client. 507

19.4.1. REST Client GET/POST/DELETE Examples . 508

Creating/Updating Entries in a Map for REST Client . 509

Retrieving Entries from a Map for REST Client . 509

Removing Entries from a Map for REST Client . 510

Offering Items on a Queue for REST Client. 510

Retrieving Items from a Queue for REST Client . 511

Getting the size of the queue for REST Client. 511

19.4.2. Checking the Status of the Cluster for REST Client . 512

19.4.3. Checking the Name of the Instance for REST Client. 513

19.5. Memcache Client . 514

19.5.1. Memcache Client Code Examples . 515

19.5.2. Unsupported Operations for Memcache. 516

19.6. Python Client . 516

19.7. Node.js Client. 516

19.8. Go Client . 516

20. Serialization . 517

20.1. Serialization Interface Types. 517

20.2. Comparing Serialization Interfaces . 518

20.3. Implementing Java Serializable and Externalizable . 519

20.3.1. Implementing Java Externalizable. 520

20.4. Implementing DataSerializable . 521

20.4.1. Reading and Writing and DataSerializable . 521

20.4.2. IdentifiedDataSerializable . 523

getClassId and getFactoryId Methods . 523

Implementing IdentifiedDataSerializable . 523

Registering EmployeeDataSerializableFactory . 525

20.5. Implementing Portable Serialization . 526

20.5.1. Portable Serialization Example Code . 526

20.5.2. Registering the Portable Factory. 528

20.5.3. Versioning for Portable Serialization . 529

Example Portable Versioning Scenarios . 530

20.5.4. Ordering Consistency for writePortable . 530

20.5.5. Null Portable Serialization . 531

20.5.6. DistributedObject Serialization. 532

20.6. Custom Serialization . 532

20.6.1. Implementing StreamSerializer . 532

StreamSerializer Example Code 1. 532

StreamSerializer Example Code 2. 534

Configuring StreamSerializer . 535

20.6.2. Implementing ByteArraySerializer . 536

Configuring ByteArraySerializer . 537

20.7. Global Serializer . 538

20.7.1. Example Global Serializer . 538

20.8. Implementing HazelcastInstanceAware. 540

20.9. Untrusted Deserialization Protection . 541

20.10. Serialization Configuration Wrap-Up . 543

21. Management . 546

21.1. Getting Member Statistics . 546

21.1.1. Map Statistics. 546

21.1.2. Map Index Statistics . 547

21.1.3. Near Cache Statistics . 549

21.1.4. Multimap Statistics. 549

21.1.5. Queue Statistics . 550

21.1.6. Topic Statistics . 551

21.1.7. Executor Statistics . 551

21.2. JMX API per Member. 552

21.3. Monitoring with JMX. 559

21.3.1. MBean Naming for Hazelcast Data Structures . 559

21.3.2. Connecting to JMX Agent . 560

21.4. Using the REST Endpoint Groups . 560

21.5. Cluster Utilities . 565

21.5.1. Hazelcast Command Line Tool . 565

21.5.2. Using the cluster.sh Script . 565

Example Usages for cluster.sh . 567

21.5.3. Using REST API for Cluster Management . 569

21.5.4. Enabling Lite Members . 572

Configuring Lite Members . 572

Promoting Lite Members to Data Member . 572

21.5.5. Getting Member Events and Member Sets . 573

21.5.6. Managing Cluster and Member States. 574

Cluster States . 574

Cluster Member States. 576

21.5.7. Defining Member Attributes . 576

21.5.8. Safety Checking Cluster Members . 578

Ensuring Safe State with PartitionService . 578

21.6. Metrics . 579

21.6.1. Configuring Metrics . 579

21.6.2. Metric Consumers . 581

Management Center. 581

JMX . 581

Diagnostics . 581

Version Compatibility . 582

21.6.3. Notes on the Performance . 582

21.7. Diagnostics. 582

21.7.1. Enabling Diagnostics Logging . 582

21.7.2. Diagnostics Log File . 583

21.7.3. Diagnostics Plugins . 584

BuildInfo . 584

SystemProperties . 584

ConfigProperties . 584

Metrics. 584

SlowOperations . 584

Invocations . 584

HazelcastInstance . 585

EventQueue . 585

SystemLog. 585

StoreLatency . 586

OperationHeartbeats . 587

MemberHeartbeats . 587

OperationThreadSamples . 588

WanDiagnostics. 589

21.8. Health Check and Monitoring . 590

21.8.1. Health Check . 591

21.8.2. Using the healthcheck.sh Script . 591

21.8.3. Health Monitor . 593

21.8.4. Using Health Check on F5 BIG-IP LTM. 594

Monitor Types . 594

Configuration. 595

21.9. Management Center . 596

21.9.1. Toggle Scripting Support. 596

21.9.2. Limiting Source Addresses . 596

21.9.3. Clustered JMX and REST via Management Center . 597

21.10. License Information . 597

21.10.1. JMX. 597

21.10.2. REST. 598

21.10.3. Logs . 599

21.11. Instance Tracking. 600

21.11.1. Configuring Instance Tracking . 600

22. Security. 603

22.1. Enabling JAAS Security . 603

22.2. Socket Interceptor . 604

22.3. Security Interceptor. 607

22.4. Encryption . 608

22.5. TLS/SSL . 610

22.5.1. TLS/SSL for Hazelcast Members . 610

22.5.2. TLS/SSL for Hazelcast Clients. 613

22.5.3. Mutual Authentication . 615

22.5.4. TLS/SSL Performance Improvements for Java . 616

22.6. Integrating OpenSSL / BoringSSL . 617

22.6.1. Netty Libraries . 617

22.6.2. Using BoringSSL . 618

22.6.3. Using OpenSSL . 618

22.6.4. Configuring Hazelcast for OpenSSL . 619

22.7. Other TLS related configuration. 621

22.7.1. TLS/SSL for Hazelcast Management Center . 621

22.7.2. Updating Certificates in the Running Cluster . 621

22.7.3. Configuring Cipher Suites. 622

22.7.4. Other Ways of Configuring Properties . 624

22.8. Validating Secrets Using Strength Policy . 624

22.8.1. Using a Custom Secret Strength Policy . 625

22.8.2. Enforcing the Secret Strength Policy . 625

22.9. Security Realms . 627

22.9.1. Authentication Configuration . 629

JAAS Authentication Type. 629

LDAP Authentication Type . 630

Kerberos Authentication Type. 638

Kerberos and LDAP integration . 642

Simplified Kerberos Configuration . 643

TLS Authentication Type. 644

22.9.2. Identity Configuration. 645

Credentials . 645

Password Credentials. 647

Token Credentials . 648

Kerberos Identity . 648

Credentials Factory . 649

22.9.3. Security Realms on the Client Side . 649

22.10. JAAS authentication. 650

22.10.1. JAAS Principals used in Hazelcast . 650

22.10.2. Callbacks Supported in Login Modules. 651

22.10.3. ClusterLoginModule . 652

22.10.4. Enterprise Integration. 653

22.11. Cluster Member Security . 653

22.12. Default authentication . 654

22.13. Native Client Security . 654

22.13.1. Authentication . 654

22.13.2. Authorization . 656

22.13.3. Permissions . 659

Handling Permissions When a New Member Joins . 668

22.14. Logging Auditable Events . 669

22.14.1. Auditlog SPI . 671

22.15. Security Debugging . 671

22.15.1. Java Security Debugging. 671

22.15.2. TLS debugging. 671

22.16. FIPS 140-2. 672

22.16.1. Example FIPS 140-2 environment . 674

23. Performance . 675

23.1. Pipelining . 675

23.2. Data Affinity . 676

23.2.1. PartitionAware . 676

23.2.2. PartitioningStrategy. 681

23.3. CPU Thread Affinity. 683

23.4. Running on EC2 . 684

23.5. Back Pressure . 685

23.5.1. Member Side . 685

23.5.2. Client Side. 686

23.6. Threading Model . 686

23.6.1. I/O Threading. 686

23.6.2. Event Threading . 687

23.6.3. IExecutor Threading . 688

23.6.4. Operation Threading . 688

Partition-aware Operations . 688

Non-Partition-aware Operations. 689

Priority Operations. 689

Operation-response and Invocation-future . 690

Local Calls . 690

23.7. SlowOperationDetector . 690

23.7.1. Logging of Slow Operations . 691

23.7.2. Purging of Slow Operation Logs . 691

23.8. Near Cache. 691

23.8.1. Hazelcast Data Structures with Near Cache Support. 692

23.8.2. Configuring Near Cache . 693

23.8.3. Near Cache Configuration Examples . 697

Near Cache Example for IMap. 697

Near Cache Example for JCache Clients . 699

Example for Near Cache with High-Density Memory Store . 700

23.8.4. Near Cache Eviction. 702

23.8.5. Near Cache Expiration . 702

23.8.6. Near Cache Invalidation . 702

23.8.7. Near Cache Consistency . 703

Eventual Consistency . 703

Locally Initiated Changes . 703

23.8.8. Near Cache Preloader . 704

23.9. Caching Deserialized Values . 704

23.9.1. Performance Anti Patterns. 705

Using Single Member per Machine. 705

Using Operation Threads Efficiently . 706

Avoiding Random Changes. 706

Creating the Right Benchmark Environment. 706

24. Hazelcast Simulator . 706

25. WAN Replication . 706

25.1. Introduction. 707

25.1.1. Concepts . 707

25.2. WAN Replication Modes . 708

25.3. Quick Start . 708

25.3.1. Setting Up an Active-Passive Mode . 708

25.3.2. Setting Up an Active-Active Mode. 710

25.4. Configuring WAN Replication . 712

25.4.1. Using the Static Endpoints . 712

25.4.2. Using the Discovery SPI. 714

25.4.3. Using the Built-In WAN Batch Publisher. 720

25.5. Configuring for IMap and ICache. 723

25.6. Advanced Features . 727

25.6.1. Synchronizing WAN Clusters. 727

Full WAN Synchronization . 728

Delta WAN Synchronization . 729

WAN Synchronization Statistics . 735

25.6.2. Dynamically Adding WAN Publishers . 736

25.6.3. Event Filtering API . 743

25.6.4. Implementing a Custom WAN Publisher . 744

25.6.5. Customizing WAN Event Processing on Passive/Target Cluster . 747

25.7. Fine-Tuning WAN Replication . 748

25.7.1. Batch Size . 748

25.7.2. Batch Maximum Delay . 749

25.7.3. Response Timeout . 750

25.7.4. Queue Capacity . 751

25.7.5. Queue Full Behavior . 753

25.7.6. Acknowledgment Types . 754

25.7.7. Key-based Coalescing. 755

25.7.8. Achieving Lower Latencies and Higher Throughput. 755

25.7.9. Discovery Period. 759

25.7.10. Maximum Number of Target Endpoints. 760

25.7.11. Use Endpoint Private Address . 760

25.8. Failure Detection and Recovery . 761

25.8.1. WAN Target Endpoint List . 761

25.8.2. WAN Failure Detection . 761

25.8.3. WAN Endpoint Recovery . 762

25.8.4. Backing Up Event Queues. 762

25.9. REST API Wrap-Up . 762

25.9.1. Parameters . 762

25.9.2. Clearing the Queues . 763

25.9.3. Pausing the Publisher . 764

25.9.4. Resuming the Publisher . 764

25.9.5. Stopping the Publisher . 765

25.9.6. Synchronizing the Clusters . 765

25.9.7. Dynamically Adding WAN Publishers . 766

26. OSGI. 766

26.1. OSGI Support . 766

26.2. API . 767

26.3. Configuring Hazelcast OSGI Support. 767

26.4. Design . 767

26.5. Using Hazelcast OSGI Service . 768

26.5.1. Getting Hazelcast OSGI Service Instances . 768

26.5.2. Managing and Using Hazelcast instances. 768

27. Extending Hazelcast . 769

27.1. OperationParker. 769

27.2. Discovery SPI. 770

27.2.1. Discovery SPI Interfaces and Classes. 770

DiscoveryStrategy: Implement . 770

AbstractDiscoveryStrategy: Abstract Class . 771

DiscoveryStrategyFactory: Factory Contract . 771

DiscoveryNode: Describe a Member . 771

SimpleDiscoveryNode: Default DiscoveryNode. 771

NodeFilter: Filter Members . 771

DiscoveryService: Support In Integrator Systems . 771

DiscoveryServiceProvider: Provide a DiscoveryService . 772

DiscoveryServiceSettings: Configure DiscoveryService . 772

DiscoveryMode: Member or Client. 772

27.2.2. Discovery Strategy . 772

Discovery Strategy Example. 772

Configuring Site Domain. 772

Creating Discovery . 773

Implementing Discovery Strategy . 774

Extending The AbstractDiscoveryStrategy . 774

Overriding Discovery Configuration . 776

Implementing Lookup . 777

Mapping to DiscoveryNode . 777

Configuring DiscoveryStrategy . 778

27.2.3. DiscoveryService (Framework integration) . 779

27.3. Config Properties SPI. 780

27.3.1. Config Properties SPI Classes . 780

PropertyDefinition: Define a Single Property . 780

SimplePropertyDefinition: Basic PropertyDefinition . 780

PropertyTypeConverter: Set of TypeConverters . 780

ValueValidator and ValidationException . 781

27.3.2. Config Properties SPI Example . 781

Defining a Config PropertyDefinition . 781

Providing a value in XML . 781

Retrieving a PropertyDefinition Value . 781

28. Hazelcast Plugins . 782

28.1. Cloud Discovery Plugins . 782

28.1.1. Hazelcast AWS. 782

28.1.2. Hazelcast Azure . 783

28.1.3. Hazelcast GCP . 783

28.1.4. Hazelcast Kubernetes . 783

28.1.5. Hazelcast Eureka . 784

28.1.6. Hazelcast Zookeeper . 784

28.1.7. Other Discovery Plugins . 784

28.2. Web Session Replication Plugins . 784

28.2.1. Filter Based Web Session Replication . 784

28.2.2. Tomcat Based Web Session Replication . 784

28.2.3. Jetty Based Web Session Replication . 785

28.3. Framework Integration Plugins . 785

28.3.1. Hazelcast Hibernate 2LC. 785

28.3.2. Spring Boot. 785

28.3.3. Spring Integration . 786

28.3.4. Spring Data Hazelcast . 786

28.3.5. Quarkus. 786

28.3.6. Micronaut . 786

28.3.7. Hazelcast JCA Resource Adapter. 787

28.3.8. Hazelcast DynaCache. 787

28.3.9. MuleSoft . 787

28.4. Other Integrations . 787

29. Consistency and Replication Model. 787

29.1. A Brief Overview of Consistency and Replication in Distributed Systems. 788

29.2. Hazelcast’s Replication Algorithm . 788

29.2.1. Best-Effort Consistency . 789

29.3. Invocation Lifecycle . 790

29.4. Exactly-once, At-least-once or At-most-once Execution . 791

29.5. IndeterminateOperationStateException. 791

30. Network Partitioning . 792

30.1. Split-Brain Syndrome . 792

30.2. Dealing with Network Partitions . 792

30.3. Split-Brain Protection . 792

30.3.1. Time Window for Split-Brain Protection . 793

30.3.2. Configuring Split-Brain Protection . 794

Member Count Split-Brain Protection . 794

Probabilistic Split-Brain Protection Function . 795

Recently-Active Split-Brain Protection Function. 797

Split-Brain Protection Configuration Reference . 798

30.3.3. Configuring Split-Brain Protection Listeners. 799

30.3.4. Querying Split-Brain Protection Results . 801

30.4. Split-Brain Recovery . 802

30.4.1. Merge Policies . 803

30.4.2. Supported Data Structures . 803

30.4.3. Configuring Merge Policies . 804

Declarative Configuration . 804

Programmatic Configuration . 807

30.4.4. Custom Merge Policies . 807

Merge Types . 807

Accessing Deserialized Values . 810

Accessing Hazelcast UserContext . 814

Merge Policies With Multiple Merge Types . 816

Merge Policies For Specific Data Structures . 817

Best Practices . 819

30.5. Partial Network Partitions . 820

Appendix A: System Properties. 822

Appendix B: Migration Guides . 838

B.1. Upgrading to Hazelcast IMDG 4.0. 838

B.1.1. Upgrading to 4.0 from Prior Versions (3.x) . 838

B.1.2. Removal of Hazelcast Client Module . 838

B.1.3. JCache default Caching Provider . 839

B.1.4. Removal of User Defined Services . 839

B.1.5. Changes in Client Connection Retry Mechanism . 839

B.1.6. Increasing the Member/Client Thread Counts . 839

B.1.7. Optimizing for Single Threaded Usages . 840

B.1.8. Removing Deprecated Client Configurations . 840

B.1.9. Changes in Index Configuration . 843

B.1.10. Changes in Custom Attributes. 844

B.1.11. Removal of MapReduce . 846

B.1.12. Refactoring of Migration Listener . 847

B.1.13. Defaulting to OpenSSL . 850

B.1.14. Changes in Security Configurations. 850

Replacing group by Simple Cluster Name Configuration . 850

Member Authentication and Identity Configuration . 850

Client Identity Configuration . 851

B.1.15. JAAS Authentication Cleanups . 852

Introducing New Principal Types . 852

Changes in ClusterLoginModule . 853

Changes in Credentials for Client Protocol . 855

Changes in JAAS Callbacks . 856

B.1.16. Renaming Quorum as Split Brain Protection . 857

B.1.17. Renaming getID to getClassId in IdentifiedDataSerializable . 858

B.1.18. Introducing Lambda Friendly Interfaces. 859

Entry Processor . 859

Functional and Serializable Interfaces . 860

B.1.19. Expanding Nullable/Nonnull Annotations. 860

B.1.20. Removal of ICompletableFuture. 861

B.1.21. WAN Replication Configuration Changes. 863

B.1.22. WAN Replication SPI Changes. 866

B.1.23. Predicate API Cleanups. 867

B.1.24. Changing the UUID String Type to UUID. 867

B.1.25. Removal of Deprecated Concurrency API Implementations . 868

B.1.26. Removal of Legacy Merge Policies . 870

B.1.27. Changes in AWS Configuration . 870

B.1.28. Removal of Deprecated System Properties . 871

B.1.29. Removal of Deprecations in LoginModuleConfig . 871

B.1.30. Removal of Deprecations in MultiMapConfig . 871

B.1.31. Removal of Deprecations in PartitioningStrategyConfig. 872

B.1.32. Removal of Deprecations in ServiceConfig . 872

B.1.33. Removal of Deprecations in TransactionContext . 872

B.1.34. Removal of Deprecations in DistributedObjectEvent . 872

B.1.35. Removal of Deprecated EntryListener-based Listener API in IMap 872

B.1.36. Changes in IMap Eviction Configuration . 873

B.1.37. Changes in IMap Custom Eviction Policy Configuration . 873

B.1.38. Changes in EntryListenerConfig . 874

B.1.39. Changes in REST Endpoints . 874

B.1.40. Changes in the Diagnostics Configuration . 875

B.1.41. Changes in the Management Center Configuration. 875

B.1.42. Changes in the Event Journal Configuration . 875

B.2. Upgrading to Hazelcast IMDG 3.12.x . 876

B.3. Upgrading from Hazelcast IMDG 3.10.x . 877

B.4. Upgrading from Hazelcast IMDG 3.9.x . 877

B.5. Upgrading to Hazelcast IMDG 3.8.x . 878

B.6. Upgrading to Hazelcast IMDG 3.7.x . 878

B.7. Upgrading to Hazelcast IMDG 3.6.x . 879

B.8. Upgrading to Hazelcast IMDG 3.5.x . 880

B.9. Upgrading to Hazelcast IMDG 3.x . 880

Appendix C: Common Exception Types . 882

Appendix D: License Questions . 883

D.1. Embedded Dependencies. 883

D.2. Runtime Dependencies. 884

Appendix E: Phone Homes. 885

Appendix F: Frequently Asked Questions . 886

Appendix G: Document Revision History . 897

Glossary . 898

Hazelcast IMDG Reference Manual
Version 4.1.1

Preface
Welcome to the Hazelcast IMDG (In-Memory Data Grid) Reference Manual. This manual includes
concepts, instructions and examples to guide you on how to use Hazelcast and build Hazelcast
IMDG applications.

This reference manual mostly talks about the Hazelcast member and clients in Java language.
Although, the core of Hazelcast IMDG is based on the Java programming language, it has the
following clients and programming language APIs.

• Java

• .NET

• C++

• Node.js

• Python

• Go

We recommend you to learn the basics of Hazelcast IMDG using this manual first. Then, you can
always get the client related resources/links in the Clients chapter.

Editions
This Reference Manual covers all editions of Hazelcast IMDG. Throughout this manual:

• Hazelcast or Hazelcast IMDG refers to the open source edition of Hazelcast in-memory data
grid middleware. Hazelcast is also the name of the company (Hazelcast, Inc.) providing the
Hazelcast product.

• Hazelcast IMDG Pro is a commercially licensed edition of Hazelcast IMDG which provides
various cloud and Management Center plugins in addition to Hazelcast IMDG.

• Hazelcast IMDG Enterprise is a commercially licensed edition of Hazelcast IMDG which
provides High-Density Memory Store, Hot Restart Persistence features and Security suite in
addition to Hazelcast IMDG Pro.

The Pro and Enterprise editions offer all the features of the open source edition.

1

https://hazelcast.org/

Licensing
Hazelcast IMDG and Hazelcast Reference Manual are free and provided under the Apache License,
Version 2.0. Hazelcast IMDG Pro and Enterprise are commercially licensed by Hazelcast, Inc.

For more detailed information on licensing, see the License Questions appendix.

Trademarks
Hazelcast is a registered trademark of Hazelcast, Inc. All other trademarks in this manual are held
by their respective owners.

Customer Support
Support for Hazelcast is provided via GitHub, Mail Group and StackOverflow.

For information on the commercial support for Hazelcast IMDG and Hazelcast IMDG Enterprise, see
hazelcast.com.

Release Notes
See the Release Notes document for the new features, enhancements and fixes performed for each
Hazelcast IMDG release.

Contributing
You can contribute to the Hazelcast IMDG code, report a bug, or request an enhancement. See the
following resources:

• Developing with Git: Document that explains the branch mechanism of Hazelcast and how to
request changes.

• Hazelcast Contributor Agreement form: Form that each contributing developer needs to fill and
send back to Hazelcast.

• Hazelcast on GitHub: Hazelcast repository where the code is developed, issues and pull requests
are managed.

Partners
Hazelcast partners with leading hardware and software technologies, system integrators, resellers
and OEMs including Amazon Web Services, Vert.x, Azul Systems, C2B2. See the Partners page for
the full list of and information on our partners.

1. Quick Start
This chapter intends to get you started in 5 minutes. The quick start shows how to start Hazelcast

2

https://github.com/hazelcast/hazelcast/issues
https://groups.google.com/forum/#!forum/hazelcast
http://www.stackoverflow.com
https://hazelcast.com/pricing/
https://docs.hazelcast.org/docs/release-notes/
https://hazelcast.atlassian.net/wiki/display/COM/Developing+with+Git
https://hazelcast.atlassian.net/wiki/display/COM/Hazelcast+Contributor+Agreement
https://github.com/hazelcast/hazelcast
https://hazelcast.com/partners/

members, form a cluster, connect it with a client application in your preferred language and
monitor the cluster using Hazelcast Management Center.

For a comprehensive overview of what Hazelcast IMDG actually is see What is Hazelcast IMDG?.

1.1. Installing
You can use the Hazelcast Command Line Interface (CLI) to install and start Hazelcast IMDG.

Assuming you have the Homebrew package manager, run the following commands:

$ brew tap hazelcast/hz
$ brew install hazelcast

Currently, the CLI way is meant for development purposes, not for a production usage. For
production or if you prefer other ways, take a look at Installing and Upgrading.

1.2. Creating a Cluster
Use the following command on your terminal/command line to start a standalone Hazelcast
member:

$ hz start

Now you have a 1-member cluster. To add one more member to the cluster, open another
terminal/command line and rerun the above command. The members discover each other
automatically and form a 2-member cluster. You should see happening it with log output in the
command line like:

Members {size:2, ver:2} [
 Member [127.0.0.1]:5701 - e40081de-056a-4ae5-8ffe-632caf8a6cf1 this
 Member [127.0.0.1]:5702 - 93e82109-16bf-4b16-9c87-f4a6d0873080
]

Note that these members are started with the default configuration. The location of the
hazelcast.xml is printed on the first line of the output of the above command.

1.3. Your First Client Application
Having a running cluster as started in the above section, let’s create a client application that
connects to this cluster, creates a map and populates it. Below, we first briefly give how to install a
client of your preference and then an example code for each. We are assuming that the members
and clients are on the same machine for simplicity.

3

https://github.com/hazelcast/hazelcast-command-line
https://brew.sh/

Java

// Installation notes: You have to have Hazelcast Java Client on the classpath.
// The simplest way of doing it is to put `hazelcast-all` JAR
// on the classpath, e.g. via Maven. See "Installation" chapter for details.

import com.hazelcast.client.HazelcastClient;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class MapSample {
 public static void main(String[] args) {
 // Start the client and connect to the cluster
 HazelcastInstance hz = HazelcastClient.newHazelcastClient();
 // Create a Distributed Map in the cluster
 IMap map = hz.getMap("my-distributed-map");
 //Standard Put and Get
 map.put("1", "John");
 map.put("2", "Mary");
 map.put("3", "Jane");
 // Shutdown the client
 hz.shutdown();
 }
}

C++

//Installation notes: Download the latest C++ library from
//https://hazelcast.org/imdg/clients-languages/cplusplus/
//and see https://github.com/hazelcast/hazelcast-cpp-client#13-downloading-and-
installing]
//for installation instructions.

#include

using namespace hazelcast::client;
int main() {
 // Start the client and connect to the cluster
 HazelcastClient hz;
 // Create a Distributed Map in the cluster
 IMap map = hz.getMap("my-distributed-map");
 //Standard Put and Get
 map.put("1", "John");
 map.put("2", "Mary");
 map.put("3", "Jane");
 // Shutdown the client
 hz.shutdown();

 return 0;
}

4

C#

//Installation notes: Run the following command at the NuGet package manager console
//Install-Package Hazelcast.Net -Pre

using Hazelcast.Client;

namespace Hazelcast.Examples.Org.Website.Samples
{
 public class MapSample
 {
 public static void Run(string[] args)
 {
 // Start the client and connect to the cluster
 var hz = HazelcastClient.NewHazelcastClient();
 // Create a Distributed Map in the cluster
 var map = hz.GetMap("my-distributed-map");
 //Standard Put and Get
 map.put("1", "John");
 map.put("2", "Mary");
 map.put("3", "Jane");
 // Shutdown the client
 hz.Shutdown();
 }
 }
}

Node.js

//Installation notes: Run the following command
//npm install hazelcast-client

var Client = require('hazelcast-client').Client;
// Start the client and connect to the cluster
Client.newHazelcastClient().then(function (hz) {
 var map;
 // Create a Distributed Map in the cluster
 hz.getMap('my-distributed-map').then(function (mp) {
 map = mp;
 // Standard Put and Get
 return map.put('1', 'John');
 });
 // Shutdown the client
 hz.shutdown();
 });
});

5

Python

Installation notes: Run the following command
pip install hazelcast-python-client

import hazelcast

if __name__ == "__main__":
 # Start the client and connect to the cluster
 hz = hazelcast.HazelcastClient()
 # Create a Distributed Map in the cluster
 map = hz.get_map("my-distributed-map").blocking()
 # Standard Put and Get
 map.put("1", "John")
 map.put("2", "Mary")
 map.put("3", "Jane")
 # Shutdown the client
 hz.shutdown()

Go

//Installation notes: Run the following command
//go get github.com/hazelcast/hazelcast-go-client

import "github.com/hazelcast/hazelcast-go-client"

func mapSampleRun() {
 // Start the client and connect to the cluster
 hz, _ := hazelcast.NewClient()
 // Create a Distributed Map in the cluster
 mp, _ := hz.GetMap("myDistributedMap")
 //Standard Put and Get
 mp.Put("1", "John")
 mp.Put("2", "Mary")
 mp.Put("3", "Jane")
 // Shutdown the client
 hz.Shutdown()
}

For comprehensive information on the clients, see the following sections:

• Java client

• C++ client

• C# client

• Node.js client

• Python client

• Go client

6

https://github.com/hazelcast/hazelcast-cpp-client
https://github.com/hazelcast/hazelcast-csharp-client
https://github.com/hazelcast/hazelcast-nodejs-client
https://github.com/hazelcast/hazelcast-python-client
https://github.com/hazelcast/hazelcast-go-client

1.4. Connecting Management Center to the Cluster
Hazelcast Management Center helps you to monitor and manage your IMDG cluster. After you
created your cluster and client application as depicted in the above sections, let’s connect
Management Center to the cluster. Note that having client applications is not a must to use the
Management Center; you can connect it to your cluster that does not have any clients.

Use the following command to start the Management Center:

hz mc start

Then, open your preferred web browser to http://localhost:8080 and select the default security
provider to provide a username and password. Log in to Management Center using those
credentials and create a cluster connection; the defaults should work fine. If using Docker for
members, find out the Docker IP address of cluster rather than the default of localhost.

For comprehensive information on Management Center, see its documentation.

1.5. What’s Next?
In this chapter, you have learnt starting a Hazelcast IMDG cluster, inserting data to it via clients and
monitoring it through Management Center. Now, you may want to perform the following:

• Form a cluster not just on your local machine: see Setting Up Clusters.

• Start using our distributed data structures: see Distributed Data Structures.

• Learn how to configure Hazelcast IMDG: see Understanding Configuration.

You can always reach out via Slack, Mail Group or StackOverflow.

2. Overview
This chapter introduces Hazelcast IMDG, describes Hazelcast’s architecture along with its
partitioning mechanism, use cases and topology.

2.1. What is Hazelcast IMDG?
Hazelcast IMDG is an open-source distributed in-memory object store supporting a wide variety of
data structures.

You can use Hazelcast IMDG to store your data in RAM, spread and replicate it across your cluster
of machines, and perform computations on it. Replication gives you the resilience to failures of
cluster members.

Hazelcast IMDG is highly scalable and available. Distributed applications can use it for distributed
caching, synchronization, clustering, processing, pub/sub messaging, etc.

7

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html
https://slack.hazelcast.com/
https://groups.google.com/forum/#!forum/hazelcast
http://www.stackoverflow.com

It is implemented in Java language and has clients for Java, C++, .NET, REST, Python, Go and Node.js.
Hazelcast IMDG also speaks Memcached and REST protocols. It plugs into Hibernate and can easily
be used with any existing database system.

Hazelcast IMDG makes distributed computing simple by offering distributed implementations of
many developer-friendly interfaces. For example, the Map interface provides an In-Memory Key
Value store which confers many of the advantages of NoSQL in terms of developer friendliness and
developer productivity.

Your cloud-native applications can easily use Hazelcast IMDG. It is flexible enough to use as a data
and computing platform out-of-the-box or as a framework for your own cloud-native applications
and microservices.

Hazelcast IMDG is designed to be lightweight and easy to use. Since it is delivered as a compact
library (JAR) and has no external dependencies other than Java, it easily plugs into your software
solution and provides distributed data structures and computing utilities.

It is designed to scale up to hundreds of members and thousands of clients. When you add new
members, they automatically discover the cluster and linearly increase both the memory and
processing capacity. The members maintain a TCP connection between each other and all
communication is performed through this layer. Each cluster member is configured to be the same
in terms of functionality. The oldest member (the first member created in the cluster) automatically
performs the data assignment to cluster members. If the oldest member dies, the second oldest
member takes over.

You can come across with the term "master" or "master member" in some sections
of this manual. They are used for contextual clarification purposes; please
remember that they refer to the "oldest member" which is explained in the above
paragraph.

Hazelcast IMDG offers simple scalability, partitioning (sharding), and re-balancing out-of-the-box. It
does not require any extra coordination processes. NoSQL and traditional databases are difficult to
scale out and manage. They require additional processes for coordination and high availability.
With Hazelcast IMDG, when you start another process to add more capacity, data and backups are
automatically and evenly balanced.

Hazelcast’s Distinctive Strengths

• It is open source.

• It is only a JAR file. You do not need to install software other than Java.

• Hazelcast IMDG stores everything in-memory (RAM). It is designed to perform fast reads and
updates.

• Hazelcast IMDG is peer-to-peer; there is no single point of failure in a Hazelcast IMDG cluster;
each member in the cluster is configured to be functionally the same. They all store equal
amounts of data and do equal amounts of processing. You can embed Hazelcast IMDG in your
existing application or use it in client and server mode where your application is a client to
Hazelcast members.

8

• When the size of your memory and compute requirements increase, new members can be
dynamically joined to the Hazelcast IMDG cluster to scale elastically.

• Data is resilient to member failure. Data backups are distributed across the cluster. This is a big
benefit when a member in the cluster crashes as data is not lost. Hazelcast keeps the backup of
each data entry on multiple members. On a member failure, the data is restored from the
backup and the cluster continues to operate without downtime.

• Members are always aware of each other unlike in traditional key-value caching solutions.

• Hazelcast provides out-of-the-box distributed data structures.

Finally, Hazelcast has a vibrant open source community enabling it to be continuously developed.

Hazelcast is a fit when you need:

• analytic applications requiring big data processing by partitioning the data

• to retain frequently accessed data in the grid

• a cache, particularly an open source JCache provider with elastic distributed scalability

• a primary data store for applications with utmost performance, scalability and low-latency
requirements

• an In-Memory NoSQL Key Value Store

• publish/subscribe communication at highest speed and scalability between applications

• applications that need to scale elastically in distributed and cloud environments

• a highly available distributed cache for applications

• an alternative to Coherence and Terracotta.

2.2. Architecture
You can see the features for all Hazelcast IMDG editions in the following architecture diagram.

9

You can see small "HD" boxes for some features in the above diagram. Those
features can use High-Density (HD) Memory Store when it is available. It means if
you have Hazelcast IMDG Enterprise HD, you can use those features with HD
Memory Store.

For more information on Hazelcast IMDG’s Architecture, see the white paper An Architect’s View of
Hazelcast.

2.3. Topology
You can deploy a Hazelcast cluster in two ways: Embedded or Client/Server.

If you have an application whose main focal point is asynchronous or high performance computing
and lots of task executions, then Embedded deployment is the preferred way. In Embedded
deployment, members include both the application and Hazelcast data and services. The advantage
of the Embedded deployment is having a low-latency data access.

See the below illustration.

10

https://hazelcast.com/resources/architects-view-hazelcast/
https://hazelcast.com/resources/architects-view-hazelcast/

In the Client/Server deployment, Hazelcast data and services are centralized in one or more server
members and they are accessed by the application through clients. You can have a cluster of server
members that can be independently created and scaled. Your clients communicate with these
members to reach to Hazelcast data and services on them.

See the below illustration.

Hazelcast provides native clients (Java, .NET and C++), Memcache and REST clients, Python and
Node.js client implementations.

Client/Server deployment has advantages including more predictable and reliable Hazelcast
performance, easier identification of problem causes and, most importantly, better scalability.
When you need to scale in this deployment type, just add more Hazelcast server members. You can
address client and server scalability concerns separately.

Note that Hazelcast member libraries are available only in Java. Therefore, embedding a member
to a business service, it is only possible with Java. Applications written in other languages (.NET,

11

C++, Node.js, etc.) can use Hazelcast client libraries to access the cluster. See the Hazelcast Clients
chapter for information on the clients and other language implementations.

If you want low-latency data access, as in the Embedded deployment, and you also want the
scalability advantages of the Client/Server deployment, you can consider defining Near Caches for
your clients. This enables the frequently used data to be kept in the client’s local memory. See the
Configuring Client Near Cache section.

2.4. Data Partitioning
The memory segments in Hazelcast IMDG are called partitions. They can contain hundreds or
thousands of data entries each, depending on the memory capacity of your system.

The partitions are distributed equally among the members of the cluster. Hazelcast also creates
backups of these partitions which are also distributed in the cluster.

By default, Hazelcast creates a single copy/replica of each partition. You can configure Hazelcast so
that each partition can have multiple replicas. One of these replicas is called "primary" and others
are called "backups". The cluster member which owns the "primary" replica of a partition is called
the "partition owner". When you read or write a particular data entry, you transparently talk to the
partition owner that contains the data entry.

By default, Hazelcast offers 271 partitions. When you start a cluster with a single member, it owns
all of 271 partitions (i.e., it keeps primary replicas for 271 partitions). The following illustration
shows the partitions in a Hazelcast cluster with single member.

When you start a second member on that cluster (creating a Hazelcast cluster with two members),
the partition replicas are distributed as shown in the illustration here.

Partition distributions in the below illustrations are shown for the sake of
simplicity and for descriptive purposes. Normally, the partitions are not
distributed in any order, as they are shown in these illustrations, but are
distributed randomly (they do not have to be sequentially distributed to each
member). The important point here is that Hazelcast equally distributes the
partition primaries and their backup replicas among the members.

12

In the illustration, the partition replicas with black text are primaries and the partition replicas
with blue text are backups. The first member has primary replicas of 135 partitions (black) and
each of these partitions are backed up in the second member (i.e., the second member owns the
backup replicas) (blue). At the same time, the first member also has the backup replicas of the
second member’s primary partition replicas.

As you add more members, Hazelcast moves some of the primary and backup partition replicas to
the new members one by one, making all members equal and redundant. Thanks to the consistent
hashing algorithm, only the minimum amount of partitions are moved to scale out Hazelcast. The
following is an illustration of the partition replica distributions in a Hazelcast cluster with four
members.

Hazelcast distributes partitions' primary and backup replicas equally among the members of the
cluster. Backup replicas of the partitions are maintained for redundancy.

Your data can have multiple copies on partition primaries and backups, depending
on your backup count. See the Backing Up Maps section.

Hazelcast also offers lite members. These members do not own any partition. Lite members are
intended for use in computationally-heavy task executions and listener registrations. Although they
do not own any partitions, they can access partitions that are owned by other members in the
cluster.

13

 See the Enabling Lite Members section.

2.4.1. How the Data is Partitioned

Hazelcast distributes data entries into the partitions using a hashing algorithm. Given an object key
(for example, for a map) or an object name (for example, for a topic or list):

• the key or name is serialized (converted into a byte array)

• this byte array is hashed

• the result of the hash is mod by the number of partitions.

The result of this modulo - MOD(hash result, partition count) - is the partition in which the data
will be stored, that is the partition ID. For ALL members you have in your cluster, the partition ID
for a given key is always the same.

2.4.2. Partition Table

When you start a member, a partition table is created within it. This table stores the partition IDs
and the cluster members to which they belong. The purpose of this table is to make all members
(including lite members) in the cluster aware of this information, making sure that each member
knows where the data is.

The oldest member in the cluster (the one that started first) periodically sends the partition table to
all members. In this way each member in the cluster is informed about any changes to partition
ownership. The ownerships may be changed when, for example, a new member joins the cluster, or
when a member leaves the cluster.

If the oldest member of the cluster goes down, the next oldest member sends the
partition table information to the other ones.

You can configure the frequency (how often) that the member sends the partition table the
information by using the hazelcast.partition.table.send.interval system property. The property is
set to every 15 seconds by default.

2.4.3. Repartitioning

Repartitioning is the process of redistribution of partition ownerships. Hazelcast performs the
repartitioning when a member joins or leaves the cluster.

In these cases, the partition table in the oldest member is updated with the new partition
ownerships. Note that if a lite member joins or leaves a cluster, repartitioning is not triggered since
lite members do not own any partitions.

2.5. Use Cases
Hazelcast can be used:

• to cluster highly changing data with event notifications, e.g., user based events, and to queue

14

and distribute background tasks

• as a simple Memcache with Near Cache

• as a cloud-wide scheduler of certain processes that need to be performed on some members

• to share information (user information, queues, maps, etc.) on the fly with multiple members in
different installations under OSGI environments

• to share keys in a cluster where there is a web service interface on an application server and
some validation

• as a distributed topic (publish/subscribe server) to build scalable chat servers for smartphones

• as a strongly consistent layer for its concurrency API which is Hazelcast’s CP (CP with respect
the CAP principle) subsystem built on top of the Raft consensus algorithm

• as a front layer for a Cassandra back-end

• to distribute user object states across the cluster, to pass messages between objects and to share
system data structures (static initialization state, mirrored objects, object identity generators)

• as a multi-tenancy cache where each tenant has its own map

• to share datasets, e.g., table-like data structure, to be used by applications

• to distribute the load and collect status from Amazon EC2 servers where the front-end is
developed using, for example, Spring framework

• as a real-time streamer for performance detection

• as storage for session data in web applications (enables horizontal scalability of the web
application).

2.6. Resources
• Hazelcast source code can be found at GitHub/Hazelcast. This is also where you can contribute

and report issues.

• Hazelcast API can be found at Hazelcast.org/docs/Javadoc.

• Code samples can be downloaded from Hazelcast.org/download.

• More use cases and resources can be found at Hazelcast.com.

• Questions and discussions can be posted at the Hazelcast mail group.

3. Installing and Upgrading
This chapter provides pre- and post-installation details, and deployment options of Hazelcast IMDG.

Hazelcast IMDG provides a number of options on how to install it. Here’s a brief overview of them:

• CLI: Fastest way of getting Hazelcast IMDG running (in the client/server mode). Currently not
suitable for production usage, but rather for development purposes.

• Maven: Easiest way for Maven users (typically Java developers), especially appropriate for the
embedded mode when Hazelcast IMDG is tightly coupled with the application.

15

https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/latest-dev/javadoc/
https://hazelcast.org/imdg/download/
http://www.hazelcast.com
https://groups.google.com/forum/#!forum/hazelcast

• Docker: One line Docker based setup.

• Download Archives: Provides the most flexibility and all the tooling, but takes a little longer
time.

A separate section is dedicated for deployments into cloud, which includes the following:

• Hazelcast Cloud

• Amazon Web Services

• Microsoft Azure

• Google Cloud Platform

• Deploying in VMware Tanzu

3.1. CLI

Currently, installation using CLI is intended for development purposes. For
production setups please use the other installation options explained later in this
chapter.

To install Hazelcast via command line interface, run the following commands:

$ brew tap hazelcast/hz
$ brew install hazelcast

For more information visit the GitHub repository of the Command Line Interface (CLI).

3.2. Maven

As a prerequisite, make sure you have Java installed on your system. If you’re
using JDK 9 and newer, see Running in Modular Java. For the list of supported Java
versions, see Supported Java Virtual Machines.

You can find Hazelcast in standard Maven repositories. If your project uses Maven, you do not need
to add additional repositories to your pom.xml or add hazelcast-4.1.1.jar file into your classpath
(Maven does that for you). Just add the following lines to your pom.xml:

Hazelcast Open Source Edition

<dependencies>
 <dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-all</artifactId>
 <version>4.1.1</version>
 </dependency>
</dependencies>

16

https://github.com/hazelcast/hazelcast-command-line

Hazelcast Enterprise Edition

<!-- You need to define following repository: -->
<repository>
 <id>Hazelcast Private Release Repository</id>
 <url>https://repository.hazelcast.com/release/</url>
</repository>
<!-- Optional repository if you want to use latest snapshots -->
<repository>
 <id>Hazelcast Private Snapshot Repository</id>
 <url>https://repository.hazelcast.com/snapshot/</url>
</repository>

<!-- You also need to define following dependencies: -->
<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-enterprise-all</artifactId>
 <version>4.1.1</version>
</dependency>
<!-- Optional dependency for including JavaDoc -->
<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-enterprise-all</artifactId>
 <version>4.1.1</version>
 <classifier>javadoc</classifier>
</dependency>

Above dependency (hazelcast-all) includes both member and Java client libraries of Hazelcast
IMDG. A separate Java client module and dependency do not exist. See here for the details.

3.3. Docker
Hazelcast is distributed in a form of Docker images.

• hazelcast/hazelcast: Hazelcast Docker image hosted on Docker Hub

• hazelcast/hazelcast-enterprise: Hazelcast Enterprise Docker image hosted on Docker Hub

• registry.connect.redhat.com/hazelcast/hazelcast-enterprise-4-rhel8: Red Hat certified Docker
image hosted on Red Hat Container Catalog

You can run the following command to launch the Hazelcast Docker container:

hazelcast

$ docker run hazelcast/hazelcast:$HAZELCAST_VERSION

17

https://hub.docker.com/r/hazelcast/hazelcast
https://hub.docker.com/r/hazelcast/hazelcast-enterprise
https://catalog.redhat.com/software/containers/hazelcast/hazelcast-enterprise-4-rhel8/5ee38856ecb5246c090412bd

hazelcast-enterprise

$ docker run -e HZ_LICENSE_KEY=<Your Enterprise License Key> hazelcast/hazelcast-
enterprise:$HAZELCAST_VERSION

hazelcast-enterprise-4-rhel8

You must be logged into Red Hat Container Registry

$ docker run -e HZ_LICENSE_KEY=<Your Enterprise License Key>
registry.connect.redhat.com/hazelcast/hazelcast-enterprise-4-rhel8:$HAZELCAST_VERSION

This command will pull Hazelcast Docker image and run a new Hazelcast instance.

See the following for more details:

• Hazelcast and Hazelcast Enterprise Docker image documentation

• Red Hat Hazelcast Enterprise Docker image documentation

3.4. Download Archives

As a prerequisite, make sure you have Java installed on your system. If you’re
using JDK 9 and newer, see Running in Modular Java. For the list of supported Java
versions, see Supported Java Virtual Machines.

You can download and install Hazelcast IMDG yourself. You only need to:

• download the package hazelcast-4.1.1.zip or hazelcast-4.1.1.tar.gz from hazelcast.org

• extract the downloaded hazelcast-4.1.1.zip or hazelcast-4.1.1.tar.gz

• and add the file hazelcast-4.1.1.jar to your classpath.

When you download and extract the Hazelcast ZIP or TAR.GZ package, you will see the
start/stop.sh (for Linux) and start/stop.bat (for Windows) scripts under the /bin folder. These
scripts start/stop a Hazelcast member. See the Quick Start chapter to see the start scripts in action.

There are also some other scripts in the download archive whose usage descriptions are given in
their related sections including the Using the Script cluster.sh, CP Subsystem Management APIs
section and Using the healthcheck.sh Script sections. You can also check the full list of scripts in the
readme.html of your download archive.

3.5. Hazelcast Cloud
A simple option for deploying Hazelcast is Hazelcast Cloud. It delivers enterprise-grade Hazelcast
software in the cloud. You can deploy, scale and update your Hazelcast easily using Hazelcast Cloud;
it maintains the clusters for you. You can use Hazelcast Cloud as a low-latency high-performance
caching or data layer for your microservices, and it is also a nice solution for state management of

18

https://github.com/hazelcast/hazelcast-docker
https://github.com/hazelcast/hazelcast-openshift
https://hazelcast.org/download
https://cloud.hazelcast.com/sign-up

serverless functions (AWS Lambda).

Hazelcast Cloud uses Docker and Kubernetes, and is powered by Hazelcast IMDG Enterprise HD. It
is initially available on Amazon Web Services (AWS), to be followed by Microsoft Azure and Google
Cloud Platform (GCP). Since it is based on Hazelcast IMDG Enterprise HD, it features advanced
functionality such as TLS, multi-region, persistence, and high availability.

3.6. Kubernetes/OpenShift Deployment
Hazelcast provides a few methods to simplify deploying Hazelcast cluster into Kubernetes-based
environments.

3.6.1. Quick Start

If you just want to play with Hazelcast on Kubernetes, execute the following commands to create
Hazelcast cluster with 3 members into default namespace using the default Service Account.

kubectl apply -f https://raw.githubusercontent.com/hazelcast/hazelcast-
kubernetes/master/rbac.yaml
kubectl run hazelcast-1 --image=hazelcast/hazelcast:$HAZELCAST_VERSION
kubectl run hazelcast-2 --image=hazelcast/hazelcast:$HAZELCAST_VERSION
kubectl run hazelcast-3 --image=hazelcast/hazelcast:$HAZELCAST_VERSION

Hazelcast members automatically discovers themselves using the Hazelcast Kubernetes Discovery
plugin and therefore form one Hazelcast cluster.

3.6.2. Helm Chart

Helm is a package manager for Kubernetes. Hazelcast is distributed in a form of Helm Charts:

• hazelcast/hazelcast

• hazelcast/hazelcast-enterprise

See the Hazelcast Helm Charts documentation for more details.

3.6.3. Kubernetes/OpenShift Operator

Kubernetes Operators are software extensions to Kubernetes which help you create and manage
your applications. You can deploy and manage Hazelcast using the following Operators:

• hazelcast/hazelcast-operator: Hazelcast Operator hosted on Docker Hub

• hazelcast/hazelcast-enterprise-operator: Red Hat certified Hazelcast Enterprise Operator hosted
on Docker Hub

• registry.connect.redhat.com/hazelcast/hazelcast-enterprise-operator: Hazelcast Enterprise
Operator hosted on Red Hat Container Catalog

There are a few different ways in using Hazelcast Operators:

19

https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://helm.sh/
https://github.com/hazelcast/charts/tree/master/stable/hazelcast
https://github.com/hazelcast/charts/tree/master/stable/hazelcast-enterprise
https://github.com/hazelcast/charts
https://hub.docker.com/r/hazelcast/hazelcast-operator
https://hub.docker.com/r/hazelcast/hazelcast-enterprise-operator
https://catalog.redhat.com/software/containers/hazelcast/hazelcast-enterprise-operator/5eb3bf9bac3db90370945f59

• kubectl/oc instructions: See the Hazelcast Operator documentation.

• OpenShift Web Console: OpenShift provides a way to deploy operators from its UI.

• OperatorHub instructions: Check Operator Hub for Hazelcast and Hazelcast Enterprise.

3.7. Deploying in VMware Tanzu
You can deploy your Hazelcast Enterprise cluster in VMware Tanzu (former Pivotal Cloud Foundry).
See the following for details:

• Hazelcast Enterprise Product Page

• Hazelcast Enterprise Usage Instructions and Release Notes

• Hazelcast Guides: Hazelcast Enterprise IMDG for VMware Tanzu

3.8. Deploying in Cloud Providers
Hazelcast can be deployed into different cloud providers. Thanks to dedicated Hazelcast Cloud
Discovery plugins there is no static IP configuration needed and Hazelcast cluster is resilient to
availability zone failures.

3.8.1. Amazon Web Services

You can easily deploy your Hazelcast projects on AWS EC2 instances and ECS clusters. See the
information about Hazelcast AWS Discovery plugin for details.

3.8.2. Microsoft Azure

You can easily deploy your Hazelcast projects on the Azure VM Instances and AKS clusters. See the
information about Hazelcast Azure Discovery plugin for details.

3.8.3. Google Cloud Platform

You can easily deploy your Hazelcast projects on the Google Compute VM Instances and GKE
clusters. See the information about Hazelcast GCP Discovery plugin for details.

3.9. Using Pro and Enterprise editions
Hazelcast IMDG offers two commercially licensed editions: Pro and Enterprise. The supported
features differ in your Hazelcast setup according to the license type you own.

• Pro license: In addition to the open source edition of Hazelcast, Pro features are the following:

◦ CP Subsystem Persistence

◦ Deploying in VMware Tanzu

◦ Deploying in Openshift container platform

• Enterprise license: In addition to the open source and Pro editions of Hazelcast, Enterprise

20

https://github.com/hazelcast/hazelcast-operator
https://operatorhub.io/operator/hazelcast-operator
https://operatorhub.io/operator/hazelcast-enterprise-operator
https://network.pivotal.io/products/hazelcast-pcf/
https://docs.pivotal.io/partners/hazelcast/index.html
https://guides.hazelcast.org/vmware-tanzu/

features are the following:

◦ Security suite

◦ WAN Replication

◦ Clustered REST

◦ Clustered JMX

◦ Striim Hot Cache

◦ Rolling Upgrades

◦ High-Density Memory Store

◦ Hot Restart Persistence

See also here for a more detailed feature comparison between the editions.

3.9.1. Setting Up License Key

Hazelcast IMDG Pro and Enterprise license keys are required only for members.
You do not need to set a license key for your Java clients for which you want to use
the Pro and Enterprise features.

To use Hazelcast IMDG Pro or Enterprise, you need to set the provided license key using one of the
configuration methods shown below.

XML

<!-- Add the below line to any place you like in the file `hazelcast-default.xml`. -->

<hazelcast>
 ...
 <license-key>Your Enterprise License Key</license-key>
 ...
</hazelcast>

YAML

Add the below line to any place you like in the file `hazelcast-default.yaml`.

hazelcast:
 ...
 license-key: Your Hazelcast Enterprise or Enterprise HD License Key
 ...

21

https://hazelcast.com/product-features/imdg-comparison/

Java

// Programmatic configuration.

Config config = new Config();
config.setLicenseKey("Your Enterprise License Key");

Spring XML

<hz:config>
 ...
 <hz:license-key>Your Enterprise License Key</hz:license-key>
 ...
</hz:config>

JVM System Property

-Dhazelcast.enterprise.license.key=Your Enterprise License Key

For monitoring information such as expiration date of your license key see License Information.

3.9.2. License Key Format

License keys have the following format:

<Name of the Hazelcast edition>#<Count of the Members>#<License key>

The strings before the <License key> is the human readable part. You can use your license key with
or without this human readable part. So, both the following example license keys are valid:

HazelcastEnterpriseHD#2Nodes#1q2w3e4r5t

1q2w3e4r5t

3.10. Rolling Member Upgrades
Hazelcast IMDG Enterprise

This chapter explains the procedure of upgrading the version of Hazelcast members in a running
cluster without interrupting the operation of the cluster.

3.10.1. Terminology

• Minor version: A version change after the decimal point, e.g., 3.12 and 3.13.

22

• Patch version: A version change after the second decimal point, e.g., 3.12.1 and 3.12.2.

• Member codebase version: The major.minor.patch version of the Hazelcast binary on which
the member executes. For example, when running on hazelcast-3.12.jar, your member’s
codebase version is 3.12.0.

• Cluster version: The major.minor version at which the cluster operates. This ensures that
cluster members are able to communicate using the same cluster protocol and determines the
feature set exposed by the cluster.

3.10.2. Hazelcast Members Compatibility Guarantees

Hazelcast members operating on binaries of the same major and minor version numbers are
compatible regardless of patch version. For example, in a cluster with members running on version
3.11.1, it is possible to perform a rolling upgrade to 3.11.2 by shutting down, upgrading to
hazelcast-3.11.2.jar binary and starting each member one by one. Patch level compatibility applies
to both Hazelcast IMDG and Hazelcast IMDG Enterprise.

Also, each minor version is compatible with the previous one (back until Hazelcast IMDG 3.8). For
example, it is possible to perform a rolling upgrade on a cluster running Hazelcast IMDG Enterprise
3.11 to Hazelcast IMDG Enterprise 3.12. Rolling upgrades across minor versions is a Hazelcast IMDG
Enterprise feature.

The compatibility guarantees described above are given in the context of rolling member upgrades
and only apply to GA (general availability) releases. It is never advisable to run a cluster with
members running on different patch or minor versions for prolonged periods of time.

3.10.3. Rolling Upgrade Procedure

 The version numbers used in this chapter are examples.

Let’s assume a cluster with four members running on codebase version 3.12.0 with cluster version
3.12, that should be upgraded to codebase version 3.13.0 and cluster version 3.13. The rolling
upgrade process for this cluster, i.e., replacing existing 3.12.0 members one by one with an
upgraded one at version 3.13.0, includes the following steps which should be repeated for each
member:

• Gracefully shut down an existing 3.12.0 member.

• Wait until all partition migrations are completed; during migrations, membership changes
(member joins or removals) are not allowed.

• Update the member with the new 3.13.0 Hazelcast binaries.

• Start the member and wait until it joins the cluster. You should see something like the following
in your logs:

23

...
INFO: [192.168.2.2]:5701 [cluster] [3.13] Hazelcast 3.9 (20170630 - a67dc3a)
starting at [192.168.2.2]:5701
...
INFO: [192.168.2.2]:5701 [cluster] [3.13] Cluster version set to 3.12

The version in brackets ([3.13]) still denotes the member’s codebase version (running on the
hypothetical hazelcast-3.13.jar binary). Once the member locates the existing cluster members, it
sends its join request to the master. The master validates that the new member is allowed to join
the cluster and lets the new member know that the cluster is currently operating at 3.12 cluster
version. The new member sets 3.12 as its cluster version and starts operating normally.

At this point all members of the cluster have been upgraded to codebase version 3.13.0 but the
cluster still operates at cluster version 3.12. In order to use 3.13 features the cluster version must be
changed to 3.13.

Rolling upgrade can be used for one version at a time, e.g., 3.n to 3.n+1. You cannot
upgrade your members, for example, from 3.13 to 3.15 in a single rolling upgrade
session.

3.10.4. Upgrading Cluster Version

You have the following options to upgrade the cluster version:

• Using Management Center.

• Using the cluster.sh script.

• Allow the cluster to auto-upgrade.

Note that you need to enable the REST API to use either of the above methods to upgrade your
cluster version. For this, enable the CLUSTER_WRITE REST endpoint group (its default is disabled). See
the Using the REST Endpoint Groups section on how to enable them.

Also note that you need to upgrade your Management Center version before upgrading the
member version if you want to change the cluster version using Management Center. Management
Center is compatible with the previous minor version of Hazelcast. For example, Management
Center 3.12 works with both Hazelcast IMDG 3.11 and 3.12. To change your cluster version to 3.12,
you need Management Center 3.12.

3.10.5. Enabling Auto-Upgrading

The cluster can automatically upgrade its version. As soon as it detects that all its members have a
version higher than the current cluster version, it upgrades the cluster version to match it. This
feature is disabled by default. To enable it, set the system property
hazelcast.cluster.version.auto.upgrade.enabled to true.

There is one tricky detail here: as you are shutting down and upgrading the members one by one,
when you shut down the last one, all the members in the remaining cluster have the newer version,

24

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#rolling-upgrade

but you don’t want the auto-upgrade to kick in before you have successfully upgraded the last
member as well. To avoid this, you can use the
hazelcast.cluster.version.auto.upgrade.min.cluster.size system property. You should set it to the
size of your cluster, and then Hazelcast will wait for the last member to join before it can proceed
with the auto-upgrade.

3.10.6. Network Partitions and Rolling Upgrades

In the event of network partitions which split your cluster into two subclusters, split-brain handling
works as explained in the Network Partitioning chapter, with the additional constraint that two
subclusters only merge as long as they operate on the same cluster version. This is a requirement to
ensure that all members participating in each one of the subclusters are able to operate as
members of the merged cluster at the same cluster version.

With regards to rolling upgrades, the above constraint implies that if a network partition occurs
while a change of cluster version is in progress, then with some unlucky timing, one subcluster may
be upgraded to the new cluster version and another subcluster may have upgraded members but
still operate at the old cluster version.

In order for the two subclusters to merge, it is necessary to change the cluster version of the
subcluster that still operates on the old cluster version, so that both subclusters will be operating at
the same, upgraded cluster version and able to merge as soon as the network partition is fixed.

3.10.7. Rolling Upgrade FAQ

The following provide answers to the frequently asked questions related to rolling member
upgrades.

How is the cluster version set?

When a new member starts, it is not yet joined to a cluster; therefore its cluster version is still
undetermined. In order for the cluster version to be set, one of the following must happen:

• the member cannot locate any members of the cluster to join or is configured without a joiner:
in this case, the member appoints itself as the master of a new single-member cluster and its
cluster version is set to the major.minor version of its own codebase version. So a standalone
member running on codebase version 3.12.0 sets its own cluster version to 3.12.

• the member that is starting locates members of the cluster and identifies which is the master: in
this case, the master validates that the joining member’s codebase version is compatible with
the current cluster version. If it is found to be compatible, then the member joins and the
master sends the cluster version, which is set on the joining member. Otherwise, the starting
member fails to join and shuts down.

What if a new Hazelcast minor version changes fundamental cluster protocol
communication, like join messages?

 The version numbers used in the paragraph below are only used as an example.

On startup, as answered in the above question (How is the cluster version set?), the cluster version

25

is not yet known to a member that has not joined any cluster. By default the newly started member
uses the cluster protocol that corresponds to its codebase version until this member joins a cluster
(so for codebase 3.12.0 this means implicitly assuming cluster version 3.12). If, hypothetically,
major changes in discovery & join operations have been introduced which do not allow the
member to join a 3.11 cluster, then the member should be explicitly configured to start assuming a
3.11 cluster version.

Do I have to upgrade clients to work with rolling upgrades?

Clients which implement the Open Binary Client Protocol are compatible with Hazelcast version 3.6
and newer minor versions. Thus older client versions are compatible with next minor versions.
Newer clients connected to a cluster operate at the lower version of capabilities until all members
are upgraded and the cluster version upgrade occurs.

Can I stop and start multiple members at once during a rolling member upgrade?

It is not recommended due to potential network partitions. It is advised to always stop and start one
member in each upgrade step.

Can I upgrade my business app together with Hazelcast while doing a rolling member
upgrade?

Yes, but make sure to make the new version of your app compatible with the old one since there
will be a timespan when both versions interoperate. Checking if two versions of your app are
compatible includes verifying binary and algorithmic compatibility and some other steps.

It is worth mentioning that a business app upgrade is orthogonal to a rolling member upgrade. A
rolling business app upgrade may be done without upgrading the members.

3.11. Running in Modular Java
Java project Jigsaw brought a new Module System into Java 9 and newer. Hazelcast supports
running in the modular environment. If you want to run your application with Hazelcast libraries
on the modulepath, use the following module name:

• com.hazelcast.core for hazelcast-4.1.1.jar and hazelcast-enterprise-4.1.1.jar

Don’t use hazelcast-all-4.1.1.jar or hazelcast-enterprise-all-4.1.1.jar on the modulepath as it
could lead to problems in module dependencies for your application. You can still use them on the
classpath.

The Java Module System comes with stricter visibility rules. It affects Hazelcast which uses internal
Java API to reach the best performance results.

Hazelcast needs the java.se module and access to the following Java packages for a proper work:

• java.base/jdk.internal.ref

• java.base/java.nio (reflective access)

• java.base/sun.nio.ch (reflective access)

26

http://openjdk.java.net/projects/jigsaw/

• java.base/java.lang (reflective access)

• jdk.management/com.ibm.lang.management.internal (reflective access)

• jdk.management/com.sun.management.internal (reflective access)

• java.management/sun.management (reflective access)

You can provide the access to the above mentioned packages by using --add-exports and --add
-opens (for the reflective access) Java arguments.

Example: Running a member on the classpath

java --add-modules java.se \
 --add-exports java.base/jdk.internal.ref=ALL-UNNAMED \
 --add-opens java.base/java.lang=ALL-UNNAMED \
 --add-opens java.base/java.nio=ALL-UNNAMED \
 --add-opens java.base/sun.nio.ch=ALL-UNNAMED \
 --add-opens java.management/sun.management=ALL-UNNAMED \
 --add-opens jdk.management/com.ibm.lang.management.internal=ALL-UNNAMED \
 --add-opens jdk.management/com.sun.management.internal=ALL-UNNAMED \
 -jar hazelcast-4.1.1.jar

Example: Running a member on the modulepath

java --add-modules java.se \
 --add-exports java.base/jdk.internal.ref=com.hazelcast.core \
 --add-opens java.base/java.lang=com.hazelcast.core \
 --add-opens java.base/java.nio=com.hazelcast.core \
 --add-opens java.base/sun.nio.ch=com.hazelcast.core \
 --add-opens java.management/sun.management=com.hazelcast.core \
 --add-opens jdk.management/com.ibm.lang.management.internal=com.hazelcast.core \
 --add-opens jdk.management/com.sun.management.internal=com.hazelcast.core \
 --module-path lib \
 --module com.hazelcast.core/com.hazelcast.core.server.HazelcastMemberStarter

This example expects hazelcast-4.1.1.jar placed in the lib directory.

3.12. Supported Java Virtual Machines
Following table summarizes the version compatibility between Hazelcast IMDG and various
vendors' Java Virtual Machines (JVMs).

Table 1. Supported JVMs

27

Hazelcast IMDG Version JDK
Version

Oracle JDK IBM SDK,
Java
Technology
Edition

Azul Zing
JDK

OpenJD
K

Up to 3.11

(JDK 6 support is dropped with the
release of Hazelcast IMDG 3.12)

6

Up to 3.11

(JDK 7 support is dropped with the
release of Hazelcast IMDG 3.12)

7

Up to current 8

• 3.11 and newer: Fully
supported.

• 3.10 and older: Partially
supported.

11

(JDK not
available yet)

Hazelcast IMDG 3.10 and older releases are not fully tested on JDK 9 and newer, so
there may be some features that are not working properly.

See the following sections for the details of Hazelcast IMDG supporting JDK 9 and
newer:

• Running in Modular Java: Talks about the new module system present in Java 9
and newer and how you can run a Hazelcast application on it.

• TLS/SSL for Hazelcast Members: Lists TLSv1.3, which comes with Java 11, as a
supported TLS version.

4. Starting the Members and Clients
Having installed Hazelcast and assuming you have the required libraries of your preferred client
language, let’s see how we can start the members and clients.

Members:

Shell

// Starts a standalone member:

sh bin/start.sh

28

Docker

docker run hazelcast/hazelcast:$HAZELCAST_VERSION

Java

Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);

start.sh / start.bat scripts lets you start one Hazelcast instance per directory. To
start a new instance, please unzip Hazelcast ZIP or TAR.GZ package in a new
directory.

You can also use the start scripts to deploy your own library to a Hazelcast
member. See the Adding User Library to CLASSPATH section.

Clients:

Java

ClientConfig clientConfig = new ClientConfig();
HazelcastInstance hzclient = HazelcastClient.newHazelcastClient();

C++

hazelcast::client::ClientConfig config;
hazelcast::client::HazelcastClient hzclient(config);

C#

var cfg = new ClientConfig();
var hzclient = HazelcastClient.NewHazelcastClient(cfg);

Node.js

const { Client } = require('hazelcast-client');
const hzclient = await Client.newHazelcastClient();

Python

config = hazelcast.ClientConfig()
hzclient = hazelcast.HazelcastClient(config)

29

Go

config := hazelcast.NewConfig()
hzclient , _ := hazelcast.NewClientWithConfig(config)

Hazelcast also offers a tool, Management Center, that enables you to monitor your cluster. It is
included in your Hazelcast IMDG download package and can also be downloaded from the
Hazelcast website’s download page. You can use this tool to monitor your cluster, cluster members,
clients, data structures and WAN replications. See the documentation for details on Hazelcast
Management Center.

By default, Hazelcast uses multicast to discover other members that can form a cluster. If you are
working with other Hazelcast developers on the same network, you may find yourself joining their
clusters under the default settings. Hazelcast provides a way to segregate clusters within the same
network when using multicast. See the Creating Clusters section for more information.
Alternatively, if you do not wish to use the default multicast mechanism, you can provide a fixed
list of IP addresses that are allowed to join. See the Join configuration section for more information.

If you prefer to use this mechanism, make sure that your network is enclosed and
secure. See the Multicast section.

 You can also check the video tutorials here.

4.1. Example Application
In this short tutorial, you perform the following activities:

1. Create a simple Java application using the Hazelcast distributed map and queue.

2. Run our application twice to have a cluster with two members (JVMs).

3. Connect to our cluster from another Java application by using the Hazelcast Native Java Client
API.

Let’s begin.

• The following code starts the first Hazelcast member and creates and uses the customers map
and queue.

30

https://hazelcast.org/download/#management-center
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html
https://hazelcast.org/imdg/get-started/

Config cfg = new Config();
HazelcastInstance instance = Hazelcast.newHazelcastInstance(cfg);
Map<Integer, String> mapCustomers = instance.getMap("customers");
mapCustomers.put(1, "Joe");
mapCustomers.put(2, "Ali");
mapCustomers.put(3, "Avi");

System.out.println("Customer with key 1: "+ mapCustomers.get(1));
System.out.println("Map Size:" + mapCustomers.size());

Queue<String> queueCustomers = instance.getQueue("customers");
queueCustomers.offer("Tom");
queueCustomers.offer("Mary");
queueCustomers.offer("Jane");
System.out.println("First customer: " + queueCustomers.poll());
System.out.println("Second customer: "+ queueCustomers.peek());
System.out.println("Queue size: " + queueCustomers.size());

• Run this GettingStarted class a second time to get the second member started. The members
form a cluster and the output is similar to the following.

Members {size:2, ver:2} [
 Member [127.0.0.1]:5701 - e40081de-056a-4ae5-8ffe-632caf8a6cf1 this
 Member [127.0.0.1]:5702 - 93e82109-16bf-4b16-9c87-f4a6d0873080
]

Here, you can see the size of your cluster (size) and member list version (ver). The member list
version is incremented when changes happen to the cluster, e.g., a member leaving from or
joining to the cluster.

• Now, add the hazelcast-client-4.1.1.jar library to your classpath. This is required to use a
Hazelcast client.

• The following code starts a Hazelcast Client, connects to our cluster, and prints the size of the
customers map.

public class GettingStartedClient {
 public static void main(String[] args) {
 ClientConfig clientConfig = new ClientConfig();
 HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig
);
 IMap map = client.getMap("customers");
 System.out.println("Map Size:" + map.size());
 }
}

• When you run it, you see the client properly connecting to the cluster and printing the map size

31

as 3.

5. Understanding Configuration
This chapter describes the options to configure your Hazelcast applications and explains the
utilities which you can make use of while configuring. You can configure Hazelcast using one or
mix of the following options:

• Declarative way

• Programmatic way

• Using Hazelcast system properties

• Within the Spring context

• Overriding configuration with environment variables or system properties

• Dynamically adding configuration on a running cluster

5.1. Configuring Declaratively
This is the configuration option where you use an XML or a YAML configuration file. When you
download and unzip hazelcast-4.1.1 .zip, you see the following files present in the /bin folder,
which are standard configuration files:

• hazelcast-default.xml: Default declarative XML configuration file for Hazelcast. The
configuration for the distributed data structures in this XML file should be fine for most of the
Hazelcast users. If not, you can tailor this XML file according to your needs by
adding/removing/modifying properties. Also see the Setting Up Clusters chapter for the network
related configurations.

• hazelcast-default.yaml: Default YAML configuration file identical to hazelcast.xml in content.

• hazelcast-full-example.xml: Configuration file which includes all Hazelcast configuration
elements and attributes with their descriptions. It is the "superset" of hazelcast.xml. You can use
hazelcast-full-example.xml as a reference document to learn about any element or attribute, or
you can change its name to hazelcast.xml and start to use it as your Hazelcast configuration file.

• hazelcast-full-example.yaml: YAML configuration file identical to hazelcast-full-example.xml in
content.

• hazelcast-client-full-example.xml: Complete Hazelcast Java client example configuration file
which includes all configuration elements and attributes with their descriptions. Read more
about Java client configuration here.

• hazelcast-client-full-example.yaml: YAML configuration file identical to hazelcast-client-full-
example.xml in content.

• hazelcast-client-failover-full-example.xml: Complete Hazelcast client failover example
configuration file which includes all Hazelcast client failover configuration elements and
attributes with their descriptions. Read about Blue-Green Deployment and Disaster Recovery
here.

• hazelcast-client-failover-full-example.yaml: YAML configuration file identical to hazelcast-

32

client-failover-full-example.xml in content.

A part of the default XML/YAML configurations is shown as an example below.

XML

<hazelcast>
 ...
 <cluster-name>dev</cluster-name>
 <management-center scripting-enabled="false" />
 <network>
 <port auto-increment="true" port-count="100">5701</port>
 <outbound-ports>
 <!--
 Allowed port range when connecting to other members.
 0 or * means the port provided by the system.
 -->
 <ports>0</ports>
 </outbound-ports>
 <join>
 <multicast enabled="true">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="false">
 <interface>127.0.0.1</interface>
 <member-list>
 <member>127.0.0.1</member>
 </member-list>
 </tcp-ip>
 </join>
 </network>
 <map name="default">
 <time-to-live-seconds>0</time-to-live-seconds>
 </map>
 ...
</hazelcast>

33

YAML

hazelcast:
 ...
 cluster-name: dev
 management-center:
 scripting-enabled: false
 network:
 port:
 auto-increment: true
 port-count: 100
 port: 5701
 outbound-ports:
 # Allowed port range when connecting to other nodes.
 # 0 or * means use system provided port.
 - 0
 join:
 multicast:
 enabled: true
 multicast-group: 224.2.2.3
 multicast-port: 54327
 tcp-ip:
 enabled: false
 interface: 127.0.0.1
 member-list:
 - 127.0.0.1
 map:
 default:
 time-to-live-seconds: 0
 ...

5.1.1. Composing Declarative Configuration

You can compose the declarative configuration of your Hazelcast member or Hazelcast client from
multiple declarative configuration snippets. In order to compose a declarative configuration, you
can import different declarative configuration files. Composing configuration files is supported both
in XML and YAML configurations with the limitation that only configuration files written in the
same language can be composed.

Let’s say you want to compose the declarative configuration for Hazelcast out of two XML
configurations: development-cluster-config.xml and development-network-config.xml. These two
configurations are shown below.

development-cluster-config.xml:

<hazelcast>
 <cluster-name>dev</cluster-name>
</hazelcast>

34

development-network-config.xml:

<hazelcast>
 <network>
 <port auto-increment="true" port-count="100">5701</port>
 <join>
 <multicast enabled="true">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 </join>
 </network>
</hazelcast>

To get your example Hazelcast declarative configuration out of the above two, use the <import/>
element as shown below.

<hazelcast>
 <import resource="development-group-config.xml"/>
 <import resource="development-network-config.xml"/>
</hazelcast>

The above example using the YAML configuration files looks like the following:

development-cluster-config.yaml:

hazelcast:
 cluster-name: dev

development-network-config.yaml:

hazelcast:
 network:
 port:
 auto-increment: true
 port-count: 100
 port: 5701
 join:
 multicast:
 enabled: true
 multicast-group: 224.2.2.3
 multicast-port: 54327

Composing the above two YAML configuration files needs them to be imported as shown below.

35

hazelcast:
 import:
 - development-group-config.yaml
 - development-network-config.yaml

This feature also applies to the declarative configuration of Hazelcast client. See the following
examples.

client-cluster-config.xml:

<hazelcast-client>
 <cluster-name>dev</cluster-name>
</hazelcast-client>

client-network-config.xml:

<hazelcast-client>
 <network>
 <cluster-members>
 <address>127.0.0.1:7000</address>
 </cluster-members>
 </network>
</hazelcast-client>

To get a Hazelcast client declarative configuration from the above two examples, use the <import/>
element as shown below.

<hazelcast-client>
 <import resource="client-cluster-config.xml"/>
 <import resource="client-network-config.xml"/>
</hazelcast-client>

The same client configuration using the YAML language is shown below.

client-cluster-config.yaml:

hazelcast-client:
 cluster-name: dev

client-network-config.yaml:

36

hazelcast-client:
 network:
 cluster-members:
 - 127.0.0.1:7000

Composing a Hazelcast client declarative configuration by importing the above two examples is
shown below.

hazelcast-client:
 import:
 - client-cluster-config.yaml
 - client-network-config.yaml

 Use <import/> element on top level of the XML hierarchy.

 Use the import mapping on top level of the YAML hierarchy.

Resources from the classpath and file system may also be used to compose a declarative
configuration:

<hazelcast>
 <import resource="file:///etc/hazelcast/development-cluster-config.xml"/> <!--
loaded from filesystem -->
 <import resource="classpath:development-network-config.xml"/> <!-- loaded from
classpath -->
</hazelcast>

hazelcast:
 import:
 # loaded from filesystem
 - file:///etc/hazelcast/development-cluster-config.yaml
 # loaded from classpath
 - classpath:development-network-config.yaml

Importing resources with variables in their names is also supported. See the following example
snippets:

<hazelcast>
 <import resource="${environment}-cluster-config.xml"/>
 <import resource="${environment}-network-config.xml"/>
</hazelcast>

37

hazelcast:
 import:
 - ${environment}-cluster-config.yaml
 - ${environment}-network-config.yaml

See the Using Variables section to learn how you can set the configuration
elements with variables.

5.1.2. Configuring Declaratively with YAML

You can configure the Hazelcast members and Java clients declaratively with YAML configuration
files in installations of Hazelcast running on Java runtime version 8 or above.

The structure of the YAML configuration follows the structure of the XML configuration. Therefore,
you can rewrite the existing XML configurations in YAML easily. There are some differences
between the XML and YAML languages that make the two declarative configurations to slightly
derive as the the following examples show.

In the YAML declarative configuration, mappings are used in which the name of the mapping node
needs to be unique within its enclosing mapping. See the following example with configuring two
maps in the same configuration file.

In the XML configuration files, we have two <map> elements as shown below.

<hazelcast>
 ...
 <map name="map1">
 <!-- map1 configuration -->
 </map>
 <map name="map2">
 <!-- map2 configuration -->
 </map>
 ...
</hazelcast>

In the YAML configuration, the map can be configured under a mapping map as shown in the
following example.

hazelcast:
 ...
 map:
 map1:
 # map1 configuration
 map2:
 # map2 configuration
 ...

38

The XML and YAML configurations above define the same maps map1 and map2. Please note that in
the YAML configuration file there is no name node, instead, the name of the map is used as the name
of the mapping for configuring the given map.

There are other configuration entries that have no unique names and are listed in the same
enclosing entry. Examples to this kind of configurations are listing the member addresses,
interfaces in the networking configurations and defining listeners. The following example
configures listeners to illustrate this.

<hazelcast>
 ...
 <listeners>
 <listener>com.hazelcast.examples.MembershipListener</listener>
 <listener>com.hazelcast.examples.MigrationListener</listener>
 <listener>com.hazelcast.examples.PartitionLostListener</listener>
 </listeners>
 ...
</hazelcast>

In the YAML configuration, the listeners are defined as a sequence.

hazelcast:
 ...
 listeners:
 - com.hazelcast.examples.MembershipListener
 - com.hazelcast.examples.MigrationListener
 - com.hazelcast.examples.PartitionLostListener
 ...

Another notable difference between XML and YAML is the lack of the attributes in the case of
YAML. Everything that can be configured with an attribute in the XML configuration is a scalar
node in the YAML configuration with the same name. See the following example.

<hazelcast>
 ...
 <network>
 <join>
 <multicast enabled="true">
 <multicast-group>1.2.3.4</multicast-group>
 <!-- other multicast configuration options -->
 </multicast>
 </join>
 </network>
 ...
</hazelcast>

In the identical YAML configuration, the enabled attribute of the XML configuration is a scalar node

39

on the same level with the other items of the multicast configuration.

hazelcast:
 ...
 network:
 join:
 multicast:
 enabled: true
 multicast-group: 1.2.3.4
 # other multicast configuration options
 ...

You can refer to the full example YAML configuration files placed in the /bin folder of the
downloadable hazelcast-4.1.1.zip after unzipping it. Please see the complete list of the full
example YAML configurations here.

5.2. Configuring Programmatically
Besides declarative configuration, you can configure your cluster programmatically. For this you
can create a Config object, set/change its properties and attributes and use this Config object to
create a new Hazelcast member. Following is an example code which configures some network and
Hazelcast Map properties.

Config config = new Config();
config.getNetworkConfig().setPort(5900)
 .setPortAutoIncrement(false);

MapConfig mapConfig = new MapConfig();
mapConfig.setName("testMap")
 .setBackupCount(2)
 .setTimeToLiveSeconds(300);

To create a Hazelcast member with the above example configuration, pass the configuration object
as shown below:

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);

The Config must not be modified after the Hazelcast instance is started. In other
words, all configuration must be completed before creating the HazelcastInstance.
Certain additional configuration elements can be added at runtime as described in
the Dynamically Adding Data Structure Configuration on a Cluster section.

You can also create a named Hazelcast member. In this case, you should set instanceName of Config
object as shown below:

40

Config config = new Config();
config.setInstanceName("my-instance");
Hazelcast.newHazelcastInstance(config);

To retrieve an existing Hazelcast member by its name, use the following:

Hazelcast.getHazelcastInstanceByName("my-instance");

To retrieve all existing Hazelcast members, use the following:

Hazelcast.getAllHazelcastInstances();

Hazelcast performs schema validation through the file hazelcast-config-4.1.1.xsd
which comes with your Hazelcast libraries. Hazelcast throws a meaningful
exception if there is an error in the declarative or programmatic configuration.

If you want to specify your own configuration file to create Config, Hazelcast supports several ways
including filesystem, classpath, InputStream and URL.

Building Config from the XML declarative configuration:

• Config cfg = new XmlConfigBuilder(xmlFileName).build();

• Config cfg = new XmlConfigBuilder(inputStream).build();

• Config cfg = new ClasspathXmlConfig(xmlFileName);

• Config cfg = new FileSystemXmlConfig(configFilename);

• Config cfg = new UrlXmlConfig(url);

• Config cfg = new InMemoryXmlConfig(xml);

Building Config from the YAML declarative configuration:

• Config cfg = new YamlConfigBuilder(yamlFileName).build();

• Config cfg = new YamlConfigBuilder(inputStream).build();

• Config cfg = new ClasspathYamlConfig(yamlFileName);

• Config cfg = new FileSystemYamlConfig(configFilename);

• Config cfg = new UrlYamlConfig(url);

• Config cfg = new InMemoryYamlConfig(yaml);

5.3. Configuring with System Properties
You can use system properties to configure some aspects of Hazelcast. You set these properties as
name and value pairs through declarative configuration, programmatic configuration or JVM
system property. Following are examples for each option.

Declarative Configuration:

41

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.property.foo">value</property>
 </properties>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 properties:
 hazelcast.property.foo: value
 ...

Programmatic Configuration:

Config config = new Config() ;
config.setProperty("hazelcast.property.foo", "value");

Using JVM’s System class or -D argument:

System.setProperty("hazelcast.property.foo", "value");

or

java -Dhazelcast.property.foo=value

You will see Hazelcast system properties mentioned throughout this Reference Manual as required
in some of the chapters and sections. All Hazelcast system properties are listed in the System
Properties appendix with their descriptions, default values and property types as a reference for
you.

5.4. Configuring within Spring Context
If you use Hazelcast with Spring you can declare beans using the namespace hazelcast. When you
add the namespace declaration to the element beans in the Spring context file, you can start to use
the namespace shortcut hz to be used as a bean declaration. Following is an example Hazelcast
configuration when integrated with Spring:

42

https://spring.io/

<hz:hazelcast id="instance">
 <hz:config>
 <hz:cluster-name name="dev"/>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false"/>
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 </hz:config>
</hz:hazelcast>

See the Integration with Spring section for more information on Hazelcast-Spring integration.

5.5. Overriding Configuration
You can override your clusters' configurations without having to modify the XML or YAML
configuration files. Hazelcast makes this possible using the system properties or environment
variables.

For example, if you just want to override cluster-name, you would need to craft a declarative
configuration as follows:

XML

<hazelcast>
 <cluster-name name="dev"/>
</hazelcast>

YAML

hazelcast:
 cluster-name: dev

Instead of the above, you can achieve the same purpose using the following on the command line:

Using Environment Variable

export HZ_CLUSTERNAME=dev

Using System Property

java -Dhz.cluster-name=value

Recognized and unrecognized configuration entries will be logged when Hazelcast starts.

43

When overriding the configuration provided in a custom file, remember to overwrite the whole
configuration sections at once; if you don’t, the remaining entries will be set to their default values.

The above mechanism exists mostly for the sake of convenience of applying trivial
environment specific configuration changes, and should not be treated as a
replacement for complex XML/YAML configuration files.

5.5.1. Conversion Rules

All entries need to mirror YAML configuration structure which differs slightly
from XML’s.

In order to make Hazelcast recognize environment variables as valid configuration entries, they
need to obey the following rules:

• Each configuration entry needs to start with HZ_ or HZ_CLIENT_.

• A new configuration level should be introduced with an underscore (_).

• Dashes (-) should be removed.

• Variable names should be in upper case.

Assume that you want to have the following configuration for your cluster, represented as YAML:

hazelcast:
 cluster-name: dev
 network:
 port:
 auto-increment: true
 port-count: 100
 port: 5701
 join:
 auto-detection:
 enabled: true

If you want to use the environment variables, the above would be represented as a set of the
following environment variables:

HZ_CLUSTERNAME=dev
HZ_NETWORK_PORT_AUTOINCREMENT=true
HZ_NETWORK_PORT_PORTCOUNT=100
HZ_NETWORK_PORT_PORT=5701
HZ_NETWORK_JOIN_AUTODETECTION_ENABLED=true

In order to make Hazelcast recognize system properties as valid configuration entries, they need to
obey the following rules:

• Each configuration entry needs to start with hz. or hz-client..

44

• A new configuration level should be introduced with an underscore (_).

• Variable names should be in lower case.

If you want to use the environment variables, the above YAML configuration would be represented
as a set of the following system properties:

hz.cluster-name=dev
hz.network.port.auto-increment=true
hz.network.port_port-count=100
hz.network.port_port=5701
hz.network.join-auto-detection-enabled=true

Keep in mind that it’s not possible to override configuration entries using YAML
sequences.

5.6. Dynamically Adding Data Structure Configuration
on a Cluster
As described above, Hazelcast can be configured in a declarative or programmatic way;
configuration must be completed before starting a Hazelcast member and this configuration cannot
be altered at runtime, thus we refer to this as static configuration.

It is possible to dynamically add configuration for certain data structures at runtime; these can be
added by invoking one of the Config.add*Config methods on the Config object obtained from a
running member’s HazelcastInstance.getConfig() method. For example:

Config config = new Config();
MapConfig mapConfig = new MapConfig("sessions");
config.addMapConfig(mapConfig);
HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
MapConfig noBackupsMap = new MapConfig("dont-backup").setBackupCount(0);
instance.getConfig().addMapConfig(noBackupsMap);

You must invoke the add*Config method on the Hazelcast instance’s configuration
object to add a configuration dynamically. In the above example, this is done with
the instance.getConfig().addMapConfig(noBackupsMap); line. This submits the map
configuration dynamically to all cluster members and also to members which join
the cluster later.

Dynamic configuration elements must be fully configured before the invocation of add*Config
method: at that point, the configuration object is delivered to every member of the cluster and
added to each member’s dynamic configuration, so mutating the configuration object after the
add*Config invocation does not have an effect.

As dynamically added data structure configuration is propagated across all cluster members,

45

failures may occur due to conditions such as timeout and network partition. The configuration
propagation mechanism internally retries adding the configuration whenever a membership
change is detected. However if an exception is thrown from add*Config method, the configuration
may have been partially propagated to some cluster members and adding the configuration should
be retried by the user.

Adding a new dynamic configuration is supported for all add*Config methods except the following:

• SplitBrainProtectionConfig: A new split-brain protection configuration cannot be dynamically
added but other configuration can reference split-brain protections configured in the existing
static configuration.

• WanReplicationConfig: A new WAN replication configuration cannot be dynamically added,
however existing static ones can be referenced from other configurations, e.g., a new dynamic
MapConfig may include a WanReplicationRef to a statically configured WAN replication.

• ListenerConfig: Listeners can be instead added at runtime via other API such as
HazelcastInstance.getCluster().addMembershipListener and
HazelcastInstance.getPartitionService().addMigrationListener.

Keep in mind that this feature also works for Hazelcast Java clients. See the following example:

HazelcastInstance client = HazelcastClient.newHazelcastClient();
MapConfig mCfg = new MapConfig("test");
mCfg.setTimeToLiveSeconds(15);
client.getConfig().addMapConfig(mCfg);
HazelcastClient.shutdownAll();

If your cluster has data structures with configurations added during runtime,
those configurations are lost when a cluster restart occurs due to any reason since
they are not persisted. This will be improved in future Hazelcast IMDG releases.

5.6.1. Handling Configuration Conflicts

Attempting to add a dynamic configuration, when a static configuration for the same element
already exists, throws InvalidConfigurationException. For example, assuming we start a member
with the following fragment in hazelcast.xml configuration:

<hazelcast>
 ...
 <map name="sessions">
 ...
 </map>
 ...
</hazelcast>

Then adding a dynamic configuration for a map with the name sessions throws a
InvalidConfigurationException:

46

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

MapConfig sessionsMapConfig = new MapConfig("sessions");

// this will throw ConfigurationException:
instance.getConfig().addMapConfig(sessionsMapConfig);

When attempting to add dynamic configuration for an element for which dynamic configuration
has already been added, then if a configuration conflict is detected a InvalidConfigurationException
is thrown. For example:

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

MapConfig sessionsMapConfig = new MapConfig("sessions").setBackupCount(0);
instance.getConfig().addMapConfig(sessionsMapConfig);

MapConfig sessionsWithBackup = new MapConfig("sessions").setBackupCount(1);
// throws ConfigurationException because the new MapConfig conflicts with existing one
instance.getConfig().addMapConfig(sessionsWithBackup);

MapConfig sessionsWithoutBackup = new MapConfig("sessions").setBackupCount(0);
// does not throw exception: new dynamic config is equal to existing dynamic config of
same name
instance.getConfig().addMapConfig(sessionsWithoutBackup);

5.6.2. Dynamic Data Structure Configuration and User Customizations

Dynamically added data structure configuration may reference user customizations, such as a user-
provided MapLoader implementation referenced by a MapConfig. User customizations can be usually
configured using either of the following:

• by specifying a class or factory class name, e.g., MapStoreConfig.setClassName, and letting the
Hazelcast members instantiate the object

• by providing an existing instance, e.g., MapStoreConfig.setImplementation.

When dynamically adding new a data structure configuration with user customizations, take the
following considerations into account:

• For the user customizations submitted as a class name or factory class name, the referenced
classes are resolved lazily. Therefore, they should be either already on each member’s local
classpath or resolvable via user code deployment.

• When the user customizations are submitted as instances (or similarly factory instances), the
instances themselves have to be serializable. This is because the entire configuration needs to
be sent over the network to all cluster members, and their classes have to be available on each
member’s local classpath.

47

5.7. Checking Configuration
When you start a Hazelcast member without passing a Config object, as explained in the
Configuring Programmatically section, Hazelcast checks the member’s configuration as follows:

• First, it looks for the hazelcast.config system property. If it is set, its value is used as the path.
This is useful if you want to be able to change your Hazelcast configuration; you can do this
because it is not embedded within the application. You can set the config option with the
following command:

-Dhazelcast.config=`*`<path to the hazelcast.xml or hazelcast.yaml>

The suffix of the filename is used to determine the language of the
configuration. If the suffix is .xml the configuration file is parsed as an XML
configuration file. If it is .yaml, the configuration file is parsed as a YAML
configuration file.

The path can be a regular one or a classpath reference with the prefix classpath:.

• If the above system property is not set, Hazelcast then checks whether there is a hazelcast.xml
file in the working directory.

• If not, it then checks whether hazelcast.xml exists on the classpath.

• If not, it then checks whether hazelcast.yaml (or .yml) exists in the working directory.

• If not, it then checks whether hazelcast.yaml (or .yml) exists on the classpath.

• If none of the above works, Hazelcast loads the default configuration (hazelcast.xml) that comes
with your Hazelcast package.

Before configuring Hazelcast, please try to work with the default configuration to see if it works for
you. This default configuration should be fine for most of the users. If not, you can consider to
modify the configuration to be more suitable for your environment.

5.8. Configuration Pattern Matcher
You can give a custom strategy to match an item name to a configuration pattern. By default
Hazelcast uses a simplified wildcard matching. See Using Wildcards section for this. A custom
configuration pattern matcher can be given by using either member or client config objects, as
shown below:

// Setting a custom config pattern matcher via member config object
Config config = new Config();
config.setConfigPatternMatcher(new ExampleConfigPatternMatcher());

And the following is an example pattern matcher:

48

class ExampleConfigPatternMatcher extends MatchingPointConfigPatternMatcher {

 @Override
 public String matches(Iterable<String> configPatterns, String itemName) throws
InvalidConfigurationException {
 String matches = super.matches(configPatterns, itemName);
 if (matches == null) throw new InvalidConfigurationException("No config found
for " + itemName);
 return matches;
 }
}

5.9. Using Wildcards
Hazelcast supports wildcard configuration for all distributed data structures that can be configured
using Config, that is, for all except IAtomicLong, IAtomicReference. Using an asterisk (*) character in
the name, different instances of maps, queues, topics, semaphores, etc. can be configured by a
single configuration.

A single asterisk (*) can be placed anywhere inside the configuration name.

For instance, a map named com.hazelcast.test.mymap can be configured using one of the following
configurations:

49

<hazelcast>
 ...
 <map name="com.hazelcast.test.*">
 ...
 </map>

 <!-- OR -->

 <map name="com.hazel*">
 ...
 </map>

 <!-- OR -->

 <map name="*.test.mymap">
 ...
 </map>

 <!-- OR -->

 <map name="com.*test.mymap">
 ...
 </map>
 ...
</hazelcast>

A queue named com.hazelcast.test.myqueue can be configured using one of the following
configurations:

<hazelcast>
 ...
 <queue name="*hazelcast.test.myqueue">
 ...
 </queue>

 <!-- OR -->

 <queue name="com.hazelcast.*.myqueue">
 ...
 </queue>
 ...
</hazelcast>

50

• You can use only a single asterisk as a wildcard for each data structure
configuration.

• If you have matching wildcard configurations for a data structure, the most
specific (longest) one is used when configuring it. Let’s say you have a map
named mymap.customer.name and you have map configurations mymap.* and
mymap.customer.*. Hazelcast uses mymap.customer.* to configure this map.

As another example, assume that you have a map named mymap.customer.name,
and map configurations mymap.*.name and mymap.customer.*. Hazelcast uses
mymap.customer.* to configure this map. As you see, the longest character length
before the asterisk makes it the most specific, so it wins the configuration.

5.10. Using Variables
In your Hazelcast and/or Hazelcast Client declarative configuration, you can use variables to set the
values of the elements. This is valid when you set a system property programmatically or you use
the command line interface. You can use a variable in the declarative configuration to access the
values of the system properties you set.

For example, see the following command that sets two system properties.

-Dcluster.name=dev

Let’s get the values of these system properties in the declarative configuration (XML/YAML) of
Hazelcast, as shown below.

XML

<hazelcast>
 <cluster-name>${cluster.name}</cluster-name>
</hazelcast>

YAML

hazelcast:
 cluster-name: ${cluster.name}

This also applies to the declarative configuration of Hazelcast Java Client, as shown below.

XML

<hazelcast-client>
 <cluster-name>${cluster.name}</cluster-name>
</hazelcast-client>

51

YAML

hazelcast-client:
 cluster-name: ${cluster.name}

If you do not want to rely on the system properties, you can use the XmlConfigBuilder or
YamlConfigBuilder and explicitly set a Properties instance, as shown below.

Properties properties = new Properties();

// fill the properties, e.g., from database/LDAP, etc.

XmlConfigBuilder builder = new XmlConfigBuilder();
builder.setProperties(properties);
Config config = builder.build();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

5.11. Variable Replacers
Variable replacers are used to replace custom strings during loading the configuration, e.g., they
can be used to mask sensitive information such as usernames and passwords. Of course their usage
is not limited to security related information.

Variable replacers implement the interface com.hazelcast.config.replacer.spi.ConfigReplacer and
they are configured only declaratively: in the Hazelcast’s declarative configuration files, i.e.,
hazelcast.xml, hazelcast.yaml and hazelcast-client .xml, hazelcast-client.yaml. See the
ConfigReplacers Javadoc for basic information on how a replacer works.

Variable replacers are configured within the element <config-replacers> under <hazelcast>, as
shown below.

XML

<hazelcast>
 ...
 <config-replacers fail-if-value-missing="false">
 <replacer class-name="com.acme.MyReplacer">
 <properties>
 <property name="propName">value</property>
 ...
 </properties>
 </replacer>
 <replacer class-name="example.AnotherReplacer"/>
 </config-replacers>
 ...
</hazelcast>

52

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/replacer/spi/ConfigReplacer.html

YAML

hazelcast:
 ...
 config-replacers:
 fail-if-value-missing: false
 replacers:
 - class-name: com.acme.MyReplacer
 properties:
 propName: value
 ...
 - class-name: example.AnotherReplacer
 ...

As you can see, <config-replacers> is the parent element for your replacers, which are declared
using the <replacer> sub-elements. You can define multiple replacers under the <config-replacers>.
Here are the descriptions of elements and attributes used for the replacer configuration:

• fail-if-value-missing: Specifies whether the loading configuration process stops when a
replacement value is missing. It is an optional attribute and its default value is true.

• class-name: Full class name of the replacer.

• <properties>: Contains names and values of the properties used to configure a replacer. Each
property is defined using the <property> sub-element. All of the properties are explained in the
upcoming sections.

The following replacer classes are provided by Hazelcast as example implementations of the
ConfigReplacer interface. Note that you can also implement your own replacers.

• EncryptionReplacer

• PropertyReplacer

There is also a ExecReplacer which runs an external command and uses its
standard output as the value for the variable. See its code sample.

Each example replacer is explained in the below sections.

5.11.1. EncryptionReplacer

This example EncryptionReplacer replaces encrypted variables by its plain form. The secret key for
encryption/decryption is generated from a password which can be a value in a file and/or
environment specific values, such as MAC address and actual user data.

Its full class name is com.hazelcast.config.replacer.EncryptionReplacer and the replacer prefix is
ENC. The following are the properties used to configure this example replacer:

• cipherAlgorithm: Cipher algorithm used for the encryption/decryption. Its default value is AES.

• keyLengthBits: Length of the secret key to be generated in bits. Its default value is 128 bits.

• passwordFile: Path to a file whose content should be used as a part of the encryption password.

53

https://github.com/hazelcast/hazelcast-code-samples/blob/master/variable-replacers/src/main/java/com/hazelcast/sample/replacer/ExecReplacer.java

When the property is not provided no file is used as a part of the password. Its default value is
null.

• passwordNetworkInterface: Name of network interface whose MAC address should be used as a
part of the encryption password. When the property is not provided no network interface
property is used as a part of the password. Its default value is null.

• passwordUserProperties: Specifies whether the current user properties (user.name and user.home)
should be used as a part of the encryption password. Its default value is true.

• saltLengthBytes: Length of a random password salt in bytes. Its default value is 8 bytes.

• secretKeyAlgorithm: Name of the secret-key algorithm to be associated with the generated secret
key. Its default value is AES.

• secretKeyFactoryAlgorithm: Algorithm used to generate a secret key from a password. Its default
value is PBKDF2WithHmacSHA256.

• securityProvider: Name of a Java Security Provider to be used for retrieving the configured
secret key factory and the cipher. Its default value is null.

Older Java versions may not support all the algorithms used as defaults. Please use
the property values supported your Java version.

As a usage example, let’s create a password file and generate the encrypted string out of this file as
instructed below:

1. Create the password file: echo '/Za-uG3dDfpd,5.-' > /opt/master-password

2. Define the encrypted variables:

java -cp hazelcast-*.jar \
 -DpasswordFile=/opt/master-password \
 -DpasswordUserProperties=false \
 com.hazelcast.config.replacer.EncryptionReplacer \
 "aCluster"
$ENC{Gw45stIlan0=:531:yVN9/xQpJ/Ww3EYkAPvHdA==}

3. Configure the replacer and put the encrypted variables into the configuration:

<hazelcast>
 <config-replacers>
 <replacer class-name="com.hazelcast.config.replacer.EncryptionReplacer">
 <properties>
 <property name="passwordFile">/opt/master-password</property>
 <property name="passwordUserProperties">false</property>
 </properties>
 </replacer>
 </config-replacers>
 <cluster-name>$ENC{Gw45stIlan0=:531:yVN9/xQpJ/Ww3EYkAPvHdA==}</cluster-name>
</hazelcast>

54

4. Check if the decryption works:

java -jar hazelcast-*.jar
Apr 06, 2018 10:15:43 AM com.hazelcast.config.XmlConfigLocator
INFO: Loading 'hazelcast.xml' from working directory.
Apr 06, 2018 10:15:44 AM com.hazelcast.instance.AddressPicker
INFO: [LOCAL] [aCluster] [3.10-SNAPSHOT] Prefer IPv4 stack is true.

As you can see in the logs, the correctly decrypted cluster name value ("aCluster") is used.

5.11.2. PropertyReplacer

The PropertyReplacer replaces variables by properties with the given name. Usually the system
properties are used, e.g., ${user.name}. There is no need to define it in the declarative configuration
files.

Its full class name is com.hazelcast.config.replacer.PropertyReplacer and the replacer prefix is
empty string ("").

5.11.3. Implementing Custom Replacers

You can also provide your own replacer implementations. All replacers have to implement the
interface com.hazelcast.config.replacer.spi.ConfigReplacer. A simple snippet is shown below.

public interface ConfigReplacer {
 void init(Properties properties);
 String getPrefix();
 String getReplacement(String maskedValue);
}

6. Setting Up Clusters
This chapter describes Hazelcast clusters and the methods cluster members and native clients use
to form a Hazelcast cluster.

6.1. Discovery Mechanisms
A Hazelcast cluster is a network of cluster members that run Hazelcast. Cluster members
automatically join together to form a cluster. This automatic joining takes place with various
discovery mechanisms that the cluster members use to find each other.

Please note that, after a cluster is formed, communication between cluster members is always via
TCP/IP, regardless of the discovery mechanism used.

Hazelcast uses the following discovery mechanisms.

55

See the Hazelcast IMDG Deployment and Operations Guide for advices on the best
discovery mechanism to use.

6.1.1. Auto Detection

By default, Hazelcast tries to automatically detect the applicable discovery mechanism based on the
runtime environment.

Note that using Auto Detection is not recommended for production. Note also that if Hazelcast finds
no applicable discovery mechanism, then it falls back to Multicast.

See the Discovering Members by Auto Detection section for more details.

6.1.2. TCP

You can configure Hazelcast to be a full TCP/IP cluster. See the Discovering Members by TCP section
for configuration details.

6.1.3. Multicast

With this mechanism, Hazelcast allows cluster members to find each other using the multicast
communication. See the Discovering Members by Multicast section.

If you prefer to use this mechanism, make sure that your network is enclosed and secure. Since
multicast packets are being broadcasted, any member from anywhere can join the cluster with the
appropriate cluster name, so you have less control on the cluster.

Note also that if User Datagram Protocol (UDP) is blocked, as it is for most of the production
environments, discovering with multicast does not work.

6.1.4. AWS Cloud Discovery

Hazelcast supports EC2/ECS auto-discovery. It is useful when you do not want to provide or you
cannot provide the list of possible IP addresses. See the Cloud Discovery Plugins: Hazelcast AWS
section.

6.1.5. Azure Cloud Discovery

Hazelcast offers a discovery strategy for your Hazelcast applications running on Azure. See the
Cloud Discovery Plugins: Hazelcast Azure section.

6.1.6. GCP Cloud Discovery

Hazelcast supports discovering members in the GCP Compute Engine environment. You can easily
configure Hazelcast members discovery, WAN replication, and Hazelcast Client to work seamlessly
on the native GCP VM Instances. This discovery feature is provided as a Hazelcast plugin. See the
Cloud Discovery Plugins: Hazelcast GCP section.

56

https://hazelcast.com/resources/hazelcast-deployment-operations-guide/
https://cloud.google.com/compute/

6.1.7. Kubernetes Cloud Discovery

Hazelcast provides Kubernetes discovery mechanism that looks for IP addresses of members. See
the Cloud Discovery Plugins: Hazelcast Kubernetes section.

6.1.8. Eureka Cloud Discovery

Hazelcast supports the Eureka V1 discovery. See the Cloud Discovery Plugins: Hazelcast Eureka
section.

6.1.9. Zookeeper Cloud Discovery

This discovery mechanism provides a service based discovery strategy by using Apache Curator to
communicate with your Zookeeper server. See the Cloud Discovery Plugins: Hazelcast Zookeeper
section.

6.1.10. Hazelcast for Tanzu VMware

Using a clickable Hazelcast Tile for VMWare (former Pivotal Cloud Foundry), you can deploy your
Hazelcast cluster on PCF. This feature is provided as a Hazelcast plugin. See the Deploying in
VMware Tanzu section.

6.2. Discovering Members by Auto Detection
Auto Detection is a good way to start playing with Hazelcast. It tries to automatically detect the
appropriate discovery plugin and apply it to your Hazelcast configuration. Assuming you have
hazelcast-all on your classpath and your runtime is Kubernetes, Hazelcast automatically applies
the Kubernetes discovery mechanism.

Below is a table with minimal requirements for each environment.

Table 2. Environment Requirements

Environment Requirements

AWS AWS EC2 requires the following points:

• Security Group with the port 5701 open

• IAM role with the ec2:DescribeInstances permission attached to
the EC2 Instance

Azure Azure requires having Azure managed identity with the READ role
attached to your Azure Virtual Machine.

GCP GCP requires having Cloud API (at minimum Read Only to Compute
Engine API) access attached to your VM Instance.

57

Kubernetes Kubernetes requires applying the RBAC permissions.

6.3. Discovering Members by TCP
If multicast is not the preferred way of discovery for your environment, then you can configure
Hazelcast to be a full TCP/IP cluster. When you configure Hazelcast to discover members by TCP/IP,
you must list all or a subset of the members' host names and/or IP addresses as cluster members.
You do not have to list all of these cluster members, but at least one of the listed members has to be
active in the cluster when a new member joins.

To configure your Hazelcast to be a full TCP/IP cluster, set the following configuration elements. See
the tcp-ip element section for the full descriptions of the TCP/IP discovery configuration elements.

• Set the enabled attribute of the tcp-ip element to true.

• Provide your member elements within the tcp-ip element.

The following is an example declarative configuration.

XML

<hazelcast>
 ...
 <network>
 <join>
 <tcp-ip enabled="true">
 <member>machine1</member>
 <member>machine2</member>
 <member>machine3:5799</member>
 <member>192.168.1.0-7</member>
 <member>192.168.1.21</member>
 </tcp-ip>
 </join>
 </network>
 ...
</hazelcast>

58

https://raw.githubusercontent.com/hazelcast/hazelcast-kubernetes/master/rbac.yaml

YAML

hazelcast:
 network:
 join:
 tcp-ip:
 enabled: true
 member-list:
 - machine1
 - machine2
 - machine3:5799
 - 192.168.1.0-7
 - 192.168.1.21

As shown above, you can provide IP addresses or host names for member elements. You can also give
a range of IP addresses, such as 192.168.1.0-7.

Instead of providing members line-by-line as shown above, you also have the option to use the
members element and write comma-separated IP addresses, as shown below.

<members>192.168.1.0-7,192.168.1.21</members>

If you do not provide ports for the members, Hazelcast automatically tries the ports 5701, 5702 and
so on.

By default, Hazelcast binds to all local network interfaces to accept incoming traffic. You can
change this behavior using the system property hazelcast.socket.bind.any. If you set this property
to false, Hazelcast uses the interfaces specified in the interfaces element (see the Interfaces
Configuration section). If no interfaces are provided, then it tries to resolve one interface to bind
from the member elements.

6.4. Discovering Members by Multicast
With the multicast auto-discovery mechanism, Hazelcast allows cluster members to find each other
using multicast communication. The cluster members do not need to know the concrete addresses
of the other members, as they just multicast to all the other members for listening. Whether
multicast is possible or allowed depends on your environment.

To set your Hazelcast to multicast auto-discovery, set the following configuration elements. See the
multicast element section for the full description of the multicast discovery configuration elements.

• Set the enabled attribute of the multicast element to true.

• Set multicast-group, multicast-port, multicast-time-to-live, etc. to your multicast values.

The following is an example declarative configuration.

59

XML

<hazelcast>
 ...
 <network>
 <join>
 <multicast enabled="true">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 <multicast-time-to-live>32</multicast-time-to-live>
 <multicast-timeout-seconds>2</multicast-timeout-seconds>
 <trusted-interfaces>
 <interface>192.168.1.102</interface>
 </trusted-interfaces>
 </multicast>
 </join>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 join:
 multicast:
 enabled: true
 multicast-group: 224.2.2.3
 multicast-port: 54327
 multicast-time-to-live: 32
 multicast-timeout-seconds: 2
 trusted-interfaces:
 - 192.168.1.102

Pay attention to the multicast-timeout-seconds element. multicast-timeout-seconds specifies the
time in seconds that a member should wait for a valid multicast response from another member
running in the network before declaring itself the leader member (the first member joined to the
cluster) and creating its own cluster. This only applies to the startup of members where no leader
has been assigned yet. If you specify a high value to multicast-timeout-seconds, such as 60 seconds,
it means that until a leader is selected, each member waits 60 seconds before moving on. Be careful
when providing a high value. Also, be careful not to set the value too low, or the members might
give up too early and create their own cluster.

Multicast auto-discovery is not supported for Hazelcast native clients yet.
However, we offer Multicast Discovery Plugin for this purpose. See the Discovering
Native Clients section.

60

6.5. Discovering Native Clients
Hazelcast members and native Java clients can find each other with multicast discovery plugin.
This plugin is implemented using Hazelcast Discovery SPI. You should configure the plugin both at
Hazelcast members and Java clients in order to use multicast discovery.

To configure your cluster to have the multicast discovery plugin, follow these steps:

• Set the enabled attribute of the hazelcast.discovery.enabled property to true.

• Add multicast discovery strategy configuration to your XML file, i.e., <discovery-strategies>
element.

The following is an example declarative configuration.

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.discovery.enabled">true</property>
 </properties>
 <network>
 <join>
 <discovery-strategies>
 <discovery-strategy class=
"com.hazelcast.spi.discovery.multicast.MulticastDiscoveryStrategy" enabled="true">
 <properties>
 <property name="group">224.2.2.3</property>
 <property name="port">54327</property>
 </properties>
 </discovery-strategy>
 </discovery-strategies>
 </join>
 </network>
 ...
</hazelcast>

61

YAML

hazelcast:
 properties:
 hazelcast.discovery.enabled: true
 network:
 join:
 discovery-strategies:
 discovery-strategy:
 enabled: true
 class: com.hazelcast.spi.discovery.multicast.MulticastDiscoveryStrategy
 properties:
 group: 224.2.2.3
 port: 54327

The following are the multicast discovery plugin configuration properties with their descriptions:

• group: String value that is used to set the multicast group, so that you can isolate your clusters.

• port: Integer value that is used to set the multicast port.

6.6. Creating Clusters
You can create clusters using the cluster-name configuration element.

You can separate and group your clusters in a simple way by specifying cluster names. Example
groupings can be by development, production, test, app, etc. The following is an example
declarative configuration.

XML

<hazelcast>
 <cluster-name>production</cluster-name>
</hazelcast>

YAML

hazelcast:
 cluster-name: production

You can also define the cluster configuration programmatically. A JVM can host multiple Hazelcast
instances. Each Hazelcast instance can only participate in one group. Each Hazelcast instance only
joins to its own group and does not interact with other groups. The following code example creates
three separate Hazelcast instances--h1 belongs to the production cluster, while h2 and h3 belong to
the development cluster.

62

Config configProd = new Config();
configProd.setClusterName("production");

Config configDev = new Config();
configDev.setClusterName("development");

HazelcastInstance h1 = Hazelcast.newHazelcastInstance(configProd);
HazelcastInstance h2 = Hazelcast.newHazelcastInstance(configDev);
HazelcastInstance h3 = Hazelcast.newHazelcastInstance(configDev);

6.7. Deploying User Code on the Member
Hazelcast can dynamically load your custom classes or domain classes from other members. A lite
member can be designated as a class repository, but any member can provide classes to other
members. For this purpose Hazelcast offers a distributed dynamic class loader.

The following is a brief working mechanism of the User Code Deployment feature:

1. A new dynamic class loader is created to handle each operation.

2. It first checks locally available classes, i.e. the member’s classpath. If the class is found, it is
used.

3. Then it checks the cache of classes loaded from remote members or clients (if caching is enabled
on your local member, see the Configuring User Code Deployment section). If your class is found
there, it is used.

4. Finally, the dynamic class loader checks configured remote members, one by one. If some
member returns the class, it will be used. It can also put this class into the local class cache as
mentioned in the previous step.

5. If the class is not found, ClassNotFoundException is thrown.

6. The dynamic class loader is released after the operation is handled. A next operation will load
the class from the cache or re-fetch it.

Using the user code deployment feature is a fit for your functional objects like
Runnable, Callable and EntryProcessor. For the domain objects, we recommend you
to use the generic object interface (GenericRecord).

6.7.1. Configuring User Code Deployment

User Code Deployment feature is not enabled by default. You can control local caching of the classes
loaded from other members, control classes to be provided to other members and create blacklists
and whitelists of classes and packages.

Following are example configuration snippets:

Declarative Configuration:

63

XML

<hazelcast>
 ...
 <user-code-deployment enabled="true">
 <class-cache-mode>ETERNAL</class-cache-mode>
 <provider-mode>LOCAL_AND_CACHED_CLASSES</provider-mode>
 <blacklist-prefixes>com.foo,com.bar</blacklist-prefixes>
 <whitelist-prefixes>com.bar.MyClass</whitelist-prefixes>
 <provider-filter>HAS_ATTRIBUTE:lite</provider-filter>
 </user-code-deployment>
 ...
</hazelcast>

YAML

hazelcast:
 user-code-deployment:
 enabled: true
 class-cache-mode: ETERNAL
 provider-mode: LOCAL_AND_CACHED_CLASSES
 blacklist-prefixes: com.foo,com.bar
 whitelist-prefixes: com.bar.MyClass
 provider-filter: HAS_ATTRIBUTE:lite

Programmatic Configuration:

Config config = new Config();
UserCodeDeploymentConfig distCLConfig = config.getUserCodeDeploymentConfig();
distCLConfig.setEnabled(true)
 .setClassCacheMode(UserCodeDeploymentConfig.ClassCacheMode.ETERNAL)
 .setProviderMode(UserCodeDeploymentConfig.ProviderMode
.LOCAL_AND_CACHED_CLASSES)
 .setBlacklistedPrefixes("com.foo,com.bar")
 .setWhitelistedPrefixes("com.bar.MyClass")
 .setProviderFilter("HAS_ATTRIBUTE:lite");

User Code Deployment on the member has the following configuration:

• enabled: Specifies whether dynamic class loading is enabled or not. Its default value is "false"
and it’s a mandatory attribute. If feature is disabled, the member will never load classes from
other members or clients.

• <class-cache-mode>: Controls the local caching behavior for the classes loaded from remote
members (classes loaded from clients are always cached). Available values are:

◦ ETERNAL: Cache the loaded classes locally. This is the default value and suitable when you
load long-living objects, such as domain objects stored in a map.

◦ OFF: Do not cache the loaded classes locally. It is suitable for loading runnables, callables,

64

entry processors, etc.

• <provider-mode>: Controls which classes are served to other cluster members. Available values
are:

◦ LOCAL_AND_CACHED_CLASSES: Serve classes loaded from both local classpath and from other
members. This is the default value.

◦ LOCAL_CLASSES_ONLY: Serve classes from the local classpath only. Classes loaded from other
members are used locally, but they are not served to other members.

◦ OFF: Never serve classes to other members.

• <blacklist-prefixes>: Comma separated class/package name prefixes that the member will
never attempt to load from other members and that the client won’t be allowed to upload. For
example, if you set it to "com.foo", remote loading of all classes from the "com.foo" package is
prevented, including the classes from all its sub-packages. If you set it to "com.foo.Class", then
"Class" and all classes starting with "Class" in the "com.foo" package are blacklisted. There are
built-in prefixes which are always blacklisted. These are as follows:

◦ javax.

◦ java.

◦ sun.

◦ com.hazelcast.

• <whitelist-prefixes>: Comma separated name prefixes of classes/packages only from which the
classes are allowed to be loaded. It allows to quickly configure remote loading only for classes
from selected packages. It can be used together with blacklisting. For example, you can whitelist
the prefix "com.foo" and blacklist the prefix "com.foo.secret". If the list is empty, all classes are
allowed.

• <provider-filter>: Filter to constrain members that can be used for a class loading request
when a class is not available locally. The value is in the format "HAS_ATTRIBUTE:foo". When it is
set to "HAS_ATTRIBUTE:foo", the class loading request is only sent to the members which have
"foo" as a member attribute. Setting this to null allows loading of classes from all members. See
an example in the next section.

6.7.2. Example for Filtering of Members

As described above, the configuration element provider-filter is used to limit members that can be
used to load classes. The attribute required in the provider-filter must be set as a member
attribute on the members from which the classes are to be loaded. See the following examples
provided as programmatic configurations.

The example configuration below allows the Hazelcast member to load classes only from members
with the class-provider attribute set. It prevents from asking any other member to provide a locally
unavailable class:

65

Config hazelcastConfig = new Config();
UserCodeDeploymentConfig ucdConfig = hazelcastConfig.getUserCodeDeploymentConfig();
ucdConfig.setProviderFilter("HAS_ATTRIBUTE:class-provider");

HazelcastInstance instance = Hazelcast.newHazelcastInstance(hazelcastConfig);

The example configuration below sets the attribute class-provider for a member. Therefore the
above member will be able to load classes from this member:

Config hazelcastConfig = new Config();
MemberAttributeConfig memberAttributes = hazelcastConfig.getMemberAttributeConfig();
memberAttributes.setAttribute("class-provider", "true");

HazelcastInstance instance = Hazelcast.newHazelcastInstance(hazelcastConfig);

6.8. Deploying User Code from Clients
You can also deploy your code from the client side for the following situations:

1. You have objects that run on the cluster via the clients such as Runnable, Callable and
EntryProcessor.

2. You have new user domain objects which need to be deployed into the cluster.

When this feature is enabled on the client, the client will deploy the classes to the members when
connecting. This way, when a client adds a new class, the members do not require a restart to
include it in their classpath.

You can also use the client permission policy to specify which clients are permitted to use User Code
Deployment. See the Permissions section.

NOTE:

6.8.1. Configuring Client User Code Deployment

Client User Code Deployment feature is not enabled by default. You can configure this feature
declaratively or programmatically.

Using the user code deployment feature is a fit for your functional objects like
Runnable, Callable and EntryProcessor. For the domain objects, we recommend you
to use the generic object interface (GenericRecord).

Following are example configuration snippets:

Declarative Configuration:

In your hazelcast-client.xml/yaml:

66

XML

<hazelcast-client>
 ...
 <user-code-deployment enabled="true">
 <jarPaths>
 <jarPath>/User/example/example.jar</jarPath>
 <jarPath>example.jar</jarPath> <!--from class path -->
 <jarPath>https://com.example.com/example.jar</jarPath>
 <jarPath>file://Users/example/example.jar</jarPath>
 </jarPaths>
 <classNames>
 <!-- for classes available in client's class path -->
 <className>example.ClassName</className>
 <className>example.ClassName2</className>
 </classNames>
 </user-code-deployment>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 user-code-deployment
 enabled: true
 jarPaths:
 - /User/example/example.jar
 - example.jar
 - https://com.example.com/example.jar
 - file://Users/example/example.jar
 classNames:
 - example.ClassName
 - example.ClassName2

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
ClientUserCodeDeploymentConfig clientUserCodeDeploymentConfig = new
ClientUserCodeDeploymentConfig();

clientUserCodeDeploymentConfig.addJar("/User/example/example.jar");
clientUserCodeDeploymentConfig.addJar("https://com.example.com/example.jar");
clientUserCodeDeploymentConfig.addClass("example.ClassName");
clientUserCodeDeploymentConfig.addClass("example.ClassName2");

clientUserCodeDeploymentConfig.setEnabled(true);
clientConfig.setUserCodeDeploymentConfig(clientUserCodeDeploymentConfig);

67

Important to Know

The members have to be configured in a specific way for the feature to work correctly:

• User Code Deployment must be enabled on the members. Otherwise, the classes from the client
will be ignored. Also blacklisted and non-whitelisted classes will be ignored.

• All members must be providers, provider-mode must be set to LOCAL_AND_CACHED_CLASSES on all
members.

• No provider-filter must be configured.

The client uploads the classes only to one member. If the members don’t load classes from each
other, other members won’t see the class.

Here’s a programmatic configuration of the members that will work with client user code
deployment:

Config config = new Config();
UserCodeDeploymentConfig ucdConfig = config.getUserCodeDeploymentConfig();
ucdConfig.setEnabled(true);
// following two configs are defaults, we show them for clarity
ucdConfig.setProviderMode(ProviderMode.LOCAL_AND_CACHED_CLASSES);
ucdConfig.setProviderFilter(null);

See the Member User Code Deployment section for more information on enabling it on the member
side and the configuration properties.

Classes deployed from clients are always cached on the members, no matter whether ETERNAL or OFF
is configured on the members.

Performance Considerations

The client always uploads all added classes and jars to one of the members, whether it has them or
not. So avoid adding large jar files for each connection - if configured properly, the member will
have the class the next time the client connects.

Two Versions of a Class

If the client uploads a class and the member already has that class, an exception is thrown if the
byte code is different. If byte code is same, it is ignored. Therefore classes uploaded from the client
can’t be updated with a new version.

6.8.2. Adding User Library to CLASSPATH

When you want to use a Hazelcast feature in a non-Java client, you need to make sure that the
Hazelcast member recognizes it. For this, you can use the /user-lib directory that comes with the
Hazelcast package and deploy your own library to the member. Let’s say you use Hazelcast Node.js
client and want to use an entry processor. This processor should be IdentifiedDataSerializable or
Portable in the Node.js client. You need to implement the Java equivalents of the processor and its

68

factory on the member side, and put these compiled class or JAR files into the /user-lib directory.
Then you can run the start.sh script which adds them to the classpath.

The following is an example code which can be the Java equivalent of entry processor in the
Node.js client:

public class IdentifiedEntryProcessor implements EntryProcessor<String, String,
String>, IdentifiedDataSerializable {
 static final int CLASS_ID = 1;
 private String value;
 public IdentifiedEntryProcessor() {
 }
 @Override
 public int getFactoryId() {
 return IdentifiedFactory.FACTORY_ID;
 }
 @Override
 public int getClassId() {
 return CLASS_ID;
 }
 @Override
 public void writeData(ObjectDataOutput out) throws IOException {
 out.writeUTF(value);
 }
 @Override
 public void readData(ObjectDataInput in) throws IOException {
 value = in.readUTF();
 }
 @Override
 public String process(Map.Entry<String, String> entry) {
 entry.setValue(value);
 return value;
 }
}

You can implement the above processor’s factory as follows:

public class IdentifiedFactory implements DataSerializableFactory {
 public static final int FACTORY_ID = 5;
 @Override
 public IdentifiedDataSerializable create(int typeId) {
 if (typeId == IdentifiedEntryProcessor.CLASS_ID) {
 return new IdentifiedEntryProcessor();
 }
 return null;
 }
}

And the following is the configuration for the above factory:

69

XML

<hazelcast>
 <serialization>
 <data-serializable-factories>
 <data-serializable-factory factory-id="5">
 IdentifiedFactory
 </data-serializable-factory>
 </data-serializable-factories>
 </serialization>
</hazelcast>

YAML

hazelcast:
 serialization:
 data-serializable-factories:
 - factory-id: 5
 class-name: IdentifiedFactory

Then, you can start your Hazelcast member by using the start scripts (start.sh or start.bat) in the
/bin directory. The start scripts automatically adds your class and JAR files to the classpath.

6.9. Accessing Domain Objects without Domain Classes
- BETA
Hazelcast offers a generic object interface (GenericRecord) that is returned to the user when the
domain class is missing on the classpath. For example, if PortableFactory is not given in the
serialization configuration for a portable object, the user domain class cannot be created, and
Hazelcast returns GenericRecord instead. In the previous Hazelcast IMDG releases, we were
throwing HazelcastSerializationException("Could not create Portable for class-id: " + classId)
for the same situation.

GenericRecord is an immutable object. It allows you to read the field of objects via the related field
names. GenericRecord is applicable only to Portable objects.

You can use this feature when the cluster does not have the domain classes of the clients in a client-
server architecture. On remote calls like distributed executor service or entry processors, you may
need to access the domain object. In case the class of the domain object is not available on the
cluster, GenericRecord allows to access, read and write the objects back without the class of the
domain object on the classpath. Here is a read example with entry processor:

70

map.executeOnKey(key, (EntryProcessor<Object, Object, Object>) entry -> {
 Object value = entry.getValue();
 GenericRecord genericRecord = (GenericRecord) value;

 int id = genericRecord.readInt("id");

 return null;
 });

An alternative approach introduced in the previous Hazelcast IMDG releases is the User Code
Deployment feature to deploy the classes from the client to the cluster. However, it has a
restriction: you can not upload a new version of your class to the cluster if you use the portable
versioning support. Loading two different versions of the same class on the JVM is not a problem
that we want to solve: using GenericRecord, you can easily write different versions of your classes
from the clients and access them without using the User Code Deployment feature.

With the introduction of GenericRecord, User Code Deployment should be used only for functional
objects like Runnable, Callable and EntryProcessor.

You can also create a GenericRecord in portable format with GenericRecord.Builder as follows:

ClassDefinition classDefinition = new ClassDefinitionBuilder(PORTABLE_FACTORY_ID,
EMPLOYEE_CLASS_ID)
 .addUTFField("name").addIntField("id").build();

GenericRecord namedRecord = GenericRecord.Builder.portable(classDefinition)
 .writeUTF("name", "foo")
 .writeInt("id", 123).build();

Note that the class definitions are better to be created once and used when creating different
instances of the same type GenericRecord.

We have also added two convenience methods in GenericRecord for you to avoid passing a class
definition. For example, if you want to modify a value and put it back using an entry processor, you
don’t need to create a class definition. Instead you can create a builder from GenericRecord which
carries the same class definition as follows:

map.executeOnKey("key", (EntryProcessor<Object, Object, Object>) entry -> {
 GenericRecord genericRecord = (GenericRecord) entry.getValue();
 GenericRecord modifiedGenericRecord = genericRecord.newBuilder()
 .writeUTF("name","Kermit")
 .writeLong("id", 4)
 .writeInt("age",20)
 .writeUTF("surname", "The Frog").build();
 entry.setValue(modifiedGenericRecord);
 return null;
 });

71

Another convenience method is cloneWithBuilder. This is useful if you want to update only a couple
of fields from the original genericRecord. In that case, the new builder carries both classDefinition
and values from the original genericRecord. Here is the same example where we just update the
age:

map.executeOnKey("key", (EntryProcessor<Object, Object, Object>) entry -> {
 GenericRecord genericRecord = (GenericRecord) entry.getValue();
 GenericRecord modifiedGenericRecord = genericRecord.cloneWithBuilder()
 .writeInt("age",22).build();
 entry.setValue(modifiedGenericRecord);
 return null;
 });

Another use case of this feature is on the client side (could also be a member): GenericRecord allows
to read from/write to a cluster without having the related classes on the classpath. A client could
work with the cluster without introducing the PortableFactory at the start. In this case, the client
works with GenericRecords instead of domain classes. An example code snippet on the client side
with a map is shown below:

GenericRecord record = (GenericRecord) map.get("key1");
String name = record.readUTF("name");
int id = record.readInt("id");

GenericRecord newGenericRecord = genericRecord.cloneWithBuilder()
 .writeInt("age",22).build();

map.put("key2", newGenericRecord);

6.10. Partition Group Configuration
Hazelcast distributes key objects into partitions using the consistent hashing algorithm. Multiple
replicas are created for each partition and those partition replicas are distributed among Hazelcast
members. An entry is stored in the members that own replicas of the partition to which the entry’s
key is assigned. The total partition count is 271 by default; you can change it with the configuration
property hazelcast.partition.count. See the System Properties appendix.

Hazelcast member that owns the primary replica of a partition is called as the partition owner.
Other replicas are called backups. Based on the configuration, a key object can be kept in multiple
replicas of a partition. A member can hold at most one replica of a partition (ownership or backup).

By default, Hazelcast distributes partition replicas randomly and equally among the cluster
members, assuming all members in the cluster are identical. But what if some members share the
same JVM or physical machine or chassis and you want backups of these members to be assigned to
members in another machine or chassis? What if processing or memory capacities of some
members are different and you do not want an equal number of partitions to be assigned to all
members?

72

To deal with such scenarios, you can group members in the same JVM (or physical machine) or
members located in the same chassis. Or you can group members to create identical capacity. We
call these groups partition groups. Partitions are assigned to those partition groups instead of
individual members. Backup replicas of a partition which is owned by a partition group are located
in other partition groups.

6.10.1. Grouping Types

When you enable partition grouping, Hazelcast presents the following choices for you to configure
partition groups.

HOST_AWARE

You can group members automatically using the IP addresses of members, so members sharing the
same network interface are grouped together. All members on the same host (IP address or domain
name) form a single partition group. This helps to avoid data loss when a physical server crashes,
because multiple replicas of the same partition are not stored on the same host. But if there are
multiple network interfaces or domain names per physical machine, this assumption is invalid.

The following are declarative and programmatic configuration snippets that show how to enable
HOST_AWARE grouping:

<partition-group enabled="true" group-type="HOST_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)
 .setGroupType(MemberGroupType.HOST_AWARE);

CUSTOM

You can do custom grouping using Hazelcast’s interface matching configuration. This way, you can
add different and multiple interfaces to a group. You can also use wildcards in the interface
addresses. For example, the users can create rack-aware or data warehouse partition groups using
custom partition grouping.

The following are declarative and programmatic configuration examples that show how to enable
and use CUSTOM grouping:

73

XML

<hazelcast>
 ...
 <partition-group enabled="true" group-type="CUSTOM">
 <member-group>
 <interface>10.10.0.*</interface>
 <interface>10.10.3.*</interface>
 <interface>10.10.5.*</interface>
 </member-group>
 <member-group>
 <interface>10.10.10.10-100</interface>
 <interface>10.10.1.*</interface>
 <interface>10.10.2.*</interface>
 </member-group>
 </partition-group>
 ...
</hazelcast>

YAML

hazelcast:
 partition-group:
 enabled: true
 group-type: CUSTOM
 member-group:
 - - 10.10.0.*
 - 10.10.3.*
 - 10.10.5.*
 - - 10.10.10.10-100
 - 10.10.1.*
 - 10.10.2.*

Config config = new Config();
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)
 .setGroupType(PartitionGroupConfig.MemberGroupType.CUSTOM);

MemberGroupConfig memberGroupConfig = new MemberGroupConfig();
memberGroupConfig.addInterface("10.10.0.*")
 .addInterface("10.10.3.*").addInterface("10.10.5.*");

MemberGroupConfig memberGroupConfig2 = new MemberGroupConfig();
memberGroupConfig2.addInterface("10.10.10.10-100")
 .addInterface("10.10.1.*").addInterface("10.10.2.*");

partitionGroupConfig.addMemberGroupConfig(memberGroupConfig);
partitionGroupConfig.addMemberGroupConfig(memberGroupConfig2);

74

While your cluster was forming, if you configured your members to discover each
other by their IP addresses, you should use the IP addresses for the <interface>
element. If your members discovered each other by their host names, you should
use host names.

PER_MEMBER

You can give every member its own group. Each member is a group of its own and primary and
backup partitions are distributed randomly (not on the same physical member). This gives the least
amount of protection and is the default configuration for a Hazelcast cluster. This grouping type
provides good redundancy when Hazelcast members are on separate hosts. However, if multiple
instances run on the same host, this type is not a good option.

The following are declarative and programmatic configuration snippets that show how to enable
PER_MEMBER grouping:

<partition-group enabled="true" group-type="PER_MEMBER" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)
 .setGroupType(MemberGroupType.PER_MEMBER);

ZONE_AWARE

You can use ZONE_AWARE configuration with Hazelcast Kubernetes, Hazelcast AWS, Hazelcast GCP,
Hazelcast jclouds or Hazelcast Azure Discovery Service plugins.

As discovery services, these plugins put zone information to the Hazelcast member attributes map
during the discovery process. When ZONE_AWARE is configured as partition group type, Hazelcast
creates the partition groups with respect to member attributes map entries that include zone
information. That means backups are created in the other zones and each zone is accepted as one
partition group.

When using the ZONE_AWARE partition grouping, a Hazelcast cluster spanning
multiple AZs should have an equal number of members in each AZ. Otherwise, it
results in uneven partition distribution among the members.

The following is the list of supported attributes which is set by the Discovery Service plugins during
a Hazelcast member start-up:

• hazelcast.partition.group.zone: For the zones in the same area.

• hazelcast.partition.group.rack: For different racks in the same zone.

• hazelcast.partition.group.host: For a shared physical member if virtualization is used.

75

https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-gcp
https://github.com/hazelcast/hazelcast-jclouds
https://github.com/hazelcast/hazelcast-azure

Hazelcast jclouds plugin offers rack or host information in addition to zone
information based on the cloud provider. In such cases, Hazelcast looks for zone,
rack and host information in the given order and create partition groups with
available information.

The following are declarative and programmatic configuration snippets that show how to enable
ZONE_AWARE grouping:

<partition-group enabled="true" group-type="ZONE_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)
 .setGroupType(MemberGroupType.ZONE_AWARE);

NODE_AWARE

You can use the NODE_AWARE configuration with Hazelcast Kubernetes Discovery Service plugin.
For container orchestration tools like Kubernetes and Docker Swarm, node is the term used to refer
to the machine that containers/pods run on.

As discovery services, these plugins put node information to the Hazelcast member attributes map
during the discovery process. When NODE_AWARE is configured as partition group type, Hazelcast
creates the partition groups with respect to member attributes map’s entries that include the node
information. That means backups are created in the other nodes and each node is accepted as one
partition group.

When using the NODE_AWARE partition grouping, the orchestration tool must
distribute Hazelcast containers/pods equally between the nodes. Otherwise, it
results in uneven partition distribution among the members.

The following are declarative and programmatic configuration snippets that show how to enable
NODE_AWARE grouping:

<partition-group enabled="true" group-type="NODE_AWARE" />

Config config = ...;
PartitionGroupConfig partitionGroupConfig = config.getPartitionGroupConfig();
partitionGroupConfig.setEnabled(true)
 .setGroupType(MemberGroupType.NODE_AWARE);

SPI

You can provide your own partition group implementation using the SPI configuration. To create

76

https://github.com/hazelcast/hazelcast-kubernetes/tree/1.5.x

your partition group implementation, you need to first extend the DiscoveryStrategy class of the
discovery service plugin, override the method public PartitionGroupStrategy

getPartitionGroupStrategy() and return the PartitionGroupStrategy configuration in that
overridden method.

The following code covers the implementation steps mentioned in the above paragraph:

public class CustomDiscovery extends AbstractDiscoveryStrategy {

 public CustomDiscovery(ILogger logger, Map<String, Comparable> properties) {
 super(logger, properties);
 }

 @Override
 public Iterable<DiscoveryNode> discoverNodes() {
 Iterable<DiscoveryNode> iterable = //your implementation
 return iterable;
 }

 @Override
 public PartitionGroupStrategy getPartitionGroupStrategy() {
 return new CustomPartitionGroupStrategy();
 }

 private class CustomPartitionGroupStrategy implements PartitionGroupStrategy {
 @Override
 public Iterable<MemberGroup> getMemberGroups() {
 Iterable<MemberGroup> iterable = //your implementation
 return iterable;
 }
 }
}

6.11. Logging Configuration
Hazelcast has a flexible logging configuration and does not depend on any logging framework
except JDK logging. It has built-in adapters for a number of logging frameworks and it also supports
custom loggers by providing logging interfaces.

To use the built-in adapters, set the hazelcast.logging.type property to one of the predefined types
below:

• jdk: JDK logging (default)

• log4j: Log4j

• log4j2: Log4j2

• slf4j: Slf4j

• none: disable logging

77

You can set hazelcast.logging.type through declarative configuration, programmatic configuration
or JVM system property.

If you choose to use log4j, log4j2, or slf4j, you should include the proper
dependencies in the classpath.

Declarative Configuration:

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.logging.type">log4j</property>
 </properties>
 ...
</hazelcast>

YAML

hazelcast:
 properties:
 hazelcast.logging.type: log4j

Programmatic Configuration

Config config = new Config() ;
config.setProperty("hazelcast.logging.type", "log4j");

System Property

• using the java -Dhazelcast.logging.type=slf4j JVM parameter

• using System.setProperty("hazelcast.logging.type", "none"); System class

If the provided logging mechanisms are not satisfactory, you can implement your own using the
custom logging feature. To use it, implement the com.hazelcast.logging.LoggerFactory and
com.hazelcast.logging.ILogger interfaces and set the system property hazelcast.logging.class as
your custom LoggerFactory class name.

-Dhazelcast.logging.class=foo.bar.MyLoggingFactory

You can also listen to logging events generated by Hazelcast runtime by registering LogListeners to
LoggingService.

78

LogListener listener = new LogListener() {
 public void log(LogEvent logEvent) {
 // do something
 }
};
HazelcastInstance instance = Hazelcast.newHazelcastInstance();
LoggingService loggingService = instance.getLoggingService();
loggingService.addLogListener(Level.INFO, listener);

Through the LoggingService, you can get the currently used ILogger implementation and log your
own messages too.

If you are not using command line for configuring logging, you should be careful
about Hazelcast classes. They may be defaulted to jdk logging before newly
configured logging is read. When logging mechanism is selected, it will not change.

Below are example configurations for Log4j2 and Log4j. Note that Hazelcast does not recommend
any specific logging library, these examples are provided only to demonstrate how to configure the
logging. You can use your custom logging as explained above.

6.11.1. Example Log4j2 Configuration

Specify the logging type as Log4j2 and a separate logging configuration file as shown below.

Using JVM arguments:

-Dhazelcast.logging.type=log4j2
-Dlog4j.configurationFile=/path/to/properties/log4j2.properties

Using declarative configuration (hazelcast.xml/yaml):

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.logging.type">log4j2</property>
 <property name="log4j2.configuration">
/path/to/properties/log4j2.properties</property>
 </properties>
 ...
</hazelcast>

79

YAML

hazelcast:
 properties:
 hazelcast.logging.type: log4j2
 log4j2.configuration: /path/to/properties/log4j2.properties

Following is an example log4j2.properties file:

rootLogger=file
rootLogger.level=info
property.filepath=/path/to/log/files
property.filename=hazelcast

appender.file.type=RollingFile
appender.file.name=RollingFile
appender.file.fileName=${filepath}/${filename}.log
appender.file.filePattern=${filepath}/${filename}-%d{yyyy-MM-dd}-%i.log.gz
appender.file.layout.type=PatternLayout
appender.file.layout.pattern = %d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n
appender.file.policies.type=Policies
appender.file.policies.time.type=TimeBasedTriggeringPolicy
appender.file.policies.time.interval=1
appender.file.policies.time.modulate=true
appender.file.policies.size.type=SizeBasedTriggeringPolicy
appender.file.policies.size.size=50MB
appender.file.strategy.type=DefaultRolloverStrategy
appender.file.strategy.max=100

rootLogger.appenderRefs=file
rootLogger.appenderRef.file.ref=RollingFile

#Hazelcast specific logs.

#log4j.logger.com.hazelcast=debug

#log4j.logger.com.hazelcast.cluster=debug
#log4j.logger.com.hazelcast.partition=debug
#log4j.logger.com.hazelcast.partition.InternalPartitionService=debug
#log4j.logger.com.hazelcast.nio=debug
#log4j.logger.com.hazelcast.hibernate=debug

To enable the debug logs for all Hazelcast operations uncomment the below line in the above
configuration file:

log4j.logger.com.hazelcast=debug

If you do not need detailed logs, the default settings are enough. Using the Hazelcast specific lines in

80

the above configuration file, you can select to see specific logs (cluster, partition, hibernate, etc.) in
desired levels.

You can also use the hazelcast.logging.details.enabled property to specify whether the name, IP
address and version of the cluster are included in the logs. When there are lots of log lines, it may
be hard to follow. When set to false, those information will not appear.

6.11.2. Example Log4j Configuration

Its configuration is similar to that of Log4j2. Below is the JVM argument way of specifying the
logging type and configuration file:

-Dhazelcast.logging.type=log4j
-Dlog4j.configuration=file:/path/to/properties/log4j.properties

Following is an example log4j.properties file:

log4j.rootLogger=INFO,file

log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=/path/to/log/files/hazelcast.log
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p [%c{1}] - %m%n
log4j.appender.file.maxFileSize=50MB
log4j.appender.file.maxBackupIndex=100
log4j.appender.file.threshold=DEBUG

#log4j.logger.com.hazelcast=debug

#log4j.logger.com.hazelcast.cluster=debug
#log4j.logger.com.hazelcast.partition=debug
#log4j.logger.com.hazelcast.partition.InternalPartitionService=debug
#log4j.logger.com.hazelcast.nio=debug
#log4j.logger.com.hazelcast.hibernate=debug

6.12. Other Network Configurations
All network related configurations are performed via the network element in the Hazelcast XML
configuration file or the class NetworkConfig when using programmatic configuration. Following
subsections describe the available configurations that you can perform under the network element.

6.12.1. Public Address

public-address overrides the public address of a member. By default, a member selects its socket
address as its public address. But behind a network address translation (NAT), two endpoints
(members) may not be able to see/access each other. If both members set their public addresses to
their defined addresses on NAT, then that way they can communicate with each other. In this case,

81

their public addresses are not an address of a local network interface but a virtual address defined
by NAT. It is optional to set and useful when you have a private cloud. Note that, the value for this
element should be given in the format host IP address:port number. See the following examples.

Declarative Configuration:

XML

<hazelcast>
 ...
 <network>
 <public-address>11.22.33.44:5555</public-address>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 public-address: 11.22.33.44:5555

Programmatic Configuration:

Config config = new Config();
config.getNetworkConfig()
 .setPublicAddress("11.22.33.44:5555");

6.12.2. Port

You can specify the ports that Hazelcast uses to communicate between cluster members. Its default
value is 5701. The following are example configurations.

Declarative Configuration:

XML

<hazelcast>
 ...
 <network>
 <port port-count="20" auto-increment="true">5701</port>
 </network>
 ...
</hazelcast>

82

YAML

hazelcast:
 network:
 port:
 auto-increment: true
 port-count: 20
 port: 5701

Programmatic Configuration:

Config config = new Config();
config.getNetworkConfig().setPort(5701)
 .setPortAutoIncrement(true).setPortCount(20);

According to the above example, Hazelcast tries to find free ports between 5701 and 5720.

port has the following attributes.

• port-count: By default, Hazelcast tries 100 ports to bind. Meaning that, if you set the value of
port as 5701, as members are joining to the cluster, Hazelcast tries to find ports between 5701
and 5801. You can choose to change the port count in the cases like having large instances on a
single machine or willing to have only a few ports to be assigned. The parameter port-count is
used for this purpose, whose default value is 100.

• auto-increment: In some cases you may want to choose to use only one port. In that case, you can
disable the auto-increment feature of port by setting auto-increment to false. The port-count
attribute is not used when auto-increment feature is disabled.

6.12.3. Outbound Ports

By default, Hazelcast lets the system pick up an ephemeral port during socket bind operation. But
security policies/firewalls may require you to restrict outbound ports to be used by Hazelcast-
enabled applications. To fulfill this requirement, you can configure Hazelcast to use only defined
outbound ports. The following are example configurations.

Declarative Configuration:

83

XML

<hazelcast>
 ...
 <network>
 <outbound-ports>
 <!-- ports between 33000 and 35000 -->
 <ports>33000-35000</ports>
 <!-- comma separated ports -->
 <ports>37000,37001,37002,37003</ports>
 <ports>38000,38500-38600</ports>
 </outbound-ports>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 outbound-ports:
 - 33000-35000
 - 37000,37001,37002,37003
 - 38000,38500-38600

Programmatic Configuration:

...
NetworkConfig networkConfig = config.getNetworkConfig();
// ports between 35000 and 35100
networkConfig.addOutboundPortDefinition("35000-35100");
// comma separated ports
networkConfig.addOutboundPortDefinition("36001, 36002, 36003");
networkConfig.addOutboundPort(37000);
networkConfig.addOutboundPort(37001);
...

 You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one
port. If you need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port
definitions. When you set this element to 0 or *, your operating system (not Hazelcast) selects a free
port from the ephemeral range.

84

6.12.4. Reuse Address

When you shutdown a cluster member, the server socket port goes into the TIME_WAIT state for the
next couple of minutes. If you start the member right after shutting it down, you may not be able to
bind it to the same port because it is in the TIME_WAIT state. If you set the reuse-address element to
true, the TIME_WAIT state is ignored and you can bind the member to the same port again.

The following are example configurations.

Declarative Configuration:

XML

<hazelcast>
 ...
 <network>
 <reuse-address>true</reuse-address>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 reuse-address: true

Programmatic Configuration:

...
NetworkConfig networkConfig = config.getNetworkConfig();

networkConfig.setReuseAddress(true);
...

6.12.5. Join

The join configuration element is used to discover Hazelcast members and enable them to form a
cluster. Hazelcast provides Auto Detection, Multicast, TCP/IP, AWS, Kubernetes, Azure, GCP, Eureka,
and more. These mechanisms are explained the Discovery Mechanisms section. This section
describes all the sub-elements and attributes of join element. The following are example
configurations.

Declarative Configuration:

85

XML

<hazelcast>
 ...
 <network>
 <join>
 <auto-detection enabled="true" />
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 <multicast-time-to-live>32</multicast-time-to-live>
 <multicast-timeout-seconds>2</multicast-timeout-seconds>
 <trusted-interfaces>
 <interface>192.168.1.102</interface>
 </trusted-interfaces>
 </multicast>
 <tcp-ip enabled="false">
 <required-member>192.168.1.104</required-member>
 <member>192.168.1.104</member>
 <members>192.168.1.105,192.168.1.106</members>
 </tcp-ip>
 <aws enabled="false">
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-west-1</region>
 <host-header>ec2.amazonaws.com</host-header>
 <security-group-name>hazelcast-sg</security-group-name>
 <tag-key>type</tag-key>
 <tag-value>hz-members</tag-value>
 </aws>
 <discovery-strategies>
 <discovery-strategy ... />
 </discovery-strategies>
 </join>
 </network>
 ...
</hazelcast>

86

YAML

hazelcast:
 network:
 join:
 auto-detection:
 enabled: true
 multicast:
 enabled: false
 multicast-group: 224.2.2.3
 multicast-port: 54327
 multicast-time-to-live: 32
 multicast-timeout-seconds: 2
 trusted-interfaces:
 - 192.168.1.102
 tcp-ip:
 enabled: false
 required-member: 192.168.1.104
 member-list:
 - 192.168.1.104
 - 192.168.1.105,192.168.1.106
 aws:
 enabled: false
 access-key: my-access-key
 secret-key: my-secret-key
 region: us-west-1
 host-header: ec2.amazonaws.com
 security-group-name: hazelcast-sg
 tag-key: type
 tag-value: hz-nodes
 discovery-strategies:
 discovery-strategy:
 ...

Programmatic Configuration:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
JoinConfig join = network.getJoin();
join.getTcpIpConfig().addMember("10.45.67.32").addMember("10.45.67.100")
 .setRequiredMember("192.168.10.100").setEnabled(true);

The join element has the following sub-elements and attributes.

auto-detection element

The auto-detection element includes the following parameters:

• enabled: Enables Hazelcast Auto Detection, true by default.

87

multicast element

The multicast element includes parameters to fine tune the multicast join mechanism.

• enabled: Specifies whether the multicast discovery is enabled or not, true or false.

• multicast-group: The multicast group IP address. Specify it when you want to create clusters
within the same network. Values can be between 224.0.0.0 and 239.255.255.255. Its default value
is 224.2.2.3.

• multicast-port: The multicast socket port that the Hazelcast member listens to and sends
discovery messages through. Its default value is 54327.

• multicast-time-to-live: Time-to-live value for multicast packets sent out to control the scope of
multicasts. See more information here.

• multicast-timeout-seconds: Only when the members are starting up, this timeout (in seconds)
specifies the period during which a member waits for a multicast response from another
member. For example, if you set it as 60 seconds, each member waits for 60 seconds until a
leader member is selected. Its default value is 2 seconds.

• trusted-interfaces: Includes IP addresses of trusted members. When a member wants to join to
the cluster, its join request is rejected if it is not a trusted member. You can give an IP addresses
range using the wildcard (*) on the last digit of IP address, e.g., 192.168.1.* or 192.168.1.100-110.

If you prefer to use the multicast mechanism, make sure that your network is
enclosed and secure. See the Multicast section.

tcp-ip element

The tcp-ip element includes parameters to fine tune the TCP/IP join mechanism.

• enabled: Specifies whether the TCP/IP discovery is enabled or not. Values can be true or false.

• required-member: IP address of the required member. Cluster is only formed if the member with
this IP address is found.

• member: IP address(es) of one or more well known members. Once members are connected to
these well known ones, all member addresses are communicated with each other. You can also
give comma separated IP addresses using the members element.

tcp-ip element also accepts the interface parameter. See the Interfaces
element description.

• connection-timeout-seconds: Defines the connection timeout in seconds. This is the maximum
amount of time Hazelcast is going to try to connect to a well known member before giving up.
Setting it to a too low value could mean that a member is not able to connect to a cluster. Setting
it to a too high value means that member startup could slow down because of longer timeouts,
for example when a well known member is not up. Increasing this value is recommended if you
have many IPs listed and the members cannot properly build up the cluster. Its default value is
5 seconds.

88

http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

aws element

The aws element includes parameters to allow the members to form a cluster on the Amazon EC2
and ECS environments.

For details, please check the Hazelcast AWS Discovery plugin documentation.

azure element

The azure element includes parameters to allow the members to form a cluster on the Azure VM
machines.

For details, please check the Hazelcast Azure Discovery plugin documentation.

gcp element

The gcp element includes parameters to allow the members to form a cluster on the GCP Compute
VM instances.

For details, please check the Hazelcast GCP Discovery plugin documentation.

kubernetes element

The kubernetes element includes parameters to allow the members to form a cluster on the
Kubernetes environment.

For details, please check the Hazelcast Kubernetes Discovery plugin documentation.

discovery-strategies element

The discovery-strategies element configures internal or external discovery strategies based on the
Hazelcast Discovery SPI. For further information, see the Discovery SPI section and the vendor
documentation of the used discovery strategy.

6.12.6. Interfaces

You can specify which network interfaces that Hazelcast should use. Servers mostly have more than
one network interface, so you may want to list the valid IPs. Range characters "*" and "-" can be
used for simplicity. For instance, 10.3.10.* refers to IPs between 10.3.10.0 and 10.3.10.255. Interface
10.3.10.4-18 refers to IPs between 10.3.10.4 and 10.3.10.18 (4 and 18 included). If network interface
configuration is enabled (it is disabled by default) and if Hazelcast cannot find a matching interface,
then it prints a message on the console and does not start on that member.

The following are example configurations.

Declarative Configuration:

89

https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-azure
https://github.com/hazelcast/hazelcast-gcp
https://github.com/hazelcast/hazelcast-kubernetes

XML

<hazelcast>
 ...
 <network>
 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>192.168.1.3</interface>
 </interfaces>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 interfaces:
 enabled: true
 interfaces:
 - 10.3.16.*
 - 10.3.10.4-18
 - 192.168.1.3

Programmatic Configuration:

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();
InterfacesConfig interfaceConfig = network.getInterfaces();
interfaceConfig.setEnabled(true)
 .addInterface("192.168.1.3");

6.12.7. IPv6 Support

Hazelcast supports IPv6 addresses seamlessly (This support is switched off by default, see the note
at the end of this section).

All you need is to define IPv6 addresses or interfaces in the network configuration. The only
current limitation is that you cannot define wildcard IPv6 addresses in the TCP/IP join
configuration (tcp-ip element). Interfaces configuration does not have this limitation, you can
configure wildcard IPv6 interfaces in the same way as IPv4 interfaces.

90

XML

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>FF02:0:0:0:0:0:0:1</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <member>[fe80::223:6cff:fe93:7c7e]:5701</member>
 <interface>192.168.1.0-7</interface>
 <interface>192.168.1.*</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:493a</interface>
 </tcp-ip>
 </join>
 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:*</interface>
 <interface>fe80::223:6cff:fe93:0-5555</interface>
 </interfaces>
 </network>
 ...
</hazelcast>

91

YAML

hazelcast:
 network:
 port:
 auto-increment: true
 port: 5701
 join:
 multicast:
 enabled: false
 multicast-group: FF02:0:0:0:0:0:0:1
 multicast-port: 54327
 tcp-ip:
 enabled: true
 member: [fe80::223:6cff:fe93:7c7e]:5701
 interface: 192.168.1.0-7
 interface: 192.168.1.*
 interface: fe80:0:0:0:45c5:47ee:fe15:493a
 interfaces:
 enabled: true
 interfaces:
 - 10.3.16.*
 - 10.3.10.4-18
 - fe80:0:0:0:45c5:47ee:fe15:*
 - fe80::223:6cff:fe93:0-5555

JVM has two system properties for setting the preferred protocol stack (IPv4 or IPv6) as well as the
preferred address family types (inet4 or inet6). On a dual stack machine, IPv6 stack is preferred by
default, you can change this through the java.net.preferIPv4Stack=<true|false> system property.
When querying name services, JVM prefers IPv4 addresses over IPv6 addresses and returns an IPv4
address if possible. You can change this through java.net.preferIPv6Addresses=<true|false> system
property.

See also additional details on IPv6 support in Java.

IPv6 support has been switched off by default, since some platforms have issues
using the IPv6 stack. Some other platforms such as Amazon AWS have no support
at all. To enable IPv6 support, just set configuration property
hazelcast.prefer.ipv4.stack to false. See the System Properties appendix for
details.

6.12.8. Member Address Provider SPI

This SPI is not intended to provide addresses of other cluster members with which
the Hazelcast instance forms a cluster. To do that, see the previous sections above.

By default, Hazelcast chooses the public and bind address. You can influence on the choice by
defining a public-address in the configuration or by using other properties mentioned above. In
some cases, though, these properties are not enough and the default address picking strategy

92

http://docs.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/

chooses wrong addresses. This may be the case when deploying Hazelcast in some cloud
environments, such as AWS, when using Docker or when the instance is deployed behind a NAT
and the public-address property is not enough (see the Public Address section).

In these cases, it is possible to configure the bind and public address in a more advanced way. You
can provide an implementation of the com.hazelcast.spi.MemberAddressProvider interface which
provides the bind and public address. The implementation may then choose these addresses in any
way - it may read from a system property or file or even invoke a web service to retrieve the public
and private address.

The details of the implementation depend heavily on the environment in which Hazelcast is
deployed. As such, we now demonstrate how to configure Hazelcast to use a simplified custom
member address provider SPI implementation. An example implementation is shown below:

public static final class SimpleMemberAddressProvider implements MemberAddressProvider
{
 @Override
 public InetSocketAddress getBindAddress() {
 // determine the address using some configuration, calling an API, ...
 return new InetSocketAddress(hostname, port);
 }

 @Override
 public InetSocketAddress getPublicAddress() {
 // determine the address using some configuration, calling an API, ...
 return new InetSocketAddress(hostname, port);
 }
}

Note that if the bind address port is 0 then it uses a port as configured in the Hazelcast network
configuration (see the Port section). If the public address port is set to 0 then it broadcasts the same
port that it is bound to. If you wish to bind to any local interface, you may return new
InetSocketAddress((InetAddress) null, port) from the getBindAddress() address.

The following configuration examples contain properties that are provided to the constructor of the
provider class. If you do not provide any properties, the class may have either a no-arg constructor
or a constructor accepting a single java.util.Properties instance. On the other hand, if you do
provide properties in the configuration, the class must have a constructor accepting a single
java.util.Properties instance.

Declarative Configuration:

93

XML

<hazelcast>
 ...
 <network>
 <member-address-provider enabled="true">
 <class-name>SimpleMemberAddressProvider</class-name>
 <properties>
 <property name="prop1">prop1-value</property>
 <property name="prop2">prop2-value</property>
 </properties>
 </member-address-provider>
 <!-- other network configurations -->
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 member-address-provider:
 enabled: true
 class-name: SimpleMemberAddressProvider
 properties:
 prop1: prop1-value
 prop2: prop2-value
 ...

Programmatic Configuration:

Config config = new Config();
MemberAddressProviderConfig memberAddressProviderConfig = config.getNetworkConfig()
.getMemberAddressProviderConfig();
memberAddressProviderConfig
 .setEnabled(true)
 .setClassName(MemberAddressProviderWithStaticProperties.class.getName());
Properties properties = memberAddressProviderConfig.getProperties();
properties.setProperty("prop1", "prop1-value");
properties.setProperty("prop2", "prop2-value");

config.getNetworkConfig().getJoin().getAutoDetectionConfig().setEnabled(false);

// perform other configuration

Hazelcast.newHazelcastInstance(config);

94

6.13. Failure Detector Configuration
A failure detector is responsible to determine if a member in the cluster is unreachable or crashed.
The most important problem in failure detection is to distinguish whether a member is still alive
but slow or has crashed. But according to the famous FLP result, it is impossible to distinguish a
crashed member from a slow one in an asynchronous system. A workaround to this limitation is to
use unreliable failure detectors. An unreliable failure detector allows a member to suspect that
others have failed, usually based on liveness criteria but it can make mistakes to a certain degree.

Hazelcast has the following built-in failure detectors: Deadline Failure Detector and Phi Accrual
Failure Detector.

There is also a Ping Failure Detector, that, if enabled, works in parallel with the above ones, but
identifies the failures on OSI Layer 3 (Network Layer). This detector is by default disabled.

Note that, Hazelcast also offers failure detectors for its Java client. See the Client Failure Detectors
section for more information.

6.13.1. Deadline Failure Detector

Deadline Failure Detector uses an absolute timeout for missing/lost heartbeats. After timeout, a
member is considered as crashed/unavailable and marked as suspected.

Deadline Failure Detector has the following configuration properties:

• hazelcast.heartbeat.interval.seconds: This is the interval at which member heartbeat messages
are sent to each other.

• hazelcast.max.no.heartbeat.seconds: This is the timeout which defines when a cluster member
is suspected because it has not sent any heartbeats.

To use Deadline Failure Detector, the configuration property
hazelcast.heartbeat.failuredetector.type should be set to "deadline".

Declarative Configuration:

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.heartbeat.failuredetector.type">deadline</property>
 <property name="hazelcast.heartbeat.interval.seconds">5</property>
 <property name="hazelcast.max.no.heartbeat.seconds">120</property>
 </properties>
 ...
</hazelcast>

95

http://dl.acm.org/citation.cfm?doid=3149.214121

YAML

hazelcast:
 properties:
 hazelcast.heartbeat.failuredetector.type: deadline
 hazelcast.heartbeat.interval.seconds: 5
 hazelcast.max.no.heartbeat.seconds: 120

Programmatic Configuration:

Config config = ...;
config.setProperty("hazelcast.heartbeat.failuredetector.type", "deadline");
config.setProperty("hazelcast.heartbeat.interval.seconds", "5");
config.setProperty("hazelcast.max.no.heartbeat.seconds", "120");
[...]

 Deadline Failure Detector is the default failure detector in Hazelcast.

6.13.2. Phi Accrual Failure Detector

This is the failure detector based on The Phi Accrual Failure Detector' by Hayashibara et al.

Phi Accrual Failure Detector keeps track of the intervals between heartbeats in a sliding window of
time and measures the mean and variance of these samples and calculates a value of suspicion
level (Phi). The value of phi increases when the period since the last heartbeat gets longer. If the
network becomes slow or unreliable, the resulting mean and variance increase, there needs to be a
longer period for which no heartbeat is received before the member is suspected.

The hazelcast.heartbeat.interval.seconds and hazelcast.max.no.heartbeat.seconds properties still
can be used as period of heartbeat messages and deadline of heartbeat messages. Since Phi Accrual
Failure Detector is adaptive to network conditions, a much lower
hazelcast.max.no.heartbeat.seconds can be defined than Deadline Failure Detector's timeout.

In addition to the above two properties, Phi Accrual Failure Detector has the following configuration
properties:

• hazelcast.heartbeat.phiaccrual.failuredetector.threshold: This is the phi threshold for
suspicion. After calculated phi exceeds this threshold, a member is considered as unreachable
and marked as suspected. A low threshold allows to detect member crashes/failures faster but
can generate more mistakes and cause wrong member suspicions. A high threshold generates
fewer mistakes but is slower to detect actual crashes/failures.

phi = 1 means likeliness that we will make a mistake is about 10%. The likeliness is about 1% with
phi = 2, 0.1% with phi = 3 and so on. Default phi threshold is 10.

• hazelcast.heartbeat.phiaccrual.failuredetector.sample.size: Number of samples to keep for
history. Its default value is 200.

• hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis: Minimum standard

96

https://www.computer.org/csdl/proceedings/srds/2004/2239/00/22390066-abs.html

deviation to use for the normal distribution used when calculating phi. Too low standard
deviation might result in too much sensitivity.

To use Phi Accrual Failure Detector, configuration property
hazelcast.heartbeat.failuredetector.type should be set to "phi-accrual".

Declarative Configuration:

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.heartbeat.failuredetector.type">phi-
accrual</property>
 <property name="hazelcast.heartbeat.interval.seconds">1</property>
 <property name="hazelcast.max.no.heartbeat.seconds">60</property>
 <property name="hazelcast.heartbeat.phiaccrual.failuredetector.threshold">
10</property>
 <property name="hazelcast.heartbeat.phiaccrual.failuredetector.sample.size"
>200</property>
 <property name=
"hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis">100</property>
 </properties>
 ...
</hazelcast>

YAML

hazelcast:
 properties:
 hazelcast.heartbeat.failuredetector.type: phi-accrual
 hazelcast.heartbeat.interval.seconds: 1
 hazelcast.max.no.heartbeat.seconds: 60
 hazelcast.heartbeat.phiaccrual.failuredetector.sample.size: 200
 hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis: 100

Programmatic Configuration:

Config config = ...;
config.setProperty("hazelcast.heartbeat.failuredetector.type", "phi-accrual");
config.setProperty("hazelcast.heartbeat.interval.seconds", "1");
config.setProperty("hazelcast.max.no.heartbeat.seconds", "60");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.threshold", "10");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.sample.size", "200
");
config.setProperty("hazelcast.heartbeat.phiaccrual.failuredetector.min.std.dev.millis"
, "100");
[...]

97

6.13.3. Ping Failure Detector

The Ping Failure Detector may be configured in addition to one of Deadline and Phi Accrual Failure
Detectors. It operates at Layer 3 of the OSI protocol and provides much quicker and more
deterministic detection of hardware and other lower level events. This detector may be configured
to perform an extra check after a member is suspected by one of the other detectors, or it can work
in parallel, which is the default. This way hardware and network level issues are detected more
quickly.

This failure detector is based on InetAddress.isReachable(). When the JVM process has enough
permissions to create RAW sockets, the implementation chooses to rely on ICMP Echo requests. This
is preferred.

If there are not enough permissions, it can be configured to fallback on attempting a TCP Echo on
port 7. In the latter case, both a successful connection or an explicit rejection is treated as "Host is
Reachable". Or, it can be forced to use only RAW sockets. This is not preferred as each call creates a
heavy weight socket and moreover the Echo service is typically disabled.

For the Ping Failure Detector to rely only on ICMP Echo requests, there are some criteria that need
to be met.

Requirements and Linux/Unix Configuration

• Supported OS: as of Java 1.8 only Linux/Unix environments are supported. This detector
relies on ICMP, i.e., the protocol behind the ping command. It tries to issue the ping attempts
periodically, and their responses are used to determine the reachability of the remote member.
However, you cannot simply create an ICMP Echo Request because these type of packets do not
rely on any of the preexisting transport protocols such as TCP. In order to create such a request,
you must have the privileges to create RAW sockets (see https://linux.die.net/man/7/raw). Most
operating systems allow this to the root users, however Unix based ones are more flexible and
allow the use of custom privileges per process instead of requiring root access. Therefore, this
detector is supported only on Linux.

• The Java executable must have the cap_net_raw capability. As described in the above
requirement, on Linux, you have the ability to define extra capabilities to a single process,
which would allow the process to interact with the RAW sockets. This interaction is achieved via
the capability cap_net_raw (see https://linux.die.net/man/7/capabilities). To enable this capability
run the following command:

sudo setcap cap_net_raw=+ep <JDK_HOME>/jre/bin/java

• When running with custom capabilities, the dynamic linker on Linux rejects loading the
libs from untrusted paths. Since you have now cap_net_raw as a custom capability for a
process, it becomes suspicious to the dynamic linker and throws an error: java: error while
loading shared libraries: libjli.so: cannot open shared object file: No such file or
directory

◦ To overcome this rejection, the <JDK_HOME>/jre/lib/amd64/jli/ path needs to be added in the
ld.conf. Run the following command to do this: echo "<JDK_HOME>/jre/lib/amd64/jli/" >>
/etc/ld.so.conf.d/java.conf && sudo ldconfig

• ICMP Echo Requests must not be blocked by the receiving hosts.

98

https://linux.die.net/man/7/raw
https://linux.die.net/man/7/capabilities

/proc/sys/net/ipv4/icmp_echo_ignore_all set to 0. Run the following command:

echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_all

If any of the above criteria isn’t met, then the isReachable always falls back on TCP Echo attempts
on port 7.

To be able to use the Ping Failure Detector, you can configure it using the icmp element in your
Hazelcast IMDG declarative configuration file, e.g., hazelcast.xml. An example is shown below:

XML

<hazelcast>
 <network>
 ...
 <failure-detector>
 <icmp enabled="true">
 <timeout-milliseconds>1000</timeout-milliseconds>
 <fail-fast-on-startup>true</fail-fast-on-startup>
 <interval-milliseconds>1000</interval-milliseconds>
 <max-attempts>3</max-attempts>
 <parallel-mode>true</parallel-mode>
 <ttl>0</ttl>
 </icmp>
 </failure-detector>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 failure-detector:
 icmp:
 enabled: true
 timeout-milliseconds: 1000
 fail-fast-on-startup: true
 interval-milliseconds: 1000
 max-attempts: 3
 parallel-mode: true
 ttl: 0

The following are the element and attribute descriptions:

• enabled: Specifies whether the legacy ICMP detection mode is enabled; works cooperatively with
the existing failure detector and only kicks-in after a pre-defined period has passed with no
heartbeats from a member. Its default value is false.

• parallel-mode: Specifies whether the parallel ping detector is enabled; works separately from

99

the other detectors. Its default value is true.

• timeout-milliseconds: Number of milliseconds until a ping attempt is considered failed if there
was no reply. Its default value is 1000 milliseconds.

• max-attempts: Maximum number of ping attempts before the member/node gets suspected by
the detector. Its default value is 2.

• interval-milliseconds: Interval, in milliseconds, between each ping attempt. 1000ms (1 sec) is
also the minimum interval allowed. Its default value is 1000 milliseconds.

• ttl: Maximum number of hops the packets should go through. Its default value is 0.

• fail-fast-on-startup: Specifies whether the cluster member fails to start if it is unable to action
an ICMP ping command when ICMP is enabled. Failure is usually due to OS level restrictions.

In the above example configuration, the Ping detector attempts 3 pings, one every second and waits
up to 1 second for each to complete. If after 3 seconds, there was no successful ping, the member
gets suspected.

To enforce the Requirements, the property hazelcast.icmp.echo.fail.fast.on.startup can also be
set to true, in which case, if any of the requirements isn’t met, Hazelcast fails to start.

Below is a summary table of all possible configuration combinations of the ping failure detector.

Table 3. Ping Failure Detector Possible Configuration Combinations

ICMP Parallel Fail-Fast Description Linux Window
s

macOS

false false false Completely disabled N/A N/A N/A

true false false Legacy ping mode. This
works hand-to-hand with
the OSI Layer 7 failure
detector (see. phi or
deadline in the sections
above). Ping in this mode
only kicks in after a period
when there are no
heartbeats received, in
which case the remote
Hazelcast member is pinged
up to a configurable count of
attempts. If all those
attempts fail, the member
gets suspected. You can
configure this attempt count
using the max-attempts
configuration element listed
above.

Supported ICMP
Echo if available -
Falls back on TCP
Echo on port 7

Support
ed TCP
Echo on
port 7

Support
ed ICMP
Echo if
availabl
e - Falls
back on
TCP
Echo on
port 7

100

ICMP Parallel Fail-Fast Description Linux Window
s

macOS

true true false Parallel ping detector, works
in parallel with the
configured failure detector.
Checks periodically if
members are live (OSI Layer
3) and suspects them
immediately, regardless of
the other detectors.

Supported ICMP
Echo if available -
Falls back on TCP
Echo on port 7

Support
ed TCP
Echo on
port 7

Support
ed ICMP
Echo if
availabl
e - Falls
back on
TCP
Echo on
port 7

true true true Parallel ping detector, works
in parallel with the
configured failure detector.
Checks periodically if
members are live (OSI Layer
3) and suspects them
immediately, regardless of
the other detectors.

Supported -
Requires OS
Configuration
Enforcing ICMP
Echo if available -
No start up if not
available

Not
Support
ed

Not
Support
ed -
Requires
root
privilege
s

6.14. Advanced Network Configuration
With the default configuration, Hazelcast members use a single server socket for all kinds of
connections: cluster members, Hazelcast clients implementing the Open Binary Client Protocol and
HTTP protocol clients connect to a single server socket that handles all the protocols.

You can also configure the Hazelcast members with separate server sockets using a different
network configuration for different protocols. This configuration scheme allows more flexibility
when deploying Hazelcast as described in the following cases:

• For security, it is possible to bind the member protocol server socket on a protected internal
network interface, while the client connections can be established on another network interface
accessible by the Hazelcast clients.

• Different kinds of network connections can be established with different socket options. For
example varying send/receive window size to optimize the network usage, TLS for connections
over WAN while member-to-member connections may remain unencrypted, etc.

In the following example we introduce the advanced network configuration for a member to listen
for member-to-member connections on the default port 5701 while listening for client connections
on the port 9090:

Config config = new Config();
config.getAdvancedNetworkConfig().setEnabled(true);
config.getAdvancedNetworkConfig().setClientEndpointConfig(
 new ServerSocketEndpointConfig().setPort(9090)
);
HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
System.out.println(instance.getCluster().getLocalMember().getAddressMap());

101

Running this example prints something similar to the following output, indicating that the member
listens for the specified protocols on the respective configured ports:

{EndpointQualifier{type='CLIENT'}=[10.212.134.156]:9090, EndpointQualifier{type=
'MEMBER'}=[10.212.134.156]:5701}

The following is the equivalent declarative configuration:

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <member-server-socket-endpoint-config>
 <port>5701</port>
 </member-server-socket-endpoint-config>
 <client-server-socket-endpoint-config>
 <port>9090</port>
 </client-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

YAML

hazelcast:
 advanced-network:
 enabled: true
 member-server-socket-endpoint-config:
 port:
 - 5701
 client-server-socket-endpoint-config:
 port:
 - 9090

6.14.1. Setting Up Cluster Members for Advanced Network Configuration

Advanced network configuration and single-socket network configuration are mutually exclusive:
either an enabled AdvancedNetworkConfig or the NetworkConfig object is used to configure a
member’s networking, including the joiner, discovery, failure detectors, etc. as described in the
previous sections of this chapter.

You cannot define both elements in the declarative configuration, i.e., the network and advanced-
network elements cannot be configured at the same time. In the programmatic configuration, an
enabled AdvancedNetworkConfig takes precedence over the NetworkConfig. AdvancedNetworkConfig is
disabled by default, therefore the unisocket member configuration under NetworkConfig is used in
the default case.

102

When using the advanced network configuration, the following configurations are defined
member-wide:

• Joiner and cluster discovery (Multicast, TCP/IP, AWS, Azure, GCP, Kubernetes, Eureka, etc.)

• MemberAddressProvider configuration

• Failure detector configuration

In addition to the above, the advanced network configuration allows the configuration of multiple
endpoints: each endpoint configuration applies for a specific protocol, e.g., MEMBER and CLIENT. An
additional optional identifier can be configured to separate the configuration of multiple WAN
protocol endpoints.

The supported protocols are as follows:

• MEMBER: A member server socket is required for Hazelcast to operate. The default advanced
network configuration defines a member endpoint configuration listening on port 5701 (same
as the single-socket Hazelcast member configuration).

• CLIENT: A single server socket handling the Hazelcast Open Binary Client Protocol can be
optionally configured. If no such endpoint is configured, then the clients will not be able to
connect to the Hazelcast member.

• REST: A REST server socket is optional.

• MEMCACHE: When accessing a Hazelcast cluster over the Memcache text protocol, an endpoint
listening to MEMCACHE protocol must be defined.

• WAN: Multiple WAN endpoint configurations can be defined to determine the network settings of
outgoing connections (from the members of a source cluster to the target WAN cluster
members) or to establish server sockets on which a target WAN member can listen for the
incoming connections from the source cluster.

6.14.2. Server Socket Endpoint Configuration

The server socket endpoint configuration is common for all protocols. The elements comprising a
server socket endpoint configuration are identical to their single-socket network configuration
counterparts.

The following declarative configuration example includes all the common server socket endpoint
elements:

103

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <member-server-socket-endpoint-config>
 <port auto-increment="true" port-count="100">5701</port>
 <outbound-ports>
 <ports>33000-35000</ports>
 <ports>37000,37001,37002,37003</ports>
 <ports>38000,38500-38600</ports>
 </outbound-ports>
 <interfaces enabled="true">
 <interface>10.10.1.*</interface>
 </interfaces>
 <ssl enabled="true">
 <factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
 <properties>
 <property name="foo">bar</property>
 </properties>
 </ssl>
 <symmetric-encryption>
 <algorithm>ALGO</algorithm>
 <salt>SALT</salt>
 <password>PASS</password>
 <iteration-count>10000</iteration-count>
 </symmetric-encryption>
 <socket-interceptor enabled="true">
 <class-name>com.hazelcast.examples.MySocketInterceptor</class-name>
 <properties>
 <property name="foo">bar</property>
 </properties>
 </socket-interceptor>
 <socket-options>
 <buffer-direct>true</buffer-direct>
 <tcp-no-delay>true</tcp-no-delay>
 <keep-alive>true</keep-alive>
 <connect-timeout-seconds>64</connect-timeout-seconds>
 <send-buffer-size-kb>25</send-buffer-size-kb>
 <receive-buffer-size-kb>33</receive-buffer-size-kb>
 <linger-seconds>99</linger-seconds>
 </socket-options>
 <public-address>dummy</public-address>
 <reuse-address>true</reuse-address>
 </member-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

104

YAML

hazelcast:
 advanced-network
 enabled: true
 member-server-socket-endpoint-config:
 port:
 auto-increment: true
 port-count: 100
 port: 5701
 outbound-ports:
 - 33000-35000
 - 37000,37001,37002,37003
 - 38000,38500-38600
 interfaces:
 enabled: true
 interfaces:
 - 10.10.1.*
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.examples.MySSLContextFactory
 properties:
 foo: bar
 symmetric-encryption:
 algorithm: ALGO
 salt: SALT
 password: PASS
 iteration-count: 10000
 socket-interceptor:
 enabled: true
 class-name: com.hazelcast.examples.MySocketInterceptor
 properties:
 foo: bar
 socket-options:
 buffer-direct: true
 tcp-no-delay: true
 keep-alive: true
 connect-timeout-seconds: 64
 send-buffer-size-kb: 25
 receive-buffer-size-kb: 33
 linger-seconds: 99
 public-address: dummy
 reuse-address: true

When using the declarative configuration, specific element names introduce the server socket
endpoint configuration for each protocol:

• member-server-socket-endpoint-config for MEMBER protocol

• client-server-socket-endpoint-config for CLIENT protocol

105

• rest-server-socket-endpoint-config for REST endpoint

• memcache-server-socket-endpoint-config for MEMCACHE endpoint

• wan-server-socket-endpoint-config for WAN endpoints

When using the programmatic configuration, corresponding methods set the respective server
socket endpoint configuration:

config.getAdvancedNetworkConfig().setMemberEndpointConfig(
 new ServerSocketEndpointConfig()
 .setPort(5701)
 .setPortAutoIncrement(false)
 .setSSLConfig(new SSLConfig())
 .setReuseAddress(true)
 .setSocketTcpNoDelay(true)
);

6.14.3. Setting Up REST Server Socket Endpoint Configuration

In addition to the common server socket configuration described above, the REST endpoint
configuration includes certain additional elements which are used to enable/disable the REST
functionality groups.

config.getAdvancedNetworkConfig().setRestEndpointConfig(
 new RestServerEndpointConfig()
 .setPort(8080)
 .setPortAutoIncrement(false)
 .enableGroups(WAN, CLUSTER_READ, HEALTH_CHECK)
);

The following is the equivalent declarative configuration:

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <rest-server-socket-endpoint-config>
 <port auto-increment="false">8080</port>
 <endpoint-groups>
 <endpoint-group name="WAN" enabled="true"/>
 <endpoint-group name="CLUSTER_READ" enabled="true"/>
 <endpoint-group name="HEALTH_CHECK" enabled="true"/>
 </endpoint-groups>
 </rest-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

106

YAML

hazelcast:
 advanced-network:
 enabled: true
 rest-server-socket-endpoint-config:
 port:
 auto-increment: false
 port: 8080
 endpoint-groups:
 WAN:
 enabled: true
 CLUSTER_READ:
 enabled: true
 HEALTH_CHECK:
 enabled: true

6.14.4. Setting Up WAN Endpoints Configuration

Multiple WAN endpoint configurations can be defined to configure the outgoing connections and
server sockets, depending on the role of the member in the WAN replication. The configuration
examples are provided in the following sections for both active and passive side of the WAN
replication.

Configuring the WAN Active Side

The members on the active cluster initiate connections to the target cluster members, so there is no
need to create a server socket. A plain EndpointConfig is created that supplies the configuration for
the client side of connections that the active members will create:

107

config.getAdvancedNetworkConfig().addWanEndpointConfig(
 new EndpointConfig().setName("tokyo")
 .setSSLConfig(new SSLConfig()
 .setEnabled(true)
 .setFactoryClassName(
"com.hazelcast.examples.MySSLContextFactory")
 .setProperty("foo", "bar"))
);
WanReplicationConfig wanReplicationConfig = new WanReplicationConfig();
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setEndpoint("tokyo")
 .setTargetEndpoints("tokyo.hazelcast.com:8765");
wanReplicationConfig.addBatchReplicationPublisherConfig(publisherConfig);
config.addWanReplicationConfig(wanReplicationConfig);

config.getMapConfig("customers").setWanReplicationRef(
 new WanReplicationRef("replicate-to-tokyo", "com.company.MergePolicy",
emptyList(), false)
);

The following is the equivalent declarative configuration:

108

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <wan-endpoint-config name="tokyo">
 <ssl enabled="true">
 <factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
 <properties>
 <property name="endpoints">tokyo.example.com:11010</property>
 </properties>
 </ssl>
 </wan-endpoint-config>
 </advanced-network>
 ...
 <wan-replication name="replicate-to-tokyo">
 <batch-publisher>
 <cluster-name>clusterB</cluster-name>
 <target-endpoints>...</target-endpoints>
 </batch-publisher>
 </wan-replication>
 ...
 <map name="customer">
 <wan-replication-ref name="replicate-to-tokyo">
 <merge-policy>...</merge-policy>
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

109

YAML

hazelcast:
 advanced-network:
 enabled: true
 wan-endpoint-config:
 endpoint-tokyo:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.examples.MySSLContextFactory
 properties:
 endpoints: tokyo.example.com:11010
 wan-replication:
 replicate-to-tokyo:
 batch-publisher:
 cluster-name: clusterB<
 target-endpoints: ...
 map:
 customer:
 wan-replication-ref:
 replicate-to-tokyo:
 merge-policy-class-name: ...

The wan-endpoint-config element contains the same sub-elements as the member-server-socket-
endpoint-config element described above except port, public-address and reuse-address

Configuring the WAN Passive Side

On the passive cluster, a server socket is configured on the members to listen for the incoming WAN
connections, matching the network configuration (SSL configuration, etc.) configured on the active
side of the WAN replication.

config.getAdvancedNetworkConfig().addWanEndpointConfig(
 new ServerSocketEndpointConfig()
 .setName("tokyo")
 .setPort(11010)
 .setPortAutoIncrement(false)
 .setSSLConfig(new SSLConfig()
 .setEnabled(true)
 .setFactoryClassName(
"com.hazelcast.examples.MySSLContextFactory")
 .setProperty("foo", "bar")
));

The following is the equivalent declarative configuration:

110

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <wan-server-socket-endpoint-config name="tokyo">
 <port auto-increment="false">11010</port>
 <ssl enabled="true">
 <factory-class-name>
com.hazelcast.examples.MySSLContextFactory</factory-class-name>
 <properties>
 <property name="foo">bar</property>
 </properties>
 </ssl>
 </wan-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

YAML

hazelcast:
 advanced-network:
 enabled: true
 wan-server-socket-endpoint-config:
 tokyo:
 port:
 auto-increment: false
 port: 11010
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.examples.MySSLContextFactory
 properties:
 foo: bar

6.14.5. Advanced Network Configuration FAQ

Can I multiplex protocols on a single advanced network endpoint? For example, can I use a
single server socket to listen for MEMBER and CLIENT protocols?

No, each endpoint configuration that defines a server socket must bind to a different socket
address.

Can I mix unisocket and advanced network members in the same cluster?

No, the results will be undefined.

Can I configure multiple server socket endpoints for the same protocol?

You can only configure multiple server socket endpoints for WAN protocol. For other protocols
(MEMBER, CLIENT, REST, MEMCACHE), a single server socket can be configured.

111

7. Distributed Data Structures
As mentioned in the Overview section, Hazelcast offers distributed implementations of many
common data structures. For each of the client languages, Hazelcast mimics as closely as possible
the natural interface of the structure. So, for example in Java, the map follows java.util.Map
semantics. In the descriptions below, we mention each structure’s Java equivalent interface. All of
these structures are usable from Java, .NET, C++, Node.js, Python, and Go.

• Standard utility collections

◦ Map is the distributed implementation of java.util.Map. It lets you read from and write to a
Hazelcast map with methods such as get and put.

◦ Queue is the distributed implementation of java.util.concurrent.BlockingQueue. You can add
an item in one member and remove it from another one.

◦ Ringbuffer is implemented for reliable eventing system.

◦ Set is the distributed and concurrent implementation of java.util.Set. It does not allow
duplicate elements and does not preserve their order.

◦ List is similar to Hazelcast Set. The only difference is that it allows duplicate elements and
preserves their order.

◦ Multimap is a specialized Hazelcast map. It is a distributed data structure where you can
store multiple values for a single key.

◦ Replicated Map does not partition data. It does not spread data to different cluster members.
Instead, it replicates the data to all members.

◦ Cardinality Estimator is a data structure which implements Flajolet’s HyperLogLog
algorithm.

• Topic is the distributed mechanism for publishing messages that are delivered to multiple
subscribers. It is also known as the publish/subscribe (pub/sub) messaging model. See the Topic
section for more information. Hazelcast also has a structure called Reliable Topic which uses
the same interface of Hazelcast Topic. The difference is that it is backed up by the Ringbuffer
data structure. See the Reliable Topic section.

• Concurrency utilities

◦ FencedLock is the distributed implementation of java.util.concurrent.locks.Lock. When
you use lock, the critical section that Hazelcast Lock guards is guaranteed to be executed by
only one thread in the entire cluster.

◦ ISemaphore is the distributed implementation of java.util.concurrent.Semaphore. When
performing concurrent activities, semaphores offer permits to control the thread counts.

◦ IAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong.
Most of AtomicLong’s operations are available. However, these operations involve remote
calls and hence their performances differ from AtomicLong, due to being distributed.

◦ IAtomicReference is the distributed implementation of
java.util.concurrent.atomic.AtomicReference. When you need to deal with a reference in a
distributed environment, you can use Hazelcast IAtomicReference.

◦ FlakeIdGenerator is used to generate cluster-wide unique identifiers.

112

◦ ICountdownLatch is the distributed implementation of java.util.concurrent.CountDownLatch.
Hazelcast CountDownLatch is a gate keeper for concurrent activities. It enables the threads
to wait for other threads to complete their operations.

◦ PN counter is a distributed data structure where each Hazelcast instance can increment and
decrement the counter value and these updates are propagated to all replicas.

• Event Journal is a distributed data structure that stores the history of mutation actions on map
or cache.

7.1. Overview of Hazelcast Distributed Objects
Hazelcast has two types of distributed objects in terms of their partitioning strategies:

1. Data structures where each partition stores a part of the instance, namely partitioned data
structures.

2. Data structures where a single partition stores the whole instance, namely non-partitioned data
structures.

The following are the partitioned Hazelcast data structures:

• Map

• MultiMap

• Cache (Hazelcast JCache implementation)

• Event Journal

The following are the non-partitioned Hazelcast data structures:

• Queue

• Set

• List

• Ringbuffer

• FencedLock

• ISemaphore

• IAtomicLong

• IAtomicReference

• FlakeIdGenerator

• ICountdownLatch

• Cardinality Estimator

• PN Counter

Besides these, Hazelcast also offers the Replicated Map structure as explained in the above
Standard utility collections list.

113

7.1.1. Loading and Destroying a Distributed Object

Hazelcast offers a get method for most of its distributed objects. To load an object, first create a
Hazelcast instance and then use the related get method on this instance. Following example code
snippet creates an Hazelcast instance and a map on this instance.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

As to the configuration of distributed object, Hazelcast uses the default settings from the file
hazelcast.xml that comes with your Hazelcast download. Of course, you can provide an explicit
configuration in this XML or programmatically according to your needs. See the Understanding
Configuration section.

Note that, most of Hazelcast’s distributed objects are created lazily, i.e., a distributed object is
created once the first operation accesses it.

If you want to use an object you loaded in other places, you can safely reload it using its reference
without creating a new Hazelcast instance (customers in the above example).

To destroy a Hazelcast distributed object, you can use the method destroy. This method clears and
releases all resources of the object. Therefore, you must use it with care since a reload with the
same object reference after the object is destroyed creates a new data structure without an error.
See the following example code where one of the queues are destroyed and the other one is
accessed.

HazelcastInstance hz1 = Hazelcast.newHazelcastInstance();
HazelcastInstance hz2 = Hazelcast.newHazelcastInstance();
IQueue<String> q1 = hz1.getQueue("q");
IQueue<String> q2 = hz2.getQueue("q");
q1.add("foo");
System.out.println("q1.size: "+q1.size()+ " q2.size:"+q2.size());
q1.destroy();
System.out.println("q1.size: " + q1.size() + " q2.size:" + q2.size());

If you start the Member above, the output is as shown below:

q1.size: 1 q2.size:1
q1.size: 0 q2.size:0

As you see, no error is generated and a new queue resource is created.

Hazelcast is designed to create any distributed data structure whenever it is accessed, i.e.,
whenever a call is made to the data structure. Therefore, keep in mind that a data structure is
recreated when you perform an operation on it even after you have destroyed it.

114

7.1.2. Controlling Partitions

Hazelcast uses the name of a distributed object to determine which partition it will be put. Let’s
load two queues as shown below:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IQueue q1 = hazelcastInstance.getQueue("q1");
IQueue q2 = hazelcastInstance.getQueue("q2");

Since these queues have different names, they will be placed into different partitions. If you want
to put these two into the same partition, you use the @ symbol as shown below:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IQueue q1 = hazelcastInstance.getQueue("q1@foo");
IQueue q2 = hazelcastInstance.getQueue("q2@foo");

Now, these two queues will be put into the same partition whose partition key is foo. Note that you
can use the method getPartitionKey to learn the partition key of a distributed object. It may be
useful when you want to create an object in the same partition of an existing object. See its usage as
shown below:

String partitionKey = q1.getPartitionKey();
IQueue q3 = hazelcastInstance.getQueue("q3@"+partitionKey);

7.1.3. Common Features of all Hazelcast Data Structures

• If a member goes down, its backup replica (which holds the same data) dynamically
redistributes the data, including the ownership and locks on them, to the remaining live
members. As a result, there will not be any data loss.

• There is no single cluster master that can be a single point of failure. Every member in the
cluster has equal rights and responsibilities. No single member is superior. There is no
dependency on an external 'server' or 'master'.

7.1.4. Example Distributed Object Code

Here is an example of how you can retrieve existing data structure instances (map, queue, set,
topic, etc.) and how you can listen for instance events, such as an instance being created or
destroyed.

115

 ExampleDOL example = new ExampleDOL();
 Config config = new Config();

 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
 hazelcastInstance.addDistributedObjectListener(example);

 Collection<DistributedObject> distributedObjects = hazelcastInstance
.getDistributedObjects();
 for (DistributedObject distributedObject : distributedObjects) {
 System.out.println(distributedObject.getName());
 }
}

@Override
public void distributedObjectCreated(DistributedObjectEvent event) {
 DistributedObject instance = event.getDistributedObject();
 System.out.println("Created " + instance.getName());
}

@Override
public void distributedObjectDestroyed(DistributedObjectEvent event) {
 DistributedObject instance = event.getDistributedObject();
 System.out.println("Destroyed " + instance.getName());
}

7.2. Map
Hazelcast Map (IMap) extends the interface java.util.concurrent.ConcurrentMap and hence
java.util.Map. It is the distributed implementation of Java map. You can perform operations like
reading and writing from/to a Hazelcast map with the well known get and put methods.

IMap data structure can also be used by Hazelcast Jet for Real-Time Stream
Processing (by enabling the Event Journal on your map) and Fast Batch Processing.
Hazelcast Jet uses IMap as a source (reads data from IMap) and as a sink (writes
data to IMap). See the Fast Batch Processing and Real-Time Stream Processing use
cases for Hazelcast Jet. See also here in the Hazelcast Jet Programming Guide to
learn how Jet uses IMap, i.e., how it can read from and write to IMap.

7.2.1. Getting a Map and Putting an Entry

Hazelcast partitions your map entries and their backups, and almost evenly distribute them onto all
Hazelcast members. Each member carries approximately "number of map entries * 2 * 1/n" entries,
where n is the number of members in the cluster. For example, if you have a member with 1000
objects to be stored in the cluster and then you start a second member, each member will both
store 500 objects and back up the 500 objects in the other member.

116

https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet-start.sh/docs/api/sources-sinks#imap

Let’s create a Hazelcast instance and fill a map named Capitals with key-value pairs using the
following code. Use the HazelcastInstance getMap method to get the map, then use the map put
method to put an entry into the map.

HazelcastInstance hzInstance = Hazelcast.newHazelcastInstance();
Map<String, String> capitalcities = hzInstance.getMap("capitals");
 capitalcities.put("1", "Tokyo");
 capitalcities.put("2", "Paris");
 capitalcities.put("3", "Washington");
 capitalcities.put("4", "Ankara");
 capitalcities.put("5", "Brussels");
 capitalcities.put("6", "Amsterdam");
 capitalcities.put("7", "New Delhi");
 capitalcities.put("8", "London");
 capitalcities.put("9", "Berlin");
 capitalcities.put("10", "Oslo");
 capitalcities.put("11", "Moscow");
 ...
 capitalcities.put("120", "Stockholm");

When you run this code, a cluster member is created with a map whose entries are distributed
across the members' partitions. See the below illustration. For now, this is a single member cluster.

Please note that some of the partitions do not contain any data entries since we
only have 120 objects and the partition count is 271 by default. This count is
configurable and can be changed using the system property
hazelcast.partition.count. See the System Properties appendix.

117

7.2.2. Creating A Member for Map Backup

Now let’s create a second member by running the above code again. This creates a cluster with two
members. This is also where backups of entries are created - remember the backup partitions
mentioned in the Hazelcast Overview section. The following illustration shows two members and
how the data and its backup is distributed.

As you see, when a new member joins the cluster, it takes ownership and loads some of the data in
the cluster. Eventually, it will carry almost "(1/n * total-data) + backups" of the data, reducing the
load on other members.

HazelcastInstance.getMap() returns an instance of com.hazelcast.map.IMap which extends the
java.util.concurrent.ConcurrentMap interface. Methods like ConcurrentMap.putIfAbsent(key,value)
and ConcurrentMap.replace(key,value) can be used on the distributed map, as shown in the example
below.

118

public class BasicMapOperations {

 private HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

 public Customer getCustomer(String id) {
 ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
 Customer customer = customers.get(id);
 if (customer == null) {
 customer = new Customer(id);
 customer = customers.putIfAbsent(id, customer);
 }
 return customer;
 }

 public boolean updateCustomer(Customer customer) {
 ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
 return (customers.replace(customer.getId(), customer) != null);
 }

 public boolean removeCustomer(Customer customer) {
 ConcurrentMap<String, Customer> customers = hazelcastInstance.getMap(
"customers");
 return customers.remove(customer.getId(), customer);
 }
}

All ConcurrentMap operations such as put and remove might wait if the key is locked by another
thread in the local or remote JVM. But, they will eventually return with success. ConcurrentMap
operations never throw a java.util.ConcurrentModificationException.

7.2.3. Backing Up Maps

Hazelcast distributes map entries onto multiple cluster members (JVMs). Each member holds some
portion of the data.

Distributed maps have one backup by default. If a member goes down, your data is recovered using
the backups in the cluster. There are two types of backups as described below: sync and async.

Creating Sync Backups

To provide data safety, Hazelcast allows you to specify the number of backup copies you want to
have. That way, data on a cluster member is copied onto other member(s).

To create synchronous backups, select the number of backup copies using the backup-count
property.

119

XML

<hazelcast>
 ...
 <map name="default">
 <backup-count>1</backup-count>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 default:
 backup-count: 1

When this count is 1, a map entry will have its backup on one other member in the cluster. If you
set it to 2, then a map entry will have its backup on two other members. You can set it to 0 if you do
not want your entries to be backed up, e.g., if performance is more important than backing up. The
maximum value for the backup count is 6.

Hazelcast supports both synchronous and asynchronous backups. By default, backup operations
are synchronous and configured with backup-count. In this case, backup operations block
operations until backups are successfully copied to backup members (or deleted from backup
members in case of remove) and acknowledgements are received. Therefore, backups are updated
before a write(put, set, remove and their async counterparts) operation is completed, provided that
the cluster is stable. Sync backup operations have a blocking cost which may lead to latency issues.

Creating Async Backups

Asynchronous backups, on the other hand, do not block operations. They are fire & forget and do
not require acknowledgements; the backup operations are performed at some point in time.

To create asynchronous backups, select the number of async backups with the async-backup-count
property. An example is shown below.

XML

<hazelcast>
 ...
 <map name="default">
 <backup-count>0</backup-count>
 <async-backup-count>1</async-backup-count>
 </map>
 ...
</hazelcast>

120

YAML

hazelcast:
 map:
 default:
 backup-count: 0
 async-backup-count: 1

See Consistency and Replication Model for more detail.

 Backups increase memory usage since they are also kept in memory.

 A map can have both sync and async backups at the same time.

Enabling Backup Reads

By default, Hazelcast has one sync backup copy. If backup-count is set to more than 1, then each
member will carry both owned entries and backup copies of other members. So for the
map.get(key) call, it is possible that the calling member has a backup copy of that key. By default,
map.get(key) always reads the value from the actual owner of the key for consistency.

To enable backup reads (read local backup entries), set the value of the read-backup-data property
to true. Its default value is false for consistency. Enabling backup reads can improve performance
but on the other hand it can cause stale reads while still preserving monotonic-reads property.

XML

<hazelcast>
 ...
 <map name="default">
 <backup-count>0</backup-count>
 <async-backup-count>1</async-backup-count>
 <read-backup-data>true</read-backup-data>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 default:
 backup-count: 0
 async-backup-count: 1
 read-backup-data: true

This feature is available when there is at least one sync or async backup.

121

Please note that if you are performing a read from a backup, you should take into account that your
hits to the keys in the backups are not reflected as hits to the original keys on the primary
members. This has an impact on IMap’s maximum idle seconds or time-to-live seconds expiration.
Therefore, even though there is a hit on a key in backups, your original key on the primary member
may expire.

Backup reads that are requested by Hazelcast clients are ignored since this
operation is performed on the local entries.

7.2.4. Map Eviction

Hazelcast maps have no restrictions on the size and may grow arbitrarily large, by default. Unless
you delete the map entries manually or use an eviction policy, they will remain in the map. When it
comes to reducing the size of a map, there are two concepts: expiration and eviction.

Expiration puts a limit on the maximum lifetime of an entry stored inside the map. When the entry
expires it cannot be retrieved from the map any longer and at some point in time it will be cleaned
out from the map to free up the memory. You can configure the expiration, and hence the eviction
based on the expiration, using the elements time-to-live-seconds and max-idle-seconds as described
in Configuring Map Eviction below.

Eviction puts a limit on the maximum size of the map. If the size of the map grows larger than the
maximum allowed size, an eviction policy decides which item to evict from the map to reduce its
size. You can configure the maximum allowed size and eviction policy using the elements size and
eviction-policy as described in Configuring Map Eviction below.

Eviction and expiration can be used together. In this case, the expiration configurations (time-to-
live-seconds and max-idle-seconds) continue to work as usual cleaning out the expired entries
regardless of the map size. Note that locked map entries are not the subjects for eviction and
expiration.

Hazelcast Map uses the same eviction mechanism as our JCache implementation. See the Eviction
Algorithm section for details.

Understanding Map Eviction

Hazelcast Map performs eviction based on partitions. For example, when you specify a size using
the PER_NODE attribute for max-size (see the Configuring Map Eviction section), Hazelcast internally
calculates the maximum size for every partition. Hazelcast uses the following equation to calculate
the maximum size of a partition:

partition-maximum-size = max-size * member-count / partition-count

If the partition-maximum-size is less than 1 in the equation above, it will be set to 1
(otherwise, the partitions would be emptied immediately by eviction due to the
exceedance of max-size being less than 1).

The eviction process starts according to this calculated partition maximum size when you try to put

122

an entry. When entry count in that partition exceeds partition maximum size, eviction starts on
that partition.

Assume that you have the following figures as examples:

• partition count: 200

• entry count for each partition: 100

• max-size (PER_NODE): 20000

The total number of entries here is 20000 (partition count * entry count for each partition). This
means you are at the eviction threshold since you set the max-size to 20000. When you try to put an
entry:

1. the entry goes to the relevant partition

2. the partition checks whether the eviction threshold is reached (max-size)

3. only one entry will be evicted.

As a result of this eviction process, when you check the size of your map, it is 19999. After this
eviction, subsequent put operations do not trigger the next eviction until the map size is again close
to the max-size.

The above scenario is simply an example that describes how the eviction process
works. Hazelcast finds the most optimum number of entries to be evicted
according to your cluster size and selected policy.

Configuring Map Eviction

The following is an example declarative configuration for map eviction.

XML

<hazelcast>
 ...
 <map name="default">
 <time-to-live-seconds>0</time-to-live-seconds>
 <max-idle-seconds>0</max-idle-seconds>
 <eviction eviction-policy="LRU" max-size-policy="PER_NODE" size="5000"/>
 </map>
 ...
</hazelcast>

123

YAML

hazelcast:
 map:
 default:
 time-to-live-seconds: 0
 max-idle-seconds: 0
 eviction:
 eviction-policy: LRU
 max-size-policy: PER_NODE
 size: 5000

The following are the configuration element descriptions:

• time-to-live-seconds: Maximum time in seconds for each entry to stay in the map (TTL). It
limits the lifetime of the entries relative to the time of the last write access performed on them.
If it is not 0, the entries whose lifetime exceeds this period (without any write access performed
on them during this period) are expired and evicted automatically. An individual entry may
have its own lifetime limit by using one of the methods accepting a TTL; see Evicting Specific
Entries section. If there is no TTL value provided for the individual entry, it inherits the value
set for this element. Valid values are integers between 0 and Integer.MAX VALUE. Its default value
is 0, which means infinite (no expiration and eviction). If it is not 0, entries are evicted
regardless of the set eviction-policy described below.

• max-idle-seconds: Maximum time in seconds for each entry to stay idle in the map. It limits the
lifetime of the entries relative to the time of the last read or write access performed on them.
The entries whose idle period exceeds this limit are expired and evicted automatically. An entry
is idle if no get, put, EntryProcessor.process or containsKey is called on it. Valid values are
integers between 0 and Integer.MAX VALUE. Its default value is 0, which means infinite.

Setting this property to 1 second expires the entry after 1 second, regardless of
the operations done on that entry in-between, due to the loss of millisecond
resolution on the entry timestamps. Assume that you create a record at time =
1 second (1000 milliseconds) and access it at wall clock time 1100 milliseconds
and then again at 1400 milliseconds. In this case, the entry is deemed as not
touched. So, setting this property to 1 second is not supported.

Both time-to-live-seconds and max-idle-seconds may be used simultaneously
on the map entries. In that case, the entry is considered expired if at least one
of the policies marks it as expired.

• eviction: By default map has no eviction configured. To make it work you have to configure it
using the following attributes of this element:

◦ eviction-policy: Eviction policy to be applied when the size of map grows larger than the
value specified by the size element described below. Valid values are:

▪ NONE: Default policy. If set, no items are evicted and the property size described below
is ignored. However, entries could still be expired if you configure time-to-live-seconds
and/or max-idle-seconds.

124

▪ LRU: Least Recently Used.

▪ LFU: Least Frequently Used.

Apart from the above values, you can also develop and use your own eviction policy. See
the Custom Eviction Policy section.

◦ size: Maximum size of the map. When maximum size is reached, the map is evicted based
on the policy defined. Valid values are integers between 0 and Integer.MAX VALUE. Its default
value is 0, which means infinite. If you want size to work, set the eviction-policy property
to a value other than NONE. Its attributes are described below.

◦ max-size-policy: Maximum size policy for eviction of the map. Available values are as
follows:

▪ PER_NODE: Maximum number of map entries in each cluster member. This is the default
policy.

▪ PER_PARTITION: Maximum number of map entries within each partition. Storage size
depends on the partition count in a cluster member. This attribute should not be used
often. For instance, avoid using this attribute with a small cluster. If the cluster is small,
it hosts more partitions, and therefore map entries, than that of a larger cluster. Thus,
for a small cluster, eviction of the entries decreases performance (the number of entries
is large).

▪ USED_HEAP_SIZE: Maximum used heap size in megabytes per map for each Hazelcast
instance. Please note that this policy does not work when in-memory format is set to
OBJECT, since the memory footprint cannot be determined when data is put as OBJECT.

▪ USED_HEAP_PERCENTAGE: Maximum used heap size percentage per map for each Hazelcast
instance. If, for example, a JVM is configured to have 1000 MB and this value is 10, then
the map entries will be evicted when used heap size exceeds 100 MB. Please note that
this policy does not work when in-memory format is set to OBJECT, since the memory
footprint cannot be determined when data is put as OBJECT.

▪ FREE_HEAP_SIZE: Minimum free heap size in megabytes for each JVM.

▪ FREE_HEAP_PERCENTAGE: Minimum free heap size percentage for each JVM. If, for example,
a JVM is configured to have 1000 MB and this value is 10, then the map entries will be
evicted when free heap size is below 100 MB.

▪ USED_NATIVE_MEMORY_SIZE: (Hazelcast IMDG Pro and Enterprise) Maximum used native
memory size in megabytes per map for each Hazelcast instance.

▪ USED_NATIVE_MEMORY_PERCENTAGE: (Hazelcast IMDG Pro and Enterprise) Maximum used
native memory size percentage per map for each Hazelcast instance.

▪ FREE_NATIVE_MEMORY_SIZE: (Hazelcast IMDG Pro and Enterprise) Minimum free native
memory size in megabytes for each Hazelcast instance.

▪ FREE_NATIVE_MEMORY_PERCENTAGE: (Hazelcast IMDG Pro and Enterprise) Minimum free
native memory size percentage for each Hazelcast instance.

Fine-Tuning Map Eviction

Besides the above configuration elements and attributes you can fine-tune the eviction related to

125

the entry counts to be evicted using the following Hazelcast properties:

• hazelcast.map.eviction.batch.size: Specifies the maximum number of map entries that are
evicted during a single eviction cycle. Its default value is 1, meaning at most 1 entry is evicted,
which is typically fine. However, when you insert values during an eviction cycle, each iteration
doubles the entry size. In this situation more than just a single entry should be evicted.

• hazelcast.map.eviction.sample.count: Whenever a map eviction is required, a new sampling
starts by the built-in sampler. The sampling algorithm selects a random sample from the
underlying data storage and it results in a set of map entries. This property specifies the entry
count of this sample. Its default value is 15.

See also the Eviction Algorithm section to learn more details on evicting entries.

Example Eviction Configurations

XML

<hazelcast>
 ...
 <map name="documents">
 <eviction eviction-policy="LRU" max-size-policy="PER_NODE" size="10000"/>
 <max-idle-seconds>60</max-idle-seconds>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 documents:
 eviction:
 eviction-policy: LRU
 max-size-policy: PER_NODE
 size: 10000
 max-idle-seconds: 60

In the above example, documents map starts to evict its entries from a member when the map size
exceeds 10000 in that member. Then the entries least recently used will be evicted. The entries not
used for more than 60 seconds will be evicted as well.

And the following is an example eviction configuration for a map having NATIVE as the in-memory
format:

126

XML

<hazelcast>
 ...
 <map name="nativeMap">
 <in-memory-format>NATIVE</in-memory-format>
 <eviction max-size-policy="USED_NATIVE_MEMORY_PERCENTAGE" eviction-policy="
LFU" size="99"/>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 nativeMap:
 in-memory-format: NATIVE
 eviction:
 eviction-policy: LFU
 max-size-policy: USED_NATIVE_MEMORY_PERCENTAGE
 size: 99

Evicting Specific Entries

The eviction policies and configurations explained above apply to all the entries of a map. The
entries that meet the specified eviction conditions are evicted.

If you want to evict some specific map entries, you can use the ttl and ttlUnit parameters of the
method map.put(). An example code line is given below.

myMap.put("1", "John", 50, TimeUnit.SECONDS)

The map entry with the key "1" will be evicted 50 seconds after it is put into myMap.

You may also use map.setTTL method to alter the time-to-live value of an existing entry. It is done as
follows:

myMap.setTTL("1", 50, TimeUnit.SECONDS)

In addition to the ttl, you may also specify a maximum idle timeout for specific map entries using
the maxIdle and maxIdleUnit parameters:

myMap.put("1", "John", 50, TimeUnit.SECONDS, 40, TimeUnit.SECONDS)

Here ttl is set as 50 seconds and maxIdle is set as 40 seconds. The entry is considered to be evicted if
at least one of these policies marks it as expired. If you want to specify only the maxIdle parameter,
you need to set ttl as 0 seconds.

127

Evicting All Entries

To evict all keys from the map except the locked ones, use the method evictAll(). If a MapStore is
defined for the map, deleteAll is not called by evictAll. If you want to call the method deleteAll,
use clear().

An example is given below.

final int numberOfKeysToLock = 4;
final int numberOfEntriesToAdd = 1000;

HazelcastInstance node1 = Hazelcast.newHazelcastInstance();
HazelcastInstance node2 = Hazelcast.newHazelcastInstance();

IMap<Integer, Integer> map = node1.getMap("map");
for (int i = 0; i < numberOfEntriesToAdd; i++) {
 map.put(i, i);
}

for (int i = 0; i < numberOfKeysToLock; i++) {
 map.lock(i);
}

// should keep locked keys and evict all others.
map.evictAll();

System.out.printf("# After calling evictAll...\n");
System.out.printf("# Expected map size\t: %d\n", numberOfKeysToLock);
System.out.printf("# Actual map size\t: %d\n", map.size());

 Only EVICT_ALL event is fired for any registered listeners.

Forced Eviction

Hazelcast IMDG Enterprise

Hazelcast may use forced eviction in the cases when the eviction explained in Understanding Map
Eviction is not enough to free up your memory. Note that this is valid if you are using Hazelcast
IMDG Enterprise and you set your in-memory format to NATIVE.

The forced eviction mechanism is explained below as steps in the given order:

• When the normal eviction is not enough, forced eviction is triggered and first it tries to evict
approx. 20% of the entries from the current partition. It retries this five times.

• If the result of above step is still not enough, forced eviction applies the above step to all maps.
This time it might perform eviction from some other partitions too, provided that they are
owned by the same thread.

• If that is still not enough to free up your memory, it evicts not the 20% but all the entries from

128

the current partition.

• If that is not enough, it will evict all the entries from the other data structures; from the
partitions owned by the local thread.

Finally, when all the above steps are not enough, Hazelcast throws a native OutOfMemoryException.

When you have an evictable cache/map, you should safely put entries to it without facing with any
memory shortages. Forced eviction helps to achieve this. Regular eviction removes one entry at a
time while forced eviction can remove multiple entries, which can even be owned by another
caches/maps.

Custom Eviction Policy

Apart from the policies such as LRU and LFU, which Hazelcast provides out-of-the-box, you can
develop and use your own eviction policy.

To achieve this, you need to provide an implementation of MapEvictionPolicyComparator as in the
following OddEvictor example:

public class MapCustomEvictionPolicyComparator {

 public static void main(String[] args) {
 Config config = new Config();
 config.getMapConfig("test")
 .getEvictionConfig()
 .setComparator(new OddEvictor())
 .setMaxSizePolicy(PER_NODE)
 .setSize(10000);

 HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
 IMap<Integer, Integer> map = instance.getMap("test");

 final Queue<Integer> oddKeys = new ConcurrentLinkedQueue<Integer>();
 final Queue<Integer> evenKeys = new ConcurrentLinkedQueue<Integer>();

 map.addEntryListener((EntryEvictedListener<Integer, Integer>) event -> {
 Integer key = event.getKey();
 if (key % 2 == 0) {
 evenKeys.add(key);
 } else {
 oddKeys.add(key);
 }
 }, false);

 // wait some more time to receive evicted-events
 parkNanos(SECONDS.toNanos(5));

 for (int i = 0; i < 15000; i++) {
 map.put(i, i);
 }

129

 String msg = "IMap uses sampling based eviction. After eviction"
 + " is completed, we are expecting number of evicted-odd-keys"
 + " should be greater than number of evicted-even-keys. \nNumber"
 + " of evicted-odd-keys = %d, number of evicted-even-keys = %d";
 out.println(format(msg, oddKeys.size(), evenKeys.size()));

 instance.shutdown();
 }

 /**
 * Odd evictor tries to evict odd keys first.
 */
 private static class OddEvictor
 implements MapEvictionPolicyComparator<Integer, Integer> {

 @Override
 public int compare(EntryView<Integer, Integer> e1,
 EntryView<Integer, Integer> e2) {

 Integer key1 = e1.getKey();
 if (key1 % 2 != 0) {
 return -1;
 }

 Integer key2 = e2.getKey();
 if (key2 % 2 != 0) {
 return 1;
 }

 return 0;
 }

 }
}

Then you can enable your policy by setting it via the method
MapConfig.getEvictionConfig().setComparatorClassName() programmatically or via XML
declaratively. Following is the example declarative configuration for the eviction policy OddEvictor
implemented above:

130

XML

<hazelcast>
 ...
 <map name="test">
 ...
 <eviction comparator-class-name="com.mycompany.OddEvictor"/>
 ...
 </map>
</hazelcast>

YAML

hazelcast:
 map:
 test:
 eviction:
 comparator-class-name: com.mycompany.OddEvictor

If you Hazelcast with Spring, you can enable your policy as shown below.

<hz:map name="test">
 <hz:map-eviction comparator-class-name="com.package.OddEvictor"/>
</hz:map>

7.2.5. Setting In-Memory Format

IMap (and a few other Hazelcast data structures, such as ICache) has an in-memory-format
configuration option. By default, Hazelcast stores data into memory in binary (serialized) format.
Sometimes it can be efficient to store the entries in their object form, especially in cases of local
processing, such as entry processor and queries.

Specify the in-memory-format element in the configuration to set how the data will be stored in the
memory. You have the following format options:

• BINARY (default): The data (both the key and value) is stored in serialized binary format. You can
use this option if you mostly perform regular map operations, such as put and get.

• OBJECT: The data is stored in deserialized form. This configuration is good for maps where entry
processing and queries form the majority of all operations and the objects are complex, making
the serialization cost comparatively high. By storing objects, entry processing does not contain
the deserialization cost. Note that when you use OBJECT as the in-memory format, the key is still
stored in binary format and the value is stored in object format.

• NATIVE: (Hazelcast IMDG Enterprise HD) This format behaves the same as BINARY, however,
instead of heap memory, key and value are stored in the off-heap memory.

Regular operations like get rely on the object instance. When the OBJECT format is used and a get is
performed, the map does not return the stored instance, but creates a clone. Therefore, this whole

131

get operation first includes a serialization on the member owning the instance and then a
deserialization on the member calling the instance. When the BINARY format is used, only a
deserialization is required; BINARY is faster.

Similarly, a put operation is faster when the BINARY format is used. If the format was OBJECT, the map
would create a clone of the instance, and there would first be a serialization and then a
deserialization. When BINARY is used, only a deserialization is needed.

If a value is stored in OBJECT format, a change on a returned value does not affect
the stored instance. In this case, the returned instance is not the actual one but a
clone. Therefore, changes made on an object after it is returned will not reflect on
the actual stored data. Similarly, when a value is written to a map and the value is
stored in OBJECT format, it will be a copy of the put value. Therefore, changes made
on the object after it is stored will not reflect on the stored data.

7.2.6. Using High-Density Memory Store with Map

Hazelcast IMDG Enterprise HD

Hazelcast instances are Java programs. In case of BINARY and OBJECT in-memory formats, Hazelcast
stores your distributed data into the heap of its server instances. Java heap is subject to garbage
collection (GC). In case of larger heaps, garbage collection might cause your application to pause for
tens of seconds (even minutes for really large heaps), badly affecting your application performance
and response times.

As the data gets bigger, you either run the application with larger heap, which would result in
longer GC pauses or run multiple instances with smaller heap which can turn into an operational
nightmare if the number of such instances becomes very high.

To overcome this challenge, Hazelcast offers High-Density Memory Store for your maps. You can
configure your map to use High-Density Memory Store by setting the in-memory format to NATIVE.
The following snippet is the declarative configuration example.

XML

<hazelcast>
 ...
 <map name="nativeMap">
 <in-memory-format>NATIVE</in-memory-format>
 </map>
 ...
</hazelcast>

132

YAML

hazelcast:
 map:
 nativeMap:
 in-memory-format: NATIVE

Keep in mind that you should have already enabled the High-Density Memory Store usage for your
cluster. See the Configuring High-Density Memory Store section.

You can also benefit from the persistent memory technologies such as Intel® Optane™ DC to be
used by the High-Density Memory Store. See the Using Persistent Memory section.

Required Configuration Changes When Using NATIVE

Note that the eviction mechanism is different for NATIVE in-memory format. The new eviction
algorithm for map with High-Density Memory Store is similar to that of JCache with High-Density
Memory Store and is described here.

XML

<hazelcast>
 ...
 <map name="nativeMap">
 <in-memory-format>NATIVE</in-memory-format>
 <eviction-percentage>25</eviction-percentage> <--! NO IMPACT with NATIVE -->
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 nativeMap:
 in-memory-format: NATIVE
 eviction-percentage: 25 # NO IMPACT with NATIVE

• These IMap eviction policies for size cannot be used: FREE_HEAP_PERCENTAGE, FREE_HEAP_SIZE,
USED_HEAP_PERCENTAGE, USED_HEAP_SIZE.

• Near Cache eviction policy ENTRY_COUNT cannot be used for max-size-policy.

 See the High-Density Memory Store section for more information.

7.2.7. Metadata Policy

Hazelcast IMap offers automatic preprocessing of various data types on the update time to make
queries faster. It is currently supported only by the HazelcastJsonValue type. When metadata

133

creation is on, IMap creates additional metadata about the objects of supported types and uses this
metadata during the querying. It does not affect the latency and throughput of the object of any
type except the supported types.

This feature is on by default. You can configure it using the metadata-policy configuration element.

Declarative Configuration:

XML

<hazelcast>
 ...
 <map name="map-a">
 <!--
 valid values for metadata-policy are:
 - OFF
 - CREATE_ON_UPDATE (default)
 -->
 <metadata-policy>OFF</metadata-policy>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 map-a:
 # valid values for metadata-policy are:
 # - OFF
 # - CREATE_ON_UPDATE (default)
 metadata-policy: OFF

Programmatic Configuration:

MapConfig mapConfig = new MapConfig();
mapConfig.setMetadataPolicy(MetadataPolicy.OFF);

7.2.8. Loading and Storing Persistent Data

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store
such as a relational database. To do this, you can use Hazelcast’s MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist
in memory, MapLoader's load method loads that entry from the data store. This loaded entry is placed
into the map and will stay there until it is removed or evicted.

All loads can be listened via EntryLoadedListener. See the Listening for Map Events section to learn

134

how you can catch entry-based events.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

Data store needs to be a centralized system that is accessible from all Hazelcast
members. Persistence to a local file system is not supported.

Also note that the MapStore interface extends the MapLoader interface as you can see
in the interface code.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {

 private final Connection con;
 private final PreparedStatement allKeysStatement;

 public PersonMapStore() {
 try {
 con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
 con.createStatement().executeUpdate(
 "create table if not exists person (id bigint not null, name
varchar(45), primary key (id))");
 allKeysStatement = con.prepareStatement("select id from person");
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 public synchronized void delete(Long key) {
 System.out.println("Delete:" + key);
 try {
 con.createStatement().executeUpdate(
 format("delete from person where id = %s", key));
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 public synchronized void store(Long key, Person value) {
 try {
 con.createStatement().executeUpdate(
 format("insert into person values(%s,'%s')", key, value.getName()
));
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 public synchronized void storeAll(Map<Long, Person> map) {

135

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/MapStore.html

 for (Map.Entry<Long, Person> entry : map.entrySet()) {
 store(entry.getKey(), entry.getValue());
 }
 }

 public synchronized void deleteAll(Collection<Long> keys) {
 for (Long key : keys) {
 delete(key);
 }
 }

 public synchronized Person load(Long key) {
 try {
 ResultSet resultSet = con.createStatement().executeQuery(
 format("select name from person where id =%s", key));
 try {
 if (!resultSet.next()) {
 return null;
 }
 String name = resultSet.getString(1);
 return new Person(key, name);
 } finally {
 resultSet.close();
 }
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
 Map<Long, Person> result = new HashMap<Long, Person>();
 for (Long key : keys) {
 result.put(key, load(key));
 }
 return result;
 }

 public Iterable<Long> loadAllKeys() {
 return new StatementIterable<Long>(allKeysStatement);
 }
}

During the initial loading process, MapStore uses a thread different from the
partition threads that are used by the ExecutorService. After the initialization is
completed, the map.get method looks up any nonexistent value from the database
in a partition thread, or the map.put method looks up the database to return the
previously associated value for a key also in a partition thread.

Entries loaded by MapLoader do not have a set time-to-live property. Therefore, they live until evicted
or explicitly removed. It is possible to enforce time-to-live on the entries by using EntryLoader.

136

EntryLoader allows you to set time-to-live values per key before handing the values to Hazelcast.
Therefore, you can store and load key specific time-to-live values in the external storage.

Similar to EntryLoader, in order to store custom expiration times associated with the entries, you
may use EntryStore. EntryStore allows you to retrieve associated expiration date for each entry. The
expiration date is an offset from an epoch in milliseconds. Epoch is January 1, 1970 UTC which is
used by System.currentTimeMillis().

Although the expiration date is expressed in milliseconds, IMap has second
granularity when it comes to expiration. Therefore, the expiration date is rounded
to the nearest lower whole second.

EntryLoader and EntryStore extend from MapLoader and MapStore, respectively. Therefore, all features
and configuration parameters of MapLoader and MapStore apply to them, too.

Following is an EntryStore example.

public class PersonEntryStore implements EntryStore<Long, Person> {

 private final Connection con;
 private final PreparedStatement allKeysStatement;

 public PersonEntryStore() {
 try {
 con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
 con.createStatement().executeUpdate(
 "create table if not exists person (id bigint not null, name
varchar(45), expiration-date bigint, primary key (id))");
 allKeysStatement = con.prepareStatement("select id from person");
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public synchronized void delete(Long key) {
 System.out.println("Delete:" + key);
 try {
 con.createStatement().executeUpdate(
 format("delete from person where id = %s", key));
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public synchronized void store(Long key, MetadataAwareValue<Person> value) {
 try {
 con.createStatement().executeUpdate(
 format("insert into person values(%s,'%s', %d)", key, value

137

.getValue().getName(), value.getExpirationTime()));
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void storeAll(Map<Long, MetadataAwareValue<Person>> map) {
 for (Map.Entry<Long, MetadataAwareValue<Person>> entry : map.entrySet()) {
 store(entry.getKey(), entry.getValue());
 }
 }

 @Override
 public synchronized void deleteAll(Collection<Long> keys) {
 for (Long key : keys) {
 delete(key);
 }
 }

 @Override
 public synchronized MetadataAwareValue<Person> load(Long key) {
 try {
 ResultSet resultSet = con.createStatement().executeQuery(
 format("select name,expiration-date from person where id =%s",
key));
 try {
 if (!resultSet.next()) {
 return null;
 }
 String name = resultSet.getString(1);
 Long expirationDate = resultSet.getLong(2);
 return new MetadataAwareValue<>(new Person(key, name), expirationDate
);
 } finally {
 resultSet.close();
 }
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public synchronized Map<Long, MetadataAwareValue<Person>> loadAll(Collection<Long>
keys) {
 Map<Long, MetadataAwareValue<Person>> result = new HashMap<>();
 for (Long key : keys) {
 result.put(key, load(key));
 }
 return result;
 }

138

 public Iterable<Long> loadAllKeys() {
 return new StatementIterable<Long>(allKeysStatement);
 }
}

 For more MapStore/MapLoader code samples, see here.

Hazelcast supports read-through, write-through and write-behind persistence modes, which are
explained in the subsections below.

Using Read-Through Persistence

If an entry does not exist in memory when an application asks for it, Hazelcast asks the loader
implementation to load that entry from the data store. If the entry exists there, the loader
implementation gets it, hands it to Hazelcast, and Hazelcast puts it into memory. This is read-
through persistence mode.

As you can remember from the introduction of this section, the IMap.get() method triggers the
load() method in your MapLoader implementation if an entry does not exist in the memory. In this
case, note that the IMap.get() method does not create backup copies for such entries, when the
mode is read-through persistence: there is no need for backups for these entries since if the
primary entry is lost, then a read for the key triggers the load() method and loads the entry from
the persistence layer.

Setting Write-Through Persistence

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0.
This means the entries are put to the data store synchronously.

In this mode, when the map.put(key,value) call returns:

• MapStore.store(key,value) is successfully called so the entry is persisted.

• In-Memory entry is updated.

• In-Memory backup copies are successfully created on other cluster members (if backup-count is
greater than 0).

If MapStore throws an exception then the exception is propagated to the original put or remove call in
the form of RuntimeException.

There is a key difference in the behaviors of map.remove(key) and map.delete(key),
i.e., the latter results in MapStore.delete(key) to be invoked whereas the former
only removes the entry from IMap.

Setting Write-Behind Persistence

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value
bigger than 0. This means the modified entries will be put to the data store asynchronously after a

139

https://github.com/hazelcast/hazelcast-code-samples/tree/master/distributed-map/mapstore/src/main/java

configured delay.

In write-behind mode, Hazelcast coalesces updates on a specific key by default,
which means it applies only the last update on that key. However, you can set
MapStoreConfig.setWriteCoalescing() to FALSE and you can store all updates
performed on a key to the data store.

When you set MapStoreConfig.setWriteCoalescing() to FALSE, after you reached per-
node maximum write-behind-queue capacity, subsequent put operations will fail
with ReachedMaxSizeException. This exception is thrown to prevent uncontrolled
grow of write-behind queues. You can set per-node maximum capacity using the
system property hazelcast.map.write.behind.queue.capacity. See the System
Properties appendix for information on this property and how to set the system
properties.

In write-behind mode, when the map.put(key,value) call returns:

• in-memory entry is updated

• in-memory backup copies are successfully created on the other cluster members (if backup-
count is greater than 0)

• the entry is marked as dirty so that after write-delay-seconds, it can be persisted with
MapStore.store(key,value) call

• and for fault tolerance, dirty entries are stored in a queue on the primary member and also on a
back-up member.

The same behavior goes for the map.remove(key), the only difference is that MapStore.delete(key) is
called when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still
cannot be stored, a log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast calls the
MapStore.storeAll(map) and MapStore.deleteAll(collection) methods to do all writes in a single call.

If a map entry is marked as dirty, meaning that it is waiting to be persisted to the
MapStore in a write-behind scenario, the eviction process forces the entry to be
stored. This way you have control over the number of entries waiting to be stored,
and thus you can prevent a possible OutOfMemory exception.

MapStore or MapLoader implementations should not use Hazelcast
Map/Queue/MultiMap/List/Set operations. Your implementation should only work
with your data store. Otherwise, you may get into deadlock situations.

Here is an example configuration:

140

XML

<hazelcast>
 ...
 <map name="default">
 <map-store enabled="true" initial-mode="LAZY">
 <class-name>com.hazelcast.examples.DummyStore</class-name>
 <write-delay-seconds>60</write-delay-seconds>
 <write-batch-size>1000</write-batch-size>
 <write-coalescing>true</write-coalescing>
 </map-store>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 default:
 map-store:
 enabled: true
 initial-mode: LAZY
 class-name: com.hazelcast.examples.DummyStore
 write-delay-seconds: 60
 write-batch-size: 1000
 write-coalescing: true

The following are the descriptions of MapStore configuration elements and attributes:

• class-name: Name of the class implementing MapLoader and/or MapStore.

• write-delay-seconds: Number of seconds to delay to call the MapStore.store(key, value). If the
value is zero then it is write-through, so the MapStore.store(key,value) method is called as soon
as the entry is updated. Otherwise, it is write-behind; so the updates will be stored after the
write-delay-seconds value by calling the Hazelcast.storeAll(map) method. Its default value is 0.

• write-batch-size: Used to create batch chunks when writing map store. In default mode, all map
entries are tried to be written in one go. To create batch chunks, the minimum meaningful
value for write-batch-size is 2. For values smaller than 2, it works as in default mode.

• write-coalescing: In write-behind mode, Hazelcast coalesces updates on a specific key by
default; it applies only the last update on it. You can set this element to false to store all updates
performed on a key to the data store.

• enabled: True to enable this map-store, false to disable. Its default value is true.

• initial-mode: Sets the initial load mode. LAZY is the default load mode, where load is
asynchronous. EAGER means load is blocked till all partitions are loaded. See the Initializing
Map on Startup section for more details.

141

Managing the Lifecycle of a MapLoader

With MapLoader (and MapStore which extends it), you can do the regular store and load operations. If
you need to perform other operations on create or on destroy of a MapLoader, such as establishing a
connection to a database or accessing to other Hazelcast maps, you need to implement the
MapLoaderLifeCycleSupport interface. By implementing it, you will have the init() and destroy()
methods.

The init() method initializes the MapLoader implementation. Hazelcast calls this method when the
map is first created on a Hazelcast instance. The MapLoader implementation can initialize the
required resources such as reading a configuration file or creating a database connection or
accessing a Hazelcast instance.

The destroy() method is called during the graceful shutdown of a Hazelcast instance. You can
override this method to cleanup the resources held by the MapLoader implementation, such as
closing the database connections.

In summary, you need MapLoaderLifecycleSupport to perform actions on create and on destroy of a
MapLoader.

See here to see this interface in action.

Storing Entries to Multiple Maps

A configuration can be applied to more than one map using wildcards (see Using Wildcards),
meaning that the configuration is shared among the maps. But MapStore does not know which
entries to store when there is one configuration applied to multiple maps.

To store entries when there is one configuration applied to multiple maps, use Hazelcast’s
MapStoreFactory interface. Using the MapStoreFactory interface, MapStores for each map can be
created when a wildcard configuration is used. Example code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("*");
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig();
mapStoreConfig.setFactoryImplementation(new MapStoreFactory<Object, Object>() {
 @Override
 public MapLoader<Object, Object> newMapStore(String mapName, Properties
properties) {
 return null;
 }
});

To initialize the MapLoader implementation with the given map name, configuration properties and
the Hazelcast instance, implement the MapLoaderLifecycleSupport interface which is described in
the previous section.

142

https://github.com/hazelcast/hazelcast-code-samples/blob/master/hazelcast-integration/mongodb/src/main/java/com/hazelcast/loader/MongoMapStore.java
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/MapLoaderLifecycleSupport.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/MapLoaderLifecycleSupport.html

Initializing Map on Startup

To pre-populate the in-memory map when the map is first touched/used, use the
MapLoader.loadAllKeys API.

If MapLoader.loadAllKeys returns NULL, then nothing will be loaded. Your MapLoader.loadAllKeys
implementation can return all or some of the keys. For example, you may select and return only the
keys which are most important to you that you want to load them while initializing the map.
MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast optimizes the
loading process by having each cluster member load its owned portion of the entries.

The InitialLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and
EAGER. If InitialLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER,
all the data is loaded while the map is created and everything becomes ready to use. Also, if you
add indices to your map with the IndexConfig class or the addIndex method, then InitialLoadMode is
overridden and MapStoreConfig behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

1. When getMap() is first called from any member, initialization starts depending on the value of
InitialLoadMode. If it is set to EAGER, initialization starts on all partitions as soon as the map is
touched, i.e., all partitions are loaded when getMap is called. If it is set to LAZY, data is loaded
partition by partition, i.e., each partition is loaded with its first touch.

2. Hazelcast calls MapLoader.loadAllKeys() to get all your keys on one of the members.

3. That member distributes keys to all other members in batches.

4. Each member loads values of all its owned keys by calling MapLoader.loadAll(keys).

5. Each member puts its owned entries into the map by calling IMap.putTransient(key,value).

If the load mode is LAZY and the clear() method is called (which triggers
MapStore.deleteAll()), Hazelcast removes ONLY the loaded entries from your map
and datastore. Since all the data is not loaded in this case (LAZY mode), please note
that there may still be entries in your datastore.

If you do not want the MapStore start to load as soon as the first cluster member
starts, you can use the system property hazelcast.initial.min.cluster.size. For
example, if you set its value as 3, loading process will be blocked until all three
members are completely up.

The return type of loadAllKeys() is changed from Set to Iterable with the release
of Hazelcast 3.5. MapLoader implementations from previous releases are also
supported and do not need to be adapted.

Loading Keys Incrementally

If the number of keys to load is large, it is more efficient to load them incrementally rather than
loading them all at once. To support incremental loading, the MapLoader.loadAllKeys() method
returns an Iterable which can be lazily populated with the results of a database query.

143

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/MapStoreConfig.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/IndexConfig.html

Hazelcast iterates over the Iterable and, while doing so, sends out the keys to their respective
owner members. The Iterator obtained from MapLoader.loadAllKeys() may also implement the
Closeable interface, in which case Iterator is closed once the iteration is over. This is intended for
releasing resources such as closing a JDBC result set.

Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load
operations. The method has two signatures; the same method can take two different parameter
lists. One signature loads the given keys and the other loads all keys. See the example code below.

final int numberOfEntriesToAdd = 1000;
final String mapName = LoadAll.class.getCanonicalName();
final Config config = createNewConfig(mapName);
final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
final IMap<Integer, Integer> map = node.getMap(mapName);

populateMap(map, numberOfEntriesToAdd);
System.out.printf("# Map store has %d elements\n", numberOfEntriesToAdd);

map.evictAll();
System.out.printf("# After evictAll map size\t: %d\n", map.size());

map.loadAll(true);
System.out.printf("# After loadAll map size\t: %d\n", map.size());

Post-Processing Objects in Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For
example, you can get an ID or version auto-generated by your database and then need to modify
your object stored in the distributed map, but not to break the synchronization between the
database and the data grid.

To post-process an object in the map store, implement the PostProcessingMapStore interface to put
the modified object into the distributed map. This triggers an extra step of Serialization, so use it
only when needed. (This is only valid when using the write-through map store configuration.)

Here is an example of post processing map store:

class ProcessingStore implements MapStore<Integer, Employee>, PostProcessingMapStore {
 @Override
 public void store(Integer key, Employee employee) {
 EmployeeId id = saveEmployee();
 employee.setId(id.getId());
 }
}

144

Please note that if you are using a post-processing map store in combination with
the entry processors, post-processed values will not be carried to backups.

Accessing a Database Using Properties

You can prepare your own MapLoader to access a database such as Cassandra and MongoDB. For this,
you can first declaratively specify the database properties in your hazelcast.xml configuration file
and then implement the MapLoaderLifecycleSupport interface to pass those properties.

You can define the database properties, such as its URL and name, using the properties

configuration element. The following is a configuration example for MongoDB:

XML

<hazelcast>
 ...
 <map name="supplements">
 <map-store enabled="true" initial-mode="LAZY">
 <class-name>com.hazelcast.loader.YourMapStoreImplementation</class-name>
 <properties>
 <property name="mongo.url">mongodb://localhost:27017</property>
 <property name="mongo.db">mydb</property>
 <property name="mongo.collection">supplements</property>
 </properties>
 </map-store>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 supplements:
 map-store:
 enabled: true
 initial-mode: LAZY
 class-name: com.hazelcast.loader.YourMapStoreImplementation
 properties:
 mongo_url: mongodb://localhost:27017
 mongo.db: mydb
 mango.collection: supplements

After you specified the database properties in your configuration, you need to implement the
MapLoaderLifecycleSupport interface and give those properties in the init() method, as shown
below:

145

public class YourMapStoreImplementation implements MapStore<String, Supplement>,
MapLoaderLifecycleSupport {

 private MongoClient mongoClient;
 private MongoCollection collection;

 public YourMapStoreImplementation() {
 }

 @Override
 public void init(HazelcastInstance hazelcastInstance, Properties properties,
String mapName) {
 String mongoUrl = (String) properties.get("mongo.url");
 String dbName = (String) properties.get("mongo.db");
 String collectionName = (String) properties.get("mongo.collection");
 this.mongoClient = new MongoClient(new MongoClientURI(mongoUrl));
 this.collection = mongoClient.getDatabase(dbName).getCollection(
collectionName);
 }

See the full example here.

MapStore and MapLoader Methods Triggered by IMap Operations

As it is explained in the above sections, you can configure Hazelcast maps to be backed by a map
store to persist the entries. In this case many of the IMap methods call
MapLoader or MapStore methods to load, store or remove data. This section summarizes these
methods. Here are the Hazelcast IMap operations that may trigger the MapStore or MapLoader
methods:

IMap Method Impact on the MapStore/MapLoader

flush() If the map has a MapStore, this method flushes all the local dirty entries. It calls
the MapStore.storeAll(Map) or MapStore.deleteAll(Collection) methods with the
elements marked as dirty.

• put()

• putAll()

• putAsync()

• tryPut()

• putIfAbsent
()

These methods are used to put entries to the map. They call the
MapLoader.load(Object) method for each entry not found in the memory to load
the value from the map store backing the map. They also call the
MapStore.store(Object, Object) method for each entry, if write-through
persistence mode is configured before the entry is added into the memory.

• set()

• setAsync()

These methods put an entry into the map without returning the old value. They
call the MapStore.store(Object, Object) method if write-through persistence
mode is configured before the entry is added into the memory, to write the value
into the map store.

146

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/mongodb

IMap Method Impact on the MapStore/MapLoader

remove() Removes the mapping for a key from the map if it is present. It calls the
MapLoader.load(Object) method if no value is found with key in the memory, to
load the value from the map store backing the map. It also calls the
MapStore.delete(Object) method if write-through persistence mode is configured
before the value is removed from the memory, to remove the value from the map
store.

• removeAll()

• delete()

• removeAsync
()

• tryRemove()

These methods are used to remove entries from the map for various conditions.
They call the MapStore.delete(Object) method if write-through persistence mode
is configured before the value is removed from the memory, to remove the value
from the map store.

• setTtl This method updates time-to-live of an existing entry. It calls the
MapLoader.load(Object) method if no value is found in the memory. It also calls
EntryStore.store(Object, MetadataAwareValue) with the entry whose time-to-live
has been updated.

clear() It clears the map and deletes the items from the backing map store. It calls
the MapStore.deleteAll(Collection) method on each partition with the keys that
the given partition stores.

replace() It replaces the entry for a key only if currently mapped to a given value. It calls
the MapStore.store(Object, Object) method if write-through persistence mode is
configured before the value is stored in the memory, to write the value into the
map store.

• executeOnKe
y()

• executeOnKe
ys()

• submitToKey
()

• executeOnAl
lEntries()

These methods apply the user defined entry processors to the entry or entries.
They call the MapLoader.load(Object) method if the value with key is not found in
the memory, to load the value from the map store backing the map. If the entry
processor updates the entry and write-through persistence mode is configured,
before the value is stored in memory, they call the MapStore.store(Object,
Object) method to write the value into the map store. If the entry processor
updates the entry’s value to null value and write-through persistence mode is
configured, before the value is removed from the memory, they call the
MapStore.delete(Object) method to delete the value from the map store.

7.2.9. Creating Near Cache for Map

The Hazelcast distributed map supports a local Near Cache for remotely stored entries to increase
the performance of local read operations. See the Near Cache section for a detailed explanation of
the Near Cache feature and its configuration.

147

7.2.10. Locking Maps

Hazelcast Distributed Map (IMap) is thread-safe to meet your thread safety requirements. When
these requirements increase or you want to have more control on the concurrency, consider the
Hazelcast solutions described here.

Consider the following example:

public class RacyUpdateMember {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, Value> map = hz.getMap("map");
 String key = "1";
 map.put(key, new Value());
 System.out.println("Starting");
 for (int k = 0; k < 1000; k++) {
 if (k % 100 == 0) System.out.println("At: " + k);
 Value value = map.get(key);
 Thread.sleep(10);
 value.amount++;
 map.put(key, value);
 }
 System.out.println("Finished! Result = " + map.get(key).amount);
 }

 static class Value implements Serializable {
 public int amount;
 }
}

If the above code is run by more than one cluster member simultaneously, a race condition is likely.
You can solve this condition with Hazelcast using either pessimistic or optimistic locking.

Pessimistic Locking

One way to solve the race issue is by using pessimistic locking - lock the map entry until you are
finished with it.

To perform pessimistic locking, use the lock mechanism provided by the Hazelcast distributed map,
i.e., the map.lock and map.unlock methods. See the below example code.

148

public class PessimisticUpdateMember {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, Value> map = hz.getMap("map");
 String key = "1";
 map.put(key, new Value());
 System.out.println("Starting");
 for (int k = 0; k < 1000; k++) {
 map.lock(key);
 try {
 Value value = map.get(key);
 Thread.sleep(10);
 value.amount++;
 map.put(key, value);
 } finally {
 map.unlock(key);
 }
 }
 System.out.println("Finished! Result = " + map.get(key).amount);
 }

 static class Value implements Serializable {
 public int amount;
 }
}

The IMap lock will automatically be collected by the garbage collector when the lock is released and
no other waiting conditions exist on the lock.

The IMap lock is reentrant, but it does not support fairness.

In some cases, a client application connected to your cluster may cause the entries
in a map to remain locked after the application has been restarted (which were
already locked before such a restart). This can be due to the reasons such as
incomplete/incorrect client implementations. In these cases, you can unlock the
entries, either from the thread which locked them using the IMap.unlock() method,
or check if the entry is locked using the IMap.isLock() method and then call
IMap.forceUnlock().

For the above case, as a workaround, you can also kill all the applications
connected to the cluster and use the Management Center’s scripting functionality
to clear the map and release the locks (instead of using IMap.forceUnlock()). Keep
in mind that the scripting functionality is limited to working with maps that have
primitive key types, e.g., string keys and limited to relaying only a single string of
output per member to the result panel in the Management Center.

Another way to solve the race issue is by acquiring a predictable Lock object from Hazelcast. This
way, every value in the map can be given a lock, or you can create a stripe of locks.

149

Optimistic Locking

In Hazelcast, you can apply the optimistic locking strategy with the map’s replace method. This
method compares values in object or data forms depending on the in-memory format
configuration. If the values are equal, it replaces the old value with the new one. If you want to use
your defined equals method, in-memory-format should be OBJECT. Otherwise, Hazelcast serializes
objects to BINARY forms and compares them.

See the below example code.

 The below example code is intentionally broken.

150

public class OptimisticMember {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, Value> map = hz.getMap("map");
 String key = "1";
 map.put(key, new Value());
 System.out.println("Starting");
 for (int k = 0; k < 1000; k++) {
 if (k % 10 == 0) System.out.println("At: " + k);
 for (; ;) {
 Value oldValue = map.get(key);
 Value newValue = new Value(oldValue);
 Thread.sleep(10);
 newValue.amount++;
 if (map.replace(key, oldValue, newValue))
 break;
 }
 }
 System.out.println("Finished! Result = " + map.get(key).amount);
 }

 static class Value implements Serializable {
 public int amount;

 public Value() {
 }

 public Value(Value that) {
 this.amount = that.amount;
 }

 public boolean equals(Object o) {
 if (o == this) return true;
 if (!(o instanceof Value)) return false;
 Value that = (Value) o;
 return that.amount == this.amount;
 }
 }
}

Pessimistic vs. Optimistic Locking

The locking strategy you choose depends on your locking requirements.

Optimistic locking is better for mostly read-only systems. It has a performance boost over
pessimistic locking.

Pessimistic locking is good if there are lots of updates on the same key. It is more robust than
optimistic locking from the perspective of data consistency.

151

In Hazelcast, use IExecutorService to submit a task to a key owner, or to a member or members.
This is the recommended way to perform task executions, rather than using pessimistic or
optimistic locking techniques. IExecutorService has fewer network hops and less data over wire,
and tasks are executed very near to the data. See the Data Affinity section.

Solving the ABA Problem

The ABA problem occurs in environments when a shared resource is open to change by multiple
threads. Even if one thread sees the same value for a particular key in consecutive reads, it does not
mean that nothing has changed between the reads. Another thread may change the value, do work
and change the value back, while the first thread thinks that nothing has changed.

To prevent these kind of problems, you can assign a version number and check it before any write
to be sure that nothing has changed between consecutive reads. Although all the other fields are
equal, the version field will prevent objects from being seen as equal. This is the optimistic locking
strategy; it is used in environments that do not expect intensive concurrent changes on a specific
key.

In Hazelcast, you can apply the optimistic locking strategy with the map replace method.

Lock Split-Brain Protection with Pessimistic Locking

Locks can be configured to check the number of currently present members before applying a
locking operation. If the check fails, the lock operation fails with a SplitBrainProtectionException
(see the Split-Brain Protection section). As pessimistic locking uses lock operations internally, it also
uses the configured lock split-brain protection. This means that you can configure a lock split-brain
protection with the same name or a pattern that matches the map name. Note that the split-brain
protection for IMap locking actions can be different from the split-brain protection for other IMap
actions.

The following actions check for lock split-brain protection before being applied:

• IMap.lock(K) and IMap.lock(K, long, java.util.concurrent.TimeUnit)

• IMap.isLocked()

• IMap.tryLock(K), IMap.tryLock(K, long, java.util.concurrent.TimeUnit) and IMap.tryLock(K,
long, java.util.concurrent.TimeUnit, long, java.util.concurrent.TimeUnit)

• IMap.unlock()

• IMap.forceUnlock()

• MultiMap.lock(K) and MultiMap.lock(K, long, java.util.concurrent.TimeUnit)

• MultiMap.isLocked()

• MultiMap.tryLock(K), MultiMap.tryLock(K, long, java.util.concurrent.TimeUnit) and
MultiMap.tryLock(K, long, java.util.concurrent.TimeUnit, long,
java.util.concurrent.TimeUnit)

• MultiMap.unlock()

• MultiMap.forceUnlock()

An example of declarative configuration:

152

XML

<hazelcast>
 ...
 <map name="myMap">
 <split-brain-protection-ref>map-actions-split-brain-protection</split-brain-
protection-ref>
 </map>
 <lock name="myMap">
 <split-brain-protection-ref>map-lock-actions-split-brain-protection</split-
brain-protection-ref>
 </lock>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 myMap:
 split-brain-protection-ref: map-actions-split-brain-protection
 lock:
 myMap:
 split-brain-protection-ref: map-lock-actions-split-brain-protection

Here the configured map uses the map-lock-actions-split-brain-protection for map lock actions
and the map-actions-split-brain-protection for other map actions.

7.2.11. Accessing Map and Entry Statistics

You can retrieve the statistics of the map in your Hazelcast IMDG member using the
getLocalMapStats() method, which is the programmatic approach. It returns information such as
primary and backup entry count, last update time and locked entry count. If you need the cluster-
wide map statistics, you can get the local map statistics from all members of the cluster and
combine them. Alternatively, you can see the map statistics on the Hazelcast Management Center.

To be able to retrieve the map statistics, the statistics-enabled element under the map
configuration should be set as true, which is the default value:

XML

<hazelcast>
 ...
 <map name="myMap">
 <statistics-enabled>true</statistics-enabled>
 </map>
 ...
</hazelcast>

153

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#managing-maps

YAML

hazelcast:
 map:
 myMap:
 statistics-enabled: true

When this element is set to false, the statistics are not gathered for the map and cannot be seen on
the Hazelcast Management Center, nor retrieved by the getLocalMapStats() method.

Hazelcast also keeps statistics about each map entry, such as creation time, last update time, last
access time, and number of hits and version. To access the map entry statistics, use an
IMap.getEntryView(key) call. Here is an example.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
EntryView entry = hz.getMap("quotes").getEntryView("1");
System.out.println ("size in memory : " + entry.getCost());
System.out.println ("creationTime : " + entry.getCreationTime());
System.out.println ("expirationTime : " + entry.getExpirationTime());
System.out.println ("number of hits : " + entry.getHits());
System.out.println ("lastAccessedTime: " + entry.getLastAccessTime());
System.out.println ("lastUpdateTime : " + entry.getLastUpdateTime());
System.out.println ("version : " + entry.getVersion());
System.out.println ("key : " + entry.getKey());
System.out.println ("value : " + entry.getValue());

7.2.12. Listening to Map Entries with Predicates

You can listen to the modifications performed on specific map entries. You can think of it as an
entry listener with predicates.

See the Listening for Map Events section for information on the listeners for
Hazelcast maps and how to use them.

The default backwards-compatible event publishing strategy only publishes
UPDATED events when map entries are updated to a value that matches the
predicate with which the listener was registered. This implies that when using the
default event publishing strategy, your listener is not notified about an entry
whose value is updated from one that matches the predicate to a new value that
does not match the predicate.

Since version 3.7, when you configure Hazelcast members with property
hazelcast.map.entry.filtering.natural.event.types set to true, handling of entry updates
conceptually treats value transition as entry, update or exit with regards to the predicate value
space. The following table compares how a listener is notified about an update to a map entry value
under the default backwards-compatible Hazelcast behavior (when property
hazelcast.map.entry.filtering.natural.event.types is not set or is set to false) versus when set to

154

true:

Default hazelcast.map.entry.filtering.
natural.event.types = true

When old value matches
predicate, new value does not
match predicate

No event is delivered to entry
listener

REMOVED event is delivered to
entry listener

When old value matches
predicate, new value matches
predicate

UPDATED event is delivered to
entry listener

UPDATED event is delivered to
entry listener

When old value does not match
predicate, new value does not
match predicate

No event is delivered to entry
listener

No event is delivered to entry
listener

When old value does not match
predicate, new value matches
predicate

UPDATED event is delivered to
entry listener

ADDED event is delivered to entry
listener

As an example, let’s listen to the changes made on an employee with the surname "Smith". First,
let’s create the Employee class.

public class Employee implements Serializable {

 private final String surname;

 public Employee(String surname) {
 this.surname = surname;
 }

 @Override
 public String toString() {
 return "Employee{" +
 "surname='" + surname + '\'' +
 '}';
 }
}

Then, let’s create a listener with predicate by adding a listener that tracks ADDED, UPDATED and REMOVED
entry events with the surname predicate.

155

public class ListenerWithPredicate {

 public static void main(String[] args) {
 Config config = new Config();
 config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true
");
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
 IMap<String, String> map = hz.getMap("map");
 map.addEntryListener(new MyEntryListener(),
 Predicates.sql("surname=smith"), true);
 System.out.println("Entry Listener registered");
 }

 static class MyEntryListener
 implements EntryAddedListener<String, String>,
 EntryUpdatedListener<String, String>,
 EntryRemovedListener<String, String> {
 @Override
 public void entryAdded(EntryEvent<String, String> event) {
 System.out.println("Entry Added:" + event);
 }

 @Override
 public void entryRemoved(EntryEvent<String, String> event) {
 System.out.println("Entry Removed:" + event);
 }

 @Override
 public void entryUpdated(EntryEvent<String, String> event) {
 System.out.println("Entry Updated:" + event);
 }
 }
}

And now, let’s play with the employee "smith" and see how that employee is listened to.

156

public class Modify {

 public static void main(String[] args) {
 Config config = new Config();
 config.setProperty("hazelcast.map.entry.filtering.natural.event.types", "true
");
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
 IMap<String, Employee> map = hz.getMap("map");

 map.put("1", new Employee("smith"));
 map.put("2", new Employee("jordan"));
 System.out.println("done");
 System.exit(0);
 }
}

When you first run the class ListenerWithPredicate and then run Modify, an output similar to the
one below appears.

entryAdded:EntryEvent {Address[192.168.178.10]:5702} key=1,oldValue=null,
value=Person{name= smith }, event=ADDED, by Member [192.168.178.10]:5702

 See the Continuous Query Cache section for more information.

7.2.13. Removing Map Entries in Bulk with Predicates

You can remove all map entries that match your predicate. For this, Hazelcast offers the method
removeAll(). Its syntax is as follows:

void removeAll(Predicate<K, V> predicate);

Normally the map entries matching the predicate are found with a full scan of the map. If the
entries are indexed, Hazelcast uses the index search to find them. With index, you can expect that
finding the entries is faster.

When removeAll() is called, ALL entries in the caller member’s Near Cache are also
removed.

7.2.14. Adding Interceptors

You can add intercept operations and execute your own business logic synchronously blocking the
operations. You can change the returned value from a get operation, change the value in put, or
cancel operations by throwing an exception.

Interceptors are different from listeners. With listeners, you take an action after the operation has

157

been completed. Interceptor actions are synchronous and you can alter the behavior of operation,
change its values, or totally cancel it.

Map interceptors are chained, so adding the same interceptor multiple times to the same map can
result in duplicate effects. This can easily happen when the interceptor is added to the map at
member initialization, so that each member adds the same interceptor. When you add the
interceptor in this way, be sure to implement the hashCode() method to return the same value for
every instance of the interceptor. It is not strictly necessary, but it is a good idea to also implement
equals() as this ensures that the map interceptor can be removed reliably.

The IMap API has two methods for adding and removing an interceptor to the map: addInterceptor
and removeInterceptor. See also the MapInterceptor interface to learn about the methods used to
intercept the changes in a map.

The following is an example usage.

158

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/MapInterceptor.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/MapInterceptor.html

public class MapInterceptorMember {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, String> map = hz.getMap("themap");
 map.addInterceptor(new MyMapInterceptor());

 map.put("1", "1");
 System.out.println(map.get("1"));
 }

 private static class MyMapInterceptor implements MapInterceptor {

 @Override
 public Object interceptGet(Object value) {
 return value + "-foo";
 }

 @Override
 public void afterGet(Object value) {
 }

 @Override
 public Object interceptPut(Object oldValue, Object newValue) {
 return null;
 }

 @Override
 public void afterPut(Object value) {
 }

 @Override
 public Object interceptRemove(Object removedValue) {
 return null;
 }

 @Override
 public void afterRemove(Object value) {
 }
 }
}

7.2.15. Preventing Out of Memory Exceptions

It is very easy to trigger an out of memory exception (OOME) with query-based map methods,
especially with large clusters or heap sizes. For example, on a cluster with five members having 10
GB of data and 25 GB heap size per member, a single call of IMap.entrySet() fetches 50 GB of data
and crashes the calling instance.

159

A call of IMap.values() may return too much data for a single member. This can also happen with a
real query and an unlucky choice of predicates, especially when the parameters are chosen by a
user of your application.

To prevent this, you can configure a maximum result size limit for query based operations. This is
not a limit like SELECT * FROM map LIMIT 100, which you can achieve by a Paging Predicate. A
maximum result size limit for query based operations is meant to be a last line of defense to
prevent your members from retrieving more data than they can handle.

The Hazelcast component which calculates this limit is the QueryResultSizeLimiter.

Setting Query Result Size Limit

If the QueryResultSizeLimiter is activated, it calculates a result size limit per partition. Each
QueryOperation runs on all partitions of a member, so it collects result entries as long as the member
limit is not exceeded. If that happens, a QueryResultSizeExceededException is thrown and propagated
to the calling instance.

This feature depends on an equal distribution of the data on the cluster members to calculate the
result size limit per member. Therefore, there is a minimum value defined in
QueryResultSizeLimiter.MINIMUM_MAX_RESULT_LIMIT. Configured values below the minimum will be
increased to the minimum.

Local Pre-check

In addition to the distributed result size check in the QueryOperations, there is a local pre-check on
the calling instance. If you call the method from a client, the pre-check is executed on the member
that invokes the QueryOperations.

Since the local pre-check can increase the latency of a QueryOperation, you can configure how many
local partitions should be considered for the pre-check, or you can deactivate the feature
completely.

Scope of Result Size Limit

Besides the designated query operations, there are other operations that use predicates internally.
Those method calls throw the QueryResultSizeExceededException as well. See the following matrix
for the methods that are covered by the query result size limit.

160

Configuring Query Result Size

The query result size limit is configured via the following system properties.

• hazelcast.query.result.size.limit: Result size limit for query operations on maps. This value
defines the maximum number of returned elements for a single query result. If a query exceeds
this number of elements, a QueryResultSizeExceededException is thrown.

• hazelcast.query.max.local.partition.limit.for.precheck: Maximum value of local partitions to
trigger local pre-check for Predicates#alwaysTrue() query operations on maps.

See the System Properties appendix to see the full descriptions of these properties and how to set
them.

7.3. Queue
Hazelcast distributed queue is an implementation of java.util.concurrent.BlockingQueue. Being
distributed, Hazelcast distributed queue enables all cluster members to interact with it. Using
Hazelcast distributed queue, you can add an item in one cluster member and remove it from
another one.

7.3.1. Getting a Queue and Putting Items

Use the Hazelcast instance’s getQueue method to get the queue, then use the queue’s put method to
put items into the queue.

161

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
BlockingQueue<MyTask> queue = hazelcastInstance.getQueue("tasks");
queue.put(new MyTask());
MyTask task = queue.take();

boolean offered = queue.offer(new MyTask(), 10, TimeUnit.SECONDS);
task = queue.poll(5, TimeUnit.SECONDS);
if (task != null) {
 //process task
}

FIFO ordering applies to all queue operations across the cluster. The user objects (such as MyTask in
the example above) that are enqueued or dequeued have to be Serializable.

Hazelcast distributed queue performs no batching while iterating over the queue. All items are
copied locally and iteration occurs locally.

Hazelcast distributed queue uses ItemListener to listen to the events that occur when items are
added to and removed from the queue. See the Listening for Item Events section for information on
how to create an item listener class and register it.

7.3.2. Creating an Example Queue

The following example code illustrates a distributed queue that connects a producer and consumer.

Putting Items on the Queue

Let’s put one integer on the queue every second, 100 integers total.

public class ProducerMember {

 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IQueue<Integer> queue = hz.getQueue("queue");
 for (int k = 1; k < 100; k++) {
 queue.put(k);
 System.out.println("Producing: " + k);
 Thread.sleep(1000);
 }
 queue.put(-1);
 System.out.println("Producer Finished!");
 }
}

Producer puts a -1 on the queue to show that the puts are finished.

162

Taking Items off the Queue

Now, let’s create a Consumer class to take a message from this queue, as shown below.

public class ConsumerMember {

 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IQueue<Integer> queue = hz.getQueue("queue");
 while (true) {
 int item = queue.take();
 System.out.println("Consumed: " + item);
 if (item == -1) {
 queue.put(-1);
 break;
 }
 Thread.sleep(5000);
 }
 System.out.println("Consumer Finished!");
 }
}

As seen in the above example code, Consumer waits five seconds before it consumes the next
message. It stops once it receives -1. Also note that Consumer puts -1 back on the queue before the
loop is ended.

When you first start Producer and then start Consumer, items produced on the queue will be
consumed from the same queue.

Balancing the Queue Operations

From the above example code, you can see that an item is produced every second and consumed
every five seconds. Therefore, the consumer keeps growing. To balance the produce/consume
operation, let’s start another consumer. This way, consumption is distributed to these two
consumers, as seen in the example outputs below.

The second consumer is started. After a while, here is the first consumer output:

...
Consumed 13
Consumed 15
Consumer 17
...

Here is the second consumer output:

163

...
Consumed 14
Consumed 16
Consumer 18
...

In the case of a lot of producers and consumers for the queue, using a list of queues may solve the
queue bottlenecks. In this case, be aware that the order of the messages sent to different queues is
not guaranteed. Since in most cases strict ordering is not important, a list of queues is a good
solution.

The items are taken from the queue in the same order they were put on the queue.
However, if there is more than one consumer, this order is not guaranteed.

ItemIDs When Offering Items

Hazelcast gives an itemId for each item you offer, which is an incrementing sequence identification
for the queue items. You should consider the following to understand the itemId assignment
behavior:

• When a Hazelcast member has a queue and that queue is configured to have at least one
backup, and that member is restarted, the itemId assignment resumes from the last known
highest itemId before the restart; itemId assignment does not start from the beginning for the
new items.

• When the whole cluster is restarted, the same behavior explained in the above consideration
applies if your queue has a persistent data store (QueueStore). If the queue has QueueStore, the
itemId for the new items are given, starting from the highest itemId found in the IDs returned by
the method loadAllKeys. If the method loadAllKeys does not return anything, the itemIds starts
from the beginning after a cluster restart.

• The above two considerations mean there are no duplicated itemIds in the memory or in the
persistent data store.

7.3.3. Setting a Bounded Queue

A bounded queue is a queue with a limited capacity. When the bounded queue is full, no more
items can be put into the queue until some items are taken out.

To turn a Hazelcast distributed queue into a bounded queue, set the capacity limit with the max-size
property. You can set the max-size property in the configuration, as shown below. The max-size
element specifies the maximum size of the queue. Once the queue size reaches this value, put
operations are blocked until the queue size goes below max-size, which happens when a consumer
removes items from the queue.

Let’s set 10 as the maximum size of our example queue in Creating an Example Queue.

164

XML

<hazelcast>
 ...
 <queue name="queue">
 <max-size>10</max-size>
 </queue>
 ...
</hazelcast>

YAML

hazelcast:
 queue:
 queue:
 max-size: 10

When the producer is started, ten items are put into the queue and then the queue will not allow
more put operations. When the consumer is started, it will remove items from the queue. This
means that the producer can put more items into the queue until there are ten items in the queue
again, at which point the put operation again becomes blocked.

In this example code, the producer is five times faster than the consumer. It will effectively always
be waiting for the consumer to remove items before it can put more on the queue. For this example
code, if maximum throughput is the goal, it would be a good option to start multiple consumers to
prevent the queue from filling up.

7.3.4. Queueing with Persistent Datastore

Hazelcast allows you to load and store the distributed queue items from/to a persistent datastore
using the interface QueueStore. If queue store is enabled, each item added to the queue is also stored
at the configured queue store. When the number of items in the queue exceeds the memory limit,
the subsequent items are persisted in the queue store, they are not stored in the queue memory.

The QueueStore interface enables you to store, load and delete queue items with methods like store,
storeAll, load and delete. The following example class includes all of the QueueStore methods.

165

public class TheQueueStore implements QueueStore<Item> {

 @Override
 public void delete(Long key) {
 System.out.println("delete");
 }

 @Override
 public void store(Long key, Item value) {
 System.out.println("store");
 }

 @Override
 public void storeAll(Map<Long, Item> map) {
 System.out.println("store all");
 }

 @Override
 public void deleteAll(Collection<Long> keys) {
 System.out.println("deleteAll");
 }

 @Override
 public Item load(Long key) {
 System.out.println("load");
 return null;
 }

 @Override
 public Map<Long, Item> loadAll(Collection<Long> keys) {
 System.out.println("loadALl");
 return null;
 }

 @Override
 public Set<Long> loadAllKeys() {
 System.out.println("loadAllKeys");
 return null;
 }
}

Item must be serializable. The following is an example queue store configuration.

166

XML

<hazelcast>
 ...
 <queue name="queue">
 <max-size>10</max-size>
 <queue-store>
 <class-name>com.hazelcast.QueueStoreImpl</class-name>
 <properties>
 <property name="binary">false</property>
 <property name="memory-limit">1000</property>
 <property name="bulk-load">500</property>
 </properties>
 </queue-store>
 </queue>
 ...
</hazelcast>

YAML

hazelcast:
 queue:
 queue:
 max-size: 10
 queue-store:
 class-name: com.hazelcast.QueueStoreImpl
 properties:
 binary: false
 memory-limit: 1000
 bulk-load: 500

The following are the descriptions for each queue store property:

• Binary: By default, Hazelcast stores the queue items in serialized form, and before it inserts the
queue items into the queue store, it deserializes them. If you are not reaching the queue store
from an external application, you might prefer that the items be inserted in binary form. Do this
by setting the binary property to true: then you can get rid of the deserialization step, which is a
performance optimization. The binary property is false by default.

• Memory Limit: This is the number of items after which Hazelcast stores items only to the
datastore. For example, if the memory limit is 1000, then the 1001st item is put only to the
datastore. This feature is useful when you want to avoid out-of-memory conditions. If you want
to always use memory, you can set it to Integer.MAX_VALUE. The default number for memory-limit
is 1000.

• Bulk Load: When the queue is initialized, items are loaded from QueueStore in bulks. Bulk load
is the size of these bulks. The default value of bulk-load is 250.

167

7.3.5. Split-Brain Protection for Queue

Queues can be configured to check for a minimum number of available members before applying
queue operations (see the Split-Brain Protection section). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

• WRITE, READ_WRITE

◦ Collection.addAll()

◦ Collection.removeAll(), Collection.retainAll()

◦ BlockingQueue.offer(), BlockingQueue.add(), BlockingQueue.put()

◦ BlockingQueue.drainTo()

◦ IQueue.poll(), Queue.remove(), IQueue.take()

◦ BlockingQueue.remove()

• READ, READ_WRITE

◦ Collection.clear()

◦ Collection.containsAll(), BlockingQueue.contains()

◦ Collection.isEmpty()

◦ Collection.iterator(), Collection.toArray()

◦ Queue.peek(), Queue.element()

◦ Collection.size()

◦ BlockingQueue.remainingCapacity()

7.3.6. Configuring Queue

The following are examples of queue configurations. It includes the QueueStore configuration, which
is explained in the Queueing with Persistent Datastore section.

Declarative Configuration:

168

XML

<hazelcast>
 ...
 <queue name="default">
 <max-size>0</max-size>
 <backup-count>1</backup-count>
 <async-backup-count>0</async-backup-count>
 <empty-queue-ttl>-1</empty-queue-ttl>
 <item-listeners>
 <item-listener>com.hazelcast.examples.ItemListener</item-listener>
 </item-listeners>
 <statistics-enabled>true</statistics-enabled>
 <queue-store>
 <class-name>com.hazelcast.QueueStoreImpl</class-name>
 <properties>
 <property name="binary">false</property>
 <property name="memory-limit">10000</property>
 <property name="bulk-load">500</property>
 </properties>
 </queue-store>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </queue>
 ...
</hazelcast>

YAML

hazelcast:
 queue:
 default:
 max-size: 0
 backup-count: 1
 async-backup-count: 0
 empty-queue-ttl: -1
 item-listeners:
 - include-value: true
 class-name: com.hazelcast.examples.ItemListener
 statistics-enabled: true
 queue-store:
 class-name: com.hazelcast.QueueStoreImpl
 properties:
 binary: false
 memory-limit: 1000
 bulk-load: 500
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

169

Config config = new Config();
QueueConfig queueConfig = config.getQueueConfig("default");
queueConfig.setName("MyQueue")
 .setBackupCount(1)
 .setMaxSize(0)
 .setStatisticsEnabled(true)
 .setSplitBrainProtectionName("splitbrainprotectionname");
queueConfig.getQueueStoreConfig()
 .setEnabled(true)
 .setClassName("com.hazelcast.QueueStoreImpl")
 .setProperty("binary", "false");
config.addQueueConfig(queueConfig);

Hazelcast distributed queue has one synchronous backup by default. By having this backup, when a
cluster member with a queue goes down, another member having the backup of that queue will
continue. Therefore, no items are lost. You can define the number of synchronous backups for a
queue using the backup-count element in the declarative configuration. A queue can also have
asynchronous backups: you can define the number of asynchronous backups using the async-
backup-count element.

To set the maximum size of the queue, use the max-size element. To purge unused or empty queues
after a period of time, use the empty-queue-ttl element. If you define a value (time in seconds) for
the empty-queue-ttl element, then your queue will be destroyed if it stays empty or unused for the
time in seconds that you give.

The following is the full list of queue configuration elements with their descriptions:

• max-size: Maximum number of items in the queue. It is used to set an upper bound for the
queue. You will not be able to put more items when the queue reaches to this maximum size
whether you have a queue store configured or not.

• backup-count: Number of synchronous backups. Queue is a non-partitioned data structure, so all
entries of a queue reside in one partition. When this parameter is '1', it means there will be one
backup of that queue in another member in the cluster. When it is '2', two members will have
the backup.

• async-backup-count: Number of asynchronous backups.

• empty-queue-ttl: Used to purge unused or empty queues. If you define a value (time in seconds)
for this element, then your queue will be destroyed if it stays empty or unused for that time.

• item-listeners: Adds listeners (listener classes) for the queue items. You can also set the
attribute include-value to true if you want the item event to contain the item values. You can set
local to true if you want to listen to the items on the local member.

• queue-store: Includes the queue store factory class name and the properties binary, memory
limit and bulk load. See the Queueing with Persistent Datastore section.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your queue. If set
to false, you cannot collect statistics in your implementation (using getLocalQueueStats()) and
also Hazelcast Management Center will not show them. Its default value is true.

170

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-queues

• split-brain-protection-ref : Name of the split-brain protection configuration that you want this
queue to use.

7.4. Priority Queue
Priority queue is a regular blocking queue which orders items using a comparator. Items in this
queue do not necessarily follow the FIFO or LIFO order; you assign a comparator which defines the
order in which items will be stored in the queue. Items with higher priority get polled first,
regardless of when they have been added.

Its configuration is same as the regular queue as explained in Configuring Queue except the
additional comparator configuration element. A declarative example is shown below:

XML

<queue name="default">
 <max-size>10</max-size>
 <backup-count>1</backup-count>
 <item-listeners>
 <item-listener include-value="true">com.hazelcast.examples.ItemListener</item-
listener>
 </item-listeners>
 <queue-store>
 <class-name>com.hazelcast.QueueStoreImpl</class-name>
 <properties>
 <property name="binary">false</property>
 <property name="memory-limit">10000</property>
 <property name="bulk-load">500</property>
 </properties>
 </queue-store>
 <priority-comparator-class-
name>com.hazelcast.collection.impl.queue.model.PriorityElementComparator</priority-
comparator-class-name>
</queue>

171

YAML

queue:
 default:
 statistics-enabled: true
 max-size: 10
 backup-count: 1
 item-listeners:
 - include-value: true
 class-name: com.hazelcast.examples.ItemListener
 queue-store:
 class-name: com.hazelcast.QueueStoreImpl
 properties:
 binary: false
 memory-limit: 1000
 bulk-load: 500
 priority-comparator-class-name:
com.hazelcast.collection.impl.queue.model.PriorityElementComparator

The priority-comparator-class-name element is the fully-qualified comparator’s class name to be
used for the priority queue. If you do not provide a value, then the queue behaves as a regular FIFO
queue.

When you provide a comparator, Hazelcast ignores the queue store memory-limit
configuration value.

7.5. MultiMap
Hazelcast MultiMap is a specialized map where you can store multiple values under a single key. Just
like any other distributed data structure implementation in Hazelcast, MultiMap is distributed and
thread-safe.

Hazelcast MultiMap is not an implementation of java.util.Map due to the difference in method
signatures. It supports most features of Hazelcast Map except for indexing, predicates and
MapLoader/MapStore. Yet, like Hazelcast Map, entries are almost evenly distributed onto all cluster
members. When a new member joins the cluster, the same ownership logic used in the distributed
map applies.

7.5.1. Getting a MultiMap and Putting an Entry

The following example creates a MultiMap and puts items into it:

172

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap<String , String > map = hazelcastInstance.getMultiMap("map");

map.put("a", "1");
map.put("a", "2");
map.put("b", "3");
System.out.println("PutMember:Done");

We use the getMultiMap method to create the MultiMap and then use the put method to put an entry
into it.

Now let’s print the entries in this MultiMap using the following code:

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hazelcastInstance.getMultiMap("map");

map.put("a", "1");
map.put("a", "2");
map.put("b", "3");
System.out.printf("PutMember:Done");

for (String key: map.keySet()){
 Collection<String> values = map.get(key);
 System.out.printf("%s -> %s\n", key, values);
}

After you run ExampleMultiMap, run PrintMember. You will see the key a has two values, as shown
below:

b → [3]

a → [2, 1]

Hazelcast MultiMap uses EntryListener to listen to events which occur when entries are added to,
updated in or removed from the MultiMap. See the Listening for MultiMap Events section for
information on how to create an entry listener class and register it.

7.5.2. Configuring MultiMap

When using MultiMap, the collection type of the values can be either Set or List. Configure the
collection type with the valueCollectionType parameter. If you choose Set, duplicate and null values
are not allowed in your collection and ordering is irrelevant. If you choose List, ordering is
relevant and your collection can include duplicate but not null values.

You can also enable statistics for your MultiMap with the statisticsEnabled parameter. If you
enable statisticsEnabled, statistics can be retrieved with getLocalMultiMapStats() method.

 Currently, eviction is not supported for the MultiMap data structure.

173

The following are the example MultiMap configurations.

Declarative Configuration:

XML

<hazelcast>
 ...
 <multimap name="default">
 <backup-count>0</backup-count>
 <async-backup-count>1</async-backup-count>
 <value-collection-type>SET</value-collection-type>
 <entry-listeners>
 <entry-listener include-value="false" local="false"
>com.hazelcast.examples.EntryListener</entry-listener>
 </entry-listeners>
 <split-brain-protection-ref>split-brain-protection-name</split-brain-
protection-ref>
 </multimap>
 ...
</hazelcast>

YAML

hazelcast:
 multimap:
 default:
 backup-count: 0
 async-backup-count: 1
 value-collection-type: SET
 entry-listeners:
 - class-name: com.hazelcast.examples.EntryListener
 include-value: false
 local: false
 split-brain-protection-ref: split-brain-protection-name

Programmatic Configuration:

MultiMapConfig mmConfig = new MultiMapConfig();
mmConfig.setName("default")
 .setBackupCount(0).setAsyncBackupCount(1)
 .setValueCollectionType("SET")
 .setSplitBrainProtectionName("splitbrainprotectionname");

The following are the configuration elements and their descriptions:

• backup-count: Defines the number of synchronous backups. For example, if it is set to 1, backup
of a partition will be placed on one other member. If it is 2, it will be placed on two other
members.

174

• async-backup-count: The number of asynchronous backups. Behavior is the same as that of the
backup-count element.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your MultiMap. If
set to false, you cannot collect statistics in your implementation (using getLocalMultiMapStats())
and also Hazelcast Management Center will not show them. Its default value is true.

• value-collection-type: Type of the value collection. It can be SET or LIST.

• entry-listeners: Lets you add listeners (listener classes) for the map entries. You can also set the
attribute include-value to true if you want the item event to contain the entry values. You can
set local to true if you want to listen to the entries on the local member.

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
MultiMap to use. See the Split-Brain Protection for MultiMap and TransactionalMultiMap
section.

7.5.3. Split-Brain Protection for MultiMap and TransactionalMultiMap

MultiMap & TransactionalMultiMap can be configured to check for a minimum number of
available members before applying their operations (see the Split-Brain Protection section). This is
a check to avoid performing successful queue operations on all parts of a cluster during a network
partition.

The following is a list of methods that support split-brain protection checks. The list is grouped by
the protection types.

MultiMap:

• WRITE, READ_WRITE:

◦ clear

◦ forceUnlock

◦ lock

◦ put

◦ remove

◦ tryLock

◦ unlock

• READ, READ_WRITE:

◦ containsEntry

◦ containsKey

◦ containsValue

◦ entrySet

◦ get

◦ isLocked

◦ keySet

◦ localKeySet

◦ size

◦ valueCount

175

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-multimaps

◦ values

TransactionalMultiMap:

• WRITE, READ_WRITE:

◦ put

◦ remove

• READ, READ_WRITE:

◦ size

◦ get

◦ valueCount

Configuring Split-Brain Protection

Split-brain protection for MultiMap can be configured programmatically using the method
setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-ref.
Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <multimap name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </multimap>
 ...
</hazelcast>

YAML

hazelcast:
 multimap:
 default:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

7.6. Set
Hazelcast Set (ISet) is a distributed and concurrent implementation of java.util.Set. It has the
following features:

• Hazelcast Set does not allow duplicate elements.

• Hazelcast Set does not preserve the order of elements.

176

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/MultiMapConfig.html

• Hazelcast Set is a non-partitioned data structure: all the data that belongs to a set lives on one
single partition in that member.

• Hazelcast Set cannot be scaled beyond the capacity of a single machine. Since the whole set lives
on a single partition, storing a large amount of data on a single set may cause memory pressure.
Therefore, you should use multiple sets to store a large amount of data. This way, all the sets are
spread across the cluster, sharing the load.

• A backup of Hazelcast Set is stored on a partition of another member in the cluster so that data
is not lost in the event of a primary member failure.

• All items are copied to the local member and iteration occurs locally.

• The equals method implemented in Hazelcast Set uses a serialized byte version of objects, as
opposed to java.util.HashSet.

7.6.1. Getting a Set and Putting Items

Use the HazelcastInstances getSet method to get the Set, then use the add method to put items into it.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
ISet<String> set = hz.getSet("set");
set.add("Tokyo");
set.add("Paris");
set.add("London");
set.add("New York");
System.out.println("Putting finished!");

Hazelcast Set uses ItemListener to listen to events that occur when items are added to and removed
from the Set. See the Listening for Item Events section for information on how to create an item
listener class and register it.

7.6.2. Configuring Set

The following are the example Hazelcast Set configurations.

Declarative Configuration:

177

XML

<hazelcast>
 ...
 <set name="default">
 <statistics-enabled>false</statistics-enabled>
 <backup-count>1</backup-count>
 <async-backup-count>0</async-backup-count>
 <max-size>10</max-size>
 <item-listeners>
 <item-listener>com.hazelcast.examples.ItemListener</item-listener>
 </item-listeners>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </set>
 ...
</hazelcast>

YAML

hazelcast:
 set:
 default:
 statistics-enabled: false
 backup-count: 1
 async-backup-count: 0
 max-size: 10
 item-listeners:
 - class-name: com.hazelcast.examples.ItemListener
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

Config config = new Config();
CollectionConfig collectionSet = config.getSetConfig("MySet");
collectionSet.setBackupCount(1)
 .setMaxSize(10)
 .setSplitBrainProtectionName("splitbrainprotectionname");

Hazelcast Set configuration has the following elements:

• statistics-enabled: True (default) if statistics gathering is enabled on the Set, false otherwise.

• backup-count: Count of synchronous backups. Set is a non-partitioned data structure, so all
entries of a Set reside in one partition. When this parameter is '1', it means there will be one
backup of that Set in another member in the cluster. When it is '2', two members will have the
backup.

• async-backup-count: Count of asynchronous backups.

178

• max-size: The maximum number of entries for this Set. It can be any number between 0 and
Integer.MAX_VALUE. Its default value is 0, meaning there is no capacity constraint.

• item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the
attributes include-value to true if you want the item event to contain the item values. You can
set local to true if you want to listen to the items on the local member.

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
Set to use. See the Split-Brain Protection for ISet and TransactionalSet section.

7.6.3. Split-Brain Protection for ISet and TransactionalSet

ISet & TransactionalSet can be configured to check for a minimum number of available members
before applying queue operations (see the Split-Brain Protection section). This is a check to avoid
performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

ISet:

• WRITE, READ_WRITE:

◦ add

◦ addAll

◦ clear

◦ remove

◦ removeAll

• READ, READ_WRITE:

◦ contains

◦ containsAll

◦ isEmpty

◦ iterator

◦ size

◦ toArray

TransactionalSet:

• WRITE, READ_WRITE:

◦ add

◦ remove

• READ, READ_WRITE:

◦ size

Configuring Split-Brain Protection

Split-brain protection for ISet can be configured programmatically using the method
setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-ref. The
following is an example declarative configuration:

179

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/SetConfig.html

XML

<hazelcast>
 ...
 <set name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </set>
 ...
</hazelcast>

YAML

hazelcast:
 set:
 default:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

7.7. List
Hazelcast List (IList) is similar to Hazelcast Set, but it also allows duplicate elements.

• Besides allowing duplicate elements, Hazelcast List preserves the order of elements.

• Hazelcast List is a non-partitioned data structure where values and each backup are
represented by their own single partition.

• Hazelcast List cannot be scaled beyond the capacity of a single machine.

• All items are copied to local and iteration occurs locally.

While IMap and ICache are the recommended data structures to be used by
Hazelcast Jet, IList can also be used by it for unit testing or similar non-production
situations. See here in the Hazelcast Jet Reference Manual to learn how Jet can use
IList, e.g., how it can fill IList with data, consume it in a Jet job and drain the
results to another IList. See also the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet.

7.7.1. Getting a List and Putting Items

Use the HazelcastInstances getList method to get the List, then use the add method to put items into
it.

180

https://jet.hazelcast.org/
https://docs.hazelcast.org/docs/jet/latest/manual/#imdg-list
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IList<String> list = hz.getList("list");
list.add("Tokyo");
list.add("Paris");
list.add("London");
list.add("New York");
System.out.println("Putting finished!");

Hazelcast List uses ItemListener to listen to events that occur when items are added to and removed
from the List. See the Listening for Item Events section for information on how to create an item
listener class and register it.

7.7.2. Configuring List

The following are the example Hazelcast List configurations.

Declarative Configuration:

XML

<hazelcast>
 ...
 <list name="default">
 <statistics-enabled>false</statistics-enabled>
 <backup-count>1</backup-count>
 <async-backup-count>0</async-backup-count>
 <max-size>10</max-size>
 <item-listeners>
 <item-listener>
 com.hazelcast.examples.ItemListener
 </item-listener>
 </item-listeners>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </list>
 ...
</hazelcast>

181

YAML

hazelcast:
 list:
 default:
 statistics-enabled: false
 backup-count: 1
 async-backup-count: 0
 max-size: 10
 item-listeners:
 - class-name: com.hazelcast.examples.ItemListener
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

Config config = new Config();
CollectionConfig collectionList = config.getListConfig("MyList");
collectionList.setBackupCount(1)
 .setMaxSize(10)
 .setSplitBrainProtectionName("splitbrainprotectionname");

Hazelcast List configuration has the following elements:

• statistics-enabled: True (default) if statistics gathering is enabled on the list, false otherwise.

• backup-count: Number of synchronous backups. List is a non-partitioned data structure, so all
entries of a List reside in one partition. When this parameter is '1', there will be one backup of
that List in another member in the cluster. When it is '2', two members will have the backup.

• async-backup-count: Number of asynchronous backups.

• max-size: The maximum number of entries for this List.

• item-listeners: Lets you add listeners (listener classes) for the list items. You can also set the
attribute include-value to true if you want the item event to contain the item values. You can set
the attribute local to true if you want to listen the items on the local member.

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
List to use. See the Split-Brain Protection for IList and TransactionalList section.

7.7.3. Split-Brain Protection for IList and TransactionalList

IList & TransactionalList can be configured to check for a minimum number of available members
before applying queue operations (see the Split-Brain Protection section). This is a check to avoid
performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

IList:

182

• WRITE, READ_WRITE:

◦ add

◦ addAll

◦ clear

◦ remove

◦ removeAll

◦ set

• READ, READ_WRITE:

◦ add

◦ contains

◦ containsAll

◦ get

◦ indexOf

◦ isEmpty

◦ iterator

◦ lastIndexOf

◦ listIterator

◦ size

◦ subList

◦ toArray

TransactionalList:

• WRITE, READ_WRITE:

◦ add

◦ remove

• READ, READ_WRITE:

◦ size

Configuring Split-Brain Protection

Split-brain protection for IList can be configured programmatically using the method
setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-ref.
Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <list name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </list>
 ...
</hazelcast>

183

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/ListConfig.html

YAML

hazelcast:
 list:
 default:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

7.8. Ringbuffer
Hazelcast Ringbuffer is a replicated but not partitioned data structure that stores its data in a ring-
like structure. You can think of it as a circular array with a given capacity. Each Ringbuffer has a tail
and a head. The tail is where the items are added and the head is where the items are overwritten
or expired. You can reach each element in a Ringbuffer using a sequence ID, which is mapped to
the elements between the head and tail (inclusive) of the Ringbuffer.

7.8.1. Getting a Ringbuffer and Reading Items

Reading from Ringbuffer is simple: get the Ringbuffer with the HazelcastInstance getRingbuffer
method, get its current head with the headSequence method and start reading. Use the method
readOne to return the item at the given sequence; readOne blocks if no item is available. To read the
next item, increment the sequence by one.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<String> ringbuffer = hz.getRingbuffer("rb");
long sequence = ringbuffer.headSequence();
while(true){
 String item = ringbuffer.readOne(sequence);
 sequence++;
 // process item
}

By exposing the sequence, you can now move the item from the Ringbuffer as long as the item is
still available. If the item is not available any longer, StaleSequenceException is thrown.

7.8.2. Adding Items to a Ringbuffer

Adding an item to a Ringbuffer is also easy with the Ringbuffer add method:

Ringbuffer<String> ringbuffer = hz.getRingbuffer("ExampleRB");
ringbuffer.add("someitem");

Use the method add to return the sequence of the inserted item; the sequence value is always

184

unique. You can use this as a very cheap way of generating unique IDs if you are already using
Ringbuffer.

7.8.3. IQueue vs. Ringbuffer

Hazelcast Ringbuffer can sometimes be a better alternative than an Hazelcast IQueue. Unlike
IQueue, Ringbuffer does not remove the items, it only reads items using a certain position. There
are many advantages to this approach as described below:

• The same item can be read multiple times by the same thread. This is useful for realizing
semantics of read-at-least-once or read-at-most-once.

• The same item can be read by multiple threads. Normally you could use an IQueue per thread
for the same semantic, but this is less efficient because of the increased remoting. A take from
an IQueue is destructive, so the change needs to be applied for backup also, which is why a
queue.take() is more expensive than a ringBuffer.read(…).

• Reads are extremely cheap since there is no change in the Ringbuffer. Therefore no replication
is required.

• Reads and writes can be batched to speed up performance. Batching can dramatically improve
the performance of Ringbuffer.

7.8.4. Configuring Ringbuffer Capacity

By default, a Ringbuffer is configured with a capacity of 10000 items. This creates an array with a
size of 10000. If a time-to-live is configured, then an array of longs is also created that stores the
expiration time for every item. In a lot of cases you may want to change this capacity number to
something that better fits your needs.

Below is a declarative configuration example of a Ringbuffer with a capacity of 2000 items.

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <capacity>2000</capacity>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 capacity: 2000

Currently, Hazelcast Ringbuffer is not a partitioned data structure; its data is stored in a single

185

partition and the replicas are stored in another partition. Therefore, create a Ringbuffer that can
safely fit in a single cluster member.

7.8.5. Backing Up Ringbuffer

Hazelcast Ringbuffer has a single synchronous backup by default. You can control the Ringbuffer
backup just like most of the other Hazelcast distributed data structures by setting the synchronous
and asynchronous backups: backup-count and async-backup-count. In the example below, a
Ringbuffer is configured with no synchronous backups and one asynchronous backup:

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <backup-count>0</backup-count>
 <async-backup-count>1</async-backup-count>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 backup-count: 0
 async-backup-count: 1

An asynchronous backup probably gives you better performance. However, there is a chance that
the item added will be lost when the member owning the primary crashes before the backup could
complete. You may want to consider batching methods if you need high performance but do not
want to give up on consistency.

7.8.6. Configuring Ringbuffer Time-To-Live

You can configure Hazelcast Ringbuffer with a time-to-live in seconds. Using this setting, you can
control how long the items remain in the Ringbuffer before they are expired. By default, the time-
to-live is set to 0, meaning that unless the item is overwritten, it will remain in the Ringbuffer
indefinitely. If you set a time-to-live and an item is added, then, depending on the Overflow Policy,
either the oldest item is overwritten, or the call is rejected.

In the example below, a Ringbuffer is configured with a time-to-live of 180 seconds.

186

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <time-to-live-seconds>180</time-to-live-seconds>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 time-to-live-seconds: 180

7.8.7. Setting Ringbuffer Overflow Policy

Using the overflow policy, you can determine what to do if the oldest item in the Ringbuffer is not
old enough to expire when more items than the configured Ringbuffer capacity are being added.
The below options are currently available:

• OverflowPolicy.OVERWRITE: The oldest item is overwritten.

• OverflowPolicy.FAIL: The call is aborted. The methods that make use of the OverflowPolicy
return -1 to indicate that adding the item has failed.

Overflow policy gives you fine control on what to do if the Ringbuffer is full. You can also use the
overflow policy to apply a back pressure mechanism. The following example code shows the usage
of an exponential backoff.

187

Random random = new Random();
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<Long> rb = hz.getRingbuffer("rb");

long i = 100;
while (true) {
 long sleepMs = 100;
 for (; ;) {
 long result = rb.addAsync(i, OverflowPolicy.FAIL).toCompletableFuture().get();
 if (result != -1) {
 break;
 }
 TimeUnit.MILLISECONDS.sleep(sleepMs);
 sleepMs = min(5000, sleepMs * 2);
 }

 // add a bit of random delay to make it look a bit more realistic
 Thread.sleep(random.nextInt(10));

 System.out.println("Written: " + i);
 i++;
}

7.8.8. Ringbuffer with Persistent Datastore

Hazelcast allows you to load and store the Ringbuffer items from/to a persistent datastore using the
interface RingbufferStore. If a Ringbuffer store is enabled, each item added to the Ringbuffer will
also be stored at the configured Ringbuffer store.

If the Ringbuffer store is configured, you can get items with sequences which are no longer in the
actual Ringbuffer but are only in the Ringbuffer store. This is probably much slower but still allows
you to continue consuming items from the Ringbuffer even if they are overwritten with newer
items in the Ringbuffer.

When a Ringbuffer is being instantiated, it checks if the Ringbuffer store is configured and requests
the latest sequence in the Ringbuffer store. This is to enable the Ringbuffer to start with sequences
larger than the ones in the Ringbuffer store. In this case, the Ringbuffer is empty but you can still
request older items from it (which will be loaded from the Ringbuffer store).

The Ringbuffer store stores items in the same format as the Ringbuffer. If the BINARY in-memory
format is used, the Ringbuffer store must implement the interface RingbufferStore<byte[]> meaning
that the Ringbuffer receives items in the binary format. If the OBJECT in-memory format is used, the
Ringbuffer store must implement the interface RingbufferStore<K>, where K is the type of item being
stored (meaning that the Ringbuffer store receives the deserialized object).

When adding items to the Ringbuffer, the method storeAll allows you to store items in batches.

The following example class includes all of the RingbufferStore methods.

188

public class TheRingbufferObjectStore implements RingbufferStore<Item> {

 @Override
 public void store(long sequence, Item data) {
 System.out.println("Object store");
 }

 @Override
 public void storeAll(long firstItemSequence, Item[] items) {
 System.out.println("Object store all");
 }

 @Override
 public Item load(long sequence) {
 System.out.println("Object load");
 return null;
 }

 @Override
 public long getLargestSequence() {
 System.out.println("Object get largest sequence");
 return -1;
 }
}

Item must be serializable. The following is an example of a Ringbuffer with the Ringbuffer store
configured and enabled.

XML

<hazelcast>
 ...
 <ringbuffer name="default">
 <capacity>10000</capacity>
 <time-to-live-seconds>30</time-to-live-seconds>
 <backup-count>1</backup-count>
 <async-backup-count>0</async-backup-count>
 <in-memory-format>BINARY</in-memory-format>
 <ringbuffer-store>
 <class-name>com.hazelcast.RingbufferStoreImpl</class-name>
 </ringbuffer-store>
 </ringbuffer>
 ...
</hazelcast>

189

YAML

hazelcast:
 ringbuffer:
 default:
 capacity: 10000
 time-to-live-seconds: 30
 backup-count: 1
 async-backup-count: 0
 in-memory-format: BINARY
 ringbuffer-store:
 class-name: com.hazelcast.RingbufferStoreImpl

The following are the explanations for the Ringbuffer store configuration elements:

• `class-name: Name of the Ringbuffer store factory class.

7.8.9. Configuring Ringbuffer In-Memory Format

You can configure Hazelcast Ringbuffer with an in-memory format that controls the format of the
Ringbuffer’s stored items. By default, BINARY in-memory format is used, meaning that the object is
stored in a serialized form. You can select the OBJECT in-memory format, which is useful when
filtering is applied or when the OBJECT in-memory format has a smaller memory footprint than
BINARY.

In the declarative configuration example below, a Ringbuffer is configured with the OBJECT in-
memory format:

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <in-memory-format>OBJECT</in-memory-format>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 in-memory-format: OBJECT

7.8.10. Configuring Split-Brain Protection for Ringbuffer

Ringbuffer can be configured to check for a minimum number of available members before
applying Ringbuffer operations. This is a check to avoid performing successful Ringbuffer

190

operations on all parts of a cluster during a network partition and can be configured using the
element split-brain-protection-ref. You should set this element’s value as the quorum’s name,
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section. Following is an example snippet:

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 split-brain-protection-ref: splitbrainprotection-name

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

• WRITE, READ_WRITE:

◦ add

◦ addAllAsync

◦ addAsync

• READ, READ_WRITE:

◦ capacity

◦ headSequence

◦ readManyAsync

◦ readOne

◦ remainingCapacity

◦ size

◦ tailSequence

7.8.11. Adding Batched Items

In the previous examples, the method ringBuffer.add() is used to add an item to the Ringbuffer.
The problems with this method are that it always overwrites and that it does not support batching.
Batching can have a huge impact on the performance. You can use the method addAllAsync to
support batching.

See the following example code.

191

List<String> items = Arrays.asList("1","2","3");
CompletionStage<Long> s = rb.addAllAsync(items, OverflowPolicy.OVERWRITE);
// block until all items are added
s.toCompletableFuture().join();

In the above case, three strings are added to the Ringbuffer using the policy
OverflowPolicy.OVERWRITE. See the Overflow Policy section for more information.

7.8.12. Reading Batched Items

In the previous example, the readOne method read items from the Ringbuffer. readOne is simple but
not very efficient for the following reasons:

• readOne does not use batching.

• readOne cannot filter items at the source; the items need to be retrieved before being filtered.

The method readManyAsync can read a batch of items and can filter items at the source.

See the following example code.

CompletionStage<ReadResultSet<E>> readManyAsync(
 long startSequence,
 int minCount,
 int maxCount,
 IFunction<E, Boolean> filter);

The meanings of the readManyAsync arguments are given below:

• startSequence: Sequence of the first item to read.

• minCount: Minimum number of items to read. If you do not want to block, set it to 0. If you want
to block for at least one item, set it to 1.

• maxCount: Maximum number of the items to retrieve. Its value cannot exceed 1000.

• filter: A function that accepts an item and checks if it should be returned. If no filtering should
be applied, set it to null.

A full example is given below.

192

long sequence = rb.headSequence();
for(;;) {
 CompletionStage<ReadResultSet<String>> f = rb.readManyAsync(sequence, 1, 10, null
);
 CompletionStage<Integer> readCountStage = f.thenApplyAsync(rs -> {
 for (String s : rs) {
 System.out.println(s);
 }
 return rs.readCount();
 });
 sequence += readCountStage.toCompletableFuture().join();
}

Please take a careful look at how your sequence is being incremented. You cannot always rely on
the number of items being returned if the items are filtered out.

There is not any filtering applied in the above example. The following example shows how you can
apply a filter when reading batched items. First, let’s create our filter as shown below:

public class FruitFilter implements IFunction<String, Boolean> {
 public FruitFilter() {}

 public Boolean apply(String s) {
 return s.startsWith("a");
 }
}

So, the FruitFilter checks whether a String object starts with the letter "a". You can see this filter in
action in the below example:

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Ringbuffer<String> rb = hz.getRingbuffer("rb");

rb.add("apple");
rb.add("orange");
rb.add("pear");
rb.add("peach");
rb.add("avocado");

long sequence = rb.headSequence();
CompletableFuture<ReadResultSet<String>> f = rb.readManyAsync(sequence, 2, 5, new
FruitFilter()).toCompletableFuture();

ReadResultSet<String> rs = f.join();
for (String s : rs) {
 System.out.println(s);
}

193

7.8.13. Using Async Methods

Hazelcast Ringbuffer provides asynchronous methods for more powerful operations like batched
writing or batched reading with filtering. To wait for the result of the operation in a blocking way,
obtain a CompletableFuture from the returned CompletionStage by invoking
CompletionStage#toCompletableFuture() method, then use either CompletableFuture#get() or
CompletableFuture#join().

See the following example code.

CompletionStage<Long> f = ringbuffer.addAsync(item, OverflowPolicy.FAIL);
f.toCompletableFuture().get();

However, you can also use CompletionStage API to add subsequent dependent computation stages
which will be executed when the operation has completed. This way the thread used for the call is
not blocked until the response is returned.

See the below code as an example of when you want to get notified when a batch of reads has
completed.

CompletionStage<ReadResultSet<String>> stage = rb.readManyAsync(sequence, min, max,
someFilter);
stage.whenCompleteAsync((response, throwable) -> {
 if (throwable == null) {
 for (String s : response) {
 System.out.println("Received:" + s);
 }
 } else {
 throwable.printStackTrace();
 }
});

7.8.14. Ringbuffer Configuration Examples

The following shows the declarative configuration of a Ringbuffer called rb. The configuration is
modeled after the Ringbuffer defaults.

194

XML

<hazelcast>
 ...
 <ringbuffer name="rb">
 <capacity>10000</capacity>
 <backup-count>1</backup-count>
 <async-backup-count>0</async-backup-count>
 <time-to-live-seconds>0</time-to-live-seconds>
 <in-memory-format>BINARY</in-memory-format>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </ringbuffer>
 ...
</hazelcast>

YAML

hazelcast:
 ringbuffer:
 rb:
 capacity: 10000
 backup-count: 1
 async-backup-count: 0
 time-to-live-seconds: 0
 in-memory-format: BINARY
 split-brain-protection-ref: splitbrainprotection-name

You can also configure a Ringbuffer programmatically. The following is a programmatic version of
the above declarative configuration.

Config config = new Config();
RingbufferConfig rbConfig = config.getRingbufferConfig("myRB");
rbConfig.setCapacity(10000)
 .setBackupCount(1)
 .setAsyncBackupCount(0)
 .setTimeToLiveSeconds(0)
 .setInMemoryFormat(InMemoryFormat.BINARY)
 .setSplitBrainProtectionName("splitbrainprotectionname");

7.9. Topic
Hazelcast provides a distribution mechanism for publishing messages that are delivered to multiple
subscribers. This is also known as a publish/subscribe (pub/sub) messaging model. Publishing and
subscribing operations are cluster wide. When a member subscribes to a topic, it is actually
registering for messages published by any member in the cluster, including the new members that
joined after you add the listener.

195

Publish operation is async. It does not wait for operations to run in remote
members; it works as fire and forget.

7.9.1. Getting a Topic and Publishing Messages

Use the HazelcastInstance’s getTopic method to get the topic, then use the topic’s publish method to
publish your messages. The following is an example publisher:

public class TopicPublisher {

 public static void main(String[] args) {

 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 ITopic<Date> topic = hz.getTopic("topic");
 topic.publish(new Date());
 }
}

And here is an example subscriber:

public class TopicSubscriber {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 ITopic<Date> topic = hz.getTopic("topic");
 topic.addMessageListener(new MessageListenerImpl());
 System.out.println("Subscribed");
 }

 private static class MessageListenerImpl implements MessageListener<Date> {
 public void onMessage(Message<Date> m) {
 System.out.println("Received: " + m.getMessageObject());
 }
 }
}

Hazelcast Topic uses the MessageListener interface to listen for events that occur when a message is
received. See the Listening for Topic Messages section for information on how to create a message
listener class and register it.

7.9.2. Getting Topic Statistics

Topic has two statistic variables that you can query. These values are incremental and local to the
member.

196

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> myTopic = hazelcastInstance.getTopic("myTopicName");

myTopic.getLocalTopicStats().getPublishOperationCount();
myTopic.getLocalTopicStats().getReceiveOperationCount();

getPublishOperationCount and getReceiveOperationCount returns the total number of published and
received messages since the start of this member, respectively. Note that these values are not
backed up, so if the member goes down, these values will be lost.

You can disable this feature with topic configuration. See the Configuring Topic section.

These statistics values can be also viewed in Management Center. See the
Monitoring Topics section in Hazelcast Management Center Reference Manual.

7.9.3. Understanding Topic Behavior

Each cluster member has a list of all registrations in the cluster. When a new member is registered
for a topic, it sends a registration message to all members in the cluster. Also, when a new member
joins the cluster, it receives all registrations made so far in the cluster.

The behavior of a topic varies depending on the value of the configuration parameter
globalOrderEnabled.

Ordering Messages as Published

If globalOrderEnabled is disabled, messages are not ordered and listeners (subscribers) process the
messages in the order that the messages are published. If cluster member M publishes messages
m1, m2, m3, …, mn to a topic T, then Hazelcast makes sure that all of the subscribers of topic T
receive and process m1, m2, m3, …, mn in the given order.

Here is how it works: Let’s say that we have three members (member1, member2 and member3)
and that member1 and member2 are registered to a topic named news. Note that all three members
know that member1 and member2 are registered to news.

In this example, member1 publishes two messages: a1 and a2. Member3 publishes two messages:
c1 and c2. When member1 and member3 publish a message, they check their local list for
registered members, discover that member1 and member2 are in their lists, and then they fire
messages to those members. One possible order of the messages received could be the following.

member1 → c1, a1, a2, c2

member2 → c1, c2, a1, a2

Ordering Messages for Members

If globalOrderEnabled is enabled, all members listening to the same topic get its messages in the
same order.

197

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-topics

Here is how it works. Let’s say that we have three members (member1, member2 and member3)
and that member1 and member2 are registered to a topic named news. Note that all three members
know that member1 and member2 are registered to news.

In this example, member1 publishes two messages: a1 and a2. Member3 publishes two messages:
c1 and c2. When a member publishes messages over the topic news, it first calculates which partition
the news ID corresponds to. Then it sends an operation to the owner of the partition for that
member to publish messages. Let’s assume that news corresponds to a partition that member2
owns. member1 and member3 first sends all messages to member2. Assume that the messages are
published in the following order:

member1 → a1, c1, a2, c2

member2 then publishes these messages by looking at registrations in its local list. It sends these
messages to member1 and member2 (it makes a local dispatch for itself).

member1 → a1, c1, a2, c2

member2 → a1, c1, a2, c2

This way we guarantee that all members see the events in the same order.

Keeping Generated and Published Order the Same

In both cases, there is a StripedExecutor in EventService that is responsible for dispatching the
received message. For all events in Hazelcast, the order that events are generated and the order
they are published to the user are guaranteed to be the same via this StripedExecutor.

In StripedExecutor, there are as many threads as are specified in the property
hazelcast.event.thread.count (default is five). For a specific event source (for a particular topic
name), hash of that source’s name % 5 gives the ID of the responsible thread. Note that there can
be another event source (entry listener of a map, item listener of a collection, etc.) corresponding to
the same thread. In order not to make other messages to block, heavy processing should not be
done in this thread. If there is time-consuming work that needs to be done, the work should be
handed over to another thread. See the Getting a Topic and Publishing Messages section.

7.9.4. Configuring Topic

To configure a topic, set the topic name, decide on statistics and global ordering, and set the
message listeners. The following are the default values:

• global-ordering is false, meaning that by default, there is no guarantee of global order.

• statistics is true, meaning that by default, statistics are calculated.

You can see the example configuration snippets below.

Declarative Configuration:

198

XML

<hazelcast>
 ...
 <topic name="yourTopicName">
 <global-ordering-enabled>true</global-ordering-enabled>
 <statistics-enabled>true</statistics-enabled>
 <message-listeners>
 <message-listener>MessageListenerImpl</message-listener>
 </message-listeners>
 </topic>
 ...
</hazelcast>

YAML

hazelcast:
 topic:
 yourTopicName:
 global-ordering-enabled: true
 statistics-enabled: true
 message-listeners:
 - MessageListenerImpl

Programmatic Configuration:

TopicConfig topicConfig = new TopicConfig();
topicConfig.setGlobalOrderingEnabled(true);
topicConfig.setStatisticsEnabled(true);
topicConfig.setName("yourTopicName");
MessageListener<String> implementation = new MessageListener<String>() {
 @Override
 public void onMessage(Message<String> message) {
 // process the message
 }
};
topicConfig.addMessageListenerConfig(new ListenerConfig(implementation));
HazelcastInstance instance = Hazelcast.newHazelcastInstance();

Topic configuration has the following elements:

• statistics-enabled: Specifies whether the statistics gathering is enabled for your topic. If set
to false, you cannot collect statistics in your implementation (using getLocalTopicStats()) and
also Hazelcast Management Center will not show them. Its default value is true.

• global-ordering-enabled: Default is false, meaning there is no global order guarantee.

• message-listeners: Lets you add listeners (listener classes) for the topic messages.

Besides the above elements, there are the following system properties that are topic related but not

199

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-topics

topic specific:

• hazelcast.event.queue.capacity with a default value of 1,000,000

• hazelcast.event.queue.timeout.millis with a default value of 250

• hazelcast.event.thread.count with a default value of 5

For the descriptions of these parameters, see the Global Event Configuration section.

7.10. Reliable Topic
Reliable Topic uses the same ITopic interface as a regular topic. The main difference is that Reliable
Topic is backed up by the Ringbuffer data structure. The following are the advantages of this
approach:

• Events are not lost since the Ringbuffer is configured with one synchronous backup by default.

• Each Reliable ITopic gets its own Ringbuffer; if a topic has a very fast producer, it will not lead
to problems at topics that run at a slower pace.

• Since the event system behind a regular ITopic is shared with other data structures, e.g.,
collection listeners, you can run into isolation problems. This does not happen with the Reliable
ITopic.

Here is an example for a publisher using Reliable Topic:

public class PublisherMember {
 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 Random random = new Random();
 ITopic<Long> topic = hz.getReliableTopic("sometopic");
 long messageId = 0;

 while (true) {
 topic.publish(messageId);
 messageId++;
 System.out.println("Written: " + messageId);
 sleepMillis(random.nextInt(100));
 }
 }
 public static boolean sleepMillis(int millis) {
 try {
 MILLISECONDS.sleep(millis);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 return false;
 }
 return true;
 }
}

200

And the following is an example for the subscriber:

public class SubscribedMember {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 ITopic<Long> topic = hz.getReliableTopic("sometopic");
 topic.addMessageListener(new MessageListenerImpl());
 }

 private static class MessageListenerImpl implements MessageListener<Long> {
 public void onMessage(Message<Long> m) {
 System.out.println("Received: " + m.getMessageObject());
 }
 }
}

When you create a Reliable Topic, Hazelcast automatically creates a Ringbuffer for it. You may
configure this Ringbuffer by adding a Ringbuffer config with the same name as the Reliable Topic.
For instance, if you have a Reliable Topic with the name "sometopic", you should add a Ringbuffer
config with the name "sometopic" to configure the backing Ringbuffer. Some of the things that you
may configure are the capacity, the time-to-live for the topic messages, and you can even add a
Ringbuffer store which allows you to have a persistent topic. By default, a Ringbuffer does not have
any TTL (time-to-live) and it has a limited capacity; you may want to change that configuration. The
following is an example configuration for the "sometopic" given above.

XML

<hazelcast>
 ...
 <!-- This is the ringbuffer that is used by the 'sometopic' Reliable-topic. As you
can see the
 ringbuffer has the same name as the topic. -->
 <ringbuffer name="sometopic">
 <capacity>1000</capacity>
 <time-to-live-seconds>5</time-to-live-seconds>
 </ringbuffer>
 <reliable-topic name="sometopic">
 <topic-overload-policy>BLOCK</topic-overload-policy>
 </reliable-topic>
 ...
</hazelcast>

201

YAML

hazelcast:
 ringbuffer:
 sometopic:
 capacity: 1000
 time-to-live-seconds: 5
 reliable-topic:
 sometopic:
 topic-overload-policy: BLOCK

See the Configuring Reliable Topic section below for the descriptions of all Reliable Topic
configuration elements.

By default, the Reliable ITopic uses a shared thread pool. If you need a better isolation, you can
configure a custom executor on the ReliableTopicConfig.

Because the reads on a Ringbuffer are not destructive, batching is easy to apply. ITopic uses read
batching and reads ten items at a time (if available) by default. See Reading Batched Items for more
information.

7.10.1. Slow Consumers

The Reliable ITopic provides control and a way to deal with slow consumers. It is unwise to keep
events for a slow consumer in memory indefinitely since you do not know when the slow consumer
is going to catch up. You can control the size of the Ringbuffer by using its capacity. For the cases
when a Ringbuffer runs out of its capacity, you can specify the following policies for the
TopicOverloadPolicy configuration:

• DISCARD_OLDEST: Overwrite the oldest item, even if a TTL is set. In this case the fast producer
supersedes a slow consumer.

• DISCARD_NEWEST: Discard the newest item.

• BLOCK: Wait until the items are expired in the Ringbuffer.

• ERROR: Immediately throw TopicOverloadException if there is no space in the Ringbuffer.

7.10.2. Configuring Reliable Topic

The following are example Reliable Topic configurations.

Declarative Configuration:

202

XML

<hazelcast>
 ...
 <reliable-topic name="default">
 <statistics-enabled>true</statistics-enabled>
 <message-listeners>
 <message-listener>
 ...
 </message-listener>
 </message-listeners>
 <read-batch-size>10</read-batch-size>
 <topic-overload-policy>BLOCK</topic-overload-policy>
 </reliable-topic>
 ...
</hazelcast>

YAML

hazelcast:
 reliable-topic:
 default:
 statistics-enabled: true
 message-listeners:
 - ...
 read-batch-size: 10
 topic-overload-policy: BLOCK

Programmatic Configuration:

Config config = new Config();
ReliableTopicConfig rtConfig = config.getReliableTopicConfig("default");
rtConfig.setTopicOverloadPolicy(TopicOverloadPolicy.BLOCK)
 .setReadBatchSize(10)
 .setStatisticsEnabled(true);

Reliable Topic configuration has the following elements:

• statistics-enabled: Specifies whether the statistics gathering is enabled for your Reliable Topic.
If set to false, you cannot collect statistics in your implementation and also Hazelcast
Management Center will not show them. Its default value is true.

• message-listener: Message listener class that listens to the messages when they are added or
removed.

• read-batch-size: Minimum number of messages that Reliable Topic tries to read in batches. Its
default value is 10.

• topic-overload-policy: Policy to handle an overloaded topic. Available values are
DISCARD_OLDEST, DISCARD_NEWEST, BLOCK and ERROR. Its default value is BLOCK. See Slow Consumers

203

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-reliable-topics
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-reliable-topics

for definitions of these policies.

7.11. FencedLock

FencedLock is a member of CP Subsystem API. For detailed information, see the CP
Subsystem chapter.

FencedLock is a linearizable and distributed implementation of java.util.concurrent.locks.Lock,
meaning that if you lock using a FencedLock, the critical section that it guards is guaranteed to be
executed by only one thread in the entire cluster. Even though locks are great for synchronization,
they can lead to problems if not used properly. Also note that Hazelcast Lock does not support
fairness.

For detailed information and configuration, see the FencedLock section under the
CP Subsystem chapter.

7.11.1. Using Try-Catch Blocks with Locks

Always use locks with try-catch blocks. This ensures that locks are released if an exception is
thrown from the code in a critical section. Also note that the lock method is outside the try-catch
block because we do not want to unlock if the lock operation itself fails.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

Lock lock = hazelcastInstance.getCPSubsystem().getLock("myLock");
lock.lock();
try {
 // do something here
} finally {
 lock.unlock();
}

7.11.2. Releasing Locks with tryLock Timeout

If a lock is not released in the cluster, another thread that is trying to get the lock can wait forever.
To avoid this, use tryLock with a timeout value. You can set a high value (normally it should not take
that long) for tryLock. You can check the return value of tryLock as follows:

204

if (lock.tryLock (10, TimeUnit.SECONDS)) {
 try {
 // do some stuff here..
 } finally {
 lock.unlock();
 }
} else {
 // warning
}

7.11.3. Understanding Lock Behavior

• Locks are fail-safe. If a member holds a lock and some other members go down, the cluster will
keep your locks safe and available. Moreover, when a member leaves the cluster, all the locks
acquired by that dead member will be removed so that those locks are immediately available
for live members.

• Locks are not automatically removed. If a lock is not used anymore, Hazelcast does not
automatically perform garbage collection in the lock. This can lead to an OutOfMemoryError. If
you create locks on the fly, make sure they are destroyed.

• Locks are re-entrant. The same thread can lock multiple times on the same lock. Note that for
other threads to be able to require this lock, the owner of the lock must call unlock as many
times as the owner called lock.

7.12. IAtomicLong

IAtomicLong is a member of CP Subsystem API. For detailed information, see the CP
Subsystem chapter.

Hazelcast IAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong.
It offers most of AtomicLong’s operations such as get, set, getAndSet, compareAndSet and
incrementAndGet. Since IAtomicLong is a distributed implementation, these operations involve
remote calls and thus their performances differ from AtomicLong.

The following example code creates an instance, increments it by a million and prints the count.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong counter = hazelcastInstance.getCPSubsystem().getAtomicLong("counter");
for (int k = 0; k < 1000 * 1000; k++) {
 if (k % 500000 == 0) {
 System.out.println("At: " + k);
 }
 counter.incrementAndGet();
}
System.out.printf("Count is %s\n", counter.get());

205

When you start other instances with the code above, you will see the count as member count times
a million.

7.12.1. Sending Functions to IAtomicLong

You can send functions to an IAtomicLong. IFunction is a Hazelcast owned, single method interface.
The following example IFunction implementation adds two to the original value.

private static class Add2Function implements IFunction<Long, Long> {
 @Override
 public Long apply(Long input) {
 return input + 2;
 }
}

7.12.2. Executing Functions on IAtomicLong

You can use the following methods to execute functions on IAtomicLong:

• apply: Applies the function to the value in IAtomicLong without changing the actual value and
returning the result.

• alter: Alters the value stored in the IAtomicLong by applying the function. It does not send back
a result.

• alterAndGet: Alters the value stored in the IAtomicLong by applying the function, storing the
result in the IAtomicLong and returning the result.

• getAndAlter: Alters the value stored in the IAtomicLong by applying the function and returning
the original value.

The following example includes these methods.

206

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IAtomicLong atomicLong = hazelcastInstance.getCPSubsystem().getAtomicLong("counter"
);

atomicLong.set(1);
long result = atomicLong.apply(new Add2Function());
System.out.println("apply.result: " + result);
System.out.println("apply.value: " + atomicLong.get());

atomicLong.set(1);
atomicLong.alter(new Add2Function());
System.out.println("alter.value: " + atomicLong.get());

atomicLong.set(1);
result = atomicLong.alterAndGet(new Add2Function());
System.out.println("alterAndGet.result: " + result);
System.out.println("alterAndGet.value: " + atomicLong.get());

atomicLong.set(1);
result = atomicLong.getAndAlter(new Add2Function());
System.out.println("getAndAlter.result: " + result);
System.out.println("getAndAlter.value: " + atomicLong.get());

The output of the above class when run is as follows:

apply.result: 3
apply.value: 1
alter.value: 3
alterAndGet.result: 3
alterAndGet.value: 3
getAndAlter.result: 1
getAndAlter.value: 3

7.12.3. Reasons to Use Functions with IAtomicLong

The reason for using a function instead of a simple code line like atomicLong.set(atomicLong.get() +
2)); is that the IAtomicLong read and write operations are not atomic. Since IAtomicLong is a
distributed implementation, those operations can be remote ones, which may lead to race
problems. By using functions, the data is not pulled into the code, but the code is sent to the data.
This makes it more scalable.

7.13. ISemaphore

ISemaphore is a member of CP Subsystem API. For detailed information, see the CP
Subsystem chapter.

Hazelcast ISemaphore is the distributed implementation of java.util.concurrent.Semaphore.

207

7.13.1. Controlling Thread Counts with Permits

Semaphores offer permits to control the thread counts when performing concurrent activities. To
execute a concurrent activity, a thread grants a permit or waits until a permit becomes available.
When the execution is completed, the permit is released.

ISemaphore with a single permit may be considered as a lock. Unlike the locks,
when semaphores are used, any thread can release the permit depending on the
configuration, and semaphores can have multiple permits. For more information,
see the Semaphore Configuration section.

Hazelcast ISemaphore does not support fairness at all times. There are some edge
cases where the fairness is not honored, e.g., when the permit becomes available
at the time when an internal timeout occurs.

When a permit is acquired on ISemaphore:

• If there are permits, the number of permits in the semaphore is decreased by one and the
calling thread performs its activity. If there is contention, the longest waiting thread acquires
the permit before all other threads.

• If no permits are available, the calling thread blocks until a permit becomes available. When a
timeout happens during this block, the thread is interrupted.

7.13.2. Example Semaphore Code

The following example code uses an IAtomicLong resource 1000 times, increments the resource
when a thread starts to use it and decrements it when the thread completes.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ISemaphore semaphore = hazelcastInstance.getCPSubsystem().getSemaphore("semaphore");
IAtomicLong resource = hazelcastInstance.getCPSubsystem().getAtomicLong("resource");
for (int k = 0 ; k < 1000 ; k++) {
 System.out.println("At iteration: " + k + ", Active Threads: " + resource.get()
);
 semaphore.acquire();
 try {
 resource.incrementAndGet();
 Thread.sleep(1000);
 resource.decrementAndGet();
 } finally {
 semaphore.release();
 }
}
System.out.println("Finished");

If you execute the above code 5 times, the following output appears:

At iteration: 0, Active Threads: 1

208

At iteration: 1, Active Threads: 2

At iteration: 2, Active Threads: 3

At iteration: 3, Active Threads: 3

At iteration: 4, Active Threads: 3

As you can see, the maximum count of concurrent threads is equal or smaller than three. If you
remove the semaphore acquire/release statements in in the above example, you will see that there
is no limitation on the number of concurrent usages.

7.14. IAtomicReference

IAtomicReference is a member of CP Subsystem API. For detailed information, see
the CP Subsystem chapter.

The IAtomicLong is very useful if you need to deal with a long, but in some cases you need to deal
with a reference. That is why Hazelcast also supports the IAtomicReference which is the distributed
version of the java.util.concurrent.atomic.AtomicReference.

Here is an IAtomicReference example.

Config config = new Config();

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);

IAtomicReference<String> ref = hz.getCPSubsystem().getAtomicReference("reference");
ref.set("foo");
System.out.println(ref.get());
System.exit(0);

When you execute the above example, the output is as follows:

foo

7.14.1. Sending Functions to IAtomicReference

Just like IAtomicLong, IAtomicReference has methods that accept a 'function' as an argument, such as
alter, alterAndGet, getAndAlter and apply. There are two big advantages of using these methods:

• From a performance point of view, it is better to send the function to the data than the data to
the function. Often the function is a lot smaller than the data and therefore cheaper to send
over the line. Also the function only needs to be transferred once to the target machine and the
data needs to be transferred twice.

• You do not need to deal with concurrency control. If you would perform a load, transform,
store, you could run into a data race since another thread might have updated the value you are
about to overwrite.

209

7.14.2. Using IAtomicReference

The following are some considerations you need to know when you use IAtomicReference:

• IAtomicReference works based on the byte-content and not on the object-reference. If you use
the compareAndSet method, do not change to the original value because its serialized content will
then be different. It is also important to know that if you rely on Java serialization, sometimes
(especially with hashmaps) the same object can result in different binary content.

• All methods returning an object return a private copy. You can modify the private copy, but the
rest of the world is shielded from your changes. If you want these changes to be visible to the
rest of the world, you need to write the change back to the IAtomicReference; but be careful
about introducing a data-race.

• The 'in-memory format' of an IAtomicReference is binary. The receiving side does not need to
have the class definition available unless it needs to be deserialized on the other side, e.g.,
because a method like 'alter' is executed. This deserialization is done for every call that needs to
have the object instead of the binary content, so be careful with expensive object graphs that
need to be deserialized.

• If you have an object with many fields or an object graph and you only need to calculate some
information or need a subset of fields, you can use the apply method. With the apply method, the
whole object does not need to be sent over the line; only the information that is relevant is sent.

7.15. ICountDownLatch

ICountDownLatch is a member of CP Subsystem API. For detailed information, see
the CP Subsystem chapter.

Hazelcast ICountDownLatch is the distributed implementation of
java.util.concurrent.CountDownLatch. But unlike Java’s implementation, Hazelcast’s ICountDownLatch
count can be reset after a countdown has finished, but not during an active count.

7.15.1. Gate-Keeping Concurrent Activities

ICountDownLatch is considered to be a gate keeper for concurrent activities. It enables the threads to
wait for other threads to complete their operations. The following examples describe the
mechanism of ICountDownLatch.

Assume that there is a leader process and there are follower processes that will wait until the
leader completes. Here is the leader:

210

public class Leader {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 ICountDownLatch latch = hazelcastInstance.getCPSubsystem().getCountDownLatch(
"countDownLatch");
 System.out.println("Starting");
 latch.trySetCount(1);
 Thread.sleep(30000);
 latch.countDown();
 System.out.println("Leader finished");
 latch.destroy();
 }
}

Since only a single step is needed to be completed as a sample, the above code initializes the latch
with 1. Then, the code sleeps for a while to simulate a process and starts the countdown. Finally, it
clears up the latch. Let’s write a follower:

public class Follower {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 ICountDownLatch latch = hazelcastInstance.getCPSubsystem().getCountDownLatch(
"countDownLatch");
 System.out.println("Waiting");
 boolean success = latch.await(10, TimeUnit.SECONDS);
 System.out.println("Complete: " + success);
 }
}

The follower class above first retrieves ICountDownLatch and then calls the await method to enable
the thread to listen for the latch. The method await has a timeout value as a parameter. This is
useful when the countDown method fails. To see ICountDownLatch in action, start the leader first and
then start one or more followers. You will see that the followers wait until the leader completes.

7.16. PN Counter
A Conflict-free Replicated Data Type (CRDT) is a distributed data structure that achieves high
availability by relaxing consistency constraints. There may be several replicas for the same data
and these replicas can be modified concurrently without coordination. This means that you may
achieve high throughput and low latency when updating a CRDT data structure. On the other hand,
all of the updates are replicated asynchronously. Each replica then receives updates made on other
replicas eventually and if no new updates are done, all replicas which can communicate to each
other return the same state (converge) after some time.

Hazelcast offers a lightweight CRDT PN counter (Positive-Negative Counter) implementation where
each Hazelcast instance can increment and decrement the counter value and these updates are
propagated to all replicas. Only a Hazelcast member can store state for a counter which means that

211

counter method invocations performed on a Hazelcast member are usually local (depending on the
configured replica count). If there is no member failure, it is guaranteed that each replica sees the
final value of the counter eventually. Counter’s state converges with each update and all CRDT
replicas that can communicate to each other will eventually have the same state.

Using the PN Counter, you can get a distributed counter, increment and decrement it, and query its
value with RYW (read-your-writes) and monotonic reads. The implementation borrows most
methods from the AtomicLong which should be familiar in most cases and easily interchangeable in
the existing code.

Some examples of PN counter are:

• counting the number of "likes" or "+1"

• counting the number of logged in users

• counting the number of page hits/views.

How it works

The counter supports adding and subtracting values as well as retrieving the current counter value.
Each replica of this counter can perform operations locally without coordination with the other
replicas, thus increasing availability. The counter guarantees that whenever two members have
received the same set of updates, possibly in a different order, their state is identical, and any
conflicting updates are merged automatically. If no new updates are made to the shared state, all
members that can communicate will eventually have the same data.

The updates to the counter are applied locally when invoked on a CRDT replica. A CRDT replica can
be any Hazelcast instance which is NOT a client or a lite member. You can configure the number
of replicas in the cluster using the replica-count configuration element.

When invoking updates from a non-replica instance, the invocation is remote. This may lead to
indeterminate state - the update may be applied but the response has not been received. In this
case, the caller is notified with a TargetDisconnectedException when invoked from a client or a
MemberLeftException when invoked from a member.

The read and write methods provide monotonic read and RYW (read-your-write) guarantees. These
guarantees are session guarantees which mean that if no replica with the previously observed state
is reachable, the session guarantees are lost and the method invocation throws a
ConsistencyLostException. This does not mean that an update is lost. All of the updates are part of
some replica and eventually reflected in the state of all other replicas. This exception just means
that you cannot observe your own writes because all replicas that contain your updates are
currently unreachable. After you have received a ConsistencyLostException, you can either wait for
a sufficiently up-to-date replica to become reachable in which case the session can be continued or
you can reset the session by calling the method `reset(). If you have called this method, a new
session is started with the next invocation to a CRDT replica.

The CRDT state is kept entirely on non-lite (data) members. If there aren’t any and
the methods here are invoked on a lite member, they fail with a
NoDataMemberInClusterException.

212

The following is an example code.

final HazelcastInstance instance = Hazelcast.newHazelcastInstance();
final PNCounter counter = instance.getPNCounter("counter");
counter.addAndGet(5);
final long value = counter.get();

This code snippet creates an instance of a PN counter, increments it by 5 and retrieves the value.

7.16.1. Configuring PN Counter

Following is an example declarative configuration snippet:

XML

<hazelcast>
 ...
 <pn-counter name="default">
 <replica-count>10</replica-count>
 <statistics-enabled>true</statistics-enabled>
 </pn-counter>
 ...
</hazelcast>

YAML

hazelcast:
 pn-counter:
 default:
 replica-count: 10
 statistics-enabled: true

PN Counter has the following configuration elements:

• name: Name of your PN Counter.

• replica-count: Number of replicas on which state for this PN counter is kept. This number
applies in quiescent state, if there are currently membership changes or clusters are merging,
the state may be temporarily kept on more replicas. Its default value is Integer.MAX_VALUE.
Generally, keeping the state on more replicas means that more Hazelcast members are able to
perform updates locally but it also means that the PN counter state is kept on more replicas,
increasing the network traffic, decreasing the speed at which replica states converge and
increasing the size of the PN counter state kept on each replica.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your PN Counter. If
set to false, you cannot collect statistics in your implementation (using
getLocalPNCounterStats()) and also Hazelcast Management Center will not show them. Its
default value is true.

213

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-pn-counters

Following is an equivalent snippet of Java configuration:

PNCounterConfig pnCounterConfig = new PNCounterConfig("default")
 .setReplicaCount(10)
 .setStatisticsEnabled(true);
Config hazelcastConfig = new Config()
 .addPNCounterConfig(pnCounterConfig);

7.16.2. Configuring the CRDT Replication Mechanism

Configuring the replication mechanism is for advanced use cases only - usually the
default configuration works fine for most cases.

In some cases, you may want to configure the replication mechanism for all CRDT implementations.
The CRDT states are replicated in rounds (the period is configurable) and in each round the state is
replicated up to the configured number of members. Generally speaking, you may increase the
speed at which replicas converge at the expense of more network traffic or decrease the network
traffic at the expense of slower convergence of replicas. Hazelcast implements the state-based
replication mechanism - the CRDT state for changed CRDTs is replicated in its entirety to other
replicas on each replication round.

XML

<hazelcast>
 ...
 <crdt-replication>
 <max-concurrent-replication-targets>1</max-concurrent-replication-targets>
 <replication-period-millis>1000</replication-period-millis>
 </crdt-replication>
 ...
</hazelcast>

YAML

hazelcast:
 crdt-replication:
 max-concurrent-replication-targets: 1
 replication-period-millis: 1000

CRDT replication has the following configuration elements:

• max-concurrent-replication-targets: The maximum number of target members that we
replicate the CRDT states to in one period. A higher count leads to states being disseminated
more rapidly at the expense of burst-like behavior - one update to a CRDT leads to a sudden
burst in the number of replication messages in a short time interval. Its default value is 1 which
means that each replica replicates state to only one other replica in each replication round.

• replication-period-millis: The period between two replications of CRDT states in milliseconds.

214

A lower value increases the speed at which changes are disseminated to other cluster members
at the expense of burst-like behavior - less updates are batched together in one replication
message, and one update to a CRDT may cause a sudden burst of replication messages in a short
time interval. The value must be a positive non-null integer. Its default value is 1000
milliseconds which means that the changed CRDT state is replicated every 1 second.

Following is an equivalent snippet of Java configuration:

final CRDTReplicationConfig crdtReplicationConfig = new CRDTReplicationConfig()
 .setMaxConcurrentReplicationTargets(1)
 .setReplicationPeriodMillis(1000);
Config hazelcastConfig = new Config()
 .setCRDTReplicationConfig(crdtReplicationConfig);

7.17. Flake ID Generator
Hazelcast Flake ID Generator is used to generate cluster-wide unique identifiers. Generated
identifiers are long primitive values and are k-ordered (roughly ordered). IDs are in the range from
0 to Long.MAX_VALUE.

7.17.1. Generating Cluster-Wide IDs

The IDs contain timestamp component and a node ID component, which is assigned when the
member joins the cluster. This allows the IDs to be ordered and unique without any coordination
between the members, which makes the generator safe even in split-brain scenarios (for limitations
in this case, see the Node ID assignment section below).

Timestamp component is in milliseconds since 1.1.2018, 0:00 UTC and has 41 bits. This caps the
useful lifespan of the generator to little less than 70 years (until ~2088). The sequence component is
6 bits. If more than 64 IDs are requested in single millisecond, IDs gracefully overflow to the next
millisecond and uniqueness is guaranteed in this case. The implementation does not allow
overflowing by more than 15 seconds, if IDs are requested at higher rate, the call blocks. Note,
however, that clients are able to generate even faster because each call goes to a different (random)
member and the 64 IDs/ms limit is for single member.

7.17.2. Performance

Operation on member is always local, if the member has valid node ID, otherwise it’s remote. On
the client, the newId() method goes to a random member and gets a batch of IDs, which is then
returned locally for a limited time. The pre-fetch size and the validity time can be configured for
each client and member.

7.17.3. Example

Let’s write an example identifier generator.

215

public class ExampleFlakeIdGenerator {
 public static void main(String[] args) {
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 ClientConfig clientConfig = new ClientConfig()
 .addFlakeIdGeneratorConfig(new ClientFlakeIdGeneratorConfig(
"idGenerator")
 .setPrefetchCount(10)
 .setPrefetchValidityMillis(MINUTES.toMillis(10)));
 HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

 FlakeIdGenerator idGenerator = client.getFlakeIdGenerator("idGenerator");
 for (int i = 0; i < 10000; i++) {
 sleepSeconds(1);
 System.out.printf("Id: %s\n", idGenerator.newId());
 }
 }
}

7.17.4. Node ID Assignment

Flake IDs require a unique node ID to be assigned to each member, from which point the member
can generate unique IDs without any coordination. Hazelcast uses the member list version from the
moment when the member joined the cluster as a unique node ID.

The join algorithm is specifically designed to ensure that member list join version is unique for
each member in the cluster. This ensures that IDs are unique even during network splits, with one
caveat: at most one member is allowed to join the cluster during a network split. If two members
join different subclusters, they are likely to get the same node ID. This is resolved when the cluster
heals, but until then, they can generate duplicate IDs.

Node ID Overflow

Node ID component of the ID has 16 bits. Members with the member list join version higher than
2^16 won’t be able to generate IDs, but functionality is preserved by forwarding to another
member. It is possible to generate IDs on any member or client as long as there is at least one
member with join version smaller than 2^16 in the cluster. The remedy is to restart the cluster: the
node ID component will be reset and assigned starting from zero again. Uniqueness after the
restart will be preserved thanks to the timestamp component.

7.17.5. Configuring Flake ID Generator

Following is an example declarative configuration snippet:

216

XML

<hazelcast>
 ...
 <flake-id-generator name="default">
 <prefetch-count>100</prefetch-count>
 <prefetch-validity-millis>600000</prefetch-validity-millis>
 <epoch-start>1514764800000</epoch-start>
 <node-id-offset>0</node-id-offset>
 <bits-sequence>6</bits-sequence>
 <bits-node-id>16</bits-node-id>
 <allowed-future-millis>15000</allowed-future-millis>
 <statistics-enabled>true</statistics-enabled>
 </flake-id-generator>
 ...
</hazelcast>

YAML

hazelcast:
 flake-id-generator:
 default:
 prefetch-count: 100
 prefetch-validity-millis: 600000
 epoch-start: 1514764800000
 node-id-offset: 0
 bits-sequence: 6
 bits-node-id: 16
 allowed-future-millis: 15000
 statistics-enabled: true

The following are the descriptions of configuration elements and attributes:

• name: Name of your Flake ID Generator. It is a required attribute.

• prefetch-count: Count of IDs which are pre-fetched on the background when one call to
FlakeIdGenerator.newId() is made. Its value must be in the range 1 -100,000. Its default value is
100. This setting pertains only to newId() calls made on the member that configured it.

• prefetch-validity-millis: Specifies for how long the pre-fetched IDs can be used. After this time
elapses, a new batch of IDs are fetched. Time unit is milliseconds. Its default value is 600,000
milliseconds (10 minutes). The IDs contain a timestamp component, which ensures a rough
global ordering of them. If an ID is assigned to an object that was created later, it will be out of
order. If ordering is not important, set this value to 0. This setting pertains only to newId() calls
made on the member that configured it.

• epoch-start: Offset of the timestamp component. Time unit is milliseconds, default is
1514764800000 (1.1.2018 0:00 UTC)

• node-id-offset: Specifies the offset that is added to the node ID assigned to cluster member for
this generator. Might be useful in A/B deployment scenarios where you have cluster A which

217

you want to upgrade. You create cluster B and for some time both will generate IDs and you
want to have them unique. In this case, configure node ID offset for generators on cluster B.

• bits-sequence: Bit-length of the sequence component. Default value is 6 bits.

• bits-node-id: Bit-length of node id component. Default value is 16 bits.

• allowed-future-millis: Sets how far to the future is the generator allowed to generate IDs
without blocking. Default is 15 seconds.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your Flake ID
Generator. If set to false, you cannot collect statistics in your implementation (using
getLocalFlakeIdGeneratorStats()) and also Hazelcast Management Center will not show them.
Its default value is true.

7.18. Replicated Map
A Replicated Map is a distributed key-value data structure where the data is replicated to all
members in the cluster. It provides full replication of entries to all members for high speed access.

The following are the features of Replicated Map:

• When you have a Replicated Map in the cluster, your clients can communicate with any cluster
member.

• All cluster members are able to perform write operations.

• It supports all methods of the interface java.util.Map.

• It supports automatic initial fill up when a new member is started.

• It provides statistics for entry access, write and update so that you can monitor it using
Hazelcast Management Center.

• New members joining to the cluster pull all the data from the existing members.

• You can listen to entry events using listeners. See the Using EntryListener on Replicated Map
section.

7.18.1. Replicating Instead of Partitioning

A Replicated Map does not partition data (it does not spread data to different cluster members);
instead, it replicates the data to all members.

Replication leads to higher memory consumption. However, a Replicated Map has faster read and
write access since the data is available on all members.

Writes could take place on local/remote members in order to provide write-order, eventually being
replicated to all other members.

Replicated Map is suitable for objects, catalog data, or idempotent calculable data (such as HTML
pages). It fully implements the java.util.Map interface, but it lacks the methods from
java.util.concurrent.ConcurrentMap since there are no atomic guarantees to writes or reads.

218

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-flake-id-generators

If Replicated Map is used from a unisocket client and this unisocket client is
connected to a lite member, the entry listeners cannot be registered/de-registered.

You cannot use Replicated Map from a lite member. A
com.hazelcast.replicatedmap.ReplicatedMapCantBeCreatedOnLiteMemberException is
thrown if com.hazelcast.core.HazelcastInstance.getReplicatedMap(name) is invoked
on a lite member.

7.18.2. Example Replicated Map Code

Here is an example of Replicated Map code. The HazelcastInstance’s getReplicatedMap method gets
the Replicated Map, and the Replicated Map’s put method creates map entries.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Map<String, String> map = hz.getReplicatedMap("map");

map.put("1", "Tokyo");
map.put("2", "Paris");
map.put("3", "New York");

System.out.println("Finished loading map");
hz.shutdown();

HazelcastInstance.getReplicatedMap() returns com.hazelcast.core.ReplicatedMap which, as stated
above, extends the java.util.Map interface.

The com.hazelcast.core.ReplicatedMap interface has some additional methods for registering entry
listeners or retrieving values in an expected order.

7.18.3. Considerations for Replicated Map

If you have a large cluster or very high occurrences of updates, the Replicated Map may not scale
linearly as expected since it has to replicate update operations to all members in the cluster.

Since the replication of updates is performed in an asynchronous manner, we recommend you
enable back pressure in case your system has high occurrences of updates. See the Back Pressure
section to learn how to enable it.

Replicated Map has an anti-entropy system that converges values to a common one if some of the
members are missing replication updates.

Replicated Map does not guarantee eventual consistency because there are some edge cases that
fail to provide consistency.

Replicated Map uses the internal partition system of Hazelcast in order to serialize updates
happening on the same key at the same time. This happens by sending updates of the same key to
the same Hazelcast member in the cluster.

219

Due to the asynchronous nature of replication, a Hazelcast member could die before successfully
replicating a "write" operation to other members after sending the "write completed" response to
its caller during the write process. In this scenario, Hazelcast’s internal partition system promotes
one of the replicas of the partition as the primary one. The new primary partition does not have the
latest "write" since the dead member could not successfully replicate the update. (This leaves the
system in a state that the caller is the only one that has the update and the rest of the cluster have
not.) In this case even the anti-entropy system simply could not converge the value since the source
of true information is lost for the update. This leads to a break in the eventual consistency because
different values can be read from the system for the same key.

Other than the aforementioned scenario, the Replicated Map behaves like an eventually consistent
system with read-your-writes and monotonic-reads consistency.

7.18.4. Configuration Design for Replicated Map

There are several technical design decisions you should consider when you configure a Replicated
Map.

Initial Provisioning

If a new member joins the cluster, there are two ways you can handle the initial provisioning that is
executed to replicate all existing values to the new member. Each involves how you configure the
async fill up.

First, you can configure async fill up to true, which does not block reads while the fill up operation
is underway. That way, you have immediate access on the new member, but it will take time until
all the values are eventually accessible. Not yet replicated values are returned as non-existing
(null).

Second, you can configure for a synchronous initial fill up (by configuring the async fill up to false),
which blocks every read or write access to the map until the fill up operation is finished. Use this
with caution since it might block your application from operating.

7.18.5. Configuring Replicated Map

Replicated Map can be configured programmatically or declaratively.

Declarative Configuration:

You can declare your Replicated Map configuration in the Hazelcast configuration file
hazelcast.xml. See the following example:

220

XML

<hazelcast>
 ...
 <replicatedmap name="default">
 <in-memory-format>BINARY</in-memory-format>
 <async-fillup>true</async-fillup>
 <statistics-enabled>true</statistics-enabled>
 <entry-listeners>
 <entry-listener include-value="true">
 com.hazelcast.examples.EntryListener
 </entry-listener>
 </entry-listeners>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </replicatedmap>
 ...
</hazelcast>

YAML

hazelcast:
 replicatedmap:
 default:
 in-memory-format: BINARY
 async-fillup: true
 statistics-enabled: true
 entry-listeners:
 - class-name: com.hazelcast.examples.EntryListener
 split-brain-protection-ref: splitbrainprotection-name

Replicated Map has the following configuration elements:

• in-memory-format: Internal storage format. See the In-Memory Format section. Its default value is
OBJECT.

• async-fillup: Specifies whether the Replicated Map is available for reads before the initial
replication is completed. Its default value is true. If set to false, i.e., synchronous initial fill up,
no exception is thrown when the Replicated Map is not yet ready, but null values can be seen
until the initial replication is completed.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your Replicated
Map. If set to false, you cannot collect statistics in your implementation (using
getLocalReplicatedMapStats()) and also Hazelcast Management Center will not show them. Its
default value is true.

• entry-listener: Full canonical classname of the EntryListener implementation.

◦ entry-listener#include-value: Specifies whether the event includes the value or not.
Sometimes the key is enough to react on an event. In those situations, setting this value to
false saves a deserialization cycle. Its default value is true.

221

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-replicated-maps

◦ entry-listener#local: Not used for Replicated Map since listeners are always local.

• split-brain-protection-ref: Name of quorum configuration that you want this Replicated Map
to use. See the Split-Brain Protection for Replicated Map section.

Programmatic Configuration:

You can configure a Replicated Map programmatically, as you can do for all other data structures in
Hazelcast. You must create the configuration upfront, when you instantiate the HazelcastInstance. A
basic example of how to configure the Replicated Map using the programmatic approach is shown
in the following snippet.

Config config = new Config();

ReplicatedMapConfig replicatedMapConfig =
 config.getReplicatedMapConfig("default");

replicatedMapConfig.setInMemoryFormat(InMemoryFormat.BINARY)
 .setSplitBrainProtectionName("splitbrainprotectionname");

All properties that can be configured using the declarative configuration are also available using
programmatic configuration by transforming the tag names into getter or setter names.

In-Memory Format on Replicated Map

Currently, you can use the following in-memory-format options with the Replicated Map:

• OBJECT (default): The data is stored in deserialized form. This configuration is the default choice
since the data replication is mostly used for high speed access. Please be aware that changing
the values without a Map.put() is not reflected on the other members but is visible on the
changing members for later value accesses.

• BINARY: The data is stored in serialized binary format and has to be deserialized on every
request. This option offers higher encapsulation since changes to values are always discarded as
long as the newly changed object is not explicitly Map.put() into the map again.

7.18.6. Using EntryListener on Replicated Map

A com.hazelcast.core.EntryListener used on a Replicated Map serves the same purpose as it would
on other data structures in Hazelcast. You can use it to react on add, update and remove operations.
Replicated Maps do not yet support eviction.

Difference in EntryListener on Replicated Map

The fundamental difference in Replicated Map behavior, compared to the other data structures, is
that an EntryListener only reflects changes on local data. Since replication is asynchronous, all
listener events are fired only when an operation is finished on a local member. Events can fire at
different times on different members.

222

Example of Replicated Map EntryListener

Here is a code example for using EntryListener on a Replicated Map.

The HazelcastInstance s getReplicatedMap method gets a Replicated Map (customers), and the
ReplicatedMap s addEntryListener method adds an entry listener to the Replicated Map. Then, the
ReplicatedMap s put method adds a Replicated Map entry and updates it. The method remove removes
the entry.

 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 ReplicatedMap<String, String> map = hz.getReplicatedMap("somemap");
 map.addEntryListener(new MyEntryListener());
 System.out.println("EntryListener registered");
}

private static class MyEntryListener implements EntryListener<String, String> {

 @Override
 public void entryAdded(EntryEvent<String, String> event) {
 System.out.println("entryAdded: " + event);
 }

 @Override
 public void entryRemoved(EntryEvent<String, String> event) {
 System.out.println("entryRemoved: " + event);
 }

 @Override
 public void entryUpdated(EntryEvent<String, String> event) {
 System.out.println("entryUpdated: " + event);
 }

 @Override
 public void entryEvicted(EntryEvent<String, String> event) {
 System.out.println("entryEvicted: " + event);
 }
 @Override
 public void entryExpired(EntryEvent<String, String> event) {
 System.out.println("Entry expired: " + event);
 }
 @Override
 public void mapEvicted(MapEvent event) {
 System.out.println("mapEvicted:" + event);

 }

 @Override
 public void mapCleared(MapEvent event) {
 System.out.println("mapCleared: " + event);
 }

223

7.18.7. Split-Brain Protection for Replicated Map

Replicated Map can be configured to check for a minimum number of available members before
applying its operations (see the Split-Brain Protection section). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

• WRITE, READ_WRITE:

◦ clear

◦ put

◦ putAll

◦ remove

• READ, READ_WRITE:

◦ containsKey

◦ containsValue

◦ entrySet

◦ get

◦ isEmpty

◦ keySet

◦ size

◦ values

Configuring Split-Brain Protection

Split-brain protection for Replicated Map can be configured programmatically using the method
setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-ref.
Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <replicatedmap name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </replicatedmap>
 ...
</hazelcast>

YAML

hazelcast:
 replicatedmap:
 default:
 split-brain-protection-ref: splitbrainprotection-name

224

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/ReplicatedMapConfig.html

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

7.19. Cardinality Estimator Service
Hazelcast’s cardinality estimator service is a data structure which implements Flajolet’s
HyperLogLog algorithm for estimating cardinalities of unique objects in theoretically huge data
sets. The implementation offered by Hazelcast includes improvements from Google’s version of the
algorithm, i.e., HyperLogLog++.

The cardinality estimator service does not provide any ways to configure its properties, but rather
uses some well tested defaults:

• P: Stands for precision with a default value of 14 (using the 14 LSB of the hash for the index)

• M: 2 ^ P = 16384 (16K) registers

• P': Stands for sparse precision with a default value of 25

• Durability: Count of backups for each estimator with a default value of 2

It is important to understand that this data structure is not 100% accurate, it is
used to provide estimates. The error rate is typically a result of 1.04/sqrt(M) which
in our implementation is around 0.81% for high percentiles.

The memory consumption of this data structure is close to 16K despite the size of elements in the
source data set or stream.

There are two phases in using the cardinality estimator.

1. Add objects to the instance of the estimator, e.g., for IPs estimator.add("0.0.0.0."). The
provided object is first serialized and then the byte array is used to generate a hash for that
object.

 Objects must be serializable in a form that Hazelcast understands.

2. Compute the estimate of the set so far estimator.estimate().

See the cardinality estimator Javadoc for more information on its API.

The following is an example code.

225

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cardinality/CardinalityEstimator.html

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
CardinalityEstimator visitorsEstimator = hz.getCardinalityEstimator("visitors");

InputStreamReader isr = new InputStreamReader(ExampleCardinalityEstimator.class
.getResourceAsStream("visitors.txt"));
BufferedReader br = new BufferedReader(isr);
try {
 String visitor = br.readLine();
 while (visitor != null) {
 visitorsEstimator.add(visitor);
 visitor = br.readLine();
 }
} catch (IOException e) {
 e.printStackTrace();
} finally {
 closeResource(br);
 closeResource(isr);
}

System.out.printf("Estimated unique visitors seen so far: %d%n", visitorsEstimator
.estimate());

Hazelcast.shutdownAll();

7.19.1. Split-Brain Protection for Cardinality Estimator

Cardinality Estimator can be configured to check for a minimum number of available members
before applying its operations (see the Split-Brain Protection section). This is a check to avoid
performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the protection types, that support split-brain
protection checks:

• WRITE, READ_WRITE:

◦ add

◦ addAsync

• READ, READ_WRITE:

◦ estimate

◦ estimateAsync

Configuring Split-Brain Protection

Split-brain protection for Cardinality Estimator can be configured programmatically using the
method setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-
ref. Following is an example declarative configuration:

226

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/CardinalityEstimatorConfig.html

XML

<hazelcast>
 ...
 <cardinality-estimator name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </cardinality-estimator>
 ...
</hazelcast>

YAML

hazelcast:
 cardinality-estimator:
 default:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

Configuring Merge Policy

While recovering from a split-brain syndrome, Cardinality Estimator in the small cluster merges
into the bigger cluster based on a configured merge policy. When an estimator merges into the
cluster, an estimator with the same name might already exist in the cluster. So the merge policy
resolves these kinds of conflicts with different out-of-the-box strategies. It can be configured
programmatically using the method setMergePolicyConfig(), or declaratively using the element
merge-policy. Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <cardinality-estimator name="default">
 <merge-policy batch-size="102">HyperLogLogMergePolicy</merge-policy>
 </cardinality-estimator>
 ...
</hazelcast>

YAML

hazelcast:
 cardinality-estimator:
 merge-policy:
 batch-size: 102
 class-name: HyperLogLogMergePolicy

227

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/CardinalityEstimatorConfig.html

The following out-of-the-box merge policies are available:

• DiscardMergePolicy: Estimator from the smaller cluster is discarded.

• HyperLogLogMergePolicy: Estimator merges with the existing one, using the algorithmic merge for
HyperLogLog. This is the default policy.

• PassThroughMergePolicy: Estimator from the smaller cluster wins.

• PutIfAbsentMergePolicy: Estimator from the smaller cluster wins if it doesn’t exist in the cluster.

7.20. Event Journal
The event journal is a distributed data structure that stores the history of mutation actions on map
or cache. Each action on the map or cache which modifies its contents (such as put, remove or
scheduled tasks which are not triggered by using the public API) creates an event which is stored in
the event journal. The event stores the event type as well as the key, old value and updated value
for the entry (when applicable). As a user, you can only append to the journal indirectly by using
the map and cache methods or configuring the expiration and eviction. By reading from the event
journal you can recreate the state of the map or cache at any point in time.

Currently the event journal does not expose a public API for reading the event
journal in Hazelcast IMDG. The event journal can be used to stream event data to
Hazelcast Jet, so it should be used in conjunction with Hazelcast Jet. Because of this
we describe how to configure it but not how to use it from IMDG in this section. If
you enable and configure the event journal, you may only reach it through private
API and you most probably do not get any benefits but the journal retains events
nevertheless and consumes heap space.

The event journal has a fixed capacity and an expiration time. Internally it is structured as a
ringbuffer (partitioned by ringbuffer item) and shares many similarities with it.

7.20.1. Interaction with Evictions and Expiration for IMap

Configuring IMap with eviction and expiration can cause the event journal to contain different
events on the different replicas of the same partition. You can run into issues if you are reading
from the event journal and the partition owner is terminated. A backup replica is then promoted
into the partition owner but the event journal will contain different events. The event count should
stay the same but the entries which you previously thought were evicted and expired could now be
"alive" and vice versa.

This is because eviction and expiration randomly choose entries to be evicted/expired. The entry is
not coordinated between partition replicas. In these cases, the event journal diverges and will not
converge at any future point, but will remain inconsistent just as well as the contents of the internal
record stores are inconsistent between replicas. You may say that the event journal on a specific
replica is in-sync with the record store on that replica but the event journals and record stores
between replicas are out-of-sync.

228

http://jet.hazelcast.org/

7.20.2. Configuring Event Journal Capacity

By default, an event journal is configured with a capacity of 10000 items. This creates a single array
per partition, roughly the size of the capacity divided by the number of partitions. Thus, if the
configured capacity is 10000 and number of partitions is 271, we create 271 arrays of size 36
(10000/271). If a time-to-live is configured, then an array of longs is also created that stores the
expiration time for every item. A single array of the event journal keeps events that are only related
to the map entries in that partition. In a lot of cases you may want to change this capacity number
to something that better fits your needs. As the capacity is shared between partitions, keep in mind
not to set it to a value which is too low for you. Setting the capacity to a number lower than the
partition count results in an error when initializing the event journal.

Below is a declarative configuration example of an event journal with a capacity of 5000 items for a
map and 10000 items for a cache:

XML

<hazelcast>
 ...
 <map name="default">
 <event-journal enabled="true">
 <capacity>5000</capacity>
 <time-to-live-seconds>20</time-to-live-seconds>
 </event-journal>
 </map>
 ...
 <cache name="default">
 <event-journal enabled="true">
 <capacity>10000</capacity>
 <time-to-live-seconds>0</time-to-live-seconds>
 </event-journal>
 </cache>
 ...
</hazelcast>

229

YAML

hazelcast:
 map:
 default:
 event-journal:
 enabled: true
 capacity: 5000
 time-to-live-seconds: 20
 cache:
 default:
 event-journal:
 enabled: true
 capacity: 10000
 time-to-live-seconds: 0

You can also configure an event journal programmatically. The following is a programmatic version
of the above declarative configuration:

EventJournalConfig eventJournalMapConfig = new EventJournalConfig()
 .setEnabled(true)
 .setCapacity(5000)
 .setTimeToLiveSeconds(20);

EventJournalConfig eventJournalCacheConfig = new EventJournalConfig()
 .setEnabled(true)
 .setCapacity(10000)
 .setTimeToLiveSeconds(0);

Config config = new Config();
config.getMapConfig("myMap").setEventJournalConfig(eventJournalMapConfig);
config.getCacheConfig("myCache").setEventJournalConfig(eventJournalCacheConfig);

The mapName and cacheName attributes define the map or cache to which this event journal
configuration applies. You can use pattern-matching and the default keyword when doing so. For
instance, by using a mapName of journaled*, the journal configuration applies to all maps whose
names start with "journaled" and don’t have other journal configurations that match (e.g., if you
would have a more specific journal configuration with an exact name match). If you specify the
mapName or cacheName as default, the journal configuration applies to all maps and caches that don’t
have any other journal configuration. This means that potentially all maps and/or caches have one
single event journal configuration.

7.20.3. Event Journal Partitioning

The event journal is a partitioned data structure. The partitioning is done by the event key. Because
of this, the map and cache entry with a specific key is co-located with the events for that key and
will be migrated accordingly. Also, the backup count for the event journal is equal to the backup
count of the map or cache for which it contains events. The events on the backup replicas will be

230

created with the map or cache backup operations and no additional network traffic is introduced
when appending events to the event journal.

7.20.4. Configuring Event Journal time-to-live

You can configure Hazelcast event journal with a time-to-live in seconds. Using this setting, you
can control how long the items remain in the event journal before they are expired. By default, the
time-to-live is set to 0, meaning that unless the item is overwritten, it remains in the journal
indefinitely. The expiration time of the existing journal events is checked whenever a new event is
appended to the event journal or when the event journal is being read. If the journal is not being
read from or written to, the journal may keep expired items indefinitely.

In the example below, an event journal is configured with a time-to-live of 180 seconds:

XML

<hazelcast>
 ...
 <cache name="myCache">
 <event-journal enabled="true">
 <capacity>10000</capacity>
 <time-to-live-seconds>180</time-to-live-seconds>
 </event-journal>
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 cache:
 myCache:
 event-journal:
 enabled: true
 capacity: 10000
 time-to-live-seconds: 180

8. Distributed Events
You can register for Hazelcast entry events so you are notified when those events occur. Event
listeners are cluster-wide: when a listener is registered in one member of cluster, it is actually
registered for the events that originated at any member in the cluster. When a new member joins,
events originated at the new member are also delivered.

An event is created only if you registered an event listener. If no listener is registered, then no
event is created. If you provided a predicate when you registered the event listener, pass the
predicate before sending the event to the listener (member/client).

231

As a rule of thumb, your event listener should not implement heavy processes in its event methods
that block the thread for a long time. If needed, you can use ExecutorService to transfer long
running processes to another thread and thus offload the current listener thread.

In a failover scenario, events are not highly available and may get lost. However,
you can perform workarounds such as configuring the event queue capacity as
explained in the Global Event Configuration section.

Hazelcast offers the following event listeners.

For cluster events:

• Membership Listener for cluster membership events

• Distributed Object Listener for distributed object creation and destruction events

• Migration Listener for partition migration start and completion events

• Partition Lost Listener for partition lost events

• Lifecycle Listener for HazelcastInstance lifecycle events

• Client Listener for client connection events

For distributed object events:

• Entry Listener for IMap and MultiMap entry events

• Item Listener for IQueue, ISet and IList item events

• Message Listener for ITopic message events

For Hazelcast JCache implementation:

• Cache Entry Listener

• ICache Partition Lost Listener

For Hazelcast clients:

• Lifecycle Listener

• Membership Listener

• Distributed Object Listener

8.1. Cluster Events

8.1.1. Listening for Member Events

The Membership Listener interface has methods that are invoked for the following events:

• memberAdded: A new member is added to the cluster.

• memberRemoved: An existing member leaves the cluster.

232

To write a Membership Listener class, you implement the MembershipListener interface and its
methods.

The following is an example Membership Listener class.

public class ClusterMembershipListener implements MembershipListener {

 public void memberAdded(MembershipEvent membershipEvent) {
 System.err.println("Added: " + membershipEvent);
 }

 public void memberRemoved(MembershipEvent membershipEvent) {
 System.err.println("Removed: " + membershipEvent);
 }
}

When a respective event is fired, the membership listener outputs the addresses of the members
that joined and left, and also which attribute changed on which member.

Registering Membership Listeners

After you create your class, you can configure your cluster to include the membership listener.
Below is an example using the method addMembershipListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getCluster().addMembershipListener(new ClusterMembershipListener()
);

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

Config config = new Config();
config.addListenerConfig(
new ListenerConfig("com.yourpackage.ClusterMembershipListener"));

The following is an example of the equivalent declarative configuration.

233

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.ClusterMembershipListener
 </listener>
 </listeners>
 ...
</hazelcast>

YAML

hazelcast:
 listeners:
 - com.yourpackage.ClusterMembershipListener

Spring

<hz:listeners>
 <hz:listener class-name="com.yourpackage.ClusterMembershipListener"/>
 <hz:listener implementation="MembershipListener"/>
</hz:listeners>

8.1.2. Listening for Distributed Object Events

The Distributed Object Listener methods distributedObjectCreated and distributedObjectDestroyed
are invoked when a distributed object is created and destroyed throughout the cluster. To write a
Distributed Object Listener class, you implement the DistributedObjectListener interface and its
methods.

The following is an example Distributed Object Listener class.

234

public class ExampleDistObjListener implements DistributedObjectListener {

 @Override
 public void distributedObjectCreated(DistributedObjectEvent event) {
 DistributedObject instance = event.getDistributedObject();
 System.out.println("Created " + instance.getName() + ", service=" + instance
.getServiceName());
 }

 @Override
 public void distributedObjectDestroyed(DistributedObjectEvent event) {
 System.out.println("Destroyed " + event.getObjectName() + ", service=" +
event.getServiceName());
 }
}

When a respective event is fired, the distributed object listener outputs the event type, the object
name and a service name (for example, for a Map object the service name is "hz:impl:mapService").

Registering Distributed Object Listeners

After you create your class, you can configure your cluster to include distributed object listeners.
Below is an example using the method addDistributedObjectListener. You can also see this portion
in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ExampleDistObjListener example = new ExampleDistObjListener();

hazelcastInstance.addDistributedObjectListener(example);

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.yourpackage.ExampleDistObjListener"));

The following is an example of the equivalent declarative configuration.

235

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.ExampleDistObjListener
 </listener>
 </listeners>
 ...
</hazelcast>

YAML

hazelcast:
 listeners:
 - com.yourpackage.ExampleDistObjListener

Spring

<hz:listeners>
 <hz:listener class-name="com.yourpackage.ExampleDistObjListener"/>
 <hz:listener implementation="DistributedObjectListener"/>
</hz:listeners>

8.1.3. Listening for Migration Events

The Migration Listener interface has methods that are invoked for the following events:

• migrationStarted: The migration starts. A migration consists of a group of replica migrations
which are planned together. The MigrationState parameter of the migrationStarted method
shows information about the migration: start time of the process, number of the planned
migrations, etc.

• migrationFinished: The migration finishes. MigrationState parameter shows the result of the
migration: number of the completed migrations, number of the remaining migrations, total
elapsed time, etc.

• replicaMigrationCompleted: A partition replica migration starts. Method’s parameter,
ReplicaMigrationEvent, shows information about a replica migration: partition ID, replica index,
source and destination members of the migration and elapsed time for this replica migration.
Also it shows the progress of the overall migration: number of the completed and remaining
replica migrations and total elapsed time.

• replicaMigrationFailed: A partition replica migration fails. The MigrationEvent parameter shows
the information about this replica migration and overall migration similar to the
migrationCompleted method.

To write a Migration Listener class, you implement the MigrationListener interface and its methods.

236

The following is an example Migration Listener class.

public class ClusterMigrationListener implements MigrationListener {

 @Override
 public void migrationStarted(MigrationState state) {
 System.out.println("Migration Started: " + state);
 }

 @Override
 public void migrationFinished(MigrationState state) {
 System.out.println("Migration Finished: " + state);
 }

 @Override
 public void replicaMigrationCompleted(ReplicaMigrationEvent event) {
 System.out.println("Replica Migration Completed: " + event);
 }

 @Override
 public void replicaMigrationFailed(ReplicaMigrationEvent event) {
 System.out.println("Replica Migration Failed: " + event);
 }
}

Registering Migration Listeners

After you create your class, you can configure your cluster to include migration listeners. Below is
an example using the method addMigrationListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

PartitionService partitionService = hazelcastInstance.getPartitionService();
partitionService.addMigrationListener(new ClusterMigrationListener());

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

The following is an example programmatic configuration.

config.addListenerConfig(
new ListenerConfig("com.yourpackage.ClusterMigrationListener"));

The following is an example of the equivalent declarative configuration.

237

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.ClusterMigrationListener
 </listener>
 </listeners>
 ...
</hazelcast>

YAML

hazelcast:
 listeners:
 - com.yourpackage.ClusterMigrationListener

Spring

<hz:listeners>
 <hz:listener class-name="com.yourpackage.ClusterMigrationListener"/>
 <hz:listener implementation="MigrationListener"/>
</hz:listeners>

8.1.4. Listening for Partition Lost Events

Hazelcast provides fault-tolerance by keeping multiple copies of your data. For each partition, one
of your cluster members becomes the owner and some of the other members become replica
members, based on your configuration. Nevertheless, data loss may occur if a few members crash
simultaneously.

Let’s consider the following example with three members: N1, N2, N3 for a given partition-0. N1 is
owner of partition-0. N2 and N3 are the first and second replicas respectively. If N1 and N2 crash
simultaneously, partition-0 loses its data that is configured with less than two backups. For instance,
if we configure a map with one backup, that map loses its data in partition-0 since both owner and
first replica of partition-0 have crashed. However, if we configure our map with two backups, it
does not lose any data since a copy of partition-0’s data for the given map also resides in N3.

The Partition Lost Listener notifies for possible data loss occurrences with the information of how
many replicas are lost for a partition. It listens to PartitionLostEvent instances. Partition lost events
are dispatched per partition.

Partition loss detection is done after a member crash is detected by the other members and the
crashed member is removed from the cluster. Please note that false-positive PartitionLostEvent
instances may be fired on the network split errors.

238

Writing a Partition Lost Listener Class

To write a Partition Lost Listener, you implement the PartitionLostListener interface and its
partitionLost method, which is invoked when a partition loses its owner and all backups.

The following is an example Partition Lost Listener class.

public class ConsoleLoggingPartitionLostListener implements PartitionLostListener {
 @Override
 public void partitionLost(PartitionLostEvent event) {
 System.out.println(event);
 }
}

When a PartitionLostEvent is fired, the partition lost listener given above outputs the partition ID,
the replica index that is lost and the member that has detected the partition loss. The following is
an example output.

com.hazelcast.partition.PartitionLostEvent{partitionId=242, lostBackupCount=0,
eventSource=Address[192.168.2.49]:5701}

Registering Partition Lost Listeners

After you create your class, you can configure your cluster programmatically or declaratively to
include the partition lost listener. Below is an example of its programmatic configuration.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getPartitionService().addPartitionLostListener(new
ConsoleLoggingPartitionLostListener());

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.ConsoleLoggingPartitionLostListener
 </listener>
 </listeners>
 ...
</hazelcast>

239

YAML

hazelcast:
 listeners:
 - com.yourpackage.ConsoleLoggingPartitionLostListener

8.1.5. Listening for Lifecycle Events

The Lifecycle Listener notifies for the following events:

• STARTING: A member is starting.

• STARTED: A member started.

• SHUTTING_DOWN: A member is shutting down.

• SHUTDOWN: A member’s shutdown has completed.

• MERGING: A member is merging with the cluster.

• MERGED: A member’s merge operation has completed.

• CLIENT_CONNECTED: A Hazelcast Client connected to the cluster.

• CLIENT_DISCONNECTED: A Hazelcast Client disconnected from the cluster.

The following is an example Lifecycle Listener class.

public class NodeLifecycleListener implements LifecycleListener {
 @Override
 public void stateChanged(LifecycleEvent event) {
 System.err.println(event);
 }
}

This listener is local to an individual member. It notifies the application that uses Hazelcast about
the events mentioned above for a particular member.

Registering Lifecycle Listeners

After you create your class, you can configure your cluster to include lifecycle listeners. Below is an
example using the method addLifecycleListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
hazelcastInstance.getLifecycleService().addLifecycleListener(new
NodeLifecycleListener());

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register the listeners in the configuration. You can register listeners using declarative,
programmatic, or Spring configuration, as shown below.

240

The following is an example programmatic configuration.

config.addListenerConfig(
 new ListenerConfig("com.yourpackage.NodeLifecycleListener"));

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.NodeLifecycleListener
 </listener>
 </listeners>
 ...
</hazelcast>

YAML

hazelcast:
 listeners:
 - com.yourpackage.NodeLifecycleListener

Spring

<hz:listeners>
 <hz:listener class-name="com.yourpackage.NodeLifecycleListener"/>
 <hz:listener implementation="LifecycleListener"/>
</hz:listeners>

8.1.6. Listening for Clients

The client listener is used by the Hazelcast cluster members. It notifies the cluster member when a
client is connected to or disconnected from it, i.e., the clients fire an event from only one member
they are connected to. Other cluster members do not fire a "client is connected" or "client is
disconnected" event.

To write a client listener class, you implement the ClientListener interface and its methods
clientConnected and clientDisconnected, which are invoked when a client is connected to or
disconnected from the cluster. You can add your client listener as shown below.

hazelcastInstance.getClientService().addClientListener(new ExampleClientListener());

The following is the equivalent declarative configuration.

241

XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.ExampleClientListener
 </listener>
 </listeners>
 ...
</hazelcast>

YAML

hazelcast:
 listeners:
 - com.yourpackage.ExampleClientListener

Spring

<hz:listeners>
 <hz:listener class-name="com.yourpackage.ExampleClientListener"/>
 <hz:listener implementation="com.yourpackage.ExampleClientListener"/>
</hz:listeners>

You can also add event listeners to a Hazelcast client. See the Client Listenerconfig
section for the related information.

8.2. Distributed Object Events

8.2.1. Listening for Map Events

You can listen to map-wide or entry-based events using the listeners provided by the Hazelcast’s
eventing framework. To listen to these events, implement a MapListener sub-interface.

A map-wide event is fired as a result of a map-wide operation. For example, IMap.clear() or
IMap.evictAll(). An entry-based event is fired after the operations that affect a specific entry. For
example, IMap.remove() or IMap.evict().

Catching a Map Event

To catch an event, you should explicitly implement a corresponding sub-interface of a MapListener,
such as EntryAddedListener or MapClearedListener.

242

The EntryListener interface still can be implemented (we kept it for backward
compatibility reasons). However, if you need to listen to a different event, one that
is not available in the EntryListener interface, you should also implement a
relevant MapListener sub-interface.

Let’s take a look at the following class example.

public class Listen {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, String> map = hz.getMap("somemap");
 map.addEntryListener(new MyEntryListener(), true);
 System.out.println("EntryListener registered");
 }

 static class MyEntryListener implements
 EntryAddedListener<String, String>,
 EntryRemovedListener<String, String>,
 EntryUpdatedListener<String, String>,
 EntryEvictedListener<String, String>,
 EntryLoadedListener<String,String>,
 MapEvictedListener,
 MapClearedListener {
 @Override
 public void entryAdded(EntryEvent<String, String> event) {
 System.out.println("Entry Added:" + event);
 }

 @Override
 public void entryRemoved(EntryEvent<String, String> event) {
 System.out.println("Entry Removed:" + event);
 }

 @Override
 public void entryUpdated(EntryEvent<String, String> event) {
 System.out.println("Entry Updated:" + event);
 }

 @Override
 public void entryEvicted(EntryEvent<String, String> event) {
 System.out.println("Entry Evicted:" + event);
 }

 @Override
 public void entryLoaded(EntryEvent<String, String> event) {
 System.out.println("Entry Loaded:" + event);
 }

 @Override

243

 public void mapEvicted(MapEvent event) {
 System.out.println("Map Evicted:" + event);
 }

 @Override
 public void mapCleared(MapEvent event) {
 System.out.println("Map Cleared:" + event);
 }
 }
}

Now, let’s perform some modifications on the map entries using the following example code.

public class ModifyMap {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IMap<String, String> map = hz.getMap("somemap");
 String key = "" + System.nanoTime();
 String value = "1";
 map.put(key, value);
 map.put(key, "2");
 map.delete(key);
 }
}

If you execute the Listen class and then the Modify class, you get the following output produced by
the Listen class.

Entry Added:EntryEvent{entryEventType=ADDED, member=Member [192.168.1.100]]:5702
 - ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
 oldValue=null, value=1, mergingValue=null}

Entry Updated:EntryEvent{entryEventType=UPDATED, member=Member [192.168.1.100]]:5702
 - ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
 oldValue=1, value=2, mergingValue=null}

Entry Removed:EntryEvent{entryEventType=REMOVED, member=Member [192.168.1.100]]:5702
 - ffedb655-bbad-43ea-aee8-d429d37ce528, name='somemap', key=11455268066242,
 oldValue=null, value=null, mergingValue=null}

Please note that the method IMap.clear() does not fire an "EntryRemoved" event,
but fires a "MapCleared" event.

 Listeners have to offload all blocking operations to another thread (pool).

244

8.2.2. Listening for Lost Map Partitions

You can listen to MapPartitionLostEvent instances by registering an implementation of
MapPartitionLostListener, which is also a sub-interface of MapListener.

Let’s consider the following example code:

public class ListenMapPartitionLostEvents {

 public static void main(String[] args) {
 Config config = new Config();
 // keeps its data if a single node crashes
 config.getMapConfig("map").setBackupCount(1);

 HazelcastInstance instance = HazelcastInstanceFactory.newHazelcastInstance
(config);

 IMap<Object, Object> map = instance.getMap("map");
 map.put(0, 0);

 map.addPartitionLostListener(new MapPartitionLostListener() {
 @Override
 public void partitionLost(MapPartitionLostEvent event) {
 System.out.println(event);
 }
 });
 }
}

Within this example code, a MapPartitionLostListener implementation is registered to a map that is
configured with one backup. For this particular map and any of the partitions in the system, if the
partition owner member and its first backup member crash simultaneously, the given
MapPartitionLostListener receives a corresponding MapPartitionLostEvent. If only a single member
crashes in the cluster, there is no MapPartitionLostEvent fired for this map since backups for the
partitions owned by the crashed member are kept on other members.

See the Listening for Partition Lost Events section for more information about partition lost
detection and partition lost events.

Registering Map Listeners

After you create your listener class, you can configure your cluster to include map listeners using
the method addEntryListener (as you can see in the example Listen class above). Below is the
related portion from this code, showing how to register a map listener.

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
IMap<String, String> map = hz.getMap("somemap");
map.addEntryListener(new MyEntryListener(), true);

245

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in configuration. You can register listeners using declarative, programmatic, or
Spring configuration, as shown below.

The following is an example programmatic configuration.

mapConfig.addEntryListenerConfig(
new EntryListenerConfig("com.yourpackage.MyEntryListener",
 false, false));

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <map name="somemap">
 <entry-listeners>
 <entry-listener include-value="false" local="false">
 com.yourpackage.MyEntryListener
 </entry-listener>
 </entry-listeners>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 somemap:
 map:
 entry-listeners:
 - class-name: com.your-package.MyEntryListener
 include-value: false
 local: false

Spring

<hz:map name="somemap">
 <hz:entry-listeners>
 <hz:entry-listener include-value="true"
 class-name="com.hazelcast.spring.DummyEntryListener"/>
 <hz:entry-listener implementation="dummyEntryListener" local="true"/>
 </hz:entry-listeners>
</hz:map>

246

Map Listener Attributes

As you see, there are attributes of the map listeners in the above examples: include-value and local.
The attribute include-value is a boolean attribute that is optional, and if you set it to true, the map
event contains the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen
to the map on the local member. Its default value is false.

8.2.3. Listening for MultiMap Events

You can listen to entry-based events in the MultiMap using EntryListener. The following is an
example entry listener implementation for MultiMap.

public class ExampleEntryListener implements EntryListener<String, String> {
 @Override
 public void entryAdded(EntryEvent<String, String> event) {
 System.out.println("Entry Added: " + event);
 }
 @Override
 public void entryRemoved(EntryEvent<String, String> event) {
 System.out.println("Entry Removed: " + event);
 }
 @Override
 public void entryUpdated(EntryEvent<String, String> event) {
 System.out.println("Entry Updated: " + event);
 }
 @Override
 public void entryEvicted(EntryEvent<String, String> event) {
 System.out.println("Entry evicted: " + event);
 }
 @Override
 public void entryExpired(EntryEvent<String, String> event) {
 System.out.println("Entry expired: " + event);
 }
 @Override
 public void mapCleared(MapEvent event) {
 System.out.println("Map Cleared: " + event);
 }
 @Override
 public void mapEvicted(MapEvent event) {
 System.out.println("Map Evicted: " + event);
 }
}

Registering MultiMap Listeners

After you create your listener class, you can configure your cluster to include MultiMap listeners
using the method addEntryListener. Below is the related portion from a code, showing how to
register a map listener.

247

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
MultiMap<String, String> map = hz.getMultiMap("somemap");
map.addEntryListener(new ExampleEntryListener(), true);

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

multiMapConfig.addEntryListenerConfig(
 new EntryListenerConfig("com.yourpackage.ExampleEntryListener",
 false, false));

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <multimap name="somemap">
 <value-collection-type>SET</value-collection-type>
 <entry-listeners>
 <entry-listener include-value="false" local="false">
 com.yourpackage.ExampleEntryListener
 </entry-listener>
 </entry-listeners>
 </multimap>
 ...
</hazelcast>

YAML

hazelcast:
 multimap:
 somemap:
 value-collection: SET
 entry-listeners:
 - class-name: com.your-package.MyEntryListener
 include-value: false
 local: false

248

Spring

<hz:multimap name="somemap" value-collection-type="SET">
 <hz:entry-listeners>
 <hz:entry-listener include-value="false"
 class-name="com.yourpackage.ExampleEntryListener"/>
 <hz:entry-listener implementation="EntryListener" local="false"/>
 </hz:entry-listeners>
</hz:multimap>

MultiMap Listener Attributes

As you see, there are attributes of the MultiMap listeners in the above examples: include-value and
local. The attribute include-value is a boolean attribute that is optional, and if you set it to true, the
MultiMap event contains the map value. Its default value is true.

The attribute local is also a boolean attribute that is optional, and if you set it to true, you can listen
to the MultiMap on the local member. Its default value is false.

8.2.4. Listening for Item Events

The Item Listener is used by the Hazelcast IQueue, ISet and IList interfaces.

To write an Item Listener class, you implement the ItemListener interface and its methods
itemAdded and itemRemoved. These methods are invoked when an item is added or removed.

The following is an example Item Listener class for an ISet structure.

public class ExampleItemListener implements ItemListener<Price> {

 @Override
 public void itemAdded(ItemEvent<Price> event) {
 System.out.println("Item added: " + event);
 }

 @Override
 public void itemRemoved(ItemEvent<Price> event) {
 System.out.println("Item removed: " + event);
 }
}

You can use ICollection when creating any of the collection (queue, set and list)
data structures, as shown above. You can also use IQueue, ISet or IList instead of
ICollection.

Registering Item Listeners

After you create your class, you can configure your cluster to include item listeners. Below is an

249

example using the method addItemListener for ISet (it applies also to IQueue and IList). You can also
see this portion in the above class creation.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ICollection<Price> set = hazelcastInstance.getSet("default");
// or ISet<Prices> set = hazelcastInstance.getSet("default");
set.addItemListener(new ExampleItemListener(), true);

With the above approach, there is the possibility of missing events between the creation of the
instance and registering the listener. To overcome this race condition, Hazelcast allows you to
register listeners in the configuration. You can register listeners using declarative, programmatic,
or Spring configuration, as shown below.

The following is an example programmatic configuration.

setConfig.addItemListenerConfig(
new ItemListenerConfig("com.yourpackage.ExampleItemListener", true));

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <set>
 <item-listeners>
 <item-listener include-value="true">
 com.yourpackage.ExampleItemListener
 </item-listener>
 </item-listeners>
 </set>
 ...
</hazelcast>

YAML

hazelcast:
 set:
 default:
 item-listeners:
 - class-name: com.yourpackage.ExampleItemListener
 include-value: true

250

Spring

<hz:set name="default" >
 <hz:item-listeners>
 <hz:item-listener include-value="true"
 class-name="com.yourpackage.ExampleItemListener"/>
 </hz:item-listeners>
</hz:set>

Item Listener Attributes

As you see, there is an attribute in the above examples: include-value. It is a boolean attribute that
is optional, and if you set it to true, the item event contains the item value. Its default value is true.

There is also another attribute called local, which is not shown in the above examples. It is also a
boolean attribute that is optional, and if you set it to true, you can listen to the items on the local
member. Its default value is false.

8.2.5. Listening for Topic Messages

The Message Listener is used by the ITopic interface. It notifies when a message is received for the
registered topic.

To write a Message Listener class, you implement the MessageListener interface and its method
onMessage, which is invoked when a message is received for the registered topic.

The following is an example Message Listener class.

public class ExampleMessageListener implements MessageListener<MyEvent> {

 public void onMessage(Message<MyEvent> message) {
 MyEvent myEvent = message.getMessageObject();
 System.out.println("Message received = " + myEvent.toString());
 }
}

Registering Message Listeners

After you create your class, you can configure your cluster to include message listeners. Below is an
example using the method addMessageListener.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

ITopic topic = hazelcastInstance.getTopic("default");
topic.addMessageListener(new ExampleMessageListener());

With the above approach, there is the possibility of missing messaging events between the creation
of the instance and registering the listener. To overcome this race condition, Hazelcast allows you

251

to register this listener in the configuration. You can register it using declarative, programmatic, or
Spring configuration, as shown below.

The following is an example programmatic configuration.

topicConfig.addMessageListenerConfig(
 new ListenerConfig("com.yourpackage.ExampleMessageListener"));

The following is an example of the equivalent declarative configuration.

XML

<hazelcast>
 ...
 <topic name="default">
 <message-listeners>
 <message-listener>
 com.yourpackage.ExampleMessageListener
 </message-listener>
 </message-listeners>
 </topic>
 ...
</hazelcast>

YAML

hazelcast:
 topic:
 default:
 message-listeners:
 - com.yourpackage.ExampleMessageListener

Spring

<hz:topic name="default">
 <hz:message-listeners>
 <hz:message-listener
 class-name="com.yourpackage.ExampleMessageListener"/>
 </hz:message-listeners>
</hz:topic>

8.3. Event Listeners for Hazelcast Clients
You can add event listeners to Hazelcast clients. You can configure the following listeners to listen
to the events on the client side:

• Lifecycle Listener: Notifies when the client is starting, started, shutting down and shutdown.

252

• Membership Listener: Notifies when a member joins to/leaves the cluster to which the client is
connected, or when an attribute is changed in a member.

• Distributed Object Listener: Notifies when a distributed object is created or destroyed
throughout the cluster to which the client is connected. Also notifies for the events happening in
the distributed data structures, e.g., entry, item and message listeners.

For Hazelcast Java client example code/configuration snippets, see the sections of the current
chapter, i.e., Distributed Events. See also the Configuring Client Listeners section for more
information.

Follow the below links to learn how to configure the event listeners on other Hazelcast clients:

• .NET client

• C++ client

• Node.js client

• Go client

• Python client

Note that you can simply add a listener to your client that you already configured and registered on
the member side. You do not need to configure the listener on the client. Assuming that you
implemented a listener for a map, .e.g., MyListener on the member side, see the following example
for a Java client:

IMap<Object, Object> map = client.getMap("mymap");
map.addEntryListener(new MyListener(), true);

As you see, no configuration is needed.

8.4. Global Event Configuration
• hazelcast.event.queue.capacity: default value is 1000000

• hazelcast.event.queue.timeout.millis: default value is 250

• hazelcast.event.thread.count: default value is 5

A striped executor in each cluster member controls and dispatches the received events. This striped
executor also guarantees the event order. For all events in Hazelcast, the order in which events are
generated and the order in which they are published are guaranteed for given keys. For map and
multimap, the order is preserved for the operations on the same key of the entry. For list, set, topic
and queue, the order is preserved for events on that instance of the distributed data structure.

To achieve the order guarantee, you make only one thread responsible for a particular set of events
(entry events of a key in a map, item events of a collection, etc.) in StripedExecutor (within
com.hazelcast.util.executor).

If the event queue reaches its capacity (hazelcast.event.queue.capacity) and the last item cannot be

253

https://github.com/hazelcast/hazelcast-csharp-client#75-distributed-events
https://github.com/hazelcast/hazelcast-cpp-client#75-distributed-events
https://github.com/hazelcast/hazelcast-nodejs-client/blob/master/DOCUMENTATION.md#75-distributed-events
https://github.com/hazelcast/hazelcast-go-client#75-distributed-events
https://github.com/hazelcast/hazelcast-python-client#75-distributed-events

put into the event queue for the period specified in hazelcast.event.queue.timeout.millis, these
events are dropped with a warning message, such as "EventQueue overloaded".

If event listeners perform a computation that takes a long time, the event queue can reach its
maximum capacity and lose events. For map and multimap, you can configure
hazelcast.event.thread.count to a higher value so that fewer collisions occur for keys, and
therefore worker threads do not block each other in StripedExecutor. For list, set, topic and queue,
you should offload heavy work to another thread. To preserve order guarantee, you should
implement similar logic with StripedExecutor in the offloaded thread pool.

9. Hazelcast Jet

This chapter only briefly describes Hazelcast Jet. For detailed information and Jet
documentation, please see the Jet homepage at jet-start.sh.

9.1. Overview
Hazelcast Jet is a distributed batch and stream processing framework based on Hazelcast IMDG. It
allows you to write, currently, modern Java code that focuses purely on data transformation while
it does all the heavy lifting of getting the data flowing and computation running across a cluster of
members. It supports working with both bounded (batch) and unbounded (streaming) data.

You can follow the Getting Started Guide in the Hazelcast Jet documentation to see a simple
example.

Jet supports a rich set of data transformations such as windowed aggregations. For example, if your
data is GPS location reports from millions of users, Jet can compute every user’s velocity vector by
using a sliding window and just a few lines of code. Jet also supports at-least-once and exactly-once
processing.

Jet can be used to import/export data from/to Hazelcast IMDG using a very wide variety of data
sources including Hadoop, S3, Apache Kafka, Elasticsearch, JDBC and JMS. For example, you can
read data from Kafka and write to IMap with just a few lines of code. You can stream changes from
an IMap and write it to an external system or you can join to a stream reference data that is already
stored in IMap.

For a full list of external systems that Jet integrates with, see the Sources and Sinks section of Jet’s
documentation.

10. Distributed Computing
This chapter explains Hazelcast’s executor service, durable/scheduled executor services and entry
processor implementations.

254

https://jet-start.sh
https://jet-start.sh/docs
https://jet-start.sh/docs/how-tos/stream-imap
https://jet-start.sh/docs/how-tos/stream-imap
https://jet-start.sh/docs/tutorials/map-join
https://jet-start.sh/docs/api/sources-sinks

10.1. Executor Service
One of the coolest features of Java is the Executor framework, which allows you to asynchronously
execute your tasks (logical units of work), such as database queries, complex calculations and
image rendering.

The default implementation of this framework (ThreadPoolExecutor) is designed to run within a
single JVM (cluster member). In distributed systems, this implementation is not desired since you
may want a task submitted in one JVM and processed in another one. Hazelcast offers
IExecutorService for you to use in distributed environments. It implements
java.util.concurrent.ExecutorService to serve the applications requiring computational and data
processing power.

Note that you may want to use Hazelcast Jet if you want to process batch or real-
time streaming data. See the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet.

With IExecutorService, you can execute tasks asynchronously and perform other useful tasks. If
your task execution takes longer than expected, you can cancel the task execution. Tasks should be
Serializable since they are distributed.

In the Java Executor framework, you implement tasks two ways: Callable or Runnable.

• Callable: If you need to return a value and submit it to Executor, implement the task as
java.util.concurrent.Callable.

• Runnable: If you do not need to return a value, implement the task as
java.util.concurrent.Runnable.

Note that, the distributed executor service (IExecutorService) is intended to run processing where
the data is hosted: on the server members. In general, you cannot run a Java Runnable or Callable
on the clients as the clients may not be Java. Also, the clients do not host any data, so they would
have to fetch what data they need from the servers potentially. If you want something to run on all
or some clients connected to your cluster, you could implement this using the publish/subscribe
mechanism; a payload could be sent to an ITopic with the necessary execution parameters, and
clients listening can act on the message.

10.1.1. Implementing a Callable Task

In Hazelcast, when you implement a task as java.util.concurrent.Callable (a task that returns a
value), you implement Callable and Serializable.

Below is an example of a Callable task. SumTask prints out map keys and returns the summed map
values.

255

https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/

public class SumTask
 implements Callable<Integer>, Serializable, HazelcastInstanceAware {

 private transient HazelcastInstance hazelcastInstance;

 public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
 this.hazelcastInstance = hazelcastInstance;
 }

 public Integer call() throws Exception {
 IMap<String, Integer> map = hazelcastInstance.getMap("map");
 int result = 0;
 for (String key : map.localKeySet()) {
 System.out.println("Calculating for key: " + key);
 result += map.get(key);
 }
 System.out.println("Local Result: " + result);
 return result;
 }
}

Another example is the Echo callable below. In its call() method, it returns the local member and
the input passed in. Remember that instance.getCluster().getLocalMember() returns the local
member and toString() returns the member’s address (IP + port) in String form, just to see which
member actually executed the code for our example. Of course, the call() method can do and
return anything you like.

public class Echo implements Callable<String>, Serializable, HazelcastInstanceAware {
 String input = null;

 private transient HazelcastInstance hazelcastInstance;

 public Echo() {
 }

 public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
 this.hazelcastInstance = hazelcastInstance;
 }

 public Echo(String input) {
 this.input = input;
 }

 public String call() {
 return hazelcastInstance.getCluster().getLocalMember().toString() + ":" +
input;
 }
}

256

Executing a Callable Task

To execute a callable task:

• retrieve the Executor from HazelcastInstance

• submit a task which returns a Future

• after executing the task, you do not have to wait for the execution to complete, you can process
other things

• when ready, use the Future object to retrieve the result as shown in the code example below.

Below, the Echo task is executed.

public class MasterMember {

 public static void main(String[] args) throws Exception {
 HazelcastInstance instance = Hazelcast.newHazelcastInstance();
 IExecutorService executorService = instance.getExecutorService(
"executorService");
 Future<String> future = executorService.submit(new Echo("myinput"));
 //while it is executing, do some useful stuff
 //when ready, get the result of your execution
 String result = future.get();
 }
}

Please note that the Echo callable in the above example also implements a Serializable interface,
since it may be sent to another member to be processed.

When a task is deserialized, HazelcastInstance needs to be accessed. To do this, the
task should implement HazelcastInstanceAware interface. See the
HazelcastInstanceAware Interface section for more information.

10.1.2. Implementing a Runnable Task

In Hazelcast, when you implement a task as java.util.concurrent.runnable (a task that does not
return a value), you implement Runnable and Serializable.

Below is Runnable example code. It is a task that waits for some time and echoes a message.

257

public class EchoTask implements Runnable, Serializable {

 private final String msg;

 public EchoTask(String msg) {
 this.msg = msg;
 }

 @Override
 public void run() {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 }
 System.out.println("echo:" + msg);
 }
}

Executing a Runnable Task

To execute the runnable task:

• retrieve the Executor from HazelcastInstance

• submit the tasks to the Executor.

Now let’s write a class that submits and executes these echo messages. Executor is retrieved from
HazelcastInstance and 1000 echo tasks are submitted.

public class RunnableMasterMember {

 public static void main(String[] args) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService executor = hazelcastInstance.getExecutorService("exec");
 for (int k = 1; k <= 1000; k++) {
 Thread.sleep(1000);
 System.out.println("Producing echo task: " + k);
 executor.execute(new EchoTask(String.valueOf(k)));
 }
 System.out.println("EchoTaskMain finished!");
 }
}

10.1.3. Scaling The Executor Service

You can scale the Executor service both vertically (scale up) and horizontally (scale out).

To scale up, you should improve the processing capacity of the cluster member (JVM). You can do
this by increasing the pool-size property mentioned in Configuring Executor Service (i.e.,

258

increasing the thread count). However, please be aware of your member’s capacity. If you think it
cannot handle such an additional load caused by increasing the thread count, you may want to
consider improving the member’s resources (CPU, memory, etc.). As an example, set the pool-size
to 5 and run the above MasterMember. You will see that EchoTask is run as soon as it is produced.

To scale out, add more members instead of increasing only one member’s capacity. In reality, you
may want to expand your cluster by adding more physical or virtual machines. For example, in the
EchoTask example in the Runnable section, you can create another Hazelcast instance. That
instance automatically gets involved in the executions started in MasterMember and start processing.

10.1.4. Executing Code in the Cluster

The distributed executor service is a distributed implementation of
java.util.concurrent.ExecutorService. It allows you to execute your code in the cluster. In this
section, the code examples are based on the Echo class above (please note that the Echo class is
Serializable). The code examples show how Hazelcast can execute your code (Runnable, Callable):

• echoOnTheMember: On a specific cluster member you choose with the IExecutorService

submitToMember method.

• echoOnTheMemberOwningTheKey: On the member owning the key you choose with the
IExecutorService submitToKeyOwner method.

• echoOnSomewhere: On the member Hazelcast picks with the IExecutorService submit method.

• echoOnMembers: On all or a subset of the cluster members with the IExecutorService

submitToMembers method.

public void echoOnTheMember(String input, Member member) throws Exception {
 Callable<String> task = new Echo(input);
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService executorService =
 hazelcastInstance.getExecutorService("default");

 Future<String> future = executorService.submitToMember(task, member);
 String echoResult = future.get();
}

public void echoOnTheMemberOwningTheKey(String input, Object key) throws Exception {
 Callable<String> task = new Echo(input);
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService executorService =
 hazelcastInstance.getExecutorService("default");

 Future<String> future = executorService.submitToKeyOwner(task, key);
 String echoResult = future.get();
}

259

public void echoOnSomewhere(String input) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService executorService =
 hazelcastInstance.getExecutorService("default");

 Future<String> future = executorService.submit(new Echo(input));
 String echoResult = future.get();
}

public void echoOnMembers(String input, Set<Member> members) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService executorService =
 hazelcastInstance.getExecutorService("default");

 Map<Member, Future<String>> futures = executorService
 .submitToMembers(new Echo(input), members);

 for (Future<String> future : futures.values()) {
 String echoResult = future.get();
 // ...
 }
}

You can obtain the set of cluster members via
HazelcastInstance.getCluster().getMembers() call.

10.1.5. Canceling an Executing Task

A task in the code that you execute in a cluster might take longer than expected. If you cannot
stop/cancel that task, it keeps eating your resources.

To cancel a task, you can use the standard Java executor framework’s cancel() API. This framework
encourages us to code and design for cancellations, a highly ignored part of software development.

Example Task to Cancel

The Fibonacci callable class below calculates the Fibonacci number for a given number. In the
calculate method, we check if the current thread is interrupted so that the code can respond to
cancellations once the execution is started.

260

int input = 0;

public FibonacciCallable(int input) {
 this.input = input;
}

public Long call() {
 return calculate(input);
}

private long calculate(int n) {
 if (Thread.currentThread().isInterrupted()) {
 return 0;
 }
 if (n <= 1) {
 return n;
 } else {
 return calculate(n - 1) + calculate(n - 2);
 }
}

Example Method to Execute and Cancel the Task

The fib() method below submits the Fibonacci calculation task above for number 'n' and waits a
maximum of 3 seconds for the result. If the execution does not completed in three seconds, the
future.get() method throws a TimeoutException and upon catching it, we cancel the execution,
saving some CPU cycles.

long fib(int n) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IExecutorService es = hazelcastInstance.getExecutorService("es");
 Future<Long> future = es.submit(new FibonacciCallable(n));
 try {
 long result = future.get(3, TimeUnit.SECONDS);
 System.out.println(result);
 } catch (TimeoutException e) {
 future.cancel(true);
 }
 return -1;
}

fib(20) probably takes less than 3 seconds. However, fib(50) takes much longer. (This is not an
example for writing better Fibonacci calculation code, but for showing how to cancel a running
execution that takes too long.) The method future.cancel(false) can only cancel execution before it
is running (executing), but future.cancel(true) can interrupt running executions provided that
your code is able to handle the interruption. If you are willing to cancel an already running task,
then your task should be designed to handle interruptions. If the calculate (int n) method did not
have the (Thread.currentThread().isInterrupted()) line, then you would not be able to cancel the

261

execution after it is started.

10.1.6. Callback When Task Completes

You can use the ExecutionCallback offered by Hazelcast to asynchronously be notified when the
execution is done. To be notified when your task completes without an error, implement the
onResponse method. To be notified when your task completes with an error, implement the
onFailure method.

Example Task to Callback

Let’s use the Fibonacci series to explain this. The example code below is the calculation that is
executed. Note that it is Callable and Serializable.

public class Fibonacci2 implements Callable<Long>, Serializable {

 private final int input;

 public Fibonacci2(int input) {
 this.input = input;
 }

 public Long call() {
 return calculate(input);
 }

 private long calculate(int n) {
 if (Thread.currentThread().isInterrupted()) {
 System.out.println("FibonacciCallable is interrupted");
 throw new RuntimeException("FibonacciCallable is interrupted");
 }
 if (n <= 1) {
 return n;
 } else {
 return calculate(n - 1) + calculate(n - 2);
 }
 }
}

Example Method to Callback the Task

The example code below submits the Fibonacci calculation to ExecutionCallback and prints the
result asynchronously. ExecutionCallback has the methods onResponse and onFailure. In this
example code, onResponse is called upon a valid response and prints the calculation result, whereas
onFailure is called upon a failure and prints the stacktrace.

262

public class MasterMemberCallback {

 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();
 IExecutorService executor = hz.getExecutorService("executor");

 ExecutionCallback<Long> executionCallback = new ExecutionCallback<Long>() {
 public void onFailure(Throwable t) {
 t.printStackTrace();
 }

 public void onResponse(Long response) {
 System.out.println("Result: " + response);
 }
 };

 executor.submit(new FibonacciCallable(10), executionCallback);
 System.out.println("Fibonacci task submitted");
 }
}

10.1.7. Selecting Members for Task Execution

As previously mentioned, it is possible to indicate where in the Hazelcast cluster the Runnable or
Callable is executed. Usually you execute these in the cluster based on the location of a key or a set
of keys, or you allow Hazelcast to select a member.

If you want more control over where your code runs, use the MemberSelector interface. For example,
you may want certain tasks to run only on certain members, or you may wish to implement some
form of custom load balancing regime. The MemberSelector is an interface that you can implement
and then provide to the IExecutorService when you submit or execute.

The select(Member) method is called for every available member in the cluster. Implement this
method to decide if the member is going to be used or not.

In a simple example shown below, we select the cluster members based on the presence of an
attribute.

public class MyMemberSelector implements MemberSelector {
 public boolean select(Member member) {
 return Boolean.TRUE.equals(member.getBooleanAttribute("my.special.executor"));
 }
}

You can use MemberSelector instances provided by the
com.hazelcast.cluster.memberselector.MemberSelectors class. For example, you can select a lite
member for running a task using
com.hazelcast.cluster.memberselector.MemberSelectors#LITE_MEMBER_SELECTOR.

263

10.1.8. Configuring Executor Service

The following are example configurations for executor service.

Declarative Configuration:

XML

<hazelcast>
 ...
 <executor-service name="exec">
 <pool-size>1</pool-size>
 <queue-capacity>10</queue-capacity>
 <statistics-enabled>true</statistics-enabled>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ..
 executor-service:
 exec:
 pool-size: 1
 queue-capacity: 10
 statistics-enabled: true
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

Config config = new Config();
ExecutorConfig executorConfig = config.getExecutorConfig("exec");
executorConfig.setPoolSize(1).setQueueCapacity(10)
 .setStatisticsEnabled(true)
 .setSplitBrainProtectionName("splitbrainprotectionname");

Executor service configuration has the following elements:

• pool-size: The number of executor threads per Member for the Executor. By default, Executor is
configured to have 16 threads in the pool. You can change that with this element.

• queue-capacity: Executor’s task queue capacity; the number of tasks this queue can hold.

• statistics-enabled: Specifies whether the statistics gathering is enabled for your Executor
Service. If set to false, you cannot collect statistics in your implementation (using
getLocalExecutorStats()) and also Hazelcast Management Center will not show them. Its default
value is true.

264

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-executors

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
Executor Service to use. See the Split-Brain Protection for IExecutorService section.

10.1.9. Split-Brain Protection for IExecutorService

IExecutorService can be configured to check for a minimum number of available members before
applying its operations (see the Split-Brain Protection section). This is a check to avoid performing
successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the operations, that support split-brain protection
checks:

• WRITE, READ_WRITE:

◦ execute

◦ executeOnAllMembers

◦ executeOnKeyOwner

◦ executeOnMember

◦ executeOnMembers

◦ shutdown

◦ shutdownNow

◦ submit

◦ submitToAllMembers

◦ submitToKeyOwner

◦ submitToMember

◦ submitToMembers

Configuring Split-Brain Protection

Split-brain protection for Executor Service can be configured programmatically using the method
setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-ref.
Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <executor-service name="default">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </executor-service>
 ...
</hazelcast>

265

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/ExecutorConfig.html

YAML

hazelcast:
 ..
 executor-service:
 default:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

10.2. Durable Executor Service
Hazelcast’s durable executor service is a data structure which is able to store an execution task
both on the executing Hazelcast member and its backup member(s), if configured. By this way, you
do not lose any tasks if a member goes down or any results if the submitter (member or client) goes
down while executing the task. When using the durable executor service you can either submit or
execute a task randomly or on the owner of a provided key. Note that in executor service, you can
submit or execute tasks to/on the selected member(s).

Processing of the tasks when using durable executor service involves two invocations:

1. Sending the task to primary Hazelcast member (primary partition) and to its backups, if
configured, and executing the task.

2. Retrieving the result of the task.

As you may already know, Hazelcast’s executor service returns a future representing the task to the
user. With the above two-invocations approach, it is guaranteed that the task is executed before the
future returns and you can track the response of a submitted task with a unique ID. Hazelcast
stores the task on both primary and backup members, and starts the execution also.

With the first invocation, a Ringbuffer stores the task and a generated sequence for the task is
returned to the caller as a result. In addition to the storing, the task is executed on the local
execution service for the primary member. By this way, the task is now resilient to member failures
and you are able to track the task with its ID.

After the first invocation has completed and the sequence of task is returned, second invocation
starts to retrieve the result of task with that sequence. This retrieval waits in the waiting operations
queue until notified, or it runs immediately if the result is already available.

When task execution is completed, Ringbuffer replaces the task with the result for the given task
sequence. This replacement notifies the waiting operations queue.

10.2.1. Configuring Durable Executor Service

This section presents example configurations for durable executor service along with the
descriptions of its configuration elements and attributes.

266

Declarative Configuration:

XML

<hazelcast>
 ...
 <durable-executor-service name="myDurableExecSvc">
 <statistics-enabled>true</statistics-enabled>
 <pool-size>8</pool-size>
 <durability>1</durability>
 <capacity>1</capacity>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </durable-executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 durable-executor-service:
 myDurableExecSvc:
 statistics-enabled: true
 pool-size: 8
 durability: 1
 capacity: 1
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

Config config = new Config();
config.getDurableExecutorConfig("myDurableExecSvc")
 .setPoolSize (8)
 .setDurability(1)
 .setCapacity(1)
 .setSplitBrainProtectionName("splitbrainprotectionname");

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);
DurableExecutorService durableExecSvc = hazelcast.getDurableExecutorService(
"myDurableExecSvc");

The following are the descriptions of each configuration element and attribute:

• name: Name of the executor task.

• statistics-enabled: Specifies whether the statistics gathering is enabled. If set to false, you
cannot collect statistics.

• pool-size: Number of executor threads per member for the executor.

267

• durability: Number of backups in the cluster for the submitted task. Its default value is 1.

• capacity: Executor’s task queue capacity; the number of tasks this queue can hold.

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
Durable Executor Service to use. See the Split-Brain Protection for Durable Executor Service
section.

10.2.2. Split-Brain Protection for Durable Executor Service

Durable Executor Service can be configured to check for a minimum number of available members
before applying its operations (see the Split-Brain Protection section). This is a check to avoid
performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the operations, that support split-brain protection
checks:

• WRITE, READ_WRITE:

◦ disposeResult

◦ execute

◦ executeOnKeyOwner

◦ retrieveAndDisposeResult

◦ shutdown

◦ shutdownNow

◦ submit

◦ submitToKeyOwner

• READ, READ_WRITE:

◦ retrieveResult

Configuring Split-Brain Protection

Split-brain protection for Durable Executor Service can be configured programmatically using the
method setSplitBrainProtectionName(), or declaratively using the element split-brain-protection-
ref. Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <durable-executor-service name="myDurableExecSvc">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </durable-executor-service>
 ...
</hazelcast>

268

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/DurableExecutorConfig.html

YAML

hazelcast:
 ...
 durable-executor-service:
 myDurableExecSvc:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

10.3. Scheduled Executor Service
Hazelcast’s scheduled executor service (IScheduledExecutorService) is a data structure which
implements java.util.concurrent.ScheduledExecutorService, partially. By partially, we mean the
behavior difference in scheduling a task at a fixed rate (scheduleAtFixedRate()). Hazelcast’s
behavior guarantees that a task is not executed by multiple threads concurrently: a scheduled
execution is skipped, instead of postponing, if another thread is still running the same task.

On top of the Vanilla Scheduling API, IScheduledExecutorService allows additional methods such as
the following:

• scheduleOnMember: On a specific cluster member.

• scheduleOnKeyOwner: On the partition owning that key.

• scheduleOnAllMembers: On all cluster members.

• scheduleOnAllMembers: On all given members.

See the IScheduledExecutorService Javadoc for its API details.

There are two different modes of durability for the service:

1. Upon partition specific scheduling, the future task is stored both in the primary partition and
also in its N backups, N being the <durability> property in the configuration. More specifically,
there are always one or more backups to take ownership of the task in the event of a lost
member. If a member is lost, the task is re-scheduled on the backup (new primary) member,
which might induce further delays on the subsequent executions of the task. For example, if we
schedule a task to run in 10 seconds from now, schedule(new ExampleTask(), 10,

TimeUnit.SECONDS); and after 5 seconds the owner member goes down (before the execution
takes place), then the backup owner re-schedules the task in 10 seconds from now. Therefore,
from the user’s perspective waiting on the result, this will be available in 10 + 5 = 15 seconds
rather than 10 seconds as it is anticipated originally. If atFixedRate was used, then only the
initial delay is affected in the above scenario, all subsequent executions should adhere to the
given period parameter.

2. Upon member specific scheduling, the future task is only stored in the member itself, which
means that in the event of a lost member, the task is lost as well.

269

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/scheduledexecutor/IScheduledExecutorService.html

To accomplish the described durability, all tasks provide a unique identity/name before the
scheduling takes place. The name allows the service to reach the scheduled task even after the
caller (client or member) goes down and also allows to prevent duplicate tasks. The name of the
task can be user-defined if it needs to be, by implementing the
com.hazelcast.scheduledexecutor.NamedTask interface (plain wrapper util is available here:
com.hazelcast.scheduledexecutor.TaskUtils.named(java.lang.String, java.lang.Runnable)). If the
task does not provide a name in its implementation, the service provides a random UUID for it,
internally.

Upon scheduling, the service returns an IScheduledFuture, which on top of the
java.util.concurrent.ScheduledFuture functionality, provides an API to get the resource handler of
the task ScheduledTaskHandler and also the runtime statistics of the task.

Futures associated with a scheduled task, in order to be aware of lost partitions and/or members,
act as listeners on the local member/client. Therefore, they are always strongly referenced, on the
member/client side. In order to clean up their resources, once completed, you can use the method
dispose(). This method also cancels further executions of the task if scheduled at a fixed rate. See
the IScheduledFuture Javadoc for its API details.

The task handler is a descriptor class holding information for the scheduled future, which is used to
pinpoint the actual task in the cluster. It contains the name of the task, the owner (member or
partition) and the scheduler name.

The handler is always available after scheduling and can be stored in a plain string format
com.hazelcast.scheduledexecutor.ScheduledTaskHandler.toUrn() and re-constructed back from that
String com.hazelcast.scheduledexecutor.ScheduledTaskHandler.of(). If the handler is lost, you can
still find a task under a given scheduler by using the Scheduler’s
com.hazelcast.scheduledexecutor.IScheduledExecutorService.getAllScheduledFutures().

Last but not least, similar to executor service, the scheduled executor service allows Stateful tasks
to be scheduled. Stateful tasks, are tasks that require any kind of state during their runtime, which
must also be durable along with the task in the event of a lost partition.

Stateful tasks can be created by implementing the com.hazelcast.scheduledexecutor.StatefulTask
interface, providing implementation details for saving the state and loading it back. If a partition is
lost, then the re-scheduled task loads the previously saved state before its execution.

 As with the tasks, Objects stored in the state Map need to be Hazelcast serializable.

10.3.1. Configuring Scheduled Executor Service

This section presents example configurations for scheduled executor service along with the
descriptions of its configuration elements and attributes.

Declarative Configuration:

270

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/scheduledexecutor/IScheduledFuture.html

XML

<hazelcast>
 ...
 <scheduled-executor-service name="myScheduledExecSvc">
 <statistics-enabled>true</statistics-enabled>
 <pool-size>16</pool-size>
 <durability>1</durability>
 <capacity>100</capacity>
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </scheduled-executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 scheduled-executor-service:
 myScheduledExecSvc:
 statistics-enabled: true
 pool-size: 16
 durability: 1
 capacity: 100
 split-brain-protection-ref: splitbrainprotection-name

Programmatic Configuration:

Config config = new Config();
config.getScheduledExecutorConfig("myScheduledExecSvc")
 .setPoolSize (16)
 .setCapacity(100)
 .setDurability(1)
 .setSplitBrainProtectionName("splitbrainprotectionname");

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);
IScheduledExecutorService myScheduledExecSvc = hazelcast.getScheduledExecutorService(
"myScheduledExecSvc");

The following are the descriptions of each configuration element and attribute:

• name: Name of the scheduled executor.

• statistics-enabled: Specifies whether the statistics gathering is enabled. If set to false, you
cannot collect statistics.

• pool-size: Number of executor threads per member for the executor.

• capacity: Maximum number of tasks that a scheduler can have per partition. Attempt to

271

schedule more results in RejectedExecutionException. To free up the capacity, tasks should get
disposed by the user.

• durability: Durability of the executor.

• split-brain-protection-ref: Name of the split-brain protection configuration that you want this
Scheduled Executor Service to use. See the Split-Brain Protection for IScheduled Executor
Service section.

10.3.2. Examples

Scheduling a callable that computes the cluster size in 10 seconds from now:

static class DelayedClusterSizeTask implements Callable<Integer>,
HazelcastInstanceAware, Serializable {

 private transient HazelcastInstance instance;

 @Override
 public Integer call()
 throws Exception {
 return instance.getCluster().getMembers().size();
 }

 @Override
 public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
 this.instance = hazelcastInstance;
 }
}

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();
IScheduledExecutorService executorService = hazelcast.getScheduledExecutorService(
"myScheduler");
IScheduledFuture<Integer> future = executorService.schedule(
 new DelayedClusterSizeTask(), 10, TimeUnit.SECONDS);

int membersCount = future.get(); // Block until we get the result
ScheduledTaskStatistics stats = future.getStats();
future.dispose(); // Always dispose futures that are not in use any more, to release
resources
long totalTaskRuns = stats.getTotalRuns(); // = 1

10.3.3. Split-Brain Protection for IScheduled Executor Service

IScheduledExecutorService can be configured to check for a minimum number of available
members before applying its operations (see the Split-Brain Protection section). This is a check to
avoid performing successful queue operations on all parts of a cluster during a network partition.

The following is a list of methods, grouped by the operations, that support split-brain protection
checks:

272

• WRITE, READ_WRITE:

◦ schedule

◦ scheduleAtFixedRate

◦ scheduleOnAllMembers

◦ scheduleOnAllMembersAtFixedRate

◦ scheduleOnKeyOwner

◦ scheduleOnKeyOwnerAtFixedRate

◦ scheduleOnMember

◦ scheduleOnMemberAtFixedRate

◦ scheduleOnMembers

◦ scheduleOnMembersAtFixedRate

◦ shutdown

• READ, READ_WRITE:

◦ getAllScheduledFutures

Configuring Split-Brain Protection

Split-brain protection for Scheduled Executor Service can be configured programmatically using
the method setSplitBrainProtectionName(), or declaratively using the element split-brain-

protection-ref. Following is an example declarative configuration:

XML

<hazelcast>
 ...
 <scheduled-executor-service name="myScheduledExecSvc">
 <split-brain-protection-ref>splitbrainprotection-name</split-brain-protection-
ref>
 </scheduled-executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 scheduled-executor-service:
 myScheduledExecSvc:
 split-brain-protection-ref: splitbrainprotection-name

The value of split-brain-protection-ref should be the split-brain protection configuration name
which you configured under the split-brain-protection element as explained in the Split-Brain
Protection section.

273

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/ScheduledExecutorConfig.html

10.4. Entry Processor
Hazelcast supports entry processing. An entry processor is a function that executes your code on a
map entry in an atomic way.

An entry processor is a good option if you perform bulk processing on an IMap. Usually you perform
a loop of keys - executing IMap.get(key), mutating the value and finally putting the entry back in the
map using IMap.put(key,value). If you perform this process from a client or from a member where
the keys do not exist, you effectively perform two network hops for each update: the first to
retrieve the data and the second to update the mutated value.

If you are doing the process described above, you should consider using entry processors. An entry
processor executes a read and updates upon the member where the data resides. This eliminates
the costly network hops described above.

Entry processor is meant to process a single entry per call. Processing multiple
entries and data structures in an entry processor is not supported as it may result
in deadlocks.

Note that Hazelcast Jet is a good fit when you want to perform processing that
involves multiple entries (aggregations, joins, etc.), or involves multiple computing
steps to be made parallel. Hazelcast Jet contains an Entry Processor Sink to allow
you to update Hazelcast IMDG data as a result of your Hazelcast Jet computation.
See the Hazelcast Jet Reference Manual.

10.4.1. Performing Fast In-Memory Map Operations

An entry processor enables fast in-memory operations on your map without you having to worry
about locks or concurrency issues. You can apply it to a single map entry or to all map entries. Entry
processors support choosing target entries using predicates. You do not need any explicit lock on
entry thanks to the isolated threading model: Hazelcast runs the entry processor for all entries on a
partitionThread so there will NOT be any interleaving of the entry processor and other mutations.

Hazelcast sends the entry processor to each cluster member and these members apply it to map
entries. Therefore, if you add more members, your processing completes faster.

Using Indexes

Entry processors can be used with predicates. Predicates help to process a subset of data by
selecting eligible entries. This selection can happen either by doing a full-table scan or by using
indexes. To accelerate entry selection step, you can consider to add indexes. If indexes are there,
entry processor automatically uses them.

Using OBJECT In-Memory Format

If entry processing is the major operation for a map and if the map consists of complex objects, you
should use OBJECT as the in-memory-format to minimize serialization cost. By default, the entry value
is stored as a byte array (BINARY format). When it is stored as an object (OBJECT format), then the

274

https://docs.hazelcast.org/docs/jet/latest/manual/index.html#connector-imdg

entry processor is applied directly on the object. In that case, no serialization or deserialization is
performed. However, if there is a defined event listener, a new entry value will be serialized when
passing to the event publisher service.

 When in-memory-format is OBJECT, the old value of the updated entry will be null.

Processing Entries

The IMap interface provides the following methods for entry processing:

• executeOnKey processes an entry mapped by a key, blocking until the processing is complete and
the result is returned.

• executeOnKeys processes entries mapped by a collection of keys, blocking until the processing is
complete and the results are returned.

• submitToKey processes an entry mapped by a key and provides a way to register a callback to
receive notifications about the result of the entry processing.

• executeOnEntries processes all entries in a map, blocking until the processing is complete and
the results are returned.

• executeOnEntries also processes all entries in a map matching the provided predicate, blocking
until the processing is complete and the results are returned.

When using the executeOnEntries method, if the number of entries is high and you do not need the
results, then returning null with the process() method is a good practice. This method is offered by
the EntryProcessor interface. By returning null, results of the processing are not collected and thus
out of memory errors are eliminated.

If you do not need to read or modify the entry in any way but would like to execute a task on the
member owning the entry with that key (i.e. the member is the partition owner for that key), you
can also use executeOnKeyOwner provided by IExecutorService. You need to make sure that the
runnable can be serialized (using any of the available serialization techniques in Hazelcast). The
runnable will not receive the map entry key or value and is not running on the same thread as
operations reading the map data so operations such as map.get() or map.put() will not be blocked.

You can also use entry processors to remove entries from your map simply by setting the value(s) of
a single entry or multiple entries to null. See the following example code snippet:

class EntryDeletingProcessor implements EntryProcessor<String, MyData, Boolean> {

 public Boolean process(Map.Entry<String, MyData> entry) {
 entry.setValue(null);
 return true;
 }
}

Related to above, IMap’s executeOnEntries() method accepts predicates; you can also remove
entries that match to a predicate that you provide.

275

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/IMap.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/EntryProcessor.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/IExecutorService.html#executeOnKeyOwner-java.lang.Runnable-java.lang.Object-

Entry processors run via operation threads that are dedicated to specific
partitions. Therefore, with long running entry processor executions, other
partition operations such as map.put(key) on some partitions can be blocked while
partition operations on other partitions might run concurrently. With this in mind,
it is a good practice to make your entry processor executions as quick as possible.

Respecting Locks on Single Keys

The entry processor respects locks ONLY when its executions are performed on a single key. As
explained in the above section, the entry processor has the following methods to process a single
key:

<R> R executeOnKey(K key, EntryProcessor<K, V, R> entryProcessor);
<R> CompletionStage<R> submitToKey(K key, EntryProcessor<K, V, R> entryProcessor);

Therefore, if you want to to perform an entry processor execution on a single key using one of these
methods and that key has a lock on it, the execution will wait until the lock on that key is removed.

Processing Backup Entries

If your code modifies the data, then you will most likely need to modify backup entries as well. This
should be done to prevent divergence of map values between copies of data in the cluster (the
primary and backup replicas). In most cases, this is simple. By implementing the EntryProcessor
interface and providing only the process() method, the same entry processor will be applied on all
copies of the map entry.

If, however, you would like to run a custom processor on backup entries, you may provide the
processor by overriding the EntryProcessor#getBackupProcessor method. The method should return
an instance of an EntryProcessor which will be run on backup entries exclusively. As such, it may
carry some state that was derived from running the entry processor on primary replicas.

You may also return null from the EntryProcessor#getBackupProcessor method. This signifies that
there is nothing to be done on the backup replicas which is most convenient when you are using
the entry processor to read and not modify entries.

It is possible that an entry processor could see that a key exists though its backup
processor may not find it due to an unsent backup of a previous operation, e.g., a
previous put operation. In those situations, Hazelcast internally/eventually
synchronizes those owner and backup partitions so you do not lose any data.
When coding a backup entry processor, you should take that case into account,
otherwise NullPointerException can be seen since Map.Entry.getValue() may return
null.

10.4.2. Creating an Entry Processor

The class IncrementingEntryProcessor creates an entry processor to process the map entries. It
implements the EntryProcessor interface. The process() method will be called for both primary and

276

backup entries.

public class IncrementingEntryProcessor implements EntryProcessor<Integer, Integer,
Integer> {
 public Integer process(Map.Entry<Integer, Integer> entry) {
 Integer value = entry.getValue();
 entry.setValue(value + 1);
 return value + 1;
 }

 @Override
 public EntryProcessor<Integer, Integer, Integer> getBackupProcessor() {
 return IncrementingEntryProcessor.this;
 }
}

An example usage is shown below:

IMap<Integer, Integer> map = hazelcastInstance.getMap("myMap");
for (int i = 0; i < 100; i++) {
 map.put(i, i);
}
Map<Integer, Object> res = map.executeOnEntries(new IncrementingEntryProcessor());

You should explicitly call the setValue method of Map.Entry when modifying data in
the entry processor. Otherwise, the entry processor is accepted as read-only.

An entry processor instance is not thread-safe. If you are storing a partition
specific state between invocations, be sure to register this in a thread-local. An
entry processor instance can be used by multiple partition threads.

10.4.3. Entry Processor Performance Optimizations

By default the entry processor executes on a partition thread. A partition thread is responsible for
handling one or more partitions. The design of entry processor assumes users have fast user code
execution of the process() method. In the pathological case where the code is very heavy and
executes in multi-milliseconds, this may create a bottleneck.

We have a slow user code detector which can be used to log a warning controlled by the following
system properties:

• hazelcast.slow.operation.detector.enabled (default: true)

• hazelcast.slow.operation.detector.threshold.millis (default: 10000)

The defaults catch extremely slow operations but you should set this much lower, say to 1ms, at
development time to catch entry processors that could be problematic in production. These are
good candidates for our optimizations.

277

We have two optimizations:

• Offloadable which moves execution off the partition thread to an executor thread

• ReadOnly which means we can avoid taking a lock on the key

These are enabled very simply by implementing these interfaces in your EntryProcessor.

As of Hazelcast IMDG 3.9, these optimizations apply to the following IMap methods only:

• executeOnKey(Object, EntryProcessor)

• submitToKey(Object, EntryProcessor)

• submitToKey(Object, EntryProcessor, ExecutionCallback)

Offloadable Entry Processor

If an entry processor implements the Offloadable interface, the process() method is executed in the
executor specified by the Offloadable's getExecutorName() method.

Offloading unblocks the partition thread allowing the user to profit from much higher throughput.
The key is locked for the time span of the processing in order to not generate a write conflict.

In this case the threading looks as follows:

1. partition thread (fetch entry & lock key)

2. execution thread (process(entry) method)

3. partition thread (set new value & unlock key, or just unlock key if the entry has not been
modified)

The method getExecutorName() method may also return two constants defined in the Offloadable
interface:

• NO_OFFLOADING: Processing is not offloaded if the method getExecutorName() returns this
constant; it is executed as if it does not implement the Offloadable interface.

• OFFLOADABLE_EXECUTOR: Processing is offloaded to the default
ExecutionService.OFFLOADABLE_EXECUTOR.

Note that if the method getExecutorName() cannot find an executor whose name matches the one
called by this method, then the default executor service is used. Here is the configuration for the
"default" executor:

278

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/Offloadable.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/Offloadable.html

XML

<hazelcast>
 ...
 <executor-service name="default">
 <pool-size>16</pool-size>
 <queue-capacity>0</queue-capacity>
 </executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 executor-service:
 default:
 pool-size: 16
 queue-capacity: 0

An example of an Offloadable called "OffloadedInventoryEntryProcessor" would be as follows:

XML

<hazelcast>
 ...
 <executor-service name="OffloadedInventoryEntryProcessor”>
 <pool-size>30</pool-size>
 <queue-capacity>0</queue-capacity>
 </executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 executor-service:
 OffloadedInventoryEntryProcessor:
 pool-size: 30
 queue-capacity: 0

Remember to set the pool-size (count of executor threads per member) according to your execution
needs. See the Configuring Executor Service section for the configuration details.

ReadOnly Entry Processor

By default, an entry processor does not run if the key is locked. It waits until the key has been
unlocked (it applies to the executeOnKey, submitToKey methods, that were mentioned before).

279

If the entry processor implements the ReadOnly interface without implementing the Offloadable
interface, the processing is not offloaded to an external executor. However, the entry processor
does not observe if the key of the processed entry is locked, nor tries to acquire the lock since the
entry processor will not do any modifications.

If the entry processor implements ReadOnly and modifies the entry, an
UnsupportedOperationException is thrown.

ReadOnly and Offloadable Entry Processor

If the entry processor implements both ReadOnly and Offloadable interfaces, we observe the
combination of both optimizations described above.

The process() method is executed in the executor specified by the Offloadable’s `getExecutorName()
method. Also, the entry processor does not observe if the key of the processed entry is locked, nor
tries to acquire the lock since the entry processor will not do any modifications.

In this case the threading looks as follows:

1. partition thread (fetch entry)

2. execution thread (process(entry))

In this case the EntryProcessor.getBackupProcessor() has to return null; otherwise an
IllegalArgumentException exception is thrown.

If the entry processor implements ReadOnly and modifies the entry, an
UnsupportedOperationException is thrown.

Putting it all together:

280

public class OffloadableReadOnlyEntryProcessor implements EntryProcessor<String,
Employee, Object>,
 Offloadable, ReadOnly {

 @Override
 public Object process(Map.Entry<String, Employee> entry) {
 // heavy logic
 return null;
 }

 @Override
 public EntryProcessor<String, Employee, Object> getBackupProcessor() {
 // ReadOnly EntryProcessor has to return null, since it's just a read-only
operation that will not be
 // executed on the backup
 return null;
 }

 @Override
 public String getExecutorName() {
 return OFFLOADABLE_EXECUTOR;
 }
}

11. SQL
The SQL service provided by Hazelcast allows you to query data stored in IMap declaratively.

The SQL feature is currently in beta. The compatibility between versions is not
guaranteed. API might change between versions without notice.

11.1. Example: How to Query an IMap using SQL
Consider that we have a map called emp that contains values of type Employee:

281

public class Employee implements Serializable {
 private String name;
 private int age;

 public Employee(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }
}

The following code prints names of the employees whose age is less than 30:

try (SqlResult result = hazelcastInstance.getSql().execute("SELECT name FROM emp WHERE
age < ?", 30)) {
 for (SqlRow row : result) {
 String name = row.getObject(0);

 System.out.println(name);
 }
}

You can run the same code snippet from a member or a client.

11.2. Querying IMap
The following subsections describe how you can access Hazelcast map objects and perform queries
on them.

11.2.1. Names

The SQL service exposes IMap objects as tables in the predefined partitioned schema using exact
names. This schema is in the SQL service search path so that you can access the IMap objects with or
without the schema name.

Schema and table names are case-sensitive; you can access the employee map, for example, as
employee or partitioned.employee, but not as Employee:

282

SELECT * FROM employee
SELECT * FROM partitioned.employee

11.2.2. Fields

The SQL service resolves fields accessible from the SQL automatically. The service reads the first
local entry pair of the IMap to construct the list of fields. If the IMap does not have local entries on the
member where the query is started, then the list of fields cannot be resolved, and an exception is
thrown.

Field names are case-sensitive.

Key and Value Objects

An IMap entry consists of a key and a value. These are accessible through the __key and this aliases.
The following query returns the keys and values of all entries in a map:

SELECT __key, this FROM employee

Key and Value Fields

You may also access the nested fields of a key or a value. The list of exposed fields depends on the
serialization format, as described below:

• For Java objects (Serializable, DataSerializable, IdentifiedDataSerializable), the object is
deserialized if needed and then analyzed using the reflection mechanism. Only public fields and
getters are taken into account. A public field is exposed using its exact name. A getter is exposed
using the JavaBean naming conventions.

• For Portable objects, the fields that are written in the Portable.writePortable method are
exposed using their exact names.

• HazelcastJsonValue objects cannot be queried at the moment. This limitation will be removed in
future releases.

Consider the Employee class from the example above; the SQL service can access the following fields:

Name Type

name VARCHAR

age INTEGER

Together with the key and value objects, you may query the following fields from IMap<Long,
Employee>:

SELECT __key, this, name, age FROM employee

If both the key and value have fields with the same name, then the field of the value is exposed.

283

"SELECT *" Queries

You may use the SELECT * FROM <table> syntax to get all the table fields.

The __key and this fields are returned by the SELECT * queries if they do not have nested fields. For
IMap<Long, Employee>, the following query does not return the this field, because the value has
nested fields name and age:

-- Returns __key, name, age
SELECT * FROM employee

11.2.3. Indexes

The SQL service can use IMap indexes to speed up the execution of certain queries. SORTED and HASH
indexes are supported.

See the Indexing Queries section for more information on IMap index creation.

11.2.4. High-Density Memory Store

You can query the IMap objects with InMemoryFormat.NATIVE if they have at least one index.

See Configuring with System Properties for more information on setting system properties.

11.3. Data Types
The SQL service supports a set of SQL data types. Every data type is mapped to a Java class that
represents the type’s value.

Table 4. SQL Data Types

Type Name Java Class

BOOLEAN java.lang.Boolean

VARCHAR java.lang.String

TINYINT java.lang.Byte

SMALLINT java.lang.Short

INTEGER java.lang.Integer

BIGINT java.lang.Long

DECIMAL java.math.BigDecimal

REAL java.lang.Float

DOUBLE java.lang.Double

DATE java.time.LocalDate

TIME java.time.LocalTime

TIMESTAMP java.time.LocalDateTime

TIMESTAMP_WITH_TIME_ZONE java.time.OffsetDateTime

OBJECT Any Java class

284

11.4. SELECT

11.4.1. Synopsis

SELECT [* | expression [[AS] expression_alias] [, ...]]
FROM table_name [[AS] table_alias]
[WHERE condition]

11.4.2. Description

The SELECT command retrieves rows from a table. A row is a sequence of expressions defined after
the SELECT keyword. Expressions may have optional aliases.

table_name refers to a single IMap data structure. A table may have an optional alias.

An optional WHERE clause defines a condition, that is any expression that evaluates to a result of type
boolean. Any row that doesn’t satisfy the condition is eliminated from the result.

The following features are not supported and are planned for future releases: ORDER BY, LIMIT
/OFFSET, GROUP BY/HAVING, JOIN, set operators (UNION, INTERSECT, MINUS), subqueries.

11.5. Expressions
Hazelcast SQL supports logical predicates, IS predicates, comparison operators, mathematical
functions and operators, string functions, and special functions.

Table 5. AND/OR Operators

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

Table 6. NOT Operator

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

Table 7. IS Operator

Predicate Description Example

IS TRUE Evaluates to TRUE if the boolean argument is TRUE age < 30 IS TRUE

285

Predicate Description Example

IS NOT TRUE Evaluates to TRUE if the boolean argument is
FALSE or NULL

age < 30 IS NOT TRUE

IS FALSE Evaluates to TRUE if the boolean argument is
FALSE

age < 30 IS FALSE

IS NOT FALSE Evaluates to TRUE if the boolean argument is TRUE
or NULL

age < 30 IS NOT FALSE

IS NULL Evaluates to TRUE if the argument is NULL name IS NULL

IS NOT NULL Evaluates to TRUE if the argument is not NULL name IS NOT NULL

Table 8. Comparison Operators

Operator Description Example

= Equal to age = 30

!= or <> Not equal to age != 30 or age <> 30

< Less than age < 30

> Greater than age > 30

<= Less than or equal to age <= 30

>= Greater than or equal to age >= 30

Table 9. Mathematical Operators

Operator Description Example

+ Addition 5 + 2

- Subtraction 5 - 2

* Multiplication 5 * 2

/ Division 5 / 2

Table 10. Mathematical Functions

Function Description Example Result

ABS(number) Aboslute value of the argument ABS(-5) 5

CEIL(number) The nearest integer greater than or
equal to argument

CEIL(25.3) 26

DEGREES(double) Convert radians to degrees DEGREES(0.67) 38.38817227376516

EXP(number) Exponential EXP(2.5) 12.182493960703473

FLOOR(number) The nearest integer less than or equal
to argument

FLOOR(25.3) 25

LN(number) Natural logarithm LN(2.5) 0.9162907318741551

LOG10(number) Base 10 logarithm LOG(2.5) 0.3979400086720376

RADIANS(double) Convert degrees to radians RADIANS(38.39) 0.6700318998406232

RAND Random value in the range [0.0; 1.0) RAND() 0.6324099982812553

286

Function Description Example Result

RAND(number) Random value in the range [0.0; 1.0)
using the given seed

RAND(10) 0.7304302967434272

ROUND(number) Round to an integer ROUND(34.5678) 35

ROUND(number, s
integer)

Round to s decimal places ROUND(34.5678, 2) 34.57

SIGN(number) Return -1, 0 or 1 for negative, zero or
positive argument, respectively

SIGN(-25) -1

TRUNCATE(number) Truncate to an integer TRUNC(34.5678) 34

TRUNCATE(number, s
integer)

Truncate to s decimal places TRUNC(34.5678, 2) 34.56

Table 11. Trigonometric Functions

Function Description

ACOS(double) Inverse cosine

ASIN(double) Inverse sine

ATAN(double) Inverse tangent

COS(double) Cosine

COT(double) Cotangent

SIN(double) Sine

TAN(double) Tangent

Table 12. String Functions

Function Description Example Result

string || string Concatenate two strings 'John' || ' ' ||
'Doe'

John Doe

ASCII(string) ASCII code of the first character of the
argument

ASCII('a') 97

BTRIM(string) Equivalent to TRIM(BOTH ' ' FROM
string)

INITCAP(string) Convert the first letter of each word to
upper case, and the rest to lower case

INITCAP('john
DOE')

John Doe

LENGTH(string) Length of the string LENGTH('John Doe') 8

LIKE Return TRUE if the value string follows
the pattern

'John Doe' LIKE
'%Doe'

TRUE

LIKE … ESCAPE Return TRUE if the value string follows
the pattern, escaping a special
character in the pattern

'text' LIKE
'!_ext' ESCAPE '!'

FALSE

LOWER(string) Convert the string to lower case LOWER('John Doe') john doe

LTRIM(string) Equivalent to TRIM(LEADING ' ' FROM
string)

RTRIM(string) Equivalent to TRIM(TRAILING ' ' FROM
string)

287

Function Description Example Result

SUBSTRING(string
FROM integer)

Extract substring starting with the
given position

SUBSTRING('John
Doe' FROM 6)

Doe

SUBSTRING(string
FROM integer FOR
integer)

Extract substring starting with the
given position for the given length

SUBSTRING('John
Doe' FROM 1 FOR 4)

John

TRIM([LEADING|TRAI
LING|BOTH]
[characters FROM]
string)

Remove characters (a space by
default) from the start/end/both ends
of the string

TRIM(BOTH '[]'
FROM '[John Doe]')

John Doe

TRIM(characters
FROM string)

Equivalent to TRIM(BOTH characters
FROM string)

TRIM('[]' FROM
'[John Doe]')

John Doe

TRIM(string) Equivalent to TRIM(BOTH ' ' FROM
string)

TRIM(' John Doe ') John Doe

UPPER(string) Convert the string to upper case UPPER('John Doe') JOHN DOE

Table 13. Special Functions

Function Description Example

CAST(value AS type) Convert the value to the given type CAST(age AS VARCHAR)

11.6. Lite Members
You cannot start SQL queries on lite members. This limitation will be removed in future releases.

11.7. How Distributed SQL Works
When an SQL statement is submitted for execution, the SQL service parses and optimizes it using
Apache Calcite. The result is an executable plan that is cached and reused by subsequent executions
of the same statement.

The plan contains a tree of query fragments. A query fragment is a tree of operators that could be
executed on a single member independently. Child fragments supply data to parent fragments,
possibly over a network, until the root fragment is reached. The root fragment returns the query
results.

11.8. SQL on Data Structures Backed by High-Density
Memory Store
If you configure the IMap data structure to use High-Density Memory Store, you have to create at
least one global High-Density Memory Store index to run an SQL statement. This limitation comes
from the fact that off-heap IMap data structure is not thread-safe, and we use thread-safe concurrent
indexes based on the B+ Tree implementation to run IMaps scan operators.

288

12. Distributed Query
Distributed queries access data from multiple data sources stored on either the same or different
members.

Hazelcast partitions your data and spreads it across cluster of members. You can iterate over the
map entries and look for certain entries (specified by predicates) you are interested in. However,
this is not very efficient because you have to bring the entire entry set and iterate locally. Instead,
Hazelcast allows you to run distributed queries on your distributed map.

12.1. How Distributed Query Works
1. The requested predicate is sent to each member in the cluster.

2. Each member looks at its own local entries and filters them according to the predicate. At this
stage, key/value pairs of the entries are deserialized and then passed to the predicate.

3. The predicate requester merges all the results coming from each member into a single set.

Distributed query is highly scalable. If you add new members to the cluster, the partition count for
each member is reduced and thus the time spent by each member on iterating its entries is
reduced. In addition, the pool of partition threads evaluates the entries concurrently in each
member and the network traffic is also reduced since only filtered data is sent to the requester.

Hazelcast offers the following APIs for distributed query purposes:

• Criteria API

• Distributed SQL Query

12.1.1. Employee Map Query Example

Assume that you have an "employee" map containing values of Employee objects, as coded below.

289

public class Employee implements Serializable {
 private String name;
 private int age;
 private boolean active;
 private double salary;

 public Employee(String name, int age, boolean active, double salary) {
 this.name = name;
 this.age = age;
 this.active = active;
 this.salary = salary;
 }

 public Employee() {
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 public double getSalary() {
 return salary;
 }

 public boolean isActive() {
 return active;
 }
}

Now let’s look for the employees who are active and have an age less than 30 using the
aforementioned APIs (Criteria API and Distributed SQL Query). The following subsections describe
each query mechanism for this example.

When using Portable objects, if one field of an object exists on one member but
does not exist on another one, Hazelcast does not throw an unknown field
exception. Instead, Hazelcast treats that predicate, which tries to perform a query
on an unknown field, as an always false predicate.

12.1.2. Querying with Criteria API

Criteria API is a programming interface offered by Hazelcast that is similar to the Java Persistence
Query Language (JPQL). Below is the code for the above example query.

290

IMap<String, Employee> map = hazelcastInstance.getMap("employee");

EntryObject e = Predicates.newPredicateBuilder().getEntryObject();
Predicate predicate = e.is("active").and(e.get("age").lessThan(30));

Collection<Employee> employees = map.values(predicate);

In the above example code, predicate verifies whether the entry is active and its age value is less
than 30. This predicate is applied to the employee map using the map.values(predicate) method. This
method sends the predicate to all cluster members and merges the results coming from them. Since
the predicate is communicated between the members, it needs to be serializable.

Predicates can also be applied to keySet, entrySet and localKeySet of the Hazelcast
distributed map.

Predicates Class Operators

The Predicates class includes many operators for your query requirements. The following are
descriptions for some of them:

• equal: Checks if the result of an expression is equal to a given value.

• notEqual: Checks if the result of an expression is not equal to a given value.

• instanceOf: Checks if the result of an expression has a certain type.

• like: Checks if the result of an expression matches some string pattern. % (percentage sign) is
the placeholder for many characters, (underscore) is placeholder for only one character.

• ilike: A case-insensitive variant of like.

• greaterThan: Checks if the result of an expression is greater than a certain value.

• greaterEqual: Checks if the result of an expression is greater than or equal to a certain value.

• lessThan: Checks if the result of an expression is less than a certain value.

• lessEqual: Checks if the result of an expression is less than or equal to a certain value.

• between: Checks if the result of an expression is between two values (this is inclusive).

• in: Checks if the result of an expression is an element of a certain collection.

• isNot: Checks if the result of an expression is false.

• regex: Checks if the result of an expression matches some regular expression.

• alwaysTrue: The result of an expression always matches.

• alwaysFalse: The result of an expression ever matches.

 See the Predicates Javadoc for all predicates provided.

Combining Predicates with AND, OR, NOT

You can combine predicates using the and, or and not operators, as shown in the below examples.

291

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/Predicates.html

public Collection<Employee> getWithNameAndAge(String name, int age) {
 Predicate namePredicate = Predicates.equal("name", name);
 Predicate agePredicate = Predicates.equal("age", age);
 Predicate predicate = Predicates.and(namePredicate, agePredicate);
 return employeeMap.values(predicate);
}

public Collection<Employee> getWithNameOrAge(String name, int age) {
 Predicate namePredicate = Predicates.equal("name", name);
 Predicate agePredicate = Predicates.equal("age", age);
 Predicate predicate = Predicates.or(namePredicate, agePredicate);
 return employeeMap.values(predicate);
}

public Collection<Employee> getNotWithName(String name) {
 Predicate namePredicate = Predicates.equal("name", name);
 Predicate predicate = Predicates.not(namePredicate);
 return employeeMap.values(predicate);
}

Simplifying with PredicateBuilder

You can simplify predicate usage with the PredicateBuilder interface, which offers simpler
predicate building. See the below example code which selects all people with a certain name and
age.

public Collection<Employee> getWithNameAndAgeSimplified(String name, int age) {
 EntryObject e = Predicates.newPredicateBuilder().getEntryObject();
 Predicate agePredicate = e.get("age").equal(age);
 Predicate predicate = e.get("name").equal(name).and(agePredicate);
 return employeeMap.values(predicate);
}

12.1.3. Querying with SQL

Predicates.sql() takes the regular SQL where clause. Here is an example:

IMap<String, Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(Predicates.sql("active AND age < 30"));

Hazelcast offers an SQL service that allows to execute SQL queries, as opposed to
SQL-like predicates in case of Predicates.sql(). See the SQL chapter for more
information.

292

Supported SQL Syntax

AND/OR: `<expression> AND <expression> AND <expression>… `

• active AND age>30

• active=false OR age = 45 OR name = 'Joe'

• active AND (age > 20 OR salary < 60000)

Equality: =, !=, <, ⇐, >, >=

• <expression> = value

• age ⇐ 30

• name = 'Joe'

• salary != 50000

BETWEEN: <attribute> [NOT] BETWEEN <value1> AND <value2>

• age BETWEEN 20 AND 33 (same as age >= 20 AND age ⇐ 33)

• age NOT BETWEEN 30 AND 40 (same as age < 30 OR age > 40)

IN: <attribute> [NOT] IN (val1, val2,…)

• age IN (20, 30, 40)

• age NOT IN (60, 70)

• active AND (salary >= 50000 OR (age NOT BETWEEN 20 AND 30))

• age IN (20, 30, 40) AND salary BETWEEN (50000, 80000)

LIKE: <attribute> [NOT] LIKE "expression"

The % (percentage sign) is placeholder for multiple characters, an _ (underscore) is placeholder for
only one character.

• name LIKE 'Jo%' (true for 'Joe', 'Josh', 'Joseph' etc.)

• name LIKE 'Jo_' (true for 'Joe'; false for 'Josh')

• name NOT LIKE 'Jo_' (true for 'Josh'; false for 'Joe')

• name LIKE 'J_s%' (true for 'Josh', 'Joseph'; false 'John', 'Joe')

ILIKE: <attribute> [NOT] ILIKE 'expression'

Similar to LIKE predicate but in a case-insensitive manner.

• name ILIKE 'Jo%' (true for 'Joe', 'joe', 'jOe','Josh','joSH', etc.)

• name ILIKE 'Jo_' (true for 'Joe' or 'jOE'; false for 'Josh')

REGEX: <attribute> [NOT] REGEX 'expression'

• name REGEX 'abc-.*' (true for 'abc-123'; false for 'abx-123')

293

You can escape the % and _ placeholder characters in your SQL queries with
predicates using the backslash (\) character. The apostrophe (') can be escaped
with another apostrophe, i.e., ''. If you use REGEX, you need to escape characters
according to the normal Java escape syntax; see here for the details.

Querying Entry Keys with Predicates

You can use __key attribute to perform a predicated search for entry keys. See the following
example:

IMap<String, Person> personMap = hazelcastInstance.getMap(persons);
personMap.put("Alice", new Person("Alice", 35, Gender.FEMALE));
personMap.put("Andy", new Person("Andy", 37, Gender.MALE));
personMap.put("Bob", new Person("Bob", 22, Gender.MALE));
[...]
Predicate predicate = Predicates.sql("__key like A%");
Collection<Person> startingWithA = personMap.values(predicate);

In this example, the code creates a collection with the entries whose keys start with the letter "A”.

12.1.4. Querying JSON Strings

You can query JSON strings stored inside your Hazelcast clusters. To query a JSON string, you first
need to create a HazelcastJsonValue from the JSON string. You can use HazelcastJsonValues both as
keys and values in the distributed data structures. Then, it is possible to query these objects using
the Hazelcast query methods explained in this section.

String person1 = "{ \"name\": \"John\", \"age\": 35 }";
String person2 = "{ \"name\": \"Jane\", \"age\": 24 }";
String person3 = "{ \"name\": \"Trey\", \"age\": 17 }";

IMap<Integer, HazelcastJsonValue> idPersonMap = instance.getMap("jsonValues");

idPersonMap.put(1, new HazelcastJsonValue(person1));
idPersonMap.put(2, new HazelcastJsonValue(person2));
idPersonMap.put(3, new HazelcastJsonValue(person3));

Collection<HazelcastJsonValue> peopleUnder21 = idPersonMap.values(Predicates.lessThan
("age", 21));

When running the queries, Hazelcast treats values extracted from the JSON documents as Java
types so they can be compared with the query attribute. JSON specification defines five primitive
types to be used in the JSON documents: number,string, true, false and null. The string, true/false
and null types are treated as String, boolean and null, respectively. We treat the extracted number
values as longs if they can be represented by a long. Otherwise, numbers are treated as doubles.

It is possible to query nested attributes and arrays in JSON documents. The query syntax is the

294

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

same as querying other Hazelcast objects as explained in the Querying in Collections and Arrays
section.

/**
 * Sample JSON object
 *
 * {
 * "departmentId": 1,
 * "room": "alpha",
 * "people": [
 * {
 * "name": "Peter",
 * "age": 26,
 * "salary": 50000
 * },
 * {
 * "name": "Jonah",
 * "age": 50,
 * "salary": 140000
 * }
 *]
 * }
 *
 *
 * The following query finds all the departments that have a person named "Peter"
working in them.
 */
Collection<HazelcastJsonValue> departmentWithPeter = departments.values(Predicates
.equal("people[any].name", "Peter"));

HazelcastJsonValue is a lightweight wrapper around your JSON strings. It is used merely as a way to
indicate that the contained string should be treated as a valid JSON value. Hazelcast does not check
the validity of JSON strings put into to maps. Putting an invalid JSON string in a map is permissible.
However, in that case whether such an entry is going to be returned or not from a query is not
defined.

Metadata Creation for JSON Querying

Hazelcast stores a metadata object per HazelcastJsonValue stored. This metadata object is created
every time a HazelcastJsonValue is put into an IMap. Metadata is later used to speed up the query
operations. Metadata creation is on by default. Depending on your application’s needs, you may
want to turn off the metadata creation to decrease the put latency and increase the throughput. You
can configure this using Metadata Policy.

JSON metadata is stored on-heap even when you use the NATIVE in-memory format.
If you are storing HazelcastJsonValues in your NATIVE maps, there is a certain
amount of on-heap cost per object. Metadata is not created unless you put
HazelcastJsonValues in your NATIVE maps even when metadata creation is on.

295

12.1.5. Filtering with Paging Predicates

Hazelcast provides paging for defined predicates. With its PagingPredicate interface, you can get a
collection of keys, values, or entries page by page by filtering them with predicates and giving the
size of the pages. Also, you can sort the entries by specifying comparators. In this case, the
comparator should be Serializable and the serialization factory implementations you use, e.g.,
PortableFactory and DataSerializableFactory, should be registered. See the Serialization chapter on
how to register these factories.

Paging predicates require the objects to be deserialized both on the calling side (either a member or
client) and the member side from which the collection is retrieved. Therefore, you need to register
the serialization factories you use on all the members and clients on which the paging predicates
are used. See the Serialization chapter on how to register these factories.

In the example code below:

• The greaterEqual predicate gets values from the "students" map. This predicate has a filter to
retrieve the objects with an "age" greater than or equal to 18.

• Then a PagingPredicate is constructed in which the page size is 5, so that there are five objects in
each page. The first time the values are called creates the first page.

• It gets subsequent pages with the nextPage() method of PagingPredicate and querying the map
again with the updated PagingPredicate.

IMap<Integer, Student> map = hazelcastInstance.getMap("students");
Predicate greaterEqual = Predicates.greaterEqual("age", 18);
PagingPredicate pagingPredicate = Predicates.pagingPredicate(greaterEqual, 5);
// Retrieve the first page
Collection<Student> values = map.values(pagingPredicate);
...
// Set up next page
pagingPredicate.nextPage();
// Retrieve next page
values = map.values(pagingPredicate);
...

If a comparator is not specified for PagingPredicate, but you want to get a collection of keys or
values page by page, this collection must be an instance of Comparable (i.e., it must implement
java.lang.Comparable). Otherwise, the java.lang.IllegalArgument exception is thrown.

You can also access a specific page more easily with the help of the setPage() method. This way, if
you make a query for the hundredth page, for example, it gets all 100 pages at once instead of
reaching the hundredth page one by one using the nextPage() method. Note that this feature tires
the memory and see the PagingPredicate Javadoc.

Paging Predicate, also known as Order & Limit, is not supported in Transactional Context.

296

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/PagingPredicate.html

12.1.6. Filtering with Partition Predicate

You can run queries on a single partition in your cluster using the partition predicate
(PartitionPredicate).

The Predicates.partitionPredicate() method takes a predicate and partition key as parameters,
gets the partition ID using the key and runs that predicate only on the partition where that key
belongs.

See the following code snippet:

...
Predicate predicate = Predicates.partitionPredicate(partitionKey, Predicates
.alwaysTrue());

Collection<Integer> values = map.values(predicate);
Collection<String> keys = map.keySet(predicate);
...

By default there are 271 partitions, and using a regular predicate, each partition needs to be
accessed. However, if the partition predicate only accesses a single partition, this can lead to a big
performance gain.

For the partition predicate to work correctly, you need to know which partition your data belongs
to so that you can send the request to the correct partition. One of the ways of doing it is to make
use of the PartitionAware interface when data is inserted, thereby controlling the owning partition.
See the PartitionAware section for more information and examples.

A concrete example may be a web shop that sells phones and accessories. To find all the accessories
of a phone, a query could be executed that selects all accessories for that phone. This query is
executed on all members in the cluster and therefore could generate quite a lot of load. However, if
we would store the accessories in the same partition as the phone, the partition predicate could use
the partitionKey of the phone to select the right partition and then it queries for the accessories for
that phone; and this reduces the load on the system and get faster query results.

12.1.7. Indexing Queries

Hazelcast distributed queries run on each member in parallel and return only the results to the
caller. Then, on the caller side, the results are merged.

When a query runs on a member, Hazelcast iterates through all the owned entries and finds the
matching ones. This can be made faster by indexing the most-queried fields, just like you would do
for your database. Indexing adds overhead for each write operation but reading will be a lot faster.
If you query your map a lot, make sure to add indexes for the most frequently queried fields. For
example, if you do active AND age < 30 query, make sure you add an index for the active and age
fields. The following example code does that by getting the map from the Hazelcast instance and
adding indexes to the map with the IMap addIndex method.

297

IMap map = hazelcastInstance.getMap("employees");
// ordered, since we have ranged queries for this field
map.addIndex(new IndexConfig(IndexType.SORTED, "age"));
// not ordered, because boolean field cannot have range
map.addIndex(new IndexConfig(IndexType.HASH, "active"));

Note that creating indexes once is sufficient. Subsequent write operations on the map are reflected
in the index automatically. So, although it is safe to call the addIndex() method repeatedly, there will
be a performance penalty due to the redundant index creation.

When you call, for example, map.addIndex("fieldName", true), each partition iterates over its
records and adds each entry to the index. The previously created index entry will be recreated and
replaced with the new entry. The performance penalty will be proportional to the number of
entries. If you have maps with a large number of entries, then synchronizing index addition
process is recommended.

Other than using the addIndex() method, you can define your index declaratively or
programmatically as described in the Configuring IMap Indexes section.

Indexing Ranged Queries

IMap.addIndex(IndexConfig) is used for adding index. For each indexed field, if you have ranged
queries such as age>30, age BETWEEN 40 AND 60, then use IndexType.SORTED index Otherwise, use
IndexType.HASH.

Configuring IMap Indexes

Also, you can define IMap indexes in configuration. An example is shown below.

XML

<hazelcast>
 ...
 <map name="default">
 <indexes>
 <index type="HASH">
 <attributes>
 <attribute>name</attribute>
 </attributes>
 </index>
 <index>
 <attributes>
 <attribute>age</attribute>
 </attributes>
 </index>
 </indexes>
 </map>
 ...
</hazelcast>

298

YAML

hazelcast:
 map:
 default:
 indexes:
 - type: HASH
 attributes:
 - "name"
 - attributes:
 - "age"

Spring

<hz:map name="default">
 <hz:indexes>
 <hz:index type="HASH">
 <hz:attributes>
 <hz:attribute>name</hz:attribute>
 </hz:attributes>
 </hz:index>
 <hz:index>
 <hz:attributes>
 <hz:attribute>age</hz:attribute>
 </hz:attributes>
 </hz:index>
 </hz:indexes>
</hz:map>

You can also define IMap indexes using programmatic configuration, as in the example below.

mapConfig.addIndexConfig(new IndexConfig(IndexType.HASH, "name"));
mapConfig.addIndexConfig(new IndexConfig(IndexType.SORTED, "age"));

The following is the Spring declarative configuration for the same example.

 Non-primitive types to be indexed should implement Comparable.

If you configure the data structure to use High-Density Memory Store and indexes,
the indexes are automatically stored in the High-Density Memory Store as well.
This prevents from running into full garbage collections when doing a lot of
updates to index.

Global and Partitioned Indexes

The on-heap indexes are always global, i.e., one index covers all IMaps entries stored on the
partitions owned by a cluster member. Such indexes are beneficial for lookup and range queries

299

because only one lookup operation is needed to execute a query. A drawback of global indexes is a
potentially high contention on the index concurrent data structure that might cause performance
degradation.

High-Density Memory Store supports partitioned indexes. Each partition owned by a cluster
member has its own index. All operations on the partitioned index are performed on the
partitioned thread, thus eliminating the contention issue of the global indexes. However, lookup
and range queries have to perform lookup operations on every partition and combine the results.
Normally, these partition and combine executions yield poorer performance results compared to
the global indexes.

Global concurrent indexes (based on our own off-heap B+ Tree implementation) bring all the
benefits of global indexes to IMap backed by High-Density Memory Store.

The global High-Density Memory Store indexes are enabled by default and controlled by the
hazelcast.hd.global.index.enabled property. You can disable these indexes by setting this property
to false.

Composite Indexes

Composite indexes, also known as compound indexes, are special kind of indexes that are built on
top of the multiple map entry attributes and therefore may be used to significantly speed up the
queries involving those attributes simultaneously.

There are two distinct composite index types used for two different purposes: unordered composite
indexes and ordered ones.

Unordered Composite Indexes

The unordered indexes are used to perform equality queries, also known as the point queries, e.g.,
name = 'Alice'. These are specifically optimized for equality queries and don’t support other
comparison operators like > or <=.

Additionally, the composite unordered indexes allow speeding up the equality queries involving
multiple attributes simultaneously, e.g., name = 'Alice' and age = 33. This example query results in
a single composite index lookup operation which can be performed very efficiently.

The unordered composite index on the name and age attributes may be configured for a map as
follows:

300

XML

<hazelcast>
 ...
 <map name="persons">
 <indexes>
 <index type="HASH">
 <attributes>
 <attribute>name</attribute>
 <attribute>age</attribute>
 </attributes>
 </index>
 </indexes>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 default:
 - type: HASH
 attributes:
 - "name"
 - "age"

The attributes indexed by the unordered composite indexes can’t be matched partially: the name =
'Alice' query can’t utilize the composite index configured above.

Ordered Composite Indexes

The ordered indexes are specifically designed to perform efficient order comparison queries, also
known as the range queries, e.g., age > 33. The equality queries, like age = 33, are still supported by
the ordered indexes, but they are handled in a slightly less efficient manner comparing to the
unordered indexes.

The composite ordered indexes extend the concept by allowing multiple equality predicates and a
single order comparison predicate to be combined into a single index query operation. For
instance, the name = 'Alice' and age > 33 and name = 'Bob' and age = 33 and balance > 0.0 queries
are good candidates to be covered by an ordered composite index configured as follows:

301

XML

<hazelcast>
 ...
 <map name="persons">
 <indexes>
 <index>
 <attributes>
 <attribute>name</attribute>
 <attribute>age</attribute>
 <attribute>balance</attribute>
 </attributes>
 </index>
 </indexes>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 persons:
 indexes:
 - attributes:
 - "name"
 - "age"
 - "balance"

Unlike the unordered composite indexes, partial attribute prefixes may be matched for the ordered
composite indexes. In general, a valid non-empty attribute prefix is formed as a sequence of zero or
more equality predicates followed by a zero or exactly one order comparison predicate. Given the
index definition above, the following queries may be served by the index: name = 'Alice', name >
'Alice', name = 'Alice' and age > 33, name = 'Alice' and age = 33 and balance = 5.0. The
following queries can’t be served the index: age = 33, age > 33 and balance = 0.0, balance > 0.0.

While matching the ordered composite indexes, multiple order comparison predicates acting on the
same attribute are treated as a single range predicate acting on that attribute. Given the index
definition above, the following queries may be served by the index: name > 'Alice' and name <
'Bob', name = 'Alice' and age > 33 and age < 55, name = 'Alice' and age = 33 and balance > 0.0
and balance < 100.0.

Composite Index Matching and Selection

The order of attributes involved in a query plays no role in the selection of the matching composite
index: name = 'Alice' and age = 33 and age = 33 and name = 'Alice' queries are equivalent from
the point of view of the index matching procedure.

The attributes involved in a query can be matched partially by the composite index matcher: name =

302

'Alice' and age = 33 and balance > 0.0 can be partially matched by the name, age composite index,
the name = 'Alice' and age = 33 predicates are served by the matched index, while the balance >
0.0 predicate is processed by other means.

Bitmap Indexes

Bitmap indexes provide capabilities similar to unordered/hash indexes. The same set of predicates
is supported:

• equal

• notEqual

• in,

• and

• or

• not

But, unlike hash indexes, bitmap indexes are able to achieve a much higher memory efficiency for
low cardinality attributes at the cost of reduced query performance. In practice, the query
performance is comparable to the performance of hash indexes, while memory footprint reduction
is high, usually around an order of magnitude.

Bitmap indexes are specifically designed for indexing of collection and array attributes since a
single IMap entry produces many index entries in that case. A single hash index entry costs a few
tens of bytes, while a single bitmap index entry usually costs just a few bytes.

It’s also possible to improve the memory footprint while indexing regular single-value attributes,
but the improvement is usually minor, depending on the data layout and total number of indexes.

Currently, bitmap indexes are not supported by off-heap High-Density Memory
Stores (HD).

Configuring Bitmap Indexes

In the simplest form, bitmap index for an IMap entry attribute can be declaratively configured as
follows:

303

XML

<hazelcast>
 ...
 <map name="persons">
 <indexes>
 <index type="BITMAP">
 <attributes>
 <attribute>age</attribute>
 </attributes>
 </index>
 </indexes>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 persons:
 indexes:
 - type: BITMAP
 attributes:
 - "age"

Internally, a unique non-negative long ID is assigned to every indexed IMap entry based on the entry
key. That unique ID is required for bitmap indexes to distinguish one indexed IMap entry from
another.

The mapping between IMap entries and long IDs is not free and its performance and memory
footprint can be improved in certain cases. For instance, if IMap entries already have a unique
integer-valued attribute, the attribute values can be used as unique long IDs directly without any
additional transformations. That can be configured as follows:

XML

<index type="BITMAP">
 <attributes>
 <attribute>age</attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key>uniqueId</unique-key>
 <unique-key-transformation>RAW</unique-key-transformation>
 </bitmap-index-options>
</index>

304

YAML

indexes:
 - type: BITMAP
 attributes:
 - "age"
 bitmap-index-options:
 unique-key: uniqueId
 unique-key-transformation: RAW

The index definition above instructs Hazelcast to create a bitmap index on the age attribute, extract
the unique key values from uniqueId attribute and use the raw (RAW) extracted values directly as
long IDs. If the extracted unique key value is not of long type, the widening conversion is performed
for the following types: byte, short and int; boxed variants are also supported.

In certain cases, the extracted raw IDs might be randomly distributed. This causes increased
memory usage in bitmap indexes since the best case scenario for them is sequential contiguous IDs.
That can be countered by applying the renumbering technique:

XML

<index type="BITMAP">
 <attributes>
 <attribute>age</attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key>uniqueId</unique-key>
 <unique-key-transformation>LONG</unique-key-transformation>
 </bitmap-index-options>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - "age"
 bitmap-index-options:
 unique-key: uniqueId
 unique-key-transformation: LONG

The index definition above instructs the bitmap index to extract the unique keys from uniqueId
attribute, convert every extracted non-negative value to long (LONG) and assign an internal
sequential unique long ID based on that extracted and then converted unique value. The widening
conversion is applied to the extracted values, if necessary.

This long-to-long mapping is performed more efficiently than the general object-to-long mapping
done for the simple index definitions. Basically, the following simple bitmap index definition:

305

XML

<index type="BITMAP">
 <attributes>
 <attribute>age</attribute>
 </attributes>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - "age"

is equivalent to the following full-form definition:

XML

<index type="BITMAP">
 <attributes>
 <attribute>age</attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key>__key</unique-key>
 <unique-key-transformation>OBJECT</unique-key-transformation>
 </bitmap-index-options>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - "age"
 bitmap-index-options:
 unique-key: __key
 unique-key-transformation: OBJECT

Which indexes age attribute, uses IMap entry keys (__key) interpreted as Java objects (OBJECT) to
assign internal unique long IDs.

The full-form definition syntax is defined as follows:

306

XML

<index type="BITMAP">
 <attributes>
 <attribute><attr></attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key><key></unique-key>
 <unique-key-transformation><transformation></unique-key-transformation>
 </bitmap-index-options>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - <attribute>
 bitmap-index-options:
 unique-key: <key>
 unique-key-transformation: <transformation>

The following are the parameter descriptions:

• <attr>: Specifies the attribute index.

• <key>: Specifies the attribute to use as a unique key source for internal unique long ID
assignment.

• <transformation>: Specifies the transformation to be applied to unique keys to generate unique
long IDs from them. The following transformations are supported:

◦ OBJECT: Object-to-long transformation. Each extracted unique key value is interpreted as a
Java object instance. Internally, an object-to-long hash table is used to establish the mapping
from unique keys to unique IDs. Good as a general-purpose transformation.

◦ LONG: Long-to-long transformation. Each extracted unique key value is interpreted as a non-
negative long value, the widening conversion from byte, short and int is performed, if
necessary. Internally, a long-to-long hash table is used to establish the mapping from unique
keys to unique IDs, which is more efficient than the object-to-long hash table. It is good for
sparse/random unique integer-valued keys renumbering to raise the IDs density and to
make the bitmap index more memory-efficient as a result.

◦ RAW: Raw transformation. Each extracted unique key value is interpreted as a non-negative
long value, the widening conversion from byte, short and int is performed, if necessary.
Internally, no hash table of any kind is used to establish the mapping from unique keys to
unique IDs, the raw extracted keys are used directly as IDs. It is good for dense unique
integer-valued keys, and it has the best performance in terms of time and memory.

The regular dotted attribute path syntax is supported for <attr> and <key>:

307

XML

<index type="BITMAP">
 <attributes>
 <attribute>name.first</attribute>
 </attributes>
</index>
<index type="BITMAP">
 <attributes>
 <attribute>name.first</attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key>__key.id</unique-key>
 </bitmap-index-options>
</index>
<index type="BITMAP">
 <attributes>
 <attribute>name.first</attribute>
 </attributes>
 <bitmap-index-options>
 <unique-key>id.external</unique-key>
 </bitmap-index-options>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - name.first
 - type: BITMAP
 attributes:
 - name.first
 bitmap-index-options:
 unique-key: __key.id
 - type: BITMAP
 attributes:
 - name.first
 bitmap-index-options:
 unique-key: id.external

Collection and array indexing is also possible using the regular syntax:

308

XML

<index type="BITMAP">
 <attributes>
 <attribute>habits[any]</attribute>
 </attributes>
</index>
<index type="BITMAP">
 <attributes>
 <attribute>habits[0]</attribute>
 </attributes>
</index>

YAML

indexes:
 - type: BITMAP
 attributes:
 - habits[any]
 - type: BITMAP
 attributes:
 - habits[0]

See Indexing in Collections and Arrays section for more details.

Bitmap Index Querying

Bitmap index matching and selection for queries are performed automatically. No special treatment
is required. The querying can be performed using the regular IMap querying methods:
IMap.values(Predicate), IMap.entrySet(Predicate), etc.

Copying Indexes

The underlying data structures used by the indexes need to copy the query results to make sure
that the results are correct. This copying process is performed either when reading the index from
the data structure (on-read) or writing to it (on-write).

On-read copying means that, for each index-read operation, the result of the query is copied before
it is sent to the caller. Depending on the query result’s size, this type of index copying may be
slower since the result is stored in a map, i.e., all entries need to have the hash calculated before
being stored. Unlike the index-read operations, each index-write operation is fast, since there is no
copying. So, this option can be preferred in index-write intensive cases.

On-write copying means that each index-write operation completely copies the underlying map to
provide the copy-on-write semantics and this may be a slow operation depending on the index size.
Unlike index-write operations, each index-read operation is fast since the operation only includes
accessing the map that stores the results and returning them to the caller.

Another option is never copying the results of a query to a separate map. This means the results
backed by the underlying index-map can change after the query has been executed (such as an

309

entry might have been added or removed from an index, or it might have been remapped). This
option can be preferred if you expect "mostly correct" results, i.e., if it is not a problem when some
entries returned in the query result set do not match the initial query criteria. This is the fastest
option since there is no copying.

You can set one these options using the system property hazelcast.index.copy.behavior. The
following values, which are explained in the above paragraphs, can be set:

• COPY_ON_READ (the default value)

• COPY_ON_WRITE

• NEVER

Usage of this system property is supported for BINARY and OBJECT in-memory
formats. Only in Hazelcast 3.8.7, it is also supported for NATIVE in-memory format.

Indexing Attributes with ValueExtractor

You can also define custom attributes that may be referenced in predicates, queries and indexes.
Custom attributes can be defined by implementing a ValueExtractor. See the Custom Attributes
section for details.

Using "this" as an Attribute

You can use the keyword this as an attribute name while adding an index or creating a predicate. A
basic usage is shown below.

map.addIndex(new IndexConfig(IndexType.SORTED, "this"));
Predicate<Integer, Integer> lessEqual = Predicates.between("this", 12, 20);

Another basic example using SQL predicate is shown below.

Predicates.sql("this = 'jones'")
Predicates.sql("this.age > 33")

The special attribute this acts on the value of a map entry. Typically, you do not need to specify it
while accessing a property of an entry’s value, since its presence is implicitly assumed if the special
attribute __key is not specified.

12.1.8. Configuring Query Thread Pool

You can change the size of thread pool dedicated to query operations using the pool-size property.
Each query consumes a single thread from a Generic Operations ThreadPool on each Hazelcast
member - let’s call it the query-orchestrating thread. That thread is blocked throughout the whole
execution-span of a query on the member.

The query-orchestrating thread uses the threads from the query-thread pool in the following cases:

310

• if you run a PagingPredicate (since each page runs as a separate task)

• if you set the system property hazelcast.query.predicate.parallel.evaluation to true (since the
predicates are evaluated in parallel)

See the Filtering with Paging Predicates section and System Properties appendix for information on
paging predicates and for description of the above system property.

Below is an example of that declarative configuration.

XML

<hazelcast>
 ...
 <executor-service name="hz:query">
 <pool-size>100</pool-size>
 </executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 executor-service:
 "hz:query":
 pool-size: 100

Below is the equivalent programmatic configuration.

Config cfg = new Config();
cfg.getExecutorConfig("hz:query").setPoolSize(100);

Query Requests from Clients

When dealing with the query requests coming from the clients to your members, Hazelcast offers
the following system properties to tune your thread pools:

• hazelcast.clientengine.thread.count which is the number of threads to process non-partition-
aware client requests, like map.size() and executor tasks. Its default value is the number of
cores multiplied by 20.

• hazelcast.clientengine.query.thread.count which is the number of threads to process query
requests coming from the clients. Its default value is the number of cores.

If there are a lot of query request from the clients, you may want to increase the value of
hazelcast.clientengine.query.thread.count. In addition to this tuning, you may also consider
increasing the value of hazelcast.clientengine.thread.count if the CPU load in your system is not
high and there is plenty of free memory.

311

12.2. Querying in Collections and Arrays
Hazelcast allows querying in collections and arrays. Querying in collections and arrays is
compatible with all Hazelcast serialization methods, including the Portable serialization.

Let’s have a look at the following data structure expressed in pseudo-code:

class Motorbike {
 Wheel[] wheels;
}

class Wheel {
 String name;

}

In order to query a single element of a collection/array, you can execute the following query:

// it matches all motorbikes where the zero wheel's name is 'front-wheel'
Predicate p = Predicates.equal("wheels[0].name", "front-wheel");
Collection<Motorbike> result = map.values(p);

It is also possible to query a collection/array using the any semantic as shown below:

// it matches all motorbikes where any wheel's name is 'front-wheel'
Predicate p = Predicates.equal("wheels[any].name", "front-wheel");
Collection<Motorbike> result = map.values(p);

The exact same query may be executed using the SQL predicate as shown below:

Predicate p = Predicates.sql("wheels[any].name = 'front-wheel'");
Collection<Motorbike> result = map.values(p);

[] notation applies to both collections and arrays.

312

Hazelcast requires all elements of a collection to have the same type. Considering
and expanding the above example:

• If you have a wheels collection attribute, all of its elements must be of the Wheel
type, subclasses of Wheel are not allowed.

• Let’s say you have added a seats collection attribute, which is a Seat object.
Then all of its elements must of this concrete Seat type.

So, you may have collections of different types in your map. However, each
collection’s elements must be of the same concrete type within that collection
attribute.

Consider custom attribute extractors if it is impossible or undesirable to reduce the
variety of types to a single type. See the Custom Attributes section for information
on them.

12.2.1. Indexing in Collections and Arrays

You can also create an index using a query in collections and arrays.

Please note that in order to leverage the index, the attribute name used in the query has to be the
same as the one used in the index definition.

Let’s assume you have the following index definition:

XML

<hazelcast>
 ...
 <indexes>
 <index type="HASH">
 <attributes>
 <attribute>wheels[any].name</attribute>
 </attributes>
 </index>
 </indexes>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 indexes:
 - type: HASH
 attributes:
 - wheels.[any].name

The following query uses the index:

313

Predicate p = Predicates.equal("wheels[any].name", "front-wheel");

The following query, however, does NOT leverage the index, since it does not use exactly the same
attribute name that was used in the index:

Predicates.equal("wheels[0].name", "front-wheel")

In order to use the index in the case mentioned above, you have to create another index, as shown
below:

XML

<hazelcast>
 ...
 <indexes>
 <index type="HASH">
 <attributes>
 <attribute>wheels[0].name</attribute>
 </attributes>
 </index>
 </indexes>
 ...
</hazelcast>

YAML

hazelcast:
 ...
 indexes:
 - type: HASH
 attributes:
 - wheels.[0].name

12.2.2. Corner cases

Handling of corner cases may be a bit different than in a programming language like Java.

Let’s have a look at the following examples in order to understand the differences. To make the
analysis simpler, let’s assume that there is only one Motorbike object stored in a Hazelcast Map.

Id Query Data State Extract
ion
Result

Match

1 Predicates.equal("wheels[7].name", "front-
wheel")

wheels.size() == 1 null No

2 Predicates.equal("wheels[7].name", null) wheels.size() == 1 null Yes

314

Id Query Data State Extract
ion
Result

Match

3 Predicates.equal("wheels[0].name", "front-
wheel")

wheels[0].name == null null No

4 Predicates.equal("wheels[0].name", null) wheels[0].name == null null Yes

5 Predicates.equal("wheels[0].name", "front-
wheel")

wheels[0] == null null No

6 Predicates.equal("wheels[0].name", null) wheels[0] == null null Yes

7 Predicates.equal("wheels[0].name", "front-
wheel")

wheels == null null No

8 Predicates.equal("wheels[0].name", null) wheels == null null Yes

As you can see, no NullPointerExceptions or IndexOutOfBoundExceptions are thrown in the extraction
process, even though parts of the expression are null.

Looking at examples 4, 6 and 8, we can also easily notice that it is impossible to distinguish which
part of the expression was null. If we execute the following query wheels[1].name = null, it may be
evaluated to true because:

• wheels collection/array is null

• index == 1 is out of bound

• name attribute of the wheels[1] object is null.

In order to make the query unambiguous, extra conditions would have to be added, e.g., wheels !=
null AND wheels[1].name = null.

12.3. Custom Attributes
It is possible to define a custom attribute that may be referenced in predicates, queries and indexes.

A custom attribute is a "synthetic" attribute that does not exist as a field or a getter in the object
that it is extracted from. Thus, it is necessary to define the policy on how the attribute is supposed
to be extracted. Currently the only way to extract a custom attribute is to implement a
com.hazelcast.query.extractor.ValueExtractor that encompasses the extraction logic.

Custom Attributes are compatible with all Hazelcast serialization methods, including the Portable
serialization.

12.3.1. Implementing a ValueExtractor

In order to implement a ValueExtractor, implement the
com.hazelcast.query.extractor.ValueExtractor interface and the extract() method. This method
does not return any values since the extracted value is collected by the ValueCollector. In order to
return multiple results from a single extraction, invoke the ValueCollector.collect() method
multiple times, so that the collector collects all results.

See the ValueExtractor and ValueCollector Javadocs.

315

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/extractor/ValueExtractor.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/extractor/ValueCollector.html

ValueExtractor with Portable Serialization

Portable serialization is a special kind of serialization where there is no need to have the class of
the serialized object on the classpath in order to read its attributes. That is the reason why the
target object passed to the ValueExtractor.extract() method is not of the exact type that has been
stored. Instead, an instance of a com.hazelcast.query.extractor.ValueReader is passed. ValueReader
enables reading the attributes of a Portable object in a generic and type-agnostic way. It contains
two methods:

• read(String path, ValueCollector<T> collector) - enables passing all results directly to the
ValueCollector.

• read(String path, ValueCallback<T> callback) - enables filtering, transforming and grouping
the result of the read operation and manually passing it to the ValueCollector.

See the ValueReader Javadoc.

Returning Multiple Values from a Single Extraction

It sounds counter-intuitive, but a single extraction may return multiple values when arrays or
collections are involved. Let’s have a look at the following data structure in pseudo-code:

class Motorbike {
 Wheel[] wheel;
}

class Wheel {
 String name;
}

Let’s assume that we want to extract the names of all wheels from a single motorbike object. Each
motorbike has two wheels so there are two names for each bike. In order to return both values
from the extraction operation, collect them separately using the ValueCollector. Collecting multiple
values in this way allows you to operate on these multiple values as if they were single values
during the evaluation of the predicates.

Let’s assume that we registered a custom extractor with the name wheelName and executed the
following query: wheelName = front-wheel.

The extraction may return up to two wheel names for each Motorbike since each Motorbike has up to
two wheels. In such a case, it is enough if a single value evaluates the predicate’s condition to true
to return a match, so it returns a Motorbike if "any" of the wheels matches the expression.

12.3.2. Extraction Arguments

A ValueExtractor may use a custom argument if it is specified in the query. The custom argument
may be passed within the square brackets located after the name of the custom attribute, e.g.,
customAttribute[argument].

Let’s have a look at the following query: currency[incoming] == EUR The currency is a custom

316

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/extractor/ValueReader.html

attribute that uses a com.test.CurrencyExtractor for extraction.

The string incoming is an argument that is passed to the ArgumentParser during the extraction. The
parser parses the string according to its custom logic and it returns a parsed object. The parsed
object may be a single object, array, collection, or any arbitrary object. It is up to the ValueExtractor
implementation to understand the semantics of the parsed argument object.

For now it is not possible to register a custom ArgumentParser, thus a default parser is used. It
follows a pass-through semantic, which means that the string located in the square brackets is
passed "as is" to the ValueExtractor.extract() method.

Please note that using square brackets within the argument string are not allowed.

12.3.3. Configuring a Custom Attribute Programmatically

The following snippet demonstrates how to define a custom attribute using a ValueExtractor.

AttributeConfig attributeConfig = new AttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractorClassName("com.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addAttributeConfig(attributeConfig);

currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Keep in mind that an extractor may not be added after the map has been instantiated. All extractors
have to be defined upfront in the map’s initial configuration.

12.3.4. Configuring a Custom Attribute Declaratively

The following snippet demonstrates how to define a custom attribute in the Hazelcast XML
Configuration.

XML

<hazelcast>
 ...
 <map name="trades">
 <attributes>
 <attribute extractor-class-name="com.bank.CurrencyExtractor">
currency</attribute>
 </attributes>
 </map>
 ...
</hazelcast>

317

YAML

hazelcast:
 map:
 trades:
 attributes:
 currency:
 extractor-class-name: com.bank.CurrencyExtractor

Analogous to the example above, currency is the name of the custom attribute that will be extracted
using the CurrencyExtractor class.

Please note that an attribute name may begin with an ASCII letter [A-Za-z] or digit [0-9] and may
contain ASCII letters [A-Za-z], digits [0-9] or underscores later on.

12.3.5. Indexing Custom Attributes

You can create an index using a custom attribute.

The name of the attribute used in the index definition has to match the one used in the attributes
configuration.

Defining indexes with extraction arguments is allowed, as shown in the example below:

XML

<hazelcast>
 ...
 <indexes>
 <!-- custom attribute without an extraction argument -->
 <index>
 <attributes>
 <attribute>currency</attribute>
 </attributes>
 </index>
 <!-- custom attribute using an extraction argument -->
 <index>
 <attributes>
 <attribute>currency[incoming]</attribute>
 </attributes>
 </index>
 </indexes>
 ...
</hazelcast>

318

YAML

hazelcast:
 ...
 indexes:
 attributes:
 - "currency"
 - "currency[incoming]"

12.4. Aggregations
Aggregations allow to compute a value of some function (e.g sum or max) over the stored map
entries. The computation is performed in a fully distributed manner, so no data other than the
computed function value is transferred to a caller, making the computation fast.

If the in-memory format of your data is NATIVE, aggregations always run on the
partition threads. If the data is of type BINARY or OBJECT, they also mostly run on the
partition threads, however, they may run on the separate query threads to avoid
blocking partition threads (if there are no ongoing migrations).

12.4.1. Aggregator API

The aggregation is split into three phases represented by three methods:

1. accumulate()

2. combine()

3. aggregate()

There are also the following callbacks:

• onAccumulationFinished() called when the accumulation phase finishes

• onCombinationFinished() called when the combination phase finishes

These callbacks enable releasing the state that might have been initialized and stored in the
Aggregator - to reduce the network traffic.

Each phase is described below. See also the Aggregator Javadoc for the API’s details.

Accumulation:

During the accumulation phase each Aggregator accumulates all entries passed to it by the query
engine. It accumulates only those pieces of information that are required to calculate the
aggregation result in the last phase - that’s implementation specific.

In case of the DoubleAverage aggregation the Aggregator would accumulate:

• the sum of the elements it accumulated

• the count of the elements it accumulated

319

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/aggregation/Aggregator.html

Combination:

Since aggregation is executed in parallel on each partition of the cluster, the results need to be
combined after the accumulation phase in order to be able to calculate the final result.

In case of the DoubleAverage aggregation, the aggregator would sum up all the sums of the elements
and all the counts.

Aggregation:

Aggregation is the last phase that calculates the final result from the results accumulated and
combined in the preceding phases.

In case of the DoubleAverage aggregation, the Aggregator would just divide the sum of the elements
by their count (if non-zero).

12.4.2. Aggregations and Map Interfaces

Aggregations are available on com.hazelcast.map.IMap only. IMap offers the method aggregate to
apply the aggregation logic on the map entries. This method can be called with or without a
predicate. You can refer to its Javadoc to see the method details.

12.4.3. Example Implementation

Here’s an example implementation of the Aggregator:

320

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/IMap.html#aggregate-com.hazelcast.aggregation.Aggregator-

private static void simpleCustomAverageAggregation(IMap<String, FAEmployee> employees)
{
 System.out.println("Calculating salary average");

 double avgSalary = employees.aggregate(new Aggregator<Map.Entry<String,
FAEmployee>, Double>() {

 protected long sum;
 protected long count;

 @Override
 public void accumulate(Map.Entry<String, FAEmployee> entry) {
 count++;
 sum += entry.getValue().getSalaryPerMonth();
 }

 @Override
 public void combine(Aggregator aggregator) {

 this.sum += this.getClass().cast(aggregator).sum;
 this.count += this.getClass().cast(aggregator).count;
 }

 @Override
 public Double aggregate() {
 if (count == 0) {
 return null;
 }
 return ((double) sum / (double) count);
 }

 });

 System.out.println("Overall average salary: " + avgSalary);
 System.out.println("\n");
}

As you can see:

• the accumulate() method calculates the sum and count of the elements

• the combine() method combines the results from all the accumulations

• the aggregate() method calculates the final result.

12.4.4. Built-In Aggregations

The com.hazelcast.aggregation.Aggregators class provides a wide variety of built-in Aggregators.
The full list is presented below:

• count

321

• distinct

• bigDecimal sum/avg/min/max

• bigInteger sum/avg/min/max

• double sum/avg/min/max

• integer sum/avg/min/max

• long sum/avg/min/max

• number avg

• comparable min/max

• fixedPointSum, floatingPointSum

To use the any of these Aggregators, instantiate them using the Aggregators factory class.

Each built-in Aggregator can also navigate to an attribute of the object passed to the accumulate()
method (via reflection). For example, Aggregators.distinct("address.city") extracts the
address.city attribute from the object passed to the Aggregator and accumulate the extracted value.

12.4.5. Configuration Options

On each partition, after the entries have been passed to the aggregator, the accumulation runs in
parallel. It means that each aggregator is cloned and receives a sub-set of the entries received from
a partition. Then, it runs the accumulation phase in all of the cloned aggregators - at the end, the
result is combined into a single accumulation result. It speeds up the processing by at least the
factor of two - even in case of simple aggregations. If the accumulation logic is more "heavy", the
speed-up may be more significant.

In order to switch the accumulation into a sequential mode just set the
hazelcast.aggregation.accumulation.parallel.evaluation property to false (it’s set to true by
default).

12.5. Projections
There are cases where instead of sending all the data returned by a query from a member, you
want to transform (strip down) each result object in order to avoid redundant network traffic.

For example, you select all employees based on some criteria, but you just want to return their
name instead of the whole Employee object. It is easily doable with the Projection API.

12.5.1. Projection API

The Projection API provides the method transform() which is called on each result object. Its result
is then gathered as the final query result entity. You can refer to the Projection Javadoc for the API’s
details.

Projections and Map Interfaces

Projections are available on com.hazelcast.map.IMap only. IMap offers the method project to apply

322

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/projection/Projection.html

the projection logic on the map entries. This method can be called with or without a predicate. See
its Javadoc to see the method details.

12.5.2. Example implementation

Let’s consider the following domain object stored in an IMap:

public class Employee implements Serializable {

 private String name;

 public Employee() {
 }

 public String getName() {
 return name;
 }

 public void setName(String firstName) {
 this.name = name;
 }
}

To return just the names of the Employees, you can run the query in the following way:

Collection<String> names = employees.project(new Projection<Map.Entry<String,
Employee>, String>() {

 @Override
 public String transform(Map.Entry<String, Employee> entry) {
 return entry.getValue().getName();
 }
}, somePredicate);

12.5.3. Built-In Projections

The com.hazelcast.projection.Projections class provides two built-in Projections:

• singleAttribute

• multiAttribute

The singleAttribute Projection enables extracting a single attribute from an object (via reflection).
For example, Projection.singleAttribute("address.city") extracts the address.city attribute from
the object passed to the Projection.

The multiAttribute Projection enables extracting multiples attributes from an object (via
reflection). For example, Projection.multiAttribute("address.city", "postalAddress.city") extracts
both attributes from the object passed to the Projection and return them in an Object[] array.

323

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/IMap.html#project-com.hazelcast.projection.Projection-

12.6. Continuous Query Cache
A continuous query cache is used to cache the result of a continuous query. After the construction
of a continuous query cache, all changes on IMap are asynchronously reflected to this cache via
events. This makes this cache as an asynchronously updated view of IMap. You can create a
continuous query cache either on the client or member.

12.6.1. Keeping Query Results Local and Ready

A continuous query cache is beneficial when you need to query the distributed IMap data in a very
frequent and fast way. By using a continuous query cache, the result of the query will always be
ready and local to the application.

12.6.2. Accessing Continuous Query Cache from Member

The following code snippet shows how you can access a continuous query cache from a member.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

MapConfig mapConfig = new MapConfig("map-name");
mapConfig.addQueryCacheConfig(queryCacheConfig);

Config config = new Config();
config.addMapConfig(mapConfig);

HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
IMap<Integer, String> map = (IMap) node.getMap("map-name");

12.6.3. Accessing Continuous Query Cache from Client Side

The following code snippet shows how you can access a continuous query cache from the client
side. The difference in this code from the member side code above is that you configure and
instantiate a client instance instead of a member instance.

QueryCacheConfig queryCacheConfig = new QueryCacheConfig("cache-name");
queryCacheConfig.getPredicateConfig().setImplementation(new OddKeysPredicate());

ClientConfig clientConfig = new ClientConfig();
clientConfig.addQueryCacheConfig("map-name", queryCacheConfig);

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
IMap<Integer, Integer> clientMap = (IMap) client.getMap("map-name");

QueryCache<Integer, Integer> cache = clientMap.getQueryCache("cache-name");

324

12.6.4. Features of Continuous Query Cache

The following features of continuous query cache are valid for both the member and client:

• The initial query that is run on the existing IMap data during the continuous query cache
construction can be enabled/disabled according to the supplied predicate via
QueryCacheConfig.setPopulate().

• Continuous query cache allows you to run queries with indexes and perform event batching
and coalescing.

• A continuous query cache is evictable. Note that a continuous query cache has a default
maximum capacity of 10000. If you need a non-evictable cache, you should configure the
eviction via QueryCacheConfig.setEvictionConfig().

• A listener can be added to a continuous query cache using QueryCache.addEntryListener().

• IMap events are reflected in continuous query cache in the same order as they were generated
on map entries. Since events are created on entries stored in partitions, ordering of events is
maintained based on the ordering within the partition. You can add listeners to capture lost
events using EventLostListener and you can recover lost events with the method
QueryCache.tryRecover(). Recovery of lost events largely depends on the size of the buffer on
Hazelcast members. Default buffer size is 16 per partition, i.e., 16 events per partition can be
maintained in the buffer. If the event generation is high, setting the buffer size to a higher
number provides better chances of recovering lost events. You can set buffer size with
QueryCacheConfig.setBufferSize(). You can use the following example code for a recovery case.

QueryCache queryCache = map.getQueryCache("cache-name", Predicates.sql("this > 20"
), true);
queryCache.addEntryListener(new EventLostListener() {
@Override
public void eventLost(EventLostEvent event) {
 queryCache.tryRecover();
 }
}, false);

• You can populate a continuous query cache with only the keys of its entries and retrieve the
subsequent values directly via QueryCache.get() from the underlying IMap. This helps to
decrease the initial population time when the values are very large.

12.6.5. Configuring Continuous Query Cache

You can configure continuous query cache declaratively or programmatically; the latter is mostly
explained in the previous section. The parent configuration element is <query-caches> which should
be placed within your <map> configuration. You can create your query caches using the <query-
cache> sub-element under <query-caches>.

The following is an example declarative configuration.

325

XML

<hazelcast>
 ...
 <map>
 <query-caches>
 <query-cache name="myContQueryCache">
 <include-value>true</include-value>
 <predicate type="class-name">
com.hazelcast.examples.ExamplePredicate</predicate>
 <entry-listeners>
 <entry-listener>...</entry-listener>
 </entry-listeners>
 <in-memory-format>BINARY</in-memory-format>
 <populate>true</populate>
 <coalesce>false</coalesce>
 <batch-size>2</batch-size>
 <delay-seconds>3</delay-seconds>
 <buffer-size>32</buffer-size>
 <eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy=
"LFU"/>
 <indexes>
 <index>
 <attributes>
 <attribute>age</attribute>
 </attributes>
 </index>
 </indexes>
 </query-cache>
 </query-caches>
 </map>
 ...
</hazelcast>

326

YAML

hazelcast:
 map:
 query-caches:
 myContQueryCache:
 include-value: true
 predicate:
 class-name: com.hazelcast.examples.ExamplePredicate
 entry-listeners:
 - class-name: "..."
 in-memory-format: BINARY
 populate: true
 coalesce: false
 batch-size: 2
 delay-seconds: 3
 buffer-size: 32
 eviction:
 size: 1000
 max-size-policy: ENTRY_COUNT
 eviction-policy: LFU
 indexes:
 - attributes:
 - "age"

Continuous query caches have the following configuration elements:

• name: Name of your continuous query cache.

• include-value: Specifies whether the value will be cached too. Its default value is true.

• predicate: Predicate to filter events which are applied to the query cache.

• entry-listeners: Adds listeners (listener classes) for your query cache entries. See the
Registering Map Listeners section.

• in-memory-format: Type of the data to be stored in your query cache. See the Setting In-Memory
Format section. Its default value is BINARY.

• populate: Specifies whether the initial population of your query cache is enabled. Its default
value is true.

• coalesce: Specifies whether the coalescing of your query cache is enabled. Its default value is
false.

• delay-seconds: Minimum time in seconds that an event waits in the member’s buffer. Its default
value is 0.

• batch-size: Batch size used to determine the number of events sent in a batch to your query
cache. Its default value is 1.

• buffer-size: Maximum number of events which can be stored in a partition buffer. Its default
value is 16.

• eviction: Configuration for the eviction of your query cache. See the Configuring Map Eviction

327

section.

• indexes: Indexes for your query cache defined by using this element’s <index> sub-elements. See
the Configuring IMap Indexes section.

Please take the following configuration considerations and publishing logic into account:

If delay-seconds is equal to or smaller than 0, then batch-size loses its function. Each time there is
an event, all the entries in the buffer are pushed to the subscriber.

If delay-seconds is bigger than 0, the following logic applies:

• If coalesce is set to true, the buffer is checked for an event with the same key; if so, it is
overridden by the current event. Then:

◦ The current size of the buffer is checked: if the current size of the buffer is equal to or larger
than batch-size, then the events counted as much as the batch-size are pushed to the
subscriber. Otherwise, no events are sent.

◦ After finishing with checking batch-size, the delay-seconds is checked. The buffer is scanned
from the oldest to youngest entries; all the entries that are older than delay-seconds are
pushed to the subscriber.

12.7. MapReduce Deprecation and Removal
This section informs Hazelcast users about the MapReduce deprecation and removal, its motivation
and replacements.

12.7.1. Motivation

We’ve decided to deprecate the MapReduce framework in Hazelcast IMDG 3.8. MapReduce support
was completely removed in Hazelcast IMDG 4.0. The MapReduce framework provided the
distributed computing model and it was used to back the old Aggregations system. Unfortunately
the implementation didn’t live up to the expectations and adoption wasn’t high, so it never got out
of Beta status. Apart from that the current shift in development away from M/R-like processing to a
more near-realtime, streaming approach left us with the decision to deprecate and finally remove
the MapReduce framework from Hazelcast IMDG. With that said, we want to introduce the
successors and replacements; fast Aggregations on top of Query infrastructure and the Hazelcast Jet
distributed computing platform.

12.7.2. Built-In Aggregations

MapReduce is a very powerful tool, however it’s demanding in terms of space, time and bandwidth.
We realized that we don’t need so much power when we simply want to find out a simple metric
such as the number of entries matching a predicate. Therefore, the built-in aggregations were
rebuilt on top of the existing Query infrastructure (count, sum, min, max, mean, variance) which
automatically leverages any matching query index. The aggregations are computed in tho phases:

• 1st phase: on each member (scatter)

• 2nd phase: one member aggregates responses from members (gather)

328

It is not as flexible as a full-blown M/R system due to the 2nd phase being single-member and the
input can be massive in some use cases. The member doing the 2nd step needs enough capacity to
hold all intermediate results from all members from the 1st step, but in practice it is sufficient for
many aggregation tasks like "find average" or "find highest" and other common examples.

The benefits are:

• improved performance

• simplified API

• utilization of existing indexes.

See the Aggregations section for examples. If you need a more powerful tool like MapReduce, then
there is Hazelcast Jet. See its reference here and website for more information.

12.7.3. Jet Compared with New Aggregations

Hazelcast has native support for aggregation operations on the contents of its distributed data
structures. They operate on the assumption that the aggregating function is commutative and
associative, which allows the two-tiered approach where first the local data is aggregated, then all
the local subresults sent to one member, where they are combined and returned to the user. This
approach works quite well as long as the result is of manageable size. Many interesting
aggregations produce an O(1) result and for those, the native aggregations are a good match.

The main area where native aggregations may not be sufficient are the operations that group the
data by key and produce results of size O (keyCount). The architecture of Hazelcast aggregations is
not well adapted to this use case, although it still works even for moderately-sized results (up to 100
MB, as a ballpark figure). Beyond these numbers, and whenever something more than a single
aggregation step is needed, Jet becomes the preferred choice. In the mentioned use case Jet helps
because it doesn’t send the entire hashtables in serialized form and materialize all the results on
the user’s machine, but rather streams the key-value pairs directly into a target IMap. Since it is a
distributed structure, it doesn’t focus its load on a single member.

Jet’s DAG paradigm offers much more than the basic map-reduce-combine cascade. Among other
setups, it can compose several such cascades and also perform co-grouping, joining and many other
operations in complex combinations.

13. CP Subsystem

CP Subsystem operates in the unsafe mode by default without the strong
consistency guarantee. See the CP Subsystem Unsafe Mode section for more
information. You should set a positive number to the CP member count
configuration to enable CP Subsystem and use it with the strong consistency
guarantee. See the CP Subsystem Configuration section for details.

CP Subsystem is a component of a Hazelcast cluster that builds a strongly consistent layer for a set
of distributed data structures. Its APIs can be used for implementing distributed coordination use
cases, such as leader election, distributed locking, synchronization, and metadata management. It is

329

https://jet.hazelcast.org/

accessed via HazelcastInstance.getCPSubsystem(). Its data structures are CP with respect to the CAP
principle, i.e., they always maintain linearizability and prefer consistency over availability during
network partitions. Besides network partitions, CP Subsystem withstands server and client failures.

Currently, CP Subsystem contains only the implementations of Hazelcast’s concurrency APIs. Since
these APIs do not maintain large states, all members of a Hazelcast cluster do not necessarily take
part in CP Subsystem. The number of Hazelcast members that take part in CP Subsystem is specified
with CPSubsystemConfig.setCPMemberCount(int). Say that it is configured as N. Then, when a Hazelcast
cluster starts, the first N members form CP Subsystem. These members are called CP members and
they can also contain data for the other regular AP Hazelcast data structures, such as IMap, ISet.

Data structures in CP Subsystem run in CP groups. Each CP group elects its own Raft leader and
runs the Raft consensus algorithm independently. CP Subsystem runs 2 CP groups by default:

• The first one is the METADATA CP group which is an internal CP group responsible for
managing CP members and CP groups. It is initialized during cluster startup if CP Subsystem is
enabled via CPSubsystemConfig.setCPMemberCount(int).

• The second CP group is the DEFAULT CP group, whose name is given in
CPGroup.DEFAULT_GROUP_NAME. If a group name is not specified while creating a CP data structure
proxy, that data structure is mapped to the DEFAULT CP group. For instance, when a CP
IAtomicLong instance is created via CPSubsystem.getAtomicLong("myAtomicLong"), it is initialized
on the DEFAULT CP group.

Besides these 2 predefined CP groups, custom CP groups can be created at run-time while fetching
the CP data structure proxies. For instance, if a CP IAtomicLong is created by calling
.getAtomicLong("myAtomicLong@myGroup"), first a new CP group is created with the name myGroup and
then myAtomicLong is initialized on this custom CP group.

This design implies that each CP member can participate to more than one CP group. CP Subsystem
runs a periodic background task to ensure that each CP member performs the Raft leadership role
for roughly equal number of CP groups. For instance, if there are 3 CP members and 3 CP groups,
each CP member becomes Raft leader for only 1 CP group. If one more CP group is created, then one
of the CP members gets the Raft leader role for 2 CP groups. This is done because Raft is a leader-
based consensus algorithm. A Raft leader node becomes responsible for handling incoming
requests from callers and replicating them to follower nodes. If a CP member gets the Raft
leadership role for too many CP groups compared to other CP members, it can turn into a
bottleneck.

CP member count of CP groups are specified via CPSubsystemConfig.setGroupSize(int). Please note
that this configuration does not have to be the same with the CP member count. Namely, the
number of CP members in CP Subsystem can be larger than the configured CP group size. CP groups
usually consist of an odd number of CP members between 3 and 7. Operations are committed and
executed only after they are successfully replicated to the majority of CP members in a CP group.
An odd number of CP members is more advantageous to an even number because of the quorum or
majority calculations. For a CP group of N members, the majority is calculated as N / 2 + 1. For
instance, in a CP group of 5 CP members, operations are committed when they are replicated to at
least 3 CP members. This CP group can tolerate the failure of 2 CP members and remain available.
However, if we run a CP group with 6 CP members, it can still tolerate the failure of 2 CP members
because the majority of 6 is 4. Therefore, it does not improve the degree of fault tolerance

330

http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf
https://aphyr.com/posts/313-strong-consistency-models
https://raft.github.io/

compared to 5 CP members. In summary, CP subsystem remains available (and executes the
operations) as long as the majority ((N/2) + 1) of the members are alive.

CP Subsystem achieves horizontal scalability thanks to all of the aforementioned CP group
management capabilities. You can scale out the throughput and memory capacity by distributing
your CP data structures to multiple CP groups, i.e., manual partitioning / sharding, and distributing
those CP groups over CP members, i.e., choosing a CP group size that is smaller than the CP member
count configuration. Nevertheless, the current set of CP data structures has quite low memory
overheads. Moreover, related to the Raft consensus algorithm, each CP group makes use of internal
heartbeat RPCs to maintain authority of the Raft leader and help lagging CP group members to
make progress. Last, the new CP lock and semaphore implementations rely on a brand new session
mechanism. In a nutshell, a Hazelcast server or a client starts a new session on the corresponding
CP group when it makes its very first lock or semaphore acquire request, and then periodically
commits session heartbeats to this CP group in order to indicate its liveliness. It means that if CP
locks and semaphores are distributed to multiple CP groups, there will be a session management
overhead on each CP group. See the CP Sessions section for more details. For these reasons, we
recommend developers to use a minimal number of CP groups. For most use cases, the DEFAULT CP
group should be sufficient to maintain all CP data structure instances. Custom CP groups is
recommended only when you benchmark your deployment and decide that performance of the
DEFAULT CP group is not sufficient for your workload.

By default, CP Subsystem works only in memory without persisting any state to disk. It means that a
crashed CP member is not able to join to the cluster back by restoring its previous state. Therefore,
crashed CP members create a danger for gradually losing majority of CP groups and eventually
cause the total loss of availability of CP Subsystem. To prevent such situations, crashed CP members
can be removed from CP Subsystem and replaced in CP groups with other available CP members.
This flexibility provides a good degree of fault tolerance at run-time. See the CP Subsystem
Configuration section and CP Subsystem Management section for more details. Moreover, CP
Subsystem Persistence enables more robustness. When it is enabled, CP members persist their local
state to stable storage and can restore their state after crashes. See the CP Subsystem Persistence
section for more details.

API Code Sample:

CPSubsystem cpSubsystem = hazelcastInstance.getCPSubsystem();

IAtomicLong atomicLong = cpSubsystem.getAtomicLong(name);

IAtomicReference atomicRef = cpSubsystem.getAtomicReference(name);

FencedLock lock = cpSubsystem.getLock(name);

ISemaphore semaphore = cpSubsystem.getSemaphore(name);

ICountDownLatch latch = cpSubsystem.getCountDownLatch(name);

331

The CP data structure proxies differ from the other data Hazelcast structure
proxies in two aspects:

• An internal commit is performed on the METADATA CP group every time you
fetch a proxy from this interface. Hence, the callers should cache the returned
proxy objects.

• If you call the DistributedObject.destroy() method on a CP data structure
proxy, that data structure is terminated on the underlying CP group and cannot
be reinitialized until the CP group is force-destroyed via
CPSubsystemManagementService.forceDestroyCPGroup(String). For this reason,
please make sure that you are completely done with a CP data structure before
destroying its proxy.

13.1. CP Discovery Process
CP Subsystem runs a discovery process on cluster startup. When CP Subsystem is enabled by setting
a positive value to CPSubsystemConfig.setCPMemberCount(int), say N, the first N members in the
Hazelcast cluster member list initiate this discovery process. Other Hazelcast members skip this
step. The CP discovery process runs out of the box on top of Hazelcast’s cluster member list without
requiring any custom configuration for different environments. It is completed when each one of
the first N Hazelcast members initializes its local CP member list and commits it to the METADATA
CP group. A soon-to-be CP member terminates itself if any of the following conditions occur
before the CP discovery process is completed:

• Any Hazelcast member leaves the cluster

• The local Hazelcast member commits a CP member list which is different from other members'
committed CP member lists

• The local Hazelcast member fails to commit its discovered CP member list for any reason.

When CP Subsystem is reset via CPSubsystemManagementService.reset(), the CP discovery process is
triggered again. However, it does not terminate Hazelcast members if the new CP discovery round
fails for any of the aforementioned reasons, because Hazelcast members are likely to contain data
for AP data structures and their termination can cause data loss. Hence, you need to observe the
cluster and check if the CP discovery process completes successfully on the CP Subsystem reset. See
the CP Subsystem Management APIs section for more details.

You can use the CPSubsystemManagementService.awaitUntilDiscoveryCompleted(timeout, timeUnit)

API to wait until the CP discovery process is completed.

13.2. CP Subsystem Persistence
Hazelcast IMDG Enterprise

13.2.1. CP Subsystem Persistence Overview

CP Subsystem Persistence enables CP members to recover from crash scenarios. This capability

332

significantly improves the overall reliability of CP Subsystem. When it is enabled via
CPSubsystemConfig.setPersistenceEnabled(boolean), CP members persist their local state to stable
storage. When you restart the crashed CP members, they restore their local state and resume
working as if they have never crashed. CP Subsystem Persistence enables you to handle single or
multiple CP member crashes, or even whole cluster crashes and guarantees that committed
operations are not lost after recovery. In other words, CP member crashes and restarts do not
create any consistency problem. As long as majority of CP members are available after recovery, CP
Subsystem remains operational.

Please see the CP Subsystem Configuration section for the configuration options of CP Subsystem
Persistence.

When CP Subsystem Persistence is enabled, all Hazelcast cluster members create a sub-directory
under the base persistence directory which is specified via CPSubsystemConfig.getBaseDir(). This
means that AP Hazelcast members, which are the ones not marked as CP members during the CP
discovery process, create their persistence directories as well. Those members persist only the
information that they are not CP members. This is done because when a Hazelcast member starts
with CP Subsystem Persistence enabled, it checks if there is a CP persistence directory belonging to
itself. If it founds one, it skips the CP discovery process and initializes its CP member identity from
the persisted data. If it was an AP member before shutdown or crash, it restores this information
and starts as an AP member. Otherwise, it could think that the CP discovery process has not been
executed and trigger it, which would break CP Subsystem.

In light of this information, if you have both CP and AP members in your cluster
when CP Subsystem Persistence is enabled, and if you want to perform a cluster-
wide restart, you need to ensure that AP members are also restarted with their CP
persistence directories.

You can check the code sample below to see how CP Subsystem Persistence works in general. In this
code sample, we configure CP Subsystem with 3 CP members and also enable CP Subsystem
Persistence. We start 3 Hazelcast members with this configuration and update a CP IAtomicLong
instance. Each member creates a sub-directory for itself inside the default base CP Subsystem
Persistence directory and stores its local CP state there. Then, we terminate two of these members
as if they crash and restart only 1 of them back. When we fetch the same IAtomicLong instance from
the restarted members and get its current value, we see that it returns the update that we made
before terminating these members. Please note that we make sure that we have the majority of CP
members alive to keep CP Subsystem available after restart.

333

 Config config = new Config();
 config.setLicenseKey("your-license-key");
 NetworkConfig networkConfig = config.getNetworkConfig();
 JoinConfig join = networkConfig.getJoin();
 TcpIpConfig tcpIpConfig = join.getTcpIpConfig();
 tcpIpConfig.setEnabled(true);
 tcpIpConfig.addMember("127.0.0.1");
// config.getCPSubsystemConfig().setCPMemberCount(3).setPersistenceEnabled(true);

 HazelcastInstance instance1 = Hazelcast.newHazelcastInstance(config);
 HazelcastInstance instance2 = Hazelcast.newHazelcastInstance(config);
 HazelcastInstance instance3 = Hazelcast.newHazelcastInstance(config);

 IAtomicLong counter = instance1.getCPSubsystem().getAtomicLong("counter");
 counter.set(0);
 counter.incrementAndGet();

 instance1.getLifecycleService().terminate();
 instance2.getLifecycleService().terminate();

 instance1 = Hazelcast.newHazelcastInstance(config);

 counter = instance1.getCPSubsystem().getAtomicLong("counter");

 long val = counter.get();
 assert val == 1L;

13.2.2. CP Subsystem Persistence Behavior During CP Subsystem Reset

If the majority of CP members are permanently lost, CP Subsystem becomes unavailable. There is
no solution to recover from this failure case with strong consistency guarantee. CP Subsystem
Management API contains a method to delete all CP Subsystem state on the remaining CP members
and start from scratch. CPSubsystemManagementService.reset() wipes and resets the whole CP
Subsystem state and initializes it as if the Hazelcast cluster is starting up for the first time. This
method deletes the persisted CP member states as well.

13.2.3. Interaction with Hot Restart Persistence

Hazelcast offers another persistence capability which is called Hot Restart Persistence. Hot Restart
Persistence is used for restarting a cluster with large AP data after a planned cluster shutdown or a
whole cluster-wide crash. Please note that CP Subsystem Persistence and Hot Restart Persistence
are separate features with different behaviors and reliability guarantees. For instance, CP
Subsystem Persistence guarantees that committed operations will be restored and the
linearizability semantics of the CP Subsystem data structures will be preserved on restarts.
However, Hot Restart Persistence may lose some of the acknowledged updates on AP data
structures, based on how you configure the fsync behavior for your persisted AP data structures.
Moreover, if you store AP and CP data in a single Hazelcast cluster and use both of the persistence
features, Hazelcast member restarts or cluster restarts can fail because of the Hot Restart

334

Persistence recovery semantics, even if the CP Subsystem Persistence recovery procedure is
successful, or vice-versa.

13.3. CP Member Shutdown

Please read this part carefully to notice the behavioral difference in the CP
member shutdown process when CP Subsystem Persistence is enabled and
disabled.

There is a significant behavioral difference during the CP member shutdown when CP Subsystem
Persistence is enabled and disabled. When disabled (the default mode in which CP Subsystem
works only in memory), a shutting down CP member is replaced with other available CP members
in all of its CP groups in order not to decrease or more importantly not to lose majorities of CP
groups. It is because CP members keep their local state only in memory when CP Subsystem
Persistence is disabled, hence a shut-down CP member cannot join back with its CP identity and
state, hence it is better to remove it from CP Subsystem to not to harm availability of CP groups. If
there is no other available CP member to replace a shutting down CP member in a CP group, that CP
group’s size is reduced by 1 and its majority value is recalculated. On the other hand, when CP
Subsystem Persistence is enabled, a shut-down CP member can come back by restoring its CP state.
Therefore, it is not automatically removed from CP Subsystem when CP Subsystem Persistence is
enabled. It is up to you to remove shut-down CP members via
CPSubsystemManagementService.removeCPMember(String) if they will not come back.

In summary, CP member shutdown behavior is as follows:

• When CP Subsystem Persistence is disabled (the default mode), shutting down CP members are
removed from CP Subsystem and the CP group majority values are recalculated.

• When CP Subsystem Persistence is enabled, shutting down CP members are still kept in CP
Subsystem so they will be a part of the CP group majority calculations.

Moreover, there is a subtle point about concurrent shutdown of CP members when CP Subsystem
Persistence is disabled. If there are N CP members in CP Subsystem, HazelcastInstance.shutdown()
can be called on N-2 CP members concurrently. Once these N-2 CP members complete their
shutdown, the remaining 2 CP members must be shut down serially. Even though the shutdown API
can be called concurrently on multiple members, the METADATA CP group handles shutdown
requests serially. Therefore, it would be simpler to shut down CP members one by one, by calling
HazelcastInstance.shutdown() on the next CP member once the current CP member completes its
shutdown. This rule does not apply when CP Subsystem Persistence is enabled so you can shut
down your CP members concurrently if you enabled CP Subsystem Persistence. It is enough for
users to recall this rule while shutting down CP members when CP Subsystem Persistence is
disabled. If interested, you can read the rest of this paragraph to learn the reasoning behind this
rule. Each shutdown request internally requires a Raft commit to the METADATA CP group when CP
Subsystem Persistence is disabled. A CP member proceeds to shutdown after it receives a response
of this commit. To be able to perform a Raft commit, the METADATA CP group must have its
majority up and running. When only 2 CP members are left after graceful shutdowns, the majority
of the METADATA CP group becomes 2. If the last 2 CP members shut down concurrently, one of
them is likely to perform its Raft commit faster than the other one and leave the cluster before the

335

other CP member completes its Raft commit. In this case, the last CP member waits for a response of
its commit attempt on the METADATA CP group, and times out eventually. This situation causes an
unnecessary delay on the shutdown process of the last CP member. On the other hand, when the
last 2 CP members shut down serially, the N-1th member receives the response of its commit after
its shutdown request is committed also on the last CP member. Then, the last CP member checks its
local data to notice that it is the last CP member alive, and proceeds its shutdown without
attempting a Raft commit on the METADATA CP group.

See the CP Membership Listener section to get notified about the CP member additions and
removals.

13.4. CP Subsystem’s Fault Tolerance Capabilities
CP Subsystem’s fault tolerance capabilities are summarized in this section. For the sake of
simplicity, let’s assume that both the CP member count and CP group size configurations are
configured as the same and we use only the DEFAULT CP group. In the list below, "a permanent
crash" means that a CP member either crashes while CP Subsystem Persistence is disabled,
hence it cannot be recovered with its CP identity and data, or it crashes while CP Subsystem
Persistence is enabled but its CP data cannot be recovered, for instance, due to a total server
crash or a disk failure.

• If a CP member leaves the Hazelcast cluster, it is not automatically removed from CP Subsystem
because CP Subsystem cannot certainly determine if that member has actually crashed or just
disconnected from the cluster. Therefore, absent CP members are still considered in majority
calculations and cause a danger for the availability of CP Subsystem. If you know for sure that
an absent CP member is crashed, you can remove that CP member from CP Subsystem via
CPSubsystemManagementService.removeCPMember(String). This API call removes the given CP
member from all CP groups and recalculates their majority values. If there is another available
CP member in CP Subsystem, the removed CP member is replaced with that one, or you can
promote an AP member of the Hazelcast cluster to the CP role via
CPSubsystemManagementService.promoteToCPMember().

• There might be a small window of unavailability after a CP member crash even if the majority
of CP members are still online. For instance, if a crashed CP member is the Raft leader for some
CP groups, those CP groups run a new leader election round to elect a new leader among
remaining CP group members. CP Subsystem API calls that internally hit those CP groups are
retried until they have new Raft leaders. If a failed CP member has the Raft follower role, it
causes a very minimal disruption since Raft leaders are still able to replicate and commit
operations with the majority of their CP group members.

• If a crashed CP member is restarted after it is removed from CP Subsystem, its behavior
depends on whether CP Subsystem Persistence is enabled or disabled. If enabled, a restarted CP
member is not able to restore its CP data from disk because after it joins back to the cluster it
notices that it is no longer a CP member. Because of that, it fails its startup process and prints an
error message. The only thing to do in this case is manually delete its CP persistence directory
since its data is no longer useful. On the other hand, if CP Subsystem Persistence is disabled, a
failed CP member cannot remember anything related to its previous CP identity, hence it
restarts as a new AP member.

• A CP member can encounter a network issue and disconnect from the cluster. If you remove

336

this CP member from CP Subsystem even though it is actually alive but only disconnected, you
should terminate it to prevent any accidental communication with the other CP members in CP
Subsystem.

• If a network partition occurs, behavior of CP Subsystem depends on how CP members are
divided in different sides of the network partition and to which sides Hazelcast clients are
connected. Each CP group remains available on the side that contains the majority of its CP
members. If a Raft leader falls into the minority side, its CP group elects a new Raft leader on
the other side and callers that are talking to the majority side continue to make successful API
calls on CP Subsystem. However, callers that are talking to the minority side fail with operation
timeouts. When the network problem is resolved, CP members reconnect to each other and CP
groups continue their operation normally.

• CP Subsystem can tolerate failure of the minority of CP members (less than N / 2 + 1) for
availability. If N / 2 + 1 or more CP members crash, CP Subsystem loses its availability. If CP
Subsystem Persistence is enabled and the majority of CP members become online by
successfully restarting some of failed CP members, CP Subsystem regains its availability back.
Otherwise, it means that CP Subsystem has lost its majority irrevocably. In this case, the
only solution is to wipe-out the whole CP Subsystem state by performing a force-reset via
CPSubsystemManagementService.reset().

When CPSubsystemConfig.getCPMemberCount() is greater than CPSubsystemConfig.getGroupSize(), CP
groups are formed by selecting a subset of CP members. In this case, each CP group can have a
different set of CP members, therefore different fault tolerance and availability conditions. In
the following list, CP Subsystem’s additional fault tolerance capabilities are discussed for this
configuration case.

• When the majority of a non-METADATA CP group permanently crash, that CP group cannot
make progress anymore, even though other CP groups in CP Subsystem are running fine. Even a
new CP member cannot join to this CP group, because membership changes also go through the
Raft consensus algorithm. For this reason, the only option is to force-destroy this CP group via
CPSubsystemManagementService.forceDestroyCPGroup(String). When this API is called, the CP
group is terminated non-gracefully without the Raft mechanics. After this API call, all existing
CP data structure proxies that talk to this CP group fail with CPGroupDestroyedException.
However, if a new proxy is created afterwards, then this CP group is re-created from scratch
with a new set of CP members. Losing majority of a non-METADATA CP group can be likened to
partition-loss scenario of AP Hazelcast. Please note that non-METADATA CP groups that have lost
their majority must be force-destroyed immediately, because they can block the METADATA CP
group to perform membership changes on CP Subsystem.

• If the majority of the METADATA CP group permanently crash, unfortunately it is equivalent to
the permanent crash of the majority CP members of the whole CP Subsystem, even though other
CP groups are running fine. In fact, existing CP groups continue serving to incoming requests,
but since the METADATA CP group is not available anymore, no management tasks can be
performed on CP Subsystem. For instance, a new CP group cannot be created. In this case, the
only solution is to wipe-out the whole CP Subsystem state by performing a force-reset via
CPSubsystemManagementService.reset().

See CP Subsystem Management APIs section for more details.

337

13.5. CP Subsystem Listeners
The CP Subsystem provides the following listeners:

• CP membership listeners

• CP group availability listeners

The following sections explain each listener and how to register them.

13.5.1. CP Membership Listener

CPMembershipListener is notified when a CP member is added to or removed from the CP Subsystem.
Its signature is very similar to Hazelcast’s usual MembershipListener.

The listener interface has methods that are invoked for the following events:

• memberAdded: A new CP member is added to the CP subsystem.

• memberRemoved: An existing CP member is removed from the CP subsystem.

To get notified for CP membership events, you implement the CPMembershipListener interface.

The following is an example CPMembershipListener class:

public class CPMembershipListenerImpl implements CPMembershipListener {

 /**
 * Called when a new CP member is added to the CP Subsystem.
 */
 public void memberAdded(CPMembershipEvent event) {
 System.out.println("Added: " + event);
 }

 /**
 * Called when a CP member is removed from the CP Subsystem.
 */
 public void memberRemoved(CPMembershipEvent event) {
 System.out.println("Removed: " + event);
 }
}

Registering CP Membership Listeners

CPMembershipListener can be defined in the configuration or can be registered in runtime via the
CPSubsystem API.

Below is an example registering the listener in runtime using the
CPSubsystem.addMembershipListener method:

338

// Either server or client
HazelcastInstance hazelcastInstance = ...;
hazelcastInstance.getCPSubsystem().addMembershipListener(new CPMembershipListenerImpl
());

The following is an example programmatic configuration:

Server

Config config = new Config();
config.addListenerConfig(new ListenerConfig("com.yourpackage.CPMembershipListenerImpl
"));

Client

ClientConfig config = new ClientConfig();
config.addListenerConfig(new ListenerConfig("com.yourpackage.CPMembershipListenerImpl
"));

The followings are examples of the equivalent declarative configurations:

Server XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.CPMembershipListenerImpl
 </listener>
 </listeners>
 ...
</hazelcast>

Server YAML

hazelcast:
 ...
 listeners:
 - com.yourpackage.CPMembershipListenerImpl

339

Client XML

<hazelcast-client>
 ...
 <listeners>
 <listener>
 com.yourpackage.CPMembershipListenerImpl
 </listener>
 </listeners>
 ...
</hazelcast-client>

Client YAML

hazelcast-client:
 ...
 listeners:
 - com.yourpackage.CPMembershipListenerImpl

13.5.2. CP Group Availability Listener

CPGroupAvailabilityListener is notified when the availability of a CP group decreases or it loses the
majority completely.

In general, the availability decreases when a CP member becomes unreachable because of process
crash, network partition, out of memory, etc. Once a member is declared as unavailable by the
Hazelcast’s failure detector, that member is removed from the cluster. If it is also a CP member,
CPGroupAvailabilityEvents are fired for each CP group that member belongs to.

As a special case, CPGroupAvailabilityListener has a separate method to report the loss of majority.
When the majority of a CP group is lost, that CP group cannot make progress anymore. Even a new
CP member cannot join to this CP group since membership changes also go through the Raft
consensus algorithm.

When a CP group has lost its majority:

• If the group is a non-METADATA CP group, it must be force-destroyed immediately, because it
can block the METADATA CP group to perform membership changes on the CP Subsystem.

• If the majority of the METADATA CP group permanently crashes, unfortunately it is equivalent
to the permanent crash of the majority CP members of the whole CP Subsystem, even though
other CP groups are running fine.

The listener interface has methods that are invoked for the following events:

• availabilityDecreased: A CP group’s availability decreases, but still has the majority of members
available.

• majorityLost: A CP group has lost its majority.

The following is an example CPGroupAvailabilityListener class:

340

public class CPGroupAvailabilityListenerImpl implements CPGroupAvailabilityListener {

 /**
 * Called when a CP group's availability decreases,
 * but still has the majority of members available.
 */
 public void availabilityDecreased(CPGroupAvailabilityEvent event) {
 System.out.println("Availability decreased: " + event);
 }

 /**
 * Called when a CP group has lost its majority.
 */
 public void majorityLost(CPGroupAvailabilityEvent event) {
 System.out.println("Majority Lost: " + event);
 }
}

Registering CP Group Availability Listeners

Similar to CPMembershipListener, a CPGroupAvailabilityListener can be defined in the configuration
or can be registered in runtime via the CPSubsystem API.

Below is an example registering the listener in runtime using the
CPSubsystem.addGroupAvailabilityListener method:

// Either server or client
HazelcastInstance hazelcastInstance = ...;
hazelcastInstance.getCPSubsystem().addGroupAvailabilityListener(new
CPGroupAvailabilityListenerImpl());

The following is an example programmatic configuration:

Server

Config config = new Config();
config.addListenerConfig(new ListenerConfig(
"com.yourpackage.CPGroupAvailabilityListenerImpl"));

Client

ClientConfig config = new ClientConfig();
config.addListenerConfig(new ListenerConfig(
"com.yourpackage.CPGroupAvailabilityListenerImpl"));

The followings are examples of the equivalent declarative configurations:

341

Server XML

<hazelcast>
 ...
 <listeners>
 <listener>
 com.yourpackage.CPGroupAvailabilityListenerImpl
 </listener>
 </listeners>
 ...
</hazelcast>

Server YAML

hazelcast:
 ...
 listeners:
 - com.yourpackage.CPGroupAvailabilityListenerImpl

Client XML

<hazelcast-client>
 ...
 <listeners>
 <listener>
 com.yourpackage.CPGroupAvailabilityListenerImpl
 </listener>
 </listeners>
 ...
</hazelcast-client>

Client YAML

hazelcast-client:
 ...
 listeners:
 - com.yourpackage.CPGroupAvailabilityListenerImpl

13.6. CP Sessions
For CP data structures that involve resource ownership management, such as Locks or Semaphores,
sessions are required to keep track of liveliness of callers. In this context, caller means an entity
that uses CP Subsystem APIs. It can be either a Hazelcast member or a client. A caller initially
creates a session before sending its very first session based request to the CP group, such as a Lock /
Semaphore acquire. After creating a session on the CP group, the caller stores its session ID locally
and sends it alongside its session-based operations. A single session is used for all lock and
semaphore proxies of the caller. When a CP group receives a session-based operation, it checks the

342

validity of the session using the session ID information available in the operation. A session is valid
if it is still open in the CP group. An operation with a valid session ID is accepted as a new session
heartbeat. While a caller is idle, in other words, it does not send any session based operation to the
CP group for a while, it commits periodic heartbeats to the CP group in the background in order to
keep its session alive. This interval is specified in
CPSubsystemConfig.getSessionHeartbeatIntervalSeconds().

A session is closed when the caller does not touch the session during a predefined duration. In this
case, the caller is assumed to be crashed and all its resources are released automatically. This
duration is specified in CPSubsystemConfig.getSessionTimeToLiveSeconds(). See the CP Subsystem
Configuration section for recommendations to choose a reasonable session time-to-live duration.

Sessions offer a trade-off between liveliness and safety. If you set a very small value using
CPSubsystemConfig.setSessionTimeToLiveSeconds(int), then a session owner could be considered
crashed very quickly and its resources can be released prematurely. On the other hand, if you set a
large value, a session could be kept alive for an unnecessarily long duration even if its owner
actually crashes. However, it is a safer approach to not to use a small session time-to-live duration.
If a session owner is known to be crashed, its session could be closed manually via
CPSessionManagementService.forceCloseSession(String, long).

See the CP Subsystem Configuration section for more details.

13.7. FencedLock
FencedLock is a linearizable & distributed & reentrant implementation of j.u.c.locks.Lock.
FencedLock is accessed via CPSubsystem.getLock(String). It is CP with respect to the CAP principle. It
works on top of the Raft consensus algorithm. It offers linearizability during crash-stop failures and
network partitions. If a network partition occurs, it remains available on at most one side of the
partition.

FencedLock works on top of CP sessions. Please see CP Sessions section for more information about
CP sessions.

By default, FencedLock is reentrant. Once a caller acquires the lock, it can acquire the lock
reentrantly as many times as it wants in a linearizable manner. You can configure the reentrancy
behavior via FencedLockConfig. For instance, reentrancy can be disabled and FencedLock can work as
a non-reentrant mutex. You can also set a custom reentrancy limit. When the reentrancy limit is
already reached, FencedLock does not block a lock call. Instead, it fails with
LockAcquireLimitReachedException or a specified return value. Please check the locking methods to
see details about the behavior and FencedLock Configuration section for the configuration.

Distributed locks are unfortunately not equivalent to single-node mutexes because of the
complexities in distributed systems, such as uncertain communication patterns, and independent
and partial failures. In an asynchronous network, no lock service can guarantee mutual exclusion,
because there is no way to distinguish between a slow and a crashed process. Consider the
following scenario, where a Hazelcast client acquires a FencedLock, then hits a long GC pause. Since
it will not be able to commit session heartbeats while paused, its CP session will be eventually
closed. After this moment, another Hazelcast client can acquire this lock. If the first client wakes up
again, it may not immediately notice that it has lost ownership of the lock. In this case, multiple

343

clients think they hold the lock. If they attempt to perform an operation on a shared resource, they
can break the system. To prevent such situations, you can choose to use an infinite session timeout,
but this time probably you are going to deal with liveliness issues. For the scenario above, even if
the first client actually crashes, the requests sent by two clients can be reordered in the network
and hit the external resource in the reverse order.

There is a simple solution for this problem. Lock holders are ordered by a monotonic fencing token,
which increments each time the lock is assigned to a new owner. This fencing token can be passed
to external services or resources to ensure sequential execution of the side effects performed by
lock holders.

The following diagram illustrates the idea. Client-1 acquires the lock first and receives 1 as its
fencing token. Then, it passes this token to the external service, which is our shared resource in this
scenario. Just after that, Client-1 hits a long GC pause and eventually loses ownership of the lock
because it misses to commit CP session heartbeats. Then, Client-2 chimes in and acquires the lock.
Similar to Client-1, Client-2 passes its fencing token to the external service. After that, once Client-1
comes back alive, its write request will be rejected by the external service, and only Client-2 will be
able to safely talk to it.

You can read more about the fencing token idea in Martin Kleppmann’s How to do distributed
locking blog post and Google’s Chubby paper. FencedLock integrates this idea with the
j.u.c.locks.Lock abstraction, excluding j.u.c.locks.Condition. newCondition() is not implemented
and throws UnsupportedOperationException.

All of the API methods in the new FencedLock abstraction offer exactly-once execution semantics.
For instance, even if a lock() call is internally retried because of a crashed CP member, the lock is
acquired only once. The same rule also applies to the other methods in the API.

344

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://ai.google/research/pubs/pub27897

13.8. Configuration

13.8.1. CP Subsystem Configuration

• cp-member-count: Number of CP members to initialize CP Subsystem. It is 0 by default, meaning
that CP Subsystem is disabled. CP Subsystem is enabled when a positive value is set. After CP
Subsystem is initialized successfully, more CP members can be added at run-time and the
number of active CP members can go beyond the configured CP member count. The number of
CP members can be smaller than the total size of the Hazelcast cluster. For instance, you can
run 5 CP members in a Hazelcast cluster of 20 members.

If set, must be greater than or equal to group-size.

• group-size: Number of CP members to form CP groups. If set, it must be an odd number
between 3 and 7. Otherwise, cp-member-count is respected while forming CP groups.

If set, must be smaller than or equal to cpMemberCount.

• session-time-to-live-seconds: Duration for a CP session to be kept alive after the last received
heartbeat. A CP session is closed if no session heartbeat is received during this duration. Session
TTL must be decided wisely. If a very low value is set, a CP session can be closed prematurely if
its owner Hazelcast instance temporarily loses connectivity to CP Subsystem because of a
network partition or a GC pause. In such an occasion, all CP resources of this Hazelcast instance,
such as FencedLock or ISemaphore, are released. On the other hand, if a very large value is set, CP
resources can remain assigned to an actually crashed Hazelcast instance for too long and
liveliness problems can occur. CP Subsystem offers an API in CPSessionManagementService to deal
with liveliness issues related to CP sessions. In order to prevent premature session expires,
session TTL configuration can be set a relatively large value and
CPSessionManagementService.forceCloseSession(String, long) can be manually called to close CP
session of a crashed Hazelcast instance.

Must be greater than session-heartbeat-interval-seconds, and smaller than or equal to missing-
cp-member-auto-removal-seconds.

Default value is 300 seconds.

• session-heartbeat-interval-seconds: Interval for the periodically-committed CP session
heartbeats. A CP session is started on a CP group with the first session-based request of a
Hazelcast instance. After that moment, heartbeats are periodically committed to the CP group.

Must be smaller than session-time-to-live-seconds.

Default value is 5 seconds.

• missing-cp-member-auto-removal-seconds: Duration to wait before automatically removing a
missing CP member from CP Subsystem. When a CP member leaves the Hazelcast cluster, it is
not automatically removed from CP Subsystem, since it could be still alive and left the cluster
because of a network partition. On the other hand, if a missing CP member is actually crashed, it
creates a danger for its CP groups, because it will be still part of majority calculations. This
situation could lead to losing majority of CP groups if multiple CP members leave the cluster

345

over time.

With the default configuration, missing CP members are automatically removed from CP
Subsystem after 4 hours. This feature is very useful in terms of fault tolerance when CP member
count is also configured to be larger than group size. In this case, a missing CP member will be
safely replaced in its CP groups with other available CP members in CP Subsystem. This
configuration also implies that no network partition is expected to be longer than the
configured duration.

If a missing CP member comes back alive after it is automatically removed from CP Subsystem
with this feature, that CP member must be terminated manually.

Must be greater than or equal to session-time-to-live-seconds.

Default value is 14400 seconds (4 hours).

• fail-on-indeterminate-operation-state: Offers a choice between at-least-once and at-most-once
execution of the operations on top of the Raft consensus algorithm. It is disabled by default and
offers at-least-once execution guarantee. If enabled, it switches to at-most-once execution
guarantee. When you invoke an API method on a CP data structure proxy, it replicates an
internal operation to the corresponding CP group. After this operation is committed to majority
of this CP group by the Raft leader node, it sends a response for the public API call. If a failure
causes loss of the response, then the calling side cannot determine if the operation is committed
on the CP group or not. In this case, if this configuration is disabled, the operation is replicated
again to the CP group, and hence could be committed multiple times. If it is enabled, the public
API call fails with IndeterminateOperationStateException.

Default value is false.

• persistence-enabled: Specifies whether CP Subsystem Persistence is globally enabled for CP
groups created in CP Subsystem. If enabled, CP members persist their local CP data to stable
storage and can recover from crashes.

Default value is false.

• base-dir: Specifies the parent directory where CP data is stored. You can use the default value,
or you can specify the value of another folder, but it is mandatory that base-dir element has a
value. This directory is created automatically if it does not exist.

base-dir is used as the parent directory, and a unique directory is created inside base-dir for
each CP member which uses the same base-dir. That means, base-dir is shared among multiple
CP members safely. This is especially useful for cloud environments where CP members
generally use a shared filesystem.

Default value is cp-data.

• data-load-timeout-seconds: Timeout duration for CP members to restore their data from disk. A
CP member fails its startup if it cannot complete its CP data restore process in the configured
duration.

Default value is 120 seconds.

346

Declarative Configuration:

XML

<hazelcast>
 ...
 <cp-subsystem>
 <cp-member-count>7</cp-member-count>
 <group-size>3</group-size>
 <session-time-to-live-seconds>300</session-time-to-live-seconds>
 <session-heartbeat-interval-seconds>5</session-heartbeat-interval-seconds>
 <missing-cp-member-auto-removal-seconds>14400</missing-cp-member-auto-removal-
seconds>
 <fail-on-indeterminate-operation-state>false</fail-on-indeterminate-operation-
state>
 <persistence-enabled>true</persistence-enabled>
 <base-dir>/custom-cp-dir</base-dir>
 </cp-subsystem>
 ...
</hazelcast>

YAML

hazelcast:
 cp-subsystem:
 cp-member-count: 7
 group-size: 3
 session-time-to-live-seconds: 300
 session-heartbeat-interval-seconds: 5
 missing-cp-member-auto-removal-seconds: 14400
 fail-on-indeterminate-operation-state: false
 persistence-enabled: true
 base-dir: custom-cp-dir

Programmatic Configuration:

config.getCPSubsystemConfig()
 .setCPMemberCount(7)
 .setGroupSize(3)
 .setSessionTimeToLiveSeconds(300)
 .setSessionHeartbeatIntervalSeconds(5)
 .setMissingCPMemberAutoRemovalSeconds(14400)
 .setFailOnIndeterminateOperationState(false);

13.8.2. FencedLock Configuration

• name: Name of the FencedLock.

• lock-acquire-limit: Maximum number of reentrant lock acquires. Once a caller acquires the

347

lock this many times, it will not be able to acquire the lock again, until it makes at least one
unlock() call.

By default, no upper bound is set for the number of reentrant lock acquires, which means that
once a caller acquires a FencedLock, all of its further lock() calls will succeed. However, for
instance, if you set lock-acquire-limit to 2, once a caller acquires the lock, it will be able to
acquire it once more, but its third lock() call will not succeed.

If lock-acquire-limit is set to 1, then the lock becomes non-reentrant.

0 means there is no upper bound for the number of reentrant lock acquires.

Default value is 0.

Declarative Configuration:

XML

<hazelcast>
 ...
 <cp-subsystem>
 ...
 <locks>
 <fenced-lock>
 <name>reentrant-lock</name>
 <lock-acquire-limit>0</lock-acquire-limit>
 </fenced-lock>
 <fenced-lock>
 <name>limited-reentrant-lock</name>
 <lock-acquire-limit>10</lock-acquire-limit>
 </fenced-lock>
 <fenced-lock>
 <name>non-reentrant-lock</name>
 <lock-acquire-limit>1</lock-acquire-limit>
 </fenced-lock>
 </locks>
 </cp-subsystem>
 ...
</hazelcast>

348

YAML

hazelcast:
 cp-subsystem:
 locks:
 reentrant-lock:
 lock-acquire-limit: 0
 limited-reentrant-lock:
 lock-acquire-limit: 10
 non-reentrant-lock:
 lock-acquire-limit: 1

Programmatic Configuration:

config.getCPSubsystemConfig()
 .addLockConfig(new FencedLockConfig("reentrant-lock", 0))
 .addLockConfig(new FencedLockConfig("limited-reentrant-lock", 10))
 .addLockConfig(new FencedLockConfig("non-reentrant-lock", 1));

13.8.3. Semaphore Configuration

• name: Name of the CP ISemaphore.

• jdk-compatible: Enables / disables JDK compatibility of the CP ISemaphore. When it is JDK
compatible, just as in the j.u.c.Semaphore.release() method, a permit can be released without
acquiring it first, because acquired permits are not bound to threads. However, there is no auto-
cleanup of the acquired permits upon Hazelcast server / client failures. If a permit holder fails,
its permits must be released manually. When JDK compatibility is disabled, a HazelcastInstance
must acquire permits before releasing them and it cannot release a permit that it has not
acquired. It means, you can acquire a permit from one thread and release it from another
thread using the same HazelcastInstance, but not different HazelcastInstances. In this mode,
acquired permits are automatically released upon failure of the holder HazelcastInstance. So
there is a minor behavioral difference to the j.u.c.Semaphore.release() method.

JDK compatibility is disabled by default.

• initial-permits: Number of permits to initialize the Semaphore. If a positive value is set, the
Semaphore is initialized with the given number of permits.

Default value is 0.

Declarative Configuration:

349

XML

<hazelcast>
 ...
 <cp-subsystem>
 ...
 <semaphores>
 <cp-semaphore>
 <name>jdk-compatible-semaphore</name>
 <jdk-compatible>true</jdk-compatible>
 </cp-semaphore>
 <cp-semaphore>
 <name>another-semaphore</name>
 <jdk-compatible>false</jdk-compatible>
 <initial-permits>5</initial-permits>
 </cp-semaphore>
 </semaphores>
 </cp-subsystem>
 ...
</hazelcast>

YAML

hazelcast:
 cp-subsystem:
 semaphores:
 jdk-compatible-semaphore:
 jdk-compatible: true
 another-semaphore:
 jdk-compatible: false
 initial-permits: 5

Programmatic Configuration:

config.getCPSubsystemConfig()
 .addSemaphoreConfig(new SemaphoreConfig("jdk-compatible-semaphore", true, 0))
 .addSemaphoreConfig(new SemaphoreConfig("another-semaphore", false, 5));

13.8.4. Raft Algorithm Configuration

These parameters tune specific parameters of Hazelcast’s Raft consensus
algorithm implementation and are only for power users.

• leader-election-timeout-in-millis: Leader election timeout in milliseconds. If a candidate
cannot win the majority of the votes in time, a new election round is initiated.

Default value is 2000 milliseconds.

350

• leader-heartbeat-period-in-millis: Duration in milliseconds for a Raft leader node to send
periodic heartbeat messages to its followers in order to denote its liveliness. Periodic heartbeat
messages are actually append entries requests and can contain log entries for the lagging
followers. If a too small value is set, heartbeat messages are sent from Raft leaders to followers
too frequently and it can cause an unnecessary usage of CPU and network.

Default value is 5000 milliseconds.

• max-missed-leader-heartbeat-count: Maximum number of missed Raft leader heartbeats for a
follower to trigger a new leader election round. For instance, if leader-heartbeat-period-in-
millis is 1 second and this value is set to 5, then a follower triggers a new leader election round
if 5 seconds pass after the last heartbeat message of the current Raft leader node. If this
duration is too small, new leader election rounds can be triggered unnecessarily if the current
Raft leader temporarily slows down or a network congestion occurs. If it is too large, it takes
longer to detect failures of Raft leaders.

Default value is 5.

• append-request-max-entry-count: Maximum number of Raft log entries that can be sent as a
batch in a single append entries request. In Hazelcast’s Raft consensus algorithm
implementation, a Raft leader maintains a separate replication pipeline for each follower. It
sends a new batch of Raft log entries to a follower after the follower acknowledges the last
append entries request sent by the leader.

Default value is 100.

• commit-index-advance-count-to-snapshot: Number of new commits to initiate a new snapshot
after the last snapshot taken by the local Raft node. This value must be configured wisely as it
effects performance of the system in multiple ways. If a small value is set, it means that
snapshots are taken too frequently and Raft nodes keep a very short Raft log. If snapshots are
large and CP Subsystem Persistence is enabled, this can create an unnecessary overhead on I/O
performance. Moreover, a Raft leader can send too many snapshots to followers and this can
create an unnecessary overhead on network. On the other hand, if a very large value is set, it
can create a memory overhead since Raft log entries are going to be kept in memory until the
next snapshot.

Default value is 10000.

• uncommitted-entry-count-to-reject-new-appends: Maximum number of uncommitted log entries
in the leader’s Raft log before temporarily rejecting new requests of callers. Since Raft leaders
send log entries to followers in batches, they accumulate incoming requests in order to improve
the throughput. You can configure this field by considering your degree of concurrency in your
callers. For instance, if you have at most 1000 threads sending requests to a Raft leader, you can
set this field to 1000 so that callers do not get retry responses unnecessarily.

Default value is 100.

• append-request-backoff-timeout-in-millis: Timeout duration in milliseconds to apply backoff on
append entries requests. After a Raft leader sends an append entries request to a follower, it
will not send a subsequent append entries request either until the follower responds or this

351

timeout occurs. Backoff durations are increased exponentially if followers remain
unresponsive.

Default value is 100 milliseconds.

Declarative Configuration:

XML

<hazelcast>
 ...
 <cp-subsystem>
 ...
 <raft-algorithm>
 <leader-election-timeout-in-millis>2000</leader-election-timeout-in-
millis>
 <leader-heartbeat-period-in-millis>5000</leader-heartbeat-period-in-
millis>
 <max-missed-leader-heartbeat-count>5</max-missed-leader-heartbeat-count>
 <append-request-max-entry-count>100</append-request-max-entry-count>
 <commit-index-advance-count-to-snapshot>10000</commit-index-advance-count-
to-snapshot>
 <uncommitted-entry-count-to-reject-new-appends>200</uncommitted-entry-
count-to-reject-new-appends>
 <append-request-backoff-timeout-in-millis>250</append-request-backoff-
timeout-in-millis>
 </raft-algorithm>
 ...
 </cp-subsystem>
 ...
</hazelcast>

YAML

hazelcast:
 cp-subsystem:
 raft-algorithm:
 leader-election-timeout-in-millis: 2000
 leader-heartbeat-period-in-millis: 5000
 max-missed-leader-heartbeat-count: 5
 append-request-max-entry-count: 100
 commit-index-advance-count-to-snapshot: 10000
 uncommitted-entry-count-to-reject-new-appends: 200
 append-request-backoff-timeout-in-millis: 250

Programmatic Configuration:

352

config.getCPSubsystemConfig()
 .getRaftAlgorithmConfig()
 .setLeaderElectionTimeoutInMillis(2000)
 .setLeaderHeartbeatPeriodInMillis(5000)
 .setMaxMissedLeaderHeartbeatCount(5)
 .setAppendRequestMaxEntryCount(50)
 .setAppendRequestMaxEntryCount(1000)
 .setUncommittedEntryCountToRejectNewAppends(200)
 .setAppendRequestBackoffTimeoutInMillis(250);

13.9. CP Subsystem Unsafe Mode
When CP Subsystem is not enabled, that means CPSubsystemConfig.getCPMemberCount() is 0, CP data
structures operate in the unsafe mode. In this mode, they use Hazelcast’s partitioning and lazy
replication mechanisms instead of CP Subsystem’s consensus mechanism. For more information
about the lazy replication mechanism of Hazelcast, see the Consistency and Replication Model
chapter.

The unsafe mode provides weaker consistency guarantees compared to when CP Subsystem is
enabled. For example, when you increment an IAtomicLong or acquire a FencedLock, just before
crash of a member, even though you receive a success response, the write operation (increment of
IAtomicLong or acquire of FencedLock) can be lost (which cannot happen when CP Subsystem is
enabled). For this reason, the unsafe mode is not recommended for use-cases requiring strong
consistency. It is more suitable for development or testing. You should take this limitation into
consideration if you use CP Subsystem in production with the unsafe mode.

 CP Subsystem Management APIs are not available in the unsafe mode.

 In the unsafe mode, split-brain protection is not supported.

13.10. CP Subsystem Management
Unlike the dynamic nature of Hazelcast clusters, CP Subsystem requires manual intervention while
expanding/shrinking its size, or when a CP member crashes or becomes unreachable. When a CP
member becomes unreachable, it is not automatically removed from CP Subsystem because it could
be still alive and partitioned away.

Moreover, by default CP Subsystem works in memory without persisting any state to disk. It means
that a crashed CP member will not be able to recover by reloading its previous state. Therefore,
crashed CP members create a danger for gradually losing the majority of CP groups and eventually
total loss of the availability of CP Subsystem. To prevent such situations,
CPSubsystemManagementService offers a set of APIs. In addition, CP Subsystem Persistence can be
enabled to make CP members persist their local CP state to stable storage. Please see CP Subsystem
Persistence section for more details.

CP Subsystem relies on Hazelcast’s failure detectors to test reachability of CP members. Before

353

removing a CP member from CP Subsystem, please make sure that it is declared as unreachable by
Hazelcast’s failure detector and removed from Hazelcast cluster’s member list.

CP member additions and removals are internally handled by performing a single membership
change at a time. When multiple CP members are shutting down concurrently, their shutdown
process is executed serially. When a CP membership change is triggered, the METADATA CP group
creates a membership change plan for CP groups. Then, the scheduled changes are applied to the
CP groups one by one. After all CP group member removals are done, the shutting down CP
member is removed from the active CP members list and its shutdown process is completed. A shut-
down CP member is automatically replaced with another available CP member in all of its CP
groups, including the METADATA CP group, in order not to decrease or more importantly not to lose
the majority of CP groups. If there is no available CP member to replace a shutting down CP
member in a CP group, that group’s size is reduced by 1 and its majority value is recalculated.
Please note that this behavior is when CP Subsystem Persistence is disabled. When CP Subsystem
Persistence is enabled, shut-down CP members are not automatically removed from the active CP
members list and they are still considered as part of CP groups and majority calculations, because
they can come back by restoring their local CP state from stable storage. If you know that a shut-
down CP member will not be restarted, you need to remove that member from CP Subsystem via
CPSubsystemManagementService.removeCPMember(String).

A new CP member can be added to CP Subsystem to either increase the number of available CP
members for new CP groups or to fill the missing slots in existing CP groups. After the initial
Hazelcast cluster startup is done, an existing Hazelcast member can be be promoted to the CP
member role. This new CP member automatically joins to CP groups that have missing members,
and majority values of these CP groups are recalculated.

13.10.1. CP Subsystem Management APIs

You can access the CP Subsystem management APIs using the Java API or REST interface. To
communicate with the REST interface there are two options; one is to access REST endpoint URL
directly or using the cp-subsystem.sh shell script, which comes with the Hazelcast package.

The cp-cluster.sh script uses curl command, and curl must be installed to be able
to use the script.

• Get Local CP Member:

Returns the local CP member if this Hazelcast member is a part of CP Subsystem.

Java API

CPMember localMember = cpSubsystem.getLocalCPMember();

354

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members/local
OR
> sh cp-subsystem.sh -o get-local-member --address 127.0.0.1 --port 5701
+
Sample Response:
{
 "uuid": "6428d7fd-6079-48b2-902c-bdf6a376051e",
 "address": "[127.0.0.1]:5701"
}

• Get CP Groups:

Returns the list of active CP groups.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Collection<CPGroupId>> future = managementService.getCPGroupIds();
Collection<CPGroupId> groups = future.toCompletableFuture().get();

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups
OR
> sh cp-subsystem.sh -o get-groups --address 127.0.0.1 --port 5701
+
Sample Response:
[{
 "name": "METADATA",
 "id": 0
}, {
 "name": "atomics",
 "id": 8
}, {
 "name": "locks",
 "id": 14
}]

• Get a single CP Group:

Returns the active CP group with the given name. There can be at most one active CP group with
a given name.

355

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<CPGroup> future = managementService.getCPGroup(groupName);
CPGroup group = future.toCompletableFuture().get();

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME}
OR
> sh cp-subsystem.sh -o get-group --group ${CPGROUP_NAME} --address 127.0.0.1
--port 5701
+
Sample Response:
{
 "id": {
 "name": "locks",
 "id": 14
 },
 "status": "ACTIVE",
 "members": [{
 "uuid": "33f84b0f-46ba-4a41-9e0a-29ee284c1c2a",
 "address": "[127.0.0.1]:5703"
 }, {
 "uuid": "59ca804c-312c-4cd6-95ff-906b2db13acb",
 "address": "[127.0.0.1]:5704"
 }, {
 "uuid": "777ff6ea-b8a3-478d-9642-47d1db019b37",
 "address": "[127.0.0.1]:5705"
 }, {
 "uuid": "c7856e0f-25d2-4717-9919-88fb3ecb3384",
 "address": "[127.0.0.1]:5702"
 }, {
 "uuid": "c6229b44-8976-4602-bb57-d13cf743ccef",
 "address": "[127.0.0.1]:5701"
 }]
}

• Get CP Members:

Returns the list of active CP members in the cluster.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Collection<CPMember>> future = managementService.getCPMembers();
Collection<CPMember> members = future.toCompletableFuture().get();

356

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members
OR
> sh cp-subsystem.sh -o get-members --address 127.0.0.1 --port 5701
+
Sample Response:
[{
 "uuid": "33f84b0f-46ba-4a41-9e0a-29ee284c1c2a",
 "address": "[127.0.0.1]:5703"
}, {
 "uuid": "59ca804c-312c-4cd6-95ff-906b2db13acb",
 "address": "[127.0.0.1]:5704"
}, {
 "uuid": "777ff6ea-b8a3-478d-9642-47d1db019b37",
 "address": "[127.0.0.1]:5705"
}, {
 "uuid": "c6229b44-8976-4602-bb57-d13cf743ccef",
 "address": "[127.0.0.1]:5701"
}, {
 "uuid": "c7856e0f-25d2-4717-9919-88fb3ecb3384",
 "address": "[127.0.0.1]:5702"
}]

• Force Destroy a CP Group:

Unconditionally destroys the given active CP group without using the Raft algorithm mechanics.
This method must be used only when a CP group loses its majority and cannot make progress
anymore. Normally, membership changes in CP groups, such as CP member promotion or
removal, are done via the Raft consensus algorithm. However, when a CP group permanently
loses its majority, it will not be able to commit any new operation. Therefore, this method
ungracefully terminates the remaining members of the given CP group on the remaining CP
group members. It also performs a Raft commit to the METADATA CP group in order to update
the status of the destroyed group. Once a CP group is destroyed, all CP data structure proxies
created before the destroy fails with CPGroupDestroyedException. However, if a new proxy is
created afterwards, then this CP group is re-created from scratch with a new set of CP members.

This method is idempotent. It has no effect if the given CP group is already destroyed.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Void> future = managementService.forceDestroyCPGroup(groupName);
future.toCompletableFuture().get();

357

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME}/remove
OR
> sh cp-subsystem.sh -o force-destroy-group --group ${CPGROUP_NAME} --address
127.0.0.1 --port 5701 --groupname ${GROUPNAME} --password ${PASSWORD}

• Remove a CP Member:

Removes the given unreachable CP member from the active CP members list and all CP groups
it belongs to. If any other active CP member is available, it replaces the removed CP member in
its CP groups. Otherwise, CP groups which the removed CP member is a member of shrinks and
their majority values are recalculated.

Before removing a CP member from CP Subsystem, please make sure that it is
declared as unreachable by Hazelcast’s failure detector and removed from
Hazelcast’s member list. The behavior is undefined when a running CP
member is removed from CP Subsystem.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Void> future = managementService.removeCPMember(memberUUID);
future.toCompletableFuture().get();

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members/${CPMEMBER_UUID}/remove
OR
> sh cp-subsystem.sh -o remove-member --member ${CPMEMBER_UUID} --address 127.0.0.1
--port 5701 --groupname ${GROUPNAME} --password ${PASSWORD}

• Promote Local Member to a CP Member

Promotes the local Hazelcast member to the CP member. If the local member is already in the
active CP members list, i.e., it is already a CP member, then this method has no effect. When the
local member is promoted to the CP role, its member UUID is assigned as CP member UUID. The
promoted CP member will be added to the CP groups that have missing members, i.e., whose
current size is smaller than CPSubsystemConfig.getGroupSize().

358

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Void> future = managementService.promoteToCPMember();
future.toCompletableFuture().get();

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/members
OR
> sh cp-subsystem.sh -o promote-member --address 127.0.0.1 --port 5701 --groupname
${GROUPNAME} --password ${PASSWORD}

• Wipe and Reset CP Subsystem

Wipes and resets the whole CP Subsystem state and initializes it as if the Hazelcast cluster is
starting up initially. This method must be used only when the METADATA CP group loses its
majority and cannot make progress anymore.

After this method is called, all CP state and data are wiped and CP members start with empty
state.

This method can be invoked only from the Hazelcast master member, which is the first member
in the Hazelcast cluster member list. Moreover, the Hazelcast cluster must have at least
CPSubsystemConfig.getCPMemberCount() members.

This method must not be called while there are membership changes in the Hazelcast cluster.
Before calling this method, please make sure that there is no new member joining and all
existing Hazelcast members have seen the same member list.

To be able to use this method, the initial CP member count of CP Subsystem, which is defined by
CPSubsystemConfig.getCPMemberCount(), must be satisfied. For instance, if
CPSubsystemConfig.getCPMemberCount() is 5 and only 1 CP member is alive, when this method is
called, 4 additional AP Hazelcast members should exist in the cluster, or new Hazelcast
members must be started.

This method also deletes all data written by CP Subsystem Persistence.

This method triggers a new CP discovery process round. However, if the new CP discovery
round fails for any reason, Hazelcast members are not terminated, because Hazelcast members
are likely to contain data for AP data structures and their termination can cause data loss.
Hence, you need to observe the cluster and check if the CP discovery process completes
successfully.

This method is NOT idempotent and multiple invocations can break the whole
system! After calling this API, you must observe the system to see if the reset
process is successfully completed or failed before making another call.

359

 This method deletes all CP data written by CP Subsystem Persistence.

Java API

CPSubsystemManagementService managementService = cpSubsystem
.getCPSubsystemManagementService();
CompletionStage<Void> future = managementService.reset();
future.toCompletableFuture().get();

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-subsystem/reset
OR
> sh cp-subsystem.sh -o reset --address 127.0.0.1 --port 5701 --groupname
${GROUPNAME} --password ${PASSWORD}

13.10.2. Session Management API

There are two management API methods for session management.

• Get CP Group Sessions:

Returns all CP sessions that are currently active in a CP group.

Java API

CPSessionManagementService sessionManagementService = cpSubsystem
.getCPSessionManagementService();
CompletionStage<Collection<CPSession>> future = sessionManagementService
.getAllSessions(groupName);
Collection<CPSession> sessions = future.toCompletableFuture().get();

360

REST API

> curl http://127.0.0.1:5701/hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions
OR
> sh cp-subsystem.sh -o get-sessions --group ${CPGROUP_NAME} --address 127.0.0.1
--port 5701
+
Sample Response:
[{
 "id": 1,
 "creationTime": 1549008095530,
 "expirationTime": 1549008766630,
 "version": 73,
 "endpoint": "[127.0.0.1]:5701",
 "endpointType": "SERVER",
 "endpointName": "hz-member-1"
}, {
 "id": 2,
 "creationTime": 1549008115419,
 "expirationTime": 1549008765425,
 "version": 71,
 "endpoint": "[127.0.0.1]:5702",
 "endpointType": "SERVER",
 "endpointName": "hz-member-2"
}]

• Force Close a Session:

If a Hazelcast instance that owns a CP session crashes, its CP session is not terminated
immediately. Instead, the session is closed after
CPSubsystemConfig.getSessionTimeToLiveSeconds() passes. If it is known for sure that the session
owner is not partitioned and definitely crashed, this method can be used for closing the session
and releasing its resources immediately.

Java API

CPSessionManagementService sessionManagementService = cpSubsystem
.getCPSessionManagementService();
CompletionStage<Boolean> future = sessionManagementService.forceCloseSession
(groupName, sessionId);
future.toCompletableFuture().get();

361

REST API

> curl -X POST --data "${GROUPNAME}&${PASSWORD}"
http://127.0.0.1:5701/hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions/${CP_SESSION_ID}/remove
OR
> sh cp-subsystem.sh -o force-close-session --group ${CPGROUP_NAME} --session-id
${CP_SESSION_ID} --address 127.0.0.1 --port 5701 --groupname ${GROUPNAME}
--password ${PASSWORD}

14. Transactions
This chapter explains the usage of Hazelcast in a transactional context. It describes the Hazelcast
transaction types and how they work, how to provide XA (eXtended Architeture) transactions and
how to integrate Hazelcast with J2EE containers.

14.1. Creating a Transaction Interface
You create a TransactionContext object to begin, commit and rollback a transaction. You can obtain
transaction-aware instances of queues, maps, sets, lists and multimaps via TransactionContext, work
with them and commit/rollback in one shot. You can see the TransactionContext API here.

Hazelcast supports two types of transactions: ONE_PHASE and TWO_PHASE. The type of transaction
controls what happens when a member crashes while a transaction is committing. The default
behavior is TWO_PHASE.

• ONE_PHASE: By selecting this transaction type, you execute the transactions with a single phase
that is committing the changes. Since a preparing phase does not exist, the conflicts are not
detected. When a conflict happens while committing the changes, e.g., due to a member crash,
not all the changes are written and this leaves the system in an inconsistent state.

• TWO_PHASE: When you select this transaction type, Hazelcast first tries to execute the prepare
phase. This phase fails if there are any conflicts. Once the prepare phase is successful, Hazelcast
executes the commit phase (writing the changes). Before TWO_PHASE commits, Hazelcast
copies the commit log to other members, so in case of a member failure, another member can
complete the commit.

362

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/transaction/TransactionContext.html

public class TransactionalMember {

 public static void main(String[] args) throws Exception {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

 TransactionOptions options = new TransactionOptions()
 .setTransactionType(TransactionOptions.TransactionType.ONE_PHASE);

 TransactionContext context = hazelcastInstance.newTransactionContext(options
);
 context.beginTransaction();

 TransactionalQueue queue = context.getQueue("myqueue");
 TransactionalMap map = context.getMap("mymap");
 TransactionalSet set = context.getSet("myset");

 try {
 Object obj = queue.poll();
 //process obj
 map.put("1", "value1");
 set.add("value");
 //do other things
 context.commitTransaction();
 } catch (Throwable t) {
 context.rollbackTransaction();
 }
 }
}

In a transaction, operations are not executed immediately. Their changes are local to the
TransactionContext until committed. However, they ensure the changes via locks.

For the above example, when map.put is executed, no data is put in the map but the key is locked
against changes. While committing, operations are executed, the value is put to the map and the
key is unlocked.

The isolation level in Hazelcast Transactions is READ_COMMITTED on the level of a single partition. If
you are in a transaction, you can read the data in your transaction and the data that is already
committed. If you are not in a transaction, you can only read the committed data.

The REPEATABLE_READ isolation level can also be exercised using the method
getForUpdate() of TransactionalMap.

The isolation levels might be broken if the objects involved in the transaction span
multiple partitions. A reader which is not in a transaction can then temporarily
observe partially committed data.

363

14.1.1. Queue/Set/List vs. Map/Multimap

Hazelcast implements queue/set/list operations differently than map/multimap operations. For
queue operations (offer, poll), offered and/or polled objects are copied to the owner member in
order to safely commit/rollback. For map/multimap, Hazelcast first acquires the locks for the write
operations (put, remove) and holds the differences (what is added/removed/updated) locally for
each transaction. When the transaction is set to commit, Hazelcast releases the locks and apply the
differences. When rolling back, Hazelcast releases the locks and discard the differences.

MapStore and QueueStore do not participate in transactions. Hazelcast suppresses exceptions thrown
by the store in a transaction. See the XA Transactions section for further information.

14.1.2. ONE_PHASE vs. TWO_PHASE

As discussed in Creating a Transaction Interface, when you choose ONE_PHASE as the transaction
type, Hazelcast tracks all changes you make locally in a commit log, i.e., a list of changes. In this
case, all the other members are asked to agree that the commit can succeed and once they agree,
Hazelcast starts to write the changes. However, if the member that initiates the commit crashes
after it has written to at least one member (but has not completed writing to all other members),
your system may be left in an inconsistent state.

On the other hand, if you choose TWO_PHASE as the transaction type, the commit log is again
tracked locally but it is copied to another cluster member. Therefore, when a failure happens, e.g.,
the member initiating the commit crashes, you still have the commit log in another member and
that member can complete the commit. However, copying the commit log to another member
makes the TWO_PHASE approach slow.

Consequently, it is recommended that you choose ONE_PHASE as the transaction type if you want
better performance, and that you choose TWO_PHASE if reliability of your system is more
important than the performance.

It should be noted that in split-brain situations or during a member failure,
Hazelcast might not be able to always hold ACID guarantees.

14.2. Providing XA Transactions
XA describes the interface between the global transaction manager and the local resource manager.
XA allows multiple resources (such as databases, application servers, message queues and
transactional caches) to be accessed within the same transaction, thereby preserving the ACID
properties across applications. XA uses a two-phase commit to ensure that all resources either
commit or rollback any particular transaction consistently (all do the same).

When you implement the XAResource interface, Hazelcast provides XA transactions. You can obtain
the HazelcastXAResource instance via the HazelcastInstance getXAResource method. You can see the
HazelcastXAResource API here.

Below is example code that uses JTA API for transaction management.

364

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/transaction/HazelcastXAResource.html

cleanAtomikosLogs();

HazelcastInstance instance = Hazelcast.newHazelcastInstance();
HazelcastXAResource xaResource = instance.getXAResource();

UserTransactionManager tm = new UserTransactionManager();
tm.begin();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);
TransactionContext context = xaResource.getTransactionContext();
TransactionalMap<Object, Object> map = context.getMap("map");
map.put("key", "val");
transaction.delistResource(xaResource, XAResource.TMSUCCESS);

tm.commit();

IMap<Object, Object> m = instance.getMap("map");
Object val = m.get("key");
System.out.println("value: " + val);

cleanAtomikosLogs();
Hazelcast.shutdownAll();

15. Hazelcast JCache
This chapter describes the basics of JCache, the standardized Java caching layer API. The JCache
caching API is specified by the Java Community Process (JCP) as Java Specification Request (JSR)
107.

Caching keeps data in memory that either are slow to calculate/process or originate from another
underlying backend system. Caching is used to prevent additional request round trips for
frequently used data. In both cases, caching can be used to gain performance or decrease
application latencies.

15.1. JCache Overview
Hazelcast offers a specification-compliant JCache implementation. To show our commitment to this
important specification that the Java world was waiting for over a decade, we did not just provide a
simple wrapper around our existing APIs; we implemented a caching structure from the ground up
to optimize the behavior to the needs of JCache. The Hazelcast JCache implementation is 100% TCK
(Technology Compatibility Kit) compliant and therefore passes all specification requirements.

In addition to the given specification, we added some features like asynchronous versions of almost
all operations to give the user extra power.

This chapter gives a basic understanding of how to configure your application and how to setup

365

Hazelcast to be your JCache provider. It also shows examples of basic JCache usage as well as the
additionally offered features that are not part of JSR-107. To gain a full understanding of the JCache
functionality and provided guarantees of different operations, read the specification document
(which is also the main documentation for functionality) at the specification page of JSR-107.

15.1.1. Supported JCache Versions

The following versions of the JCache specification have been released:

• The original release, version 1.0.0, was released in March 2014. Hazelcast versions 3.3.1 up to
3.9.2 (included) implement version 1.0.0 of the JCache specification.

• A maintenance release, version 1.1.0 was released in December 2017. Hazelcast version 3.9.3
and higher implement JCache specification version 1.1.0.

• A patch release, version 1.1.1 was released in May 2019. Hazelcast version 3.12.1 and higher
implement JCache 1.1.1.

JCache 1.1.x versions are backwards compatible with JCache 1.0.0. As maintenance releases, JCache
1.1.x versions introduce clarifications and bug fixes in the specification, reference implementation
and TCK, without introducing any additional features.

15.1.2. Upgrading from JCache 1.1.0 to 1.1.1

JCache 1.1.1 is a bug-fix-only release. There are no behavioral differences between the JCache 1.1.0
and 1.1.1 specifications.

15.1.3. Upgrading from JCache 1.0.0 to 1.1.0

When upgrading from a Hazelcast version which implements JCache 1.0.0 to a version that
implements version 1.1.0 of the specification, some behavioral differences must be taken into
account:

• Invoking CacheManager.getCacheNames on a closed CacheManager returns an empty iterator under
JCache 1.0.0. While under JCache 1.1.0, it throws IllegalStateException.

• Runtime type checking is removed from CacheManager.getCache(String), so when using JCache
1.1.0 one may obtain a Cache by name even when its configured key/value types are not known.

• Statistics effects of Cache.putIfAbsent on misses and hits are properly applied when using
JCache 1.1.0, while under JCache 1.0.0 misses and hits were not updated.

Note that these behavioral differences apply on the Hazelcast member that executes the operation.
Thus when performing a rolling member upgrade from a JCache 1.0.0-compliant Hazelcast version
to a newer Hazelcast version that supports JCache 1.1.0, operations executed on the new members
exhibit JCache 1.1.0 behavior while those executed on old members implement JCache 1.0.0
behavior.

The complete list of issues addressed in JCache specification version 1.1.0 is available on Github.

366

https://www.jcp.org/en/jsr/detail?id=107
https://github.com/jsr107/jsr107spec/milestone/2?closed=1

15.2. JCache Setup and Configuration
This section shows what is necessary to provide the JCache API and the Hazelcast JCache
implementation for your application. In addition, it demonstrates the different configuration
options and describes the configuration properties.

15.2.1. Setting up Your Application

To provide your application with this JCache functionality, your application needs the JCache API
inside its classpath. This API is the bridge between the specified JCache standard and the
implementation provided by Hazelcast.

The method of integrating the JCache API JAR into the application classpath depends on the build
system used. For Maven, Gradle, SBT, Ivy and many other build systems, all using Maven-based
dependency repositories, perform the integration by adding the Maven coordinates to the build
descriptor.

As already mentioned, you have to add JCache coordinates next to the default Hazelcast coordinates
that might be already part of the application.

For Maven users, the coordinates look like the following code:

<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
 <version>1.1.1</version>
</dependency>

With other build systems, you might need to describe the coordinates in a different way.

Activating Hazelcast as JCache Provider

To activate Hazelcast as the JCache provider implementation, add either hazelcast-all.jar or
hazelcast.jar to the classpath (if not already available) by either one of the following Maven
snippets.

If you use hazelcast-all.jar:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-all</artifactId>
 <version>4.1.1</version>
</dependency>

If you use hazelcast.jar:

367

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast</artifactId>
 <version>4.1.1</version>
</dependency>

The users of other build systems have to adjust the definition of the dependency to their needs.

Connecting Clients to Remote Member

When you want to use Hazelcast clients to connect to a remote cluster, you do not need to perform
any additional steps; having hazelcast as a dependency does the work since it contains the client
libraries, too:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast</artifactId>
 <version>4.1.1</version>
</dependency>

For other build systems, for instance, ANT, the users have to download these dependencies from
either the JSR-107 specification and Hazelcast community website (hazelcast.org) or from the
Maven repository search page (maven.org).

15.2.2. Example JCache Application

Before moving on to configuration, let’s have a look at a basic introductory example. The following
code shows how to use the Hazelcast JCache integration inside an application in an easy but
typesafe way.

368

https://hazelcast.org/
http://search.maven.org

// Retrieve the CachingProvider which is automatically backed by
// the chosen Hazelcast member or client provider.
CachingProvider cachingProvider = Caching.getCachingProvider();

// Create a CacheManager.
CacheManager cacheManager = cachingProvider.getCacheManager();

// Create a simple but typesafe configuration for the cache.
CompleteConfiguration<String, String> config =
 new MutableConfiguration<String, String>()
 .setTypes(String.class, String.class);

// Create and get the cache.
Cache<String, String> cache = cacheManager.createCache("example", config);
// Alternatively to request an already existing cache:
// Cache<String, String> cache = cacheManager
// .getCache(name, String.class, String.class);

// Put a value into the cache.
cache.put("world", "Hello World");

// Retrieve the value again from the cache.
String value = cache.get("world");

// Print the value 'Hello World'.
System.out.println(value);

Although the example is simple, let’s go through the code lines one by one.

Getting the Hazelcast JCache Implementation

First of all, we retrieve the javax.cache.spi.CachingProvider using the static method from
javax.cache.Caching.getCachingManager(), which automatically picks up Hazelcast as the underlying
JCache implementation, if available in the classpath. This way, the Hazelcast implementation of a
CachingProvider automatically starts a new Hazelcast member or client (depending on the chosen
provider type) and pick up the configuration from either the command line parameter or from the
classpath. We will show how to use an existing HazelcastInstance later in this chapter; for now, we
keep it simple.

Setting up the JCache Entry Point

In the next line, we ask the CachingProvider to return a javax.cache.CacheManager. This is the general
application’s entry point into JCache. The CacheManager creates and manages named caches.

Configuring the Cache Before Creating It

The next few lines create a simple javax.cache.configuration.MutableConfiguration to configure the
cache before actually creating it. In this case, we only configure the key and value types to make the
cache typesafe which is highly recommended and checked on retrieval of the cache.

369

Creating the Cache

To create the cache, we call javax.cache.CacheManager.createCache() with a name for the cache and
the previously created configuration; the call returns the created cache. If you need to retrieve a
previously created cache, you can use the corresponding method overload
javax.cache.CacheManager.getCache(). If the cache was created using type parameters, you must
retrieve the cache afterward using the type checking version of getCache.

get, put and getAndPut

The following lines are simple put and get calls from the java.util.Map interface. The
javax.cache.Cache.put() has a void return type and does not return the previously assigned value of
the key. To imitate the java.util.Map.put() method, the JCache cache has a method called getAndPut.

15.2.3. Configuring for JCache

Hazelcast JCache provides two different methods for cache configuration:

• declaratively: using hazelcast.xml or hazelcast-client.xml

• programmatically: the typical Hazelcast way, using the Config API seen above

Declarative Configuration

You can declare your JCache cache configuration using the hazelcast.xml or hazelcast-client.xml
configuration files. Using this declarative configuration makes creating the javax.cache.Cache fully
transparent and automatically ensures internal thread safety. You do not need a call to
javax.cache.Cache.createCache() in this case: you can retrieve the cache using
javax.cache.Cache.getCache() overloads and by passing in the name defined in the configuration
for the cache.

To retrieve the cache that you defined in the declaration files, you only need to perform a simple
call (example below) because the cache is created automatically by the implementation.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager
 .getCache("default", Object.class, Object.class);

Note that this section only describes the JCache provided standard properties. For the Hazelcast
specific properties, see the ICache Configuration section.

370

XML

<hazelcast>
 ...
 <cache name="default">
 <key-type class-name="java.lang.Object" />
 <value-type class-name="java.lang.Object" />
 <statistics-enabled>false</statistics-enabled>
 <management-enabled>false</management-enabled>
 <read-through>true</read-through>
 <write-through>true</write-through>
 <cache-loader-factory
 class-name="com.example.cache.MyCacheLoaderFactory" />
 <cache-writer-factory
 class-name="com.example.cache.MyCacheWriterFactory" />
 <expiry-policy-factory
 class-name="com.example.cache.MyExpiryPolicyFactory" />
 <cache-entry-listeners>
 <cache-entry-listener old-value-required="false" synchronous="false">
 <cache-entry-listener-factory
 class-name="com.example.cache.MyEntryListenerFactory" />
 <cache-entry-event-filter-factory
 class-name="com.example.cache.MyEntryEventFilterFactory" />
 </cache-entry-listener>
 </cache-entry-listeners>
 </cache>
 ...
</hazelcast>

371

YAML

hazelcast:
 cache:
 default:
 key-type:
 class-name: java.lang.Object
 value-type:
 class-name: java.lang.Object
 statistics-enabled: false
 management-enabled: false
 read-through: true
 write-through: true
 cache-loader-factory:
 class-name: com.example.cache.MyCacheLoaderFactory
 cache-writer-factory:
 class-name: com.example.cache.MyCacheWriterFactory
 expiry-policy-factory:
 class-name: com.example.cache.MyExpirePolicyFactory
 cache-entry-listeners:
 cache-entry-listener:
 old-value-required: false
 synchronous: false
 cache-entry-listener-factory:
 class-name: com.example.cache.MyEntryListenerFactory
 cache-entry-event-filter-factory:
 class-name: com.example.cache.MyEntryEventFilterFactory

• key-type#class-name: Fully qualified class name of the cache key type. Its default value is
java.lang.Object.

• value-type#class-name: Fully qualified class name of the cache value type. Its default value is
java.lang.Object.

• statistics-enabled: If set to true, statistics like cache hits and misses are collected. Its default
value is false.

• management-enabled: If set to true, JMX beans are enabled and collected statistics are provided. It
doesn’t automatically enable statistics collection. Its default value is false.

• read-through: If set to true, enables read-through behavior of the cache to an underlying
configured javax.cache.integration.CacheLoader which is also known as lazy-loading. Its default
value is false.

• write-through: If set to true, enables write-through behavior of the cache to an underlying
configured javax.cache.integration.CacheWriter which passes any changed value to the
external backend resource. Its default value is false.

• cache-loader-factory#class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.integration.CacheLoader instance to the cache.

• cache-writer-factory#class-name: Fully qualified class name of the

372

javax.cache.configuration.Factory implementation providing a
javax.cache.integration.CacheWriter instance to the cache.

• expiry-policy-factory#-class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.expiry.ExpiryPolicy instance to the cache.

• cache-entry-listener: A set of attributes and elements, explained below, to describe a
javax.cache.event.CacheEntryListener.

◦ cache-entry-listener#old-value-required: If set to true, previously assigned values for the
affected keys are sent to the javax.cache.event.CacheEntryListener implementation. Setting
this attribute to true creates additional traffic. Its default value is false.

◦ cache-entry-listener#synchronous: If set to true, the javax.cache.event.CacheEntryListener
implementation is called in a synchronous manner. Its default value is false.

◦ cache-entry-listener/entry-listener-factory#class-name: Fully qualified class name of the
javax.cache.configuration.Factory implementation providing a
javax.cache.event.CacheEntryListener instance.

◦ cache-entry-listener/entry-event-filter-factory#class-name: Fully qualified class name of
the javax.cache.configuration.Factory implementation providing a
javax.cache.event.CacheEntryEventFilter instance.

The JMX MBeans provided by Hazelcast JCache show statistics of the local member
only. To show the cluster-wide statistics, the user should collect statistic
information from all members and accumulate them to the overall statistics.

Programmatic Configuration

To configure the JCache programmatically:

• either instantiate javax.cache.configuration.MutableConfiguration if you will use only the
JCache standard configuration,

• or instantiate com.hazelcast.config.CacheConfig for a deeper Hazelcast integration.

com.hazelcast.config.CacheConfig offers additional options that are specific to Hazelcast, such as
asynchronous and synchronous backup counts. Both classes share the same supertype interface
javax.cache.configuration.CompleteConfiguration which is part of the JCache standard.

To stay vendor independent, try to keep your code as near as possible to the
standard JCache API. We recommend that you use declarative configuration and
that you use the javax.cache.configuration.Configuration or
javax.cache.configuration.CompleteConfiguration interfaces in your code only
when you need to pass the configuration instance throughout your code.

If you don’t need to configure Hazelcast specific properties, we recommend that you instantiate
javax.cache.configuration.MutableConfiguration and that you use the setters to configure Hazelcast
as shown in the example in the Example JCache Application section. Since the configurable
properties are the same as the ones explained in the JCache Declarative Configuration section, they

373

are not mentioned here. For Hazelcast specific properties, please read the ICache Configuration
section section.

15.3. JCache Providers
Use JCache providers to create caches for a specification compliant implementation. Those
providers abstract the platform specific behavior and bindings and provide the different JCache
required features.

Hazelcast has two types of providers. Depending on your application setup and the cluster topology,
you can use the Client Provider (used by Hazelcast clients) or the Member Provider (used by cluster
members).

For more information on cluster topologies and Hazelcast clients, see the Hazelcast Topology
section.

15.3.1. Configuring JCache Provider

Hazelcast provides three CachingProvider implementations:

• A member-side implementation: the CacheManagers created by this provider are backed by
member-side HazelcastInstances.

• A client-side implementation: the CacheManagers created by this provider are backed by client-
side HazelcastInstances.

• A delegating caching provider that can be configured to delegate to the member- or client-side
implementation.

When Hazelcast is the only JCache provider on the classpath, the default caching provider returned
by javax.cache.CachingProvider#getCachingProvider() is the delegating CachingProvider.

// provides the default delegating caching provider
CachingProvider provider = javax.cache.Caching.getCachingProvider();

By default, the delegating caching provider chooses the client-side implementation, however it can
be configured to explicitly pick the client- or member-side implementation. This is achieved by
setting the hazelcast.jcache.provider.type system property to client or member. The legacy value
server is also accepted as an alias for member, however its usage is discouraged as it will be removed
in a future version.

System.setProperty("hazelcast.jcache.provider.type", "member");
// the returned provider will delegate to the member-side caching provider
CachingProvider provider = javax.cache.Caching.getCachingProvider();

You can also configure the default CachingProvider by setting its fully qualified class name to the
value of the javax.cache.spi.CachingProvider system property. The system property can be defined
at the java command line (using -Djavax.cache.spi.CachingProvider=<fully-qualified-class-name>)

374

or programmatically using java.lang.System#setProperty(String, String).

The JCache API also provides methods to explicitly request the instantiation of a specific
CachingProvider by supplying its fully qualified class name. This is useful to explicitly choose
Hazelcast as CachingProvider in case multiple implementations reside on the classpath.

// provides the member-side caching provider
CachingProvider provider = Caching.getCachingProvider(
"com.hazelcast.cache.HazelcastMemberCachingProvider");

Since Hazelcast 4.0.3 the fully qualified class names for Hazelcast’s CachingProvider

implementations are:

• Delegating CachingProvider (picks member- or client-side provider depending on configuration):
com.hazelcast.cache.HazelcastCachingProvider

• Member-side: com.hazelcast.cache.HazelcastMemberCachingProvider. The legacy class name
com.hazelcast.cache.impl.HazelcastServerCachingProvider is also accepted, however its usage is
discouraged and will be removed in a future version.

• Client-side: com.hazelcast.client.cache.HazelcastClientCachingProvider. The legacy class name
com.hazelcast.client.cache.impl.HazelcastClientCachingProvider is also accepted, however its
usage is discouraged and will be removed in a future version.

15.4. JCache API
This section explains the JCache API by providing simple examples and use cases. While walking
through the examples, we will have a look at a couple of the standard API classes and see how these
classes are used.

15.4.1. JCache API Application Example

The code in this subsection creates a small account application by providing a caching layer over an
imagined database abstraction. The database layer is simulated using a single demo data in a
simple DAO interface. To show the difference between the "database" access and retrieving values
from the cache, a small waiting time is used in the DAO implementation to simulate network and
database latency.

Creating User Class Example

Before we implement the JCache caching layer, let’s have a quick look at some basic classes we need
for this example.

The User class is the representation of a user table in the database. To keep it simple, it has just two
properties: userId and username.

375

public class User implements Serializable {

 private int userId;
 private String username;

 public User() {
 }

Creating DAO Interface Example

The DAO interface is also kept easy in this example. It provides a simple method to retrieve (find) a
user by its userId.

public interface UserDao {

 User findUserById(int userId);
 boolean storeUser(int userId, User user);
 boolean removeUser(int userId);
 Collection<Integer> allUserIds();
}

Configuring JCache Example

To show most of the standard features, the configuration example is a little more complex.

376

// Create javax.cache.configuration.CompleteConfiguration subclass
CompleteConfiguration<Integer, User> config =
 new MutableConfiguration<Integer, User>()
 // Configure the cache to be typesafe
 .setTypes(Integer.class, User.class)
 // Configure to expire entries 30 secs after creation in the cache
 .setExpiryPolicyFactory(FactoryBuilder.factoryOf(
 new AccessedExpiryPolicy(new Duration(TimeUnit.SECONDS, 30))
))
 // Configure read-through of the underlying store
 .setReadThrough(true)
 // Configure write-through to the underlying store
 .setWriteThrough(true)
 // Configure the javax.cache.integration.CacheLoader
 .setCacheLoaderFactory(FactoryBuilder.factoryOf(
 new UserCacheLoader(userDao)
))
 // Configure the javax.cache.integration.CacheWriter
 .setCacheWriterFactory(FactoryBuilder.factoryOf(
 new UserCacheWriter(userDao)
))
 // Configure the javax.cache.event.CacheEntryListener with no
 // javax.cache.event.CacheEntryEventFilter, to include old value
 // and to be executed synchronously
 .addCacheEntryListenerConfiguration(
 new MutableCacheEntryListenerConfiguration<Integer, User>(
 new UserCacheEntryListenerFactory(),
 null, true, true
)
);

Let’s go through this configuration line by line.

Setting the Cache Type and Expire Policy

First, we set the expected types for the cache, which is already known from the previous example.
On the next line, a javax.cache.expiry.ExpiryPolicy is configured. Almost all integration
ExpiryPolicy implementations are configured using javax.cache.configuration.Factory instances.
Factory and FactoryBuilder are explained later in this chapter.

Configuring Read-Through and Write-Through

The next two lines configure the thread that are read-through and write-through to the underlying
backend resource that is configured over the next few lines. The JCache API offers
javax.cache.integration.CacheLoader and javax.cache.integration.CacheWriter to implement
adapter classes to any kind of backend resource, e.g., JPA, JDBC, or any other backend technology
implementable in Java. The interface provides the typical CRUD operations like create, get, update,
delete and some bulk operation versions of those common operations. We will look into the
implementation of those implementations later.

377

Configuring Entry Listeners

The last configuration setting defines entry listeners based on sub-interfaces of
javax.cache.event.CacheEntryListener. This config does not use a
javax.cache.event.CacheEntryEventFilter since the listener is meant to be fired on every change
that happens on the cache. Again we will look in the implementation of the listener in later in this
chapter.

Full Example Code

A full running example that is presented in this subsection is available in the code samples
repository. The application is built to be a command line app. It offers a small shell to accept
different commands. After startup, you can enter help to see all available commands and their
descriptions.

15.4.2. JCache Base Classes

In the Example JCache Application section, we have already seen a couple of the base classes and
explained how those work. The following are quick descriptions of them:

javax.cache.Caching:

The access point into the JCache API. It retrieves the general CachingProvider backed by any
compliant JCache implementation, such as Hazelcast JCache.

javax.cache.spi.CachingProvider:

The SPI that is implemented to bridge between the JCache API and the implementation itself.
Hazelcast members and clients use different providers chosen as seen in the Configuring JCache
Provider section which enable the JCache API to interact with Hazelcast clusters.

When a javax.cache.spi.CachingProvider.getCacheManager() overload that takes a
java.lang.ClassLoader argument is used, this classloader will be a part of the scope of the created
java.cache.Cache, and it is not possible to retrieve it on other members. We advise not to use those
overloads, as they are not meant to be used in distributed environments!

javax.cache.CacheManager:

The CacheManager provides the capability to create new and manage existing JCache caches.

A javax.cache.Cache instance created with key and value types in the configuration
provides a type checking of those types at retrieval of the cache. For that reason,
all non-types retrieval methods like getCache throw an exception because types
cannot be checked.

javax.cache.configuration.Configuration, javax.cache.configuration.MutableConfiguration:

These two classes are used to configure a cache prior to retrieving it from a CacheManager. The
Configuration interface, therefore, acts as a common super type for all compatible configuration
classes such as MutableConfiguration.

378

https://github.com/hazelcast/hazelcast-code-samples/tree/master/jcache/src/main/java/com/hazelcast/examples/application
https://github.com/hazelcast/hazelcast-code-samples/tree/master/jcache/src/main/java/com/hazelcast/examples/application

Hazelcast itself offers a special implementation (com.hazelcast.config.CacheConfig) of the
Configuration interface which offers more options on the specific Hazelcast properties that can be
set to configure features like synchronous and asynchronous backups counts or selecting the
underlying in-memory format of the cache. For more information on this configuration class, see
the reference in the JCache Programmatic Configuration section.

javax.cache.Cache:

This interface represents the cache instance itself. It is comparable to java.util.Map but offers
special operations dedicated to the caching use case. Therefore, for example
javax.cache.Cache.put(), unlike java.util.Map.put(), does not return the old value previously
assigned to the given key.

Bulk operations on the Cache interface guarantee atomicity per entry but not over
all given keys in the same bulk operations since no transactional behavior is
applied over the whole batch process.

15.4.3. Implementing Factory and FactoryBuilder

The javax.cache.configuration.Factory implementations configure features like CacheEntryListener,
ExpiryPolicy and CacheLoaders or CacheWriters. These factory implementations are required to
distribute the different features to members in a cluster environment like Hazelcast. Therefore,
these factory implementations have to be serializable.

Factory implementations are easy to do, as they follow the default Provider- or Factory-Pattern. The
example class UserCacheEntryListenerFactory shown below implements a custom JCache Factory.

public class UserCacheEntryListenerFactory implements Factory<CacheEntryListener
<Integer, User>> {

 @Override
 public CacheEntryListener<Integer, User> create() {
 // just create a new listener instance
 return new UserCacheEntryListener();
 }
}

To simplify the process for the users, JCache API offers a set of helper methods collected in
javax.cache. configuration.FactoryBuilder. In the above configuration example,
FactoryBuilder.factoryOf() creates a singleton factory for the given instance.

15.4.4. Implementing CacheLoader

javax.cache.integration.CacheLoader loads cache entries from any external backend resource.

Cache read-through

If the cache is configured to be read-through, then CacheLoader.load() is called transparently from

379

the cache when the key or the value is not yet found in the cache. If no value is found for a given
key, it returns null.

If the cache is not configured to be read-through, nothing is loaded automatically. The user code
must call javax.cache.Cache.loadAll() to load data for the given set of keys into the cache.

For the bulk load operation (loadAll()), some keys may not be found in the returned result set. In
this case, a javax.cache.integration.CompletionListener parameter can be used as an asynchronous
callback after all the key-value pairs are loaded because loading many key-value pairs can take lots
of time.

CacheLoader Example

Let’s look at the UserCacheLoader implementation. This implementation is quite straight forward.

• It implements CacheLoader.

• It overrides the load method to compute or retrieve the value corresponding to key.

• It overrides the loadAll method to compute or retrieve the values corresponding to keys.

An important note is that any kind of exception has to be wrapped into
javax.cache.integration.CacheLoaderException.

380

public class UserCacheLoader implements CacheLoader<Integer, User>, Serializable {

 private final UserDao userDao;

 public UserCacheLoader(UserDao userDao) {
 // store the dao instance created externally
 this.userDao = userDao;
 }

 @Override
 public User load(Integer key) throws CacheLoaderException {
 // just call through into the dao
 return userDao.findUserById(key);
 }

 @Override
 public Map<Integer, User> loadAll(Iterable<? extends Integer> keys) throws
CacheLoaderException {
 // create the resulting map
 Map<Integer, User> loaded = new HashMap<Integer, User>();
 // for every key in the given set of keys
 for (Integer key : keys) {
 // try to retrieve the user
 User user = userDao.findUserById(key);
 // if user is not found do not add the key to the result set
 if (user != null) {
 loaded.put(key, user);
 }
 }
 return loaded;
 }
}

15.4.5. CacheWriter

You use a javax.cache.integration.CacheWriter to update an external backend resource. If the cache
is configured to be write-through, this process is executed transparently to the user’s code.
Otherwise, there is currently no way to trigger writing changed entries to the external resource to a
user-defined point in time.

If bulk operations throw an exception, java.util.Collection has to be cleaned of all successfully
written keys so the cache implementation can determine what keys are written and can be applied
to the cache state.

The following example performs the following tasks:

• It implements CacheWriter.

• It overrides the write method to write the specified entry to the underlying store.

381

• It overrides the writeAll method to write the specified entires to the underlying store.

• It overrides the delete method to delete the key entry from the store.

• It overrides the deleteAll method to delete the data and keys from the underlying store for the
given collection of keys, if present.

public class UserCacheWriter implements CacheWriter<Integer, User>, Serializable {

 private final UserDao userDao;

 public UserCacheWriter(UserDao userDao) {
 // store the dao instance created externally
 this.userDao = userDao;
 }

 @Override
 public void write(Cache.Entry<? extends Integer, ? extends User> entry) throws
CacheWriterException {
 // store the user using the dao
 userDao.storeUser(entry.getKey(), entry.getValue());
 }

 @Override
 public void writeAll(Collection<Cache.Entry<? extends Integer, ? extends User>>
entries) throws CacheWriterException {
 // retrieve the iterator to clean up the collection from written keys in case
of an exception
 Iterator<Cache.Entry<? extends Integer, ? extends User>> iterator = entries
.iterator();
 while (iterator.hasNext()) {
 // write entry using dao
 write(iterator.next());
 // remove from collection of keys
 iterator.remove();
 }
 }

 @Override
 public void delete(Object key) throws CacheWriterException {
 // test for key type
 if (!(key instanceof Integer)) {
 throw new CacheWriterException("Illegal key type");
 }
 // remove user using dao
 userDao.removeUser((Integer) key);
 }

 @Override
 public void deleteAll(Collection<?> keys) throws CacheWriterException {
 // retrieve the iterator to clean up the collection from written keys in case

382

of an exception
 Iterator<?> iterator = keys.iterator();
 while (iterator.hasNext()) {
 // write entry using dao
 delete(iterator.next());
 // remove from collection of keys
 iterator.remove();
 }
 }
}

Again, the implementation is pretty straightforward and also as above all exceptions thrown by the
external resource, like java.sql.SQLException has to be wrapped into a
javax.cache.integration.CacheWriterException. Note this is a different exception from the one
thrown by CacheLoader.

15.4.6. Implementing EntryProcessor

With javax.cache.processor.EntryProcessor, you can apply an atomic function to a cache entry. In a
distributed environment like Hazelcast, you can move the mutating function to the member that
owns the key. If the value object is big, it might prevent traffic by sending the object to the mutator
and sending it back to the owner to update it.

By default, Hazelcast JCache sends the complete changed value to the backup partition. Again, this
can cause a lot of traffic if the object is big. The Hazelcast ICache extension can also prevent this.
Further information is available at Implementing BackupAwareEntryProcessor.

An arbitrary number of arguments can be passed to the Cache.invoke() and Cache.invokeAll()
methods. All of those arguments need to be fully serializable because in a distributed environment
like Hazelcast, it is very likely that these arguments have to be passed around the cluster.

The following example performs the following tasks.

• It implements EntryProcessor.

• It overrides the process method to process an entry.

383

public class UserUpdateEntryProcessor implements EntryProcessor<Integer, User, User> {

 @Override
 public User process(MutableEntry<Integer, User> entry, Object... arguments) throws
EntryProcessorException {
 // test arguments length
 if (arguments.length < 1) {
 throw new EntryProcessorException("One argument needed: username");
 }

 // get first argument and test for String type
 Object argument = arguments[0];
 if (!(argument instanceof String)) {
 throw new EntryProcessorException("First argument has wrong type, required
java.lang.String");
 }

 // retrieve the value from the MutableEntry
 User user = entry.getValue();

 // retrieve the new username from the first argument
 String newUsername = (String) arguments[0];

 // set the new username
 user.setUsername(newUsername);

 // set the changed user to mark the entry as dirty
 entry.setValue(user);

 // return the changed user to return it to the caller
 return user;
 }
}

By executing the bulk Cache.invokeAll() operation, atomicity is only guaranteed
for a single cache entry. No transactional rules are applied to the bulk operation.

JCache EntryProcessor implementations are not allowed to call javax.cache.Cache
methods. This prevents operations from deadlocking between different calls.

In addition, when using a Cache.invokeAll() method, a java.util.Map is returned that maps the key
to its javax.cache.processor.EntryProcessorResult, which itself wraps the actual result or a thrown
javax.cache.processor.EntryProcessorException.

15.4.7. CacheEntryListener

The javax.cache.event.CacheEntryListener implementation is straight forward. CacheEntryListener
is a super-interface that is used as a marker for listener classes in JCache. The specification brings a

384

set of sub-interfaces.

• CacheEntryCreatedListener: Fires after a cache entry is added (even on read-through by a
CacheLoader) to the cache.

• CacheEntryUpdatedListener: Fires after an already existing cache entry updates.

• CacheEntryRemovedListener: Fires after a cache entry was removed (not expired) from the cache.

• CacheEntryExpiredListener: Fires after a cache entry has been expired. Expiry does not have to
be a parallel process-- Hazelcast JCache implementation detects and removes expired entries
periodically. Therefore, the expiration event may not be fired as soon as the entry expires. See
ExpiryPolicy for details.

To configure CacheEntryListener, add a javax.cache.configuration.CacheEntryListenerConfiguration
instance to the JCache configuration class, as seen in the above example configuration. In addition,
listeners can be configured to be executed synchronously (blocking the calling thread) or
asynchronously (fully running in parallel).

In this example application, the listener is implemented to print event information on the console.
That visualizes what is going on in the cache. This application performs the following tasks:

• It implements the CacheEntryCreatedListener.onCreated method to call after an entry is created.

• It implements the CacheEntryUpdatedListener.onUpdated method to call after an entry is updated.

• It implements the CacheEntryRemovedListener.onRemoved method to call after an entry is
removed.

• It implements the CacheEntryExpiredListener.onExpired method to call after an entry expires.

• It implements printEvents to print event information on the console.

385

class UserCacheEntryListener implements CacheEntryCreatedListener<Integer, User>,
 CacheEntryUpdatedListener<Integer, User>,
 CacheEntryRemovedListener<Integer, User>,
 CacheEntryExpiredListener<Integer, User> {

 @Override
 public void onCreated(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
 throws CacheEntryListenerException {

 printEvents(cacheEntryEvents);
 }

 @Override
 public void onUpdated(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
 throws CacheEntryListenerException {

 printEvents(cacheEntryEvents);
 }

 @Override
 public void onRemoved(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
 throws CacheEntryListenerException {

 printEvents(cacheEntryEvents);
 }

 @Override
 public void onExpired(Iterable<CacheEntryEvent<? extends Integer, ? extends User>>
cacheEntryEvents)
 throws CacheEntryListenerException {

 printEvents(cacheEntryEvents);
 }

 private void printEvents(Iterable<CacheEntryEvent<? extends Integer, ? extends
User>> cacheEntryEvents) {
 for (CacheEntryEvent<? extends Integer, ? extends User> event :
cacheEntryEvents) {
 System.out.println(event.getEventType());
 }
 }
}

15.4.8. ExpiryPolicy

In JCache, javax.cache.expiry.ExpiryPolicy implementations are used to automatically expire cache

386

entries based on different rules.

JCache does not require expired entries to be removed from the cache immediately. It only enforces
that expired entries are not returned from cache. Therefore, exact time of removal is
implementation specific. Hazelcast complies JCache by checking the entries for expiration at the
time of get operations (lazy expiration). In addition to that, Hazelcast uses a periodic task to detect
and remove expired entries as soon as possible (eager expiration). Thanks to eager expiry, all
expired entries are removed from the memory eventually even when they are not touched again.
So the space used by such entries are released as well.

For a detailed explanation of interaction between expiry policies and JCache API, see the table in
the Expiry Policies section of JCache documentation.

Expiry timeouts are defined using javax.cache.expiry.Duration, which is a pair of
java.util.concurrent.TimeUnit, that describes a time unit and a long, defining the timeout value.
The minimum allowed TimeUnit is TimeUnit.MILLISECONDS. The long value durationAmount must be
equal or greater than zero. A value of zero (or Duration.ZERO) indicates that the cache entry expires
immediately.

By default, JCache delivers a set of predefined expiry strategies in the standard API.

• AccessedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on accessing the key.

• CreatedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is never updated.

• EternalExpiryPolicy: Never expires. This is the default behavior, similar to ExpiryPolicy being
set to null.

• ModifiedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on updating the key.

• TouchedExpiryPolicy: Expires after a given set of time measured from creation of the cache
entry. The expiry timeout is updated on accessing or updating the key.

Because EternalExpiryPolicy does not expire cache entries, it is still possible to evict values from
memory if an underlying CacheLoader is defined.

15.5. JCache - Hazelcast Instance Integration
You can retrieve javax.cache.Cache instances using the interface ICacheManager of HazelcastInstance.
This interface has the method getCache(String name) where name is the prefixed cache name. The
prefixes in the cache name are URI and classloader prefixes, which are optional.

If you create a cache through a ICacheManager which has its own specified URI scope (and/or
specified classloader), it must be prepended to the pure cache name as a prefix while retrieving the
cache through getCache(String name). Prefix generation for full cache name is exposed through
com.hazelcast.cache.CacheUtil.getPrefixedCacheName(String name, java.net.URI uri, ClassLoader

classloader). If the URI scope and classloader is not specified, the pure cache name can be used
directly while retrieving cache over ICacheManager.

387

https://www.jcp.org/en/jsr/detail?id=107

If you have a cache which is not created, but is defined/exists (cache is specified in Hazelcast
configuration but not created yet), you can retrieve this cache by its name. This also triggers cache
creation before retrieving it. This retrieval is supported through HazelcastInstance. However,
HazelcastInstance does not support creating a cache by specifying configuration; this is supported
by Hazelcast’s ICacheManager as it is.

If a valid (rather than 1.0.0-PFD or 0.x versions) JCache library does not exist on
the classpath, IllegalStateException is thrown.

15.5.1. JCache and Hazelcast Instance Awareness

HazelcastInstance is injected into the following cache API interfaces (provided by javax.cache.Cache
and com.hazelcast.cache.ICache) if they implement HazelcastInstanceAware interface:

• ExpiryPolicyFactory and ExpiryPolicy [provided by javax.cache.Cache]

• CacheLoaderFactory and CacheLoader [provided by javax.cache.Cache]

• CacheWriteFactory and CacheWriter [provided by javax.cache.Cache]

• EntryProcessor [provided by javax.cache.Cache]

• CacheEntryListener (CacheEntryCreatedListener, CacheEntryUpdatedListener,
CacheEntryRemovedListener, CacheEntryExpiredListener) [provided by javax.cache.Cache]

• CacheEntryEventFilter [provided by javax.cache.Cache]

• CompletionListener [provided by javax.cache.Cache]

• CachePartitionLostListener [provided by com.hazelcast.cache.ICache]

15.6. Hazelcast JCache Extension - ICache
Hazelcast provides extension methods to Cache API through the interface
com.hazelcast.cache.ICache.

It has two sets of extensions:

• Asynchronous version of all cache operations. See Async Operations.

• Cache operations with custom ExpiryPolicy parameter to apply on that specific operation. See
Custom ExpiryPolicy.

ICache data structure can also be used by Hazelcast Jet for Real-Time Stream
Processing (by enabling the Event Journal on your cache) and Fast Batch
Processing. Hazelcast Jet uses ICache as a source (reads data from ICache) and as a
sink (writes data to ICache). See the Fast Batch Processing and Real-Time Stream
Processing use cases for Hazelcast Jet. See also here in the Hazelcast Jet Reference
Manual to learn how Jet uses ICache, i.e., how it can read from and write to ICache.

388

https://jet.hazelcast.org/
https://jet.hazelcast.org/use-cases/fast-batch-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://jet.hazelcast.org/use-cases/real-time-stream-processing/
https://docs.hazelcast.org/docs/jet/latest/manual/index.html#connector-imdg

15.6.1. Scoping to Join Clusters

A CacheManager, started either as a client or as an embedded member, can be configured to start a
new Hazelcast instance or reuse an already existing one to connect to a Hazelcast cluster. To
achieve this, request a CacheManager by passing a java.net.URI instance to
CachingProvider.getCacheManager(). The java.net.URI instance must point to either a Hazelcast
configuration or to the name of a named com.hazelcast.core.HazelcastInstance instance. In
addition to the above, the same can be achieved by passing Hazelcast-specific properties to
CachingProvider.getCacheManager(URI, ClassLoader, Properties) as detailed in the sections that
follow.

Multiple requests for the same java.net.URI result in returning a CacheManager
instance that shares the same HazelcastInstance as the CacheManager returned by
the previous call.

Examples

The following examples illustrate how HazelcastInstances are created or reused during the creation
of a new CacheManager. Complete reference on the HazelcastInstance lookup mechanism is provided
in the sections that follow.

Starting the Default CacheManager

Assuming no other HazelcastInstance exists in the same JVM, the cacheManager below starts a new
HazelcastInstance, configured according to the configuration lookup rules as defined for
Hazelcast.newHazelcastInstance() in case of an embedded member or
HazelcastClient.newHazelcastClient() for a client-side CacheManager.

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager();

Reusing Existing HazelcastInstance with the Default CacheManager

When using both Hazelcast-specific features and JCache, a HazelcastInstance might be already
available to your JCache configuration. By configuring an instance name in hazelcast.xml in the
classpath root, the CacheManager locates the existing instance by name and reuses it.

hazelcast.xml/yaml:

XML

<hazelcast>
 ...
 <instance-name>hz-member-1</instance-name>
 ...
</hazelcast>

389

YAML

hazelcast:
 instance-name: hz-member-1

HazelcastInstance & CacheManager startup:

// start hazelcast, configured with default hazelcast.xml
HazelcastInstance hz = Hazelcast.newHazelcastInstance();
// start the default CacheManager -- it locates the default hazelcast.xml
configuration
// and identify the existing HazelcastInstance by its name
CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager();

Starting a CacheManager with a New HazelcastInstance Configured with a Non-default Configuration File

Given a configuration file named hazelcast-jcache.xml in the package com.domain, a CacheManager
can be configured to start a new HazelcastInstance:

• By passing the URI to the configuration file as the CacheManager’s `URI:

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager(new URI(
"classpath:com/domain/hazelcast-jcache.xml"), null);

• By specifying the configuration file location as a property:

Properties properties = HazelcastCachingProvider.propertiesByLocation(
"classpath:com/domain/aaa-hazelcast.xml");
CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager(new URI("any-uri-will-do"),
null, properties);

Note that if the Hazelcast configuration file does specify an instance name, then any CacheManagers
referencing the same configuration file locates by name and reuses the same HazelcastInstance.

Reusing an Existing Named HazelcastInstance

Assuming a HazelcastInstance named hc-instance is already started, it can be used as the
HazelcastInstance to back a CacheManager:

• By using the instance’s name as the CacheManager’s `URI:

390

CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager(new URI("hc-instance"), null);

• By specifying the instance name as a property:

Properties properties = HazelcastCachingProvider.propertiesByInstanceName("hc-
instance");
CachingProvider caching = Caching.getCachingProvider();
CacheManager cacheManager = caching.getCacheManager(new URI("any-uri-will-do"),
null, properties);

Applying Configuration Scope

To connect or join different clusters, apply a configuration scope to the CacheManager. If the same URI
is used to request a CacheManager that was created previously, those CacheManagers share the same
underlying HazelcastInstance.

To apply configuration scope you can do either one of the following:

• pass the path to the configuration file using the location property
HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which resolves to
hazelcast.config.location) as a mapping inside a java.util.Properties instance to the
CachingProvider.getCacheManager(uri, classLoader, properties) call.

• use directly the configuration path as the CacheManager's URI.

If both HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION property is set and the CacheManager URI
resolves to a valid config file location, then the property value is used to obtain the configuration
for the HazelcastInstance the first time a CacheManager is created for the given URI.

Here is an example of using configuration scope:

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file
Properties properties = new Properties();
// "scope-hazelcast.xml" resides in package com.domain.config
properties.setProperty(HazelcastCachingProvider.HAZELCAST_CONFIG_LOCATION,
 "classpath:com/domain/config/scoped-hazelcast.xml");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider.propertiesByLocation() helper method:

391

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a Hazelcast config file in root package
String configFile = "classpath:scoped-hazelcast.xml";
Properties properties = HazelcastCachingProvider
 .propertiesByLocation(configFile);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

The retrieved CacheManager is scoped to use the HazelcastInstance that was just created and
configured using the given XML configuration file.

Available protocols for config file URL include classpath to point to a classpath location, file to
point to a filesystem location and http and https for remote web locations. In addition, everything
that does not specify a protocol is recognized as a placeholder that can be configured using a
system property.

String configFile = "my-placeholder";
Properties properties = HazelcastCachingProvider
 .propertiesByLocation(configFile);

You can set this on the command line:

-Dmy-placeholder=classpath:my-configs/scoped-hazelcast.xml

You should consider the following rules about the Hazelcast instance name when you specify the
configuration file location using HazelcastCachingProvider#HAZELCAST_CONFIG_LOCATION (which
resolves to hazelcast.config.location):

• If you also specified the HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to
hazelcast.instance.name) property, this property is used as the instance name even though you
configured the instance name in the configuration file.

• If you do not specify HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME but you configure the
instance name in the configuration file using the element <instance-name>, then this element’s
value is used as the instance name.

• If you do not specify an instance name via property or in the configuration file, the URL of the
configuration file location is used as the instance name.

No check is performed to prevent creating multiple CacheManagers with the same
cluster configuration on different configuration files. If the same cluster is referred
from different configuration files, multiple cluster members or clients are created.

392

The configuration file location will not be a part of the resulting identity of the
CacheManager. An attempt to create a CacheManager with a different set of properties
but an already used name results in an undefined behavior.

Binding to a Named Instance

You can bind CacheManager to an existing and named HazelcastInstance instance. If the instanceName
is specified in com.hazelcast.config.Config, it can be used directly by passing it to CachingProvider
implementation. Otherwise (instanceName not set or instance is a client instance) you must get the
instance name from the HazelcastInstance instance via the String getName() method to pass the
CachingProvider implementation. Please note that instanceName is not configurable for the client side
HazelcastInstance instance and is auto-generated by using cluster name (if it is specified). In
general, String getName() method over HazelcastInstance is safer and the preferable way to get the
name of the instance. Multiple CacheManagers created using an equal java.net.URI share the same
HazelcastInstance.

A named scope is applied nearly the same way as the configuration scope. Pass the instance name
using:

• either the property HazelcastCachingProvider#HAZELCAST_INSTANCE_NAME (which resolves to
hazelcast.instance.name) as a mapping inside a java.util.Properties instance to the
CachingProvider.getCacheManager(uri, classLoader, properties) call.

• or use the instance name when specifying the CacheManager’s `URI.

If a valid instance name is provided both as property and as URI, then the property value takes
precedence and is used to resolve the HazelcastInstance the first time a CacheManager is created for
the given URI.

Here is an example of Named Instance Scope with specified name:

Config config = new Config();
config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
 "my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

Here is an example of Named Instance Scope with specified name passed as URI of the CacheManager:

393

Config config = new Config();
config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();
URI cacheManagerName = new URI("my-named-hazelcast-instance");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null);

Here is an example of Named Instance Scope with auto-generated name:

Config config = new Config();
// Create a auto-generated named HazelcastInstance
HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
 instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

Here is an example of Named Instance Scope with auto-generated name on client instance:

394

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("127.0.0.1", "127.0.0.2");

// Create a client side HazelcastInstance
HazelcastInstance instance = HazelcastClient.newHazelcastClient(clientConfig);
String instanceName = instance.getName();

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = new Properties();
properties.setProperty(HazelcastCachingProvider.HAZELCAST_INSTANCE_NAME,
 instanceName);

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

Here is an example using HazelcastCachingProvider.propertiesByInstanceName() method:

Config config = new Config();
config.setInstanceName("my-named-hazelcast-instance");
// Create a named HazelcastInstance
Hazelcast.newHazelcastInstance(config);

CachingProvider cachingProvider = Caching.getCachingProvider();

// Create Properties instance pointing to a named HazelcastInstance
Properties properties = HazelcastCachingProvider
 .propertiesByInstanceName("my-named-hazelcast-instance");

URI cacheManagerName = new URI("my-cache-manager");
CacheManager cacheManager = cachingProvider
 .getCacheManager(cacheManagerName, null, properties);

The instanceName will not be a part of the resulting identity of the CacheManager. An
attempt to create a CacheManager with a different set of properties but an already
used name will result in undefined behavior.

Binding to an Existing Hazelcast Instance Object

When an existing HazelcastInstance object is available, it can be passed to the CacheManager by
setting the property HazelcastCachingProvider#HAZELCAST_INSTANCE_ITSELF:

395

// Create a member HazelcastInstance
HazelcastInstance instance = Hazelcast.newHazelcastInstance();

Properties properties = new Properties();
properties.put(HazelcastCachingProvider.HAZELCAST_INSTANCE_ITSELF,
 instance);

CachingProvider cachingProvider = Caching.getCachingProvider();
// cacheManager initialized for uri will be bound to instance
CacheManager cacheManager = cachingProvider.getCacheManager(uri, classLoader,
properties);

15.6.2. Namespacing

The java.net.URIs that don’t use the above-mentioned Hazelcast-specific schemes are recognized as
namespacing. Those CacheManagers share the same underlying default HazelcastInstance created (or
set) by the CachingProvider, but they cache with the same names and different namespaces on the
CacheManager level, and therefore they won’t share the same data. This is useful where multiple
applications might share the same Hazelcast JCache implementation, e.g., on application or OSGi
servers, but are developed by independent teams. To prevent interfering on caches using the same
name, every application can use its own namespace when retrieving the CacheManager.

Here is an example of using namespacing.

CachingProvider cachingProvider = Caching.getCachingProvider();

URI nsApp1 = new URI("application-1");
CacheManager cacheManagerApp1 = cachingProvider.getCacheManager(nsApp1, null);

URI nsApp2 = new URI("application-2");
CacheManager cacheManagerApp2 = cachingProvider.getCacheManager(nsApp2, null);

That way both applications share the same HazelcastInstance instance but not the same caches.

15.6.3. Retrieving an ICache Instance

Besides Scoping to Join Clusters and Namespacing, which are implemented using the URI feature of
the specification, all other extended operations are required to retrieve the
com.hazelcast.cache.ICache interface instance from the JCache javax.cache.Cache instance. For
Hazelcast, both interfaces are implemented on the same object instance. It is recommended that
you stay with the specification method to retrieve the ICache version, since ICache might be subject
to change without notification.

To retrieve or unwrap the ICache instance, you can execute the following code example:

396

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();
Cache<Object, Object> cache = cacheManager.getCache(...);

ICache<Object, Object> unwrappedCache = cache.unwrap(ICache.class);

After unwrapping the Cache instance into an ICache instance, you have access to all of the following
operations, e.g., ICache Async Methods and ICache Convenience Methods.

15.6.4. ICache Configuration

As mentioned in the JCache Declarative Configuration section, the Hazelcast ICache extension offers
additional configuration properties over the default JCache configuration. These additional
properties include internal storage format, backup counts, eviction policy and split-brain protection
reference.

The declarative configuration for ICache is a superset of the previously discussed JCache
configuration:

XML

<hazelcast>
 ...
 <cache name="default">
 <!-- ... default cache configuration goes here ... -->
 <backup-count>1</backup-count>
 <async-backup-count>1</async-backup-count>
 <in-memory-format>BINARY</in-memory-format>
 <eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />
 <partition-lost-listeners>
 <partition-lost-listener>CachePartitionLostListenerImpl</partition-lost-
listener>
 </partition-lost-listeners>
 <split-brain-protection-ref>split-brain-protection-name</split-brain-
protection-ref>
 <disable-per-entry-invalidation-events>true</disable-per-entry-invalidation-
events>
 </cache>
 ...
</hazelcast>

397

YAML

hazelcast:
 cache:
 default:
 backup-count: 1
 async-backup-count: 0
 in-memory-format: BINARY
 eviction:
 size: 10000
 max-size-policy: ENTRY_COUNT
 eviction-policy: LRU
 partition-lost-listeners:
 - CachePartitionLostListenerImpl
 split-brain-protection-ref: split-brain-protection-name
 disable-per-entry-invalidation-events: true

• backup-count: Number of synchronous backups. Those backups are executed before the
mutating cache operation is finished. The mutating operation is blocked. Its default value is 1.

• async-backup-count: Number of asynchronous backups. Those backups are executed
asynchronously so the mutating operation is not blocked and it is done immediately. Its default
value is 0.

• in-memory-format: Internal storage format. For more information, see the in-memory format
section. Its default value is BINARY.

• eviction: Defines the used eviction strategies and sizes for the cache. For more information on
eviction, see the JCache Eviction section.

◦ size: Maximum number of records or maximum size in bytes depending on the max-size-
policy property. Size can be any integer between 0 and Integer.MAX_VALUE. The default max-
size-policy is ENTRY_COUNT and its default size is 10.000.

◦ max-size-policy: Maximum size. If maximum size is reached, the cache is evicted based on
the eviction policy. Default max-size-policy is ENTRY_COUNT and its default size is 10.000. The
following eviction policies are available:

▪ ENTRY_COUNT: Maximum number of the entries in cache. Based on this number, Hazelcast
calculates an approximate maximum size for each partition. See the Eviction Algorithm
section for more details. Available on heap based cache record store only.

▪ USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes per cache for
each Hazelcast instance. Available on High-Density Memory cache record store only.

▪ USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory size percentage per
cache for each Hazelcast instance. Available on High-Density Memory cache record
store only.

▪ FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size in megabytes for each
Hazelcast instance. Available on High-Density Memory cache record store only.

▪ FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory size percentage for each
Hazelcast instance. Available on High-Density Memory cache record store only.

398

◦ eviction-policy: Eviction policy that compares values to find the best matching eviction
candidate. Its default value is LRU.

▪ LRU: Less Recently Used - finds the best eviction candidate based on the lastAccessTime.

▪ LFU: Less Frequently Used - finds the best eviction candidate based on the number of hits.

• partition-lost-listeners : Defines listeners for dispatching partition lost events for the cache.
For more information, see the ICache Partition Lost Listener section.

• split-brain-protection-ref : Name of the split-brain protection configuration that you want this
cache to use.

• disable-per-entry-invalidation-events : Disables invalidation events for each entry; but full-
flush invalidation events are still enabled. Full-flush invalidation means the invalidation of
events for all entries when clear is called. Its default value is false.

Since javax.cache.configuration.MutableConfiguration misses the above additional configuration
properties, Hazelcast ICache extension provides an extended configuration class called
com.hazelcast.config.CacheConfig. This class is an implementation of
javax.cache.configuration.CompleteConfiguration and all the properties shown above can be
configured using its corresponding setter methods.

 ICache can be configured only programmatically on the client side.

15.6.5. ICache Async Methods

As another addition of Hazelcast ICache over the normal JCache specification, Hazelcast provides
asynchronous versions of almost all methods, returning a java.util.concurrent.CompletionStage. By
using these methods and the returned objects, you can use JCache in a reactive way by registering
dependent computation stages on the returned CompletionStage to prevent blocking the current
thread.

The asynchronous versions of the methods append the phrase Async to the method name. The
example code below uses the method putAsync().

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
CompletionStage<String> stage = unwrappedCache.getAndPutAsync(1, "value");
stage.thenAcceptAsync(v -> System.out.println("Previous value: " + v));

Following methods are available in asynchronous versions:

• get(key):

◦ getAsync(key)

◦ getAsync(key, expiryPolicy)

• put(key, value):

◦ putAsync(key, value)

◦ putAsync(key, value, expiryPolicy)

• putIfAbsent(key, value):

399

◦ putIfAbsentAsync(key, value)

◦ putIfAbsentAsync(key, value, expiryPolicy)

• getAndPut(key, value):

◦ getAndPutAsync(key, value)

◦ getAndPutAsync(key, value, expiryPolicy)

• remove(key):

◦ removeAsync(key)

• remove(key, value):

◦ removeAsync(key, value)

• getAndRemove(key):

◦ getAndRemoveAsync(key)

• replace(key, value):

◦ replaceAsync(key, value)

◦ replaceAsync(key, value, expiryPolicy)

• replace(key, oldValue, newValue):

◦ replaceAsync(key, oldValue, newValue)

◦ replaceAsync(key, oldValue, newValue, expiryPolicy)

• getAndReplace(key, value):

◦ getAndReplaceAsync(key, value)

◦ getAndReplaceAsync(key, value, expiryPolicy)

The methods with a given javax.cache.expiry.ExpiryPolicy are further discussed in the Defining a
Custom ExpiryPolicy.

Asynchronous versions of the methods are not compatible with synchronous
events.

15.6.6. Defining a Custom ExpiryPolicy

The JCache specification has an option to configure a single ExpiryPolicy per cache. Hazelcast
ICache extension offers the possibility to define a custom ExpiryPolicy per key by providing a set of
method overloads with an expirePolicy parameter, as in the list of asynchronous methods in the
Async Methods section. This means that you can pass custom expiry policies to a cache operation.

Here is how an ExpiryPolicy is set on JCache configuration:

CompleteConfiguration<String, String> config =
 new MutableConfiguration<String, String>()
 .setExpiryPolicyFactory(
 AccessedExpiryPolicy.factoryOf(Duration.ONE_MINUTE)
);

To pass a custom ExpiryPolicy, a set of overloads is provided. You can use them as shown in the

400

following code example.

ICache<Integer, String> unwrappedCache = cache.unwrap(ICache.class);
unwrappedCache.put(1, "value", new AccessedExpiryPolicy(Duration.ONE_DAY));

The ExpiryPolicy instance can be pre-created, cached and re-used, but only for each cache instance.
This is because ExpiryPolicy implementations can be marked as java.io.Closeable. The following
list shows the provided method overloads over javax.cache.Cache by com.hazelcast.cache.ICache
featuring the ExpiryPolicy parameter:

• get(key):

◦ get(key, expiryPolicy)

• getAll(keys):

◦ getAll(keys, expirePolicy)

• put(key, value):

◦ put(key, value, expirePolicy)

• getAndPut(key, value):

◦ getAndPut(key, value, expirePolicy)

• putAll(map):

◦ putAll(map, expirePolicy)

• putIfAbsent(key, value):

◦ putIfAbsent(key, value, expirePolicy)

• replace(key, value):

◦ replace(key, value, expirePolicy)

• replace(key, oldValue, newValue):

◦ replace(key, oldValue, newValue, expirePolicy)

• getAndReplace(key, value):

◦ getAndReplace(key, value, expirePolicy)

Asynchronous method overloads are not listed here. See the ICache Async Methods section for the
list of asynchronous method overloads.

ICache also offers setExpiryPolicy(key, expirePolicy) method to associate certain keys with custom
expiry policies. Per key expiry policies defined by this method take precedence over cache policies,
but they are overridden by the expiry policies specified in above mentioned overloaded methods.

15.6.7. JCache Eviction

Caches are generally not expected to grow to an infinite size. Implementing an expiry policy is one
way you can prevent infinite growth, but sometimes it is hard to define a meaningful expiration
timeout. Therefore, Hazelcast JCache provides the eviction feature. Eviction offers the possibility of
removing entries based on the cache size or amount of used memory (Hazelcast IMDG Enterprise
Only) and not based on timeouts.

401

Eviction and Runtime

Since a cache is designed for high throughput and fast reads, Hazelcast put a lot of effort into
designing the eviction system to be as predictable as possible. All built-in implementations provide
an amortized O(1) runtime. The default operation runtime is rendered as O(1), but it can be faster
than the normal runtime cost if the algorithm finds an expired entry while sampling.

Cache Types

Most importantly, typical production systems have two common types of caches:

• Reference Caches: Caches for reference data are normally small and are used to speed up the
de-referencing as a lookup table. Those caches are commonly tend to be small and contain a
previously known, fixed number of elements, e.g., states of the USA or abbreviations of
elements.

• Active DataSet Caches: The other type of caches normally caches an active data set. These
caches run to their maximum size and evict the oldest or not frequently used entries to keep in
memory bounds. They sit in front of a database or HTML generators to cache the latest
requested data.

Hazelcast JCache eviction supports both types of caches using a slightly different approach based
on the configured maximum size of the cache. For detailed information, see the Eviction Algorithm
section.

Configuring Eviction Policies

Hazelcast JCache provides two commonly known eviction policies, LRU and LFU, but loosens the
rules for predictable runtime behavior. LRU, normally recognized as Least Recently Used, is
implemented as Less Recently Used and LFU known as Least Frequently Used is implemented as
Less Frequently Used. The details about this difference are explained in the Eviction Algorithm
section.

Eviction Policies are configured by providing the corresponding abbreviation to the configuration
as shown in the ICache Configuration section. As already mentioned, two built-in policies are
available:

To configure the use of the LRU (Less Recently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LRU" />

And to configure the use of the LFU (Less Frequently Used) policy:

<eviction size="10000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU" />

The default eviction policy is LRU. Therefore, Hazelcast JCache does not offer the possibility of
performing no eviction.

402

Custom Eviction Policies

Besides the out-of-the-box eviction policies LFU and LRU, you can also specify your custom eviction
policies through the eviction configuration either programmatically or declaratively.

You can provide your com.hazelcast.cache.CacheEvictionPolicyComparator implementation to
compare com.hazelcast.cache.CacheEntryViews. Supplied CacheEvictionPolicyComparator is used to
compare cache entry views to select the one with higher priority to evict.

Here is an example for custom eviction policy comparator implementation for JCache:

public class MyCacheEvictionPolicyComparator
 implements CacheEvictionPolicyComparator<Long, String> {

 @Override
 public int compare(CacheEntryView<Long, String> e1, CacheEntryView<Long, String>
e2) {
 long id1 = e1.getKey();
 long id2 = e2.getKey();

 if (id1 > id2) {
 // first entry has higher priority to be evicted
 return -1;
 }

 if (id1 < id2) {
 // second entry has higher priority to be evicted
 return 1;
 }

 // both entries have same priority
 return 0;
 }
}

Custom eviction policy comparator can be specified through the eviction configuration by giving
the full class name of the EvictionPolicyComparator (CacheEvictionPolicyComparator for JCache and
its Near Cache) implementation or by specifying its instance itself.

Programmatic Configuration:

You can specify the full class name of custom EvictionPolicyComparator

(CacheEvictionPolicyComparator for JCache and its Near Cache) implementation through
EvictionConfig. This approach is useful when the eviction configuration is specified on the client
side and the custom EvictionPolicyComparator implementation class itself does not exist on the
client but on the member side.

403

CacheConfig cacheConfig = new CacheConfig();
...
EvictionConfig evictionConfig =
 new EvictionConfig(50000,
 MaxSizePolicy.ENTRY_COUNT,
 "com.mycompany.MyEvictionPolicyComparator");
cacheConfig.setEvictionConfig(evictionConfig);

You can specify the custom EvictionPolicyComparator (CacheEvictionPolicyComparator for JCache and
its Near Cache) instance itself directly through EvictionConfig.

CacheConfig cacheConfig = new CacheConfig();
...
EvictionConfig evictionConfig =
 new EvictionConfig(50000,
 MaxSizePolicy.ENTRY_COUNT,
 new MyEvictionPolicyComparator());
cacheConfig.setEvictionConfig(evictionConfig);

Declarative Configuration:

You can specify the full class name of custom EvictionPolicyComparator

(CacheEvictionPolicyComparator for JCache and its Near Cache) implementation in the <eviction> tag
through comparator-class-name or comparator-bean attributes in Hazelcast configuration files:

XML

<hazelcast>
 ...
 <cache name="cacheWithCustomEvictionPolicyComparator">
 <eviction size="50000" max-size-policy="ENTRY_COUNT" comparator-class-name=
"com.mycompany.MyEvictionPolicyComparator"/>
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 cache:
 cacheWithCustomEvictionPolicyComparator:
 eviction:
 size: 50000
 max-size-policy: ENTRY_COUNT
 expiry-policy-factory:
 class-name: com.mycompany.MyEvictionPolicyComparator

404

Spring

<hz:cache name="cacheWithCustomEvictionPolicyComparator">
 <hz:eviction size="50000" max-size-policy="ENTRY_COUNT" comparator-class-name=
"com.mycompany.MyEvictionPolicyComparator"/>
</hz:cache>

Eviction Strategy

Eviction strategies implement the logic of selecting one or more eviction candidates from the
underlying storage implementation and passing them to the eviction policies. Hazelcast JCache
provides an amortized O(1) cost implementation for this strategy to select a fixed number of
samples from the current partition that it is executed against.

The default implementation is
com.hazelcast.cache.impl.eviction.impl.strategy.sampling.SamplingBasedEvictionStrategy which,
as mentioned, samples 15 random elements. A detailed description of the algorithm will be
explained in the next section.

Eviction Algorithm

The Hazelcast JCache eviction algorithm is specially designed for the use case of high performance
caches and with predictability in mind. The built-in implementations provide an amortized O(1)
runtime and therefore provide a highly predictable runtime behavior which does not rely on any
kind of background threads to handle the eviction. Therefore, the algorithm takes some
assumptions into account to prevent network operations and concurrent accesses.

As an explanation of how the algorithm works, let’s examine the following flowchart step by step.

405

1. A new cache is created. Without any special settings, the eviction is configured to kick in when
the cache exceeds 10.000 elements and an LRU (Less Recently Used) policy is set up.

2. The user puts in a new entry, e.g., a key-value pair.

3. For every put, the eviction strategy evaluates the current cache size and decides if an eviction is
necessary or not. If not, the entry is stored in step 10.

4. If eviction is required, a new sampling is started. The built-in sampler is implemented as a lazy
iterator.

5. The sampling algorithm selects a random sample from the underlying data storage.

6. The eviction strategy tests whether the sampled entry is already expired (lazy expiration). If
expired, the sampling stops and the entry is removed in step 9.

7. If not yet expired, the entry (eviction candidate) is compared to the last best matching candidate
(based on the eviction policy) and the new best matching candidate is remembered.

8. The sampling is repeated 15 times and then the best matching eviction candidate is returned to
the eviction strategy.

9. The expired or best matching eviction candidate is removed from the underlying data storage.

10. The new put entry is stored.

11. The put operation returns to the user.

Note that expiration based eviction does not only occur for the above scenario
(Step 6). It is mentioned for the sake of explaining the eviction algorithm.

As seen in the flowchart, the general eviction operation is easy. As long as the cache does not reach
its maximum capacity, or you execute updates (put/replace), no eviction is executed.

To prevent network operations and concurrent access, as mentioned earlier, the cache size is
estimated based on the size of the currently handled partition. Due to the imbalanced partitions,
the single partitions might start to evict earlier than the other partitions.

As mentioned in the Cache Types section, typically two types of caches are found in the production
systems. For small caches, referred to as Reference Caches, the eviction algorithm has a special set
of rules depending on the maximum configured cache size. See the Reference Caches section for
details. The other type of cache is referred to as an Active DataSet Cache, which in most cases
makes heavy use of the eviction to keep the most active data set in the memory. Those kinds of
caches use a very simple but efficient way to estimate the cluster-wide cache size.

All of the following calculations have a well known set of fixed variables:

• GlobalCapacity: User defined maximum cache size (cluster-wide).

• PartitionCount: Number of partitions in the cluster (defaults to 271).

• BalancedPartitionSize: Number of elements in a balanced partition state, BalancedPartitionSize
:= GlobalCapacity / PartitionCount.

• Deviation: An approximated standard deviation (tests proofed it to be pretty near), Deviation :=
sqrt(BalancedPartitionSize).

406

Reference Caches

A Reference Cache is typically small and the number of elements to store in the reference caches is
normally known prior to creating the cache. Typical examples of reference caches are lookup tables
for abbreviations or the states of a country. They tend to have a fixed but small element number
and the eviction is an unlikely event and rather undesirable behavior.

Since an imbalanced partition is a worse problem in small and mid-sized caches than in caches
with millions of entries, the normal estimation rule (as discussed in a bit) is not applied to these
kinds of caches. To prevent unwanted eviction on the small and mid-sized caches, Hazelcast
implements a special set of rules to estimate the cluster size.

To adjust the imbalance of partitions as found in the typical runtime, the actual calculated
maximum cache size (known as the eviction threshold) is slightly higher than the user defined size.
That means more elements can be stored into the cache than expected by the user. This needs to be
taken into account especially for large objects, since those can easily exceed the expected memory
consumption!

Small caches:

If a cache is configured with no more than 4.000 elements, this cache is considered to be a small
cache. The actual partition size is derived from the number of elements (GlobalCapacity) and the
deviation using the following formula:

MaxPartitionSize := Deviation * 5 + BalancedPartitionSize

This formula ends up with big partition sizes which, summed up, exceed the expected maximum
cache size (set by the user). Since the small caches typically have a well known maximum number
of elements, this is not a big issue. Only if the small caches are used for a use case other than as a
reference cache, this needs to be taken into account.

Mid-sized caches

A mid-sized cache is defined as a cache with a maximum number of elements that is bigger than
4.000 but not bigger than 1.000.000 elements. The calculation of mid-sized caches is similar to that
of the small caches but with a different multiplier. To calculate the maximum number of elements
per partition, the following formula is used:

MaxPartitionSize := Deviation * 3 + BalancedPartitionSize

Active DataSet Caches

For large caches, where the maximum cache size is bigger than 1.000.000 elements, there is no
additional calculation needed. The maximum partition size is considered to be equal to
BalancedPartitionSize since statistically big partitions are expected to almost balance themselves.
Therefore, the formula is as easy as the following:

407

MaxPartitionSize := BalancedPartitionSize

Cache Size Estimation

As mentioned earlier, Hazelcast JCache provides an estimation algorithm to prevent cluster-wide
network operations, concurrent access to other partitions and background tasks. It also offers a
highly predictable operation runtime when the eviction is necessary.

The estimation algorithm is based on the previously calculated maximum partition size (see the
Reference Caches and Active DataSet Caches sections) and is calculated against the current
partition only.

The algorithm to reckon the number of stored entries in the cache (cluster-wide) and decide if the
eviction is necessary is shown in the following pseudo-code example:

RequiresEviction[Boolean] := CurrentPartitionSize >= MaxPartitionSize

15.6.8. JCache Near Cache

The Hazelcast JCache implementation supports a local Near Cache for remotely stored entries to
increase the performance of local read operations. See the Near Cache section for a detailed
explanation of the Near Cache feature and its configuration.

 Near Cache for JCache is only available for clients, NOT members.

15.6.9. ICache Convenience Methods

In addition to the operations explained in ICache Async Methods and Defining a Custom
ExpiryPolicy, Hazelcast ICache also provides a set of convenience methods. These methods are not
part of the JCache specification.

• size(): Returns the total entry count of the distributed cache.

• destroy(): Destroys the cache and removes its data, which makes it different from the method
javax.cache.Cache.close(); the close method closes the cache so no further operational methods
(get, put, remove, etc. See Section 4.1.6 in JCache Specification which can be downloaded from
here) can be executed on it - data is not necessarily destroyed, if you get again the same Cache
from the same CacheManager, the data will be there. In the case of destroy(), both the cache is
destroyed and cache’s data is removed.

• isDestroyed(): Determines whether the ICache instance is destroyed or not.

• getLocalCacheStatistics(): Returns a com.hazelcast.cache.CacheStatistics instance, both on
Hazelcast members and clients, providing the same statistics data as the JMX beans.

See the ICache Javadoc to see all the methods provided by ICache.

408

http://download.oracle.com/otndocs/jcp/jcache-1_0-fr-eval-spec/index.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cache/ICache.html

15.6.10. Implementing BackupAwareEntryProcessor

Another feature, especially interesting for distributed environments like Hazelcast, is the JCache
specified javax.cache.processor.EntryProcessor. For more general information, see the
Implementing EntryProcessor section.

Since Hazelcast provides backups of cached entries on other members, the default way to backup
an object changed by an EntryProcessor is to serialize the complete object and send it to the backup
partition. This can be a huge network overhead for big objects.

Hazelcast offers a sub-interface for EntryProcessor called
com.hazelcast.cache.BackupAwareEntryProcessor. This allows you to create or pass another
EntryProcessor to run on backup partitions and apply delta changes to the backup entries.

The backup partition EntryProcessor can either be the currently running processor (by returning
this) or it can be a specialized EntryProcessor implementation (different from the currently
running one) that does different operations or leaves out operations, e.g., sending emails.

If we again take the EntryProcessor example from the demonstration application provided in the
Implementing EntryProcessor section, the changed code looks like the following snippet:

409

public class UserUpdateEntryProcessor
 implements BackupAwareEntryProcessor<Integer, User, User> {

 @Override
 public User process(MutableEntry<Integer, User> entry, Object... arguments)
 throws EntryProcessorException {

 // Test arguments length
 if (arguments.length < 1) {
 throw new EntryProcessorException("One argument needed: username");
 }

 // Get first argument and test for String type
 Object argument = arguments[0];
 if (!(argument instanceof String)) {
 throw new EntryProcessorException(
 "First argument has wrong type, required java.lang.String");
 }

 // Retrieve the value from the MutableEntry
 User user = entry.getValue();

 // Retrieve the new username from the first argument
 String newUsername = (String) arguments[0];

 // Set the new username
 user.setUsername(newUsername);

 // Set the changed user to mark the entry as dirty
 entry.setValue(user);

 // Return the changed user to return it to the caller
 return user;
 }

 public EntryProcessor<Integer, User, User> createBackupEntryProcessor() {
 return this;
 }
}

You can use the additional method BackupAwareEntryProcessor.createBackupEntryProcessor() to
create or return the EntryProcessor implementation to run on the backup partition (in the example
above, the same processor again).

For the backup runs, the returned value from the backup processor is ignored and
not returned to the user.

410

15.6.11. ICache Partition Lost Listener

You can listen to CachePartitionLostEvent instances by registering an implementation of
CachePartitionLostListener, which is also a sub-interface of java.util.EventListener from ICache.

Let’s consider the following example code:

public class PartitionLostListenerUsage {

 public static void main(String[] args) {

 String cacheName1 = "myCache1";

 CachingProvider cachingProvider = Caching.getCachingProvider();
 CacheManager cacheManager = cachingProvider.getCacheManager();

 CacheConfig<Integer, String> config1 = new CacheConfig<Integer, String>();
 Cache<Integer, String> cache1 = cacheManager.createCache(cacheName1, config1);

 ICache<Object, Object> unwrappedCache = cache1.unwrap(ICache.class);

 unwrappedCache.addPartitionLostListener(new CachePartitionLostListener() {
 @Override
 public void partitionLost(CachePartitionLostEvent event) {
 System.out.println(event);
 }
 });
 }
}

Within this example code, a CachePartitionLostListener implementation is registered to a cache
and assumes that this cache is configured with one backup. For this particular cache and any of the
partitions in the system, if the partition owner member and its first backup member crash
simultaneously, the given CachePartitionLostListener receives a corresponding
CachePartitionLostEvent. If only a single member crashes in the cluster, a CachePartitionLostEvent is
not fired for this cache since backups for the partitions owned by the crashed member are kept on
other members.

See the Partition Lost Listener section for more information about partition lost detection and
partition lost events.

15.7. Testing for JCache Specification Compliance
Hazelcast JCache is fully compliant with the JSR 107 TCK (Technology Compatibility Kit), and
therefore is officially a JCache implementation.

411

You can test Hazelcast JCache for compliance by executing the TCK. Just perform the instructions
below:

• Checkout tag 1.1.1 of the TCK from https://github.com/jsr107/jsr107tck.

• Change the properties in pom.xml as shown below. Alternatively, you can set the values of these
properties directly on the maven command line without editing any files as shown in the
command line example below.

• Run the TCK using the command mvn clean install. This runs the tests using an embedded
Hazelcast member.

<properties>
 <jcache.version>1.1.1</jcache.version>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

 <CacheInvocationContextImpl>
 javax.cache.annotation.impl.cdi.CdiCacheKeyInvocationContextImpl
 </CacheInvocationContextImpl>

 <domain-lib-dir>${project.build.directory}/domainlib</domain-lib-dir>
 <domain-jar>domain.jar</domain-jar>

 <!-- ### -->
 <!-- Change the following properties on the command line
 to override with the coordinates for your implementation-->
 <implementation-groupId>com.hazelcast</implementation-groupId>
 <implementation-artifactId>hazelcast</implementation-artifactId>
 <implementation-version>3.10</implementation-version>

 <!-- Change the following properties to your CacheManager and
 Cache implementation. Used by the unwrap tests. -->
 <CacheManagerImpl>
 com.hazelcast.client.cache.impl.HazelcastServerCacheManager
 </CacheManagerImpl>
 <CacheImpl>com.hazelcast.cache.ICache</CacheImpl>
 <CacheEntryImpl>
 com.hazelcast.cache.impl.CacheEntry
 </CacheEntryImpl>
 <!-- ### -->
</properties>

Complete command line example:

412

https://github.com/jsr107/jsr107tck/releases/tag/1.1.1
https://github.com/jsr107/jsr107tck/blob/master/pom.xml

$ git clone https://github.com/jsr107/jsr107tck
(clones JSR107 TCK repository to local directory jsr107tck)

$ cd jsr107tck

$ git checkout 1.1.1
(checkout 1.1.1 tag)

$ mvn -Dimplementation-groupId=com.hazelcast -Dimplementation-artifactId=hazelcast \
 -Dimplementation-version=3.10 \
 -DCacheManagerImpl=com.hazelcast.cache.impl.HazelcastServerCacheManager \
 -DCacheImpl=com.hazelcast.cache.ICache
-DCacheEntryImpl=com.hazelcast.cache.impl.CacheEntry \
 clean install

See also the TCK 1.1.0 User Guide or TCK 1.0.0 User Guide for more information on the testing
instructions.

16. Integrated Clustering
In this chapter, we mention how Hazelcast is integrated with Hibernate 2nd level cache and Spring
and how it helps with your Filter, Tomcat and Jetty based web session replications.

16.1. Integration with Hibernate Second Level Cache
Hazelcast provides its own distributed second level cache for your Hibernate entities, collections
and queries. This feature is offered as a Hazelcast plugin. See Hazelcast Hibernate 2LC for details.

16.2. Web Session Replications
Hazelcast can cluster your web sessions using Servlet Filter, Tomcat and Jetty based solutions.

See the following for more information on them:

• Filter Based Web Session Replication

• Tomcat Based Web Session Replication

• Jetty Based Web Session Replication

16.3. Integration with Java EE
You can integrate Hazelcast into Java EE containers. This integration is offered as a Hazelcast
plugin. See the Hazelcast JCA Resource Adapter section and its own GitHub repository here for
information on configuring the resource adapter, Glassfish applications and JBoss web applications.

413

https://docs.google.com/document/d/1m8d1Z44IFGAd20bXEvT2G--vWXbxaJctk16M2rmbM24/edit?ts=59fdff73
https://docs.google.com/document/d/1w3Ugj_oEqjMlhpCkGQOZkd9iPf955ZWHAVdZzEwYYdU/edit
https://github.com/hazelcast/hazelcast-ra

16.4. Integration with Spring
You can integrate Hazelcast with Spring and this section explains the configuration of Hazelcast
within Spring context.

Supported Versions are Spring 2.5 and higher releases and the latest tested Spring version is 4.3.

Some old versions of Spring may require minor changes in the Hazelcast
configuration. The code and configuration snippets provided in this section are
tested using Spring 4.3.

16.4.1. Configuring Spring

Code Sample: See our sample application for Spring Configuration.

Enabling Spring Integration

Classpath Configuration:

To enable Spring integration, either hazelcast-spring-4.1.1.jar or hazelcast-all-
4.1.1.jar must be in the classpath.

If you use Maven, add the following lines to your pom.xml.

If you use hazelcast-all.jar:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-all</artifactId>
 <version>4.1.1</version>
</dependency>

If you use hazelcast-spring.jar:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-spring</artifactId>
 <version>4.1.1</version>
</dependency>

If you use other build systems, you have to adjust the definition of dependencies to your needs.

Troubleshooting

When the Spring Integration JARs are not correctly installed in the Java classpath, you may see
either of the following exceptions:

414

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-configuration

org.xml.sax.SAXParseException; systemId: http://hazelcast.com/schema/spring/hazelcast-
spring.xsd; lineNumber: 2; columnNumber: 35; s4s-elt-character: Non-whitespace
characters are not allowed in schema elements other than 'xs:appinfo' and
'xs:documentation'. Saw '301 Moved Permanently'.

org.springframework.beans.factory.parsing.BeanDefinitionParsingException:
Configuration problem: Unable to locate Spring NamespaceHandler for XML schema
namespace [http://www.hazelcast.com/schema/spring]

org.xml.sax.SAXParseException; lineNumber: 25; columnNumber: 33; schema_reference.4:
Failed to read schema document 'http://www.hazelcast.com/schema/spring/hazelcast-
spring.xsd', because 1) could not find the document; 2) the document could not be
read; 3) the root element of the document is not <xsd:schema>.

In this case, please ensure that the required classes are in the classpath, as explained above.

Declaring Beans by Spring beans Namespace

Bean Declaration:

You can declare Hazelcast Objects using the default Spring beans namespace. Example code for a
Hazelcast Instance declaration is listed below.

<bean id="instance" class="com.hazelcast.core.Hazelcast" factory-method=
"newHazelcastInstance">
 <constructor-arg>
 <bean class="com.hazelcast.config.Config">
 <property name="clusterName" value="dev"/>
 <!-- and so on ... -->
 </bean>
 </constructor-arg>
</bean>

<bean id="map" factory-bean="instance" factory-method="getMap">
 <constructor-arg value="map"/>
</bean>

Declaring Beans by hazelcast Namespace

Hazelcast has its own namespace hazelcast for bean definitions. You can easily add the namespace
declaration xmlns:hz="http://www.hazelcast.com/schema/spring" to the beans element in the
context file so that hz namespace shortcut can be used as a bean declaration.

Here is an example schema definition:

415

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.3.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

Supported Configurations with hazelcast Namespace

• Configuring Hazelcast Instance

<hz:hazelcast id="instance">
 <hz:config>
 <hz:cluster-name name="dev"/>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false"
 multicast-group="224.2.2.3"
 multicast-port="54327"/>
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 <hz:map name="map"
 backup-count="2"
 read-backup-data="true"
 merge-policy="com.hazelcast.spi.merge.PassThroughMergePolicy">
 <hz:eviction eviction-policy="NONE" size="0"/>
 </hz:map>
 </hz:config>
</hz:hazelcast>

• Configuring Hazelcast Client

<hz:client id="client">
 <hz:cluster-name name="${cluster.name}"/>
 <hz:network connection-timeout="1000"
 redo-operation="true"
 smart-routing="true">
 <hz:member>10.10.1.2:5701</hz:member>
 <hz:member>10.10.1.3:5701</hz:member>
 </hz:network>
</hz:client>

• Hazelcast Supported Type Configurations and Examples

416

◦ map

◦ multiMap

◦ replicatedmap

◦ queue

◦ topic

◦ reliableTopic

◦ set

◦ list

◦ executorService

◦ durableExecutorService

◦ scheduledExecutorService

◦ ringbuffer

◦ cardinalityEstimator

◦ idGenerator

◦ flakeIdGenerator

◦ atomicLong

◦ atomicReference

◦ semaphore

◦ countDownLatch

◦ lock

417

<hz:map id="map" instance-ref="client" name="map" lazy-init="true" />
<hz:multiMap id="multiMap" instance-ref="instance" name="multiMap"
 lazy-init="false" />
<hz:replicatedMap id="replicatedmap" instance-ref="instance"
 name="replicatedmap" lazy-init="false" />
<hz:queue id="queue" instance-ref="client" name="queue"
 lazy-init="true" depends-on="instance"/>
<hz:topic id="topic" instance-ref="instance" name="topic"
 depends-on="instance, client"/>
<hz:reliableTopic id="reliableTopic" instance-ref="instance" name="
reliableTopic"/>
<hz:set id="set" instance-ref="instance" name="set" />
<hz:list id="list" instance-ref="instance" name="list"/>
<hz:executorService id="executorService" instance-ref="client"
 name="executorService"/>
<hz:durableExecutorService id="durableExec" instance-ref="instance" name=
"durableExec"/>
<hz:scheduledExecutorService id="scheduledExec" instance-ref="instance" name=
"scheduledExec"/>
<hz:ringbuffer id="ringbuffer" instance-ref="instance" name="ringbuffer"/>
<hz:cardinalityEstimator id="cardinalityEstimator" instance-ref="instance" name
="cardinalityEstimator"/>
<hz:idGenerator id="idGenerator" instance-ref="instance"
 name="idGenerator"/>
<hz:flakeIdGenerator id="flakeIdGenerator" instance-ref="instance"
 name="flakeIdGenerator"/>
<hz:atomicLong id="atomicLong" instance-ref="instance" name="atomicLong"/>
<hz:atomicReference id="atomicReference" instance-ref="instance"
 name="atomicReference"/>
<hz:semaphore id="semaphore" instance-ref="instance" name="semaphore"/>
<hz:countDownLatch id="countDownLatch" instance-ref="instance"
 name="countDownLatch"/>
<hz:lock id="lock" instance-ref="instance" name="lock"/>

• Supported Spring Bean Attributes

Hazelcast also supports lazy-init, scope and depends-on bean attributes.

<hz:hazelcast id="instance" lazy-init="true" scope="singleton">
 ...
</hz:hazelcast>
<hz:client id="client" scope="prototype" depends-on="instance">
 ...
</hz:client>

• Configuring MapStore and NearCache

For map-store, you should set either the class-name or the implementation attribute.

418

<hz:config id="config">
 <hz:map name="map1">
 <hz:map-store enabled="true" class-name="com.foo.DummyStore"
 write-delay-seconds="0" />

 <hz:near-cache time-to-live-seconds="0"
 max-idle-seconds="60" invalidate-on-change="true" >
 <hz:eviction eviction-policy="LRU" size="5000"/>
 </hz:near-cache>
 </hz:map>

 <hz:map name="map2">
 <hz:map-store enabled="true" implementation="dummyMapStore"
 write-delay-seconds="0" />
 </hz:map>
</hz:config>

<bean id="dummyMapStore" class="com.foo.DummyStore" />

16.4.2. Enabling SpringAware Objects

You can mark Hazelcast Distributed Objects with @SpringAware if the object wants to apply:

• bean properties

• factory callbacks such as ApplicationContextAware, BeanNameAware

• bean post-processing annotations such as InitializingBean, @PostConstruct.

Hazelcast Distributed ExecutorService, or more generally any Hazelcast managed object, can benefit
from these features. To enable SpringAware objects, you must first configure HazelcastInstance
using hazelcast namespace as explained in Configuring Spring and add <hz:spring-aware /> tag.

SpringAware Examples

• Configure a Hazelcast Instance via Spring Configuration and define someBean as Spring Bean.

• Add <hz:spring-aware /> to Hazelcast configuration to enable @SpringAware.

419

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
3.0.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring.xsd">

 <context:component-scan base-package="..."/>

 <hz:hazelcast id="instance">
 <hz:config>
 <hz:spring-aware />
 <hz:cluster-name name="dev"/>
 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast enabled="false" />
 <hz:tcp-ip enabled="true">
 <hz:members>10.10.1.2, 10.10.1.3</hz:members>
 </hz:tcp-ip>
 </hz:join>
 </hz:network>
 ...
 </hz:config>
 </hz:hazelcast>

 <bean id="someBean" class="com.hazelcast.examples.spring.SomeBean"
 scope="singleton" />
 ...
</beans>

Distributed Map SpringAware Example:

• Create a class called SomeValue which contains Spring Bean definitions like ApplicationContext
and SomeBean.

420

@SpringAware
@Component("someValue")
@Scope("prototype")
public class SomeValue implements Serializable, ApplicationContextAware {

 private transient ApplicationContext context;
 private transient SomeBean someBean;
 private transient boolean init = false;

 public void setApplicationContext(ApplicationContext applicationContext)
 throws BeansException {
 context = applicationContext;
 }

 @Autowired
 public void setSomeBean(SomeBean someBean) {
 this.someBean = someBean;
 }

 @PostConstruct
 public void init() {
 someBean.doSomethingUseful();
 init = true;
 }
}

• Get SomeValue Object from Context and put it into Hazelcast Distributed Map on the first
member.

HazelcastInstance hazelcastInstance =
 (HazelcastInstance) context.getBean("instance");
SomeValue value = (SomeValue) context.getBean("someValue");
IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
map.put("key", value);

• Read SomeValue Object from Hazelcast Distributed Map and assert that init method is called
since it is annotated with @PostConstruct.

HazelcastInstance hazelcastInstance =
 (HazelcastInstance) context.getBean("instance");
IMap<String, SomeValue> map = hazelcastInstance.getMap("values");
SomeValue value = map.get("key");
Assert.assertTrue(value.init);

ExecutorService SpringAware Example:

• Create a Callable Class called SomeTask which contains Spring Bean definitions like

421

ApplicationContext, SomeBean.

@SpringAware
public class SomeTask
 implements Callable<Long>, ApplicationContextAware, Serializable {

 private transient ApplicationContext context;
 private transient SomeBean someBean;

 public Long call() throws Exception {
 return someBean.value;
 }

 public void setApplicationContext(ApplicationContext applicationContext)
 throws BeansException {
 context = applicationContext;
 }

 @Autowired
 public void setSomeBean(SomeBean someBean) {
 this.someBean = someBean;
 }
}

• Submit SomeTask to two Hazelcast Members and assert that someBean is autowired.

HazelcastInstance hazelcastInstance =
 (HazelcastInstance) context.getBean("instance");
SomeBean bean = (SomeBean) context.getBean("someBean");

Future<Long> f = hazelcastInstance.getExecutorService("executorService")
 .submit(new SomeTask());
Assert.assertEquals(bean.value, f.get().longValue());

// choose a member
Member member = hazelcastInstance.getCluster().getMembers().iterator().next();

Future<Long> f2 = (Future<Long>) hazelcast.getExecutorService("executorService")
 .submitToMember(new SomeTask(), member);
Assert.assertEquals(bean.value, f2.get().longValue());

 Spring managed properties/fields are marked as transient.

16.4.3. Adding Caching to Spring

Code Sample: See the sample application for Spring Cache.

As of version 3.1, Spring Framework provides support for adding caching into an existing Spring

422

https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-cache-manager

application. Spring 3.2 and later versions support JCache compliant caching providers. You can also
use JCache caching backed by Hazelcast if your Spring version supports JCache.

Declarative Spring Cache Configuration

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="instance">
 ...
</hz:hazelcast>

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="instance"/>
</bean>

Hazelcast uses its Map implementation for underlying cache. You can configure a map with your
cache’s name if you want to set additional configuration such as ttl.

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="instance">
 <hz:config>
 ...

 <hz:map name="city" time-to-live-seconds="0" in-memory-format="BINARY" />
 </hz:config>
</hz:hazelcast>

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="instance"/>
</bean>

public interface IDummyBean {
 @Cacheable("city")
 String getCity();
}

Defining Timeouts for Cache Read Operation

You can define a timeout value for the get operations from your Spring cache. This may be useful
for some cases, such as SLA requirements. Hazelcast provides a property to specify this timeout:
hazelcast.spring.cache.prop. This can be specified as a Java property (using -D) or you can add this
property to your Spring properties file (usually named as application.properties).

An example usage is given below:

423

hazelcast.spring.cache.prop=defaultReadTimeout=2,cache1=10,cache2=20

The argument defaultReadTimeout applies to all of your Spring caches. If you want to define
different timeout values for some specific Spring caches, you can provide them as a comma
separated list as shown in the above example usage. The values are in milliseconds. If you want to
have no timeout for a cache, simply set it to 0 or a negative value.

Declarative Hazelcast JCache Based Caching Configuration

<cache:annotation-driven cache-manager="cacheManager" />

<hz:hazelcast id="instance">
 ...
</hz:hazelcast>

<hz:cache-manager id="hazelcastJCacheCacheManager" instance-ref="instance" name=
"hazelcastJCacheCacheManager"/>

<bean id="cacheManager" class="org.springframework.cache.jcache.JCacheCacheManager">
 <constructor-arg ref="hazelcastJCacheCacheManager" />
</bean>

You can use JCache implementation in both member and client mode. A cache manager should be
bound to an instance. Instance can be referenced by instance-ref attribute or provided by
hazelcast.instance.name property which is passed to CacheManager. Instance should be specified
using one of these methods.

 Instance name provided in properties overrides instance-ref attribute.

You can specify an URI for each cache manager with uri attribute.

<hz:cache-manager id="cacheManager2" name="cacheManager2" uri="testURI">
 <hz:properties>
 <hz:property name="hazelcast.instance.name">named-spring-hz-
instance</hz:property>
 <hz:property name="testProperty">testValue</hz:property>
 </hz:properties>
</hz:cache-manager>

Annotation-Based Spring Cache Configuration

Annotation-Based Configuration does not require any XML definition. To perform Annotation-
Based Configuration:

• Implement a CachingConfiguration class with related Annotations.

424

@Configuration
@EnableCaching
public class CachingConfiguration extends CachingConfigurerSupport {
 @Bean
 public CacheManager cacheManager() {
 ClientConfig config = new ClientConfig();
 HazelcastInstance client = HazelcastClient.newHazelcastClient(config);
 return new com.hazelcast.spring.cache.HazelcastCacheManager(client);
 }
 @Bean
 public KeyGenerator keyGenerator() {
 return null;
 }
}

• Launch Application Context and register CachingConfiguration.

AnnotationConfigApplicationContext context = new
AnnotationConfigApplicationContext();
context.register(CachingConfiguration.class);
context.refresh();

For more information about Spring Cache, see Spring Cache Abstraction.

16.4.4. Configuring Hibernate Second Level Cache

Code Sample: See the sample application for Hibernate 2nd Level Cache configuration.

If you are using Hibernate with Hazelcast as a second level cache provider, you can easily configure
your LocalSessionFactoryBean to use a Hazelcast instance by passing Hazelcast instance name. That
way, you can use the same HazelcastInstance as Hibernate L2 cache instance.

425

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-hibernate-2ndlevel-cache

...
<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"
 scope="singleton">
 <property name="dataSource" ref="dataSource"/>
 <property name="hibernateProperties">
 <props>
 ...
 <prop key="hibernate.cache.region.factory_class"
>com.hazelcast.hibernate.HazelcastLocalCacheRegionFactory</prop>
 <prop key="hibernate.cache.hazelcast.instance_name">
${hz.instance.name}</prop>
 </props>
 </property>
 ...
</bean>

Hibernate RegionFactory Classes

• com.hazelcast.hibernate.HazelcastLocalCacheRegionFactory

• com.hazelcast.hibernate.HazelcastCacheRegionFactory

See the Configuring RegionFactory section in the Hazelcast Hibernate GitHub repository for more
information.

16.4.5. Configuring Hazelcast Transaction Manager

Code Sample: See the sample application for Hazelcast Transaction Manager in our code samples
repository.

You can get rid of the boilerplate code to begin, commit or rollback transactions by using
HazelcastTransactionManager which is a PlatformTransactionManager implementation to be used
with Spring Transaction API.

Example Configuration for Hazelcast Transaction Manager

You need to register HazelcastTransactionManager as your transaction manager implementation and
also you need to register ManagedTransactionalTaskContext to access transactional data structures
within your service class.

426

https://github.com/hazelcast/hazelcast-hibernate#configuring-regionfactory
https://github.com/hazelcast/hazelcast-code-samples/tree/master/hazelcast-integration/spring-transaction-manager
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/spring/transaction/HazelcastTransactionManager.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/spring/transaction/ManagedTransactionalTaskContext.html

...
<hz:hazelcast id="instance">
 ...
</hz:hazelcast>
...
<tx:annotation-driven transaction-manager="transactionManager"/>
<bean id="transactionManager" class=
"com.hazelcast.spring.transaction.HazelcastTransactionManager">
 <constructor-arg ref="instance"/>
</bean>
<bean id="transactionalContext" class=
"com.hazelcast.spring.transaction.ManagedTransactionalTaskContext">
 <constructor-arg ref="transactionManager"/>
</bean>
<bean id="YOUR_SERVICE" class="YOUR_SERVICE_CLASS">
 <property name="transactionalTaskContext" ref="transactionalContext"/>
</bean>
...

Example Transactional Method

public class ServiceWithTransactionalMethod {

 private TransactionalTaskContext transactionalTaskContext;

 @Transactional
 public void transactionalPut(String key, String value) {
 transactionalTaskContext.getMap("testMap").put(key, value);
 }

 ...
}

After marking your method as Transactional either declaratively or by annotation and accessing
the data structure through the TransactionalTaskContext, HazelcastTransactionManager begins,
commits or rollbacks the transaction for you.

16.4.6. Best Practices

Spring tries to create a new Map/Collection instance and fill the new instance by iterating and
converting values of the original Map/Collection (IMap, IQueue, etc.) to required types when generic
type parameters of the original Map/Collection and the target property/attribute do not match.

Since Hazelcast Maps/Collections are designed to hold very large data which a single machine
cannot carry, iterating through whole values can cause out of memory errors.

To avoid this issue, the target property/attribute can be declared as un-typed Map/Collection as
shown below.

427

public class SomeBean {
 @Autowired
 IMap map; // instead of IMap<K, V> map

 @Autowired
 IQueue queue; // instead of IQueue<E> queue
 ...
}

Or, parameters of injection methods (constructor, setter) can be un-typed as shown below.

public class SomeBean {

 IMap<K, V> map;
 IQueue<E> queue;

 // Instead of IMap<K, V> map
 public SomeBean(IMap map) {
 this.map = map;
 }

 ...

 // Instead of IQueue<E> queue
 public void setQueue(IQueue queue) {
 this.queue = queue;
 }
 ...
}

 See Spring issue-3407 for more information.

17. Storage
This chapter describes Hazelcast’s High-Density Memory Store and Hot Restart Persistence features
along with their configurations and gives recommendations on the storage sizing.

17.1. High-Density Memory Store
Hazelcast IMDG Enterprise HD

By default, data structures in Hazelcast store data on heap in serialized form for highest data
compaction; yet, these data structures are still subject to Java Garbage Collection (GC). Modern
hardware has much more available memory. If you want to make use of that hardware and scale
up by specifying higher heap sizes, GC becomes an increasing problem: the application faces long
GC pauses that make the application unresponsive. Also, you may get out of memory errors if you

428

https://jira.springsource.org/browse/SPR-3407

fill your whole heap. Garbage collection, which is the automatic process that manages the
application’s runtime memory, often forces you into configurations where multiple JVMs with small
heaps (sizes of 2-4GB per member) run on a single physical hardware device to avoid garbage
collection pauses. This results in oversized clusters to hold the data and leads to performance level
requirements.

In Hazelcast IMDG Enterprise HD, the High-Density Memory Store is Hazelcast’s new enterprise
in-memory storage solution. It solves garbage collection limitations so that applications can exploit
hardware memory more efficiently without the need of oversized clusters. High-Density Memory
Store is designed as a pluggable memory manager which enables multiple memory stores for
different data structures. These memory stores are all accessible by a common access layer that
scales up to massive amounts of the main memory on a single JVM by minimizing the GC pressure.
High-Density Memory Store enables predictable application scaling and boosts performance and
latency while minimizing garbage collection pauses.

This foundation includes, but is not limited to, storing keys and values next to the heap in a native
memory region.

High-Density Memory Store is currently provided for the following Hazelcast features and
implementations:

• Map

• JCache Implementation

• Near Cache

• Hot Restart Persistence

• Java Client, when using the Near Cache for client

• Web Session Replications

• Hibernate 2nd Level Caching

• Paging and Partition Predicates

17.1.1. Configuring High-Density Memory Store

To use the High-Density memory storage, the native memory usage must be enabled using the
programmatic or declarative configuration. Also, you can configure its size, memory allocator type,
minimum block size, page size and metadata space percentage.

The following are the configuration element descriptions:

• size: Size of the total native memory to allocate in megabytes. Its default value is 512 MB.

• allocator type: Type of the memory allocator. Available values are as follows:

◦ STANDARD: This option is used internally by Hazelcast’s POOLED allocator type or for
debugging/testing purposes.

▪ With this option, the memory is allocated or deallocated using your operating system’s
default memory manager.

▪ It uses GNU C Library’s standard malloc() and free() methods which are subject to

429

https://github.com/hazelcast/hazelcast-wm#using-high-density-memory-store
https://github.com/hazelcast/hazelcast-hibernate

contention on multithreaded/multicore systems.

▪ Memory operations may become slower when you perform a lot of small allocations and
deallocations.

▪ It may cause large memory fragmentations, unless you use a method in the background
that emphasizes fragmentation avoidance, such as jemalloc(). Note that a large memory
fragmentation can trigger the Linux Out of Memory Killer if there is no swap space
enabled in your system. Even if the swap space is enabled, the killer can be again
triggered if there is not enough swap space left.

▪ If you still want to use the operating system’s default memory management, you can set
the allocator type to STANDARD in your native memory configuration.

◦ POOLED: This is the default option, Hazelcast’s own pooling memory allocator.

▪ With this option, memory blocks are managed using internal memory pools.

▪ It allocates memory blocks, each of which has a 4MB page size by default, and splits
them into chunks or merges them to create larger chunks when required. Sizing of these
chunks follows the buddy memory allocation algorithm, i.e., power-of-two sizing.

▪ It never frees memory blocks back to the operating system. It marks disposed memory
blocks as available to be used later, meaning that these blocks are reusable.

▪ Memory allocation and deallocation operations (except the ones requiring larger sizes
than the page size) do not interact with the operating system mostly.

▪ For memory allocation, it tries to find the requested memory size inside the internal
memory pools. If it cannot be found, then it interacts with the operating system.

• minimum block size: Minimum size of the blocks in bytes to split and fragment a page block to
assign to an allocation request. It is used only by the POOLED memory allocator. Its default
value is 16 bytes.

• page size: Size of the page in bytes to allocate memory as a block. It is used only by the POOLED
memory allocator. Its default value is 1 << 22 = 4194304 Bytes, about 4 MB.

• metadata space percentage: Defines the percentage of the allocated native memory that is
used for internal memory structures by the High-Density Memory for tracking the used and
available memory blocks. It is used only by the POOLED memory allocator. Its default value is
12.5. Please note that when the memory runs out, you get a NativeOutOfMemoryException; if your
store has a large number of entries, you should consider increasing this percentage.

• persistent-memory: See the Using Persistent Memory section below.

The following is the programmatic configuration example.

430

https://en.wikipedia.org/wiki/Buddy_memory_allocation

MemorySize memorySize = new MemorySize(512, MemoryUnit.MEGABYTES);
NativeMemoryConfig nativeMemoryConfig =
 new NativeMemoryConfig()
 .setAllocatorType(NativeMemoryConfig.MemoryAllocatorType.POOLED)
 .setSize(memorySize)
 .setEnabled(true)
 .setMinBlockSize(16)
 .setPageSize(1 << 20);

The following is the declarative configuration example.

XML

<hazelcast>
 ...
 <native-memory allocator-type="POOLED" enabled="true">
 <size unit="MEGABYTES" value="512"/>
 <min-block-size>16</min-block-size>
 <page-size>4194304</page-size>
 <metadata-space-percentage>12.5</metadata-space-percentage>
 <persistent-memory enabled="true" mode="MOUNTED">
 <directories>
 <directory numa-node="0">/mnt/pmem0</directory>
 <directory numa-node="1">/mnt/pmem1</directory>
 </directories>
 </persistent-memory>
 </native-memory>
 ...
</hazelcast>

431

YAML

hazelcast:
 native-memory:
 enabled: true
 allocator-type: POOLED
 size:
 unit: MEGABYTES
 value: 512
 min-block-size: 16
 page-size: 4194304
 metadata-space-percentage: 12.5
 persistent-memory:
 enabled: true
 mode: MOUNTED
 directories:
 - directory: /mnt/pmem0
 numa-node: 0
 - directory: /mnt/pmem1
 numa-node: 1

You can check whether there is enough free physical memory for the requested
number of bytes using the system property hazelcast.hidensity.check.freememory.
See the System Properties appendix on how to use Hazelcast system properties.

17.1.2. Using Persistent Memory

The High-Density Memory Store uses the persistent memory in its volatile mode,
which means all data is lost after the instance restarts. For durability, please check
the Hot Restart Persistence feature.

To support larger and more affordable storage for data structures like IMap, ICache and Near
Cache, Hazelcast provides integration with persistent memory technologies like Intel® Optane™ DC.
To benefit from the technology, you do not need to make any changes in your application code.
Only a few configuration changes are required.

Integration with Intel® Optane™ DC is supported on Linux operating system and it
is for Optane DIMMs (not SSDs).

The optional persistent-memory element in the native-memory configuration block enables the
persistent memory usage and defines the directories where this memory is mounted along with its
operational mode. See the element descriptions below the following configuration snippets.

Declarative Configuration:

432

XML

<hazelcast>
 ...
 <native-memory allocator-type="POOLED" enabled="true">
 <size unit="GIGABYTES" value="100" />
 <persistent-memory enabled="true" mode="MOUNTED">
 <directories>
 <directory numa-node="0">/mnt/pmem0</directory>
 <directory numa-node="1">/mnt/pmem1</directory>
 </directories>
 </persistent-memory>
 </native-memory>
 ...
</hazelcast>

YAML

hazelcast:
 native-memory:
 enabled: true
 allocator-type: POOLED
 size:
 unit: GIGABYTES
 value: 100
 persistent-memory:
 enabled: true
 mode: MOUNTED
 directories:
 - directory: /mnt/pmem0
 numa-node: 0
 - directory: /mnt/pmem1
 numa-node: 1

Programmatic Configuration:

433

Config config = new Config();
NativeMemoryConfig memoryConfig = new NativeMemoryConfig()
 .setEnabled(true)
 .setSize(new MemorySize(100, MemoryUnit.GIGABYTES))
 .setAllocatorType(POOLED);

PersistentMemoryConfig pmemConfig = memoryConfig.getPersistentMemoryConfig()
 .setEnabled(true)
 .setMode(MOUNTED)
 .addDirectoryConfig(new PersistentMemoryDirectoryConfig("/mnt/pmem0",
0))
 .addDirectoryConfig(new PersistentMemoryDirectoryConfig("/mnt/pmem1",
1));

config.setNativeMemoryConfig(memoryConfig);

The above snippets demonstrate how to configure the persistent memory as High-Density Memory
Store in Hazelcast. The example assumes dual-socket machine; both sockets are populated with
Intel® Optane™ DC persistent memory DIMMs that are configured in interleaved mode. The two
sockets' DIMMs are mounted as /mnt/pmem0 and /mnt/pmem1 and are known as NUMA node0 and
node1, respectively.

Here are the descriptions of the persistent memory configuration elements and attributes:

• enabled: Specifies whether the persistent memory usage is enabled or not. Its default value is
false, i.e., persistent memory usage is disabled.

• mode: Defines the persistent memory operational mode. Two modes are supported:

◦ MOUNTED: If you choose this mode, the persistent memory is mounted into the file system (aka
FS DAX).

◦ SYSTEM_MEMORY: If you choose this mode, the persistent memory is onlined as system memory
(aka KMEM DAX).

• directories: List of the persistent memory mounting directories to store data of all the data
structures backed by High-Density Memory Store. When you provide the directories:

◦ the persistent memory usage is enabled automatically and you do not need to explicitly set
the enabled attribute to true

◦ the mode should be set to MOUNTED.

If you do not provide a persistent memory directory is configured, standard RAM is used.

Allocation Strategies

Since on multi-socket machines there could be multiple persistent memory mount points, the
memory allocations need to follow an allocation strategy. Starting with 4.1, Hazelcast supports two
allocation strategies:

• Round-robin allocation strategy

434

• NUMA-aware allocation strategy

Hazelcast’s memory allocator chooses and statically caches one of them for every allocator thread
for the entire lifetime of the Hazelcast instance.

Round-robin Allocation Strategy

Hazelcast iterates over the configured persistent memory directories and makes sure every
allocation is done in a different directory than the last. This is a best-effort attempt to distribute the
allocations evenly on the persistent memory DIMMs, which is important from the utilization and
performance points of view as well. This is the default allocation strategy.

NUMA-aware Allocation Strategy

The persistent memory modules are mounted in the memory slots just like the regular memory
modules and sharing the same memory bus. Therefore, the same NUMA locality concerns apply to
the persistent memory that apply to regular memory. This means accessing the persistent memory
modules attached to the socket on which the current thread runs is cheaper than accessing the
persistent memory modules attached to a different socket. These are typically referenced as NUMA-
local and NUMA-remote memories. To achieve the best possible performance, Hazelcast
implements a NUMA-aware allocation strategy to ensure all persistent memory accesses are local, if
certain conditions hold.

To enable this allocation strategy for a certain thread, the thread has to be bounded to a single
NUMA node, which means the kernel’s scheduler makes sure the thread can be scheduled only on
the CPUs of a single NUMA node. Starting with Hazelcast 4.1 this can be done with thread group
granularity. For the detailed explanation please refer to the Thread Affinity section. What makes
the biggest impact on performance is enabling the NUMA-aware allocation strategy for the
operation threads. An example configuration for that is as follows:

-Dhazelcast.operation.thread.affinity=[0-9,20-29]:20,[10-19,30-39]:20

The above example configuration restricts all 40 operation threads to run on a single NUMA node
on a dual-socket 40 core system, where node0’s CPU set is [0-9,20-29] and node1’s CPU set is [10-
19,30-39]. The NUMA nodes and their CPU sets can be discovered by the numactl -H command.

The second requirement for the NUMA-aware strategy is defining the NUMA node for every
persistent memory directory in the configuration. If both configurations are done properly, the
threads in the thread groups restricted to run on a single NUMA node will use the NUMA-aware
allocation strategy, while the rest of threads will still use the round-robin strategy. To check which
persistent memory is attached to which NUMA node, the command ndctl list -v -m fsdax can be
used. Please check which mount point represents which persistent memory device in the output of
ndctl.

Allocation Overflowing

Since both allocation strategies try to allocate from a single persistent memory directory, it may
happen that the chosen directory cannot serve the allocation request due to lack of free capacity. In
this case, both strategies take the other directories and try to serve the allocation from those. Please

435

note that this compromises the NUMA-aware strategy in the way that there will be NUMA-remote
persistent memory accesses.

On the Performance of Persistent Memory

While the persistent memory modules are mounted next to the regular memory modules and
sharing the same memory bus, the two types of the modules have different performance
characteristics. First, the persistent memory modules can be accessed with higher latency than the
regular memory modules. Second, while with the regular memory modules the performance of the
reads and the writes are not different, this is not the case with the persistent memory modules. The
persistent memory has an asymmetric performance profile, which means the writes are slower
than the reads.

Despite the above facts, whether the higher latency of the persistent memory impacts the
performance of Hazelcast depends on multiple factors. Since Hazelcast is a distributed platform,
the higher latency of the persistent memory modules can easily be hidden by the latency variance
of the network and in the end, in certain use cases there may be no observable difference in the
throughput of Hazelcast if it stores its data on persistent memory or on regular memory. Such a use
case is caching, where accessing the entries remotely through Hazelcast clients results in a very
similar throughput. Based on our tests with Intel® Optane™ DC persistent memory modules we
recommend the Optane modules for the caching use case up to 10KB entry size.

Other use cases that don’t involve networking, such as iterating over all entries with entry
processors can be impacted by the higher latency of the persistent memory modules, especially, if
the entry processors update a significant portion of the entries. In general, in such a use case the
higher the entry size, the higher the impact on the performance. That means with smaller entry
sizes the performance of Hazelcast with persistent memory can be comparable to the performance
with regular memory.

17.2. Sizing Practices
Data in Hazelcast is both active data and backup data for high availability, so the total memory
footprint is the size of active data plus the size of backup data. If you use a single backup, it means
the total memory footprint is two times the active data (active data + backup data). If you use, for
example, two backups, then the total memory footprint is three times the active data (active data +
backup data + backup data).

If you use only heap memory, each Hazelcast member with a 4 GB heap should accommodate a
maximum of 3.5 GB of total data (active and backup). If you use the High-Density Memory Store, up
to 75% of the configured physical memory footprint may be used for active and backup data, with
headroom of 25% for normal memory fragmentation. In both cases, however, you should also keep
some memory headroom available to handle any member failure or explicit member shutdown.
When a member leaves the cluster, the data previously owned by the newly offline member is
distributed among the remaining members. For this reason, we recommend that you plan to use
only 60% of available memory, with 40% headroom to handle member failure or shutdown.

436

17.3. Hot Restart Persistence
Hazelcast IMDG Enterprise HD

This chapter explains Hazelcast’s Hot Restart Persistence feature. It provides fast cluster restarts by
storing the states of the cluster members on the disk. This feature is currently provided for the
Hazelcast map data structure and Hazelcast JCache implementation.

17.3.1. Hot Restart Persistence Overview

Hot Restart Persistence enables you to get your cluster up and running swiftly after a cluster
restart. A restart can be caused by a planned shutdown (including rolling upgrades) or a sudden
cluster-wide crash, e.g., power outage. For Hot Restart Persistence, required states for Hazelcast
clusters and members are introduced. See the Managing Cluster and Member States section for
information on the cluster and member states. The purpose of the Hot Restart Persistence is to
provide a maintenance window for member operations and restart the cluster in a fast way. It is
not meant to recover the catastrophic shutdown of one member.

Hot Restart Persistence supports optional data encryption. See the Encryption at Rest section for
more information.

17.3.2. Hot Restart Types

The Hot Restart feature is supported for the following restart types:

• Restart after a planned shutdown:

◦ The cluster is shut down completely and restarted with the exact same previous setup and
data.

You can shut down the cluster completely using the
HazelcastInstance.getCluster().shutdown() method or you can manually change the cluster
state to PASSIVE and then shut down each member one by one. When you send the command
to shut the cluster down, i.e., HazelcastInstance.getCluster().shutdown(), the members that
are not in the PASSIVE state temporarily change their states to PASSIVE. Then, each member
shuts itself down by calling the method HazelcastInstance.shutdown().

Difference between explicitly changing state to PASSIVE before shutdown and shutting down
cluster directly via HazelcastInstance.getCluster().shutdown() is, on the latter case when
cluster is restarted, the cluster state will be in the latest state before shutdown. That means
if cluster is ACTIVE before shutdown, cluster state automatically becomes ACTIVE after restart
is completed.

◦ Rolling restart: The cluster is restarted intentionally member by member. For example, this
could be done to install an operating system patch or new hardware.

To be able to shut down the cluster member by member as part of a planned restart, each
member in the cluster should be in the FROZEN or PASSIVE state. After the cluster state is
changed to FROZEN or PASSIVE, you can manually shut down each member by calling the
method HazelcastInstance.shutdown(). When that member is restarted, it rejoins the running

437

cluster. After all members are restarted, the cluster state can be changed back to ACTIVE.

• Restart after a cluster crash: The cluster is restarted after all its members crashed at the same
time due to a power outage, networking interruptions, etc.

17.3.3. Restart Process

During the restart process, each member waits to load data until all the members in the partition
table are started. During this process, no operations are allowed. Once all cluster members are
started, Hazelcast changes the cluster state to PASSIVE and starts to load data. When all data is
loaded, Hazelcast changes the cluster state to its previous known state before shutdown and starts
to accept the operations which are allowed by the restored cluster state.

If a member fails to either start, join the cluster in time (within the timeout), or load its data, then
that member is terminated immediately. After the problems causing the failure are fixed, that
member can be restarted. If the cluster start cannot be completed in time, then all members fail to
start. See the Configuring Hot Restart section for defining timeouts.

In the case of a restart after a cluster crash, the Hot Restart feature realizes that it was not a clean
shutdown and Hazelcast tries to restart the cluster with the last saved data following the process
explained above. In some cases, specifically when the cluster crashes while it has an ongoing
partition migration process, currently it is not possible to restore the last saved state.

Restart of a Member in Running Cluster

Assume the following:

• You have a cluster consisting of members A, B and C with Hot Restart enabled, which is initially
stable.

• Member B is killed.

• Member B restarts.

Since only a single member has failed, the cluster performed the standard High Availability routine
by recovering member B’s data from backups and redistributing the data among the remaining
members (the members A and C in this case). Member B’s persisted Hot Restart data is completely
irrelevant.

Furthermore, when a member starts with existing Hot Restart data, it expects to find itself within a
cluster that has been shut down as a whole and is now restarting as a whole. Since the reality is
that the cluster has been running all along, member B’s persisted cluster state does not match the
actual state. Depending on the automatic removal of stale data (auto-remove-stale-data)
configuration:

• If auto-remove-stale-data is enabled, member B automatically deletes its Hot Restart directory
inside the base directory (base-dir) and starts as a fresh, empty member. The cluster assigns
some partitions to it, unrelated to the partitions it owned before going down.

• Otherwise, member B aborts the initialization and shuts down. To be able to join the cluster, Hot
Restart directory previously used by member B inside the base directory (base-dir) must be
deleted manually.

438

17.3.4. Force Start

A member can crash permanently and then be unable to recover from the failure. In that case,
restart process cannot be completed since some of the members do not start or fail to load their
own data. In that case, you can force the cluster to clean its persisted data and make a fresh start.
This process is called force start.

Assume the following which is a valid scenario to use force start:

• You have a cluster consisting of members A and B which is initially stable.

• Cluster transitions into FROZEN or PASSIVE state.

• Cluster gracefully shuts down.

• Member A restarts, but member B does not.

• Member A uses its Hot Restart data to initiate the Hot Restart procedure.

• Since it knows the cluster originally contained member B as well, it waits for it to join.

• This never happens.

• Now you have the choice to Force Start the cluster without member B.

• Cluster discards all Hot Restart data and starts empty.

You can trigger the force start process using the Management Center, REST API and cluster
management scripts.

Please note that force start is a destructive process, which results in deletion of persisted Hot
Restart data.

See the Hot Restart functionality of the Management Center section to learn how you can perform a
force start using the Management Center.

17.3.5. Partial Start

When one or more members fail to start or have incorrect Hot Restart data (stale or corrupted data)
or fail to load their Hot Restart data, cluster becomes incomplete and restart mechanism cannot
proceed. One solution is to use Force Start and make a fresh start with existing members. Another
solution is to do a partial start.

Partial start means that the cluster starts with an incomplete member set. Data belonging to those
missing members is assumed lost and Hazelcast tries to recover missing data using the restored
backups. For example, if you have minimum two backups configured for all maps and caches, then
a partial start up to two missing members will be safe against data loss. If there are more than two
missing members or there are maps/caches with less than two backups, then data loss is expected.

Partial start is controlled by cluster-data-recovery-policy configuration parameter and is not
allowed by default. To enable partial start, one of the configuration values
PARTIAL_RECOVERY_MOST_RECENT or PARTIAL_RECOVERY_MOST_COMPLETE should be set. See the Configuring
Hot Restart section for details.

When partial start is enabled, Hazelcast can perform a partial start automatically or manually, in

439

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#hot-restart

case of some members are unable to restart successfully. Partial start proceeds automatically when
some members fail to start and join to the cluster in validation-timeout-seconds. After the
validation-timeout-seconds duration is passed, Hot Restart chooses to perform partial start with the
members present in the cluster. Moreover, partial start can be requested manually using the
Management Center, REST API and cluster management scripts before the validation-timeout-
seconds duration passes.

The other situation to decide to perform a partial start is failures during the data load phase. When
Hazelcast learns data load result of all members which have passed the validation step, it
automatically performs a partial start with the ones which have successfully restored their Hot
Restart data. Please note that partial start does not expect every member to succeed in the data load
step. It completes the process when it learns data load result for every member and there is at least
one member which has successfully restored its Hot Restart data. Relatedly, if it cannot learn data
load result of all members before data-load-timeout-seconds duration, it proceeds with the ones
which have already completed the data load process.

Selection of members to perform partial start among live members is done according to the
cluster-data-recovery-policy configuration. Set of members which are not selected by the cluster-
data-recovery-policy are called Excluded members and they are instructed to perform force start.
Excluded members are allowed to join cluster only when they clean their Hot Restart data and
make a fresh-new start. This is a completely automatic process. For instance, if you start the missing
members after partial start is completed, they clean their Hot Restart data and join to the cluster.

Please note that partial start is a destructive process. Once it is completed, it cannot be repeated
with a new configuration. For this reason, one may need to perform the partial start process
manually. Automatic behavior of partial start relies on validation-timeout-seconds and data-load-
timeout-seconds configuration values. If you need to control the process manually, validation-
timeout-seconds and data-load-timeout-seconds properties can be set to very big values so that
Hazelcast cannot make progress on timeouts automatically. Then, the overall process can be
managed manually via aforementioned methods, i.e., Management Center, REST API and cluster
management scripts.

17.3.6. Configuring Hot Restart

You can configure Hot Restart feature programmatically or declaratively. There are two steps of
configuration:

1. Enabling and configuring the Hot Restart feature globally in your Hazelcast configuration: This
is done using the configuration element hot-restart-persistence. See the Global Hot Restart
Configuration section below.

2. Enabling and configuring the Hazelcast data structures to use the Hot Restart feature: This is
done using the configuration element hot-restart. See the Per Data Structure Hot Restart
Configuration section below.

Global Hot Restart Configuration

This is where you configure the Hot Restart feature itself using the hot-restart-persistence
element. The following are the descriptions of its attribute and sub-elements:

440

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#hot-restart

• enabled: Attribute of the hot-restart-persistence element which specifies whether the feature is
globally enabled in your Hazelcast configuration. Set this attribute to true if you want any of
your data structures to use the Hot Restart feature.

• base-dir: Specifies the parent directory where the Hot Restart data is stored. The default value
for base-dir is hot-restart. You can use the default value, or you can specify the value of
another folder containing the Hot Restart configuration, but it is mandatory that base-dir
element has a value. This directory is created automatically if it does not exist.

base-dir is used as the parent directory, and a unique Hot Restart directory is created inside
base-dir for each Hazelcast member which uses the same base-dir. That means, base-dir can be
shared among multiple Hazelcast members safely. This is especially useful for cloud
environments where the members generally use a shared filesystem.

When a Hazelcast member starts, it tries to acquire the ownership of the first available Hot
Restart directory inside the base-dir. If base-dir is empty or if the starting member fails to
acquire the ownership of any directory (happens when all the directories are already acquired
by other Hazelcast members), then it creates its own fresh directory.

Previously, base-dir was being used only by a single Hazelcast member. If such
an existing base-dir is configured for a Hazelcast member, Hot Restart starts in
legacy mode and base-dir is used only by a single member, without creating a
unique sub-directory. Other members trying to use that base-dir fails during
the startup.

• backup-dir: Specifies the directory under which Hot Restart snapshots (Hot Backups) are stored.
See the Hot Backup section for more information.

• parallelism: Level of parallelism in Hot Restart Persistence. There are this many I/O threads,
each writing in parallel to its own files. During the Hot Restart procedure, this many I/O threads
are reading the files and this many rebuilder threads are rebuilding the Hot Restart metadata.
The default value for this property is 1. This is a good default in most but not all cases. You
should measure the raw I/O throughput of your infrastructure and test with different values of
parallelism. In some cases such as dedicated hardware higher parallelism can yield more
throughput of Hot Restart. In other cases such as running on EC2, it can yield diminishing
returns - more thread scheduling, more contention on I/O and less efficient garbage collection.

• validation-timeout-seconds: Validation timeout for the Hot Restart process when validating the
cluster members expected to join and the partition table on the whole cluster.

• data-load-timeout-seconds: Data load timeout for the Hot Restart process. All members in the
cluster should finish restoring their local data before this timeout.

• cluster-data-recovery-policy: Specifies the data recovery policy that is respected during the Hot
Restart cluster start. Valid values are;

◦ FULL_RECOVERY_ONLY: Starts the cluster only when all expected members are present and
correct. Otherwise, it fails. This is the default value.

◦ PARTIAL_RECOVERY_MOST_RECENT: Starts the cluster with the members which have most up-to-
date partition table and successfully restored their data. All other members leave the cluster
and force start themselves. If no member restores its data successfully, cluster start fails.

441

◦ PARTIAL_RECOVERY_MOST_COMPLETE: Starts the cluster with the largest group of members which
have the same partition table version and successfully restored their data. All other
members leave the cluster and force start themselves. If no member restores its data
successfully, cluster start fails.

• auto-remove-stale-data: Enables automatic removal of the stale Hot Restart data. When a
member terminates or crashes when the cluster state is ACTIVE, the remaining members
redistribute the data among themselves and the data persisted on terminated member’s storage
becomes stale. That terminated member cannot rejoin the cluster without removing Hot Restart
data. When auto-removal of stale Hot Restart data is enabled, while restarting that member, Hot
Restart data is automatically removed and it joins the cluster as a completely new member.
Otherwise, Hot Restart data should be removed manually.

• encryption-at-rest: Configures encryption on the Hot Restart data level. See the Encryption at
Rest section for more information.

Per Data Structure Hot Restart Configuration

This is where you configure the data structures of your choice, so that they can have the Hot Restart
feature. This is done using the hot-restart configuration element. As it is explained in the
introduction paragraph, Hot Restart feature is currently supported by Hazelcast map data structure
and JCache implementation (map and cache), each of which has the hot-restart configuration
element. The following are the descriptions of this element’s attribute and sub-element:

• enabled: Attribute of the hot-restart element which specifies whether the Hot Restart feature is
enabled for the related data structure. Its default value is false.

• fsync: Turning on fsync guarantees that data is persisted to the disk device when a write
operation returns successful response to the caller. By default, fsync is turned off (false). That
means data is persisted to the disk device eventually, instead of on every disk write. This
generally provides a better performance.

Hot Restart Configuration Examples

The following are example configurations for a Hazelcast map and JCache implementation.

Declarative Configuration:

An example configuration is shown below.

442

XML

<hazelcast>
 ...
 <hot-restart-persistence enabled="true">
 <base-dir>/mnt/hot-restart</base-dir>
 <backup-dir>/mnt/hot-backup</backup-dir>
 <validation-timeout-seconds>120</validation-timeout-seconds>
 <data-load-timeout-seconds>900</data-load-timeout-seconds>
 <cluster-data-recovery-policy>FULL_RECOVERY_ONLY</cluster-data-recovery-
policy>
 </hot-restart-persistence>
 ...
 <map name="test-map">
 <hot-restart enabled="true">
 <fsync>false</fsync>
 </hot-restart>
 </map>
 ...
 <cache name="test-cache">
 <hot-restart enabled="true">
 <fsync>false</fsync>
 </hot-restart>
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 hot-restart-persistence:
 enabled: true
 base-dir: /mnt/hot-restart
 backup-dir: /mnt/hot-backup
 validation-timeout-seconds: 120
 data-load-timeout-seconds: 900
 cluster-data-recovery-policy: FULL_RECOVERY_ONLY
 map:
 test-map:
 hot-restart:
 enabled: true
 fsync: false
 cache:
 test-cache:
 hot-restart:
 enabled: true
 fsync: false

Programmatic Configuration:

443

The programmatic equivalent of the above declarative configuration is shown below.

Config config = new Config();
HotRestartPersistenceConfig hotRestartPersistenceConfig = new
HotRestartPersistenceConfig()
.setEnabled(true)
.setBaseDir(new File("/mnt/hot-restart"))
.setParallelism(1)
.setValidationTimeoutSeconds(120)
.setDataLoadTimeoutSeconds(900)
.setClusterDataRecoveryPolicy(HotRestartClusterDataRecoveryPolicy.FULL_RECOVERY_ONLY)
.setAutoRemoveStaleData(true);
config.setHotRestartPersistenceConfig(hotRestartPersistenceConfig);

MapConfig mapConfig = config.getMapConfig("test-map");
mapConfig.getHotRestartConfig().setEnabled(true);

CacheSimpleConfig cacheConfig = config.getCacheConfig("test-cache");
cacheConfig.getHotRestartConfig().setEnabled(true);

Configuring Hot Restart Store on Intel® Optane™ DC Persistent Memory

Hazelcast can be configured to use Intel® Optane™ DC Persistent Memory as the Hot Restart
directory. For this, you need to perform the following steps:

1. Configure the Persistent Memory as a File System

2. Configure the Hot Restart Store to Use Persistent Memory

Using Persistent Memory, Hot Restart times can be drastically improved. You can find the
configuration steps in the Hot Restart Store section of the Hazelcast IMDG Operations and
Deployment Guide.

17.3.7. Moving/Copying Hot Restart Data

After Hazelcast member owning the Hot Restart data is shutdown, Hot Restart base-dir can be
copied/moved to a different server (which may have different IP address and/or different number
of CPU cores) and Hazelcast member can be restarted using the existing Hot Restart data on that
new server. Having a new IP address does not affect Hot Restart, since it does not rely on the IP
address of the server but instead uses Member UUID as a unique identifier.

This flexibility provides the following abilities:

• Replacing one or more faulty servers with the new ones easily without touching remaining
cluster.

• Using Hot Restart on the cloud environments easily. Sometimes cloud providers do not preserve
the IP addresses on restart or after shutdown. Also it is possible to startup the whole cluster on a
different set of machines.

• Copying production data to the test environment, so that a more functional test cluster can bet

444

https://hazelcast.com/resources/hazelcast-deployment-operations-guide/
https://hazelcast.com/resources/hazelcast-deployment-operations-guide/

setup.

Unfortunately having different number of CPU cores is not that straightforward. Hazelcast partition
threads, by default, uses a heuristic from the number of cores, e.g., # of partition threads = # of
CPU cores. When a Hazelcast member is started on a server with a different CPU core count,
number of Hazelcast partition threads changes and that makes Hot Restart fail during the startup.
Solution is to explicitly set number of Hazelcast partition threads
(hazelcast.operation.thread.count system property) and Hot Restart parallelism configuration and
use the same parameters on the new server. For setting system properties see the System Properties
appendix.

17.3.8. Hot Restart Persistence Design Details

Hazelcast’s Hot Restart Persistence uses the log-structured storage approach. The following is a top-
level design description:

• The only kind of update operation on persistent data is appending.

• What is appended are facts about events that happened to the data model represented by the
store; either a new value was assigned to a key or a key was removed.

• Each record associated with a key makes stale the previous record that was associated with that
key.

• Stale records contribute to the amount of garbage present in the persistent storage.

• Measures are taken to remove garbage from the storage.

This kind of design focuses almost all of the system’s complexity into the garbage collection (GC)
process, stripping down the client’s operation to the bare necessity of guaranteeing persistent
behavior: a simple file append operation. Consequently, the latency of operations is close to the
theoretical minimum in almost all cases. Complications arise only during prolonged periods of
maximum load; this is where the details of the GC process begin to matter.

17.3.9. Concurrent, Incremental, Generational GC

In order to maintain the lowest possible footprint in the update operation latency, the following
properties are built into the garbage collection process:

• A dedicated thread performs the GC. In Hazelcast terms, this thread is called the Collector and
the application thread is called the Mutator.

• On each update there is metadata to be maintained; this is done asynchronously by the
Collector thread. The Mutator enqueues update events to the Collector’s work queue.

• The Collector keeps draining its work queue at all times, including the time it goes through the
GC cycle. Updates are taken into account at each stage in the GC cycle, preventing the copying of
already dead records into compacted files.

• All GC-induced I/O competes for the same resources as the Mutator’s update operations.
Therefore, measures are taken to minimize the impact of I/O done during GC:

◦ data is never read from files, but from RAM

445

◦ a heuristic scheme is employed which minimizes the number of bytes written to the disk for
each kilobyte of the reclaimed garbage

◦ measures are also taken to achieve a good interleaving of Collector and Mutator operations,
minimizing latency outliers perceived by the Mutator

I/O Minimization Scheme

The success of this scheme is subject to a bet on the Weak Generational Garbage Hypothesis, which
states that a new record entering the system is likely to become garbage soon. In other words, a key
updated now is more likely than average to be updated again soon.

The scheme was taken from the seminal Sprite LFS paper, Rosenblum, Ousterhout, The Design and
Implementation of a Log-Structured File System. The following is an outline of the paper:

• Data is not written to one huge file, but to many files of moderate size (8 MB) called "chunks".

• Garbage is collected incrementally, i.e. by choosing several chunks, then copying all their live
data to new chunks, then deleting the old ones.

• I/O is minimized using a collection technique which results in a bimodal distribution of chunks
with respect to their garbage content: most files are either almost all live data or they are all
garbage.

• The technique consists of two main principles:

◦ Chunks are selected based on their Cost-Benefit factor (see below).

◦ Records are sorted by age before copying to new chunks.

Cost-Benefit Factor

The Cost-Benefit factor of a chunk consists of two components multiplied together:

1. The ratio of benefit (amount of garbage that can be collected) to I/O cost (amount of live data to
be written).

2. The age of the data in the chunk, measured as the age of the youngest record it contains.

The essence is in the second component: given equal amount of garbage in all chunks, it makes the
young ones less attractive to the Collector. Assuming the generational garbage hypothesis, this
allows the young chunks to quickly accumulate more garbage. On the flip side, it also ensures that
even files with little garbage are eventually garbage collected. This removes garbage which would
otherwise linger on, thinly spread across many chunk files.

Sorting records by age groups the young records together in a single chunk and does the same for
older records. Therefore the chunks are either tend to keep their data live for a longer time, or
quickly become full of garbage.

17.3.10. Hot Restart Performance Considerations

In this section you can find performance test summaries which are results of benchmark tests
performed with a single Hazelcast member running on a physical server and on AWS R3.

446

http://www.cs.berkeley.edu/~brewer/cs262/LFS.pdf
http://www.cs.berkeley.edu/~brewer/cs262/LFS.pdf
http://www.cs.berkeley.edu/~brewer/cs262/LFS.pdf

Performance on a Physical Server

We have tested a member which has an IMap with High-Density Data Store. Its data size is changed
for each test, started from 10 GB to 500 GB (each map entry has a value of 1 KB).

The tests investigate the write and read performance of Hot Restart Persistence and are performed
on HP ProLiant servers with RHEL 7 operating system using Hazelcast Simulator.

The following are the specifications of the server hardware used for the test:

• CPU: 2x Intel® Xeon® CPU E5-2687W v3 @ 3.10GHz – with 10 cores per processor. Total 20
cores, 40 with hyper threading enabled.

• Memory: 768GB 2133 MHz memory 24x HP 32GB 4Rx4 PC4-2133P-L Kit

The following are the storage media used for the test:

• A hot-pluggable 2.5 inch HDD with 1 TB capacity and 10K RPM.

• An SSD, Light Endurance PCle Workload Accelerator.

The below table shows the test results.

Performance on AWS R3

We have tested a member which has an IMap with High-Density Data Store:

• This map has 40 million distinct keys, each map entry is 1 KB.

• High-Density Memory Store is 59 GiB whose 19% is metadata.

• Hot Restart is configured with fsync turned off.

• Data size reloaded on restart is 38 GB.

The tests investigate the write and read performance of Hot Restart Persistence and are performed
on R3.2xlarge and R3.4xlarge EC2 instances using Hazelcast Simulator.

The following are the AWS storage types used for the test:

• Elastic Block Storage (EBS) General Purpose SSD (GP2)

447

• Elastic Block Storage with Provisioned IOPS (IO1) (Provisioned 10,000 IOPS on a 340 GiB volume,
enabled EBS-optimized on instance)

• SSD-backed instance store

The below table shows the test results.

17.3.11. Hot Backup

During Hot Restart operations you can take a snapshot of the Hot Restart Store at a certain point in
time. This is useful when you wish to bring up a new cluster with the same data or parts of the data.
The new cluster can then be used to share load with the original cluster, to perform testing, QA or
reproduce an issue on production data.

Simple file copying of a currently running cluster does not suffice and can produce inconsistent
snapshots with problems such as resurrection of deleted values or missing values.

Configuring Hot Backup

To create snapshots you must first configure the Hot Restart backup directory. You can configure
the directory programmatically or declaratively using the following configuration element:

• backup-dir: This element is included in the hot-restart-persistence and denotes the destination
under which backups are stored. If this element is not defined, hot backup is disabled. If a
directory is defined which does not exist, it is created on the first backup. To avoid clashing data
on multiple backups, each backup has a unique sequence ID which determines the name of the
directory which contains all Hot Restart data. This unique directory is created as a subdirectory
of the configured backup-dir.

The following are the example configurations for Hot backup.

448

Declarative Configuration:

An example configuration is shown below.

XML

<hazelcast>
 ...
 <hot-restart-persistence enabled="true">
 <backup-dir>/mnt/hot-backup</backup-dir>
 ...
 </hot-restart-persistence>
 ...
</hazelcast>

YAML

hazelcast:
 hot-restart-persistence:
 enabled: true
 backup-dir: /mnt/hot-backup

Programmatic Configuration:

The programmatic equivalent of the above declarative configuration is shown below.

HotRestartPersistenceConfig hotRestartPersistenceConfig = new
HotRestartPersistenceConfig();
hotRestartPersistenceConfig.setBackupDir(new File("/mnt/hot-backup"));
...
config.setHotRestartPersistenceConfig(hotRestartPersistenceConfig);

Using Hot Backup

Once configured, you can initiate a new backup via API or from the Management Center. The
backup is started transactionally and cluster-wide. This means that either all or none of the
members start the same backup. The member which receives the backup request determines a new
backup sequence ID and send that information to all members. If all members respond that no
other backup is currently in progress and that no other backup request has already been made,
then the coordinating member commands the other members to start the actual backup process.
This creates a directory under the configured backup-dir with the name backup-<backupSeq> and
start copying the data from the original store.

The backup process is initiated nearly instantaneously on all members. Note that since there is no
limitation as to when the backup process is initiated, it may be initiated during membership
changes, partition table changes or during normal data update. Some of these operations may not
be completed fully yet, which means that some members will backup some data while some
members will backup a previous version of the same data. This is usually solved by the anti-entropy

449

mechanism on the new cluster which reconciles different versions of the same data. Please check
the Achieving High Consistency of Backup Data section for more information.

The duration of the backup process and the disk data usage drastically depends on what is
supported by the system and the configuration. Please check the Achieving high performance of
backup process section for more information on achieving better resource usage of the backup
process.

Following is an example of how to trigger the Hot Backup via API:

HotRestartService service = instance.getCluster().getHotRestartService();
service.backup();

The backupSeq is generated by the hot backup process, but you can define your own backup
sequences as shown below:

HotRestartService service = instance.getCluster().getHotRestartService();
long backupSeq = ...
service.backup(backupSeq);

Keep in mind that the backup fails if any member contains a backup directory with the name
backup-<backupSeq>, where backupSeq is the given sequence.

Starting the Cluster From a Hot Backup

As mentioned in the previous section, hot backup process creates subdirectories named backup-
<backupSeq> under the configured hot backup directory (i.e., backup-dir). When starting your cluster
with data from a hot backup, you need to set the base directory (i.e., base-dir) to the desired backup
subdirectory.

Let’s say you have configured your hot backup directory as follows:

XML

<hazelcast>
 ...
 <hot-restart-persistence enabled="true">
 <backup-dir>/mnt/hot-backup</backup-dir>
 ...
 </hot-restart-persistence>
 ...
</hazelcast>

450

YAML

hazelcast:
 hot-restart-persistence:
 enabled: true
 backup-dir: /mnt/hot-backup

And let’s say you have a subdirectory named backup-2018Oct24 under the backup directory
/mnt/hot-backup. When you want to start your cluster with data from this backup (backup-
2018Oct24), here is the configuration you should have for the base-dir while starting the cluster:

XML

<hazelcast>
 ...
 <hot-restart-persistence enabled="true">
 <base-dir>backup-2018Oct24</base-dir>
 <parallelism>1</parallelism>
 </hot-restart-persistence>
 ...
 <map name="test-map">
 <hot-restart enabled="true">
 <fsync>false</fsync>
 </hot-restart>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 hot-restart-persistence:
 enabled: true
 base-dir: backup-2018Oct24
 parallelism: 1
 map:
 test-map:
 hot-restart:
 enabled: true
 fsync: false

Achieving High Consistency of Backup Data

The backup is initiated nearly simultaneously on all members but you can encounter some
inconsistencies in the data. This is because some members might have and some might not have
received updated values yet from executed operations, because the system could be undergoing
partition and membership changes or because there are some transactions which have not yet
been committed.

451

To achieve a high consistency of data on all members, the cluster should be put to PASSIVE state for
the duration of the call to the backup method. See the Cluster Member States section on
information on how to do this. The cluster does not need to be in PASSIVE state for the entire
duration of the backup process, though. Because of the design, only partition metadata is copied
synchronously during the invocation of the backup method. Once the backup method has returned,
all cluster metadata is copied and the exact partition data which needs to be copied is marked. After
that, the backup process continues asynchronously and you can return the cluster to the ACTIVE
state and resume operations.

Achieving High Performance of Backup Process

Because of the design of Hot Restart Store, we can use hard links to achieve backups/snapshots of
the store. The hot backup process uses hard links whenever possible because they provide big
performance benefits and because the backups share disk usage.

The performance benefit comes from the fact that Hot Restart file contents are not being duplicated
(thus using disk and I/O resources) but rather a new file name is created for the same contents on
disk (another pointer to the same inode). Since all backups and stores share the same inode, disk
usage drops.

The bigger the percentage of stable data in the Hot Restart Store (data not undergoing changes), the
more files each backup shares with the operational Hot Restart Store and the less disk space it uses.
For the hot backup to use hard links, you must be running Hazelcast members on JDK 7 or higher
and must satisfy all requirements for the Files.createLink() method to be supported.

The backup process initially attempts to create a new hard link and if that fails for any reason it
continues by copying the data. Subsequent backups also attempt to use hard links.

Backup Process Progress and Completion

Only cluster and distributed object metadata is copied synchronously during the invocation of the
backup method. The rest of the Hot Restart Store containing partition data is copied
asynchronously after the method call has ended. You can track the progress by API or view it from
the Management Center.

An example of how to track the progress via API is shown below:

HotRestartService service = instance.getCluster().getHotRestartService();
BackupTaskStatus status = service.getBackupTaskStatus();
...

The returned object contains the local member’s backup status:

• the backup state (NOT_STARTED, IN_PROGRESS, FAILURE, SUCCESS)

• the completed count

• the total count

The completed and total count can provide you a way to track the percentage of the copied data.

452

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#createLink(java.nio.file.Path,%20java.nio.file.Path)

Currently the count defines the number of copied and total local member Hot Restart Stores
(defined by HotRestartPersistenceConfig.setParallelism()) but this can change at a later point to
provide greater resolution.

Besides tracking the Hot Restart status by API, you can view the status in the Management Center
and you can inspect the on-disk files for each member. Each member creates an inprogress file
which is created in each of the copied Hot Restart Stores. This means that the backup is currently in
progress. When the backup task completes the backup operation, this file is removed. If an error
occurs during the backup task, the inprogress file is renamed to failure which contains a stack
trace of the exception.

Backup Task Interruption and Cancellation

Once the backup method call has returned and asynchronous copying of the partition data has
started, the backup task can be interrupted. This is helpful in situations where the backup task has
started at an inconvenient time. For instance, the backup task could be automatized and it could be
accidentally triggered during high load on the Hazelcast instances, causing the performance of the
Hazelcast instances to drop.

The backup task mainly uses disk IO, consumes little CPU and it generally does not last for a long
time (although you should test it with your environment to determine the exact impact).
Nevertheless, you can abort the backup tasks on all members via a cluster-wide interrupt
operation. This operation can be triggered programmatically or from the Management Center.

An example of programmatic interruption is shown below:

HotRestartService service = instance.getCluster().getHotRestartService();
service.interruptBackupTask();
...

This method sends an interrupt to all members. The interrupt is ignored if the backup task is
currently not in progress so you can safely call this method even though it has previously been
called or when some members have already completed their local backup tasks.

You can also interrupt the local member backup task as shown below:

HotRestartService service = instance.getCluster().getHotRestartService();
service.interruptLocalBackupTask();
...

The backup task stops as soon as possible and it does not remove the disk contents of the backup
directory meaning that you must remove it manually.

17.3.12. Encryption at Rest

Records stored in the Hot Restart Store may contain sensitive information. This sensitive
information may be present in the keys, in the values, or in both. In Hot Restart terms, Encryption
at Rest concerns with encryption on the chunk file level. Since complete chunk files are encrypted,

453

all data stored in the Hot Restart Store is protected when Encryption at Rest is enabled.

Data persisted in the Hot Restart Store is encrypted using symmetric encryption. The
implementation is based on Java Cryptography Architecture (JCA). The encryption scheme uses two
levels of encryption keys: auto-generated Hot Restart Store-level encryption keys (one per
configured parallelism) that are used to encrypt the chunk files and a master encryption key that is
used to encrypt the store-specific encryption keys. The master encryption key is sourced from an
external system called Secure Store and, in contrast to the Hot Restart Store-level encryption keys, it
is not persisted anywhere within the Hot Restart Store.

When Hot Restart with Encryption at Rest is first enabled on a member, the member contacts the
Secure Store during the startup and retrieves the master encryption key. Then it generates the Hot
Restart Store-level encryption keys for the parallel Stores and stores them (encrypted using the
master key) under the Hot Restart Store’s directory. The subsequent writes to Hot Restart chunk
files will be encrypted using the Store-level encryption key. During Hot Restart, the member
retrieves the master encryption key from the Secure Store, decrypts the Store-level encryption keys
and uses those to decrypt the chunk files.

Master key rotation is supported. If the master encryption key changes in the Secure Store, the Hot
Restart subsystem will detect it and retrieve the new master encryption key. During this process, it
will also re-encrypt the Hot Restart Store-level encryption keys using the new master encryption
key.

The Configuring a Secure Store section provides information about the supported Secure Store
types.

Configuring Encryption at Rest

Encryption at Rest can be enabled and configured programmatically or declaratively using the
encryption-at-rest sub-element of hot-restart-persistence. The encryption-at-rest element has the
following attributes and sub-elements:

• enabled: Attribute that specifies whether Encryption at Rest is enabled; false by default.

• algorithm: Specifies the symmetric cipher to use (such as AES/CBC/PKCS5Padding).

• salt: The encryption salt.

• key-size: The size of the auto-generated Hot Restart Store-level encryption key.

• secure-store: Specifies the Secure Store to use for the retrieval of master encryption keys. See
the Configuring a Secure Store section for more details.

The following are the example configurations for Encryption at Rest.

Declarative Configuration:

An example configuration is shown below.

454

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

XML

<hazelcast>
 ...
 <hot-restart-persistence enabled="true">
 ...
 <encryption-at-rest enabled="true">
 <algorithm>AEC/CBC/PKCS5Padding</algorithm>
 <salt>thesalt</salt>
 <key-size>128</key-size>
 <secure-store>...</secure-store>
 </encryption-at-rest>
 ...
 </hot-restart-persistence>
 ...
</hazelcast>

YAML

hazelcast:
 hot-restart-persistence:
 enabled: true
 encryption-at-rest:
 enabled: true
 algorithm: AES/CBC/PKCS5Padding
 salt: thesalt
 key-size: 128
 secure-store:
 ...

Programmatic Configuration:

The programmatic equivalent of the above declarative configuration is shown below.

HotRestartPersistenceConfig hotRestartPersistenceConfig = new
HotRestartPersistenceConfig();
EncryptionAtRestConfig encryptionAtRestConfig =
 hotRestartPersistenceConfig.getEncryptionAtRestConfig();
encryptionAtRestConfig.setEnabled(true)
 .setAlgorithm("AES/CBC/PKCS5Padding")
 .setSalt("thesalt")
 .setKeySize(128)
 .setSecureStoreConfig(secureStore());

Configuring a Secure Store

A Secure Store represents a (secure) source of master encryption keys and is required for using
Encryption at Rest.

455

Hazelcast IMDG Enterprise provides Secure Store implementations for the Java KeyStore and for
HashiCorp Vault.

Java KeyStore Secure Store

The Java KeyStore Secure Store provides integration with the Java KeyStore. It can be configured
programmatically or declaratively using the keystore sub-element of secure-store. The keystore
element has the following sub-elements:

• path: The path to the KeyStore file.

• type: The type of the KeyStore (PKCS12, JCEKS, etc.).

• password: The KeyStore password.

• current-key-alias: The alias for the current encryption key entry (optional).

• polling-interval: The polling interval (in seconds) for checking for changes in the KeyStore.
Disabled by default.

Sensitive configuration properties such as password should be protected using
encryption replacers.

The Java KeyStore Secure treats all KeyStore.SecretKeyEntry entries stored in the KeyStore as
encryption keys. It expects that these entries use the same protection password as the KeyStore
itself. Entries of other types (private key entries, certificate entries) are ignored. If current-key-
alias is set, the corresponding entry will be treated as the current encryption key; otherwise, the
highest entry in the alphabetical order will be used. The remaining entries will represent historical
versions of the encryption key.

An example declarative configuration is shown below:

XML

<secure-store>
 <keystore>
 <path>/path/to/keystore.file</path>
 <type>PKCS12</type>
 <password>password</password>
 <current-key-alias>current</current-key-alias>
 <polling-interval>60</polling-interval>
 </keystore>
</secure-store>

456

https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html
https://www.vaultproject.io/
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html

YAML

secure-store:
 keystore:
 path: /path/to/keystore.file
 type: PKCS12
 password: password
 current-key-alias: current
 polling-interval: 60

The following is an equivalent programmatic configuration:

JavaKeyStoreSecureStoreConfig keyStoreConfig =
 new JavaKeyStoreSecureStoreConfig(new File("/path/to/keystore.file"))
 .setType("PKCS12")
 .setPassword("password")
 .setCurrentKeyAlias("current")
 .setPollingInterval(60);

HashiCorp Vault Secure Store

The HashiCorp Vault Secure Store provides integration with HashiCorp Vault. It can be configured
programmatically or declaratively using the vault sub-element of secure-store. The vault element
has the following sub-elements:

• address: The address of the Vault server.

• secret-path: The secret path under which the encryption keys are stored.

• token: The Vault authentication token.

• polling-interval: The polling interval (in seconds) for checking for changes in Vault. Disabled
by default.

• ssl: The TLS/SSL configuration for HTTPS support. See the TLS/SSL section for more information
about how to use the ssl element.

Sensitive configuration properties such as token should be protected using
encryption replacers.

The HashiCorp Vault Secure Store implementation uses the official REST API to integrate with
HashiCorp Vault. Only for the KV secrets engine, both KV V1 and KV V2 can be used, but since only
V2 provides secrets versioning, this is the recommended option. With KV V1 (no versioning
support), only one version of the encryption key can be kept, whereas with KV V2, the HashiCorp
Vault Secure Store is able to retrieve also the historical encryption keys. (Note that the size of the
version history is configurable on the Vault side.) Having access to the previous encryption keys
may be critical to avoid scenarios where the Hot Restart data becomes undecryptable because the
master encryption key is no longer usable (for instance, when the original master encryption key
got rotated out in the Secure Store while the cluster was down).

457

https://www.vaultproject.io/
https://www.vaultproject.io/docs/secrets/kv/index.html

The encryption key is expected to be stored at the specified secret path and represented as a single
key/value pair in the following format:

name=Base64-encoded-data

where name can be an arbitrary string. Multiple key/value pairs under the same secret path are not
supported. Here is an example of how such a key/value pair can be stored using the HashiCorp
Vault command-line client (under the secret path hz/cluster):

vault kv put hz/cluster value=HEzO124Vz...

With KV V2, a second put to the same secret path creates a new version of the encryption key. With
KV V1, it simply overwrites the current encryption key, discarding the old value.

An example declarative configuration is shown below:

XML

<secure-store>
 <vault>
 <address>http://localhost:1234</address>
 <secret-path>secret/path</secret-path>
 <token>token</token>
 <polling-interval>60</polling-interval>
 <ssl>...</ssl>
 </vault>
</secure-store>

YAML

secure-store:
 vault:
 address: http://localhost:1234
 secret-path: secret/path
 token: token
 polling-interval: 60
 ssl:
 ...

The following is an equivalent programmatic configuration:

VaultSecureStoreConfig vaultConfig =
 new VaultSecureStoreConfig("http://localhost:1234", "secret/path", "token")
 .setPollingInterval(60);
configureSSL(vaultConfig.getSSLConfig());

458

18. Database CDC Integration using Striim
Hot Cache
Hazelcast IMDG Enterprise

Change Data Capture (CDC) refers to the technology for identifying and capturing changes made to
a data source. These changes can then be applied to another data repository or made available in a
format supported by data integration tools.

Striim is a real-time data integration and streaming analytics software platform. It uses CDC
(Change Data Capture) mechanism to detect changes performed on a data source.

Hazelcast Striim Hot Cache, the integration solution of Hazelcast and Striim, enables real-time,
push-based propagation of changes from the database to the cache. The following sections describe
this integration.

18.1. Introduction
Through CDC, Striim is able to recognize which tables and key values have changed. It immediately
captures these changes with their table and key, and pushes the changes into a cache. Supported
databases are Oracle, My SQL and Microsoft SQL Server.

When it comes to Hazelcast, you can get the changes in a database and put them into your
Hazelcast IMDG member using a "writer" developed by Striim, i.e., Hazelcast Writer. This writer
creates a Hazelcast client once you start Striim, to connect to your IMDG member.

18.2. Supported Versions
This integration only works with Hazelcast IMDG 3.x versions. Support for 4.x will be added in the
near future.

18.3. Logging
You can enable logging to see the status of the Hazelcast client created by the Hazelcast Writer. For
this, you need to add the following line to the server.sh file on the machine where Striim is
running:

-Dhazelcast.logging.type=log4j

The server.sh file is typically located at the /opt/striim/bin directory.

You can also set the logging level by adding the following line to the log4j.server.properties file:

log4j.logger.com.hazelcast=debug

459

https://www.striim.com/

The log4j.server.properties file is typically located at the /opt/striim/conf directory.

In the above example line, the logging level is set as DEBUG. The following lists all the available
levels:

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

• OFF

The logs are written into the striim.server.log which is typically located at the /opt/striim/logs
directory.

The above settings are for the Hazelcast Client created by the writer. You can also change the
logging level dynamically for Hazelcast Writer. Follow the below instructions for this:

1. Open the Striim console using the console.sh command. See here for the usage of this command.

2. While in the console, run the following command:

set loglevel = {com.webaction.proc.HazelcastWriter_1_0:debug};

18.4. Full Worked Example Application
We have created a full example application with step-by-step instructions which guides you
through using Striim to load data from an Oracle database using the Striim Hazelcast Writer. We
recommend you start here before applying this to your own application.

18.5. Further Resources
You can refer to here for more information on Hazelcast Writer.

Download a fully loaded evaluation copy of Striim for Hazelcast Hot Cache.

19. Hazelcast Clients
This chapter provides information about Hazelcast’s client and language implementations, which
are listed below:

• Java

• C++

• .NET

• Memcache

460

https://www.striim.com/docs/en/console-commands.html
https://github.com/hazelcast-guides/striim-hazelcast-cdc
https://www.striim.com/docs/en/hazelcast-writer.html
http://www.striim.com/download-striim-for-hazelcast-hot-cache/

• REST

• Node.js

• Go

• Python

Feature Comparison for Hazelcast Clients:

See the feature comparison matrix to learn about the features implemented across the clients and
language APIs.

Code Samples:

In the following client sections, you will find links to each client’s code samples.

19.1. Java Client
The Java client is the most full featured Hazelcast native client. It is offered both with Hazelcast
IMDG and Hazelcast IMDG Enterprise. The main idea behind the Java client is to provide the same
Hazelcast functionality by proxying each operation through a Hazelcast member. It can access and
change distributed data and it can listen to distributed events of an already established Hazelcast
cluster from another Java application.

Hundreds or even thousands of clients can be connected to the cluster. By default, there are core
count * 20 threads on the server side that handle all the requests, e.g., if the server has 4 cores,
there will be 80 threads.

Imagine a trading application where all the trading data are stored and managed in a Hazelcast
cluster with tens of members. Swing/Web applications at the traders' desktops can use clients to
access and modify the data in the Hazelcast cluster.

19.1.1. Getting Started with Java Client

You do not need to set a license key for your Java clients for which you want to use
Hazelcast IMDG Enterprise features. Hazelcast IMDG Enterprise license keys are
required only for members.

Simply include the hazelcast.jar dependency in your classpath to start using the Hazelcast Java
client. Once included, you can start using this client as if you are using the Hazelcast API. The
differences are discussed in the below sections.

If you prefer to use Maven, simply add the hazelcast dependency to your pom.xml, which you may
already have done to start using Hazelcast IMDG:

461

https://hazelcast.org/clients-languages/

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast</artifactId>
 <version>4.1.1</version>
</dependency>

You can find Hazelcast Java client’s code samples here.

Client API

The first step is the configuration. You can configure the Java client declaratively or
programmatically. We use the programmatic approach for this section, as shown below.

ClientConfig clientConfig = new ClientConfig();
clientConfig.setClusterName("dev");
clientConfig.getNetworkConfig().addAddress("10.90.0.1", "10.90.0.2:5702");

See the Configuring Java Client section for more information.

The second step is initializing the HazelcastInstance to be connected to the cluster.

HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

This client interface is your gateway to access all Hazelcast distributed objects.

Let’s create a map and populate it with some data.

IMap<String, Customer> mapCustomers = client.getMap("customers"); //creates the map
proxy

mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));
mapCustomers.put("3", new Customer("Avi", "Noyan"));

As the final step, if and when you are done with your client, you can shut it down as shown below:

client.shutdown();

The above code line releases all the used resources and closes connections to the cluster.

Java Client Operation Modes

The client has two operation modes because of the distributed nature of the data and cluster.

Smart Client: In the smart mode, the clients connect to each cluster member. Since each data

462

https://github.com/hazelcast/hazelcast-code-samples/tree/master/clients

partition uses the well known and consistent hashing algorithm, each client can send an operation
to the relevant cluster member, which increases the overall throughput and efficiency. Smart mode
is the default mode.

Unisocket Client: For some cases, the clients can be required to connect to a single member instead
of to each member in the cluster. Firewalls, security, or some custom networking issues can be the
reason for these cases.

In the unisocket client mode, the clients only connect to one of the configured addresses. This single
member behaves as a gateway to the other members. For any operation requested from the client,
it redirects the request to the relevant member and returns the response back to the client returned
from that member.

Handling Failures

There are two main failure cases and configurations you can perform to achieve proper behavior.

Handling Client Connection Failure:

While the client is trying to connect initially to one of the members in the
ClientNetworkConfig.addressList, all the members might be not available. Instead of giving up,
throwing an exception and stopping the client, the client retries to connect as configured which is
described in the Configuring Client Connection Retry section.

The client executes each operation through the already established connection to the cluster. If this
connection(s) disconnects or drops, the client tries to reconnect as configured.

Handling Retry-able Operation Failure:

While sending the requests to related members, operations can fail due to various reasons. Read-
only operations are retried by default. If you want to enable retry for the other operations, you can
set the redoOperation to true. See the Enabling Redo Operation section.

You can set a timeout for retrying the operations sent to a member. This can be provided by using
the property hazelcast.client.invocation.timeout.seconds in ClientProperties. The client retries an
operation within this given period, of course, if it is a read-only operation or you enabled the
redoOperation as stated in the above paragraph. This timeout value is important when there is a
failure resulted by either of the following causes:

• Member throws an exception.

• Connection between the client and member is closed.

• Client’s heartbeat requests are timed out.

See the Client System Properties section for the description of the
hazelcast.client.invocation.timeout.seconds property.

When any failure happens between a client and member (such as an exception on the member side
or connection issues), an operation is retried if:

• it is certain that it has not run on the member yet

463

• or if it is idempotent such as a read-only operation, i.e., retrying does not have a side effect.

If it is not certain whether the operation has run on the member, then the non-idempotent
operations are not retried. However, as explained in the first paragraph of this section, you can
force all client operations to be retried (redoOperation) when there is a failure between the client
and member. But in this case, you should know that some operations may run multiple times
causing conflicts. For example, assume that your client sent a queue.offer operation to the member
and then the connection is lost. Since there will be no respond for this operation, you will not know
whether it has run on the member or not. If you enabled redoOperation, that queue.offer operation
may rerun and this causes the same objects to be offered twice in the member’s queue.

Using Supported Distributed Data Structures

Most of the Distributed Data Structures are supported by the Java client. When you use clients in
other languages, you should check for the exceptions.

As a general rule, you configure these data structures on the server side and access them through a
proxy on the client side.

Using Map with Java Client

You can use any Distributed Map object with the client, as shown below.

Imap<Integer, String> map = client.getMap("myMap");

map.put(1, "John");
String value= map.get(1);
map.remove(1);

Locality is ambiguous for the client, so addLocalEntryListener and localKeySet are not supported.
See the Distributed Map section for more information.

Using MultiMap with Java Client

A MultiMap usage example is shown below.

MultiMap<Integer, String> multiMap = client.getMultiMap("myMultiMap");

multiMap.put(1,"John");
multiMap.put(1,"Mary");

Collection<String> values = multiMap.get(1);

addLocalEntryListener, localKeySet and getLocalMultiMapStats are not supported because locality is
ambiguous for the client. See the Distributed MultiMap section for more information.

Using Queue with Java Client

An example usage is shown below.

464

IQueue<String> myQueue = client.getQueue("theQueue");
myQueue.offer("John")

getLocalQueueStats is not supported because locality is ambiguous for the client. See the Distributed
Queue section for more information.

Using Topic with Java Client

getLocalTopicStats is not supported because locality is ambiguous for the client.

Using Other Supported Distributed Structures

The distributed data structures listed below are also supported by the client. Since their logic is the
same in both the member side and client side, you can see their sections as listed below.

• Replicated Map

• List

• Set

• IAtomicLong

• IAtomicReference

• ICountDownLatch

• ISemaphore

• FlakeIdGenerator

• Lock

Using Client Services

Hazelcast provides the services discussed below for some common functionalities on the client side.

Using Distributed Executor Service

The distributed executor service is for distributed computing. It can be used to execute tasks on the
cluster on a designated partition or on all the partitions. It can also be used to process entries. See
the Distributed Executor Service section for more information.

IExecutorService executorService = client.getExecutorService("default");

After getting an instance of IExecutorService, you can use the instance as the interface with the one
provided on the server side. See the Distributed Computing chapter for detailed usage.

 This service is only supported by the Java client.

Listening to Client Connection

If you need to track clients and you want to listen to their connection events, you can use the

465

clientConnected and clientDisconnected methods of the ClientService class. This class must be run
on the member side. The following is an example code.

ClientConfig clientConfig = new ClientConfig();
//clientConfig.setClusterName("dev");
clientConfig.getNetworkConfig().addAddress("10.90.0.1", "10.90.0.2:5702");

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

final ClientService clientService = instance.getClientService();

clientService.addClientListener(new ClientListener() {
 @Override
 public void clientConnected(Client client) {
 //Handle client connected event
 }

 @Override
 public void clientDisconnected(Client client) {
 //Handle client disconnected event
 }
});

//this will trigger `clientConnected` event
HazelcastInstance client = HazelcastClient.newHazelcastClient();

final Collection<Client> connectedClients = clientService.getConnectedClients();

//this will trigger `clientDisconnected` event
client.shutdown();

Finding the Partition of a Key

You use partition service to find the partition of a key. It returns all partitions. See the example code
below.

PartitionService partitionService = client.getPartitionService();

//partition of a key
Partition partition = partitionService.getPartition(key);

//all partitions
Set<Partition> partitions = partitionService.getPartitions();

Handling Lifecycle

Lifecycle handling performs:

• checking if the client is running

466

• shutting down the client gracefully

• terminating the client ungracefully (forced shutdown)

• adding/removing lifecycle listeners.

LifecycleService lifecycleService = client.getLifecycleService();

if(lifecycleService.isRunning()){
 //it is running
}

//shutdown client gracefully
lifecycleService.shutdown();

Defining Client Labels

You can define labels in your Java client, similar to the way it can be done for the members.
Through the client labels, you can assign special roles for your clients and use these roles to
perform some actions specific to those client connections.

You can also group your clients using the client labels. These client groups can be blacklisted in the
Hazelcast Management Center so that they can be prevented from connecting to a cluster. See the
related section in the Hazelcast Management Center Reference Manual for more information on
this topic.

Declaratively, you can define the client labels using the client-labels configuration element. See
the below example.

XML

<hazelcast-client>
 ...
 <instance-name>barClient</instance-name>
 <client-labels>
 <label>user</label>
 <label>bar</label>
 </client-labels>

</hazelcast-client>

YAML

hazelcast-client:
 instance-name: barClient
 client-labels:
 - user
 - bar

467

The equivalent programmatic approach is shown below.

ClientConfig clientConfig = new ClientConfig();
clientConfig.setInstanceName("ExampleClientName");
clientConfig.addLabel("user");
clientConfig.addLabel("bar");

HazelcastClient.newHazelcastClient(clientConfig);

See the code sample for the client labels to see them in action.

Client Listeners

You can configure listeners to listen to various event types on the client side. You can configure
global events not relating to any distributed object through Client ListenerConfig. You should
configure distributed object listeners like map entry listeners or list item listeners through their
proxies. See the related sections under each distributed data structure in this Reference Manual.

Client Transactions

Transactional distributed objects are supported on the client side. See the Transactions chapter on
how to use them.

Async Start and Reconnect Modes

Java client can be configured to connect to a cluster in an async manner during the client start and
reconnecting after a cluster disconnect. Both of these options are configured via
ClientConnectionStrategyConfig.

Async client start is configured by setting the configuration element async-start to true. This
configuration changes the behavior of HazelcastClient.newHazelcastClient() call. It returns a client
instance without waiting to establish a cluster connection. Until the client connects to cluster, it
throws HazelcastClientOfflineException on any network dependent operations hence they won’t
block. If you want to check or wait the client to complete its cluster connection, you can use the
built-in lifecycle listener:

468

https://github.com/hazelcast/hazelcast-code-samples/tree/master/clients/client-labels

ClientStateListener clientStateListener = new ClientStateListener(clientConfig);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

//Client started but may not be connected to cluster yet.

//check connection status
clientStateListener.isConnected();

//blocks until client completes connect to cluster
if (clientStateListener.awaitConnected()) {
 //connected successfully
} else {
 //client failed to connect to cluster
}

The Java client can also be configured to specify how it reconnects after a cluster disconnection.
The following are the options:

• A client can reject to reconnect to the cluster and trigger the client shutdown process.

• Client can open a connection to the cluster by blocking all waiting invocations.

• Client can open a connection to the cluster without blocking the waiting invocations. All
invocations receive HazelcastClientOfflineException during the establishment of cluster
connection. If cluster connection is failed to connect, then client shutdown is triggered.

See the Java Client Connection Strategy section to learn how to configure these.

19.1.2. Configuring Java Client

You can configure Hazelcast Java Client declaratively (XML), programmatically (API), or using client
system properties.

For declarative configuration, the Hazelcast client looks at the following places for the client
configuration file:

• System property: The client first checks if hazelcast.client.config system property is set to a
file path, e.g., -Dhazelcast.client.config=C:/myhazelcast.xml.

• Classpath: If config file is not set as a system property, the client checks the classpath for
hazelcast-client.xml file.

If the client does not find any configuration file, it starts with the default configuration (hazelcast-
client-default.xml) located in the hazelcast.jar library. Before configuring the client, please try to
work with the default configuration to see if it works for you. The default should be just fine for
most users. If not, then consider custom configuration for your environment.

If you want to specify your own configuration file to create a Config object, the Hazelcast client
supports the following:

• Config cfg = new XmlClientConfigBuilder(xmlFileName).build();

469

• Config cfg = new XmlClientConfigBuilder(inputStream).build();

For programmatic configuration of the Hazelcast Java Client, just instantiate a ClientConfig object
and configure the desired aspects. An example is shown below:

ClientConfig clientConfig = new ClientConfig();
clientConfig.setClusterName("dev");
clientConfig.setLoadBalancer(yourLoadBalancer);

Client Network

All network related configuration of Hazelcast Java Client is performed via the network element in
the declarative configuration file, or in the class ClientNetworkConfig when using programmatic
configuration. Let’s first give the examples for these two approaches. Then we will look at its sub-
elements and attributes.

Declarative Configuration:

Here is an example declarative configuration of network for Java Client, which includes all the
parent configuration elements.

XML

<hazelcast-client>
 ...
 <network>
 <cluster-members>
 <address>127.0.0.1</address>
 <address>127.0.0.2</address>
 </cluster-members>
 <outbound-ports>
 <ports>34600</ports>
 <ports>34700-34710</ports>
 </outbound-ports>
 <smart-routing>true</smart-routing>
 <redo-operation>true</redo-operation>
 <connection-timeout>60000</connection-timeout>
 <socket-options>
 ...
 </socket-options>
 <socket-interceptor enabled="true">
 ...
 </socket-interceptor>

 <ssl enabled="false">
 ...
 </ssl>
 <aws enabled="true" connection-timeout-seconds="11">
 ...
 </aws>

470

 <gcp enabled="false">
 ...
 </gcp>
 <azure enabled="false">
 ...
 </azure>
 <kubernetes enabled="false">
 ...
 </kubernetes>
 <eureka enabled="false">
 ...
 </eureka>
 <icmp-ping enabled="false">
 ...
 </icmp-ping>
 <hazelcast-cloud enabled="false">
 <discovery-token>EXAMPLE_TOKEN</discovery-token>
 </hazelcast-cloud>
 <discovery-strategies>
 <node-filter class="DummyFilterClass" />
 <discovery-strategy class="DummyDiscoveryStrategy1" enabled="true">
 <properties>
 <property name="key-string">foo</property>
 <property name="key-int">123</property>
 <property name="key-boolean">true</property>
 </properties>
 </discovery-strategy>
 </discovery-strategies>
 </network>
 ...
</hazelcast-client>

471

YAML

network:
 cluster-members:
 - 127.0.0.1
 - 127.0.0.2
 outbound-ports:
 - 34600
 - 34700-34710
 smart-routing: true
 redo-operation: true
 connection-timeout: 60000
 socket-options:
 ...
 socket-interceptor:
 ...
 ssl:
 enabled: false
 ...
 aws:
 enabled: true
 connection-timeout-seconds: 11
 ...
 gcp:
 enabled: false
 ...
 azure:
 enabled: false
 ...
 kubernetes:
 enabled: false
 ...
 eureka:
 enabled: false
 ...
 icmp-ping:
 enabled: false
 ...
 hazelcast-cloud:
 enabled: false
 discovery-token: EXAMPLE_TOKEN
 discovery-strategies:
 node-filter:
 class: DummyFilterClass
 discovery-strategies:
 - class: DummyDiscoveryStrategy1
 enabled: true
 properties:
 key-string: foo
 key-int: 123
 key-boolean: true

472

Programmatic Configuration:

Here is an example of configuring network for Java Client programmatically.

ClientConfig clientConfig = new ClientConfig();
clientConfig.getConnectionStrategyConfig().getConnectionRetryConfig().setMaxBackoffMil
lis(5000);
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("10.1.1.21", "10.1.1.22:5703")
 .setSmartRouting(true)
 .addOutboundPortDefinition("34700-34710")
 .setRedoOperation(true)
 .setConnectionTimeout(5000);

AwsConfig clientAwsConfig = new AwsConfig();
clientAwsConfig.setProperty("access-key", "my-access-key")
 .setProperty("secret-key", "my-secret-key")
 .setProperty("region", "us-west-1")
 .setProperty("host-header", "ec2.amazonaws.com")
 .setProperty("security-group-name", ">hazelcast-sg")
 .setProperty("tag-key", "type")
 .setProperty("tag-value", "hz-members")
 .setProperty("iam-role", "s3access")
 .setEnabled(true);
clientConfig.getNetworkConfig().setAwsConfig(clientAwsConfig);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

Configuring Backup Acknowledgment

When an operation with sync backup is sent by a client to the Hazelcast member(s), the
acknowledgment of the operation’s backup is sent to the client by the backup replica member(s).
This improves the performance of the client operations.

By default, backup acknowledgement to the client is enabled for smart clients (unisocket clients do
not support it).

Here is an example of configuring the backup acknowledgement for Java Client declaratively.

XML

<hazelcast-client ... >
 <backup-ack-to-client-enabled>false</backup-ack-to-client-enabled>
</hazelcast-client>

YAML

hazelcast-client:
 backup-ack-to-client: false

473

And here is its equivalent programmatical configuration.

clientConfig.setBackupAckToClientEnabled(boolean enabled)

You can also fine tune this feature using the following system properties:

• hazelcast.client.operation.backup.timeout.millis: If an operation has backups, this property
specifies how long (in milliseconds) the invocation waits for acks from the backup replicas. If
acks are not received from some of the backups, there will not be any rollback on the other
successful replicas. Its default value is 5000 milliseconds.

• hazelcast.client.operation.fail.on.indeterminate.state: When it is true, if an operation has
sync backups and acks are not received from backup replicas in time, or the member which
owns primary replica of the target partition leaves the cluster, then the invocation fails.
However, even if the invocation fails, there will not be any rollback on other successful replicas.
It is default value is false.

Configuring Address List

Address List is the initial list of cluster addresses to which the client will connect. The client uses
this list to find an alive member. Although it may be enough to give only one address of a member
in the cluster (since all members communicate with each other), it is recommended that you give
the addresses for all the members.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <cluster-members>
 <address>10.1.1.21</address>
 <address>10.1.1.22:5703</address>
 </cluster-members>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 cluster-members:
 - 10.1.1.21
 - 10.1.1.22:5703

Programmatic Configuration:

474

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("10.1.1.21", "10.1.1.22:5703");

If the port part is omitted, then 5701, 5702 and 5703 are tried in a random order.

You can provide multiple addresses with ports provided or not, as seen above. The provided list is
shuffled and tried in random order. Its default value is localhost.

If you have multiple members on a single machine and you are using unisocket
clients, we recommend you to set explicit ports for each member. Then you should
provide those ports in your client configuration when you give the member
addresses (using the address configuration element or addAddress method as
exemplified above). This provides faster connections between clients and
members. Otherwise, all the load coming from your clients may go through a
single member.

Setting Outbound Ports

You may want to restrict outbound ports to be used by Hazelcast-enabled applications. To fulfill this
requirement, you can configure Hazelcast Java client to use only defined outbound ports. The
following are example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <outbound-ports>
 <!-- ports between 34700 and 34710 -->
 <ports>34700-34710</ports>
 <!-- comma separated ports -->
 <ports>34700,34701,34702,34703</ports>
 <ports>34700,34705-34710</ports>
 </outbound-ports>
 </network>
 ...
</hazelcast-client>

475

YAML

hazelcast-client:
 network:
 outbound-ports:
 - 34700-34710
 - 34700,34701,34702,34703
 - 34700,34705-34710

Programmatic Configuration:

...
NetworkConfig networkConfig = config.getNetworkConfig();
// ports between 34700 and 34710
networkConfig.addOutboundPortDefinition("34700-34710");
// comma separated ports
networkConfig.addOutboundPortDefinition("34700,34701,34702,34703");
networkConfig.addOutboundPort(34705);
...

 You can use port ranges and/or comma separated ports.

As shown in the programmatic configuration, you use the method addOutboundPort to add only one
port. If you need to add a group of ports, then use the method addOutboundPortDefinition.

In the declarative configuration, the element ports can be used for both single and multiple port
definitions.

Setting Smart Routing

Smart routing defines whether the client operation mode is smart or unisocket. See Java Client
Operation Modes to learn about these modes.

The following are example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <smart-routing>true</smart-routing>
 </network>
 ...
</hazelcast-client>

476

YAML

hazelcast-client:
 network:
 smart-routing: true

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig().setSmartRouting(true);

Its default value is true (smart client mode).

Note that you need to disable smart routing (false) for the clients which want to use temporary
permissions defined in a member. See the Handling Permissions section.

Enabling Redo Operation

It enables/disables redo-able operations as described in Handling Retry-able Operation Failure. The
following are the example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <redo-operation>true</redo-operation>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 redo-operation: true

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig().setRedoOperation(true);

Its default value is false (disabled).

477

Setting Connection Timeout

Connection timeout is the timeout value in milliseconds for members to accept client connection
requests. The following are the example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <connection-timeout>5000</connection-timeout>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 connection-timeout: 5000

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().setConnectionTimeout(5000);

Its default value is 5000 milliseconds.

Setting a Socket Interceptor

Hazelcast IMDG Enterprise

Following is a client configuration to set a socket intercepter. Any class implementing
com.hazelcast.nio.SocketInterceptor is a socket interceptor.

public interface SocketInterceptor {
 void init(Properties properties);
 void onConnect(Socket connectedSocket) throws IOException;
}

SocketInterceptor has two steps. First, it is initialized by the configured properties. Second, it is
informed just after the socket is connected using the onConnect method.

478

SocketInterceptorConfig socketInterceptorConfig = clientConfig
 .getNetworkConfig().getSocketInterceptorConfig();

MyClientSocketInterceptor myClientSocketInterceptor = new MyClientSocketInterceptor();

socketInterceptorConfig.setEnabled(true);
socketInterceptorConfig.setImplementation(myClientSocketInterceptor);

If you want to configure the socket interceptor with a class name instead of an instance, see the
example below.

SocketInterceptorConfig socketInterceptorConfig = clientConfig
 .getNetworkConfig().getSocketInterceptorConfig();

socketInterceptorConfig.setEnabled(true);

//These properties are provided to interceptor during init
socketInterceptorConfig.setProperty("kerberos-host","kerb-host-name");
socketInterceptorConfig.setProperty("kerberos-config-file","kerb.conf");

socketInterceptorConfig.setClassName(MyClientSocketInterceptor.class.getName());

 See the Socket Interceptor section for more information.

Configuring Network Socket Options

You can configure the network socket options using SocketOptions. It has the following methods:

• socketOptions.setKeepAlive(x): Enables/disables the SO_KEEPALIVE socket option. Its default
value is true.

• socketOptions.setTcpNoDelay(x): Enables/disables the TCP_NODELAY socket option. Its default
value is true.

• socketOptions.setReuseAddress(x): Enables/disables the SO_REUSEADDR socket option. Its
default value is true.

• socketOptions.setLingerSeconds(x): Enables/disables SO_LINGER with the specified linger time
in seconds. Its default value is 3.

• socketOptions.setBufferSize(x): Sets the SO_SNDBUF and SO_RCVBUF options to the specified
value in KB for this Socket. Its default value is 32.

479

SocketOptions socketOptions = clientConfig.getNetworkConfig().getSocketOptions();
socketOptions.setBufferSize(32)
 .setKeepAlive(true)
 .setTcpNoDelay(true)
 .setReuseAddress(true)
 .setLingerSeconds(3);

Enabling Client TLS/SSL

Hazelcast IMDG Enterprise

You can use TLS/SSL to secure the connection between the client and the members. If you want
TLS/SSL enabled for the client-cluster connection, you should set SSLConfig. Once set, the
connection (socket) is established out of an TLS/SSL factory defined either by a factory class name
or factory implementation. See the TLS/SSL section.

As explained in the TLS/SSL section, Hazelcast members have keyStores used to identify themselves
(to other members) and Hazelcast clients have trustStore used to define which members they can
trust. The clients also have their keyStores and members have their trustStores so that the members
can know which clients they can trust: see the Mutual Authentication section.

Configuring Hazelcast Cloud

You can connect your Java client to a Hazelcast cluster which is hosted on Hazelcast Cloud. For this,
you simply enable the Hazelcast Cloud and specify the cluster’s discovery token provided by
Hazelcast Cloud while creating the cluster; this allows the Hazelcast cluster to discover your clients.
See the following example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <network>
 <ssl enabled="true"/>
 <hazelcast-cloud enabled="true">
 <discovery-token>YOUR_TOKEN</discovery-token>
 </hazelcast-cloud>
 </network>
 ...
</hazelcast-client>

480

https://hazelcast.com/products/cloud/

YAML

hazelcast-client:
 network:
 ssl:
 enabled: true
 hazelcast-cloud:
 enabled: true
 discovery-token: YOUR_TOKEN

Programmatic Configuration:

ClientConfig config = new ClientConfig();
ClientNetworkConfig networkConfig = config.getNetworkConfig();
networkConfig.getCloudConfig().setDiscoveryToken("TOKEN").setEnabled(true);
networkConfig.setSSLConfig(new SSLConfig().setEnabled(true));
HazelcastInstance client = HazelcastClient.newHazelcastClient(config);

Hazelcast Cloud is disabled for the Java client, by default (enabled attribute is false).

See this Hazelcast Cloud web page for more information on Hazelcast Cloud.

Since this is a REST based discovery, you need to enable the REST listener service.
See the Using the REST Endpoint Groups section on how to enable REST endpoints.

It is advised to enable certificate revocation status JRE-wide, for security reasons.
You need to set the following Java system properties to true:

• com.sun.net.ssl.checkRevocation

• com.sun.security.enableCRLDP

And you need to set the Java security property as follows:

Security.setProperty("ocsp.enable", "true")

You can find more details on the related security topics here and here.

Configuring Client for AWS

The example declarative and programmatic configurations below show how to configure a Java
client for connecting to a Hazelcast cluster in AWS.

Declarative Configuration:

481

https://hazelcast.com/products/cloud/
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CERTPATH
http://docs.oracle.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html#AppC

XML

<hazelcast-client>
 ...
 <network>
 <aws enabled="true">
 <use-public-ip>true</use-public-ip>
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-west-1</region>
 <host-header>ec2.amazonaws.com</host-header>
 <security-group-name>hazelcast-sg</security-group-name>
 <tag-key>type</tag-key>
 <tag-value>hz-members</tag-value>
 </aws>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 aws:
 enabled: true
 use-public-ip: true
 access-key: my-access-key
 secret-key: my-secret-key
 region: us-west-1
 host-header: ec2.amazonaws.com
 security-group-name: hazelcast-sg
 tag-key: type
 tag-value: hz-members

Programmatic Configuration:

482

ClientConfig clientConfig = new ClientConfig();
AwsConfig clientAwsConfig = new AwsConfig();
clientAwsConfig.setProperty("access-key", "my-access-key")
 .setProperty("secret-key", "my-secret-key")
 .setProperty("region", "us-west-1")
 .setProperty("host-header", "ec2.amazonaws.com")
 .setProperty("security-group-name", ">hazelcast-sg")
 .setProperty("tag-key", "type")
 .setProperty("tag-value", "hz-members")
 .setProperty("iam-role", "s3access")
 .setEnabled(true);
clientConfig.getNetworkConfig().setAwsConfig(clientAwsConfig);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

See the aws element section for the descriptions of the above AWS configuration elements except
use-public-ip.

If the use-public-ip element is set to true, the private addresses of cluster members are always
converted to public addresses. Also, the client uses public addresses to connect to the members. In
order to use private addresses, set the use-public-ip parameter to false. Also note that, when
connecting outside from AWS, setting the use-public-ip parameter to false causes the client to not
be able to reach the members.

Configuring Client Load Balancer

LoadBalancer allows you to send operations to one of a number of endpoints (Members). Its main
purpose is to determine the next Member if queried. It is up to your implementation to use different
load balancing policies. You should implement the interface com.hazelcast.client.LoadBalancer for
that purpose.

If it is a smart client, only the operations that are not key-based are routed to the endpoint that is
returned by the LoadBalancer. If it is not a smart client, LoadBalancer is ignored.

The following are example configurations.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <load-balancer type=“random”/>
 ...
</hazelcast-client>

483

YAML

hazelcast-client:
 load-balancer:
 type: random

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
clientConfig.setLoadBalancer(yourLoadBalancer);

Configuring Client Listeners

You can configure global event listeners using ListenerConfig as shown below.

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig(LifecycleListenerImpl);
clientConfig.addListenerConfig(listenerConfig);

ClientConfig clientConfig = new ClientConfig();
ListenerConfig listenerConfig = new ListenerConfig(
"com.hazelcast.example.MembershipListenerImpl");
clientConfig.addListenerConfig(listenerConfig);

You can add the following types of event listeners:

• LifecycleListener

• MembershipListener

• DistributedObjectListener

Configuring Client Near Cache

The Hazelcast distributed map supports a local Near Cache for remotely stored entries to increase
the performance of local read operations. Since the client always requests data from the cluster
members, it can be helpful in some use cases to configure a Near Cache on the client side. See the
Near Cache section for a detailed explanation of the Near Cache feature and its configuration.

Configuring Client Cluster

Clients should provide a cluster name in order to connect to the cluster. You can configure it using
ClientConfig, as shown below.

clientConfig.setClusterName("dev");

484

Configuring Client Security

In the cases where the security established with Config is not enough and you want your clients
connecting securely to the cluster, you can use ClientSecurityConfig. This configuration has a
credentials parameter to set the IP address and UID. See the ClientSecurityConfig Javadoc.

Client Serialization Configuration

For the client side serialization, use the Hazelcast configuration. See the Serialization chapter.

Configuring ClassLoader

You can configure a custom classLoader. It is used by the serialization service and to load any class
configured in configuration, such as event listeners or ProxyFactories.

Configuring Reliable Topic on the Client Side

Normally when a client uses a Hazelcast data structure, that structure is configured on the member
side and the client makes use of that configuration. For the Reliable Topic structure, this is not the
case; since it is backed by Ringbuffer, you should configure it on the client side. The class used for
this configuration is ClientReliableTopicConfig.

Here is an example programmatic configuration snippet:

Config config = new Config();
RingbufferConfig ringbufferConfig = new RingbufferConfig("default");
ringbufferConfig.setCapacity(10000000)
 .setTimeToLiveSeconds(5);
config.addRingBufferConfig(ringbufferConfig);

ClientConfig clientConfig = new ClientConfig();
ClientReliableTopicConfig topicConfig = new ClientReliableTopicConfig("default");
topicConfig.setTopicOverloadPolicy(TopicOverloadPolicy.BLOCK)
 .setReadBatchSize(10);
clientConfig.addReliableTopicConfig(topicConfig);

HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);
ITopic topic = client.getReliableTopic(topicConfig.getName());

Note that, when you create a Reliable Topic structure on your client, a Ringbuffer (with the same
name as the Reliable Topic) is automatically created on the member side, with its default
configuration. See the Configuring Ringbuffer section for the defaults. You can edit that
configuration according to your needs.

You can configure a Reliable Topic structure on the client side also declaratively. The following is
the declarative configuration equivalent to the above example:

485

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/client/config/ClientSecurityConfig.html

XML

<hazelcast-client>
 ...
 <ringbuffer name="default">
 <capacity>10000000</capacity>
 <time-to-live-seconds>5</time-to-live-seconds>
 </ringbuffer>
 <reliable-topic name="default">
 <topic-overload-policy>BLOCK</topic-overload-policy>
 <read-batch-size>10</read-batch-size>
 </reliable-topic>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 ringbuffer:
 default:
 capacity: 10000000
 time-to-live-seconds: 5
 reliable-topic:
 default:
 topic-overload-policy: BLOCK
 read-batch-size: 10

19.1.3. Java Client Connection Strategy

You can configure the client’s starting mode as async or sync using the configuration element
async-start. When it is set to true (async), Hazelcast creates the client without waiting a connection
to the cluster. In this case, the client instance throws an exception until it connects to the cluster. If
it is false, the client is not created until the cluster is ready to use clients and a connection with the
cluster is established. Its default value is false (sync)

You can also configure how the client reconnects to the cluster after a disconnection. This is
configured using the configuration element reconnect-mode; it has three options (OFF, ON or ASYNC).
The option OFF disables the reconnection. ON enables reconnection in a blocking manner where all
the waiting invocations are blocked until a cluster connection is established or failed. The option
ASYNC enables reconnection in a non-blocking manner where all the waiting invocations receive a
HazelcastClientOfflineException. Its default value is ON.

When you have ASYNC as the reconnect-mode and defined a Near Cache for your
client, the client functions without interruptions/downtime by communicating the
data from its Near Cache, provided that there is non-expired data in it. See here to
learn how you can add a Near Cache to your client.

The example declarative and programmatic configurations below show how to configure a Java

486

client’s starting and reconnecting modes.

Declarative Configuration:

XML

<hazelcast-client>
 ...
 <connection-strategy async-start="true" reconnect-mode="ASYNC" />
 ...
</hazelcast-client>

YAML

hazelcast-client:
 connection-strategy:
 async-start: true
 reconnect-mode: ASYNC

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
clientConfig.getConnectionStrategyConfig()
 .setAsyncStart(true)
 .setReconnectMode(ClientConnectionStrategyConfig.ReconnectMode.ASYNC);

Configuring Client Connection Retry

When client is disconnected from the cluster, it searches for new connections to reconnect. You can
configure the frequency of the reconnection attempts and client shutdown behavior using
ConnectionRetryConfig (programmatical approach)/ connection-retry (declarative approach).

Below are the example configurations for each.

Declarative Configuration:

487

XML

<hazelcast-client>
 ...
 <connection-strategy async-start="false" reconnect-mode="ON">
 <connection-retry>
 <initial-backoff-millis>1000</initial-backoff-millis>
 <max-backoff-millis>60000</max-backoff-millis>
 <multiplier>2</multiplier>
 <cluster-connect-timeout-millis>50000</cluster-connect-timeout-millis>
 <jitter>0.2</jitter>
 </connection-retry>
 </connection-strategy>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 connection-strategy:
 async-start: false
 reconnect-mode: ON
 connection-retry:
 initial-backoff-millis: 1000
 max-backoff-millis: 60000
 multiplier: 2
 cluster-connect-timeout-millis: 50000
 jitter: 0.2

Programmatic Configuration:

ClientConfig config = new ClientConfig();
ClientConnectionStrategyConfig connectionStrategyConfig = config
.getConnectionStrategyConfig();
ConnectionRetryConfig connectionRetryConfig = connectionStrategyConfig
.getConnectionRetryConfig();
connectionRetryConfig.setInitialBackoffMillis(1000)
 .setMaxBackoffMillis(60000)
 .setMultiplier(2)
 .setClusterConnectTimeoutMillis(50000)
 .setJitter(0.2);

The following are configuration element descriptions:

• initial-backoff-millis: Specifies how long to wait (backoff), in milliseconds, after the first
failure before retrying. Its default value is 1000 ms.

• max-backoff-millis: Specifies the upper limit for the backoff in milliseconds. Its default value is
30000 ms.

488

• multiplier: Factor to multiply the backoff after a failed retry. Its default value is 1.

• cluster-connect-timeout-millis: Timeout value in milliseconds for the client to give up to
connect to the current cluster Its default value is 20000.

• jitter: Specifies by how much to randomize backoffs. Its default value is 0.

A pseudo-code is as follows:

 begin_time = getCurrentTime()
 current_backoff_millis = INITIAL_BACKOFF_MILLIS
 while (TryConnect(connectionTimeout)) != SUCCESS) {
 if (getCurrentTime() - begin_time >= CLUSTER_CONNECT_TIMEOUT_MILLIS) {
 //Give up to connecting to the current cluster and switch to another if
exists.
 }
 Sleep(current_backoff_millis + UniformRandom(-JITTER * current_backoff_millis,
JITTER * current_backoff_millis))
 current_backoff = Min(current_backoff_millis * MULTIPLIER, MAX_BACKOFF_MILLIS)
}

Note that, TryConnect above tries to connect to any member that the client knows, and for each
connection we have a connection timeout; see the Setting Connection Timeout section.

19.1.4. Blue-Green Deployment and Disaster Recovery

Hazelcast IMDG Enterprise

Hazelcast provides disaster recovery for the client-cluster connections and can use the well-known
blue-green mechanism, so that a Java client is automatically diverted to another cluster on demand
or when the intended cluster becomes unavailable.

Using the blue-green system, the clients can connect to another cluster automatically when they are
blacklisted from their currently connected cluster. See the Hazelcast Management Center Reference
Manual for information on blacklisting the clients.

Blue-Green Mechanism

You can make your clients connect to another cluster by blacklisting them in a cluster and using the
blue-green mechanism. This is basically having two alive clusters, one of which is active (blue) and
the other one is idle (green).

When you blacklist a client in a cluster, the client which is disconnected from the cluster due to this
blacklisting, first tries to connect to another member of the same cluster. This is because the client
is not aware if this is a blacklisting or a normal disconnection.

The client’s behavior after this disconnection depends on its reconnect-mode. The following are the
options when you are using the blue-green mechanism, i.e., you have alternative clusters for your
clients to connect:

• If reconnect-mode is set to ON, the client changes the cluster and blocks the invocations while

489

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#changing-cluster-client-filtering
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#changing-cluster-client-filtering

doing so.

• If reconnect-mode is set to ASYNC, the client changes the cluster in the background and throws
ClientOfflineException while doing so.

• If reconnect-mode is set to OFF, the client does not change the cluster; it shuts down immediately.

Here it could be the case that the whole cluster is restarted. In this case, the owner
member of the client connection in the restarted cluster rejects the client’s
connection request, since the client is trying to connect to the old cluster. So, the
client needs to search for a new cluster, if available and according to the blue-
green configuration (see the following configuration related sections in this
section).

Consider the following notes for the blue-green mechanism (also valid for the disaster recovery
mechanism described in the next section):

• When a client disconnects from a cluster and connects to a new one the InitialMemberEvent and
CLIENT_CHANGED_CLUSTER events are fired.

• When switching clusters, the client reuses its UUID.

• The client’s listener service re-registers its listeners to the new cluster; the listener service opens
a new connection to all members in the current member list and registers the listeners for each
connection.

• The client’s Near Caches and Continuous Query Caches are cleared when the client joins a new
cluster successfully.

• If the new cluster’s partition size is different, the client is rejected by the cluster. The client is
not able to connect to a cluster with different partition count.

Disaster Recovery Mechanism

When one of your clusters is gone due to a failure, the connection between your clients and owner
member in that cluster is gone, too. When a client is disconnected because of a failure in the
cluster, it first tries to connect to another member of that same cluster.

The client’s behavior after this disconnection depends on its reconnect-mode, and it has the same
options that are described in the above section (Blue-Green Mechanism).

If you have provided alternative clusters for your clients to connect, the client tries to connect to
those alternative clusters (depending on the reconnect-mode).

When a failover starts, i.e., the client is disconnected and was configured to connect to alternative
clusters, the current member list is not considered; the client cuts all the connections before
attempting to connect to a new cluster and tries the clusters as configured. See the below
configuration related sections.

Ordering of Clusters When Clients Try to Connect

The order of the clusters, that the client will try to connect in a blue-green or disaster recovery
scenario, is decided by the order of these cluster declarations as given in the client configuration.

490

Each time the client is disconnected from a cluster and it cannot connect back to the same one, the
configured list is iterated over. Count of these iterations before the client decides to shut down is
provided using the try-count configuration element. See the following configuration related
sections.

We didn’t go over the configuration yet (see the following configuration related sections), but for
the sake of explaining the ordering, assume that you have client-config1, client-config2 and
client-config3 in the given order as shown below (in your hazelcast-client-failover XML or YAML
file). This means you have three alternative clusters.

XML

<hazelcast-client-failover>
 <try-count>4</try-count>
 <clients>
 <client>client-config1.xml</client>
 <client>client-config2.xml</client>
 <client>client-config3.xml</client>
 </clients>
</hazelcast-client-failover>

YAML

hazelcast-client-failover:
 try-count: 4
 clients:
 - client-config1.yaml
 - client-config2.yaml
 - client-config3.yaml

And let’s say the client is disconnected from the cluster whose configuration is given by client-
config2.xml. Then, the client tries to connect to the next cluster in this list, whose configuration is
given by client-config3.xml. When the end of the list is reached, which is so in this example, and
the client could not connect to client-config3, then try-count is incremented and the client
continues to try to connect starting with client-config1.

This iteration continues until the client connects to a cluster or try-count is reached to the
configured value. When the iteration reaches this value and the client still could not connect to a
cluster, it shuts down. Note that, if try-count was set to 1 in the above example, and the client could
not connect to client-config3, it would shut down since it already tried once to connect to an
alternative cluster.

The following sections describe how you can configure the Java client for blue-green and disaster
recovery scenarios.

Configuring Using CNAME

Using CNAME, you can change the hostname resolutions and use them dynamically. Let’s describe
the configuration with examples.

491

Assume that you have two clusters, Cluster A and Cluster B, and two Java clients.

First configure the Cluster A members as shown below:

XML

<hazelcast>
 ...
 <network>
 <join>
 <tcp-ip enabled="true">
 <member>clusterA.member1</member>
 <member>clusterA.member2</member>
 </tcp-ip>
 </join>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 join:
 tcp-ip:
 enabled: true
 members: clusterA.member1,clusterA.member2

Then, configure the Cluster B members as shown below.

XML

<hazelcast>
 ...
 <network>
 <join>
 <tcp-ip enabled="true">
 <member>clusterB.member1</member>
 <member>clusterB.member2</member>
 </tcp-ip>
 </join>
 </network>
 ...
</hazelcast>

492

YAML

hazelcast:
 network:
 join:
 tcp-ip:
 enabled: true
 members: clusterB.member1,clusterB.member2

Configure the two clients as shown below.

Client 1 XML

<hazelcast-client>
 ...
 <cluster-name>cluster-a</cluster-name>
 <network>
 <cluster-members>
 <address>production1.myproject</address>
 <address>production2.myproject</address>
 </cluster-members>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 cluster-name: cluster-a
 network:
 cluster-members:
 - production1.myproject
 - production2.myproject

Client 2 XML

<hazelcast-client>
 ...
 <cluster-name>cluster-b</cluster-name>
 <network>
 <cluster-members>
 <address>production1.myproject</address>
 <address>production2.myproject</address>
 </cluster-members>
 </network>
 ...
</hazelcast-client>

493

YAML

hazelcast-client:
 cluster-name: cluster-b
 network:
 cluster-members:
 - production1.myproject
 - production2.myproject

Assuming that the client configuration file names of the above example clients are hazelcast-
client-c1.xml/yaml and hazelcast-client-c1.xml/yaml, you should configure the client failover for a
blue-green deployment scenario as follows:

XML

<hazelcast-client-failover>
 <try-count>4</try-count>
 <clients>
 <client>hazelcast-client-c1.xml</client>
 <client>hazelcast-client-c2.xml</client>
 </clients>
</hazelcast-client-failover>

YAML

hazelcast-client-failover:
 try-count: 4
 clients:
 - hazelcast-client-c1.yaml
 - hazelcast-client-c2.yaml

You can find the complete Hazelcast client failover example configuration file
(hazelcast-client-failover-full-example) both in XML and YAML formats
including the descriptions of elements and attributes, in the /bin folder of your
Hazelcast download directory.

You should also configure your clients to forget DNS lookups using the networkaddress.cache.ttl
JVM parameter.

Configure the addresses in your clients' configuration to resolve to hostnames of Cluster A via
CNAME so that the clients will connect to Cluster A when it starts:

production1.myproject → clusterA.member1

production2.myproject → clusterA.member2

When you want the clients to switch to the other cluster, change the mapping as follows:

production1.myproject → clusterB.member1

494

https://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html

production2.myproject → clusterB.member2

Wait for the time you configured using the networkaddress.cache.ttl JVM parameter for the client
JVM to forget the old mapping.

Blacklist the clients in Cluster A using the Hazelcast Management Center.

Configuring Without CNAME

Let’s first give example configurations and describe the configuration elements.

Declarative Configuration:

XML

<hazelcast-client-failover>
 <try-count>4</try-count>
 <clients>
 <client>hazelcast-client-c1.xml</client>
 <client>hazelcast-client-c2.xml</client>
 </clients>
</hazelcast-client-failover>

YAML

hazelcast-client-failover:
 try-count: 4
 clients:
 - hazelcast-client-c1.yaml
 - hazelcast-client-c2.yaml

Programmatic Configuration:

ClientConfig clientConfig = new ClientConfig();
clientConfig.setClusterName("cluster-a");
ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
networkConfig.addAddress("10.216.1.18", "10.216.1.19");

ClientConfig clientConfig2 = new ClientConfig();
clientConfig2.setClusterName("cluster-b");
ClientNetworkConfig networkConfig2 = clientConfig2.getNetworkConfig();
networkConfig2.addAddress("10.214.2.10", "10.214.2.11");

ClientFailoverConfig clientFailoverConfig = new ClientFailoverConfig();
clientFailoverConfig.addClientConfig(clientConfig).addClientConfig(clientConfig2).setT
ryCount(10)
HazelcastInstance client = HazelcastClient.newHazelcastFailoverClient
(clientFailoverConfig);

495

The following are the descriptions for the configuration elements:

• try-count: Count of connection retries by the client to the alternative clusters. When this value
is reached and the client still could not connect to a cluster, the client shuts down. Note that this
value applies to the alternative clusters whose configurations are provided with the client
element. For the above example, two alternative clusters are given with the try-count set as 4.
This means the number of connection attempts is 4 x 2 = 8.

• client: Path to the client configuration that corresponds to an alternative cluster that the client
will try to connect.

The client configurations must be exactly the same except the following configuration options:

• SecurityConfig

• NetworkConfig.Addresses

• NetworkConfig.SocketInterceptorConfig

• NetworkConfig.SSLConfig

• NetworkConfig.AwsConfig

• NetworkConfig.GcpConfig

• NetworkConfig.AzureConfig

• NetworkConfig.KubernetesConfig

• NetworkConfig.EurekaConfig

• NetworkConfig.CloudConfig

• NetworkConfig.DiscoveryConfig

You can also configure it within the Spring context, as shown below:

<beans>
 <hz:client-failover id="blueGreenClient" try-count="5">
 <hz:client>
 <hz:cluster-name name="dev"/>
 <hz:network>
 <hz:member>127.0.0.1:5700</hz:member>
 <hz:member>127.0.0.1:5701</hz:member>
 </hz:network>
 </hz:client>

 <hz:client>
 <hz:cluster-name name="alternativeClusterName"/>
 <hz:network>
 <hz:member>127.0.0.1:5702</hz:member>
 <hz:member>127.0.0.1:5703</hz:member>
 </hz:network>
 </hz:client>

 </hz:client-failover>
</beans>

496

19.1.5. Java Client Failure Detectors

The client failure detectors are responsible to determine if a member in the cluster is unreachable
or crashed. The most important problem in the failure detection is to distinguish whether a
member is still alive but slow, or has crashed. But according to the famous FLP result, it is
impossible to distinguish a crashed member from a slow one in an asynchronous system. A
workaround to this limitation is to use unreliable failure detectors. An unreliable failure detector
allows a member to suspect that others have failed, usually based on liveness criteria but it can
make mistakes to a certain degree.

Hazelcast Java client has two built-in failure detectors: Deadline Failure Detector and Ping Failure
Detector. These client failure detectors work independently from the member failure detectors, e.g.,
you do not need to enable the member failure detectors to benefit from the client ones.

Client Deadline Failure Detector

Deadline Failure Detector uses an absolute timeout for missing/lost heartbeats. After timeout, a
member is considered as crashed/unavailable and marked as suspected.

Deadline Failure Detector has two configuration properties:

• hazelcast.client.heartbeat.interval: This is the interval at which client sends heartbeat
messages to members.

• hazelcast.client.heartbeat.timeout: This is the timeout which defines when a cluster member
is suspected, because it has not sent any response back to client requests.

The value of hazelcast.client.heartbeat.interval should be smaller than that of
hazelcast.client.heartbeat.timeout. In addition, the value of system property
hazelcast.client.max.no.heartbeat.seconds, which is set on the member side,
should be larger than that of hazelcast.client.heartbeat.interval.

The following is a declarative example showing how you can configure the Deadline Failure
Detector for your client (in the client’s configuration XML file, e.g., hazelcast-client.xml):

XML

<hazelcast-client>
 ...
 <properties>
 <property name="hazelcast.client.heartbeat.timeout">60000</property>
 <property name="hazelcast.client.heartbeat.interval">5000</property>
 </properties>
 ...
</hazelcast-client>

497

http://dl.acm.org/citation.cfm?doid=3149.214121

YAML

hazelcast-client:
 properties
 hazelcast.client.heartbeat.timeout: 60000
 hazelcast.client.heartbeat.interval: 5000

And, the following is the equivalent programmatic configuration:

ClientConfig config = ...;
config.setProperty("hazelcast.client.heartbeat.timeout", "60000");
config.setProperty("hazelcast.client.heartbeat.interval", "5000");
[...]

Client Ping Failure Detector

In addition to the Deadline Failure Detector, the Ping Failure Detector may be configured on your
client. Please note that this detector is disabled by default. The Ping Failure Detector operates at
Layer 3 of the OSI protocol and provides much quicker and more deterministic detection of
hardware and other lower level events. When the JVM process has enough permissions to create
RAW sockets, the implementation chooses to rely on ICMP Echo requests. This is preferred.

If there are not enough permissions, it can be configured to fallback on attempting a TCP Echo on
port 7. In the latter case, both a successful connection or an explicit rejection is treated as "Host is
Reachable". Or, it can be forced to use only RAW sockets. This is not preferred as each call creates a
heavy weight socket and moreover the Echo service is typically disabled.

For the Ping Failure Detector to rely only on the ICMP Echo requests, the following criteria need to
be met:

• Supported OS: as of Java 1.8 only Linux/Unix environments are supported.

• The Java executable must have the cap_net_raw capability.

• The file ld.conf must be edited to overcome the rejection by the dynamic linker when loading
libs from untrusted paths.

• ICMP Echo Requests must not be blocked by the receiving hosts.

The details of these requirements are explained in the Requirements section of Hazelcast members'
Ping Failure Detector.

If any of the above criteria isn’t met, then isReachable will always fallback on TCP Echo attempts on
port 7.

An example declarative configuration to use the Ping Failure Detector is as follows (in the client’s
configuration XML file, e.g., hazelcast-client.xml):

498

XML

<hazelcast-client>
 ...
 <network>
 <icmp-ping enabled="true">
 <timeout-milliseconds>1000</timeout-milliseconds>
 <interval-milliseconds>1000</interval-milliseconds>
 <ttl>255<ttl>
 <echo-fail-fast-on-startup>false</echo-fail-fast-on-startup>
 <max-attempts>2</max-attempts>
 </icmp-ping>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 icmp-ping:
 enabled: false
 timeout-milliseconds: 1000
 interval-milliseconds: 1000
 ttl: 255
 echo-fail-fast-on-startup: false
 max-attempts: 2

And, the equivalent programmatic configuration:

ClientConfig config = ...;

ClientNetworkConfig networkConfig = clientConfig.getNetworkConfig();
ClientIcmpPingConfig clientIcmpPingConfig = networkConfig.getClientIcmpPingConfig();
clientIcmpPingConfig.setIntervalMilliseconds(1000)
 .setTimeoutMilliseconds(1000)
 .setTtl(255)
 .setMaxAttempts(2)
 .setEchoFailFastOnStartup(false)
 .setEnabled(true);

The following are the descriptions of configuration elements and attributes:

• enabled: Enables the legacy ICMP detection mode, works cooperatively with the existing failure
detector and only kicks-in after a pre-defined period has passed with no heartbeats from a
member. Its default value is false.

• timeout-milliseconds: Number of milliseconds until a ping attempt is considered failed if there
was no reply. Its default value is 1000 milliseconds.

499

• max-attempts: Maximum number of ping attempts before the member gets suspected by the
detector. Its default value is 3.

• interval-milliseconds: Interval, in milliseconds, between each ping attempt. 1000ms (1 sec) is
also the minimum interval allowed. Its default value is 1000 milliseconds.

• ttl: Maximum number of hops the packets should go through. Its default value is 255. You can
set to 0 to use your system’s default TTL.

In the above example configuration, the Ping Failure Detector attempts 2 pings, one every second,
and waits up to 1 second for each to complete. If there is no successful ping after 2 seconds, the
member gets suspected.

To enforce the Requirements, the property echo-fail-fast-on-startup can also be set to true, in
which case Hazelcast fails to start if any of the requirements isn’t met.

Unlike the Hazelcast members, Ping Failure Detector works always in parallel with Deadline Failure
Detector on the clients. Below is a summary table of all possible configuration combinations of the
Ping Failure Detector.

ICMP Fail-Fast Description Linux Windows macOS

true false Parallel ping
detector, works
in parallel with
the configured
failure
detector.
Checks
periodically if
members are
live (OSI Layer
3) and suspects
them
immediately,
regardless of
the other
detectors.

Supported
ICMP Echo if
available - Falls
back on TCP
Echo on port 7

Supported TCP
Echo on port 7

Supported
ICMP Echo if
available - Falls
back on TCP
Echo on port 7

500

ICMP Fail-Fast Description Linux Windows macOS

true true Parallel ping
detector, works
in parallel with
the configured
failure
detector.
Checks
periodically if
members are
live (OSI Layer
3) and suspects
them
immediately,
regardless of
the other
detectors.

Supported -
Requires OS
Configuration
Enforcing
ICMP Echo if
available - No
start up if not
available

Not Supported Not Supported
- Requires root
privileges

19.1.6. Client System Properties

There are some advanced client configuration properties to tune some aspects of Hazelcast Client.
You can set them as property name and value pairs through declarative configuration,
programmatic configuration, or JVM system property. See the System Properties appendix to learn
how to set these properties.

When you want to reconfigure a system property, you need to restart the clients
for which the property is modified.

The table below lists the client configuration properties with their descriptions.

Table 14. Client System Properties

Property
Name

Default Value Type Description

hazelcast.clie
nt.cloud.disco
very.token

long Token to use when discovering the cluster via
Hazelcast Cloud.

501

Property
Name

Default Value Type Description

hazelcast.clie
nt.concurrent.
window.ms

100 int Property needed for concurrency detection so
that write through and dynamic response
handling can be done correctly. This property
sets the window for a concurrency detection
(duration when it signals that a concurrency has
been detected), even if there are no further
updates in that window. Normally in a
concurrent system the windows keeps sliding
forward so it always remains concurrent. Setting
it too high effectively disables the optimization
because once concurrency has been detected it
will keep that way. Setting it too low could lead
to suboptimal performance because the system
will try write through and other optimizations
even though the system is concurrent.

hazelcast.disc
overy.enabled

false bool Enables/disables the Discovery SPI lookup over
the old native implementations. See Discovery
SPI for more information.

hazelcast.disc
overy.public.i
p.enabled

false bool Enables the discovery joiner to use public IPs
from DiscoveredNode. See Discovery SPI for more
information.

hazelcast.clie
nt.event.queue
.capacity

1000000 int Default value of the capacity of executor that
handles the incoming event packets.

hazelcast.clie
nt.event.threa
d.count

5 int Thread count for handling the incoming event
packets.

hazelcast.clie
nt.heartbeat.i
nterval

5000 int Frequency of the heartbeat messages sent by the
clients to members.

hazelcast.clie
nt.heartbeat.t
imeout

60000 int Timeout for the heartbeat messages sent by the
client to members. If no messages pass between
the client and member within the given time via
this property in milliseconds, the connection
will be closed.

hazelcast.clie
nt.invocation.
backoff.timeou
t.millis

-1 int Controls the maximum timeout, in milliseconds,
to wait for an invocation space to be available. If
an invocation cannot be made because there are
too many pending invocations, then an
exponential backoff is done to give the system
time to deal with the backlog of invocations. This
property controls how long an invocation is
allowed to wait before getting a
HazelcastOverloadException. When set to -1 then
HazelcastOverloadException is thrown
immediately without any waiting.

502

Property
Name

Default Value Type Description

hazelcast.clie
nt.invocation.
retry.pause.mi
llis

1000 int Pause time between each retry cycle of an
invocation in milliseconds.

hazelcast.clie
nt.invocation.
timeout.second
s

1000 int Period, in seconds, to give up the invocation
when a member in the member list is not
reachable.

hazelcast.clie
nt.io.balancer
.interval.seco
nds

20 int Interval in seconds between each IOBalancer
execution. By default Hazelcast uses 3 threads to
read data from TCP connections and 3 threads to
write data to connections. IOBalancer detects and
fixes the fluctuations when these threads are not
utilized equally. The shorter intervals catch I/O
imbalances faster, but they cause higher
overhead. A value smaller than 1 disables the
balancer.

hazelcast.clie
nt.io.input.th
read.count

-1 int Controls the number of I/O input threads.
Defaults to -1, i.e., the system decides. If the
client is a smart client, it defaults to 3, otherwise
it defaults to 1.

hazelcast.clie
nt.io.output.t
hread.count

-1 int Controls the number of I/O output threads.
Defaults to -1, i.e., the system decides. If the
client is a smart client, it defaults to 3, otherwise
it defaults to 1.

hazelcast.clie
nt.io.write.th
rough

true bool Optimization that allows sending of packets over
the network to be done on the calling thread if
the conditions are right. This can reduce the
latency and increase the performance for low
threaded environments.

hazelcast.clie
nt.max.concurr
ent.invocation
s

Integer.MAX_V
ALUE

int Maximum allowed number of concurrent
invocations. You can apply a constraint on the
number of concurrent invocations in order to
prevent the system from overloading. If the
maximum number of concurrent invocations is
exceeded and a new invocation comes in,
Hazelcast throws HazelcastOverloadException.

hazelcast.clie
nt.metrics.col
lection.freque
ncy

5 int Frequency, in seconds, of the metrics collection
cycle. Note that the preferred way for
controlling this setting is Metrics Configuration.

hazelcast.clie
nt.metrics.deb
ug.enabled

false bool Enables collecting debug metrics if set to true,
disables it otherwise. Note that this is meant to
be enabled only if diagnostics is enabled, since
currently only diagnostics consumes the debug
metrics.

503

Property
Name

Default Value Type Description

hazelcast.clie
nt.metrics.ena
bled

true bool Enables the metrics collection if set to true,
disables it otherwise. Note that the preferred
way for controlling this setting is Metrics
Configuration.

hazelcast.clie
nt.metrics.jmx
.enabled

true bool Enables exposing the collected metrics over JMX
if set to true, disables it otherwise. Note that the
preferred way for controlling this setting is
Metrics Configuration.

hazelcast.clie
nt.operation.b
ackup.timeout.
millis

5000 int If an operation has backups, this property
specifies how long the invocation will wait for
acks from the backup replicas. If acks are not
received from some backups, there will not be
any rollback on other successful replicas.

hazelcast.clie
nt.operation.f
ail.on.indeter
minate.state

false bool When this configuration is enabled, if an
operation has sync backups and acks are not
received from backup replicas in time, or the
member which owns primary replica of the
target partition leaves the cluster, then the
invocation fails with
IndeterminateOperationStateException. However,
even if the invocation fails, there will not be any
rollback on other successful replicas.

hazelcast.clie
nt.response.th
read.count

2 int Number of the response threads. By default,
there are two response threads; this gives stable
and good performance. If set to 0, the response
threads are bypassed and the response handling
is done on the I/O threads. Under certain
conditions this can give a higher throughput, but
setting to 0 should be regarded as an
experimental feature. If set to 0, the
IO_OUTPUT_THREAD_COUNT is really going to
matter because the inbound thread will have
more work to do. By default when TLS is not
enabled, there is just one inbound thread.

hazelcast.clie
nt.response.th
read.dynamic

true bool Enables dynamic switching between processing
the responses on the I/O threads and offloading
the response threads. Under certain conditions
(single threaded clients) processing on the I/O
thread can increase the performance because
useless handover to the response thread is
removed. Also the response thread is not created
until it is needed. Especially for ephemeral
clients, reducing the threads can lead to
increased performance and reduced memory
usage.

504

Property
Name

Default Value Type Description

hazelcast.clie
nt.shuffle.mem
ber.list

true string The client shuffles the given member list to
prevent all the clients to connect to the same
member when this property is true. When it is
set to false, the client tries to connect to the
members in the given order.

hazelcast.clie
nt.statistics.
enabled

false bool If set to true, it enables collecting the client
statistics and sending them to the cluster. When
it is true you can monitor the clients that are
connected to your Hazelcast cluster, using
Hazelcast Management Center. See the
Monitoring Clients section in the Hazelcast
Management Center Reference Manual for more
information.

hazelcast.clie
nt.statistics.
period.seconds

3 int Period in seconds the client statistics are
collected and sent to the cluster. See the
Monitoring Clients section in the Hazelcast
Management Center Reference Manual for more
information on the client statistics.

19.1.7. Using High-Density Memory Store with Java Client

Hazelcast IMDG Enterprise HD

If you have Hazelcast IMDG Enterprise HD, your Hazelcast Java client’s Near Cache can benefit
from the High-Density Memory Store.

Let’s recall the Java client’s Near Cache configuration (see the Configuring Client Near Cache
section) without High-Density Memory Store:

<hazelcast-client>
 ...
 <near-cache name="MENU">
 <eviction size="2000" eviction-policy="LFU"/>
 <time-to-live-seconds>0</time-to-live-seconds>
 <max-idle-seconds>0</max-idle-seconds>
 <invalidate-on-change>true</invalidate-on-change>
 <in-memory-format>OBJECT</in-memory-format>
 </near-cache>
 ...
</hazelcast-client>

You can configure this Near Cache to use Hazelcast’s High-Density Memory Store by setting the in-
memory format to NATIVE. See the following configuration example:

505

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-clients
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-clients

<hazelcast-client>
 ...
 <near-cache>
 <eviction size="1000" max-size-policy="ENTRY_COUNT" eviction-policy="LFU"/>
 <time-to-live-seconds>0</time-to-live-seconds>
 <max-idle-seconds>0</max-idle-seconds>
 <invalidate-on-change>true</invalidate-on-change>
 <in-memory-format>NATIVE</in-memory-format>
 </near-cache>
</hazelcast-client>

The <eviction> element has the following attributes:

• size: Maximum size (entry count) of the Near Cache.

• max-size-policy: Maximum size policy for eviction of the Near Cache. Available values are as
follows:

◦ ENTRY_COUNT: Maximum entry count per member.

◦ USED_NATIVE_MEMORY_SIZE: Maximum used native memory size in megabytes.

◦ USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory percentage.

◦ FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size to trigger cleanup.

◦ FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory percentage to trigger
cleanup.

• eviction-policy: Eviction policy configuration. Its default values is NONE. Available values are
as follows:

◦ NONE: No items are evicted and the size property is ignored. You still can combine it with
time-to-live-seconds.

◦ LRU: Least Recently Used.

◦ LFU: Least Frequently Used.

Keep in mind that you should have already enabled the High-Density Memory Store usage for your
client, using the <native-memory> element in the client’s configuration.

See the High-Density Memory Store section for more information on Hazelcast’s High-Density
Memory Store feature.

19.2. C++ Client
You can use the native C++ client to connect to Hazelcast cluster members and perform almost all
operations that a member can perform. Clients differ from members in that clients do not hold
data. The C++ client is by default a smart client, i.e., it knows where the data is and asks directly for
the correct member. You can disable this feature (using the ClientConfig::setSmart method) if you
do not want the clients to connect to every member.

The features of C++ clients are listed below:

506

• Access to distributed data structures (IMap, IQueue, MultiMap, ITopic, etc.).

• Access to transactional distributed data structures (TransactionalMap, TransactionalQueue,
etc.).

• Ability to add cluster listeners to a cluster and entry/item listeners to distributed data
structures.

• Distributed synchronization mechanisms with ILock, ISemaphore and ICountDownLatch.

See Hazelcast C++ client’s own GitHub repo for information on setting the client up, installing and
compiling it, its serialization support and APIs such as raw pointer and query. You can also find
code samples for this client in this repo.

19.3. .NET Client
You can use the native .NET client to connect to Hazelcast client members. You need to add
HazelcastClient3x.dll into your .NET project references. The API is very similar to the Java native
client.

See Hazelcast .NET client’s own GitHub repo for information on configuring and starting the client.
You can also find code samples for this client in this repo.

19.4. REST Client
Hazelcast provides a REST interface: it provides an HTTP service in each cluster member so that
you can access your data structures and cluster using the HTTP protocol.

REST service is disabled in the configuration by default. You should enable it on
your cluster members to use the REST client as follows:

XML

<hazelcast>
 ...
 <network>
 <rest-api enabled="true">
 ...
 </rest-api>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 rest-api:
 enabled: true

507

https://github.com/hazelcast/hazelcast-cpp-client
https://github.com/hazelcast/hazelcast-cpp-client/tree/master/examples
https://github.com/hazelcast/hazelcast-csharp-client
https://github.com/hazelcast/hazelcast-csharp-client/tree/master/Hazelcast.Examples

Hazelcast uses grouped endpoints to provide the communication via REST interface. In this section,
as an example, we show various operations that are performed on the data structures in a cluster
using the REST calls. For these operations to work, in addition to enabling the REST service as
shown above, you also need to enable the DATA endpoint group which allows accessing the data
structures, as shown below:

XML

<hazelcast>
 ...
 <network>
 <rest-api enabled="true">
 <endpoint-group name="DATA" enabled="true"/>
 </rest-api>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 rest-api:
 enabled: true
 endpoint-groups:
 DATA:
 enabled: true

See the Using the REST Endpoint Groups section for details and to learn about the other endpoint
groups Hazelcast offers.

In terms of data structures, currently maps and queues are supported. Assuming mapName and
queueName are already configured in your Hazelcast, the structure of REST calls is shown below:

http://<member IP address>:<port>/hazelcast/rest/maps/mapName/key

http://<member IP address>:<port>/hazelcast/rest/queues/queueName

For the operations to be performed, standard REST conventions for HTTP calls are used.

All parameters that are used in REST API URLs, such as the distributed data structure and key
names, must be URL encoded when composing a call. As an example, name.with/special@chars
parameter value would be encoded as name.with%2Fspecial%40chars.

19.4.1. REST Client GET/POST/DELETE Examples

All of the requests below can return one of the following responses in case of a failure.

• If the HTTP request syntax is not known, the following response is returned.

508

https://en.wikipedia.org/wiki/Percent-encoding

HTTP/1.1 400 Bad Request
Content-Length: 0

• In case of an unexpected exception, the following response is returned.

< HTTP/1.1 500 Internal Server Error
< Content-Length: 0

Creating/Updating Entries in a Map for REST Client

You can put a new key1/value1 entry into a map by using POST call to http://<member IP

address>:<port>/hazelcast/rest/maps/mapName/key1 URL. This call’s content body should contain the
value of the key. Also, if the call contains the MIME type, Hazelcast stores this information, too.

An example POST call is shown below.

$ curl -v -H "Content-Type: text/plain" -d "bar"
 http://<member IP address>:<port>/hazelcast/rest/maps/mapName/foo

It returns the following response if successful:

< HTTP/1.1 200 OK
< Content-Length: 0

If your POST call has a trailing slash, Hazelcast will strip it so that it is not appended to the key
string. So if you send this POST call:

$ curl -v -H "Content-Type: text/plain" -d "bar"
 http://<member IP address>:<port>/hazelcast/rest/maps/mapName/foo/

The POST call will instead be processed as below:

$ curl -v -H "Content-Type: text/plain" -d "bar"
 http://<member IP address>:<port>/hazelcast/rest/maps/mapName/foo

Retrieving Entries from a Map for REST Client

If you want to retrieve an entry, you can use a GET call to http://<member IP

address>:<port>/hazelcast/rest/maps/mapName/key1. You can also retrieve this entry from another
member of your cluster, such as http://<another member IP

address>:<port>/hazelcast/rest/maps/mapName/key1.

An example of a GET call is shown below.

509

$ curl -X GET http://<member IP address>:<port>/hazelcast/rest/maps/mapName/foo

It returns the following response if there is a corresponding value:

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 3
bar

This GET call returned a value, its length and also the MIME type (text/plain) since the POST call
example shown above included the MIME type.

It returns the following if there is no mapping for the given key:

< HTTP/1.1 204 No Content
< Content-Length: 0

Similarly to the POST call, Hazelcast will strip the trailing slash from your GET call.

Removing Entries from a Map for REST Client

You can use a DELETE call to remove an entry. An example DELETE call is shown below with its
response.

$ curl -v -X DELETE http://<member IP address>:<port>/hazelcast/rest/maps/mapName/foo

< HTTP/1.1 200 OK
< Content-Length: 0

If you leave the key empty as follows, the DELETE call deletes all entries from the map.

$ curl -v -X DELETE http://<member IP address>:<port>/hazelcast/rest/maps/mapName

< HTTP/1.1 200 OK
< Content-Length: 0

Offering Items on a Queue for REST Client

You can use a POST call to create an item on the queue. An example is shown below.

510

$ curl -v -H "Content-Type: text/plain" -d "foo"
 http://<member IP address>:<port>/hazelcast/rest/queues/myEvents

The above call is equivalent to HazelcastInstance.getQueue("myEvents").offer("foo");.

It returns the following if successful:

< HTTP/1.1 200 OK
< Content-Length: 0

It returns the following if the queue is full and the item is not able to be offered to the queue:

< HTTP/1.1 503 Service Unavailable
< Content-Length: 0

Retrieving Items from a Queue for REST Client

You can use a DELETE call for retrieving items from a queue. Note that you should state the poll
timeout while polling for queue events by an extra path parameter.

An example is shown below (10 being the timeout value).

$ curl -v -X DELETE \http://<member IP
address>:<port>/hazelcast/rest/queues/myEvents/10

The above call is equivalent to HazelcastInstance.getQueue("myEvents").poll(10, SECONDS);. Below
is the response.

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 3
foo

When the timeout is reached, the response is No Content success, i.e., there is no item on the queue
to be returned.

< HTTP/1.1 204 No Content
< Content-Length: 0

Getting the size of the queue for REST Client

511

$ curl -v -X GET \http://<member IP
address>:<port>/hazelcast/rest/queues/myEvents/size

The above call is equivalent to HazelcastInstance.getQueue("myEvents").size();. Below is an
example response.

< HTTP/1.1 200 OK
< Content-Type: text/plain
< Content-Length: 1
5

19.4.2. Checking the Status of the Cluster for REST Client

Besides the above operations, you can check the status of your cluster, an example of which is
shown below.

$ curl -v http://<member IP address>:<port>/hazelcast/rest/cluster

The response is as follows:

512

< HTTP/1.1 200 OK

{
 "members": [
 {
 "address": "<member IP address>:<port>",
 "liteMember": false,
 "localMember": true,
 "uuid": "73f5d6ad-7b51-4e74-bd74-15b2e7de7edd",
 "memberVersion": "4.0.0"
 },
 {
 "address": "<another member IP address>:<port>",
 "liteMember": false,
 "localMember": false,
 "uuid": "e8b41ac6-9db9-43f1-9e98-8b0392891560",
 "memberVersion": "4.0.0"
 },
 {
 "address": "<another member IP address>:<port>",
 "liteMember": false,
 "localMember": false,
 "uuid": "c6929312-d4d3-4527-83bc-474c229394d6",
 "memberVersion": "4.0.0"
 }
],
 "connectionCount": 1,
 "allConnectionCount": 3
}

19.4.3. Checking the Name of the Instance for REST Client

Additionally, you can check the name of any instance of your cluster. An example is shown below.

$ curl -v http://<member IP address>:<port>/hazelcast/rest/instance

The response is as follows:

< HTTP/1.1 200 OK
< Content-Length: 27

{"name":"adoring_brattain"}

RESTful access is provided through any member of your cluster. You can even put an HTTP load-
balancer in front of your cluster members for load balancing and fault tolerance.

513

You need to handle the failures on REST polls as there is no transactional
guarantee.

19.5. Memcache Client

Hazelcast Memcache Client only supports ASCII protocol. Binary Protocol is not
supported.

A Memcache client written in any language can talk directly to a Hazelcast cluster. No additional
configuration is required.

To be able to use a Memcache client, you must enable the Memcache client request listener service
using either one of the following configuration options:

1 - Using the network configuration element:

XML

<hazelcast>
 ...
 <network>
 <memcache-protocol enabled="true"/>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 memcache-protocol:
 enabled: true

2 - Using the advanced-network configuration element:

XML

<hazelcast>
 ...
 <advanced-network>
 <memcache-server-socket-endpoint-config name="memcache">
 <port auto-increment="false" port-count="10">6000</port>
 </memcache-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

514

YAML

hazelcast:
 advanced-network:
 memcache-server-socket-endpoint-config:
 name: memcache
 port:
 auto-increment: false
 port-count: 10
 port: 6000

19.5.1. Memcache Client Code Examples

Assume that your cluster members are as shown below.

Members [5] {
 Member [10.20.17.1:5701]
 Member [10.20.17.2:5701]
 Member [10.20.17.4:5701]
 Member [10.20.17.3:5701]
 Member [10.20.17.5:5701]
}

Assume that you have a PHP application that uses PHP Memcache client to cache things in
Hazelcast. All you need to do is have your PHP Memcache client connect to one of these members. It
does not matter which member the client connects to because the Hazelcast cluster looks like one
giant machine (Single System Image). Here is a PHP client code example.

<?php
 $memcache = new Memcache;
 $memcache->connect('10.20.17.1', 5701) or die ("Could not connect");
 $memcache->set('key1', 'value1', 0, 3600);
 $get_result = $memcache->get('key1'); // retrieve your data
 var_dump($get_result); // show it
?>

Notice that Memcache client connects to 10.20.17.1 and uses port 5701. Here is a Java client code
example with SpyMemcached client:

MemcachedClient client = new MemcachedClient(
 AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("key1", 3600, "value1");
System.out.println(client.get("key1"));

If you want your data to be stored in different maps, for example to utilize per map configuration,
you can do that with a map name prefix as in the following example code.

515

MemcachedClient client = new MemcachedClient(
 AddrUtil.getAddresses("10.20.17.1:5701 10.20.17.2:5701"));
client.set("map1:key1", 3600, "value1"); // store to *hz_memcache_map1
client.set("map2:key1", 3600, "value1"); // store to hz_memcache_map2
System.out.println(client.get("key1")); // get from hz_memcache_map1
System.out.println(client.get("key2")); // get from hz_memcache_map2

hz_memcache prefix_ separates Memcache maps from Hazelcast maps. If no map name is given,
it is stored in a default map named hz_memcache_default.

An entry written with a Memcache client can be read by another Memcache client written in
another language.

19.5.2. Unsupported Operations for Memcache

• CAS operations are not supported. In operations that get CAS parameters, such as append, CAS
values are ignored.

• Only a subset of statistics are supported. Below is the list of supported statistic values.

◦ cmd_set

◦ cmd_get

◦ incr_hits

◦ incr_misses

◦ decr_hits

◦ decr_misses

19.6. Python Client
Python Client implementation for Hazelcast. It is implemented using the Hazelcast Open Binary
Client Protocol.

See Hazelcast Python client’s GitHub repo for its documentation and code samples.

19.7. Node.js Client
Node.js Client implementation for Hazelcast. It is implemented using the Hazelcast Open Binary
Client Protocol.

See Hazelcast Node.js client’s GitHub repo for its documentation and code samples.

19.8. Go Client
Go Client implementation for Hazelcast. It is implemented using the Hazelcast Open Binary Client
Protocol.

516

https://github.com/hazelcast/hazelcast-python-client
https://github.com/hazelcast/hazelcast-python-client/tree/master/examples
https://github.com/hazelcast/hazelcast-nodejs-client
https://github.com/hazelcast/hazelcast-nodejs-client/tree/master/code_samples

See Hazelcast Go client’s GitHub repo for its documentation and code samples.

20. Serialization
Hazelcast needs to serialize the Java objects that you put into Hazelcast because Hazelcast is a
distributed system. The data and its replicas are stored in different partitions on multiple cluster
members. The data you need may not be present on the local member, and in that case, Hazelcast
retrieves that data from another member. This requires serialization.

Serialization is used in the following cases:

• Adding key/value objects to a map

• Putting items in a queue/set/list

• Sending a runnable using an executor service

• Processing an entry within a map

• Locking an object

• Sending a message to a topic

Hazelcast optimizes the serialization for the basic types and their array types. You cannot override
this behavior.

The following are the default types:

• Byte, Boolean, Character, Short, Integer, Long, Float, Double, String

• byte[], boolean[], char[], short[], int[], long[], float[], double[], String[]

• java.util.Date, java.math.BigInteger, java.math.BigDecimal, java.lang.Class

Hazelcast optimizes all of the above object types. You do not need to worry about their
(de)serializations.

20.1. Serialization Interface Types
For complex objects, use the following interfaces for serialization and deserialization:

• java.io.Serializable: See the Implementing Java Serializable and Externalizable section.

• java.io.Externalizable: See the Implementing Java Externalizable section.

• com.hazelcast.nio.serialization.DataSerializable: See the Implementing DataSerializable
section.

• com.hazelcast.nio.serialization.IdentifiedDataSerializable: See the IdentifiedDataSerializable
section.

• com.hazelcast.nio.serialization.Portable: See the Implementing Portable Serialization section.

• Custom Serialization (using StreamSerializer and ByteArraySerializer).

• Global Serializer: See the Global Serializer section for details.

517

https://github.com/hazelcast/hazelcast-go-client
https://github.com/hazelcast/hazelcast-go-client/tree/master/sample

When Hazelcast serializes an object:

1. It first checks whether the object is null.

2. If the above check fails, then Hazelcast checks if it is an instance of
com.hazelcast.nio.serialization.DataSerializable or
com.hazelcast.nio.serialization.IdentifiedDataSerializable.

3. If the above check fails, then Hazelcast checks if it is an instance of
com.hazelcast.nio.serialization.Portable.

4. If the above check fails, then Hazelcast checks if it is an instance of one of the default types (see
the Serialization chapter introduction for default types).

5. If the above check fails, then Hazelcast looks for a user-specified Custom Serializer, i.e. an
implementation of ByteArraySerializer or StreamSerializer. Custom serializer is searched using
the input Object’s Class and its parent class up to Object. If parent class search fails, all
interfaces implemented by the class are also checked (excluding java.io.Serializable and
java.io.Externalizable).

6. If the above check fails, then Hazelcast checks if it is an instance of java.io.Serializable or
java.io.Externalizable and a Global Serializer is not registered with Java Serialization Override
feature.

7. If the above check fails, Hazelcast uses the registered Global Serializer if one exists.

If all of the above checks fail, then serialization fails. When a class implements multiple interfaces,
the above steps are important to determine the serialization mechanism that Hazelcast uses. When
a class definition is required for any of these serializations, you need to have all the classes needed
by the application on your classpath because Hazelcast does not download them automatically,
unless you are using user code deployment.

20.2. Comparing Serialization Interfaces
The table below provides a comparison between the interfaces listed in the previous section to help
you in deciding which interface to use in your applications.

Serializ
ation
Interfac
e

Advantages Drawbacks

Serializa
ble

• A standard and basic Java
interface

• Requires no implementation

• More time and CPU usage

• More space occupancy

• Not supported by Native clients

External
izable

• A standard Java interface

• More CPU and memory usage
efficient than Serializable

• Serialization interface must be implemented

• Not supported by Native clients

518

Serializ
ation
Interfac
e

Advantages Drawbacks

DataSeri
alizable

• More CPU and memory usage
efficient than Serializable

• Specific to Hazelcast

• Not supported by Native clients

Identifie
dDataSe
rializabl
e

• More CPU and memory usage
efficient than Serializable

• Reflection is not used during
deserialization

• Supported by all Native Clients

• Specific to Hazelcast

• Serialization interface must be implemented

• A Factory and configuration must be
implemented

Portable • More CPU and memory usage
efficient than Serializable

• Reflection is not used during
deserialization

• Versioning is supported

• Partial deserialization is supported
during Queries

• Supported by all Native Clients

• Specific to Hazelcast

• Serialization interface must be implemented

• A Factory and configuration must be
implemented

• Class definition is also sent with data but
stored only once per class

Custom
Serializa
tion

• Does not require class to
implement an interface

• Convenient and flexible

• Can be based on StreamSerializer
ByteArraySerializer

• Serialization interface must be implemented

• Plug in and configuration is required

Let’s dig into the details of the above serialization mechanisms in the following sections.

20.3. Implementing Java Serializable and
Externalizable
A class often needs to implement the java.io.Serializable interface; native Java serialization is the
easiest way to do serialization.

Let’s take a look at the example code below for Java Serializable.

519

public class Employee implements Serializable {
 private static final long serialVersionUID = 1L;
 private String surname;

 public Employee(String surname) {
 this.surname = surname;
 }
}

Here, the fields that are non-static and non-transient are automatically serialized. To eliminate class
compatibility issues, it is recommended that you add a serialVersionUID, as shown above. Also,
when you are using methods that perform byte-content comparisons, such as IMap.replace(), and if
byte-content of equal objects is different, you may face unexpected behaviors. For example, if the
class relies on a hash map, the replace method may fail. The reason for this is the hash map is a
serialized data structure with unreliable byte-content.

20.3.1. Implementing Java Externalizable

Hazelcast also supports java.io.Externalizable. This interface offers more control on the way fields
are serialized or deserialized. Compared to native Java serialization, it also can have a positive
effect on performance. With java.io.Externalizable, there is no need to add serialVersionUID.

Let’s take a look at the example code below.

public class Employee implements Externalizable {
 private String surname;
 public Employee(String surname) {
 this.surname = surname;
 }

 @Override
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 this.surname = in.readUTF();
 }

 @Override
 public void writeExternal(ObjectOutput out)
 throws IOException {
 out.writeUTF(surname);
 }
}

You explicitly perform writing and reading of fields. Perform reading in the same order as writing.

520

20.4. Implementing DataSerializable
As mentioned in Implementing Java Serializable & Externalizable, Java serialization is an easy
mechanism. However, it does not control how fields are serialized or deserialized. Moreover, Java
serialization can lead to excessive CPU loads since it keeps track of objects to handle the cycles and
streams class descriptors. These are performance decreasing factors; thus, serialized data may not
have an optimal size.

The DataSerializable interface of Hazelcast overcomes these issues. Here is an example of a class
implementing the com.hazelcast.nio.serialization.DataSerializable interface.

public class Address implements DataSerializable {
 private String street;
 private int zipCode;
 private String city;
 private String state;

 public Address() {}

 //getters setters..

 public void writeData(ObjectDataOutput out) throws IOException {
 out.writeUTF(street);
 out.writeInt(zipCode);
 out.writeUTF(city);
 out.writeUTF(state);
 }

 public void readData(ObjectDataInput in) throws IOException {
 street = in.readUTF();
 zipCode = in.readInt();
 city = in.readUTF();
 state = in.readUTF();
 }
}

20.4.1. Reading and Writing and DataSerializable

Let’s take a look at another example which encapsulates a DataSerializable field.

Since the address field itself is DataSerializable, it calls address.writeData(out) when writing and
address.readData(in) when reading. Also note that you should have writing and reading of the
fields occur in the same order. When Hazelcast serializes a DataSerializable, it writes the className
first. When Hazelcast deserializes it, className is used to instantiate the object using reflection.

521

public class Employee implements DataSerializable {
 private String firstName;
 private String lastName;
 private int age;
 private double salary;
 private Address address; //address itself is DataSerializable

 public Employee() {}

 //getters setters..

 public void writeData(ObjectDataOutput out) throws IOException {
 out.writeUTF(firstName);
 out.writeUTF(lastName);
 out.writeInt(age);
 out.writeDouble (salary);
 address.writeData (out);
 }

 public void readData(ObjectDataInput in) throws IOException {
 firstName = in.readUTF();
 lastName = in.readUTF();
 age = in.readInt();
 salary = in.readDouble();
 address = new Address();
 // since Address is DataSerializable let it read its own internal state
 address.readData(in);
 }
}

As you can see, since the address field itself is DataSerializable, it calls address.writeData(out) when
writing and address.readData(in) when reading. Also note that you should have writing and
reading of the fields occur in the same order. While Hazelcast serializes a DataSerializable, it
writes the className first. When Hazelcast deserializes it, className is used to instantiate the object
using reflection.

Since Hazelcast needs to create an instance during the
deserialization,DataSerializable class has a no-arg constructor.

DataSerializable is a good option if serialization is only needed for in-cluster
communication.

DataSerializable is not supported by non-Java clients as it uses Java reflection. If
you need non-Java clients, please use IdentifiedDataSerializable or Portable.

522

20.4.2. IdentifiedDataSerializable

For a faster serialization of objects, avoiding reflection and long class names, Hazelcast
recommends you implement com.hazelcast.nio.serialization.IdentifiedDataSerializable which is
a slightly better version of DataSerializable.

DataSerializable uses reflection to create a class instance, as mentioned in Implementing
DataSerializable. But IdentifiedDataSerializable uses a factory for this purpose and it is faster
during deserialization, which requires new instance creations.

getClassId and getFactoryId Methods

IdentifiedDataSerializable extends DataSerializable and introduces the following methods:

• int getClassId();

• int getFactoryId();

IdentifiedDataSerializable uses getClassId() instead of class name and it uses getFactoryId() to
load the class when given the id. To complete the implementation, you should also implement
com.hazelcast.nio.serialization.DataSerializableFactory and register it into SerializationConfig,
which can be accessed from Config.getSerializationConfig(). Factory’s responsibility is to return
an instance of the right IdentifiedDataSerializable object, given the id. This is currently the most
efficient way of Serialization that Hazelcast supports off the shelf.

Implementing IdentifiedDataSerializable

Let’s take a look at the following example code and configuration to see IdentifiedDataSerializable
in action.

523

public class Employee
 implements IdentifiedDataSerializable {

 private String surname;

 public Employee() {}

 public Employee(String surname) {
 this.surname = surname;
 }

 @Override
 public void readData(ObjectDataInput in)
 throws IOException {
 this.surname = in.readUTF();
 }

 @Override
 public void writeData(ObjectDataOutput out)
 throws IOException {
 out.writeUTF(surname);
 }

 @Override
 public int getFactoryId() {
 return EmployeeDataSerializableFactory.FACTORY_ID;
 }

 @Override
 public int getClassId() {
 return EmployeeDataSerializableFactory.EMPLOYEE_TYPE;
 }

 @Override
 public String toString() {
 return String.format("Employee(surname=%s)", surname);
 }
}

The methods getClassId and getFactoryId return a unique positive number within the
EmployeeDataSerializableFactory. Now, let’s create an instance of this
EmployeeDataSerializableFactory.

524

public class EmployeeDataSerializableFactory
 implements DataSerializableFactory{

 public static final int FACTORY_ID = 1;

 public static final int EMPLOYEE_TYPE = 1;

 @Override
 public IdentifiedDataSerializable create(int typeId) {
 if (typeId == EMPLOYEE_TYPE) {
 return new Employee();
 } else {
 return null;
 }
 }
}

The only method you should implement is create, as seen in the above example. It is recommended
that you use a switch-case statement instead of multiple if-else blocks if you have a lot of
subclasses. Hazelcast throws an exception if null is returned for typeId.

Registering EmployeeDataSerializableFactory

As the last step, you need to register EmployeeDataSerializableFactory declaratively (declare in the
configuration file hazelcast.xml/yaml) as shown below. Note that factory-id has the same value of
FACTORY_ID in the above code. This is crucial to enable Hazelcast to find the correct factory.

XML

<hazelcast>
 ...
 <serialization>
 <data-serializable-factories>
 <data-serializable-factory factory-id="1">
 EmployeeDataSerializableFactory
 </data-serializable-factory>
 </data-serializable-factories>
 </serialization>
 ...
</hazelcast>

YAML

hazelcast:
 serialization:
 data-serializable-factories:
 - factory-id: 1
 class-name: EmployeeDataSerializableFactory

525

See the Serialization Configuration Wrap-Up section for a full description of
Hazelcast Serialization configuration.

When using a client/server deployment, you also need to register the implemented factory on the
client side. For a Java client, the process is the same as described above to be performed in the
client configuration, e.g., hazelcast-client.xml/yaml. For the other Hazelcast clients, see the
following for details:

• .NET

• C++

• Node.js

• Python

• Go

20.5. Implementing Portable Serialization
As an alternative to the existing serialization methods, Hazelcast offers a language/platform
independent Portable serialization that has the following advantages:

• support for multi-version of the same object type

• fetching individual fields without having to rely on reflection

• queries and indexing support without deserialization and/or reflection

In order to support these features, a serialized Portable object contains meta information like the
version and the concrete location of the each field in the binary data. This way, Hazelcast navigates
in the byte[] and deserializes only the required field without actually deserializing the whole
object. This improves the Query performance.

With multi-version support, you can have two cluster members where each has different versions
of the same object. Hazelcast stores both meta information and uses the correct one to serialize and
deserialize Portable objects depending on the member. This is very helpful when you are doing a
rolling upgrade without shutting down the cluster.

Portable serialization is totally language independent and is used as the binary protocol between
Hazelcast server and clients.

20.5.1. Portable Serialization Example Code

Here is example code for Portable implementation of a Foo class.

526

https://github.com/hazelcast/hazelcast-csharp-client#41-identifieddataserializable-serialization
https://github.com/hazelcast/hazelcast-cpp-client#41-identifieddataserializable-serialization
https://github.com/hazelcast/hazelcast-nodejs-client#41-identifieddataserializable-serialization
https://github.com/hazelcast/hazelcast-python-client#41-identifieddataserializable-serialization
https://github.com/hazelcast/hazelcast-go-client#41-identifieddataserializable-serialization

public class Foo implements Portable {
 final static int ID = 5;

 private String foo;

 public String getFoo() {
 return foo;
 }

 public void setFoo(String foo) {
 this.foo = foo;
 }

 @Override
 public int getFactoryId() {
 return 1;
 }

 @Override
 public int getClassId() {
 return ID;
 }

 @Override
 public void writePortable(PortableWriter writer) throws IOException {
 writer.writeUTF("foo", foo);
 }

 @Override
 public void readPortable(PortableReader reader) throws IOException {
 foo = reader.readUTF("foo");
 }
}

Similar to IdentifiedDataSerializable, a Portable Class must provide classId and factoryId. The
Factory object creates the Portable object given the classId.

An example Factory could be implemented as follows:

527

public class MyPortableFactory implements PortableFactory {

 @Override
 public Portable create(int classId) {
 if (Foo.ID == classId)
 return new Foo();
 else
 return null;
 }
}

20.5.2. Registering the Portable Factory

The last step is to register the Factory to the SerializationConfig. Below are the programmatic and
declarative configurations for this step.

Config config = new Config();
config.getSerializationConfig().addPortableFactory(1, new MyPortableFactory());

XML

<hazelcast>
 ...
 <serialization>
 <portable-version>0</portable-version>
 <portable-factories>
 <portable-factory factory-id="1">
 com.hazelcast.examples.PortableFactory
 </portable-factory>
 </portable-factories>
 </serialization>
 ...
</hazelcast>

YAML

hazelcast:
 serialization:
 portable-version: 0
 portable-factories:
 - factory-id: 1
 class-name: com.hazelcast.examples.PortableFactory

Note that the id that is passed to the SerializationConfig is the same as the factoryId that the Foo
class returns.

When using a client/server deployment, you also need to register the implemented factory on the

528

client side. For a Java client, the process is the same as described above to be performed in the
client configuration, e.g., hazelcast-client.xml/yaml. For the other Hazelcast clients, see the
following for details:

• .NET

• C++

• Node.js

• Python

• Go

20.5.3. Versioning for Portable Serialization

More than one version of the same class may need to be serialized and deserialized. For example, a
client may have an older version of a class and the member to which it is connected may have a
newer version of the same class.

Portable serialization supports versioning. It is a global versioning, meaning that all portable
classes that are serialized through a member get the globally configured portable version.

You can declare the version in the XML or YAML configuration file using the portable-version
element, as shown below.

XML

<hazelcast>
 ...
 <serialization>
 <portable-version>1</portable-version>
 <portable-factories>
 <portable-factory factory-id="1">
 PortableFactoryImpl
 </portable-factory>
 </portable-factories>
 </serialization>
 ...
</hazelcast>

YAML

hazelcast:
 serialization:
 portable-version: 1
 portable-factories:
 - factory-id: 1
 class-name: PortableFactoryImpl

You can also use the interface VersionedPortable which enables to upgrade the version per class,
instead of global versioning. If you need to update only one class, you can use this interface. In this

529

https://github.com/hazelcast/hazelcast-csharp-client#42-portable-serialization
https://github.com/hazelcast/hazelcast-cpp-client#42-portable-serialization
https://github.com/hazelcast/hazelcast-nodejs-client#42-portable-serialization
https://github.com/hazelcast/hazelcast-python-client#42-portable-serialization
https://github.com/hazelcast/hazelcast-go-client#42-portable-serialization
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/nio/serialization/VersionedPortable.html

case, your class should implement VersionedPortable instead of Portable, and you can give the
desired version using the method VersionedPortable.getClassVersion().

You should consider the following when you perform versioning:

• It is important to change the version whenever an update is performed in the serialized fields of
a class, for example by incrementing the version.

• If a client performs a Portable deserialization on a field and then that Portable is updated by
removing that field on the cluster side, this may lead to a problem.

• Portable serialization does not use reflection and hence, fields in the class and in the serialized
content are not automatically mapped. Field renaming is a simpler process. Also, since the class
ID is stored, renaming the Portable does not lead to problems.

• Types of fields need to be updated carefully. Hazelcast performs basic type upgradings, such as
int to float.

Example Portable Versioning Scenarios

Assume that a new member joins to the cluster with a class that has been modified and class'
version has been upgraded due to this modification.

• If you modified the class by adding a new field, the new member’s put operations include that
new field. If this new member tries to get an object that was put from the older members, it gets
null for the newly added field.

• If you modified the class by removing a field, the old members get null for the objects that are
put by the new member.

• If you modified the class by changing the type of a field, the error IncompatibleClassChangeError
is generated unless the change was made on a built-in type or the byte size of the new type is
less than or equal to the old one. The following are examples of allowed type conversions:

◦ long → int, byte, char, short

◦ int→ byte, char, short

If you have not modify a class at all, it works as usual.

20.5.4. Ordering Consistency for writePortable

Independent of the member-member or member-client communications, the method
writePortable() of the classes that implement Portable should be consistent. This means, the fields
listed under the method writePortable() should be in the same order for all involved members
and/or clients.

Let’s consider the following Employee class:

530

class EmployeePortable implements Portable {

 private String name;
 private int age;

 public EmployeePortable() {
 }

 public EmployeePortable(int age, String name) {
 this.age = age;
 this.name = name;
 }

 public int getFactoryId() {
 return 666;
 }

 public int getClassId() {
 return 2;
 }

 public void writePortable(PortableWriter writer) throws IOException {
 writer.writeUTF("n", name);
 writer.writeInt("a", age);
 }

 public void readPortable(PortableReader reader) throws IOException {
 name = reader.readUTF("n");
 age = reader.readInt("a");
 }

 public int getAge() {
 return age;
 }
}

As you see in the above example, first the name and then the age is written. This order should be
preserved in other members or clients.

20.5.5. Null Portable Serialization

Be careful with serializing null portables. Hazelcast lazily creates a class definition of portable
internally when the user first serializes. This class definition is stored and used later for
deserializing that portable class. When the user tries to serialize a null portable when there is no
class definition at the moment, Hazelcast throws an exception saying that
com.hazelcast.nio.serialization.HazelcastSerializationException: Cannot write null portable

without explicitly registering class definition!.

There are two solutions to get rid of this exception. Either put a non-null portable class of the same

531

type before any other operation, or manually register a class definition in serialization
configuration as shown below.

Config config = new Config();
final ClassDefinition classDefinition = new ClassDefinitionBuilder(Foo.factoryId, Foo
.getClassId)
 .addUTFField("foo").build();
config.getSerializationConfig().addClassDefinition(classDefinition);
Hazelcast.newHazelcastInstance(config);

20.5.6. DistributedObject Serialization

Putting a DistributedObject (Hazelcast Semaphore, Queue, etc.) in a cluster member and getting it
from another one is not a straightforward operation. Passing the ID and type of the
DistributedObject can be a solution. For deserialization, you can get the object from
HazelcastInstance. For instance, if your object is an instance of IQueue, you can either use
HazelcastInstance.getQueue(id) or Hazelcast.getDistributedObject.

You can use the HazelcastInstanceAware interface in the case of a deserialization of a Portable
DistributedObject if it gets an ID to be looked up. HazelcastInstance is set after deserialization, so
you first need to store the ID and then retrieve the DistributedObject using the
setHazelcastInstance method.

See the Serialization Configuration Wrap-Up section for a full description of
Hazelcast Serialization configuration elements.

20.6. Custom Serialization
Hazelcast lets you plug in a custom serializer for serializing your objects. You can use
StreamSerializer and ByteArraySerializer interfaces for this purpose.

20.6.1. Implementing StreamSerializer

You can use a stream to serialize and deserialize data by using StreamSerializer. This is a good
option for your own implementations. It can also be adapted to external serialization libraries like
Kryo, JSON and protocol buffers.

StreamSerializer Example Code 1

First, let’s create a simple object.

532

public class EmployeeSS {
 private String surname;
 private String name;

 public EmployeeSS(String surname) {
 this.surname = surname;
 }

 public String getSurname() {
 return surname;
 }
 public String getName() {
 return name;
 }
}

Now, let’s implement StreamSerializer for Employee class.

public class EmployeeStreamSerializer
 implements StreamSerializer<EmployeeSS> {

 @Override
 public int getTypeId () {
 return 1;
 }

 @Override
 public void write(ObjectDataOutput out, EmployeeSS employee)
 throws IOException {
 out.writeUTF(employee.getSurname());
 }

 @Override
 public EmployeeSS read(ObjectDataInput in)
 throws IOException {
 String surname = in.readUTF();
 return new EmployeeSS(surname);
 }

 @Override
 public void destroy () {
 }
}

In practice, classes may have many fields. Just make sure the fields are read in the same order as
they are written. The type ID must be unique and greater than or equal to 1. Uniqueness of the type
ID enables Hazelcast to determine which serializer is used during deserialization.

533

As the last step, let’s register the EmployeeStreamSerializer in the configuration file
hazelcast.xml/yaml, as shown below.

XML

<hazelcast>
 ...
 <serialization>
 <serializers>
 <serializer type-class="EmployeeSS" class-name="EmployeeStreamSerializer"
/>
 </serializers>
 </serialization>
 ...
</hazelcast>

YAML

hazelcast:
 serialization:
 serializers:
 - type-class: EmployeeSS
 class-name: EmployeeStreamSerializer

StreamSerializer cannot be created for well-known types, such as Long and String
and primitive arrays. Hazelcast already registers these types.

StreamSerializer Example Code 2

Let’s take a look at another example implementing StreamSerializer.

public class Foo {
 private String foo;

 public String getFoo() {
 return foo;
 }

 public void setFoo(String foo) {
 this.foo = foo;
 }
}

Assume that our custom serialization serializes Foo into XML. First you need to implement a
com.hazelcast.nio.serialization.StreamSerializer. A very simple one that uses XMLEncoder and
XMLDecoder could look like the following:

534

public class FooXmlSerializer implements StreamSerializer<Foo> {

 @Override
 public int getTypeId() {
 return 10;
 }

 public void write(ObjectDataOutput out, Foo object) throws IOException {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 XMLEncoder encoder = new XMLEncoder(bos);
 encoder.writeObject(object);
 encoder.close();
 out.write(bos.toByteArray());
 }

 public Foo read(ObjectDataInput in) throws IOException {
 InputStream inputStream = (InputStream) in;
 XMLDecoder decoder = new XMLDecoder(inputStream);
 return (Foo) decoder.readObject();
 }

 public void destroy() {
 }
}

Configuring StreamSerializer

Note that typeId must be unique because Hazelcast uses it to look up the StreamSerializer while it
deserializes the object. The last required step is to register the StreamSerializer in your Hazelcast
configuration. Below are the programmatic and declarative configurations for this step.

SerializerConfig sc = new SerializerConfig()
 .setImplementation(new FooXmlSerializer())
 .setTypeClass(Foo.class);
Config config = new Config();
config.getSerializationConfig().addSerializerConfig(sc);

535

XML

<hazelcast>
 <serialization>
 <serializers>
 <serializer type-class="com.www.Foo" class-name="com.www.FooXmlSerializer"
/>
 </serializers>
 </serialization>
 ...
</hazelcast>

YAML

hazelcast:
 serialization:
 serializers:
 - type-class: com.www.Foo
 class-name: com.www.FooXmlSerializer

From now on, this Hazelcast example will use FooXmlSerializer to serialize Foo objects. In this way,
you can write an adapter (StreamSerializer) for any Serialization framework and plug it into
Hazelcast.

See the Serialization Configuration Wrap-Up section for a full description of
Hazelcast Serialization configuration elements.

20.6.2. Implementing ByteArraySerializer

ByteArraySerializer exposes the raw ByteArray used internally by Hazelcast. It is a good option if
the serialization library you are using deals with ByteArrays instead of streams.

Let’s implement ByteArraySerializer for the Employee class mentioned in Implementing
StreamSerializer.

536

public class EmployeeByteArraySerializer
 implements ByteArraySerializer<EmployeeSS> {

 @Override
 public void destroy () {
 }

 @Override
 public int getTypeId () {
 return 1;
 }

 @Override
 public byte[] write(EmployeeSS object)
 throws IOException {
 return object.getName().getBytes();
 }

 @Override
 public EmployeeSS read(byte[] buffer)
 throws IOException {
 String surname = new String(buffer);
 return new EmployeeSS(surname);
 }
}

Configuring ByteArraySerializer

As usual, let’s register the EmployeeByteArraySerializer in the configuration file hazelcast.xml/yaml,
as shown below.

XML

<hazelcast>
 ...
 <serialization>
 <serializers>
 <serializer type-class="Employee">EmployeeByteArraySerializer</serializer>
 </serializers>
 </serialization>
 ...
</hazelcast>

537

YAML

hazelcast:
 serialization:
 serializers:
 - type-class: Employee
 class-name: EmployeeByteArraySerializer

See the Serialization Configuration Wrap-Up section for a full description of
Hazelcast Serialization configuration elements.

20.7. Global Serializer
The global serializer is identical to custom serializers from the implementation perspective. The
global serializer is registered as a fallback serializer to handle all other objects if a serializer cannot
be located for them.

By default, the global serializer does not handle java.io.Serializable and java.io.Externalizable
instances. However, you can configure it to be responsible for those instances.

A custom serializer should be registered for a specific class type. The global serializer handles all
class types if all the steps in searching for a serializer fail as described in Serialization Interface
Types.

The following are some use cases:

• Third party serialization frameworks can be integrated using the global serializer.

• For your custom objects, you can implement a single serializer to handle all of them.

• You can replace the internal Java serialization by enabling the overrideJavaSerialization option
of the global serializer configuration.

Any custom serializer can be used as the global serializer. See the Custom Serialization section for
implementation details.

To function properly, Hazelcast needs the Java serializable objects to be handled
correctly. If the global serializer is configured to handle the Java serialization, the
global serializer must properly serialize/deserialize the java.io.Serializable

instances. Otherwise, it causes Hazelcast to malfunction.

20.7.1. Example Global Serializer

An example global serializer that integrates with a third party serializer is shown below.

538

public class GlobalStreamSerializer
 implements StreamSerializer<Object> {

 private SomeThirdPartySerializer someThirdPartySerializer;

 private init() {
 //someThirdPartySerializer = ...
 }

 @Override
 public int getTypeId () {
 return 123;
 }

 @Override
 public void write(ObjectDataOutput out, Object object) throws IOException {
 byte[] bytes = someThirdPartySerializer.encode(object);
 out.writeByteArray(bytes);
 }

 @Override
 public Object read(ObjectDataInput in) throws IOException {
 byte[] bytes = in.readByteArray();
 return someThirdPartySerializer.decode(bytes);
 }

 @Override
 public void destroy () {
 someThirdPartySerializer.destroy();
 }
}

Now, we can register the global serializer in the configuration file hazelcast.xml/yaml, as shown
below.

XML

<hazelcast>
 ...
 <serialization>
 <serializers>
 <global-serializer override-java-serialization="true"
>GlobalStreamSerializer</global-serializer>
 </serializers>
 </serialization>
 ...
</hazelcast>

539

YAML

hazelcast:
 serialization:
 global-serializer:
 override-java-serialization: true
 class-name: GlobalStreamSerializer

20.8. Implementing HazelcastInstanceAware
You can implement the HazelcastInstanceAware interface to access distributed objects for cases
where an object is deserialized and needs access to HazelcastInstance.

Let’s implement it for the Employee class mentioned in the Custom Serialization section.

public class PersonAwr implements Serializable, HazelcastInstanceAware {

 private static final long serialVersionUID = 1L;

 private String name;

 private transient HazelcastInstance hazelcastInstance;

 PersonAwr(String name) {
 this.name = name;
 }

 public HazelcastInstance getHazelcastInstance() {
 return hazelcastInstance;
 }

 @Override
 public void setHazelcastInstance(HazelcastInstance hz) {
 this.hazelcastInstance = hz;
 System.out.println("hazelcastInstance set");
 }

 @Override
 public String toString() {
 return String.format("Person(name=%s)", name);
 }
}

After deserialization, the object is checked to see if it implements HazelcastInstanceAware and the
method setHazelcastInstance is called. Notice the hazelcastInstance is transient. This is because
this field should not be serialized.

It may be a good practice to inject a HazelcastInstance into a domain object, e.g., Employee in the

540

above example, when used together with Runnable/Callable implementations. These
runnables/callables are executed by IExecutorService which sends them to another machine. And
after a task is deserialized, run/call method implementations need to access HazelcastInstance.

We recommend you only set the HazelcastInstance field while using setHazelcastInstance method
and you not execute operations on the HazelcastInstance. The reason is that when
HazelcastInstance is injected for a HazelcastInstanceAware implementation, it may not be up and
running at the injection time.

20.9. Untrusted Deserialization Protection
Hazelcast offers a Java deserialization protection based on whitelisting and blacklisting the
class/package names. These listings support prefixes.

This protection is controlled using the configuration element java-serialization-filter under
serialization, as shown in the example below.

XML

<hazelcast>
 ...
 <serialization>
 <java-serialization-filter defaults-disabled="true">
 <whitelist>
 <class>example.Foo</class>
 <package>com.acme.app</package>
 <prefix>com.hazelcast.</prefix>
 <prefix>java.</prefix>
 <prefix>javax.</prefix>
 <prefix>[</prefix>
 </whitelist>
 <blacklist>
 <class>com.acme.app.BeanComparator</class>
 </blacklist>
 </java-serialization-filter>
 </serialization>
 ...
</hazelcast>

541

YAML

hazelcast:
 serialization:
 java-serialization-filter:
 defaults-disabled: true
 whitelist:
 class:
 - example.Foo
 package:
 - com.acme.app
 prefix:
 - com.hazelcast.
 - java.
 - javax.
 - [
 blacklist:
 class:
 - com.acme.app.BeanComparator

As an alternative, you can also configure it programmatically using the
JavaSerializationFilterConfig object, as shown in the below example:

Config config = new Config();
JavaSerializationFilterConfig javaSerializationFilterConfig = new
JavaSerializationFilterConfig();
javaSerializationFilterConfig.getWhitelist().addClasses(SomeDeserialized.class.getName
());
config.getSerializationConfig().setJavaSerializationFilterConfig(javaSerializationFilt
erConfig);

Untrusted deserialization protection is not enabled by default. You can enable it
simply by setting the element java-serialization-filter or using a non-null
JavaSerializationFilterConfig object.

The protection uses a whitelist as the default configuration. When this list is not explicitly provided,
the following default prefixes are used for the whitelist:

• java

• com.hazelcast.

• [(for primitives and arrays)

If you do not want to use the default whitelist prefixes, you must set the defaults-disabled attribute
to true.

Once the protection is enabled, the following filtering rules are used when the objects are
deserialized:

542

• When whitelist is not provided:

◦ if the deserialized object’s getClass().getName() is blacklisted or
getClass().getPackage().getName() is blacklisted, then deserialization fails

◦ deserialization is allowed otherwise.

• When whitelist is provided:

◦ if the deserialized object’s getClass().getName() or getClass().getPackage().getName() is
blacklisted, then deserialization fails

◦ if the deserialized object’s getClass().getName() or getClass().getPackage().getName() is
whitelisted, then deserialization is allowed

◦ deserialization fails otherwise.

When deserialization fails, a SecurityException is thrown.

Note that the safest way to provide a protection against untrusted deserialization
is using whitelisting (also keep in mind that maintaining such a whitelist can be
difficult).

20.10. Serialization Configuration Wrap-Up
This section summarizes the configuration of serialization options, explained in the above sections,
into all-in-one examples. The following are example serialization configurations.

Declarative Configuration:

543

XML

<hazelcast>
 <serialization>
 <portable-version>0</portable-version>
 <use-native-byte-order>false</use-native-byte-order>
 <byte-order>BIG_ENDIAN</byte-order>
 <data-serializable-factories>
 <data-serializable-factory factory-id="1"
>com.hazelcast.examples.DataSerializableFactory
 </data-serializable-factory>
 </data-serializable-factories>
 <portable-factories>
 <portable-factory factory-id="1">
com.hazelcast.examples.PortableFactory</portable-factory>
 </portable-factories>
 <serializers>
 <global-serializer>com.hazelcast.examples.GlobalSerializerFactory</global-
serializer>
 <serializer type-class="com.hazelcast.examples.DummyType"
 class-name="com.hazelcast.examples.SerializerFactory"/>
 </serializers>
 <check-class-def-errors>true</check-class-def-errors>
 <java-serialization-filter defaults-disabled="true">
 <blacklist>
 <class>com.acme.app.BeanComparator</class>
 </blacklist>
 <whitelist>
 <class>java.lang.String</class>
 <class>example.Foo</class>
 <package>com.acme.app</package>
 <package>com.acme.app.subpkg</package>
 <prefix>com.hazelcast.</prefix>
 <prefix>java</prefix>
 </whitelist>
 </java-serialization-filter>
 </serialization>
</hazelcast>

544

YAML

hazelcast:
 serialization:
 portable-version: 0
 use-native-byte-order: false
 byte-order: BIG_ENDIAN
 data-serializable-factories:
 - factory-id: 1
 class-name: com.hazelcast.examples.DataSerializableFactory
 portable-factories:
 - factory-id: 1
 class-name: com.hazelcast.examples.PortableFactory
 global-serializer:
 class-name: com.hazelcast.examples.GlobalSerializerFactory
 serializers:
 - type-class: com.hazelcast.examples.DummyType
 class-name: com.hazelcast.examples.SerializerFactory
 check-class-def-errors: true
 java-serialization-filter:
 defaults-disabled: true
 blacklist:
 class:
 - com.acme.app.BeanComparator
 whitelist:
 class:
 - java.lang.String
 - example.Foo
 package:
 - com.acme.app
 - com.acme.app.subpkg
 prefix:
 - com.hazelcast.
 - java

Programmatic Configuration:

Config config = new Config();
SerializationConfig srzConfig = config.getSerializationConfig();
srzConfig.setPortableVersion("2").setUseNativeByteOrder(true);
srzConfig.setAllowUnsafe(true).setEnableCompression(true);
srzConfig.setCheckClassDefErrors(true);

GlobalSerializerConfig globSrzConfig = srzConfig.getGlobalSerializerConfig();
globSrzConfig.setClassName("abc.Class");

SerializerConfig serializerConfig = srzConfig.getSerializerConfig();
serializerConfig.setTypeClass("Employee")
 .setClassName("com.EmployeeSerializer");

545

Serialization configuration has the following elements.

• portable-version: Defines versioning of the portable serialization. Portable version
differentiates two of the same classes that have changes, such as adding/removing field or
changing a type of a field.

• use-native-byte-order: Set to true to use native byte order for the underlying platform. Its
default value is false.

• byte-order: Defines the byte order that the serialization uses: BIG_ENDIAN or LITTLE_ENDIAN. Its
default value is BIG_ENDIAN.

• enable-compression: Enables compression if default Java serialization is used. Its default value is
false.

• enable-shared-object: Enables shared object if default Java serialization is used. Its default value
is false.

• allow-unsafe: Set to true to allow unsafe to be used. Its default value is false.

• data-serializable-factory: Custom classes implementing
com.hazelcast.nio.serialization.DataSerializableFactory to be registered. These can be used to
speed up serialization/deserialization of objects.

• portable-factory: The PortableFactory class to be registered.

• global-serializer: The global serializer class to be registered if no other serializer is applicable.
This element has the optional boolean attribute override-java-serialization. If set to true, the
Java serialization step is assumed to be handled by the global serializer. Java Serializable and
Externalizable is prior to global serializer by default (false).

• serializer: The class name of the serializer implementation.

• check-class-def-errors: When set to true, the serialization system checks for class definitions
error at start and throws a Serialization Exception with an error definition.

• java-serialization-filter: Provides deserialization protection based on whitelisting and
blacklisting the class/package names.

21. Management
This chapter provides information on managing and monitoring your Hazelcast cluster. It gives
detailed instructions related to gathering statistics, monitoring via JMX protocol and managing the
cluster with useful utilities.

21.1. Getting Member Statistics
You can get various statistics from your distributed data structures via the Statistics API. Since the
data structures are distributed in the cluster, the Statistics API provides statistics for the local
portion (1/Number of Members in the Cluster) of data on each member.

21.1.1. Map Statistics

To get local map statistics, use the getLocalMapStats() method from the IMap interface. This method

546

returns a LocalMapStats object that holds local map statistics.

Below is an example code where the getLocalMapStats() method and the getOwnedEntryCount()
method get the number of entries owned by this member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap<String, String> customers = hazelcastInstance.getMap("customers");
LocalMapStats mapStatistics = customers.getLocalMapStats();
System.out.println("number of entries owned on this member = "
 + mapStatistics.getOwnedEntryCount());

Since Hazelcast IMDG 3.8 getOwnedEntryMemoryCost() method is now supported for
NATIVE in-memory format as well.

The following are some of the metrics that you can access via the LocalMapStats object:

• Number of entries owned by the member (getOwnedEntryCount()).

• Number of backup entries held by the member (getBackupEntryCount()).

• Number of backups per entry (getBackupCount()).

• Memory cost (number of bytes) of owned entries in the member (getOwnedEntryMemoryCost()).

• Creation time of the map on the member (getCreationTime()).

• Number of hits (reads) of the locally owned entries (getHits()).

• Number of get and put operations on the map (getPutOperationCount() and
getGetOperationCount()).

• Number of queries executed on the map (getQueryCount() and getIndexedQueryCount()) (it may
be imprecise for queries involving partition predicates (PartitionPredicate) on the off-heap
storage).

See the LocalMapStats Javadoc to see all the metrics.

21.1.2. Map Index Statistics

To access map index statistics, if you are using indexes to speed up map queries, use the
getIndexStats() method of the LocalMapStats interface returned by IMap.getLocalMapStats().

Below is an example where the getIndexStats() method is used to examine an average selectivity of
index hits:

547

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/LocalMapStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/LocalMapStats.html

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap<String, String> customers = hazelcastInstance.getMap("customers");
addIndex(customers, "name", true); // or add the index using the map config
LocalMapStats mapStatistics = customers.getLocalMapStats();
Map<String, LocalIndexStats> indexStats = mapStatistics.getIndexStats();
LocalIndexStats nameIndexStats = indexStats.get("name");
System.out.println("average name index hit selectivity on this member = "
 + nameIndexStats.getAverageHitSelectivity());

The following are some of the metrics that you can obtain via the LocalIndexStats interface:

• Number of queries and hits into an index (getQueryCount() and getHitCount()): Number of hits
and queries may differ since a single query may hit the same index more than once.

• Average index hit latency measured in nanoseconds (getAverageHitLatency())

• Average index hit selectivity (getAverageHitSelectivity): Returned values are in the range from
0.0 to 1.0. Values close to 1.0 indicate a high selectivity meaning the index is efficient; values
close to 0.0 indicate a low selectivity meaning the index efficiency is approaching an efficiency
of a simple full scan.

• Number of index insert, update and remove operations (getInsertCount(), getUpdateCount() and
getRemoveCount()).

• Total latencies of insert, update and remove operations (getTotalInsertLatency(),
getTotalUpdateLatency(), getTotalRemoveLatency()): To compute an average latency divide the
returned value by the number of operations of a corresponding type.

• Memory cost of an index (getMemoryCost()): For on-heap storages, this memory cost metric value
is a best-effort approximation and doesn’t indicate a precise on-heap memory usage of an
index.

See the LocalIndexStats Javadoc to see all the metrics.

To compute an aggregated value of getAverageHitSelectivity() for all cluster members, you can use
a simple averaging computation as shown below:

(s(1) + s(2) + ... + s(n)) / n

In this computation, s(i) is an average hit selectivity on the member i and n is the total number of
cluster members.

A more advanced solution is to compute a weighted average as shown below:

(s(1) * h(1) + s(2) * h(2) + ... + s(n) * h(n)) / (h(1) + h(2) + ... + h(n))

Here, s(i) is an average hit selectivity on the member i, h(i) is a hit count (getHitCount()) on the
member i and n is the total number of cluster members. This more advanced solution may produce
more precise results in unstable dynamic clusters where new members do not have enough

548

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/LocalIndexStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/LocalIndexStats.html

statistics accumulated. The same technique may be applied to the getAverageHitLatency() metric.

Accuracy and reliability notes:

• The values returned by getAverageHitSelectivity() have an accuracy of around 1% for on-heap
storages.

• The values returned by getQueryCount() and getHitCount() may be imprecise for queries
involving partition predicates (PartitionPredicate) on off-heap storage.

• The index statistics may be imprecise after a new cluster member addition or the existing
member removal until enough fresh statistics is accumulated on a new owner of an index or its
partition.

21.1.3. Near Cache Statistics

To get Near Cache statistics, use the getNearCacheStats() method from the LocalMapStats object. This
method returns a NearCacheStats object that holds Near Cache statistics.

Below is an example code where the getNearCacheStats() method and the getRatio method from
NearCacheStats get a Near Cache hit/miss ratio.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap<String, String> customers = hazelcastInstance.getMap("customers");
LocalMapStats mapStatistics = customers.getLocalMapStats();
NearCacheStats nearCacheStatistics = mapStatistics.getNearCacheStats();
System.out.println("Near Cache hit/miss ratio = "
 + nearCacheStatistics.getRatio());

The following are some of the metrics that you can access via the NearCacheStats object (applies to
both client and member Near Caches):

• creation time of the Near Cache on the member (getCreationTime())

• number of entries owned by the member (getOwnedEntryCount())

• memory cost (number of bytes) of owned entries in the Near Cache (getOwnedEntryMemoryCost())

• number of hits (reads) of the locally owned entries (getHits())

See the NearCacheStats Javadoc to see all the metrics.

21.1.4. Multimap Statistics

To get MultiMap statistics, use the getLocalMultiMapStats() method from the MultiMap interface. This
method returns a LocalMultiMapStats object that holds local MultiMap statistics.

Below is an example code where the getLocalMultiMapStats() method and the getLastUpdateTime
method from LocalMultiMapStats get the last update time.

549

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/nearcache/NearCacheStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/nearcache/NearCacheStats.html

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
MultiMap<String, String> customers = hazelcastInstance.getMultiMap("customers");
LocalMultiMapStats multiMapStatistics = customers.getLocalMultiMapStats();
System.out.println("last update time = "
 + multiMapStatistics.getLastUpdateTime());

The following are some of the metrics that you can access via the LocalMultiMapStats object:

• number of entries owned by the member (getOwnedEntryCount())

• number of backup entries held by the member (getBackupEntryCount())

• number of backups per entry (getBackupCount())

• memory cost (number of bytes) of owned entries in the member (getOwnedEntryMemoryCost())

• creation time of the multimap on the member (getCreationTime())

• number of hits (reads) of the locally owned entries (getHits())

• number of get and put operations on the map (getPutOperationCount() and
getGetOperationCount())

See the LocalMultiMapStats Javadoc to see all the metrics.

21.1.5. Queue Statistics

To get local queue statistics, use the getLocalQueueStats() method from the IQueue interface. This
method returns a LocalQueueStats object that holds local queue statistics.

Below is an example code where the getLocalQueueStats() method and the getAverageAge method
from LocalQueueStats get the average age of items.

HazelcastInstance node = Hazelcast.newHazelcastInstance();
IQueue<Integer> orders = node.getQueue("orders");
LocalQueueStats queueStatistics = orders.getLocalQueueStats();
System.out.println("average age of items = "
 + queueStatistics.getAverageAge());

The following are some of the metrics that you can access via the `LocalQueueStats ` object:

• number of owned items in the member (getOwnedItemCount())

• number of backup items in the member (getBackupItemCount())

• minimum and maximum ages of the items in the member (getMinAge() and getMaxAge())

• number of offer, put and add operations (getOfferOperationCount())

See the LocalQueueStats Javadoc to see all the metrics.

550

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/multimap/LocalMultiMapStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/multimap/LocalMultiMapStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/collection/LocalQueueStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/collection/LocalQueueStats.html

21.1.6. Topic Statistics

To get local topic statistics, use the getLocalTopicStats() method from the ITopic interface. This
method returns a LocalTopicStats object that holds local topic statistics.

Below is an example code where the getLocalTopicStats() method and the
getPublishOperationCount method from LocalTopicStats get the number of publish operations.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
ITopic<Object> news = hazelcastInstance.getTopic("news");
LocalTopicStats topicStatistics = news.getLocalTopicStats();
System.out.println("number of publish operations = "
 + topicStatistics.getPublishOperationCount());

The following are the metrics that you can access via the `LocalTopicStats ` object:

• creation time of the topic on the member (getCreationTime())

• total number of published messages of the topic on the member (getPublishOperationCount())

• total number of received messages of the topic on the member (getReceiveOperationCount())

See the LocalTopicStats Javadoc to see all the metrics.

21.1.7. Executor Statistics

To get local executor statistics, use the getLocalExecutorStats() method from the IExecutorService
interface. This method returns a LocalExecutorStats object that holds local executor statistics.

Below is an example code where the getLocalExecutorStats() method and the
getCompletedTaskCount method from LocalExecutorStats get the number of completed operations of
the executor service.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IExecutorService orderProcessor = hazelcastInstance.getExecutorService(
"orderProcessor");
LocalExecutorStats executorStatistics = orderProcessor.getLocalExecutorStats();
System.out.println("completed task count = "
 + executorStatistics.getCompletedTaskCount());

The following are some of the metrics that you can access via the `LocalExecutorStats ` object:

• number of pending operations of the executor service (getPendingTaskCount())

• number of started operations of the executor service (getStartedTaskCount())

• number of completed operations of the executor service (getCompletedTaskCount())

See the LocalExecutorStats Javadoc to see all the metrics.

551

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/topic/LocalTopicStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/topic/LocalTopicStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/executor/LocalExecutorStats.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/executor/LocalExecutorStats.html

21.2. JMX API per Member
Hazelcast members expose various management beans which include statistics about distributed
data structures and the states of Hazelcast member internals.

The metrics are local to the members, i.e., they do not reflect cluster wide values.

You can find the JMX API definition below with descriptions and the API methods in parenthesis.

Atomic Long (IAtomicLong)

• Name (name)

• Current Value (currentValue)

• Set Value (set(v))

• Add value and Get (addAndGet(v))

• Compare and Set (compareAndSet(e,v))

• Decrement and Get (decrementAndGet())

• Get and Add (getAndAdd(v))

• Get and Increment (getAndIncrement())

• Get and Set (getAndSet(v))

• Increment and Get (incrementAndGet())

• Partition key (partitionKey)

Atomic Reference (IAtomicReference)

• Name (name)

• Partition key (partitionKey)

Countdown Latch (ICountDownLatch)

• Name (name)

• Current count (count)

• Countdown (countDown())

• Partition key (partitionKey)

Executor Service (IExecutorService)

• Local pending operation count (localPendingTaskCount)

• Local started operation count (localStartedTaskCount)

• Local completed operation count (localCompletedTaskCount)

• Local cancelled operation count (localCancelledTaskCount)

• Local total start latency (localTotalStartLatency)

552

• Local total execution latency (localTotalExecutionLatency)

List (IList)

• Name (name)

• Clear list (clear)

Lock (ILock)

• Name (name)

• Lock Object (lockObject)

• Partition key (partitionKey)

Map (IMap)

• Name (name)

• Size (size)

• Config (config)

• Owned entry count (localOwnedEntryCount)

• Owned entry memory cost (localOwnedEntryMemoryCost)

• Backup entry count (localBackupEntryCount)

• Backup entry cost (localBackupEntryMemoryCost)

• Backup count (localBackupCount)

• Creation time (localCreationTime)

• Last access time (localLastAccessTime)

• Last update time (localLastUpdateTime)

• Hits (localHits)

• Locked entry count (localLockedEntryCount)

• Dirty entry count (localDirtyEntryCount)

• Put operation count (localPutOperationCount)

• Get operation count (localGetOperationCount)

• Remove operation count (localRemoveOperationCount)

• Total put latency (localTotalPutLatency)

• Total get latency (localTotalGetLatency)

• Total remove latency (localTotalRemoveLatency)

• Max put latency (localMaxPutLatency)

• Max get latency (localMaxGetLatency)

• Max remove latency (localMaxRemoveLatency)

• Event count (localEventOperationCount)

553

• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)

• Total operation count (localTotal)

• Heap Cost (localHeapCost)

• Clear (clear())

• Values (values(p))

• Entry Set (entrySet(p))

MultiMap (MultiMap)

• Name (name)

• Size (size)

• Owned entry count (localOwnedEntryCount)

• Owned entry memory cost (localOwnedEntryMemoryCost)

• Backup entry count (localBackupEntryCount)

• Backup entry cost (localBackupEntryMemoryCost)

• Backup count (localBackupCount)

• Creation time (localCreationTime)

• Last access time (localLastAccessTime)

• Last update time (localLastUpdateTime)

• Hits (localHits)

• Locked entry count (localLockedEntryCount)

• Put operation count (localPutOperationCount)

• Get operation count (localGetOperationCount)

• Remove operation count (localRemoveOperationCount)

• Total put latency (localTotalPutLatency)

• Total get latency (localTotalGetLatency)

• Total remove latency (localTotalRemoveLatency)

• Max put latency (localMaxPutLatency)

• Max get latency (localMaxGetLatency)

• Max remove latency (localMaxRemoveLatency)

• Event count (localEventOperationCount)

• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)

• Total operation count (localTotal)

• Clear (clear())

Replicated Map (ReplicatedMap)

554

• Name (name)

• Size (size)

• Config (config)

• Owned entry count (localOwnedEntryCount)

• Creation time (localCreationTime)

• Last access time (localLastAccessTime)

• Last update time (localLastUpdateTime)

• Hits (localHits)

• Put operation count (localPutOperationCount)

• Get operation count (localGetOperationCount)

• Remove operation count (localRemoveOperationCount)

• Total put latency (localTotalPutLatency)

• Total get latency (localTotalGetLatency)

• Total remove latency (localTotalRemoveLatency)

• Max put latency (localMaxPutLatency)

• Max get latency (localMaxGetLatency)

• Max remove latency (localMaxRemoveLatency)

• Event count (localEventOperationCount)

• Other (keySet,entrySet etc..) operation count (localOtherOperationCount)

• Total operation count (localTotal)

• Clear (clear())

• Values (values())

• Entry Set (entrySet())

Queue (IQueue)

• Name (name)

• Config (QueueConfig)

• Partition key (partitionKey)

• Owned item count (localOwnedItemCount)

• Backup item count (localBackupItemCount)

• Minimum age (localMinAge)

• Maximum age (localMaxAge)

• Average age (localAverageAge)

• Offer operation count (localOfferOperationCount)

• Rejected offer operation count (localRejectedOfferOperationCount)

555

• Poll operation count (localPollOperationCount)

• Empty poll operation count (localEmptyPollOperationCount)

• Other operation count (localOtherOperationsCount)

• Event operation count (localEventOperationCount)

• Clear (clear())

Semaphore (ISemaphore)

• Name (name)

• Available permits (available)

• Partition key (partitionKey)

• Drain (drain())

• Shrink available permits by given number (reduce(v))

• Release given number of permits (release(v))

Set (ISet)

• Name (name)

• Partition key (partitionKey)

• Clear (clear())

Topic (ITopic)

• Name (name)

• Config (config)

• Creation time (localCreationTime)

• Publish operation count (localPublishOperationCount)

• Receive operation count (localReceiveOperationCount)

Hazelcast Instance (HazelcastInstance)

• Name (name)

• Version (version)

• Build (build)

• Configuration (config)

• Configuration source (configSource)

• Cluster name (clusterName)

• Network Port (port)

• Cluster-wide Time (clusterTime)

• Size of the cluster (memberCount)

556

• List of members (Members)

• Running state (running)

• Shutdown the member (shutdown())

• Node (HazelcastInstance.Node)

• Address (address)

• Master address (masterAddress)

• Partition Service (HazelcastInstance.PartitionServiceMBean)

◦ Partition count (partitionCount)

◦ Active partition count (activePartitionCount)

◦ Cluster Safe State (isClusterSafe)

◦ LocalMember Safe State (isLocalMemberSafe)

• Connection Manager (HazelcastInstance.ConnectionManager)

◦ Client connection count (clientConnectionCount)

◦ Active connection count (activeConnectionCount)

◦ Connection count (connectionCount)

• System Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

• Async Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

• Scheduled Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

557

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

• Client Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

• Query Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

• I/O Executor (HazelcastInstance.ManagedExecutorService)

◦ Name (name)

◦ Work queue size (queueSize)

◦ Thread count of the pool (poolSize)

◦ Maximum thread count of the pool (maximumPoolSize)

◦ Remaining capacity of the work queue (remainingQueueCapacity)

◦ Is shutdown (isShutdown)

◦ Is terminated (isTerminated)

◦ Completed task count (completedTaskCount)

558

21.3. Monitoring with JMX
You can monitor your Hazelcast members via the JMX protocol.

To achieve this, first add the following system properties to enable the JMX agent:

• -Dcom.sun.management.jmxremote

• -Dcom.sun.management.jmxremote.port=_portNo_ (to specify JMX port, the default is 1099)
(optional)

• -Dcom.sun.management.jmxremote.authenticate=false (to disable JMX auth) (optional)

Then enable JMX by setting the hazelcast.jmx property to true using the following configuration:

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.jmx">true</property>
 </properties>
 ...
</hazelcast>

YAML

hazelcast:
 properties:
 hazelcast.jmx: true

Java

config.setProperty("hazelcast.jmx", "true");

Spring

<hz:properties>
 <hz: property name="hazelcast.jmx">true</hz:property>
</hz:properties>

System Property

-Dhazelcast.jmx=true

21.3.1. MBean Naming for Hazelcast Data Structures

Hazelcast set the naming convention for MBeans as follows:

559

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

final ObjectName mapMBeanName = new ObjectName(
"com.hazelcast:instance=_hzInstance_1_dev,type=IMap,name=trial");

The MBeans name consists of the Hazelcast instance name, the type of the data structure and that
data structure’s name. In the above example, _hzInstance_1_dev is the instance name, we connect to
an IMap with the name trial.

21.3.2. Connecting to JMX Agent

One of the ways you can connect to JMX agent is using jconsole, jvisualvm (with MBean plugin) or
another JMX compliant monitoring tool.

The other way to connect is to use a custom JMX client.

First, you need to specify the URL where the Hazelcast JMX service is running. See the following
code snippet:

// Parameters for connecting to the JMX Service
int port = 1099;
String hostname = InetAddress.getLocalHost().getHostName();
JMXServiceURL url = new JMXServiceURL("service:jmx:rmi://" + hostname + ":" + port +
"/jndi/rmi://" + hostname + ":" + port + "/jmxrmi");

The port in the above example should be the one that you define while setting the JMX remote port
number (if different than the default port 1099).

Then use the URL you acquired to connect to the JMX service and get the JMXConnector object. Using
this object, get the MBeanServerConnection object. The MBeanServerConnection object enables you to
use the MBean methods. See the example code below.

// Connect to the JMX Service
JMXConnector jmxc = JMXConnectorFactory.connect(url, null);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

Once you get the MBeanServerConnection object, you can call the getter methods of MBeans as
follows:

System.out.println("\nTotal entries on map " + mbsc.getAttribute(mapMBeanName, "name")
+ " : "
 + mbsc.getAttribute(mapMBeanName, "localOwnedEntryCount"));

21.4. Using the REST Endpoint Groups
Hazelcast members exposes various REST endpoints and these are grouped. REST endpoint groups
are as follows:

560

• CLUSTER_READ

• CLUSTER_WRITE

• HEALTH_CHECK

• HOT_RESTART

• WAN

• DATA

• CP

Using the REST service is disabled by default. To be able to use the REST endpoints,
you need to enable the REST API as follows:

XML

<hazelcast>
 ...
 <network>
 <rest-api enabled="true">
 ...
 </rest-api>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 rest-api:
 enabled: true

The following table lists all the endpoints along with the groups they belong to.

Table 15. REST Endpoint Groups

Endpoint Group Default Endpoints

CLUSTER_READ Enabled • /hazelcast/rest/cluster

• /hazelcast/rest/management/cluster/state

• /hazelcast/rest/license (GET)

• /hazelcast/rest/management/cluster/version (GET)

• /hazelcast/rest/management/cluster/nodes

• /hazelcast/rest/instance

561

Endpoint Group Default Endpoints

CLUSTER_WRITE Disabled • /hazelcast/rest/management/cluster/changeState

• /hazelcast/rest/license (POST)

• /hazelcast/rest/management/cluster/version (POST)

• /hazelcast/rest/management/cluster/clusterShutdown

• /hazelcast/rest/management/cluster/memberShutdown

• /hazelcast/rest/cp-subsystem/members/local

• /hazelcast/rest/cp-subsystem/groups

• /hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME}

• /hazelcast/rest/cp-subsystem/members

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/remove

• /hazelcast/rest/cp-
subsystem/members/${CPMEMBER_UUID}/remove

• /hazelcast/rest/cp-subsystem/restart

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions/${CP_SESSION
_ID}/remove

• /hazelcast/ (Other HTTP REST API operations)

HEALTH_CHECK Enabled • /hazelcast/health/node-state

• /hazelcast/health/cluster-state

• /hazelcast/health/cluster-safe

• /hazelcast/health/migration-queue-size

• /hazelcast/health/cluster-size

• /hazelcast/health/ready

HOT_RESTART Disabled • /hazelcast/rest/management/cluster/forceStart

• /hazelcast/rest/management/cluster/partialStart

• /hazelcast/rest/management/cluster/hotBackup

• /hazelcast/rest/management/cluster/hotBackupInterrupt

WAN Disabled • /hazelcast/rest/wan/sync/map

• /hazelcast/rest/wan/sync/allmaps

• /hazelcast/rest/wan/clearWanQueues

• /hazelcast/rest/wan/addWanConfig

• /hazelcast/rest/wan/pausePublisher

• /hazelcast/rest/wan/stopPublisher

• /hazelcast/rest/wan/resumePublisher

• /hazelcast/rest/wan/consistencyCheck/map

562

Endpoint Group Default Endpoints

DATA Disabled • /hazelcast/rest/maps/

• /hazelcast/rest/queues/QUEUE_NAME/size

• /hazelcast/rest/queues/$QUEUE_NAME/$SECONDS

CP Disabled • /hazelcast/rest/cp-subsystem/members/local

• /hazelcast/rest/cp-subsystem/groups

• /hazelcast/rest/cp-subsystem/groups/${CPGROUP_NAME}

• /hazelcast/rest/cp-subsystem/members

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/remove

• /hazelcast/rest/cp-
subsystem/members/${CPMEMBER_UUID}/remove

• /hazelcast/rest/cp-subsystem/reset

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions

• /hazelcast/rest/cp-
subsystem/groups/${CPGROUP_NAME}/sessions/${CP_SESSION
_ID}/remove

You can enable or disable any REST endpoint group using the following declarative configuration
(HEALTH_CHECK group is used as an example):

XML

<hazelcast>
 ...
 <network>
 <rest-api enabled="true">
 <endpoint-group name="HEALTH_CHECK" enabled="false"/>
 </rest-api>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 rest-api:
 enabled: true
 endpoint-groups:
 HEALTH_CHECK
 enabled: false

The following is the equivalent programmatic configuration:

563

RestApiConfig restApiConfig = new RestApiConfig()
 .setEnabled(false)
 .enableGroups(RestEndpointGroup.HEALTH_CHECK);
Config config = new Config();
config.getNetworkConfig().setRestApiConfig(restApiConfig);

Alternatively, you can also use the advanced-network element for the same purpose:

XML

<hazelcast>
 ...
 <advanced-network enabled="true">
 <rest-server-socket-endpoint-config>
 <endpoint-groups>
 <endpoint-group name="HEALTH_CHECK" enabled="false"/>
 </endpoint-groups>
 </rest-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

YAML

hazelcast:
 advanced-network:
 enabled: true
 rest-server-socket-endpoint-config:
 endpoint-groups:
 HEALTH_CHECK:
 enabled: false

And the following is the equivalent programmatic configuration:

RestServerEndpointConfig restServerEndpointConfig = new RestServerEndpointConfig()
 .setEnabled(false);
 .enableGroups(RestEndpointGroup.HEALTH_CHECK);
Config config = new Config();
config.getAdvancedNetworkConfig().setRestEndpointConfig(restServerEndpointConfig);

See the Advanced Network Configuration section for more information on the
advanced-network element.

When you enable or disable a REST endpoint group, all the endpoints in that group are enabled or
disabled, respectively. For the examples above, we disabled the endpoints belonging to the
HEALTH_CHECK endpoint group.

564

21.5. Cluster Utilities
This section provides information on the Hazelcast command line and other programmatic utilities
you can use to listen to the cluster events, to change the state of your cluster, to check whether the
cluster and/or members are safe before shutting down a member and to define the minimum
number of cluster members required for the cluster to remain up and running. It also gives
information on the Hazelcast Lite Member.

21.5.1. Hazelcast Command Line Tool

This is a tool using which you can install and run Hazelcast IMDG and Management Center on your
Unix-like local environments. You need JRE 8 or newer as a prerequisite.

This tool comes with your Hazelcast IMDG download package. When you extract the package, you
see the "hazelcast-command-line" directory.

To install and start using the tool, follow these steps:

1. Run the following commands in the extracted IMDG directory:

$ cd hazelcast-command-line/distro
$ make

2. When the make command finishes, run the following commands:

$ cd build/dist/bin
$./hz

You are now ready to use the tool.

• Starting a standalone Hazelcast member with the default configuration:

$./hz start *

• Starting Hazelcast Management Center:

$./hz mc start

Please see the tool’s documentation for all the other usages.

21.5.2. Using the cluster.sh Script

You can use the script cluster.sh, which comes with the Hazelcast package, to get/change the state
of your cluster, to shutdown your cluster and to force your cluster to clean its persisted data and
make a fresh start. The latter is the Force Start operation of Hazelcast’s Hot Restart Persistence
feature. See the Force Start section.

565

https://www.oracle.com/java/technologies/javase-downloads.html
https://github.com/hazelcast/hazelcast-command-line

The script cluster.sh uses curl command and curl must be installed to be able to
use the script.

The script cluster.sh takes the following parameters to operate according to your needs. If these
parameters are not provided, the default values are used.

Parameter Default Value Description

-o or --operation get-state Executes a cluster-wide operation. Operations can be
the following:

• IMDG Open Source operations: get-state, change-
state, shutdown and get-cluster-version.

• IMDG Enterprise operations: force-start, partial-
start and change-cluster-version.

-s or --state None Updates the state of the cluster to a new state. New
state can be active, no_migration, frozen, passive. This
is used with the operation change-state. This
parameter has no default value; when you use this,
you should provide a valid state.

-a or --address 127.0.0.1 Defines the IP address of a cluster member. If you
want to manage your cluster remotely, you should use
this parameter to provide the IP address of a member
to this script.

-p or --port 5701 Defines on which port Hazelcast is running on the
local or remote machine.

-c or --clustername dev Defines the name of a cluster which is used for a
simple authentication. See the Creating Clusters
section.

-P or --password dev-pass Defines the password of a cluster (valid only for
Hazelcast releases older than 3.8.2). See the Creating
Clusters section.

-v or --version no argument
expected

Defines the cluster version to change to. It is used in
conjunction with the change-cluster-version

operation.

-d or --debug no argument
expected

Prints error output.

--https no argument
expected

Uses HTTPS protocol for REST calls.

566

Parameter Default Value Description

--cacert set of well-known CA
certificates

Defines trusted PEM-encoded certificate file path. It’s
used to verify member certificates.

--cert None Defines PEM-encoded client certificate file path. Only
needed when client certificate authentication is used.

--key None Defines PEM-encoded client private key file path.
Only needed when client certificate authentication is
used.

--insecure no argument
expected

Disables member certificate verification.

The script cluster.sh is self-documented; you can see the parameter descriptions using the
command ./cluster.sh -h or ./cluster.sh --help.

You can perform the above operations using the Hot Restart tab of Hazelcast
Management Center or using the REST API. See the Hot Restart and Using REST API
for Cluster Management sections in the Hazelcast Management Center Reference
Manual.

Example Usages for cluster.sh

Let’s say you have a cluster running on remote machines and one Hazelcast member is running on
the IP 172.16.254.1 and on the port 5702. The cluster name and password of the cluster are test and
test.

Getting the cluster state:

To get the state of the cluster, use the following command:

./cluster.sh -o get-state -a 172.16.254.1 -p 5702 -g test -P test

The following also gets the cluster state, using the alternative parameter names, e.g., --port instead
of -p:

./cluster.sh --operation get-state --address 172.16.254.1 --port 5702 --clustername test
--password test

Changing the cluster state:

To change the state of the cluster to frozen, use the following command:

./cluster.sh -o change-state -s frozen -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

./cluster.sh --operation change-state --state frozen --address 172.16.254.1 --port 5702
--clustername test --password test

567

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#hot-restart

Shutting down the cluster:

To shutdown the cluster, use the following command:

./cluster.sh -o shutdown -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

./cluster.sh --operation shutdown --address 172.16.254.1 --port 5702 --clustername test
--password test

Partial starting the cluster:

To partial start the cluster when Hot Restart is enabled, use the following command:

./cluster.sh -o partial-start -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

./cluster.sh --operation partial-start --address 172.16.254.1 --port 5702 --clustername test
--password test

Force starting the cluster:

To force start the cluster when Hot Restart is enabled, use the following command:

./cluster.sh -o force-start -a 172.16.254.1 -p 5702 -g test -P test

Similarly, you can use the following command for the same purpose:

./cluster.sh --operation force-start --address 172.16.254.1 --port 5702 --clustername test
--password test

Getting the current cluster version:

To get the cluster version, use the following command:

./cluster.sh -o get-cluster-version -a 172.16.254.1 -p 5702 -g test -P test

The following also gets the cluster state, using the alternative parameter names, e.g., --port instead
of -p:

./cluster.sh --operation get-cluster-version --address 172.16.254.1 --port 5702 --clustername
test --password test

Changing the cluster version:

See the Rolling Member Upgrades chapter to learn more about the cases when you should change
the cluster version.

To change the cluster version to X.Y, use the following command:

./cluster.sh -o change-cluster-version -v X.Y -a 172.16.254.1 -p 5702 -g test -P test

The cluster version is always in the major.minor format, e.g., 3.12. Using other formats results in a
failure.

568

Calls against the TLS protected members (using HTTPS protocol):

When the member has TLS configured, use the --https argument to instruct cluster.sh to use the
proper URL scheme:

./cluster.sh --https \
 --operation get-state --address member1.example.com --port 5701

If the default set of trusted certificate authorities is not sufficient, e.g, you use a self-signed
certificate, you can provide a custom file with the root certificates:

./cluster.sh --https \
 --cacert /path/to/ca-certs.pem \
 --operation get-state --address member1.example.com --port 5701

When the TLS mutual authentication is enabled, you have to provide the client certificate and
related private key:

./cluster.sh --https \
 --key privkey.pem \
 --cert cert.pem \
 --operation get-state --address member1.example.com --port 5701

 Currently, this script is not supported on the Windows platforms.

21.5.3. Using REST API for Cluster Management

Besides the Management Center’s Hot Restart tab and the script cluster.sh, you can also use REST
API to manage your cluster’s state. The following are the operations you can perform.

Some of the REST calls listed below need their REST endpoint groups to be enabled.
See the Using the REST Endpoint Groups section on how to enable them.

Also note that the value of ${PASSWORD} in the following calls is checked only if the security is
enabled in Hazelcast IMDG, i.e., if you have Hazelcast IMDG Enterprise Edition. If the security is
disabled, the ${PASSWORD} can be left empty.

Table 16. REST API calls

569

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#hot-restart

IMDG Open Source commands

• Checking if a member is ready to be used:

When a member joins the cluster, you can check whether it is ready to be used with the
following HTTP call. It should return the 200 status code, meaning that the member can be
safely used. Otherwise, it returns the 503 status code indicating the member is not available
yet. Only HTTP GET request method is supported.

curl http://127.0.0.1:${PORT}/hazelcast/health/ready

• Getting the cluster state:

To get the state of the cluster, use the following command:

curl --data "${CLUSTERNAME}&${PASSWORD}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/state

• Changing the cluster state:

To change the state of the cluster to frozen, use the following command:

curl --data "${CLUSTERNAME}&${PASSWORD}&${STATE}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/changeState

• Shutting down the cluster:

To shutdown the cluster, use the following command:

curl --data "${CLUSTERNAME}&${PASSWORD}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/clusterShutdown

• Querying the current cluster version:

To get the current cluster version, use the following curl command:

$ curl http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/version
 {"status":"success","version":"3.9"}

570

IMDG Enterprise commands

• Partial starting the cluster:

To partial start the cluster when Hot Restart is enabled, use the following command:

curl --data "${CLUSTERNAME}&${PASSWORD}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/partialStart/

• Force starting the cluster:

To force start the cluster when Hot Restart is enabled, use the following command:

curl --data "${CLUSTERNAME}&${PASSWORD}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/forceStart/

You can also perform the above operations (partialStart and forceStart) using
the Hot Restart tab of Hazelcast Management Center or using the script
cluster.sh. See the Hot Restart and cluster.sh sections.

• Initiating Hot Backup:

To initiate the Hot Backup, use the following curl command:

curl --data "${CLUSTERNAME}&${PASSWORD}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/hotBackup

• Changing the cluster version:

To upgrade the cluster version, after having upgraded all members of your cluster to a new
minor version, use the following curl command:

$ curl --data "${CLUSTERNAME}&${PASSWORD}&${CLUSTER_VERSION}"
http://127.0.0.1:${PORT}/hazelcast/rest/management/cluster/version

For example, assuming the default cluster name and password, issue the following command
to any member of the cluster to upgrade from cluster version 3.8 to 3.9:

$ curl --data "dev&dev-pass&3.9"
http://127.0.0.1:5701/hazelcast/rest/management/cluster/version
 {"status":"success","version":"3.9"}

571

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#hot-restart

You can also perform the above cluster version operations using Hazelcast
Management Center or using the script cluster.sh. See the Rolling Member
Upgrades and cluster.sh sections.

21.5.4. Enabling Lite Members

Lite members are the Hazelcast cluster members that do not store data. These members are used
mainly to execute tasks and register listeners and they do not have partitions.

You can form your cluster to include the regular Hazelcast members to store data and Hazelcast lite
members to run heavy computations. The presence of the lite members do not affect the operations
performed on the other members in the cluster. You can directly submit your tasks to the lite
members, register listeners on them and invoke operations for the Hazelcast data structures on
them such as map.put() and map.get().

If you want to use lite members in a Hazelcast IMDG Enterprise cluster, they are
also subjected to the Enterprise license.

Configuring Lite Members

You can enable a cluster member to be a lite member using declarative or programmatic
configuration.

Declarative Configuration:

XML

<hazelcast>
 ...
 <lite-member enabled="true"/>
 ...
</hazelcast>

YAML

hazelcast:
 lite-member:
 enabled: true

Programmatic Configuration:

Config config = new Config();
config.setLiteMember(true);

Promoting Lite Members to Data Member

Lite members can be promoted to data members using the Cluster interface. When they are
promoted, cluster partitions are rebalanced and ownerships of some portion of the partitions are
assigned to the newly promoted data members.

572

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#rolling-upgrade
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#rolling-upgrade

Config config = new Config();
config.setLiteMember(true);

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
Cluster cluster = hazelcastInstance.getCluster();
cluster.promoteLocalLiteMember();

 A data member cannot be downgraded to a lite member back.

21.5.5. Getting Member Events and Member Sets

Hazelcast allows you to register for membership events so that you are notified when members are
added or removed. You can also get the set of cluster members.

The following example code does the above: registers for member events, notifies when members
are added or removed and gets the set of cluster members.

public class ExampleGetMemberEventsAndSets {

 public static void main(String[] args) {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 Cluster cluster = hazelcastInstance.getCluster();
 cluster.addMembershipListener(new MembershipListener() {
 public void memberAdded(MembershipEvent membershipEvent) {
 System.out.println("MemberAdded " + membershipEvent);
 }

 public void memberRemoved(MembershipEvent membershipEvent) {
 System.out.println("MemberRemoved " + membershipEvent);
 }
 });

 Member localMember = cluster.getLocalMember();
 System.out.println ("my inetAddress= " + localMember.getInetAddress());

 Set setMembers = cluster.getMembers();
 for (Member member : setMembers) {
 System.out.println("isLocalMember " + member.localMember());
 System.out.println("member.inetaddress " + member.getInetAddress());
 System.out.println("member.port " + member.getPort());
 }
 }
}

 See the Membership Listener section for more information on membership events.

573

21.5.6. Managing Cluster and Member States

This section explains the states of Hazelcast clusters and members which you can use to allow or
restrict the designated cluster/member operations.

Cluster States

By changing the state of your cluster, you can allow/restrict several cluster operations or change the
behavior of those operations. You can use the methods changeClusterState() and shutdown() which
are in the Cluster interface to change your cluster’s state.

Hazelcast clusters have the following states:

• ACTIVE: This is the default cluster state. Cluster continues to operate without restrictions.

• NO_MIGRATION:

◦ In this state, there is no data movement between Hazelcast members. It means that when
there is a member crash or a new member in the cluster, there won’t be any partition
rebalancing, partition backup replica creation or migration.

Please note that promoting a backup replica to the primary replica is a local operation and
does not involve any data movement between cluster members. Hence, backup promotions
occur on member crashes when the cluster is in this mode. Upon a member crash, all other
members that keep backup replicas of the crashed member promote backup replicas to the
primary replica role and restore availability. However, there is a limitation here. Since the
maximum number of backups is 6, if you lose 7 members in your large cluster, you can lose
availability of the partitions whose primary and backup replicas are mapped to those
crashed members.

◦ The cluster accepts new members.

◦ All other operations are allowed.

◦ You cannot change the state of a cluster to NO_MIGRATION when migration/replication tasks
are being performed.

◦ When you want to add multiple new members to the cluster, you can first change the cluster
state to NO_MIGRATION, then start the new members. Once all of them join to the cluster, you
can change the cluster state back to ACTIVE. Then, the cluster rebalances partition replica
distribution at once.

• FROZEN:

◦ In this state, the partition table is frozen and partition assignments are not performed.

◦ The cluster does not accept new members.

◦ If a member leaves, it can join back. Its partition assignments (both primary and backup
replicas) remain the same until either it joins back or the cluster state is changed to ACTIVE.
When it joins back to the cluster, it owns all previous partition assignments as it was. On the
other hand, when the cluster state changes to ACTIVE, re-partitioning starts and unassigned
partition replicas are assigned to the active members.

◦ All other operations in the cluster, except migration, continue without restrictions.

574

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cluster/Cluster.html

◦ You cannot change the state of a cluster to FROZEN when migration/replication tasks are being
performed.

◦ You can make use of FROZEN state along with the Hot Restart Persistence feature. You can
change the cluster state to FROZEN, then restart some of your members using the Hot Restart
feature. The data on the restarting members will not be accessible but you will be able to
access to the data that is stored in other members. Basically, FROZEN cluster state allows you
do perform maintenance on your members with degrading availability partially.

• PASSIVE:

◦ In this state, the partition table is frozen and partition assignments are not performed.

◦ The cluster does not accept new members.

◦ If a member leaves while the cluster is in this state, the member will be removed from the
partition table if cluster state moves back to ACTIVE.

◦ This state rejects ALL operations immediately EXCEPT the read-only operations like
map.get() and cache.get(), replication and cluster heartbeat tasks.

◦ You cannot change the state of a cluster to PASSIVE when migration/replication tasks are
being performed.

◦ You can make use of PASSIVE state along with the Hot Restart Persistence feature. See the
Cluster Shutdown API for more info.

• IN_TRANSITION:

◦ This state shows that the state of the cluster is in transition.

◦ You cannot set your cluster’s state as IN_TRANSITION explicitly.

◦ It is a temporary and intermediate state.

◦ During this state, your cluster does not accept new members and migration/replication tasks
are paused.

All in-cluster methods are fail-fast, i.e., when a method fails in the cluster, it throws
an exception immediately (it is not retried): when there is an error during a state
transition, that error is propagated immediately, Hazelcast does not attempt to
retry the transition in this case.

The following snippet is from the Cluster interface showing the methods used to manage your
cluster’s states.

public interface Cluster {
 ClusterState getClusterState();
 void changeClusterState(ClusterState newState);
 void changeClusterState(ClusterState newState, TransactionOptions
transactionOptions);
 void shutdown();
 void shutdown(TransactionOptions transactionOptions);

See the Cluster interface Javadoc for information on these methods.

575

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cluster/Cluster.html#shutdown--
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cluster/Cluster.html

Cluster Member States

Hazelcast cluster members have the following states:

• ACTIVE: This is the initial member state. The member can execute and process all operations.
When the state of the cluster is ACTIVE or FROZEN, the members are in the ACTIVE state.

• PASSIVE: In this state, member rejects all operations EXCEPT the read-only ones, replication and
migration operations, heartbeat operations and the join operations as explained in the Cluster
States section above. A member can go into this state when either of the following happens:

1. Until the member’s shutdown process is completed after the method Node.shutdown(boolean)
is called. Note that, when the shutdown process is completed, member’s state changes to
SHUT_DOWN.

2. Cluster’s state is changed to PASSIVE using the method changeClusterState().

• SHUT_DOWN: A member goes into this state when the member’s shutdown process is completed.
The member in this state rejects all operations and invocations. A member in this state cannot
be restarted.

21.5.7. Defining Member Attributes

You can define various member attributes on your Hazelcast members. You can use these member
attributes to tag your members as may be required by your business logic.

To define a member attribute on a member, you can:

• provide MemberAttributeConfig to your Config object

• or provide the member attributes at runtime via attribute setter methods on the Member
interface.

For example, you can tag your members with their CPU characteristics and you can route CPU
intensive tasks to those CPU-rich members. Here is how you can do it:

576

public class ExampleMemberAttributes {

 public static void main(String[] args) {
 MemberAttributeConfig fourCore = new MemberAttributeConfig();
 memberAttributeConfig.setAttribute("CPU_CORE_COUNT", "4");
 MemberAttributeConfig twelveCore = new MemberAttributeConfig();
 memberAttributeConfig.setAttribute("CPU_CORE_COUNT", "12");
 MemberAttributeConfig twentyFourCore = new MemberAttributeConfig();
 memberAttributeConfig.setAttribute("CPU_CORE_COUNT", "24");

 Config member1Config = new Config();
 config.setMemberAttributeConfig(fourCore);
 Config member2Config = new Config();
 config.setMemberAttributeConfig(twelveCore);
 Config member3Config = new Config();
 config.setMemberAttributeConfig(twentyFourCore);

 HazelcastInstance member1 = Hazelcast.newHazelcastInstance(member1Config);
 HazelcastInstance member2 = Hazelcast.newHazelcastInstance(member2Config);
 HazelcastInstance member3 = Hazelcast.newHazelcastInstance(member3Config);

 IExecutorService executorService = member1.getExecutorService("processor");

 executorService.execute(new CPUIntensiveTask(), new MemberSelector() {
 @Override
 public boolean select(Member member) {
 int coreCount = Integer.parseInt(member.getAttribute("CPU_CORE_COUNT"
));
 // Task will be executed at either member2 or member3
 if (coreCount > 8) {
 return true;
 }
 return false;
 }
 });

 HazelcastInstance member4 = Hazelcast.newHazelcastInstance();
 // We can also set member attributes at runtime.
 member4.setAttribute("CPU_CORE_COUNT", "2");
 }
}

For another example, you can tag some members with a filter so that a member in the cluster can
load classes from those tagged members. See the User Code Deployment section for more
information.

You can also define your member attributes through declarative configuration and start your
member afterwards. Here is how you can use the declarative approach:

577

XML

<hazelcast>
 ...
 <member-attributes>
 <attribute name="CPU_CORE_COUNT">4</attribute-name>
 </member-attributes>
 ...
</hazelcast>

YAML

hazelcast:
 member-attributes:
 CPU_CORE_COUNT:
 type: int
 value: 4

21.5.8. Safety Checking Cluster Members

To prevent data loss when shutting down a cluster member, Hazelcast provides a graceful
shutdown feature. You perform this shutdown by calling the method HazelcastInstance.shutdown().

The oldest cluster member migrates all of the replicas owned by the shutdown-requesting member
to the other running (not initiated shutdown) cluster members. After these migrations are
completed, the shutting down member will not be the owner or a backup of any partition anymore.
It means that you can shutdown any number of Hazelcast members in a cluster concurrently with
no data loss.

Please note that the process of shutting down members waits for a predefined amount of time for
the oldest member to migrate their partition replicas. You can specify this graceful shutdown
timeout duration using the property hazelcast.graceful.shutdown.max.wait. Its default value is 10
minutes. If migrations are not completed within this duration, shutdown may continue non-
gracefully and lead to data loss. Therefore, you should choose your own timeout duration
considering the size of data in your cluster.

Ensuring Safe State with PartitionService

With the improvements in graceful shutdown procedure in Hazelcast 3.7, the following methods
are not needed to perform graceful shutdown. Nevertheless, you can use them to check the current
safety status of the partitions in your cluster.

578

public interface PartitionService {
 ...
 ...
 boolean isClusterSafe();
 boolean isMemberSafe(Member member);
 boolean isLocalMemberSafe();
 boolean forceLocalMemberToBeSafe(long timeout, TimeUnit unit);
}

The method isClusterSafe checks whether the cluster is in a safe state. It returns true if there are
no active partition migrations and all backups are in sync for each partition.

The method isMemberSafe checks whether a specific member is in a safe state. It checks if all
backups of partitions of the given member are in sync with the primary ones. Once it returns true,
the given member is safe and it can be shut down without data loss.

Similarly, the method isLocalMemberSafe does the same check for the local member. The method
forceLocalMemberToBeSafe forces the owned and backup partitions to be synchronized, making the
local member safe.

See here for more PartitionService code samples.

21.6. Metrics
Metrics are <string,value> key-value pairs of data that capture the runtime information about the
members and clients in a Hazelcast cluster. Such a metric can be the number of entries stored in a
particular IMap on a given member, JVM metrics like used heap, OS metrics like load average, and
so on. The metrics system is responsible for collecting these metrics and making them available for
the consumers of the metrics. There are a few hundred metrics collected during every metrics
collection cycle by default, but the number of metrics grows as more features and data structures
are used. This is because every data structure provides its own metrics. For example, if there are
two IMaps used in a cluster, both IMaps produce their metrics on every member.

21.6.1. Configuring Metrics

You can configure the metrics system declaratively or programmatically. The following is an
example declarative configuration with the default values, on the member side:

XML

<metrics enabled="true">
 <management-center enabled="true">
 <retention-seconds>5</retention-seconds>
 </management-center>
 <jmx enabled="true"/>
 <collection-frequency-seconds>5</collection-frequency-seconds>
</metrics>

579

https://github.com/hazelcast/hazelcast-code-samples/tree/master/monitoring/cluster-safety

YAML

metrics:
 enabled: true
 management-center:
 enabled: true
 retention-seconds: 5
 jmx:
 enabled: true
 collection-frequency-seconds: 5

Note that all of the metrics configuration values can be overridden with system properties. The
properties are are listed below:

• hazelcast.metrics.enabled: Enables the metrics collection if set to true, disables it otherwise.

• hazelcast.metrics.mc.enabled: Enables buffering the collected metrics for Management Center if
set to true, disables it otherwise.

• hazelcast.metrics.mc.retention: Duration, in seconds, for which the metrics are retained for
Management Center.

• hazelcast.metrics.jmx.enabled: Enables exposing the collected metrics over JMX if set to true,
disables it otherwise.

• hazelcast.metrics.collection.frequency: Frequency, in seconds, of the metrics collection cycle.

• hazelcast.metrics.debug.enabled: Enables collecting debug metrics if set to true, disables it
otherwise. Note that this can be set with system property only and is meant to be enabled only if
diagnostics is enabled, since currently only diagnostics feature consumes the debug metrics.

The client configuration is very similar, it just lacks the Management Center configuration block
(management-center configuration element), as shown below. This is because the clients are not
connected to Management Center and the client metrics are sent to Management Center through a
member to which the client is connected.

XML

<metrics enabled="true">
 <jmx enabled="true"/>
 <collection-frequency-seconds>5</collection-frequency-seconds>
</metrics>

YAML

metrics:
 enabled: true
 jmx:
 enabled: true
 collection-frequency-seconds: 5

580

Similarly to the member configuration, the client metrics configuration can be overridden with the
following system properties:

• hazelcast.client.metrics.enabled: Enables the metrics collection if set to true, disables it
otherwise.

• hazelcast.client.metrics.jmx.enabled: Enables exposing the collected metrics over JMX if set to
true, disables it otherwise.

• hazelcast.client.metrics.collection.frequency: Frequency, in seconds, of the metrics collection
cycle.

• hazelcast.client.metrics.debug.enabled: Enables collecting debug metrics if set to true, disables
it otherwise. Note that this can be set with system property only and is meant to be enabled only
if diagnostics is enabled, since currently only diagnostics feature consumes the debug metrics.

21.6.2. Metric Consumers

Metrics are part of and consumed by the following Hazelcast tools and interfaces:

• Management Center

• JMX

• Diagnostics

Management Center

Management Center receives the metrics used for building its view about the Hazelcast cluster
from the metrics system. The members collect their metrics with the frequency defined with
collection-frequency-seconds, which is by default once in every 5 seconds. Then it saves the
collected metrics into a blob stored in an in-memory buffer. The blob then is retained for the time
configured in the retention-seconds under the management-center configuration block. This is also 5
seconds by default, which means there is at most one blob stored by default. Management Center
periodically reads out the metrics from this buffer, which frees up the heap occupied by the blob
once it is consumed.

As mentioned earlier, the client metrics are also stored in these blobs on the member side with
timestamps assigned to them on the client side.

JMX

The metrics are available on the JMX interface of the Hazelcast members and clients. The metrics
are exposed under com.hazelcast/$INSTANCE_NAME/Metrics where $INSTANCE_NAME is the name of the
member or client instance to which the JMX client is connected.

Diagnostics

There are no diagnostics related settings in the metrics configuration section. See the Metrics
section of the Diagnostics for the details.

581

Version Compatibility

Note that the metric names may change between MINOR versions but not between PATCH versions.

21.6.3. Notes on the Performance

The metrics system is designed with care to make the least possible impact on the performance of
the cluster. Since the metrics collection takes place periodically with a few seconds frequency, the
main focus is keeping allocation rates and memory footprint at minimum. Therefore, the blobs that
store the metrics for Management Center are stored in the memory in a compressed format. The
measurements, that use multiple IMaps to scale up the number of metrics, show that one blob
occupies only a few KBs and it grows above 10KB only if there are more than 1000 IMaps.

The allocation rate of a metric collection cycle is also low. With both Management Center and JMX
consumers enabled, the allocation rate with 100 IMaps is below 256KB per cycle, and it grows
above 1MB with 1000 IMaps. This means that metrics collection does not increase the frequency of
the garbage collection (GC) noticeably.

While the metrics collection is considered GC friendly, it should be noted that the blobs are not
recycled: configuring the retention time should be done with taking the frequency of the GC into
account to prevent the blobs from getting promoted into the tenured region of the heap that in the
end contributes to major GCs after time.

21.7. Diagnostics
Hazelcast offers an extended set of diagnostics plugins for both Hazelcast members and clients. A
dedicated log file is used to write the diagnostics content, and a rolling file approach is used to
prevent taking up too much disk space.

21.7.1. Enabling Diagnostics Logging

To enable diagnostics logging, you should specify the following properties on the member side:

-Dhazelcast.diagnostics.enabled=true
-Dhazelcast.diagnostics.metric.level=info
-Dhazelcast.diagnostics.invocation.sample.period.seconds=30
-Dhazelcast.diagnostics.pending.invocations.period.seconds=30
-Dhazelcast.diagnostics.slowoperations.period.seconds=30
-Dhazelcast.diagnostics.storeLatency.period.seconds=60

On the client side, you should specify the following properties:

-Dhazelcast.diagnostics.enabled=true
-Dhazelcast.diagnostics.metric.level=info

582

21.7.2. Diagnostics Log File

You can use the following property to specify the location of the diagnostics log file:

-Dhazelcast.diagnostics.directory=/your/log/directory

The name of the log file has the following format:

diagnostics-<host IP>#<port>-<unique ID>.log

The name of the log file can be prefixed with a custom string as shown below:

-Dhazelcast.diagnostics.filename.prefix=foobar

The content format of the diagnostics log file is depicted below:

<Date> BuildInfo[
 <log content for BuildInfo diagnostics plugin>]
<Date> SystemProperties[
 <log content for SystemProperties diagnostics plugin>]
<Date> ConfigProperties[
 <log content for ConfigProperties diagnostics plugin>]
<Date> Metrics[
 <log content for Metrics diagnostics plugin>]
<Date> SlowOperations[
 <log content for SlowOperations diagnostics plugin>]
<Date> HazelcastInstance[
 <log content for HazelcastInstance diagnostics plugin>]
...
...
...

A rolling file approach is used to prevent creating too much data. By default 10 files of 50MB each
are allowed to exist. The size of the file can be changed using the following property:

-Dhazelcast.diagnostics.max.rolled.file.size.mb=100

You can also set the number of files using the following property:

-Dhazelcast.diagnostics.max.rolled.file.count=5

583

The aforementioned rolling file approach only works within the lifetime of a
member. When you restart a member, the size and count of the diagnostics log
files are reset, and this leads to more files being created and additional disk space
consumption. We recommend you to use a file archiving strategy of your own
(cron jobs, scripts, etc.) paying attention to keep the recent log files for some time
to examine the causes for a crash, for example, when and if it happens.

21.7.3. Diagnostics Plugins

As it is stated in the introduction of this section and shown in the log file content above, diagnostics
utility consists of plugins such as BuildInfo, SystemProperties and HazelcastInstance.

BuildInfo

It shows the detailed Hazelcast build information including the Hazelcast release number, Git
revision number and whether you have Hazelcast IMDG Enterprise or not.

SystemProperties

It shows all the properties and their values in your system used by and configured for your
Hazelcast installation. These are the properties starting with java (excluding java.awt), hazelcast,
sun and os. It also includes the arguments that are used to startup the JVM.

ConfigProperties

It shows the Hazelcast properties and their values explicitly set by you either on the command line
(with -D) or by using declarative/programmatic configuration.

Metrics

It shows a comprehensive log of what is happening in your Hazelcast system.

You can configure the frequency of dumping information to the log file using the following
property:

• hazelcast.diagnostics.metrics.period.seconds: Set a value in seconds. Its default value is 60
seconds.

SlowOperations

It shows the slow operations and invocations, See the SlowOperationDetector section for more
information.

Invocations

It shows all kinds of statistics about current and past invocations including current pending
invocations, history of invocations and slow history, i.e., all samples where the invocation took
more than the defined threshold. Slow history does not only include the invocations where the
operations took a lot of time, but it also includes any other invocations that have been obstructed.

584

Using the following properties, you can configure the frequency of scanning all pending
invocations and the threshold that makes an invocation to be considered as slow:

• hazelcast.diagnostics.invocation.sample.period.seconds: Set a value in seconds. Its default
value is 60 seconds.

• hazelcast.diagnostics.invocation.slow.threshold.seconds: Set a value in seconds. Its default
value is 5 seconds.

HazelcastInstance

It shows the basic state of your Hazelcast cluster including the count and addresses of current
members and the address of oldest cluster member. It is useful to get a fast impression of the
cluster without needing to analyze a lot of data.

You can configure the frequency at which the cluster information is dumped to the log file using the
following property:

• hazelcast.diagnostics.memberinfo.period.second: Set a value in seconds. Its default value is 60
seconds.

EventQueue

It checks the event queues in the data structures and samples the event types if the queue size is
above a certain threshold. It is useful to figure out why the event queue is running full.

• hazelcast.diagnostics.event.queue.period.seconds: Duration, in seconds, that this plugin runs,
gathers information and writes to the diagnostics log file. When set to 0 (its default value), it is
disabled.

• hazelcast.diagnostics.event.queue.threshold: Minimum number of events in the queue before
it is being sampled. Its default value is 1000.

• hazelcast.diagnostics.event.queue.samples: Number of samples to take from the event queue.
Increasing the number of samples gives more accuracy of the content, but it has a negative
performance effect. Its default value is 100.

An example output for a Hazelcast map is as follows:

17-04-2019 17:36:37 EventQueues[
 worker=1[
 eventCount=441
 sampleCount=100
 samples[
 IMap 'myMap' ADDED sampleCount=51 51.000%
 IMap 'myMap' REMOVED sampleCount=49 49.000%]]

SystemLog

It shows the activities in your cluster including when a connection/member is added or removed
and if there is a change in the lifecycle of the cluster. It also includes the reasons for connection

585

closings.

You can enable or disable the system log diagnostics plugin, and configure whether it shows
information about partition migrations using the following properties:

• hazelcast.diagnostics.systemlog.enabled: Its default value is true.

• hazelcast.diagnostics.systemlog.partitions: Its default value is false. Please note that if you
enable this, you may get a lot of log entries if you have many partitions.

StoreLatency

It shows statistics including the count of methods for each store (load, loadAll, loadAllKeys, etc.),
average and maximum latencies for each store method calls and latency distributions for each
store. The following is an example output snippet as part of the diagnostics log file for Hazelcast
MapStore:

17-9-2019 13:12:34 MapStoreLatency[
 map[
 loadAllKeys[
 count=1
 totalTime(us)=8
 avg(us)=8
 max(us)=8
 latency-distribution[
 0..99us=1]]
 load[
 count=100
 totalTime(us)=4,632,190
 avg(us)=46,321
 max(us)=99,178
 latency-distribution[
 0..99us=1
 1600..3199us=3
 3200..6399us=3
 6400..12799us=7
 12800..25599us=13
 25600..51199us=32
 51200..102399us=41]]]]

According to your store usage, a similar output can be seen for Hazelcast JCache, Queue and
Ringbuffer with persistent datastores.

You can control the StoreLatency plugin using the following properties:

• hazelcast.diagnostics.storeLatency.period.seconds: The frequency this plugin is writing the
collected information to the disk. By default it is disabled. A sensible production value would be
60 seconds.

• hazelcast.diagnostics.storeLatency.reset.period.seconds: The period of resetting the statistics.
If, for example, it is set as 300 (5 minutes), all the statistics are cleared for every 5 minutes. By

586

default it is 0, meaning that statistics are not reset.

OperationHeartbeats

It shows the deviation between member/member operation heartbeats. Each member, regardless if
there is an operation running on behalf of that member, sends an operation heartbeat to every
other member. It contains a listing of all callIds of the running operations from a given member.
This plugin also works fine between members/lite-members.

Because this operation heartbeat is sent periodically; by default 1/4 of the operation call timeout of
60 seconds, we would expect an operation heartbeat to be received every 15 seconds. Operation
heartbeats are high priority packets (so they overtake regular packets) and are processed by an
isolated thread in the invocation monitor. If there is any deviation in the frequency of receiving
these packets, it may be due to the problems such as network latencies.

The following shows an example of the output where an operation heartbeat has not been received
for 37 seconds:

20-7-2019 11:12:55 OperationHeartbeats[
 member[10.212.1.119]:5701[
 deviation(%)=146.6666717529297
 noHeartbeat(ms)=37,000
 lastHeartbeat(ms)=1,500,538,375,603
 lastHeartbeat(date-time)=20-7-2017 11:12:55
 now(ms)=1,500,538,338,603
 now(date-time)=20-7-2017 11:12:18]]]

The OperationHeartbeats plugin is enabled by default since it has very little overhead and only
prints to the diagnostics file if the maximum deviation percentage (explained below) is exceeded.

You can control the OperationHeartbeats plugin using the following properties:

• hazelcast.diagnostics.operation-heartbeat.seconds: The frequency this plugin is writing the
collected information to the disk. It is configured to be 10 seconds by default. 0 disables the
plugin.

• hazelcast.diagnostics.operation-heartbeat.max-deviation-percentage: The maximum allowed
deviation percentage. Its default value is 33. For example, with a default 60 call timeout and
operation heartbeat interval being 15 seconds, the maximum deviation with a deviation-
percentage of 33, is 5 seconds. So there is no problem if a packet is arrived after 19 seconds, but
if it arrives after 21 seconds, then the plugin renders.

MemberHeartbeats

This plugin looks a lot like the OperationHeartbeats plugin, but instead of relying on operation
heartbeats to determine the deviation, it relies on member/member cluster heartbeats. Every
member sends a heartbeat to other members periodically (by default every 5 seconds).

Just like the OperationHeartbeats, the MemberHeartbeats plugin can be used to detect if there are
networking problems long before they actually lead to problems such as split-brain syndromes.

587

The following shows an example of the output where no member/member heartbeat has been
received for 9 seconds:

20-7-2019 19:32:22 MemberHeartbeats[
 member[10.212.1.119]:5701[
 deviation(%)=80.0
 noHeartbeat(ms)=9,000
 lastHeartbeat(ms)=1,500,568,333,645
 lastHeartbeat(date-time)=20-7-2017 19:32:13
 now(ms)=1,500,568,342,645
 now(date-time)=20-7-2017 19:32:22]]

The MemberHeartbeats plugin is enabled by default since it has very little overhead and only prints
to the diagnostics file if the maximum deviation percentage (explained below) is exceeded.

You can control the MemberHeartbeats plugin using the following properties:

• hazelcast.diagnostics.member-heartbeat.seconds: The frequency this plugin is writing the
collected information to the disk. It is configured to be 10 seconds by default. 0 disables the
plugin.

• hazelcast.diagnostics.member-heartbeat.max-deviation-percentage: The maximum allowed
deviation percentage. Its default value is 100. For example, if the interval of member/member
heartbeats is 5 seconds, a 100% deviation is fine with heartbeats arriving up to 5 seconds after
they are expected. So a heartbeat arriving after 9 seconds is not rendered, but a heartbeat
received after 11 seconds is rendered.

OperationThreadSamples

This plugin samples the operation threads and checks the running operations/tasks. Hazelcast has
the slow operation detector which is useful for very slow operations. But it may not be efficient for
high volumes of not too slow operations. Using the OperationThreadSamples plugin it is more clear
to see which operations are actually running.

You can control the OperationThreadSamples plugin using the following properties:

• hazelcast.diagnostics.operationthreadsamples.period.seconds: The frequency this plugin is
writing the collected information to the disk. An efficient value for production would be 30, 60
or more seconds. 0, which is the default value, disables the plugin.

• hazelcast.diagnostics.operationthreadsamples.sampler.period.millis: The period in
milliseconds between taking samples. The lower the value, the higher the overhead but also the
higher the precision. Its default value is 100 ms.

• hazelcast.diagnostics.operationthreadsamples.includeName: Specifies whether the data
structures' name pointed to by the operation (if available) should be included in the name of the
samples. Its default value is false.

The following shows an example of the output when the property
hazelcast.diagnostics.operationthreadsamples.includeName is false:

588

28-08-2019 07:40:07 1535442007330 OperationThreadSamples[
 Partition[
 com.hazelcast.map.impl.operation.MapSizeOperation=304623 85.6927%
 com.hazelcast.map.impl.operation.PutOperation=33061 9.300304%
 com.hazelcast.map.impl.operation.GetOperation=17799 5.0069904%]
 Generic[

com.hazelcast.client.impl.ClientEngineImpl$PriorityPartitionSpecificRunnable=2308
35.738617%
 com.hazelcast.nio.Packet=1767 27.361412%
 com.hazelcast.internal.cluster.impl.operations.JoinRequestOp=821 12.712914%

com.hazelcast.spi.impl.operationservice.impl.operations.PartitionIteratingOperation=27
8 4.3047385%
 com.hazelcast.internal.cluster.impl.operations.HeartbeatOp=93 1.4400743%
 com.hazelcast.internal.cluster.impl.operations.OnJoinOp=89 1.3781357%
 com.hazelcast.internal.cluster.impl.operations.WhoisMasterOp=75 1.1613503%
 com.hazelcast.client.impl.operations.ClientReAuthOperation=33 0.51099414%]]

As can be seen above, the MapSizeOperations run on the operation threads most of the time.

WanDiagnostics

The WAN diagnostics plugin provides information about the WAN replication.

It is disabled by default and can be configured using the following property:

• hazelcast.diagnostics.wan.period.seconds: The frequency this plugin is writing the collected
information to the disk. 0 disables the plugin.

The following shows an example of the output:

10-11-2019 14:11:32 1510319492497 WanBatchSenderLatency[
 targetClusterName[
 [127.0.0.1]:5801[
 count=1
 totalTime(us)=2,010,567
 avg(us)=2,010,567
 max(us)=2,010,567
 latency-distribution[
 1638400..3276799us=1]]
 [127.0.0.1]:5802[
 count=1
 totalTime(us)=1,021,867
 avg(us)=1,021,867
 max(us)=1,021,867
 latency-distribution[
 819200..1638399us=1]]]]

589

21.8. Health Check and Monitoring
Hazelcast provides the HTTP-based Health Check endpoint, Health Check script and Health
Monitoring utility.

To be able to benefit from the Health Check endpoint and script, you must enable the Health Check
using either one of the following configuration options:

Using the network configuration element:

XML

<hazelcast>
 ...
 <network>
 <rest-api enabled="true">
 <endpoint-group name=“HEALTHCHECK” enabled=“true”/>
 </rest-api>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 rest-api:
 enabled: true
 endpoint-groups:
 HEALTH_CHECK:
 enabled: true

Using the advanced-network configuration element:

XML

<hazelcast>
 ...
 <advanced-network>
 <rest-server-socket-endpoint-config>
 <endpoint-groups>
 <endpoint-group name=“HEALTHCHECK” enabled=“true”/>
 </endpoint-groups>
 </rest-server-socket-endpoint-config>
 </advanced-network>
 ...
</hazelcast>

590

YAML

hazelcast:
 advanced-network:
 rest-server-socket-endpoint-config:
 endpoint-groups:
 HEALTCH_CHECK:
 enabled: true

21.8.1. Health Check

This is Hazelcast’s HTTP based health check implementation which provides basic information
about your cluster and member (on which it is launched).

First, you need to enable the health check as explained in the introduction of this section above.

Now you retrieve information about your cluster’s health status (member state, cluster state,
cluster size, etc.) by launching http://<your member's host IP>:5701/hazelcast/health on your
preferred browser.

An example output is given below:

{
 "nodeState": "ACTIVE",
 "clusterState": "ACTIVE",
 "clusterSafe": true,
 "migrationQueueSize": 0,
 "clusterSize": 3
}

See the Managing Cluster and Member States section to learn more about each state of a Hazelcast
cluster and member.

21.8.2. Using the healthcheck.sh Script

The healthcheck.sh script comes with the Hazelcast package. Internally, it uses the HTTP-based
Health Check endpoint. You will need to enable the endpoint by using the advanced-network or the
network configuration element. See the Health Check and Monitoring section.

You can use the script to check health parameters in the following manner:

$./healthcheck.sh <parameters>

The following parameters can be used:

591

Parameter Default Value Description

-o or --operation get-state Health check operation. It can be all, node-state,
cluster-state, cluster-safe, migration-queue-size and
cluster-size.

-a or --address 127.0.0.1 Defines the IP address of a cluster member. If you
want to manage your cluster remotely, you should use
this parameter to provide the IP address of a member
to this script.

-p or --port 5701 Defines on which port Hazelcast is running on the
local or remote machine.

-h or --help no argument
expected

Lists the parameter descriptions along with a usage
example.

-d or --debug no argument
expected

Prints error output.

--https no argument
expected

Uses HTTPS protocol for REST calls.

--cacert set of well-known CA
certificates

Defines trusted PEM-encoded certificate file path. It’s
used to verify member certificates.

--cert None Defines PEM-encoded client certificate file path. Only
needed when client certificate authentication is used.

--key None Defines PEM-encoded client private key file path.
Only needed when client certificate authentication is
used.

--insecure no argument
expected

Disables member certificate verification.

Example 1: Checking Member State of a Healthy Cluster:

Assuming the member is deployed under the address 127.0.0.1:5701 and it is in the healthy state,
the following output is expected:

$./healthcheck.sh -a 127.0.0.1 -p 5701 -o node-state
ACTIVE

Example 2: Checking Safety of a Non-Existing Cluster:

Assuming there is no member running under the address 127.0.0.1:5701, the following output is
expected:

592

$./healthcheck.sh -a 127.0.0.1 -p 5701 -o cluster-safe
Error while checking health of hazelcast cluster on ip 127.0.0.1 on port 5701.
Please check that cluster is running and that health check is enabled in REST API
configuration.

21.8.3. Health Monitor

Health monitor periodically prints logs in your console to provide information about your
member’s state. By default, it is enabled when you start your cluster.

You can set the interval of health monitoring using the hazelcast.health.monitoring.delay.seconds
system property. Its default value is 20 seconds.

The system property hazelcast.health.monitoring.level is used to configure the monitoring’s log
level. If it is set to OFF, the monitoring is disabled. If it is set to NOISY, monitoring logs are always
printed for the defined intervals. When it is SILENT, which is the default value, monitoring logs are
printed only when the values exceed some predefined thresholds. These thresholds are related to
memory and CPU percentages, and can be configured using the
hazelcast.health.monitoring.threshold.memory.percentage and
hazelcast.health.monitoring.threshold.cpu.percentage system properties, whose default values are
both 70.

The following is an example monitoring output

593

Sep 08, 2017 5:02:28 PM com.hazelcast.internal.diagnostics.HealthMonitor

INFO: [192.168.2.44]:5701 [host-name] [3.9] processors=4, physical.memory.total=16.0G,
physical.memory.free=5.5G, swap.space.total=0, swap.space.free=0, heap.memory.used
=102.4M,

heap.memory.free=249.1M, heap.memory.total=351.5M, heap.memory.max=3.6G, heap.memory
.used/total=29.14%, heap.memory.used/max=2.81%, minor.gc.count=4, minor.gc.time=68ms,
major.gc.count=1,

major.gc.time=41ms, load.process=0.44%, load.system=1.00%, load.systemAverage=315.48%,
thread.count=97, thread.peakCount=98, cluster.timeDiff=0, event.q.size=0, executor.q
.async.size=0,

executor.q.client.size=0, executor.q.query.size=0, executor.q.scheduled.size=0,
executor.q.io.size=0, executor.q.system.size=0, executor.q.operations.size=0,

executor.q.priorityOperation.size=0, operations.completed.count=226, executor.q
.mapLoad.size=0, executor.q.mapLoadAllKeys.size=0, executor.q.cluster.size=0,
executor.q.response.size=0,

operations.running.count=0, operations.pending.invocations.percentage=0.00%,
operations.pending.invocations.count=0, proxy.count=0, clientEndpoint.count=1,

connection.active.count=2, client.connection.count=1, connection.count=1

See the Configuring with System Properties section to learn how to set system
properties.

21.8.4. Using Health Check on F5 BIG-IP LTM

The F5® BIG-IP® Local Traffic Manager™ (LTM) can be used as a load balancer for Hazelcast
cluster members. This section describes how you can configure a health monitor to check the
Hazelcast member states.

Monitor Types

Following types of monitors can be used to track Hazelcast cluster members:

• HTTP Monitor: A custom HTTP monitor enables you to send a command to Hazelcast’s Health
Check API using HTTP requests. This is a good choice if SSL/TLS is not enabled in your cluster.

• HTTPS Monitor: A custom HTTPS monitor enables you to verify the health of Hazelcast cluster
members by sending a command to Hazelcast’s Health Check API using Secure Socket Layer
(SSL) security. This is a good choice if SSL/TLS is enabled in your cluster.

• TCP_HALF_OPEN Monitor: A TCP_HALF_OPEN monitor is a very basic monitor that only
checks that the TCP port used by Hazelcast is open and responding to connection requests. It
does not interact with the Hazelcast Health Check API. The TCP_HALF_OPEN monitor can be
used with or without SSL/TLS.

594

Configuration

After signing in to the BIG-IP LTM User Interface, follow F5’s ^instructions to create a new monitor.
Next, apply the following configuration according to your monitor type.

HTTP/HTTPS Monitors

Please note that you should enable the Hazelcast health check for HTTP/HTTPS
monitors to run. You will need to enable the endpoint by using the advanced-
network or the network configuration element. See the Health Check and Monitoring
section.

Using a GET request:

• Set the “Send String” as follows:

GET /hazelcast/health HTTP/1.1\r\n\nHost: [HOST-ADDRESS-OF-HAZELCAST-MEMBER] \r
\nConnection: Close\r\n\r\n

• Set the “Receive String” as follows:

{"nodeState":"ACTIVE","clusterState":"ACTIVE","clusterSafe":true,"migrationQueueSiz
e":0,"clusterSize":([^\s]+)}

The BIG-IP LTM monitors accept regular expressions in these strings allowing you to configure
them as needed. The example provided above remains green even if the cluster size changes.

Using a HEAD request:

• Set the “Send String” as follows:

HEAD /hazelcast/health HTTP/1.1\r\n\nHost: [HOST-ADDRESS-OF-HAZELCAST-MEMBER] \r
\nConnection: Close\r\n\r\n

• Set the “Receive String” as follows:

200 OK

As you can see, the HEAD request only checks for a 200 OK response. A Hazelcast cluster member
sends this status code when it is alive and running without an issue. This provides a very basic
health check. For increased flexibility, we recommend using the GET request API.

TCP_HALF_OPEN Monitors

• Set the "Type" as TCP Half Open.

595

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm-monitors-reference-11-6-0/3.html#unique_859105660

• Optionally, set the "Alias Service Port" as the port of Hazelcast cluster member if you want to
specify the port in the monitor.

21.9. Management Center
Hazelcast Management Center enables you to monitor and manage your cluster members running
Hazelcast. In addition to monitoring the overall state of your clusters, you can also analyze and
browse your data structures in detail, update map configurations and take thread dumps from
members. You can run scripts (JavaScript, Groovy, etc.) and commands on your members with its
scripting and console modules.

See the Hazelcast Management Center Documentation for its usage details.

21.9.1. Toggle Scripting Support

The support for script execution is disabled by default. The reason is security. Script engines allow
to access the underlying system on the members (files and other resources). Scripts access the
system, on which the member runs, with permissions of the running user.

Scripting can be allowed or prevented by specifying the scripting-enabled attribute of the
management-center element within the Hazelcast member configuration file, as shown below:

XML

<hazelcast>
 ...
 <management-center scripting-enabled="false" />
 ...
</hazelcast>

YAML

hazelcast:
 management-center:
 scripting-enabled: false

Note that the JSR 223 API is used in Hazelcast IMDG to support scripting.

21.9.2. Limiting Source Addresses

It’s possible to restrict the source IP addresses from which Management Center operations are
allowed. By default all source connections are allowed.

Defining these source addresses is possible through the trusted-interfaces configuration element.
The wildcard (*) and ranges can be used. See the following example:

596

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html
https://jcp.org/en/jsr/detail?id=223

XML

<hazelcast>
 ...
 <management-center>
 <trusted-interfaces>
 <interface>192.168.1.*</interface>
 </trusted-interfaces>
 </management-center>
 ...
</hazelcast>

YAML

hazelcast:
 management-center:
 trusted-interfaces:
 - 192.168.1.*

21.9.3. Clustered JMX and REST via Management Center

Hazelcast IMDG Enterprise

See the Hazelcast Management Center Documentation for information on Clustered JMX and
Clustered REST (via Management Center) features.

21.10. License Information
License information is available through the following Hazelcast APIs.

21.10.1. JMX

The MBean HazelcastInstance.LicenseInfo holds all the relative license details and can be accessed
through Hazelcast’s JMX port (if enabled). The following parameters represent these details:

• maxNodeCountAllowed: Maximum members allowed to form a cluster under the current license.

• expiryDate: Expiration date of the current license.

• typeCode: Type code of the current license.

• type: Type of the current license.

• ownerEmail: Email of the current license’s owner.

• companyName: Company name on the current license.

Following is the list of license types and typeCodes:

597

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html

MANAGEMENT_CENTER(1, "Management Center"),
ENTERPRISE(0, "Enterprise"),
ENTERPRISE_SECURITY_ONLY(2, "Enterprise only with security"),
ENTERPRISE_HD(3, "Enterprise HD"),
CUSTOM(4, "Custom");

21.10.2. REST

You can access the license details by issuing a GET request through the REST API (if enabled; see the
Using the REST Endpoint Groups section) on the /license resource, as shown below.

curl -v http://localhost:5701/hazelcast/rest/license

Its output is similar to the following:

* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 5701 (#0)
> GET /hazelcast/rest/license HTTP/1.1
> Host: localhost:5701
> User-Agent: curl/7.58.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Content-Length: 165
<
{"licenseInfo":{"expiryDate":4090168799999,"maxNodeCount":99,"type":3,"companyName":nu
ll,"ownerEmail":null,"keyHash":"OsLh4O6vqDuKEq8lOANQuuAaRnmDfJfRPrFSEhA7T3Y="}}

To update the license of a running cluster, you can issue a POST request through the REST API (if
enabled; see the Using the REST Endpoint Groups section) on the /license as shown below:

curl --data "${CLUSTERNAME}&${PASSWORD}&${LICENSE}" http
://localhost:5001/hazelcast/rest/license

The request parameters must be properly URL-encoded as described in the REST
Client section.

The above command updates the license on all running Hazelcast members of the cluster. If
successful, the response looks as follows:

598

* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to 127.0.0.1 (127.0.0.1) port 5001 (#0)
> POST /hazelcast/rest/license HTTP/1.1
> Host: 127.0.0.1:5001
> User-Agent: curl/7.54.0
> Accept: */*
> Content-Length: 164
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 164 out of 164 bytes
< HTTP/1.1 200 OK
< Content-Type: application/javascript
< Content-Length: 364
<
* Connection #0 to host 127.0.0.1 left intact
{"status":"success","licenseInfo":{"expiryDate":1560380399161,"maxNodeCount":10,
"type":-1,"companyName":"ExampleCompany","ownerEmail":"info@example.com",
"keyHash":"ml/u6waTNQ+T4EWxnDRykJpwBmaV9uj+skZzv0SzDhs="},
"message":"License updated at run time - please make sure to update the license
in the persistent configuration to avoid losing the changes on restart."}

As the message in the above example indicates, the license is updated only at runtime. The
persistent configuration of each member needs to be updated manually to ensure that the license
change is not lost on restart. The same message is logged as a warning in each member’s log.

It is only possible to update to a license that expires at the same time or after the current license.
The new license must allow the exact same list of features and the same number of members.

If, for any reason, updating the license fails on some members (member does not respond, license is
not compatible, etc.), the whole operation fails, leaving the cluster in a potentially inconsistent state
(some members have been switched to the new license while some have not). It is up to you to
resolve this situation manually.

21.10.3. Logs

Besides the above approaches (JMX and REST) to access the license details, Hazelcast also starts to
log a license information banner into the log files when the license expiration is approaching.

During the last two months prior to the expiration, this license information banner is logged daily,
as a reminder to renew your license to avoid any interruptions. Once the expiration is due to a
month, the frequency of logging this banner becomes hourly (instead of daily). Lastly, when the
expiration is due in a week, this banner is printed every 30 minutes.

 Similar alerts are also present on the Hazelcast Management Center.

The banner has the following format:

599

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ WARNING @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
HAZELCAST LICENSE WILL EXPIRE IN 29 DAYS.
Your Hazelcast cluster will stop working after this time.

Your license holder is customer@example-company.com, you should have them contact
our license renewal department, urgently on info@hazelcast.com
or call us on +1 (650) 521-5453

Please quote license id CUSTOM_TEST_KEY

@@@

Please pay attention to the license warnings to prevent any possible interruptions
in the operation of your Hazelcast applications.

21.11. Instance Tracking
Instance tracking is a feature which, when enabled, writes a file on the instance startup at the
configured location. The file contains metadata about the instance, such as version, product name
and process ID. This file can then later be used by other programs to detect the kinds of Hazelcast
instances that have been running on a particular machine by inspecting the file contents. This
feature supports both IMDG Open Source and Enterprise members and clients as well as Hazelcast
Jet, and is disabled by default. Failing to write the file only generates a warning, and the instance is
allowed to start.

The name and content of the file are configurable and may contain placeholders. The placeholders
used for instance tracking have a prefix so that they can be distinguished from the other ones like
XML placeholders. We use the same style as the EncryptionReplacer by adding a "namespace" to the
placeholder prefix; for example, $HZ_INSTANCE_TRACKING{start_timestamp} (the namespace here
being HZ_INSTANCE_TRACKING).

In addition to the above, the Hazelcast instance overwrites any existing file in the configured
location. To prevent this, you can configure the file location using the placeholders in the same way
they can be used when defining the file contents. For example, if the file name is configured as
Hazelcast-$HZ_INSTANCE_TRACKING{pid}-$HZ_INSTANCE_TRACKING{start_timestamp}.process, it contains
the process ID and the creation time, making it unique every time the instance is started. The
created file is not deleted on member shutdown. As such, it leaves a trace of instances started on a
particular machine. The file creation process also is fail-safe meaning that the instance will proceed
with starting even though it is unable to write the tracking file and the instance will only log a
warning.

21.11.1. Configuring Instance Tracking

Here is an example of programmatic member-side Java configuration:

600

Config config = new Config();
config.getInstanceTrackingConfig()
 .setEnabled(true)
 .setFileName("/tmp/hz-tracking.txt")
 .setFormatPattern("
$HZ_INSTANCE_TRACKING{product}:$HZ_INSTANCE_TRACKING{version}");

The equivalent declarative configuration is as follows:

XML

<hazelcast xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-4.1.xsd">

 <instance-tracking enabled="true">
 <file-name>/tmp/hz-tracking.txt</file-name>
 <format-pattern>
$HZ_INSTANCE_TRACKING{product}:$HZ_INSTANCE_TRACKING{version}</format-pattern>
 </instance-tracking>

</hazelcast>

YAML

hazelcast:
 instance-tracking:
 enabled: true
 file-name: /tmp/hz-tracking.txt
 format-pattern: $HZ_INSTANCE_TRACKING{product}:$HZ_INSTANCE_TRACKING{version}

You can use this configuration to enable the instance tracking feature, specify the file name and the
pattern for the file contents. By default, the feature is disabled, the file name is Hazelcast.process in
the OS temporary directory as returned by System.getProperty("java.io.tmpdir") and the file
contents are JSON-formatted key-value pairs of all available metadata.

The client configuration is analogous and only differs in the name of the outer configuration block
or configuration instance containing the instance tracking configuration.

Here is an example when running a client instance:

{"product":"Hazelcast", "version":"4.1.7", "pid":27746, "mode":"client",
"start_timestamp":1595851430741, "licensed":0}

Here is an example when running a member instance in the "server" mode:

601

{"product":"Hazelcast", "version":"4.1.7", "pid":27746, "mode":"server",
"start_timestamp":1595851430741, "licensed":1}

And here is an example when running a member instance in the "embedded" mode:

{"product":"Hazelcast", "version":"4.1.7", "pid":27746, "mode":"embedded",
"start_timestamp":1595851430741, "licensed":1}

You can specify a custom format by using a predefined set of available metadata keys an example
of which is shown below:

String format = "mode: $HZ_INSTANCE_TRACKING{mode}\n"
 + "product: $HZ_INSTANCE_TRACKING{product}\n"
 + "licensed: $HZ_INSTANCE_TRACKING{licensed}\n"
 + "missing: $HZ_INSTANCE_TRACKING{missing}\n"
 + "broken: $HZ_INSTANCE_TRACKING{broken ";

This should produce a file with the following content:

mode: embedded
product: Hazelcast
licensed: 0
missing: $HZ_INSTANCE_TRACKING{missing}
broken: $HZ_INSTANCE_TRACKING{broken

As you can see, once we encounter a broken placeholder, all subsequent placeholders are ignored.
On the other hand, missing placeholders are skipped and subsequent placeholders are resolved.

The currently valid metadata placeholders and their possible values are as follows:

• product: Instance product name, e.g., "Hazelcast" or "Hazelcast Enterprise".

• version: Instance version.

• mode: Instance mode, e.g., "server", "embedded" or "client"

• start_timestamp: the timestamp of when the instance was started as the difference, measured in
milliseconds, between the current time and midnight, January 1, 1970 UTC.

• licensed: Specifies whether the instance is using a license or not. The value 0 signifies that there
is no license set and the value 1 signifies that a license is in use.

• pid: Attempts to get the process ID value. The algorithm does not guarantee to get the process ID
on all JVMs and operating systems so please test before use. In case we are unable to get the PID,
the value is -1.

The possible values for the product placeholder: Hazelcast, Hazelcast Enterprise, Hazelcast Client,
Hazelcast Client Enterprise, Hazelcast Jet, Hazelcast Jet Enterprise.

602

The possible values for the mode placeholder:

• server: This value is used when the instance was started using the start.sh or start.bat scripts.

• client: This instance is a Hazelcast client instance.

• embedded: This instance is embedded in another Java program.

22. Security
Hazelcast IMDG Enterprise Feature

This chapter describes the security features of Hazelcast. These features allow you to perform
security activities, such as intercepting socket connections and remote operations executed by the
clients, encrypting the communications between the members at socket level and using SSL socket
communication. All of the Security features explained in this chapter are the features of Hazelcast
IMDG Enterprise edition.

22.1. Enabling JAAS Security
With Hazelcast’s extensible, JAAS based security feature, you can:

• authenticate both cluster members and clients

• perform access control checks on client operations.

Access control can be done according to endpoint principal and/or endpoint address.

You can enable security declaratively or programmatically, as shown below.

XML

<hazelcast>
 ...
 <security enabled="true">
 ...
 </security>
 ...
</hazelcast>

YAML

hazelcast:
 security:
 enabled: true

603

Java

Config cfg = new Config();
SecurityConfig securityCfg = cfg.getSecurityConfig();
securityCfg.setEnabled(true);

Also, see the Setting License Key section for information on how to set your Hazelcast IMDG
Enterprise license.

22.2. Socket Interceptor
Hazelcast allows you to intercept socket connections before a member joins a cluster or a client
connects to a member of a cluster. This allow you to add custom hooks to join and perform
connection procedures (like identity checking using a custom network authentication protocol,
etc.).

To use the socket interceptor, implement com.hazelcast.nio.MemberSocketInterceptor for members
and com.hazelcast.nio.SocketInterceptor for clients.

The following is an example socket interceptor implementation for the member side.

604

public static class MySocketInterceptor implements MemberSocketInterceptor {

 private String memberId;

 public MySocketInterceptor() {
 }

 @Override
 public void onAccept(Socket socket) throws IOException {
 socket.getOutputStream().write(memberId.getBytes());
 byte[] bytes = new byte[1024];
 int len = socket.getInputStream().read(bytes);
 String otherMemberId = new String(bytes, 0, len);
 if (!otherMemberId.equals("secondMember")) {
 throw new RuntimeException("Not a known member!!!");
 }
 }

 @Override
 public void init(Properties properties) {
 memberId = properties.getProperty("member-id");
 }

 @Override
 public void onConnect(Socket socket) throws IOException {
 socket.getOutputStream().write(memberId.getBytes());
 byte[] bytes = new byte[1024];
 int len = socket.getInputStream().read(bytes);
 String otherMemberId = new String(bytes, 0, len);
 if (!otherMemberId.equals("firstMember")) {
 throw new RuntimeException("Not a known member!!!");
 }
 }

You can declaratively configure this socket interceptor as follows:

605

XML

<hazelcast>
 ...
 <network>
 <socket-interceptor enabled="true">
 <class-name>com.hazelcast.examples.MySocketInterceptor</class-name>
 <properties>
 <property name="property1">value1</property>
 <property name="property2">value2</property>
 <property name=foo>bar</property>
 </properties>
 </socket-interceptor>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 socket-interceptor:
 enabled: true
 class-name: com.hazelcast.examples.MySocketInterceptor
 properties:
 property1: value1
 property2: value2
 foo: bar

The following is an example configuration of the above socket interceptor for the client side.

606

public static void main(String[] args) {

 Config config = createConfig();
 Hazelcast.newHazelcastInstance(config);

 ClientConfig clientConfig = createClientConfig();
 HazelcastClient.newHazelcastClient(clientConfig);
}

private static Config createConfig() {
 Config config = new Config();
 //config.setLicenseKey(ENTERPRISE_LICENSE_KEY);
 config.setProperty("hazelcast.wait.seconds.before.join", "0");

 SocketInterceptorConfig interceptorConfig = new SocketInterceptorConfig();
 interceptorConfig.setEnabled(true).setClassName(MySocketInterceptor.class.getName
());
 config.getNetworkConfig().setSocketInterceptorConfig(interceptorConfig);

 return config;
}

private static ClientConfig createClientConfig() {
 ClientConfig clientConfig = new ClientConfig();
 //clientConfig.setLicenseKey(ENTERPRISE_LICENSE_KEY);
 SocketInterceptorConfig interceptorConfig = new SocketInterceptorConfig();
 interceptorConfig.setEnabled(true).setClassName(MySocketInterceptor.class.getName
());
 clientConfig.getNetworkConfig().setSocketInterceptorConfig(interceptorConfig);
 return clientConfig;
}

22.3. Security Interceptor
Hazelcast allows you to intercept every remote operation executed by the client. This lets you add a
very flexible custom security logic. To do this, implement
com.hazelcast.security.SecurityInterceptor.

607

private static class MySecurityInterceptor implements SecurityInterceptor {

 @Override
 public void before(Credentials credentials, String objectType, String objectName,
String methodName,
 Parameters parameters) throws AccessControlException {
 if (objectName.equals(DENIED_MAP_NAME)) {
 throw new RuntimeException("Denied Map!!!");
 }
 if (methodName.equals(DENIED_METHOD)) {
 throw new RuntimeException("Denied Method!!!");
 }
 Object firstParam = parameters.get(0);
 Object secondParam = parameters.get(1);
 if (firstParam.equals(DENIED_KEY)) {
 throw new RuntimeException("Denied Key!!!");
 }
 if (secondParam.equals(DENIED_VALUE)) {
 throw new RuntimeException("Denied Value!!!");
 }
 }

 @Override
 public void after(Credentials credentials, String objectType, String objectName,
String methodName,
 Parameters parameters) {
 System.err.println("qwe c: " + credentials + "\t\tt: " + objectType + "\t\tn:
" + objectName
 + "\t\tm: " + methodName + "\t\tp1: " + parameters.get(0) + "\t\tp2: "
+ parameters.get(1));
 }

The before method is called before processing the request on the remote server. The after method
is called after the processing. Exceptions thrown while executing the before method are propagated
to the client, but exceptions thrown while executing the after method are suppressed.

22.4. Encryption
Hazelcast offers features which allow to reach a required privacy on communication level by
enabling encryption. Encryption is based on Java Cryptography Architecture (JCA).

There are two different encryption features:

1. TLS protocol

◦ transport level encryption

◦ supported by members and clients

◦ TCP-only, i.e., multicast join messages are not encrypted

608

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

More details in the TLS/SSL section

2. Symmetric encryption for Hazelcast member protocol

◦ only supported by the members; communication with clients is not encrypted

◦ multicast join messages are encrypted, too

The preferred and recommended feature is the TLS protocol as it’s a standard way how to protect
communication on transport level: Both TLS and symmetric encryption are for encrypting the
network traffic. TLS is already superior to symmetric encryption on more than one aspects as seen
above. Symmetric encryption is only supported in member-member communication while TLS can
encrypt client communications as well. When there is no specific reason to use symmetric
encryption, we recommend you to use the TLS protocol.

Symmetric encryption for Hazelcast member protocol can be configured with cipher algorithms
implemented by security providers and accessed through Java Cryptography Architecture. Check
documentation of your Java version to learn about supported algorithm names. The following are
some examples:

• AES

• PBEWithMD5AndDES

• DES/ECB/PKCS5Padding

• Blowfish

Hazelcast uses MD5 message-digest algorithm as the cryptographic hash function. You can also use
the salting process by giving a salt and password which are then concatenated and processed with
MD5, and the resulting output is stored with the salt.

In symmetric encryption, each member uses the same key, so the key is shared. Here is an example
configuration for symmetric encryption.

XML

<hazelcast>
 ...
 <network>
 <symmetric-encryption enabled="true">
 <algorithm>AES</algorithm>
 <salt>thesalt</salt>
 <password>thepass</password>
 <iteration-count>175</iteration-count>
 </symmetric-encryption>
 </network>
 ...
</hazelcast>

609

YAML

hazelcast:
 network:
 symmetric-encryption:
 enabled: true
 algorithm: AES
 salt: thesalt
 password: thepass
 iteration-count: 175

You set the encryption algorithm, the salt, password and the iteration count to be used for
generating the secret key. You also need to set the enabled attribute to true. Note that all members
should have the same encryption configuration.

Since symmetric encryption relies on JCA, you can additionally benefit from the algorithms
provided by the Bouncy Castle Crypto APIs. For this, you need to set the
hazelcast.security.bouncy.enabled property to true.

22.5. TLS/SSL

 You cannot use TLS/SSL when Hazelcast Encryption is enabled.

You can use the SSL (Secure Sockets Layer) protocol to establish an encrypted communication
across your Hazelcast cluster with key stores and trust stores. Note that, if you are developing
applications using Java 8, you will be using its successor TLS (Transport Layer Security).

It is NOT recommended to reuse the key stores and trust stores for external
applications.

22.5.1. TLS/SSL for Hazelcast Members

Hazelcast allows you to encrypt socket level communication between Hazelcast members and
between Hazelcast clients and members, for end to end encryption. To use it, you need to
implement com.hazelcast.nio.ssl.SSLContextFactory and configure the SSL section in the network
configuration.

The following is the implementation code snippet:

610

public class MySSLContextFactory implements SSLContextFactory {
 public void init(Properties properties) throws Exception {
 }

 public SSLContext getSSLContext() {
 ...
 SSLContext sslCtx = SSLContext.getInstance("the protocol to be used");
 return sslCtx;
 }
}

The following is the base declarative configuration for the implemented SSLContextFactory:

XML

<hazelcast>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>
 com.hazelcast.examples.MySSLContextFactory
 </factory-class-name>
 <properties>
 <property name="foo">bar</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.examples.MySSLContextFactory
 properties:
 foo: bar

Hazelcast provides a default SSLContextFactory, com.hazelcast.nio.ssl.BasicSSLContextFactory,
which uses the configured keystore to initialize SSLContext; see the following example configuration
for TLS/SSL.

611

XML

<hazelcast>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>
 com.hazelcast.nio.ssl.BasicSSLContextFactory
 </factory-class-name>
 <properties>
 <property name="protocol">TLSv1.2</property>
 <property name="mutualAuthentication">REQUIRED</property>
 <property name="keyStore">/opt/hazelcast-keystore.p12</property>
 <property name="keyStorePassword">secret.123</property>
 <property name="keyStoreType">PKCS12</property>
 <property name="trustStore">/opt/hazelcast-truststore.p12</property>
 <property name="trustStorePassword">changeit</property>
 <property name="trustStoreType">PKCS12</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.nio.ssl.BasicSSLContextFactory
 properties:
 protocol: TLSv1.2
 mutualAuthentication: REQUIRED
 keyStore: /opt/hazelcast-keystore.p12
 keyStorePassword: secret.123
 keyStoreType: PKCS12
 trustStore: /opt/hazelcast-truststore.p12
 trustStorePassword: changeit
 trustStoreType: PKCS12

The following are the descriptions of the properties:

• keyStore: Path of your keystore file.

• keyStorePassword: Password to access the key from your keystore file.

• keyManagerAlgorithm: Name of the algorithm based on which the authentication keys are
provided.

• keyStoreType: Type of the keystore. Its default value is JKS. Another commonly used type is the

612

PKCS12. Available keystore/truststore types depend on your Operating system and the Java
runtime.

• trustStore: Path of your truststore file. The file truststore is a keystore file that contains a
collection of certificates trusted by your application.

• trustStorePassword: Password to unlock the truststore file.

• trustManagerAlgorithm: Name of the algorithm based on which the trust managers are provided.

• trustStoreType: Type of the truststore. Its default value is JKS. Another commonly used type is
the PKCS12. Available keystore/truststore types depend on your Operating system and the Java
runtime.

• mutualAuthentication: Mutual authentication configuration. It’s empty by default which means
the client side of connection is not authenticated. Available values are:

◦ REQUIRED - server forces usage of a trusted client certificate

◦ OPTIONAL - server asks for a client certificate, but it doesn’t require it

See the Mutual Authentication section.

• ciphersuites: Comma-separated list of cipher suite names allowed to be used. Its default value
are all supported suites in your Java runtime.

• protocol: Name of the algorithm which is used in your TLS/SSL. Its default value is TLS. Available
values are:

◦ TLS

◦ TLSv1

◦ TLSv1.1

◦ TLSv1.2

◦ TLSv1.3

For the protocol property, we recommend you to provide TLS with its version information,
e.g., TLSv1.2. Note that if you write only TLS, your application chooses the TLS version
according to your Java version.

• validateIdentity: Flag which allows enabling endpoint identity validation. It means, during the
TLS handshake client verifies if the server’s hostname (or IP address) matches the information
in X.509 certificate (Subject Alternative Name extension). Possible values are "true" and "false"
(default).

22.5.2. TLS/SSL for Hazelcast Clients

The TLS configuration in Hazelcast clients is very similar to member configuration.

613

XML

<hazelcast-client>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>
 com.hazelcast.nio.ssl.BasicSSLContextFactory
 </factory-class-name>
 <properties>
 <property name="protocol">TLSv1.2</property>
 <property name="trustStore">/opt/hazelcast-
client.truststore</property>
 <property name="trustStorePassword">changeit</property>
 <property name="trustStoreType">JKS</property>

 <!-- Following properties are only needed when the mutual
authentication is used. -->
 <property name="keyStore">/opt/hazelcast-client.keystore</property>
 <property name="keyStorePassword">clientsSecret</property>
 <property name="keyStoreType">JKS</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 network:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.nio.ssl.BasicSSLContextFactory
 properties:
 protocol: TLSv1.2

 trustStore: /opt/hazelcast-client.truststore
 trustStorePassword: changeit
 trustStoreType: JKS

 # Following properties are only needed when the mutual authentication is used.
 keyStore: /opt/hazelcast-client.keystore
 keyStorePassword: clientsSecret
 keyStoreType: JKS

The same BasicSSLContextFactory properties used for members are available on clients. Clients
don’t need to set mutualAuthentication property as it’s used in configuring the server side of TLS
connections.

614

22.5.3. Mutual Authentication

TLS connections have two sides: the one opening the connection (TLS client) and the one accepting
the connection (TLS server). By default only the TLS server proves its identity by presenting a
certificate to the TLS client. The mutual authentication means that also the TLS clients prove their
identity to the TLS servers.

Hazelcast members can be on both sides of TLS connection - TLS servers and TLS clients. Hazelcast
clients are always on the client side of a TLS connection.

By default Hazelcast members have keyStore used to identify themselves to the clients and other
members. Both Hazelcast members and Hazelcast clients have trustStore used to define which
members they can trust.

When the mutual authentication feature is enabled, Hazelcast clients need to provide keyStore. A
client proves its identity by providing its certificate to the Hazelcast member it’s connecting to. The
member only accepts the connection if the client’s certificate is present in the member’s trustStore.

To enable the mutual authentication, set the mutualAuthentication property value to REQUIRED on the
member side, as shown below:

Config cfg = new Config();
Properties props = new Properties();

props.setProperty("mutualAuthentication", "REQUIRED");
props.setProperty("keyStore", "/opt/hazelcast.keystore");
props.setProperty("keyStorePassword", "123456");
props.setProperty("trustStore", "/opt/hazelcast.truststore");
props.setProperty("trustStorePassword", "123456");

cfg.getNetworkConfig().setSSLConfig(new SSLConfig().setEnabled(true).setProperties
(props));
Hazelcast.newHazelcastInstance(cfg);

And on the client side, you need to set client identity by providing the keystore:

clientSslProps.setProperty("keyStore", "/opt/client.keystore");
clientSslProps.setProperty("keyStorePassword", "123456");

The property mutualAuthentication has the following options:

• REQUIRED: Server asks for client certificate. If the client does not provide a keystore or the
provided keystore is not verified against member’s truststore, the client is not authenticated.

• OPTIONAL: Server asks for client certificate, but client is not required to provide any valid
certificate.

615

When a new client is introduced with a new keystore, the truststore on the
member side should be updated accordingly to include new clients' information to
be able to accept it.

See the below example snippet to see the full configuration on the client side:

ClientConfig config = new ClientConfig();
Properties clientSslProps = new Properties();
clientSslProps.setProperty("keyStore", "/opt/client.keystore");
clientSslProps.setProperty("keyStorePassword", "123456");
clientSslProps.setProperty("trustStore", "/opt/client.truststore");
clientSslProps.setProperty("trustStorePassword", "123456");

config.getNetworkConfig().setSSLConfig(new SSLConfig().setEnabled(true).setProperties
(clientSslProps));
HazelcastClient.newHazelcastClient(config);

If the mutual authentication is not required, the Hazelcast members accept all incoming TLS
connections without verifying if the connecting side is trusted. Therefore it’s recommended to
require the mutual authentication in Hazelcast members configuration.

22.5.4. TLS/SSL Performance Improvements for Java

TLS/SSL can have a significant impact on performance. There are a few ways to increase the
performance.

The first thing that can be done is making sure that AES intrinsics are used. Modern CPUs (2010 or
newer Westmere) have hardware support for AES encryption/decryption and if a Java 8 or newer
JVM is used, the JIT automatically makes use of these AES intrinsics. They can also be explicitly
enabled using -XX:+UseAES -XX:+UseAESIntrinsics, or disabled using -XX:-UseAES -XX:

-UseAESIntrinsics.

A lot of encryption algorithms make use of padding because they encrypt/decrypt in fixed sized
blocks. If there is no enough data for a block, the algorithm relies on random number generation to
pad. Under Linux, the JVM automatically makes use of /dev/random for the generation of random
numbers. /dev/random relies on entropy to be able to generate random numbers. However, if this
entropy is insufficient to keep up with the rate requiring random numbers, it can slow down the
encryption/decryption since /dev/random will block; it could block for minutes waiting for sufficient
entropy . This can be fixed by setting the -Djava.security.egd=file:/dev/./urandom system property.
For a more permanent solution, modify the <JAVA_HOME>/jre/lib/security/java.security file, look
for the securerandom.source=/dev/urandom and change it to securerandom.source=file:/dev/./urandom.
Switching to /dev/urandom could be controversial because /dev/urandom will not block if there is a
shortage of entropy and the returned random values could theoretically be vulnerable to a
cryptographic attack. If this is a concern in your application, use /dev/random instead.

Hazelcast’s Java smart client automatically makes use of extra I/O threads for
encryption/decryption and this have a significant impact on the performance. This can be changed
using the hazelcast.client.io.input.thread.count and hazelcast.client.io.output.thread.count

616

client system properties. By default it is 1 input thread and 1 output thread. If TLS/SSL is enabled, it
defaults to 3 input threads and 3 output threads. Having more client I/O threads than members in
the cluster does not lead to an increased performance. So with a 2-member cluster, 2 in and 2 out
threads give the best performance.

22.6. Integrating OpenSSL / BoringSSL

You cannot integrate OpenSSL into Hazelcast when Hazelcast Encryption is
enabled.

TLS/SSL in Java is normally provided by the JRE. However, the performance overhead can be
significant; even with AES intrinsics enabled. If you are using a x86_64 system (Linux, Mac,
Windows), Hazelcast supports native integration for TLS/SSL which can provide significant
performance improvements. There are two supported native TLS/SSL libraries available through
netty-tcnative libraries:

• OpenSSL

◦ dynamically linked

◦ prerequisites: libapr, openssl packages installed on your system

• BoringSSL - Google managed fork of the OpenSSL

◦ statically linked

◦ easier to get started with

◦ benefits: reduced code footprint, additional features

The native TLS integration can be used on clients and/or members. For best performance, it is
recommended to install on a client and member and configure the appropriate cipher suite(s).

Check the netty-tcnative page for installation details.

If the Java version is less than 11 and OpenSSL capabilities are detected (also the
appropriate Java libraries are included) and if no explicit SSLEngineFactory is set,
Hazelcast IMDG defaults to use OpenSSL.

22.6.1. Netty Libraries

For the native TLS/SSL integration in Java, the Netty library is used.

Make sure the following libraries from the Netty framework are on the classpath:

• netty-handler and its dependencies

• one of tc-native implementations

◦ either BoringSSL: netty-tcnative-boringssl-static-{tcnative_version}.jar

◦ or OpenSSL: netty-tcnative-{tcnative_version}-{os_arch}.jar

617

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/

It is very important that the version of Netty JAR(s) corresponds to a very specific
version of netty-tcnative. In case of doubt, the simplest thing to do is to download
the netty-<version>.tar.bz2 file from the Netty website and check which netty-
tcnative version is used for that Netty release.

22.6.2. Using BoringSSL

The statically linked BoringSSL binaries are included within the netty-tcnative libraries. There is
no need to install additional software on supported systems.

Example Maven dependencies:

<dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-tcnative-boringssl-static</artifactId>
 <version>2.0.12.Final</version>
 </dependency>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-handler</artifactId>
 <version>4.1.27.Final</version>
 </dependency>
</dependencies>

22.6.3. Using OpenSSL

1. Install OpenSSL. Make sure that you are installing 1.0.1 or newer release. See its documentation
at github.com/openssl.

2. Install Apache Portable Runtime (APR) library. See apr.apache.org.

For RHEL: sudo yum -y install apr openssl

For Ubuntu: sudo apt-get -y install libapr1 openssl

For Alpine Linux: apk add --update apr openssl

Example Maven dependencies (for Linux):

618

https://netty.io/downloads.html
https://github.com/openssl/openssl/blob/master/INSTALL.md
https://apr.apache.org/download.cgi

<dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-tcnative</artifactId>
 <version>2.0.12.Final</version>
 <classifier>linux-x86_64</classifier>
 </dependency>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-handler</artifactId>
 <version>4.1.27.Final</version>
 </dependency>
</dependencies>

22.6.4. Configuring Hazelcast for OpenSSL

Configuring OpenSSL in Hazelcast is straight forward. On the client and/or member side, the
following snippet enables TLS/SSL using OpenSSL:

XML

<hazelcast>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>com.hazelcast.nio.ssl.OpenSSLEngineFactory</factory-
class-name>
 <properties>
 <property name="protocol">TLSv1.2</property>
 <property name="trustCertCollectionFile">trusted-certs.pem</property>
 <!-- If the TLS mutual authentication is not used,
 then the key configuration is not needed on the client side. -->
 <property name="keyFile">privkey.pem</property>
 <property name="keyCertChainFile">chain.pem</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

619

YAML

hazelcast:
 network:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.nio.ssl.OpenSSLEngineFactory
 properties:
 protocol: TLSv1.2
 trustCertCollectionFile: trusted-certs.pem

 # If the TLS mutual authentication is not used, following lines (key
configuration) are not needed on the client side.
 keyFile: privkey.pem
 keyCertChainFile: chain.pem

The configuration is similar to a regular TLS/SSL integration. The main differences are the
OpenSSLEngineFactory factory class and the following properties:

• keyFile: Path of your PKCS#8 key file in PEM format.

• keyPassword: Password to access the key file when it’s encrypted.

• keyCertChainFile: Path to an X.509 certificate chain file in PEM format.

• trustCertCollectionFile: Path to an X.509 certificate collection file in PEM format.

• fipsMode: Boolean flag to switch OpenSSL into the FIPS mode. See the FIPS 140-2 section.

The key and certificate related properties take precedence over keyStore and trustStore
configurations. Using keyStores and trustStores together with OpenSSL causes problems on some
Java versions, therefore we recommend to use the OpenSSL native way.

The following are the other supported properties:

• keyStore: Path of your keystore file.

◦ Using the keyStore property is not recommended, use keyFile and keyCertChainFile instead

• keyStorePassword: Password to access the key from your keystore file.

• keyStoreType: Type of the keystore. Its default value is JKS. Another commonly used type is the
PKCS12. Available keystore/truststore types depend on your Operating system and the Java
runtime.

• keyManagerAlgorithm: Name of the algorithm based on which the authentication keys are
provided.

• trustManagerAlgorithm: Name of the algorithm based on which the trust managers are provided.

• trustStore: Path of your truststore file. The file truststore is a keystore file that contains a
collection of certificates trusted by your application. Its type should be JKS.

◦ Using the trustStore property is not recommended, use trustCertCollectionFile instead

• trustStorePassword: Password to unlock the truststore file.

620

• trustStoreType: Type of the truststore. Its default value is JKS. Another commonly used type is
the PKCS12. Available keystore/truststore types depend on your operating system and the Java
runtime.

• ciphersuites: Comma-separated list of cipher suite names allowed to be used.

• protocol: Name of the algorithm which is used in your TLS/SSL. Its default value is TLSv1.2.
Available values are:

◦ TLS

◦ TLSv1

◦ TLSv1.1

◦ TLSv1.2

◦ SSL (insecure!)

◦ SSLv2 (insecure!)

◦ SSLv3 (insecure!)

All of the algorithms listed above support Java 8 and higher versions. For the protocol
property, we recommend you to provide SSL or TLS with its version information, e.g.,
TLSv1.2. Note that if you provide only SSL or TLS as a value for the protocol property, they are
converted to SSLv3 and TLSv1.2, respectively. We strongly recommend to avoid SSL protocols.

• validateIdentity: Flag which allows enabling endpoint identity validation. It means, during the
TLS handshake client verifies if the server’s hostname (or IP address) matches the information
in X.509 certificate (Subject Alternative Name extension). Possible values are "true" and "false"
(default).

22.7. Other TLS related configuration

22.7.1. TLS/SSL for Hazelcast Management Center

In order to use a secured communication between the Hazelcast cluster and Management Center,
you have to configure Management Center as explained in the Connecting Hazelcast members to
Management Center section in the Hazelcast Management Center Reference Manual.

22.7.2. Updating Certificates in the Running Cluster

Hazelcast allows updating TLS certificates on the members without fully stopping the cluster. You
can stop the cluster members one by one and replace the certificates gradually. We can distinguish
two cases based on the fact if the new certificate is already trusted:

1. New certificates are not trusted on the members.

This is usually a case when self-signed certificates are used on the members.

Before we can deploy new member certificates, we have to update the list of trusted certificates
on all members. Complete the following steps on each member (one by one) in the cluster:

◦ Gracefully shutdown the member

621

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#connecting-hazelcast-members-to-management-center
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#connecting-hazelcast-members-to-management-center

◦ Wait for the cluster safe state (rebalance)

◦ Import all new certificates to the member’s truststore, so it contains both old and new ones.

You can use the keytool executable from Java installation to import the new certificates.
Example:

keytool -import -noprompt \
 -keystore member.truststore -storepass s3crEt \
 -alias new-cert-1 -file member-new-cert.crt

◦ Start the member with the updated truststore

◦ Wait for the cluster safe state (rebalance)

After completing the above steps, follow the steps described in the next point (certificates
trusted).

2. New certificates are already trusted on the members

Switch certificate on each member one by one:

◦ Gracefully shutdown the member

◦ Wait for the cluster safe state (rebalance)

◦ Replace the private key and certificate in the member’s keystore

◦ Start the member with the updated keystore

◦ Wait for the cluster safe state (rebalance)

22.7.3. Configuring Cipher Suites

To get the best performance, the correct cipher suites need to be configured. Each cipher suite has
different performance and security characteristics and depending on the hardware and selected
cipher suite, the overhead of TLS can range from dramatic to almost negligible.

The cipher suites are configured using the ciphersuites property as shown below:

622

https://en.wikipedia.org/wiki/Cipher_suite

XML

<hazelcast>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>...</factory-class-name>
 <properties>
 <property name="keyStore">upload/hazelcast.keystore</property>
 <property name="ciphersuites">TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 ssl:
 enabled: true
 factory-class-name: ...
 properties:
 keyStore: upload/hazelcast.keystore
 ciphersuites: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA

The ciphersuites property accepts a comma separated list (spaces, enters, tabs are filtered out) of
cipher suites in the order of preference.

You can configure a member and client with different cipher suites; but there should be at least one
shared cipher suite.

One of the cipher suites that gave very low overhead but still provides solid security is
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. However in our measurements this cipher suite only
performs well using OpenSSL; using the regular Java TLS integration, it performs badly. So keep
that in mind when configuring a client using regular SSL and a member using OpenSSL.

Please check with your security expert to determine which cipher suites are appropriate and run
performance tests to see which ones perform well in your environment.

If you don’t configure the cipher suites, then both client and/or member determine a cipher suite by
themselves during the TLS/SSL handshake. This can lead to suboptimal performance and lower
security than required.

623

22.7.4. Other Ways of Configuring Properties

You can set all the properties presented in this section using the javax.net.ssl prefix, e.g.,
javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword.

Also note that these properties can be specified using the related Java system properties and also
Java’s -D command line option. This is very useful if you require a more flexible configuration, e.g.,
when doing performance tests.

See below examples equivalent to each other:

System.setProperty("javax.net.ssl.trustStore", "/user/home/hazelcast.ts");

Or,

-Djavax.net.ssl.trustStore=/user/home/hazelcast.ts

Another two examples equivalent to each other:

System.setProperty("javax.net.ssl.ciphersuites",
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA");

Or,

-Djavax.net.ssl.ciphersuites=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
,TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA

22.8. Validating Secrets Using Strength Policy
Hazelcast IMDG Enterprise offers a secret validation mechanism including a strength policy. The
term "secret" here refers to the symmetric encryption password, salt and other passwords and keys.

For this validation, Hazelcast IMDG Enterprise comes with the DefaultSecretStrengthPolicy class to
identify all possible weaknesses of secrets and to display a warning in the system logger. Note that,
by default, no matter how weak the secrets are, the cluster members still start after logging this
warning; however, this is configurable (see the Enforcing the Secret Strength Policy section).

The following are the requirements (rules) for the secrets:

• Minimum length of eight characters; and

• Large keyspace use, ensuring the use of at least three of the following:

◦ mixed case

◦ alpha

◦ numerals

624

◦ special characters

◦ no dictionary words

The rules "Minimum length of eight characters" and "no dictionary words" can be configured using
the following system properties:

hazelcast.security.secret.policy.min.length: Set the minimum secret length. The default is 8
characters.

Example:

-Dhazelcast.security.secret.policy.min.length=10

hazelcast.security.dictionary.policy.wordlist.path: Set the path of a wordlist available in the file
system. The default is /usr/share/dict/words.

Example:

-Dhazelcast.security.dictionary.policy.wordlist.path=”/Desktop/myWordList”

22.8.1. Using a Custom Secret Strength Policy

You can implement SecretStrengthPolicy to develop your custom strength policy for a more flexible
or strict security. After you implement it, you can use the following system property to point to your
custom class:

hazelcast.security.secret.strength.default.policy.class: Set the full name of the custom class.

Example:

-Dhazelcast.security.secret.strength.default.policy.class=”com.impl.myStrengthPolicy”

22.8.2. Enforcing the Secret Strength Policy

By default, secret strength policy is NOT enforced. This means, if a weak secret is detected, an
informative warning is shown in the system logger and the members continue to initialize.
However, you can enforce the policy using the following system property so that the members are
not started until the weak secret errors are fixed:

hazelcast.security.secret.strength.policy.enforced: Set to “true” to enforce the secret strength
policy. The default is “false”. To enforce:

-Dhazelcast.security.secret.strength.policy.enforced=true

The following is an example warning when secret strength policy is NOT enforced, i.e., the above

625

system property is set to “false”:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ SECURITY WARNING @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Group password does not meet the current policy and complexity requirements.
*Must not be set to the default.
@@

The following is an example warning when secret strength policy is enforced, i.e., the above system
property is set to “true”:

626

WARNING: [192.168.2.112]:5701 [dev] [4.0-SNAPSHOT]
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ SECURITY WARNING @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Symmetric Encryption Password does not meet the current policy and complexity
requirements.
*Must contain at least 1 number.
*Must contain at least 1 special character.
Group Password does not meet the current policy and complexity requirements.
*Must not be set to the default.
*Must have at least 1 lower and 1 upper case characters.
*Must contain at least 1 number.
*Must contain at least 1 special character.
Symmetric Encryption Salt does not meet the current policy and complexity
requirements.
*Must contain 8 or more characters.
*Must contain at least 1 number.
*Must contain at least 1 special character.
@@
Exception in thread "main" com.hazelcast.security.WeakSecretException: Weak secrets
found in configuration, check output above for more details.
at
com.hazelcast.security.impl.WeakSecretsConfigChecker.evaluateAndReport(WeakSecretsConf
igChecker.java:49)
at
com.hazelcast.instance.EnterpriseNodeExtension.printNodeInfo(EnterpriseNodeExtension.j
ava:197)
at com.hazelcast.instance.Node.<init>(Node.java:194)
at
com.hazelcast.instance.HazelcastInstanceImpl.createNode(HazelcastInstanceImpl.java:163
)
at com.hazelcast.instance.HazelcastInstanceImpl.<init>(HazelcastInstanceImpl.java:130)
at
com.hazelcast.instance.HazelcastInstanceFactory.constructHazelcastInstance(HazelcastIn
stanceFactory.java:195)
at
com.hazelcast.instance.HazelcastInstanceFactory.newHazelcastInstance(HazelcastInstance
Factory.java:174)
at
com.hazelcast.instance.HazelcastInstanceFactory.newHazelcastInstance(HazelcastInstance
Factory.java:124)
at com.hazelcast.core.Hazelcast.newHazelcastInstance(Hazelcast.java:58)

22.9. Security Realms
Hazelcast IMDG 4.0 introduces a new security configuration: security realms. Realms allow
configuring JAAS authentication and/or own identity independently on the module which
consumes this configuration. The realm is a named configuration and other modules just reference
it by name.

627

XML

<security enabled="true">
 <realms>
 <realm name="realm1">
 <authentication>
 <jaas>
 <login-module class-name=
"com.hazelcast.examples.MyRequiredLoginModule" usage="REQUIRED">
 <properties>
 <property name="property">value</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
 <identity>
 <credentials-factory class-name=
"com.hazelcast.examples.MyCredentialsFactory">
 <properties>
 <property name="property">value</property>
 </properties>
 </credentials-factory>
 </identity>
 </realm>
 </realms>
 <member-authentication realm="realm1"/>
 <client-authentication realm="realm1"/>
</security>

YAML

security:
 enabled: true
 realms:
 - name: realm1
 authentication:
 jaas:
 - class-name: com.hazelcast.examples.MyRequiredLoginModule
 usage: REQUIRED
 properties:
 property: value
 identity:
 credentials-factory:
 class-name: com.hazelcast.examples.MyCredentialsFactory
 properties:
 property: value
 member-authentication:
 realm: realm1
 client-authentication:
 realm: realm1

628

22.9.1. Authentication Configuration

There are several types of authentication configuration available in a security realm. The realm
cannot have more than one authentication method specified.

The following are the available authentication types:

• jaas: It allows defining JAAS login module stacks.

• ldap: It verifies PasswordCredentials against an LDAP server.

• kerberos: It verifies the Kerberos token provided in TokenCredentials.

• tls: It verifies that the TLS mutual authentication was used in the incoming connection and the
peer’s certificate chain is available.

JAAS Authentication Type

The <jaas> authentication configuration is the most flexible form of the authentication
configuration, but it requires knowledge of JAAS login modules and related concepts. It allows
using custom login modules and ordering them in a login module stack.

The following is a sample configuration which authenticates against an LDAP server or database as
a fallback:

XML

<realm name="jaasRealm">
 <authentication>
 <jaas>
 <login-module class-name="com.examples.LdapLoginModule" usage="SUFFICIENT
">
 <properties>
 <property name="url">ldap://corp-ldap/</property>
 </properties>
 </login-module>
 <login-module class-name="com.examples.DatabaseLoginModule" usage=
"SUFFICIENT">
 <properties>
 <property name="type">ora18</property>
 <property name="host">corp-db</property>
 <property name="table">USERS</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
</realm>

629

YAML

realms:
 - name: jaasRealm
 authentication:
 jaas:
 - class-name: com.examples.LdapLoginModule
 usage: SUFFICIENT
 properties:
 url: ldap://corp-ldap
 - class-name: com.examples.DatabaseLoginModule
 usage: SUFFICIENT
 properties:
 type: ora18
 host: corp-db
 table: USERS

For more details, see the JAAS authentication section.

LDAP Authentication Type

LDAP servers are one of the most popular identity stores in companies. They can track information
about the organization structure, users, groups, servers and configurations.

Hazelcast supports authentication and authorization against LDAP servers. The authentication
verifies the provided name and password. The authorization part allows to map roles to the
authenticated user.

The password verification during the authentication is possible by:

• making a new LDAP bind operation with the given name and password

• using a separate "admin connection" to verify the provided password against an LDAP object
attribute.

The LDAP authentication allows also a role mapping. As there are more ways how roles can be
mapped in the LDAP, Hazelcast provides several approaches to retrieve them:

• attribute: The role name is stored as an attribute in the object representing the identity.

• direct mapping: The identity object contains an attribute with reference to the role object(s).

• reverse mapping: The role objects having a reference to the identity object are searched.

The direct and reverse mapping modes also allow a role search recursion.

Table 17. LDAP Configuration Options

Option Name Default Value Description

url URL of the LDAP server. The value is configured as the
JNDI environment property, i.e., java.naming.provider.url.

630

socket-factory-
class-name

Socket factory class name. The factory can be used for fine
grained configuration of the TLS protocol on top of the
LDAP protocol, i.e., ldaps scheme.

parse-dn false If set to true, it treats the value of role-mapping-attribute
as a DN and extracts only the role-name-attribute values
as role names. If set to false, the whole value of role-
mapping-attribute is used as a role name.

This option is only used when the role-mapping-mode
option has the value attribute.

role-context LDAP Context in which assigned roles are searched, e.g.,
ou=Roles,dc=hazelcast,dc=com.

This option is only used when the role-mapping-mode
option has the value reverse.

role-filter ([role-mapping-
attribute]={member
DN})

LDAP search string which usually contains a placeholder
{memberDN} to be replaced by the provided login name, e.g.,
(member={memberDN}).

If the role search recursion is enabled (see role-recursion-
max-depth), the {memberDN} is replaced by role DNs in the
recurrent searches.

This option is only used when the role-mapping-mode
option has the value reverse.

role-mapping-
attribute

Name of the LDAP attribute which contains either the role
name or role DN.

This option is used when the role-mapping-mode option has
the value attribute or direct. If the mapping mode is
reverse, the value is used in role-filter default value.

631

role-mapping-mode attribute Role mapping mode. It can have one of the following
values:

• attribute: The user object in the LDAP contains
directly role name in the given attribute. Role name
can be parsed from a DN string when parse-dn=true No
additional LDAP query is done to find assigned roles.

• direct: The user object contains an attribute with
DN(s) of assigned role(s). Role object(s) is/are loaded
from the LDAP and the role name is retrieved from its
attributes. Role search recursion can be enabled for
this mode.

• reverse: The role objects are located by executing an
LDAP search query with the given role-filter. In this
case, the role object usually contains attributes with
DNs of the assigned users. Role search recursion can
be enabled for this mode.

role-name-
attribute

This option may refer to a name of LDAP attribute within
the role object which contains the role name in case of
direct and reverse role mapping mode. It may also refer to
the attribute name within X.500 name stored in role-
mapping-attribute when role-mapping-mode=attribute and
parse-dn=true.

role-recursion-
max-depth

1 Sets the maximum depth of role search recursion. The
default value 1 means the role search recursion is
disabled.

This option is only used when the role-mapping-mode
option has value direct or reverse.

role-search-scope subtree LDAP search scope used for role-filter search. It can
have one of the following values:

• subtree: Searches for objects in the given context and
its subtree.

• one-level: Searches just one-level under the given
context.

• object: Searches (or tests) just for the context object
itself (if it matches the filter criteria).

This option is only used when the role-mapping-mode

option has the value reverse.

user-name-
attribute

uid LDAP attribute name whose value is used as a name in
ClusterIdentityPrincipal added to the JAAS Subject.

632

system-user-dn Admin account DN. If configured, then the following are
true:

• For the user and role object, search queries are used
an admin connection instead of the "user" one created
by LDAP bind with provided credentials.

• LDAP authentication doesn’t expect the full user DN to
be provided as a login name. It rather expects names
like "jduke" than
"uid=jduke,ou=Engineering,o=Hazelcast,dc=com";

• The admin connection allows verifying the provided
user credentials against a value defined in the
password-attribute option.

system-user-
password

Admin’s password (for system-user-dn account).

system-
authentication

simple Name of the authentication mechanism used for the
admin LDAP connection. It’s used as a value for JNDI
environment property Context#SECURITY_AUTHENTICATION.
You can specify GSSAPI to authenticate with the Kerberos
protocol.

password-attribute Credentials verification is done by the new LDAP binds by
default. Nevertheless, the password can be stored in a non-
default LDAP attribute, and in this case use password-
attribute to configure against which LDAP attribute
(within the user object) is the provided password
compared during the login. As a result, if the password-
attribute option is provided, then the extra LDAP bind to
verify credentials is not done and passwords are just
compared within the Hazelcast code after retrieving the
user object from LDAP server.

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-
authentication is defined.

user-context LDAP context in which the user objects are searched, e.g.,
ou=Users,dc=hazelcast,dc=com.

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-
authentication is defined.

user-filter (uid={login}) LDAP search string for retrieving the user objects based on
the provided login name. It usually contains a placeholder
substring {login} which is replaced by the provided login
name.

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-
authentication is defined.

633

user-search-scope subtree LDAP search scope used for user-filter search. It can
have one of the following values:

• subtree: Searches for objects in the given context and
its subtree.

• one-level: Searches just one-level under the given
context.

• object: Searches (or tests) just for the context object
itself (if it matches the filter criteria).

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-

authentication is defined.

skip-
authentication

false Flag which allows disabling password verification and
only takes care about filling HazelcastPrincipal instances
into the Subject.

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-

authentication is defined.

security-realm If specified, given realm name is used for authentication
of a (temporary) Subject which is then used for doing
LDAP queries.

This option is only used when the admin connection is
configured, i.e., when system-user-dn or system-

authentication is defined.

Detailed logging for LDAP authentication can be enabled by configuring a more verbose logger
level for the com.hazelcast.security package as described in the Security Debugging section.

TLS Protected LDAP Server Connections

The LDAP authentication type supports TLS protected connections to LDAP servers, i.e., the ldaps
protocol scheme. The TLS is handled on the Java runtime side (JNDI API and URL handlers).

When using TLS, the LDAP provider will, by default, use the socket factory,
javax.net.ssl.SSLSocketFactory for creating a TLS socket to communicate with the server, using the
default JSSE configuration. By default, the server’s certificate is validated against Java default CA
certificate store and hostname in LDAPs URL is verified against the name(s) in the server certificate.
The behavior can be controlled globally by using javax.net.ssl.* properties. Here is an example:

634

java -Djavax.net.ssl.trustStore=/opt/hazelcast.truststore \
 -Djavax.net.ssl.trustStorePassword=123456 \
 -Djavax.net.ssl.keyStore=/opt/hazelcast.keystore \
 -Djavax.net.ssl.keyStorePassword=123456 \
 ...

There can be also properties specific to vendor or Java version allowing more fine-grained control.
Here is an example on disabling host name validation:

-Dcom.sun.jndi.ldap.object.disableEndpointIdentification=true

When even more control is necessary, you can implement your own SSLSocketFactory and use its
class name as the value in the ldap authentication option socket-factory-class-name.

Here is an example custom socket factory class:

package security.ldap;

import java.io.FileInputStream;
import java.io.IOException;
import java.net.InetAddress;
import java.net.Socket;
import java.security.KeyStore;
import java.security.SecureRandom;

import javax.net.SocketFactory;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSocketFactory;
import javax.net.ssl.TrustManagerFactory;

public class CustomSSLSocketFactory extends SSLSocketFactory {

 private static final SocketFactory INSTANCE = new CustomSSLSocketFactory();

 /**
 * JNDI uses this method when creating {@code ldaps} connections.
 */
 public static SocketFactory getDefault() {
 return INSTANCE;
 }

 private SSLSocketFactory delegate;

 public CustomSSLSocketFactory() {
 try {
 KeyStore trustStore = KeyStore.getInstance(KeyStore.getDefaultType());
 try (FileInputStream fis = new FileInputStream("/opt/ldap.truststore")) {
 trustStore.load(fis, "S3cr3t".toCharArray());

635

 }
 TrustManagerFactory tmFactory = TrustManagerFactory.getInstance
(TrustManagerFactory.getDefaultAlgorithm());
 tmFactory.init(trustStore);
 SSLContext sc = SSLContext.getInstance("TLS");
 sc.init(null, tmFactory.getTrustManagers(), new SecureRandom());
 delegate = sc.getSocketFactory();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public String[] getDefaultCipherSuites() {
 return delegate.getDefaultCipherSuites();
 }

 @Override
 public String[] getSupportedCipherSuites() {
 return delegate.getSupportedCipherSuites();
 }

 @Override
 public Socket createSocket(Socket arg0, String arg1, int arg2, boolean arg3)
throws IOException {
 return delegate.createSocket(arg0, arg1, arg2, arg3);
 }

 @Override
 public Socket createSocket(String arg0, int arg1) throws IOException {
 return delegate.createSocket(arg0, arg1);
 }

 @Override
 public Socket createSocket(InetAddress arg0, int arg1) throws IOException {
 return delegate.createSocket(arg0, arg1);
 }

 @Override
 public Socket createSocket(String arg0, int arg1, InetAddress arg2, int arg3)
throws IOException {
 return delegate.createSocket(arg0, arg1, arg2, arg3);
 }

 @Override
 public Socket createSocket(InetAddress arg0, int arg1, InetAddress arg2, int arg3)
throws IOException {
 return delegate.createSocket(arg0, arg1, arg2, arg3);
 }
}

636

The authentication configuration could look like as follows:

XML

<realm name="ldapsRealm">
 <authentication>
 <ldap>
 <url>ldaps://ldapserver.acme.com</url>
 <socket-factory-class-name>security.ldap.CustomSSLSocketFactory</socket-
factory-class-name>
 <role-mapping-attribute>cn</role-mapping-attribute>
 </ldap>
 </authentication>
</realm>

YAML

realms:
 - name: ldapsRealm
 authentication:
 ldap:
 url: ldaps://ldapserver.acme.com
 socket-factory-class-name: security.ldap.CustomSSLSocketFactory
 role-mapping-attribute: cn

The LDAP authentication is backed by the JNDI API in Java. It has also the failover support. You can
configure multiple space-separated URLs in the <url> option:

XML

<realm name="ldapFallbackRealm">
 <authentication>
 <ldap>
 <url>ldap://ldap-master.example.com ldap://ldap-backup.example.com</url>
 </ldap>
 </authentication>
</realm>

YAML

realms:
 - name: ldapFallbackRealm
 authentication:
 ldap:
 url: ldap://ldap-master.example.com ldap://ldap-backup.example.com

637

Kerberos Authentication Type

The Kerberos authentication protocol is one of the standard solutions for single sign-on (SSO). It’s
well established in many companies. Hazelcast supports Kerberos authentication as an Enterprise
feature and it also provides Kerberos integration to LDAP-based authorization.

The Kerberos support in Hazelcast has 2 configuration parts: identity and authentication. The
identity part is responsible for retrieving the service ticket from Kerberos KDC (Key Distribution
Center). The authentication part verifies the service tickets.

Default Service principal names for Hazelcast members are in the form hz/address@REALM, e.g.,
hz/192.168.1.1@ACME.COM.

Before a service ticket is issued, the client side of the connection has to be authenticated, which
means the TGT (Ticket Granting Ticket) is present in the Subject.

Hazelcast delegates the TGT retrieval to vendor specific Krb5LoginModule implementations (find the
correct login module and its options in your Java documentation). On the Hazelcast side, the
security-ream property allows referencing another realm with Krb5LoginModule configured.

Sample Kerberos Identity Configuration XML

<realm name="kerberosRealm">
 <identity>
 <kerberos>
 <realm>ACME.COM</realm>
 <security-realm>krb5Initiator</security-realm>
 </kerberos>
 </identity>
</realm>
<realm name="krb5Initiator">
 <authentication>
 <jaas>
 <login-module class-name="com.sun.security.auth.module.Krb5LoginModule"
usage="REQUIRED">
 <properties>
 <property name="useTicketCache">true</property>
 <property name="doNotPrompt">true</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
</realm>

638

YAML

realms:
 - name: kerberosRealm
 identity:
 kerberos:
 realm: ACME.COM
 security-realm: krb5Initiator
 - name: krb5Initiator
 authentication:
 jaas:
 class-name: com.sun.security.auth.module.Krb5LoginModule
 properties:
 useTicketCache: true
 doNotPrompt: true

The <kerberos> identity configuration has the following properties:

Table 18. The <kerberos> Identity Configuration Options

Property name Default value Description

spn Allows configuring static Service Principal Name (SPN). It’s
meant for use cases where all the members share a single
Kerberos identity.

service-name-
prefix

"hz/" Defines the prefix of SPN. By default the member’s
principal name (for which this credentials factory asks the
service ticket) is in the form
"[servicePrefix][memberIpAddress]@[REALM]", e.g.,
"hz/192.168.1.1@ACME.COM".

realm Kerberos realm name, e.g., "ACME.COM".

security-realm Security realm name in the Hazelcast configuration used
for Kerberos authentication. The authentication
configuration in the referenced security realm will be
used to fill the Subject with the Kerberos credentials, e.g.,
TGT.

use-canonical-
hostname

false Flag which controls if canonical hostnames should be used
instead of IP addresses in generated Service Principal
names. This property is only used when Service Principal
name is not static, i.e., when spn option is not configured).

principal Kerberos principal name. This is a helper option which
can be used together with the keytabFile to replace the
security-realm configuration.

We don’t recommend using this property in production!

keytabFile Path to a keytab file with the current principal’s secrets.
This is a helper option which can be used together with
the principal to replace the security-realm configuration.

We don’t recommend using this property in production!

639

The authenticating part on the server side is able to accept the Kerberos tickets and verify them.
Again the Kerberos authentication is delegated to another realm with the Kerberos login module
configured.

Sample Kerberos Authentication Configuration XML

<realm name="kerberosRealm">
 <authentication>
 <kerberos>
 <security-realm>krb5Acceptor</security-realm>
 </kerberos>
 </authentication>
</realm>
<realm name="krb5Acceptor">
 <authentication>
 <jaas>
 <login-module class-name="com.sun.security.auth.module.Krb5LoginModule"
usage="REQUIRED">
 <properties>
 <property name="isInitiator">false</property>
 <property name="useTicketCache">false</property>
 <property name="doNotPrompt">true</property>
 <property name="useKeyTab">true</property>
 <property name="storeKey">true</property>
 <property name="principal">hz/192.168.1.1@ACME.COM</property>
 <property name="keyTab">/opt/member1.keytab</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
</realm>

640

YAML

realms:
 name: kerberosRealm
 authentication:
 kerberos:
 security-realm: krb5Acceptor
 name: krb5Acceptor
 authentication:
 jaas:
 - class-name: com.sun.security.auth.module.Krb5LoginModule
 usage: REQUIRED
 properties:
 isInitiator: false
 useTicketCache: false
 doNotPrompt: true
 useKeyTab: true
 storeKey: true
 principal: hz/192.168.1.1@ACME.COM
 keyTab: /opt/member1.keytab

The krb5Acceptor realm configuration in the snippet only loads the Kerberos secrets from a keytab
file and it doesn’t authenticate against a KDC.

Table 19. The <kerberos> Authentication Configuration Options

Property name Default value Description

relax-flags-check false Allows disabling some of the checks on the incoming
token, e.g., passes authentication even if the mutual
authentication is required by the token.

use-name-without-
realm

false When set to true, then the Kerberos realm part is removed
from the authenticated name, e.g., "jduke@ACME.COM"
becomes just "jduke".

security-realm Security realm name in the Hazelcast configuration used
for Kerberos authentication. The authentication
configuration in the referenced security realm will be
used to fill the Subject with the Kerberos credentials, e.g.,
Keytab.

principal Kerberos principal name. This is a helper option which
can be used together with the keytabFile to replace the
security-realm configuration.

We don’t recommend using this property in production!

keytabFile Path to a keytab file with the current principal’s secrets.
This is a helper option which can be used together with
the principal to replace the security-realm configuration.

We don’t recommend using this property in production!

641

mailto:jduke@ACME.COM

The GssApiLoginModule (implementing Kerberos authentication) derives from the abstract
ClusterLoginModule. As a result the <kerberos> configuration supports the common options, too:
skip-identity, skip-endpoint and skip-role.

• The Kerberos authentication in Hazelcast is only able to validate connections
on the server side. It doesn’t support mutual authentication.

• The Generic Security Services API (GSS-API) is not used for protecting
(wrapping) the messages after the authentication, e.g., encryption, integrity
checks. It’s only used for accepting tokens.

• The token itself is not protected against Man-in-the-Middle (MITM) attacks. If
an attacker is able to eavesdrop the token and use it before the original sender,
then the attacker succeeds with the authentication but the original sender
won’t.

◦ There is a replay protection in Java which caches the already used tokens.

◦ Java Kerberos implementation accepts the token for 5 minutes (by default)
from its creation.

• Time has to be synchronized on the machines where the Kerberos is used.

If you are running Hazelcast in an untrusted network with a MITM attack risk,
then enable encryption on Hazelcast protocols to prevent stealing the token.

Kerberos and LDAP integration

The Kerberos authentication allows loading role mapping information from an LDAP server
(usually the one backing the Kerberos KDC server, too). Therefore the <ldap> authentication
configuration is also available as sub-configuration of the <kerberos> authentication.

XML

<realm name="kerberosRealm">
 <authentication>
 <kerberos>
 <skip-role>true</skip-role>
 <security-realm>krb5Acceptor</security-realm>
 <ldap>
 <url>ldap://ldap.hazelcast.com</url>
 <system-authentication>GSSAPI</system-authentication>
 <role-mapping-attribute>memberOf</role-mapping-attribute>
 <security-realm>krb5Initiator</security-realm>
 <user-filter>(krb5PrincipalName={login})</user-filter>
 <skip-authentication>true</skip-authentication>
 </ldap>
 </kerberos>
 </authentication>
</realm>

642

YAML

realms:
 - name: kerberosRealm
 authentication:
 kerberos:
 skip-role: true
 security-realm: krb5Acceptor
 ldap:
 url: ldap://ldap.hazelcast.com
 system-authentication: GSSAPI
 security-realm: krb5Initiator
 skip-authentication: true
 user-filter: "(krb5PrincipalName={login})"
 role-mapping-attribute: memberOf

The Kerberos-LDAP integration doesn’t support credentials delegation, i.e., reusing
client’s ticket for accessing the LDAP. It only allows using the member’s Kerberos
credentials to authenticate into the LDAP.

Simplified Kerberos Configuration

To simplify the Kerberos configuration process for new users, Hazelcast allows skipping
Krb5LoginModule JAAS configuration within separate security realms. Instead it’s possible to define
the principal and keytabFile options in the kerberos identity and authentication configurations. If
these options are used instead of the security-realm, then a new temporary realm is generated on
the fly during the authentication.

XML

<hz:realm name="simpleKerberosRealm">
 <hz:authentication>
 <hz:kerberos>
 <hz:principal>hz/127.0.0.1@HAZELCAST.COM</hz:principal>
 <hz:keytab-file>/opt/localhost.keytab</hz:keytab-file>
 </hz:kerberos>
 </hz:authentication>
 <hz:identity>
 <hz:kerberos>
 <hz:realm>HAZELCAST.COM</hz:realm>
 <hz:principal>hz/127.0.0.1@HAZELCAST.COM</hz:principal>
 <hz:keytab-file>/opt/localhost.keytab</hz:keytab-file>
 </hz:kerberos>
 </hz:identity>
</hz:realm>

643

YAML

realms:
 - name: simpleKerberosRealm
 authentication:
 kerberos:
 principal: hz/127.0.0.1@HAZELCAST.COM
 keytab-file: /opt/localhost.keytab
 identity:
 kerberos:
 realm: HAZELCAST.COM
 principal: hz/127.0.0.1@HAZELCAST.COM
 keytab-file: /opt/localhost.keytab

A warning is logged during the first usage of the simplified configuration form. It includes the
generated configuration, so you can use it as a starting point to define the full Kerberos
configuration. An example warning log is shown below:

12:37:41,187 WARN [KerberosCredentialsFactory] Using generated Kerberos initiator
realm configuration is not intended for production use. It's recommended
to properly configure the Krb5LoginModule manually to fit your needs.
Following configuration was generated from provided keytab and principal properties:
<realm name="krb5Initiator">
 <authentication>
 <jaas>
 <login-module class-name="com.sun.security.auth.module.Krb5LoginModule"
usage="REQUIRED">
 <properties>
 <property name="isInitiator">true</property>
 <property name="useKeyTab">true</property>
 <property name="refreshKrb5Config">true</property>
 <property name="doNotPrompt">true</property>
 <property name="storeKey">true</property>
 <property name="keyTab">/opt/localhost.keytab</property>
 <property name="principal">hz/127.0.0.1@HAZELCAST.COM</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
</realm>

TLS Authentication Type

Hazelcast is able to protect network communication using TLS. The TLS mutual authentication is
also supported. It means not only the server side identifies itself to a client side (member, client,
REST client, etc.), but also the client side needs to prove its identity by using a TLS (X.509)
certificate.

The tls authentication type verifies within the JAAS authentication that the incoming connection

644

already authenticated the client’s TLS certificate. A ClusterIdentityPrincipal uses the subject DN
(distinguished name) from the client’s TLS certificate.

This authentication type is able to parse a role name from the client’s certificate subject DN. The
<tls> element has an attribute, roleAttribute, which specifies a part of DN to be used as a role
name.

XML

<realm name="tlsRealm">
 <authentication>
 <tls roleAttribute="cn" />
 </authentication>
</realm>

YAML

realms:
 name: tlsRealm
 authentication:
 tls:
 roleAttribute: cn

This tls authentication uses cn attribute from the subject DN as the role name. If the subject DN in
the certificate is cn=admin,ou=Devs,o=Hazelcast for instance, then the following Principals are
added:

• ClusterIdentityPrincipal: CN=admin,OU=Devs,O=Hazelcast

• ClusterRolePrincipal: admin

• ClusterEndpointPrincipal: [remote address of the connecting party]

22.9.2. Identity Configuration

The Identity configuration allows defining own Credentials. These Credentials are used to
authenticate to other systems.

Available identity configuration types are as follows:

• username-password: Defines a new PasswordCredentials object.

• token: Defines a new TokenCredentials object.

• kerberos: Defines the Kerberos identity which uses the service tickets stored in the
TokenCredentials object.

• credentials-factory: Configures the factory class which creates the Credentials objects.

Credentials

One of the key elements in Hazelcast security is the Credentials object, which represents evidence
of the identity (member or client). The content of Credentials object is verified during the

645

authentication. Credentials is an interface which extends Serializable.

public interface Credentials extends Serializable {
 String getName();
}

There are two subtype interfaces which simplify the Credentials usage. The subtypes reflect data
provided in the client authentication messages:

• Name and password (com.hazelcast.security.PasswordCredentials)

• Byte array token (com.hazelcast.security.TokenCredentials)

The interfaces have the following forms:

public interface PasswordCredentials extends Credentials {
 String getPassword();
}

public interface TokenCredentials extends Credentials {
 byte[] getToken();

 default Data asData() {
 return new HeapData(getToken());
 }
}

The Credentials instance can be retrieved in the login modules by handling a CredentialsCallback.

Here is an example:

646

CredentialsCallback credcb = new CredentialsCallback();
try {
 callbackHandler.handle(new Callback[] { credcb });
} catch (IOException | UnsupportedCallbackException e) {
 throw new LoginException("Unable to retrieve credetials");
}
Credentials credentials = credcb.getCredentials();
if (credentials instanceof PasswordCredentials) {
 PasswordCredentials passwordCredentials = (PasswordCredentials) credentials;
 if (expectedName.equals(credentials.getName())
 && expectedPassword.equals(passwordCredentials.getPassword())) {
 name = credentials.getName();
 addRole(name);
 return true;
 }
}
throw new FailedLoginException("Credentials verification failed.");

Password Credentials

A PasswordCredentials implementation can be configured as a simple identity representation. It is
configured by the <username-password/> XML configuration element as shown below:

XML

<realms>
 <realm name="passwordRealm">
 <identity>
 <username-password username="member1" password="s3crEt" />
 </identity>
 </realm>
</realms>
<member-authentication realm="passwordRealm" />

YAML

realms:
 name: passwordRealm
 identity:
 username-password:
 username: member1
 password: s3crEt
member-authentication:
 realm: passwordRealm

The equivalent programmatic configuration is shown below:

647

RealmConfig realmConfig = new RealmConfig()
 .setUsernamePasswordIdentityConfig("member1", "s3crEt");
config.getSecurityConfig().setMemberRealmConfig("passwordRealm", realmConfig);

Token Credentials

TokenCredentials instances are also simply configurable for identity representation. The <token/>
XML configuration element allows using either plain ASCII tokens or Base64 encoded values. Its
optional argument encoding can have either base64 or none (default) as its value.

The following two realms define the same token value - bytes of the "Hazelcast" string:

XML

<realm name="tokenRealm1">
 <identity>
 <token>Hazelcast</token>
 </identity>
</realm>
<realm name="tokenRealm2">
 <identity>
 <token encoding="base64">SGF6ZWxjYXN0</token>
 </identity>
</realm>

YAML

realms:
 name: tokenRealm1
 identity:
 token: Hazelcast
 name: tokenRealm2
 identity:
 token:
 encoding: base64
 value: SGF6ZWxjYXN0

The equivalent programmatic configuration is as follows:

TokenIdentityConfig tokenConfig = new TokenIdentityConfig("Hazelcast".getBytes
(StandardCharsets.US_ASCII));
RealmConfig realmConfig = new RealmConfig().setTokenIdentityConfig(tokenConfig);

Kerberos Identity

The kerberos identity type is used to retrieve Kerberos service tickets to access a member with the
kerberos authentication type configured. The resulting tickets are TokenCredentials instances. Read

648

more about kerberos identity in the Kerberos authentication section.

Credentials Factory

The most flexible way to define the Credentials objects is using a custom credential factory. It is an
implementation of com.hazelcast.security.ICredentialsFactory interface. Its newCredentials()

method is the one which provides credentials.

The XML configuration uses <credentials-factory> element to define the factory class.

The behavior of credential factories can be controlled by specifying factory properties. The
properties are provided in the init(Properties) method.

A sample configuration is shown below:

XML

<realm name="credentialsFactoryRealm">
 <identity>
 <credentials-factory class-name="com.examples.TOTPCredentialsFactory">
 <properties>
 <property name="seed">
3132333435363738393031323334353637383930</property>
 </properties>
 </credentials-factory>
 </identity>
</realm>

YAML

realms:
 name: credentialsFactoryRealm
 identity:
 credentials-factory:
 class-name: com.examples.TOTPCredentialsFactory
 properties:
 seed: 3132333435363738393031323334353637383930

22.9.3. Security Realms on the Client Side

Hazelcast IMDG 4.1 introduces a limited support of security realms in native clients. The
configuration allows specifying JAAS login modules which can be referenced from the Kerberos
identity configuration.

649

XML

<security>
 <kerberos>
 <realm>ACME.COM</realm>
 <security-realm>krb5Initiator</security-realm>
 </kerberos>
 <realms>
 <realm name="krb5Initiator">
 <authentication>
 <jaas>
 <login-module class-name=
"com.sun.security.auth.module.Krb5LoginModule" usage="REQUIRED">
 <properties>
 <property name="useTicketCache">true</property>
 <property name="doNotPrompt">true</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
 </realm>
 </realms>
</security>

YAML

security:
 kerberos:
 realm: ACME.COM
 security-realm: krb5Initiator
 realms:
 name: krb5Initiator
 authentication:
 jaas:
 class-name: com.sun.security.auth.module.Krb5LoginModule
 usage: REQUIRED
 properties:
 useTicketCache: true
 doNotPrompt: true

22.10. JAAS authentication

22.10.1. JAAS Principals used in Hazelcast

Hazelcast works with the following JAAS Principal implementations added to the Subject:

• ClusterIdentityPrincipal: Represents the name of authenticated party (usually one instance in
the Subject).

650

https://docs.oracle.com/javase/8/docs/api/java/security/Principal.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/Subject.html

• ClusterRolePrincipal: Represents the role assigned to the authenticated party (usually zero or
more instances in the Subject).

• ClusterEndpointPrincipal: Represents the remote address of the authenticated party (usually
one instance in the Subject).

These implementations share a common abstract parent class HazelcastPrincipal, so it is simple to
find them in the JAAS Subject.

Set<HazelcastPrincipal> hazelcastPrincipals =
 subject.getPrincipals(HazelcastPrincipal.class);

22.10.2. Callbacks Supported in Login Modules

JAAS Callback instances are used for accessing different kinds of data from the LoginModule
implementations. Hazelcast supports the following Callback types:

• javax.security.auth.callback.NameCallback: Retrieves a name from Credentials object.

• javax.security.auth.callback.PasswordCallback: Retrieves a password from PasswordCredentials
object.

• com.hazelcast.security.CertificatesCallback: Retrieves the TLS certificate chain (if any) of the
connecting party.

• com.hazelcast.security.ClusterNameCallback: Retrieves the cluster name used for the
authentication.

• com.hazelcast.security.CredentialsCallback: Retrieves Credentials used for authentication.

• com.hazelcast.security.ConfigCallback: Retrieves the Config object of current Hazelcast
member.

• com.hazelcast.security.EndpointCallback: Retrieves the remote address of the connecting party.

• com.hazelcast.security.SerializationServiceCallback: Retrieves SerializationService of
current Hazelcast member.

The callbacks are usually used in the login() method of a login module:

CredentialsCallback credcb = new CredentialsCallback();
ConfigCallback ccb = new ConfigCallback();
ClusterNameCallback cncb = new ClusterNameCallback();
try {
 callbackHandler.handle(new Callback[] { credcb, ccb, cncb });
} catch (IOException | UnsupportedCallbackException e) {
 throw new LoginException("Unable to retrieve necessary data");
}
Credentials remoteCredentials = credcb.getCredentials();
String remoteClusterName = cncb.getClusterName();
Config hazelcastConfig = ccb.getConfig();

651

https://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/Callback.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

22.10.3. ClusterLoginModule

Hazelcast has an abstract implementation of LoginModule that contains shared logic and cleanup
operations. It automatically creates the ClusterEndpointPrincipal instance and it also provides the
addRole(String) method which simplifies adding the ClusterRolePrincipal instances.

ClusterLoginModule implements all methods from the LoginModule interface and makes them final. It
provides protected methods with empty implementations, e.g., onCommit(), to align the logic to user
needs. The module comes also with the following abstract methods:

• getName(): It is used to retrieve the name of ClusterIdentityPrincipal.

• onLogin(): Logic of the login method which needs to be provided.

Extending the ClusterLoginModule is recommended instead of implementing all the required stuff
from scratch.

public abstract class ClusterLoginModule implements LoginModule {

 protected abstract boolean onLogin() throws LoginException;
 protected abstract String getName();

 protected void onInitialize() {
 }

 protected boolean onCommit() throws LoginException {
 return true;
 }

 protected boolean onAbort() throws LoginException {
 return true;
 }

 protected boolean onLogout() throws LoginException {
 return true;
 }
 // ...
}

ClusterLoginModule supports a basic set of login module options, which allow skipping adding
principals of a given type to the JAAS Subject. It allows, for instance, to have just one
ClusterIdentityPrincipal in the Subject even if there are more login modules in the chain:

Table 20. ClusterLoginModule options

Option Name Default Value Description

skipIdentity false Don’t add any ClusterIdentityPrincipal to the Subject.

skipRole false Don’t add any ClusterRolePrincipal to the Subject.

skipEndpoint false Don’t add any ClusterEndpointPrincipal to the Subject.

652

22.10.4. Enterprise Integration

Using the above API, you can implement a LoginModule that performs authentication against the
security system of your choice, such databases, directory services or some other corporate standard
you might have. For example, you may wish to have your clients send an identification token in the
Credentials object. This token can then be sent to your backend security system via the LoginModule
that runs on the cluster side.

Additionally, the same system may authenticate the user and also then return the roles that are
attributed to the user. These roles can then be used for data structure authorization.

 See the JAAS Reference Guide for further information.

22.11. Cluster Member Security
Hazelcast supports the standard Java Security (JAAS) based authentication between the cluster
members. A Security Realm can be referenced by <member-authentication/> element to define
authentication between the member and identity of the current member.

XML

<hazelcast>
 ...
 <security enabled="true">
 <realms>
 <realm name="memberRealm">
 <authentication>
 <ldap>
 <url>ldap://corp-ldap.example.com/</url>
 </ldap>
 </authentication>
 <identity>
 <username-password username="uid=member1,dc=example,dc=com" password=
"s3crEt"/>
 </identity>
 </realm>
 </realms>
 <member-authentication realm="memberRealm"/>
 </security>
 ...
</hazelcast>

653

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

YAML

hazelcast:
 security:
 enabled: true
 realms:
 name: memberRealm
 authentication:
 ldap:
 url: ldap://corp-ldap.example.com
 identity:
 username-password:
 username: uid=member1,dc=example,dc=com
 password: s3crEt
 member-authentication:
 realm: memberRealm

22.12. Default authentication
The Default Authentication is used when security is enabled and no explicit authentication
configuration is provided. It can happen when:

• member-authentication is not configured

• the security realm referenced by member-authentication doesn’t contain the authentication
configuration

• client-authentication is not configured

• the security realm referenced by client-authentication doesn’t contain the authentication
configuration.

The behavior of the default authentication mechanism depends on member’s identity
configuration (i.e., identity configuration in the security realm referenced from member-

authentication). If the identity is configured as a username-password, then the authenticated
username and password credentials are checked for equality with these configured ones. In all
other cases, only the incoming cluster name is checked for equality with the one configured on the
authenticating member.

22.13. Native Client Security
Hazelcast’s Client security includes both authentication and authorization.

22.13.1. Authentication

The authentication mechanism works in similar way as the cluster member authentication.

To implement the client authentication, you reference a Security Realm with the authentication
section defined in the <client-authentication/> element of a cluster member configuration.

654

The authentication configuration defines a method used to verify the client’s identity and assign its
roles.

XML

<hazelcast>
 ...
 <security enabled="true">
 <realms>
 <realm name="clientRealm">
 <authentication>
 <ldap>
 <url>ldap://corp-ldap.example.com/</url>
 <role-mapping-attribute>cn</role-mapping-attribute>
 </ldap>
 </authentication>
 </realm>
 </realms>
 <member-authentication realm="clientRealm"/>
 </security>
 ...
</hazelcast>

YAML

hazelcast:
 security:
 enabled: true
 realms:
 name: clientRealm
 authentication:
 ldap:
 url: ldap://corp-ldap.example.com/
 role-mapping-attribute: cn
 member-authentication:
 realm: clientRealm

The identity of the connecting client is defined on the client side. Usually, there are no security
realms on the clients, but just identity defined directly in the security configuration:

XML

<hazelcast-client>
 ...
 <security>
 <username-password username="uid=member1,dc=example,dc=com" password="s3crEt"/>
 </security>
 ...
</hazelcast-client>

655

YAML

hazelcast-client:
 security:
 username-password:
 username: uid=member1,dc=example,dc=com
 password: s3crEt

On the clients, You can use the same identity types as in security realms:

• username-password

• token

• kerberos (may require an additional security realm definition)

• credentials-factory

22.13.2. Authorization

Hazelcast client authorization is configured by a client permission policy. Hazelcast has a default
permission policy implementation that uses permission configurations defined in the Hazelcast
security configuration. Default policy permission checks are done against instance types (map,
queue, etc.), instance names (map, queue, name, etc.), instance actions (put, read, remove, add, etc.),
the client endpoint address (ClusterEndpointPrincipal) and client roles (ClusterRolePrincipal).

The default permission policy allows to use comma separated names in the principal attribute
configuration.

You can define the instance and principal names as wildcards using the "*" character. See the Using
Wildcards section for details.

The endpoint names can use range characters "-" and "*" as described in the Interfaces section.

XML

<hazelcast>
 ...
 <security enabled="true">
 <client-permissions>
 <!-- Principals 'admin' and 'root' from endpoint '127.0.0.1' have all
permissions. -->
 <all-permissions principal="admin,root">
 <endpoints>
 <endpoint>127.0.0.1</endpoint>
 </endpoints>
 </all-permissions>

 <!-- Principals named 'dev' from all endpoints have 'create', 'destroy',
 'put', 'read' permissions for map named 'myMap'. -->
 <map-permission name="myMap" principal="dev">
 <actions>
 <action>create</action>

656

 <action>destroy</action>
 <action>put</action>
 <action>read</action>
 </actions>
 </map-permission>

 <!-- All principals from endpoints '127.0.0.1' or matching to '10.10.*.*'
 have 'put', 'read', 'remove' permissions for map
 whose name matches to 'com.foo.entity.*'. -->
 <map-permission name="com.foo.entity.*">
 <endpoints>
 <endpoint>10.10.*.*</endpoint>
 <endpoint>127.0.0.1</endpoint>
 </endpoints>
 <actions>
 <action>put</action>
 <action>read</action>
 <action>remove</action>
 </actions>
 </map-permission>

 <!-- Principals named 'dev' from endpoints matching to either
 '192.168.1.1-100' or '192.168.2.*'
 have 'create', 'add', 'remove' permissions for all queues. -->
 <queue-permission name="*" principal="dev">
 <endpoints>
 <endpoint>192.168.1.1-100</endpoint>
 <endpoint>192.168.2.*</endpoint>
 </endpoints>
 <actions>
 <action>create</action>
 <action>add</action>
 <action>remove</action>
 </actions>
 </queue-permission>

 <!-- All principals from all endpoints have transaction permission.-->
 <transaction-permission />
 </client-permissions>
 </security>
 ...
</hazelcast>

657

YAML

hazelcast:
 security:
 enabled: true
 client-permissions:
 on-join-operation: RECEIVE
 all:
 principal: admin,root
 endpoints:
 - 127.0.0.1
 map:
 - name: myMap
 principal: dev
 endpoints:
 - 127.0.0.1
 actions:
 - create
 - destroy
 - put
 - read
 map:
 - name: com.foo.entity
 principal: dev
 endpoints:
 - 10.10.*.*
 - 127.0.0.1
 actions:
 - put
 - read
 - remove
 queue:
 - name: "*"
 principal: dev
 endpoints:
 - 192.168.1.1-100
 - 192.168.2.*
 actions:
 - create
 - add
 - remove
 transaction:

You can also define your own policy by implementing com.hazelcast.security.IPermissionPolicy.

658

package com.hazelcast.security;
/**
 * IPermissionPolicy is used to determine any Subject's
 * permissions to perform a security sensitive Hazelcast operation.
 *
 */
public interface IPermissionPolicy {
 void configure(SecurityConfig securityConfig, Properties properties);

 PermissionCollection getPermissions(Subject subject,
 Class<? extends Permission> type);

 void destroy();
}

Permission policy implementations can access client-permissions that are in the configuration by
using SecurityConfig.getClientPermissionConfigs() when Hazelcast calls the
configure(SecurityConfig securityConfig, Properties properties) method.

The IPermissionPolicy.getPermissions(Subject subject, Class<? extends Permission> type) method
is used to determine a client request that has been granted permission to perform a security-
sensitive operation.

Permission policy should return a PermissionCollection containing permissions of the given type
for the given Subject. The Hazelcast access controller calls
PermissionCollection.implies(Permission) on returning PermissionCollection and it decides
whether the current Subject has permission to access the requested resources.

22.13.3. Permissions

The following is the list of client permissions that can be configured on the member:

All Permission:

XML

<all-permissions principal="principal">
 <endpoints>
 ...
 </endpoints>
</all-permissions>

YAML

all:
 principal: principal
 endpoints:
 - ..

659

Map Permission:

Actions: all, create, destroy, put, read, remove, lock, intercept, index, listen

XML

<map-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</map-permission>

YAML

map:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

Queue Permission:

Actions: all, create, destroy, add, remove, read, listen

XML

<queue-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</queue-permission>

YAML

queue:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

660

Multimap Permission:

Actions: all, create, destroy, put, read, remove, listen, lock

XML

<multimap-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</multimap-permission>

YAML

multimap:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

Replicated Map Permission:

Actions: all, create, destroy, put, read, remove, listen, lock, index, intercept

XML

<replicatedmap-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</replicatedmap-permission>

YAML

replicatedmap:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

661

Topic Permission:

Actions: create, destroy, publish, listen

XML

<topic-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</topic-permission>

YAML

topic:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

List Permission:

Actions: all, create, destroy, add, read, remove, listen

XML

<list-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</list-permission>

YAML

list:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

662

Set Permission:

Actions: all, create, destroy, add, read, remove, listen

XML

<set-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</set-permission>

YAML

set:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

Lock Permission:

Actions: all, create, destroy, lock, read

XML

<lock-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</lock-permission>

YAML

lock:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

663

AtomicLong Permission:

Actions: all, create, destroy, read, modify

XML

<atomic-long-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</atomic-long-permission>

YAML

atomic-long:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

CountDownLatch Permission:

Actions: all, create, destroy, read, modify

XML

<countdown-latch-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</countdown-latch-permission>

YAML

countdown-latch:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

664

FlakeIdGenerator Permission:

Actions: all, create, destroy, read, modify

XML

<flake-id-generator-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</flake-id-generator-permission>

YAML

flake-id-generator:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

Semaphore Permission:

Actions: all, create, destroy, acquire, release, read

XML

<semaphore-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</semaphore-permission>

YAML

semaphore:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

665

Executor Service Permission:

Actions: all, create, destroy

XML

<executor-service-permission name="name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</executor-service-permission>

YAML

executor-service:
 - name: name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

Transaction Permission:

XML

<transaction-permission principal="principal">
 <endpoints>
 ...
 </endpoints>
</transaction-permission>

YAML

transaction:
 principal: principal
 endpoints:
 - ..

Cache Permission:

Actions: all, create, destroy, put, read, remove, listen

666

XML

<cache-permission name="/hz/cache-name" principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</cache-permission>

YAML

cache:
 - name: /hz/cache-name
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

The name provided in cache-permission must be the Hazelcast distributed object
name corresponding to the Cache as described in the JCache - Hazelcast Instance
Integration section.

User Code Deployment Permission:

Actions: all, deploy

XML

<user-code-deployment-permission principal="principal">
 <endpoints>
 ...
 </endpoints>
 <actions>
 ...
 </actions>
</user-code-deployment-permission>

YAML

user-code-deployment:
 principal: principal
 endpoints:
 - ..
 actions:
 - ..

667

Handling Permissions When a New Member Joins

By default, the set of permissions defined in the leader member of a cluster is distributed to the
newly joining members, overriding their own permission configurations, if any. However, you can
configure a new member to be joined, so that it keeps its own set of permissions and even send
these to the existing members in the cluster. This can be done dynamically, i.e., without needing to
restart the cluster, using either one of the following configuration options:

• the on-join-operation configuration attribute

• the setOnJoinPermissionOperation() method

Using the above, you can choose whether a new member joining to a cluster will apply the client
permissions stored in its own configuration, or use the ones defined in the cluster. The behaviors
that you can specify with the configuration are RECEIVE, SEND and NONE, which are described after the
examples below.

The following are the examples for both approaches on how to use them:

Declarative Configuration:

XML

<hazelcast>
 ...
 <security enabled="true">
 <client-permissions on-join-operation="SEND">
 <!-- ... -->
 </client-permissions>
 </security>
 ...
</hazelcast>

YAML

hazelcast:
 security:
 enabled: true
 client-permissions:
 on-join-operation: SEND

Programmatic Configuration:

Config config = new Config();
config.getSecurityConfig()
 .setEnabled(true)
 .setOnJoinPermissionOperation(OnJoinPermissionOperationName.SEND);

The behaviors are explained below:

668

• RECEIVE: Applies the permissions from the leader member in the cluster before join. This is the
default value.

• SEND: Doesn’t apply the permissions from the leader member before join. If the security is
enabled, then it refreshes or replaces the cluster wide permissions with the ones in the new
member after the join is complete. This option is suitable for the scenarios where you need to
replace the cluster wide permissions without restarting the cluster.

• NONE: Neither applies pre-join permissions, nor sends the local permissions to the other
members. It means that the new member does not send its own permission definitions to the
cluster, but keeps them when it joins. However, after the join, when you update the permissions
in the other cluster members, those updates are also sent to the newly joining member.
Therefore, this option is suitable for the scenarios where you need to elevate privileges
temporarily on a single member (preferably a lite member) for a limited time period. The
clients which want to use these temporary permissions have to access the cluster through this
single new member, meaning that you need to disable smart routing for such clients.

Note that, the create and destroy permissions will not work when using the NONE option, since
the distributed objects need to be created/destroyed on all the members.

The following is an example for a scenario where NONE is used:

// temporary member, in the below case a lite member
Config config = new Config().setLiteMember(true);
PermissionConfig allPermission = new PermissionConfig(PermissionType.ALL, "*",
null);
config.getSecurityConfig()
 .setEnabled(true)
 .setOnJoinPermissionOperation(OnJoinPermissionOperationName.NONE)
 .addClientPermissionConfig(allPermission);
HazelcastInstance hzLite = Hazelcast.newHazelcastInstance(config);

// temporary client connecting only to the lite member
String memberAddr = ...;
ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig().setSmartRouting(false)
 .addAddress(memberAddr);
HazelcastInstance client = HazelcastClient.newHazelcastClient(clientConfig);

// do operations with escalated privileges:
client.getMap("protectedConfig").put("master.resolution", "1920");

// shutdown the client and lite member
client.shutdown();
hzLite.shutdown();

22.14. Logging Auditable Events
Hazelcast IMDG Enterprise allows observing some important cluster events using the Auditlog

669

feature. Auditable events have a unique type ID; they contain a timestamp and importance level.
The events may also contain a message and parameters. Supported event type identifiers are listed
in AuditlogTypeIds.

You can enable the auditlog feature in the configuration as follows:

Declarative Configuration:

XML

<hazelcast>
 ...
 <auditlog enabled="true" />
 ...
</hazelcast>

YAML

hazelcast:
 auditlog:
 enabled: true

Programmatic Configuration:

Config config = new Config();
config.getAuditLogConfig().setEnabled(true);

The default auditlog implementation uses Hazelcast logging configuration and writes the events as
log entries with the category name "hazelcast.auditlog".

Sample Log4j2 configuration writing auditable events to a Syslog:

<Configuration>
 <Appenders>
 <Syslog name="Syslog" format="RFC5424"
 host="syslog.acme.com" port="514" protocol="TCP"
 appName="Hazelcast" newLine="true" messageId="Audit" id="hz" />
 </Appenders>

 <Loggers>
 <Logger name="hazelcast.auditlog" level="debug">
 <AppenderRef ref="Syslog" />
 </Logger>
 </Loggers>
</Configuration>

670

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditlogTypeIds.html

22.14.1. Auditlog SPI

The auditlog has its own SPI allowing you to provide your implementations. Relevant classes and
interfaces are located in the com.hazelcast.auditlog package.

The central point of auditlog SPI is the AuditlogService interface and its log(…) methods. Their
implementations are responsible for processing auditable events, e.g., writing them to a database.

AuditlogService also creates the EventBuilder instances which are used to build AuditableEvents.

Another important piece in the SPI is the AuditlogServiceFactory interface. The factory class allows
the AuditlogService initialization based on parameters.

22.15. Security Debugging
The biggest part of business logic related to security in Hazelcast is located in the
com.hazelcast.security Java package. You can investigate the issues by printing more debug info
from this package.

An example Log4J2 configuration is shown below:

<Configuration>
 <Loggers>
 <Logger name="com.hazelcast.security" level="ALL"/>
 </Loggers>
</Configuration>

22.15.1. Java Security Debugging

Java is able to print the debug information about using the security components. During the
security troubleshooting, it’s often helpful to print the additional information by using the
following system property:

-Djava.security.debug=all

See the Troubleshooting Security Java guide for more information.

22.15.2. TLS debugging

To assist with the TLS/SSL issues, you can use the following system property:

-Djavax.net.debug=all

This property provides a lot of logging output including the TLS/SSL handshake, that can be used to
determine the cause of the problem. See the Debugging TSL/SSL Connections guide for more
information.

671

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/package-summary.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/package-summary.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditlogService.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditlogService.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/EventBuilder.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditableEvent.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditlogServiceFactory.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/auditlog/AuditlogServiceFactory.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/troubleshooting-security.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html

22.16. FIPS 140-2
The Federal Information Processing Standard (FIPS) 140-2 is a US government computer security
standard published by National Institute of Standards and Technology (NIST). It specifies the
security requirements for cryptographic modules. FIPS 140-2 compliance is often a requirement of
the software systems used by the US government agencies.

The NIST manages a list of FIPS certified cryptographic modules. These modules are certified under
the Cryptographic Module Validation Program. The list can be searched online here.

Hazelcast uses external modules for cryptographic tasks and it can be configured to use a FIPS 140-
2 validated module. It means most of the configuration required for FIPS is outside of the Hazelcast
configuration. To run Hazelcast in the FIPS compliant mode you have to set the underlying Java
runtime into FIPS mode. It may also require switching the underlying Operating System into the
FIPS mode. We consider using a FIPS enabled OS as a recommended approach even in cases when
it’s not asked for explicitly.

Hazelcast is not an authority which should document switching different Java runtimes into the
FIPS mode. Please consult the documentation of your Java version to learn how to enable the FIPS
mode. Usually it means changing the list of security providers in the java.security

JRE configuration file.

Hazelcast is only responsible for enabling the OpenSSL native library into FIPS mode (see the
Integrating OpenSSL section). If the Hazelcast cluster configuration enables TLS communication
using the native OpenSSL library, you have to enable its FIPS mode in the Hazelcast
OpenSSLEngineFactory configuration. The FIPS mode is controlled by an optional true/false property
called fipsMode. It is disabled by default.

Example OpenSSL configuration in the FIPS mode:

672

https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules/search

XML

<hazelcast>
 ...
 <network>
 <ssl enabled="true">
 <factory-class-name>com.hazelcast.nio.ssl.OpenSSLEngineFactory</factory-
class-name>

 <properties>
 <property name="fipsMode">true</property>
 <property name="protocol">TLSv1.2</property>
 <property name="trustCertCollectionFile">trusted-certs.pem</property>
 <property name="keyFile">privkey.pem</property>
 <property name="keyCertChainFile">chain.pem</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 network:
 ssl:
 enabled: true
 factory-class-name: com.hazelcast.nio.ssl.OpenSSLEngineFactory
 properties:
 fipsMode: true
 protocol: TLSv1.2
 trustCertCollectionFile: trusted-certs.pem
 keyFile: privkey.pem
 keyCertChainFile: chain.pem

When the fipsMode property is set to true, the native OpenSSL engine is either set to the FIPS mode
or an exception is thrown, e.g., in the cases when OpenSSL is compiled without the FIPS support.

If there is more Hazelcast instances (members or clients) with TLS enabled employing the OpenSSL,
then all of them must have the fipsMode property configured in the same way, either enabled or
disabled.

When the FIPS mode is successfully enabled, you will see the following INFO level message in the log
files:

OpenSSL is enabled in FIPS mode.

 BoringSSL libraries don’t support the FIPS mode.

673

22.16.1. Example FIPS 140-2 environment

The FIPS environment configuration steps depend on the used operating system and Java version.
You should consult with their documentation for the specific configurations.

We will describe a sample configuration which uses Red Hat Enterprise Linux (RHEL) version 7 and
IBM Java SDK 8. If you find any difference between the sample configuration described here and
the documentation of the OS and Java vendors, use the vendor’s up-to-date instructions instead.

Switching RHEL 7 into the FIPS mode

The steps on how to configure RHEL 7 in FIPS 140-2 mode are described in the Security guide on the
Red Hat customer portal.

Perform the following steps for the already installed systems:

1. Install the dracut-fips package using the YUM package manager.

2. Run the dracut command to regenerate the initramfs file.

3. Add the fips=1 option to the kernel command line of the boot loader.

4. Disable prelinking (if it was enabled before.

5. Reboot the system.

After finishing these steps, check if the FIPS mode is enabled by running the following command:

Following command should print "crypto.fips_enabled = 1" (value 1 means the FIPS
mode is enabled)
sysctl crypto.fips_enabled

To automate the FIPS mode enablement on RHEL 7, you can check the script which is shared in the
Red Hat discussion forum.

Switching IBM Java SDK into the FIPS mode

IBM Java 8 provides the FIPS mode itself without any third party dependencies.

Details on how to enable the FIPS 140-2 validated configuration can be found in the Security guide
in the Java 8 documentation.

First, it’s necessary to edit the jre/lib/security/java.security file and do the following changes:

• Put IBMJCEFIPS as the first security provider. It will be the first provider to be selected when a
JCA API call is made without specifying an explicit security provider.

security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS

And re-number the original set of security providers by increasing the priority of provider by
one, i.e., the old security.provider.1 becomes security.provider.2 and so on.

674

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/chap-federal_standards_and_regulations
https://access.redhat.com/discussions/3487481
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/security-overview.html

• Add the new security properties (related to handling TLS protected communication):

ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl

The Security provider covering the TLS implementation in IBM Java is IBMJSSE2. To instruct this
provider about using the FIPS validated security primitives (from IBMJCEFIPS), use additional
system properties.

-Dcom.ibm.jsse2.usefipsprovider=true -Dcom.ibm.jsse2.usefipsProviderName=IBMJCEFIPS

23. Performance
This chapter provides information on the performance features of Hazelcast including near cache,
slow operations detector, back pressure and data affinity. Moreover, the chapter describes the best
performance practices for Hazelcast deployed on Amazon EC2. It also describes the threading
models for I/O, events, executors and operations.

23.1. Pipelining
With the pipelining, you can send multiple requests in parallel using a single thread and therefore
can increase throughput. As an example, suppose that the round trip time for a request/response is
1 millisecond. If synchronous requests are used, e.g., IMap.get(), then the maximum throughput out
of these requests from a single thread is 1/001 = 1000 operations/second. One way to solve this
problem is to introduce multithreading to make the requests in parallel. For the same example, if
we would use 2 threads, then the maximum throughput doubles from 1000 operations/second, to
2000 operations/second.

However, introducing threads for the sake of executing requests isn’t always convenient and
doesn’t always lead to an optimal performance; this is where the pipelining can be used. Instead of
using multiple threads to have concurrent invocations, you can use asynchronous method calls
such as IMap.getAsync(). If you would use 2 asynchronous calls from a single thread, then the
maximum throughput is 2*(1/001) = 2000 operations/second. Therefore, to benefit from the
pipelining, asynchronous calls need to be made from a single thread. The pipelining is a
convenience implementation to provide back pressure, i.e., controlling the number of inflight
operations, and it provides a convenient way to wait for all the results.

Pipelining<String> pipelining = new Pipelining<String>(10);
for (long k = 0; k < 100; k++) {
 int key = random.nextInt(keyDomain);
 pipelining.add(map.getAsync(key));
}
// wait for completion
List<String> results = pipelining.results();

675

In the above example, we make 100 asynchronous map.getAsync() calls, but the maximum number
of inflight calls is 10.

By increasing the depth of the pipelining, throughput can be increased. The pipelining has its own
back pressure, you do not need to enable the back pressure on the client or member to have this
feature on the pipelining. However, if you have many pipelines, you may still need to enable the
client/member back pressure because it is possible to overwhelm the system with requests in that
situation. See the Back Pressure section to learn how to enable it on the client or member.

You can use the pipelining both on the clients and members. You do not need a special
configuration, it works out-of-the-box.

The pipelining can be used for any asynchronous call. You can use it for IMap asynchronous get/put
methods as well as for ICache, IAtomicLong, etc. It cannot be used as a transaction mechanism
though. So you cannot do some calls and throw away the pipeline and expect that none of the
requests are executed. If you want to use an atomic behavior, see the Transactions chapter. The
pipelining is just a performance optimization, not a mechanism for atomic behavior.

The pipelines are cheap and should frequently be replaced because they accumulate results. It is
fine to have a few hundred or even a few thousand calls being processed with the pipelining.
However, all the responses to all requests are stored in the pipeline as long as the pipeline is
referenced. So if you want to process a huge number of requests, then every few hundred or few
thousand calls wait for the pipelining results and just create a new instance.

Note that the pipelines are not thread-safe. They must be used by a single thread.

23.2. Data Affinity
Data affinity ensures that related entries exist on the same member. If related data is on the same
member, operations can be executed without the cost of extra network calls and extra wire data.
This feature is provided by using the same partition keys for related data.

23.2.1. PartitionAware

Co-location of related data and computation

Hazelcast has a standard way of finding out which member owns/manages each key object. The
following operations are routed to the same member, since all of them are operating based on the
same key "key1".

676

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapA = hazelcastInstance.getMap("mapA");
Map mapB = hazelcastInstance.getMap("mapB");
Map mapC = hazelcastInstance.getMap("mapC");

// since map names are different, operation will be manipulating
// different entries, but the operation will take place on the
// same member since the keys ("key1") are the same
mapA.put("key1", value);
mapB.get("key1");
mapC.remove("key1");

// lock operation will still execute on the same member
// of the cluster since the key ("key1") is same
hazelcastInstance.getLock("key1").lock();

// distributed execution will execute the 'runnable' on the
// same member since "key1" is passed as the key.
hazelcastInstance.getExecutorService().executeOnKeyOwner(runnable, "key1");

When the keys are the same, entries are stored on the same member. But we sometimes want to
have related entries stored on the same member, such as a customer and his/her order entries. We
would have a customers map with customerId as the key and an orders map with orderId as the
key. Since customerId and orderId are different keys, a customer and his/her orders may fall into
different members in your cluster. So how can we have them stored on the same member? We
create an affinity between customer and orders. If we make them part of the same partition then
these entries will be co-located. We achieve this by making orderKey s PartitionAware.

677

final class OrderKey implements PartitionAware, Serializable {

 private final long orderId;
 private final long customerId;

 OrderKey(long orderId, long customerId) {
 this.orderId = orderId;
 this.customerId = customerId;
 }

 @Override
 public Object getPartitionKey() {
 return customerId;
 }

 @Override
 public String toString() {
 return "OrderKey{"
 + "orderId=" + orderId
 + ", customerId=" + customerId
 + '}';

Notice that OrderKey implements PartitionAware and that getPartitionKey() returns the customerId.
These make sure that the Customer entry and its Orders are stored on the same member.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map mapCustomers = hazelcastInstance.getMap("customers");
Map mapOrders = hazelcastInstance.getMap("orders");

// create the customer entry with customer id = 1
mapCustomers.put(1, customer);

// now create the orders for this customer
mapOrders.put(new OrderKey(21, 1), order);
mapOrders.put(new OrderKey(22, 1), order);
mapOrders.put(new OrderKey(23, 1), order);

Assume that you have a customers map where customerId is the key and the customer object is the
value. You want to remove one of the customer orders and return the number of remaining orders.
Here is how you would normally do it.

678

public static int removeOrder(long customerId, long orderId) throws Exception {
 IMap<Long, Customer> mapCustomers = instance.getMap("customers");
 IMap mapOrders = hazelcastInstance.getMap("orders");

 mapCustomers.lock(customerId);
 mapOrders.remove(new OrderKey(orderId, customerId));
 Set orders = orderMap.keySet(Predicates.equal("customerId", customerId));
 mapCustomers.unlock(customerId);

 return orders.size();
}

There are couple of things you should consider.

• There are four distributed operations there: lock, remove, keySet, unlock. Can you reduce the
number of distributed operations?

• The customer object may not be that big, but can you not have to pass that object through the
wire? Think about a scenario where you set order count to the customer object for fast access,
so you should do a get and a put, and as a result, the customer object is passed through the wire
twice.

Instead, why not move the computation over to the member (JVM) where your customer data
resides. Here is how you can do this with distributed executor service.

1. Send a PartitionAware Callable task.

2. Callable does the deletion of the order right there and returns with the remaining order count.

3. Upon completion of the Callable task, return the result (remaining order count). You do not
have to wait until the task is completed; since distributed executions are asynchronous, you can
do other things in the meantime.

Here is an example code.

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();

 public int removeOrder(long customerId, long orderId) throws Exception {
 IExecutorService executorService = hazelcastInstance.getExecutorService(
"ExecutorService");

 OrderDeletionTask task = new OrderDeletionTask(customerId, orderId);
 Future<Integer> future = executorService.submit(task);
 int remainingOrders = future.get();

 return remainingOrders;
 }

 public static class OrderDeletionTask
 implements Callable<Integer>, PartitionAware, Serializable,
HazelcastInstanceAware {

679

 private long orderId;
 private long customerId;
 private HazelcastInstance hazelcastInstance;

 public OrderDeletionTask() {
 }

 public OrderDeletionTask(long customerId, long orderId) {
 this.customerId = customerId;
 this.orderId = orderId;
 }

 @Override
 public Integer call() {
 IMap<Long, Customer> customerMap = hazelcastInstance.getMap("customers");
 IMap<OrderKey, Order> orderMap = hazelcastInstance.getMap("orders");

 customerMap.lock(customerId);

 Predicate predicate = Predicates.equal("customerId", customerId);
 Set<OrderKey> orderKeys = orderMap.localKeySet(predicate);
 int orderCount = orderKeys.size();
 for (OrderKey key : orderKeys) {
 if (key.orderId == orderId) {
 orderCount--;
 orderMap.delete(key);
 }
 }

 customerMap.unlock(customerId);

 return orderCount;
 }

 @Override
 public Object getPartitionKey() {
 return customerId;
 }

 @Override
 public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
 this.hazelcastInstance = hazelcastInstance;
 }
 }

The following are the benefits of doing the same operation with distributed ExecutorService based
on the key:

• only one distributed execution (executorService.submit(task)), instead of four

680

• less data is sent over the wire

• less lock duration, i.e., higher concurrency, for the Customer entry since lock/update/unlock cycle
is done locally (local to the customer data)

23.2.2. PartitioningStrategy

Another way of storing the related data on the same location is using/implementing the class
PartitioningStrategy. Normally (if no partitioning strategy is defined), Hazelcast finds the partition
of a key first by converting the object to binary and then by hashing this binary. If a partitioning
strategy is defined, Hazelcast injects the key to the strategy and the strategy returns an object out of
which the partition is calculated by hashing it.

Hazelcast offers the following out-of-the-box partitioning strategies:

• DefaultPartitioningStrategy: Default strategy. It checks whether the key implements
PartitionAware. If it implements, the object is converted to binary and then hashed, to find the
partition of the key.

• StringPartitioningStrategy: Works only for string keys. It uses the string after @ character as the
partition ID. For example, if you have two keys ordergroup1@region1 and customergroup1@region1,
both ordergroup1 and customergroup1 fall into the partition where region1 is located.

• StringAndPartitionAwarePartitioningStrategy: Works as the combination of the above two
strategies. If the key implements PartitionAware, it works like the DefaultPartitioningStrategy.
If it is a string key, it works like the StringPartitioningStrategy.

Following are the example configuration snippets. Note that these strategy configurations are per
map.

Declarative Configuration:

XML

<hazelcast>
 ...
 <map name="name-of-the-map">
 <partition-strategy>

com.hazelcast.partition.strategy.StringAndPartitionAwarePartitioningStrategy
 </partition-strategy>
 </map>
 ...
</hazelcast>

681

YAML

hazelcast:
 map:
 name-of-the-map:
 partition-strategy:
com.hazelcast.partition.strategy.StringAndPartitionAwarePartitioningStrategy

Programmatic Configuration:

Config config = new Config();
MapConfig mapConfig = config.getMapConfig("name-of-the-map");
PartitioningStrategyConfig psConfig = mapConfig.getPartitioningStrategyConfig();
psConfig.setPartitioningStrategyClass("StringAndPartitionAwarePartitioningStrategy"
);

// OR
psConfig.setPartitioningStrategy(YourCustomPartitioningStrategy);
...

You can also define your own partition strategy by implementing the class PartitioningStrategy. To
enable your implementation, add the full class name to your Hazelcast configuration using either
the declarative or programmatic approach, as exemplified above.

The examples above show how to define a partitioning strategy per map. Note that all the members
of your cluster must have the same partitioning strategy configurations.

You can also change a global strategy which is applied to all the data structures in your cluster. This
can be done by defining the hazelcast.partitioning.strategy.class system property. An example
declarative way of configuring this property is shown below:

XML

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.partitioning.strategy.class">

com.hazelcast.partition.strategy.StringAndPartitionAwarePartitioningStrategy
 </property>
 </properties>
 ...
</hazelcast>

682

YAML

hazelcast:
 properties:
 hazelcast.partitioning.strategy.class:
com.hazelcast.partition.strategy.StringAndPartitionAwarePartitioningStrategy

You can specify the aforementioned out-of-the-box strategies or your custom partitioning strategy.

You can also use other system property configuring options as explained in the Configuring with
System Properties section.

The per map and global (cluster) partitioning strategies are supported on the member side.
Hazelcast IMDG Java clients only support the global strategy and it is configured via the same
system property used in the members (`hazelcast.partitioning.strategy.class `).

23.3. CPU Thread Affinity
Hazelcast offers configuring CPU threads so that you have a lot better control on the latency and a
better throughput. This configuration provides you with the CPU thread affinity, where certain
threads can have affinity for particular CPUs.

The following affinity configurations are available for a member:

-Dhazelcast.io.input.thread.affinity=1-3
-Dhazelcast.io.output.thread.affinity=3-5
-Dhazelcast.operation.thread.affinity=7-10,13
-Dhazelcast.operation.response.thread.affinity=15,16

The following affinity configurations are available for a client:

-Dhazelcast.client.io.input.thread.affinity=1-4
-Dhazelcast.client.io.output.thread.affinity=5-8
-Dhazelcast.client.response.thread.affinity=7-9

You can set the CPU thread affinity properties shown above only on the command line.

Let’s have a look at how we define the values for the above configuration properties:

• Individual CPUs, e.g., 1,2,3: This means there are going to be three threads. The first thread
runs on CPU 1, the second thread on CPU 2, and so on.

• CPU ranges, e.g., 1-3: Shortcut syntax for 1,2,3.

• Group, e.g., [1-3]: This configures three threads and each of these threads can run on CPU 1, 2
and 3.

• Group with thread count, e.g., [1-3]:2: This configures two threads and each of these two
threads can run on CPU 1, 2 and 3.

683

You can also combine those, e.g., 1,2,[5-7],[10,12,16]:2.

Note that, the syntax for CPU thread affinity shown above not only determines the mapping of CPUs
to threads, it also determines the thread count. If you use CPU thread affinity, e.g.,
hazelcast.io.input.thread.affinity, then hazelcast.io.input.thread.count is ignored. See I/O
Threading for more information on specifying explicit thread counts.

If you don’t configure affinity for a category of threads, it means they can run on any CPU.

Let’s look at an example. Assuming you have the numactl utility, run the following command on
your machine to see the mapping between the NUMA nodes and threads:

numactl --hardware

An example output is shown below:

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29
node 0 size: 393090 MB
node 0 free: 372729 MB
node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39
node 1 size: 393216 MB
node 1 free: 343296 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

If you want to configure 20 threads on NUMA node 0 and 20 threads on NUMA node 1, and confine
the threads to these NUMA nodes, you can use the following configuration:

-Dhazelcast.operation.thread.affinity=[0-9,20-29],[10-19,30-39]

See here for information on NUMA nodes.

23.4. Running on EC2
For the best performance of your Hazelcast on AWS EC2:

• Select the newest Linux AMIs.

• Select the HVM based instances.

• Select at least a system with 8 vCPUs, e.g., c4.2xlarge. For an overview of all types of EC2
instances, please check this web page.

• Consider setting a placement group.

684

https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.ec2instances.info

23.5. Back Pressure
Hazelcast uses operations to make remote calls. For example, a map.get is an operation and a
map.put is one operation for the primary and one operation for each of the backups, i.e., map.put is
executed for the primary and also for each backup. In most cases, there is a natural balance
between the number of threads performing operations and the number of operations being
executed. However, the following may pile up this balance and operations and eventually lead to
OutofMemoryException (OOME):

• Asynchronous calls: With async calls, the system may be flooded with the requests.

• Asynchronous backups: The asynchronous backups may be piling up.

To prevent the system from crashing, Hazelcast provides back pressure. Back pressure works by:

• limiting the number of concurrent operation invocations

• and periodically making an async backup sync.

23.5.1. Member Side

Back pressure is disabled by default and you can enable it using the following system property:

hazelcast.backpressure.enabled

To control the number of concurrent invocations, you can configure the number of invocations
allowed per partition using the following system property:

hazelcast.backpressure.max.concurrent.invocations.per.partition

The default value of this system property is 100. Using a default configuration a system is allowed to
have (271 + 1) * 100 = 27200 concurrent invocations (271 partitions + 1 for generic operations).

Back pressure is only applied to normal operations. System operations like heart beats and
partition migration operations are not influenced by back pressure. 27200 invocations might seem
like a lot, but keep in mind that executing a task on IExecutor or acquiring a lock also requires an
operation.

If the maximum number of invocations has been reached, Hazelcast automatically applies an
exponential backoff policy. This gives the system some time to deal with the load. Using the
following system property, you can configure the maximum time to wait before a
HazelcastOverloadException is thrown:

hazelcast.backpressure.backoff.timeout.millis

This system property’s default value is 60000 milliseconds.

The Health Monitor keeps an eye on the usage of the invocations. If it sees a member has consumed
70% or more of the invocations, it starts to log health messages.

Apart from controlling the number of invocations, you also need to control the number of pending
async backups. This is done by periodically making these backups sync instead of async. This forces
all pending backups to get drained. For this, Hazelcast tracks the number of asynchronous backups

685

for each partition. At every Nth call, one synchronization is forced. This N is controlled through the
following property:

hazelcast.backpressure.syncwindow

This system property’s default value is 100. It means, out of 100 asynchronous backups, Hazelcast
makes 1 of them a synchronous one. A randomization is added, so the sync window with default
configuration is between 75 and 125 invocations.

23.5.2. Client Side

To prevent the system on the client side from overloading, you can apply a constraint on the
number of concurrent invocations. You can use the following system property on the client side for
this purpose:

hazelcast.client.max.concurrent.invocations

This property defines the maximum allowed number of concurrent invocations. When it is not
explicitly set, it has the value Integer.MAX_VALUE by default, which means infinite. When you set it
and if the maximum number of concurrent invocations is exceeded this value, Hazelcast throws
HazelcastOverloadException when a new invocation comes in.

Please note that back off timeout and controlling the number of pending async backups (sync
window) is not supported on the client side.

See the System Properties appendix to learn how to configure the system
properties.

23.6. Threading Model
Your application server has its own threads. Hazelcast does not use these; it manages its own
threads.

23.6.1. I/O Threading

Hazelcast uses a pool of threads for I/O. A single thread does not perform all the I/O. Instead,
multiple threads perform the I/O. On each cluster member, the I/O threading is split up in 3 types of
I/O threads:

• I/O thread for the accept requests

• I/O threads to read data from other members/clients

• I/O threads to write data to other members/clients

You can configure the number of I/O threads using the hazelcast.io.thread.count system property.
Its default value is 3 per member. If 3 is used, in total there are 7 I/O threads: 1 accept I/O thread, 3
read I/O threads and 3 write I/O threads. Each I/O thread has its own Selector instance and waits on
the Selector.select if there is nothing to do.

686

You can also specify counts for input and output threads separately. There are
hazelcast.io.input.thread.count and hazelcast.io.output.thread.count properties
for this purpose. See the System Properties appendix for information on these
properties and how to set them.

Hazelcast periodically scans utilization of each I/O thread and can decide to migrate a connection to
a new thread if the existing thread is servicing a disproportionate number of I/O events. You can
customize the scanning interval by configuring the hazelcast.io.balancer.interval.seconds system
property; its default interval is 20 seconds. You can disable the balancing process by setting this
property to a negative value.

In case of the read I/O thread, when sufficient bytes for a packet have been received, the Packet
object is created. This Packet object is then sent to the system where it is de-multiplexed. If the
Packet header signals that it is an operation/response, the Packet is handed over to the operation
service (see the Operation Threading section). If the Packet is an event, it is handed over to the
event service (see the Event Threading section).

23.6.2. Event Threading

Hazelcast uses a shared event system to deal with components that rely on events, such as topic,
collections, listeners and Near Cache.

Each cluster member has an array of event threads and each thread has its own work queue. When
an event is produced, either locally or remotely, an event thread is selected (depending on if there
is a message ordering) and the event is placed in the work queue for that event thread.

You can set the following properties to alter the system’s behavior:

• hazelcast.event.thread.count: Number of event-threads in this array. Its default value is 5.

• hazelcast.event.queue.capacity: Capacity of the work queue. Its default value is 1000000.

• hazelcast.event.queue.timeout.millis: Timeout for placing an item on the work queue in
milliseconds. Its default value is 250 milliseconds.

If you process a lot of events and have many cores, changing the value of
hazelcast.event.thread.count property to a higher value is a good practice. This way, more events
can be processed in parallel.

Multiple components share the same event queues. If there are 2 topics, say A and B, for certain
messages they may share the same queue(s) and hence the same event thread. If there are a lot of
pending messages produced by A, then B needs to wait. Also, when processing a message from A
takes a lot of time and the event thread is used for that, B suffers from this. That is why it is better
to offload processing to a dedicated thread (pool) so that systems are better isolated.

If the events are produced at a higher rate than they are consumed, the queue grows in size. To
prevent overloading the system and running into an OutOfMemoryException, the queue is given a
capacity of 1 million items. When the maximum capacity is reached, the items are dropped. This
means that the event system is a 'best effort' system. There is no guarantee that you are going to get
an event. Topic A might have a lot of pending messages and therefore B cannot receive messages

687

because the queue has no capacity and messages for B are dropped.

23.6.3. IExecutor Threading

Executor threading is straight forward. When a task is received to be executed on Executor E, then
E will have its own ThreadPoolExecutor instance and the work is placed in the work queue of this
executor. Thus, Executors are fully isolated, but still share the same underlying hardware - most
importantly the CPUs.

You can configure the IExecutor using the ExecutorConfig (programmatic configuration) or using
<executor> (declarative configuration). See also the Configuring Executor Service section.

23.6.4. Operation Threading

The following are the operation types:

• operations that are aware of a certain partition, e.g., IMap.get(key)

• operations that are not partition aware, e.g., IExecutorService.executeOnMember(command, member)

Each of these operation types has a different threading model explained in the following sections.

Partition-aware Operations

To execute partition-aware operations, an array of operation threads is created. The default value
of this array’s size is the number of cores and it has a minimum value of 2. This value can be
changed using the hazelcast.operation.thread.count property.

Each operation thread has its own work queue and it consumes messages from this work queue. If
a partition-aware operation needs to be scheduled, the right thread is found using the formula
below.

threadIndex = partitionId % partition thread-count

After the threadIndex is determined, the operation is put in the work queue of that operation
thread. This means the followings:

• A single operation thread executes operations for multiple partitions; if there are 271 partitions
and 10 partition threads, then roughly every operation thread executes operations for 27
partitions.

• Each partition belongs to only 1 operation thread. All operations for a partition are always
handled by exactly the same operation thread.

• Concurrency control is not needed to deal with partition-aware operations because once a
partition-aware operation is put in the work queue of a partition-aware operation thread, only 1
thread is able to touch that partition.

Because of this threading strategy, there are two forms of false sharing you need to be aware of:

• False sharing of the partition - two completely independent data structures share the same
partition. For example, if there is a map employees and a map orders, the method

688

employees.get("peter") running on partition 25 may be blocked by the method orders.get(1234)
also running on partition 25. If independent data structures share the same partition, a slow
operation on one data structure can slow down the other data structures.

• False sharing of the partition-aware operation thread - each operation thread is responsible for
executing operations on a number of partitions. For example, thread 1 could be responsible for
partitions 0, 10, 20, etc. and thread-2 could be responsible for partitions 1, 11, 21, etc. If an
operation for partition 1 takes a lot of time, it blocks the execution of an operation for partition
11 because both of them are mapped to the same operation thread.

You need to be careful with long running operations because you could starve operations of a
thread. As a general rule, the partition thread should be released as soon as possible because
operations are not designed as long running operations. That is why, for example, it is very
dangerous to execute a long running operation using AtomicReference.alter() or an
IMap.executeOnKey(), because these operations block other operations to be executed.

Currently, there is no support for work stealing. Different partitions that map to the same thread
may need to wait till one of the partitions is finished, even though there are other free partition-
aware operation threads available.

Example:

Take a cluster with three members. Two members have 90 primary partitions and one member has
91 primary partitions. Let’s say you have one CPU and four cores per CPU. By default, four
operation threads will be allocated to serve 90 or 91 partitions.

Non-Partition-aware Operations

To execute operations that are not partition-aware, e.g., IExecutorService.executeOnMember(command,
member), generic operation threads are used. When the Hazelcast instance is started, an array of
operation threads is created. The size of this array has a default value of the number of cores
divided by two with a minimum value of 2. It can be changed using the
hazelcast.operation.generic.thread.count property.

A non-partition-aware operation thread does not execute an operation for a specific partition. Only
partition-aware operation threads execute partition-aware operations.

Unlike the partition-aware operation threads, all the generic operation threads share the same
work queue: genericWorkQueue.

If a non-partition-aware operation needs to be executed, it is placed in that work queue and any
generic operation thread can execute it. The big advantage is that you automatically have work
balancing since any generic operation thread is allowed to pick up work from this queue.

The disadvantage is that this shared queue can be a point of contention. You may not see this
contention in production since performance is dominated by I/O and the system does not run many
non-partition-aware operations.

Priority Operations

In some cases, the system needs to run operations with a higher priority, e.g., an important system

689

operation. To support priority operations, Hazelcast has the following features:

• For partition-aware operations: Each partition thread has its own work queue and it also has a
priority work queue. The partition thread always checks the priority queue before it processes
work from its normal work queue.

• For non-partition-aware operations: Next to the genericWorkQueue, there is also a
genericPriorityWorkQueue. When a priority operation needs to be run, it is put in the
genericPriorityWorkQueue. Like the partition-aware operation threads, a generic operation
thread first checks the genericPriorityWorkQueue for work.

Since a worker thread blocks on the normal work queue (either partition specific or generic), a
priority operation may not be picked up because it is not put in the queue where it is blocking.
Hazelcast always sends a 'kick the worker' operation that only triggers the worker to wake up and
check the priority queue.

Operation-response and Invocation-future

When an Operation is invoked, a Future is returned. See the example code below.

GetOperation operation = new GetOperation(mapName, key);
Future future = operationService.invoke(operation);
future.get();

The calling side blocks for a reply. In this case, GetOperation is set in the work queue for the
partition of key, where it eventually is executed. Upon execution, a response is returned and placed
on the genericWorkQueue where it is executed by a "generic operation thread". This thread signals the
future and notifies the blocked thread that a response is available. Hazelcast has a plan of exposing
this future to the outside world, and we will provide the ability to register a completion listener so
you can perform asynchronous calls.

Local Calls

When a local partition-aware call is done, an operation is made and handed over to the work queue
of the correct partition operation thread, and a future is returned. When the calling thread calls get
on that future, it acquires a lock and waits for the result to become available. When a response is
calculated, the future is looked up and the waiting thread is notified.

In the future, this will be optimized to reduce the amount of expensive systems calls, such as
lock.acquire()/notify() and the expensive interaction with the operation-queue. Probably, we will
add support for a caller-runs mode, so that an operation is directly run on the calling thread.

23.7. SlowOperationDetector
The SlowOperationDetector monitors the operation threads and collects information about all slow
operations. An Operation is a task executed by a generic or partition thread (see Operation
Threading). An operation is considered as slow when it takes more computation time than the
configured threshold.

690

The SlowOperationDetector stores the fully qualified classname of the operation and its stacktrace as
well as operation details, start time and duration of each slow invocation. All collected data is
available in the Management Center.

The SlowOperationDetector is configured via the following system properties.

• hazelcast.slow.operation.detector.enabled

• hazelcast.slow.operation.detector.log.purge.interval.seconds

• hazelcast.slow.operation.detector.log.retention.seconds

• hazelcast.slow.operation.detector.stacktrace.logging.enabled

• hazelcast.slow.operation.detector.threshold.millis

See the System Properties appendix for explanations of these properties.

23.7.1. Logging of Slow Operations

The detected slow operations are logged as warnings in the Hazelcast log files:

WARN 2015-05-07 11:05:30,890 SlowOperationDetector: [127.0.0.1]:5701
 Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
 Hint: You can enable the logging of stacktraces with the following config
 property: hazelcast.slow.operation.detector.stacktrace.logging.enabled
WARN 2015-05-07 11:05:30,891 SlowOperationDetector: [127.0.0.1]:5701
 Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
 (2 invocations)
WARN 2015-05-07 11:05:30,892 SlowOperationDetector: [127.0.0.1]:5701
 Slow operation detected: com.hazelcast.map.impl.operation.PutOperation
 (3 invocations)

Stacktraces are always reported to the Management Center, but by default they are not printed to
keep the log size small. If logging of stacktraces is enabled, the full stacktrace is printed every 100
invocations. All other invocations print a shortened version.

23.7.2. Purging of Slow Operation Logs

Since a Hazelcast cluster can run for a very long time, Hazelcast purges the slow operation logs
periodically to prevent an OOME. You can configure the purge interval and the retention time for
each invocation.

The purging removes each invocation whose retention time is exceeded. When all invocations are
purged from a slow operation log, the log is deleted.

23.8. Near Cache
Map or Cache entries in Hazelcast are partitioned across the cluster members. Hazelcast clients do
not have local data at all. Suppose you read the key k a number of times from a Hazelcast client or k
is owned by another member in your cluster. Then each map.get(k) or cache.get(k) will be a remote
operation, which creates a lot of network trips. If you have a data structure that is mostly read, then

691

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-members

you should consider creating a local Near Cache, so that reads are sped up and less network traffic
is created.

These benefits do not come for free. See the following trade-offs:

• Members with a Near Cache has to hold the extra cached data, which increases memory
consumption.

• If invalidation is enabled and entries are updated frequently, then invalidations will be costly.

• Near Cache breaks the strong consistency guarantees; you might be reading stale data.

Near Cache is highly recommended for data structures that are mostly read.

In a client/server system you must enable the Near Cache separately on the client, without the need
to configure it on the server. Please note that Near Cache configuration is specific to the server or
client itself: a data structure on a server may not have Near Cache configured while the same data
structure on a client may have Near Cache configured. They also can have different Near Cache
configurations.

If you are using Near Cache, you should take into account that your hits to the keys in the Near
Cache are not reflected as hits to the original keys on the primary members. This has for example
an impact on IMap’s maximum idle seconds or time-to-live seconds expiration. Therefore, even
though there is a hit on a key in Near Cache, your original key on the primary member may expire.

Near Cache works only when you access data via map.get(k) or cache.get(k)
methods. Data returned using a predicate is not stored in the Near Cache.

23.8.1. Hazelcast Data Structures with Near Cache Support

The following matrix shows the Hazelcast data structures with Near Cache support. Please have a
look at the next section for a detailed explanation of cache-local-entries, local-update-policy,
preloader and serialize-keys.

Data structure Near Cache
Support

cache-local-
entries

local-update-
policy

preloader serialize-keys

IMap member yes yes no no yes

IMap client yes no no yes yes

JCache
member

no no no no no

JCache client yes no yes yes yes

ReplicatedMap
member

no no no no no

ReplicatedMap
client

yes no no no no

Transactional
Map member

limited no no no no

692

Data structure Near Cache
Support

cache-local-
entries

local-update-
policy

preloader serialize-keys

Transactional
Map client

no no no no no

Even though lite members do not store any data for Hazelcast data structures, you
can enable Near Cache on lite members for faster reads.

23.8.2. Configuring Near Cache

The following shows the configuration for the Hazelcast Near Cache.

Please keep in mind that, if you want to use near cache on a Hazelcast member,
configure it on the member; if you want to use it on a Hazelcast client, configure it
on the client.

Declarative Configuration:

XML

<hazelcast>
 ...
 <near-cache name="myDataStructure">
 <in-memory-format>BINARY</in-memory-format>
 <invalidate-on-change>true</invalidate-on-change>
 <time-to-live-seconds>0</time-to-live-seconds>
 <max-idle-seconds>60</max-idle-seconds>
 <eviction eviction-policy="LFU"
 max-size-policy= "ENTRY_COUNT"
 size="1000"/>
 <cache-local-entries>false</cache-local-entries>
 <local-update-policy>INVALIDATE</local-update-policy>
 <preloader enabled="true"
 directory="nearcache-example"
 store-initial-delay-seconds="0"
 store-interval-seconds="0"/>
 </near-cache>
 ...
</hazelcast>

693

YAML

hazelcast:
 near-cache:
 myDataStructure:
 in-memory-format: BINARY
 invalidate-on-change: true
 time-to-live-seconds: 0
 max-idle-seconds: 60
 eviction:
 size: 1000
 max-size-policy: ENTRY_COUNT
 eviction-policy: LFU
 cache-local-entries: false
 local-update-policy: INVALIDATE
 preloader:
 enabled: true
 directory: nearcache-example
 store-initial-delay-seconds: 0
 store-interval-seconds: 0

The element <near-cache> has an optional attribute name whose default value is default.

Programmatic Configuration:

EvictionConfig evictionConfig = new EvictionConfig()
 .setMaxSizePolicy(MaxSizePolicy.ENTRY_COUNT)
 .setEvictionPolicy(EvictionPolicy.LRU)
 .setSize(1);

NearCachePreloaderConfig preloaderConfig = new NearCachePreloaderConfig()
 .setEnabled(true)
 .setDirectory("nearcache-example")
 .setStoreInitialDelaySeconds(1)
 .setStoreIntervalSeconds(2);

NearCacheConfig nearCacheConfig = new NearCacheConfig()
 .setName("myDataStructure")
 .setInMemoryFormat(InMemoryFormat.BINARY)
 .setSerializeKeys(true)
 .setInvalidateOnChange(false)
 .setTimeToLiveSeconds(1)
 .setMaxIdleSeconds(5)
 .setEvictionConfig(evictionConfig)
 .setCacheLocalEntries(true)
 .setLocalUpdatePolicy(NearCacheConfig.LocalUpdatePolicy.CACHE_ON_UPDATE)
 .setPreloaderConfig(preloaderConfig);

The class NearCacheConfig is used for all supported Hazelcast data structures on members and

694

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/NearCacheConfig.html

clients.

The following are the descriptions of all configuration elements and attributes:

• in-memory-format: Specifies in which format data is stored in your Near Cache. Note that a map’s
in-memory format can be different from that of its Near Cache. Available values are as follows:

◦ BINARY: Data is stored in serialized binary format (default value).

◦ OBJECT: Data is stored in deserialized form.

◦ NATIVE: Data is stored in the Near Cache that uses Hazelcast’s High-Density Memory Store
feature. This option is available only in Hazelcast IMDG Enterprise HD. Note that a map and
its Near Cache can independently use High-Density Memory Store. For example, while your
map does not use High-Density Memory Store, its Near Cache can use it.

• invalidate-on-change: Specifies whether the cached entries are evicted when the entries are
updated or removed. Its default value is true.

• time-to-live-seconds: Maximum number of seconds for each entry to stay in the Near Cache.
Entries that are older than this period are automatically evicted from the Near Cache.
Regardless of the eviction policy used, time-to-live-seconds still applies. Any integer between 0
and Integer.MAX_VALUE. 0 means infinite. Its default value is 0.

• max-idle-seconds: Maximum number of seconds each entry can stay in the Near Cache as
untouched (not read). Entries that are not read more than this period are removed from the
Near Cache. Any integer between 0 and Integer.MAX_VALUE. 0 means Integer.MAX_VALUE. Its
default value is 0.

• eviction: Specifies the eviction behavior when you use High-Density Memory Store for your
Near Cache. It has the following attributes:

◦ eviction-policy: Eviction policy configuration. Available values are as follows:

▪ LRU: Least Recently Used (default value).

▪ LFU: Least Frequently Used.

▪ NONE: No items are evicted and the property max-size is ignored. You still can combine it
with time-to-live-seconds and max-idle-seconds to evict items from the Near Cache.

▪ RANDOM: A random item is evicted.

◦ max-size-policy: Maximum size policy for eviction of the Near Cache. Available values are as
follows:

▪ ENTRY_COUNT: Maximum size based on the entry count in the Near Cache (default value).

▪ USED_NATIVE_MEMORY_SIZE: Maximum used native memory size of the specified Near Cache
in MB to trigger the eviction. If the used native memory size exceeds this threshold, the
eviction is triggered. Available only for NATIVE in-memory format. This is supported only
by Hazelcast IMDG Enterprise.

▪ USED_NATIVE_MEMORY_PERCENTAGE: Maximum used native memory percentage of the
specified Near Cache to trigger the eviction. If the native memory usage percentage
(relative to maximum native memory size) exceeds this threshold, the eviction is
triggered. Available only for NATIVE in-memory format. This is supported only by
Hazelcast IMDG Enterprise.

695

▪ FREE_NATIVE_MEMORY_SIZE: Minimum free native memory size of the specified Near Cache
in MB to trigger the eviction. If free native memory size goes below this threshold,
eviction is triggered. Available only for NATIVE in-memory format. This is supported only
by Hazelcast IMDG Enterprise.

▪ FREE_NATIVE_MEMORY_PERCENTAGE: Minimum free native memory percentage of the
specified Near Cache to trigger eviction. If free native memory percentage (relative to
maximum native memory size) goes below this threshold, eviction is triggered. Available
only for NATIVE in-memory format. This is supported only by Hazelcast IMDG Enterprise.

◦ size: Maximum size of the Near Cache used for max-size-policy. When this is reached the
Near Cache is evicted based on the policy defined. Any integer between 1 and
Integer.MAX_VALUE. This value has different defaults, depending on the data structure.

▪ IMap: Its default value is Integer.MAX_VALUE for on-heap maps and 10000 for the NATIVE in-
memory format.

▪ JCache: Its default value is 10000.

• cache-local-entries: Specifies whether the local entries are cached. It can be useful when in-
memory format for Near Cache is different from that of the map. By default, it is disabled. Is just
available on Hazelcast members, not on Hazelcast clients (which have no local entries).

• local-update-policy: Specifies the update policy of the local Near Cache. It is available on JCache
clients. Available values are as follows:

◦ INVALIDATE: Removes the Near Cache entry on mutation. After the mutative call to the
member completes but before the operation returns to the caller, the Near Cache entry is
removed. Until the mutative operation completes, the readers still continue to read the old
value. But as soon as the update completes the Near Cache entry is removed. Any threads
reading the key after this point will have a Near Cache miss and call through to the member,
obtaining the new entry. This setting provides read-your-writes consistency. This is the
default setting.

◦ CACHE_ON_UPDATE: Updates the Near Cache entry on mutation. After the mutative call to the
member completes but before the put returns to the caller, the Near Cache entry is updated.
So a remove will remove it and one of the put methods will update it to the new value. Until
the update/remove operation completes, the entry’s old value can still be read from the Near
Cache. But before the call completes the Near Cache entry is updated. Any threads reading
the key after this point read the new entry. If the mutative operation was a remove, the key
will no longer exist in the cache, both the Near Cache and the original copy in the member.
The member initiates an invalidate event to any other Near Caches, however the caller Near
Cache is not invalidated as it already has the new value. This setting also provides read-
your-writes consistency.

• preloader: Specifies if the Near Cache should store and pre-load its keys for a faster re-
population after a Hazelcast client restart. Is just available on IMap and JCache clients. It has the
following attributes:

◦ enabled: Specifies whether the preloader for this Near Cache is enabled or not, true or false.

◦ directory: Specifies the parent directory for the preloader of this Near Cache. The filenames
for the preloader storage are generated from the Near Cache name. You can additionally
specify the parent directory to have multiple clients on the same machine with the same

696

Near Cache names.

◦ store-initial-delay-seconds: Specifies the delay in seconds until the keys of this Near Cache
are stored for the first time. Its default value is 600 seconds.

◦ store-interval-seconds: Specifies the interval in seconds in which the keys of this Near
Cache are stored. Its default value is 600 seconds.

23.8.3. Near Cache Configuration Examples

This section shows some configuration examples for different Hazelcast data structures.

Near Cache Example for IMap

The following are configuration examples for IMap Near Caches for Hazelcast members and clients.

XML

<hazelcast>
 ...
 <map name="mostlyReadMap">
 <in-memory-format>BINARY</in-memory-format>
 <near-cache>
 <in-memory-format>OBJECT</in-memory-format>
 <invalidate-on-change>false</invalidate-on-change>
 <time-to-live-seconds>600</time-to-live-seconds>
 <eviction eviction-policy="NONE" max-size-policy="ENTRY_COUNT" size="5000
"/>
 <cache-local-entries>true</cache-local-entries>
 </near-cache>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 mostlyReadMap:
 in-memory-format: BINARY
 near-cache:
 in-memory-format: OBJECT
 invalidate-on-change: false
 time-to-live-seconds: 600
 eviction:
 eviction-policy: NONE
 max-size-policy: ENTRY_COUNT
 size: 5000
 cache-local-entries: true

697

JAVA

EvictionConfig evictionConfig = new EvictionConfig()
 .setEvictionPolicy(EvictionPolicy.NONE)
 .setMaximumSizePolicy(MaxSizePolicy.ENTRY_COUNT)
 .setSize(5000);

NearCacheConfig nearCacheConfig = new NearCacheConfig()
 .setInMemoryFormat(InMemoryFormat.OBJECT)
 .setInvalidateOnChange(false)
 .setTimeToLiveSeconds(600)
 .setEvictionConfig(evictionConfig);

Config config = new Config();
config.getMapConfig("mostlyReadMap")
 .setInMemoryFormat(InMemoryFormat.BINARY)
 .setNearCacheConfig(nearCacheConfig);

The Near Cache configuration for maps on members is a child of the map configuration, so you do
not have to define the map name in the Near Cache configuration.

XML

<hazelcast-client>
 ...
 <near-cache name="mostlyReadMap">
 <in-memory-format>OBJECT</in-memory-format>
 <invalidate-on-change>true</invalidate-on-change>
 <eviction eviction-policy="LRU" max-size-policy="ENTRY_COUNT" size="50000"/>
 </near-cache>
 ...
</hazelcast-client>

YAML

hazelcast-client:
 near-cache:
 mostlyReadMap:
 in-memory-format: OBJECT
 invalidate-on-change: true
 eviction:
 eviction-policy: LRU
 max-size-policy: ENTRY_COUNT
 size: 50000

698

JAVA

EvictionConfig evictionConfig = new EvictionConfig()
 .setEvictionPolicy(EvictionPolicy.LRU)
 .setMaximumSizePolicy(MaxSizePolicy.ENTRY_COUNT)
 .setSize(50000);

NearCacheConfig nearCacheConfig = new NearCacheConfig()
 .setName("mostlyReadMap")
 .setInMemoryFormat(InMemoryFormat.OBJECT)
 .setInvalidateOnChange(true)
 .setEvictionConfig(evictionConfig);

ClientConfig clientConfig = new ClientConfig()
 .addNearCacheConfig(nearCacheConfig);

The Near Cache on the client side must have the same name as the data structure on the member
for which this Near Cache is being created. You can use wildcards, so in this example mostlyRead*
would also match the map mostlyReadMap.

A Near Cache can have its own in-memory-format which is independent of the in-memory-format of
the data structure.

Near Cache Example for JCache Clients

The following is a configuration example for a JCache Near Cache for a Hazelcast client.

XML

<hazelcast-client>
 ...
 <near-cache name="mostlyReadCache">
 <in-memory-format>OBJECT</in-memory-format>
 <invalidate-on-change>true</invalidate-on-change>
 <eviction eviction-policy="LRU" max-size-policy="ENTRY_COUNT" size="30000"/>
 <local-update-policy>CACHE_ON_UPDATE</local-update-policy>
 </near-cache>
 ...
</hazelcast-client>

699

YAML

hazelcast-client:
 near-cache:
 mostlyReadCache:
 in-memory-format: OBJECT
 invalidate-on-change: true
 eviction:
 eviction-policy: LRU
 max-size-policy: ENTRY_COUNT
 size: 30000
 local-update-policy: CACHE_ON_UPDATE

JAVA

EvictionConfig evictionConfig = new EvictionConfig()
 .setEvictionPolicy(EvictionPolicy.LRU)
 .setMaximumSizePolicy(MaxSizePolicy.ENTRY_COUNT)
 .setSize(30000);

NearCacheConfig nearCacheConfig = new NearCacheConfig()
 .setName("mostlyReadCache")
 .setInMemoryFormat(InMemoryFormat.OBJECT)
 .setInvalidateOnChange(true)
 .setEvictionConfig(evictionConfig)
 .setLocalUpdatePolicy(LocalUpdatePolicy.CACHE_ON_UPDATE);

ClientConfig clientConfig = new ClientConfig()
 .addNearCacheConfig(nearCacheConfig);

Example for Near Cache with High-Density Memory Store

Hazelcast IMDG Enterprise HD Feature

The following is a configuration example for an IMap High-Density Near Cache for a Hazelcast
member.

700

XML

<hazelcast>
 ...
 <map name="mostlyReadMapWithHighDensityNearCache">
 <in-memory-format>OBJECT</in-memory-format>
 <near-cache>
 <in-memory-format>NATIVE</in-memory-format>
 <eviction eviction-policy="LFU" max-size-policy=
"USED_NATIVE_MEMORY_PERCENTAGE" size="90"/>
 </near-cache>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 mostlyReadMapWithHighDensityNearCache
 in-memory-format: OBJECT
 near-cache:
 in-memory-format: NATIVE
 eviction:
 eviction-policy: LFU
 max-size-policy: USED_NATIVE_MEMORY_PERCENTAGE
 size: 90

JAVA

EvictionConfig evictionConfig = new EvictionConfig()
 .setEvictionPolicy(EvictionPolicy.LFU)
 .setMaximumSizePolicy(MaxSizePolicy.USED_NATIVE_MEMORY_PERCENTAGE)
 .setSize(90);

NearCacheConfig nearCacheConfig = new NearCacheConfig()
 .setInMemoryFormat(InMemoryFormat.NATIVE)
 .setEvictionConfig(evictionConfig);

Config config = new Config();
config.getMapConfig("mostlyReadMapWithHighDensityNearCache")
 .setInMemoryFormat(InMemoryFormat.OBJECT)
 .setNearCacheConfig(nearCacheConfig);

Keep in mind that you should have already enabled the High-Density Memory Store usage for your
cluster. See the Configuring High-Density Memory Store section.

Note that a map and its Near Cache can independently use High-Density Memory Store. For
example, if your map does not use High-Density Memory Store, its Near Cache can still use it.

701

23.8.4. Near Cache Eviction

In the scope of Near Cache, eviction means evicting (clearing) the entries selected according to the
given eviction-policy when the specified max-size-policy has been reached.

The max-size-policy defines the state when the Near Cache is full and determines whether the
eviction should be triggered. The size is either interpreted as entry count, memory size or
percentage, depending on the chosen policy.

Once the eviction is triggered the configured eviction-policy determines which, if any, entries must
be evicted.

Note that the policies mentioned are configured under the near-cache configuration block, as seen
in the above configuration examples.

23.8.5. Near Cache Expiration

Expiration means the eviction of expired records. A record is expired:

• if it is not touched (accessed/read) for max-idle-seconds

• time-to-live-seconds passed since it is put to Near Cache.

The actual expiration is performed in the following cases:

• When a record is accessed: it is checked if the record is expired or not. If it is expired, it is
evicted and null is returned as the value to the caller.

• In the background: there is an expiration task that periodically (currently 5 seconds) scans
records and evicts the expired records.

Note that max-idle-seconds and time-to-live-seconds are configured under the near-cache

configuration block, as seen in the above configuration examples.

23.8.6. Near Cache Invalidation

Invalidation is the process of removing an entry from the Near Cache when its value is updated or
it is removed from the original data structure (to prevent stale reads). Near Cache invalidation
happens asynchronously at the cluster level, but synchronously at the current member. This means
that the Near Cache is invalidated within the whole cluster after the modifying operation is
finished, but updated from the current member before the modifying operation is done. A
modifying operation can be an EntryProcessor, an explicit update or remove as well as an
expiration or eviction. Generally, whenever the state of an entry changes in the record store by
updating its value or removing it, the invalidation event is sent for that entry.

Invalidations can be sent from members to client Near Caches or to member Near Caches, either
individually or in batches. Default behavior is sending in batches. If there are lots of mutating
operations such as put/remove on data structures, it is advised that you configure batch
invalidations. This reduces the network traffic and keeps the eventing system less busy, but may
increase the delay of individual invalidations.

702

You can use the following system properties to configure the Near Cache invalidation:

• hazelcast.map.invalidation.batch.enabled: Enable or disable batching. Its default value is true.
When it is set to false, all invalidations are sent immediately.

• hazelcast.map.invalidation.batch.size: Maximum number of invalidations in a batch. Its
default value is 100.

• hazelcast.map.invalidation.batchfrequency.seconds: If the collected invalidations do not reach
the configured batch size, a background process sends them periodically. Its default value is 10
seconds.

If there are a lot of clients or many mutating operations, batching should remain enabled and the
batch size should be configured with the hazelcast.map.invalidation.batch.size system property to
a suitable value.

23.8.7. Near Cache Consistency

Eventual Consistency

Near Caches are invalidated by invalidation events. Invalidation events can be lost due to the fire-
and-forget fashion of eventing system. If an event is lost, reads from Near Cache can indefinitely be
stale.

To solve this problem, Hazelcast provides eventually consistent behavior for IMap/JCache Near
Caches by detecting invalidation losses. After detection of an invalidation loss, stale data is made
unreachable and Near Cache’s get calls to that data are directed to the underlying IMap/JCache to
fetch the fresh data.

You can configure eventual consistency with the system properties below (same properties are
valid for both member and client side Near Caches):

• hazelcast.invalidation.max.tolerated.miss.count: Default value is 10. If missed invalidation
count is bigger than this value, relevant cached data is made unreachable.

• hazelcast.invalidation.reconciliation.interval.seconds: Default value is 60 seconds. This is a
periodic task that scans cluster members periodically to compare generated invalidation events
with the received ones from Near Cache.

Locally Initiated Changes

For local invalidations, when a record is updated/removed, future reads will see this
update/remove to provide read-your-writes consistency. To achieve this consistency, Near Cache
configuration provides the following update policies:

• INVALIDATE

• CACHE_ON_UPDATE

If you choose INVALIDATE, the entry is removed from the Near Cache after the update/remove occurs
in the underlying data structure and before the operation (get) returns to the caller. Until the
update/remove operation completes, the entry’s old value can still be read from the Near Cache.

703

If you choose CACHE_ON_UPDATE, the entry is updated after the update/remove occurs in the
underlying data structure and before the operation (put/get) returns to the caller. If it is an update
operation, it removes the entry and the new value is placed. Until the update/remove operation
completes, the entry’s old value can still be read from the Near Cache. Any threads reading the key
after this point read the new entry. If the mutative operation was a remove, the key will no longer
exist in the Near Cache and the original copy in the member.

23.8.8. Near Cache Preloader

The Near Cache preloader is a functionality to store the keys from a Near Cache to provide a fast re-
population of the previous hot data set after a Hazelcast Client has been restarted. It is available on
IMap and JCache clients.

The Near Cache preloader stores the keys (not the values) of Near Cache entries in regular intervals.
You can define the initial delay via store-initial-delay-seconds, e.g., if you know that your hot data
set needs some time to build up. You can configure the interval via store-interval-seconds which
determines how often the key-set is stored. The persistence does not run continuously. Whenever
the storage is scheduled, it is performed on the actual keys in the Near Cache.

The Near Cache preloader is triggered on the first initialization of the data structure on the client,
e.g., client.getMap("myNearCacheMap"). This schedules the preloader, which works in the
background, so your application is not blocked. The storage is enabled after the loading is
completed.

The configuration parameter directory is optional. If you omit it, the base folder becomes the user
working directory (normally where the JVM was started or configured with the system property
user.dir). The storage filenames are always created from the Near Cache name. So even if you use a
wildcard name in the Near Cache Configuration, the preloader filenames are unique.

If you run multiple Hazelcast clients with enabled Near Cache preloader on the
same machine, you have to configure a unique storage filename for each client or
run them from different user directories. If two clients would write into the same
file, only the first client succeeds. The following clients throw an exception as soon
as the Near Cache preloader is triggered.

23.9. Caching Deserialized Values
There may be cases where you do not want to deserialize some values in your Hazelcast map again
which were already deserialized previously. This way your query operations get faster. This is
possible by using the cache-deserialized-values element in your declarative Hazelcast
configuration, as shown below.

704

XML

<hazelcast>
 ...
 <map name="myMap">
 <in-memory-format>BINARY</in-memory-format>
 <cache-deserialized-values>INDEX-ONLY</cache-deserialized-values>
 <backup-count>1</backup-count>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 myMap:
 in-memory-format: BINARY
 cache-deserialized-values: INDEX-ONLY
 backup-count: 1

The cache-deserialized-values element controls the caching of deserialized values. Note that
caching makes the query evaluation faster, but it consumes more memory. This element has the
following values:

• NEVER: Deserialized values are never cached.

• INDEX-ONLY: Deserialized values are cached only when they are inserted into an index.

• ALWAYS: Deserialized values are always cached.

If you are using portable serialization or your map’s in-memory format is OBJECT or NATIVE, then
cache-deserialized-values element does not have any effect.

23.9.1. Performance Anti Patterns

This section covers various recommendations to improve the performance of your Hazelcast IMDG
clusters.

Using Single Member per Machine

A Hazelcast member assumes it is alone on a machine, so we recommend not running multiple
Hazelcast members on a machine. Having multiple members on a single machine most likely gives
a worse performance compared to running a single member, since there will be more context
switching, less batching, etc. So unless it is proven that running multiple members per machine
does give a better performance/behavior in your particular setup, it is best to run a single member
per machine.

705

Using Operation Threads Efficiently

By default, Hazelcast uses the machine’s core count to determine the number of operation threads.
Creating more operation threads than this core count is highly unlikely leads to an improved
performance since there will be more context switching, more thread notification, etc.

Especially if you have a system that does simple operations like put and get, it is better to use a
lower thread count than the number of cores. The reason behind the increased performance by
reducing the core count is that the operations executed on the operation threads normally execute
very fast and there can be a very significant amount of overhead caused by thread parking and
unparking. If there are less threads, a thread needs to do more work, will block less and therefore
needs to be notified less.

Avoiding Random Changes

Tweaking can be very rewarding because significant performance improvements are possible. By
default, Hazelcast tries to behave at its best for all situations, but this doesn’t always lead to the best
performance. So if you know what you are doing and what to look for, it can be very rewarding to
tweak. However it is also important that tweaking should be done with proper testing to see if there
is actually an improvement. Tweaking without proper benchmarking is likely going to lead to
confusion and could cause all kinds of problems. In case of doubt, we recommend not to tweak.

Creating the Right Benchmark Environment

When benchmarking, it is important that the benchmark reflects your production environment.
Sometimes with calculated guess, a representative smaller environment can be set up; but if you
want to use the benchmark statistics to inference how your production system is going to behave,
you need to make sure that you get as close as your production setup as possible. Otherwise, you
are at risk of spotting the issues too late or focusing on the things which are not relevant.

24. Hazelcast Simulator
Hazelcast Simulator is a production simulator used to test Hazelcast and Hazelcast-based
applications in clustered environments. It also allows you to create your own tests and perform
them on your Hazelcast clusters and applications that are deployed to cloud computing
environments. In your tests, you can provide any property that can be specified on these
environments (Amazon EC2, Google Compute Engine(GCE), or your own environment): properties
such as hardware specifications, operating system and Java version.

See the documentation on its own GitHub repository at Hazelcast Simulator.

25. WAN Replication
Hazelcast IMDG Enterprise Feature

706

https://github.com/hazelcast/hazelcast-simulator/blob/master/README.md

25.1. Introduction
You can use Hazelcast’s WAN Replication feature when you need to synchronize multiple Hazelcast
clusters, which are connected by WANs, to the same state. It allows replicating updates in your data
structures across the clusters. For now, Hazelcast WAN Replication supports the map and cache
data structures.

Assume that you have data centers in different cities each running an independent Hazelcast IMDG
cluster. You can reliably use the WAN Replication feature to synchronize all of these clusters by
replicating the updates to each of them.

WAN Replication provides more control compared to the replication mechanism between the
members in a single cluster. It has the following features and capabilities:

• It gracefully detects if there is a connectivity issue between the clusters, buffering any updates
that are not yet replicated and attempts to re-establish a connection to resume the replication.

• It allows you to permanently pause, stop and resume the replication. This is most useful when
you know that one of the clusters is temporarily (e.g., due to an upgrade), or permanently (e.g.,
due to removing a cluster out of service) unavailable.

• It allows you to dynamically add new target clusters without any restarts.

This chapter explains how you can replicate the state of your clusters over wide area networks
through Hazelcast’s WAN Replication.

WAN Replication is a Hazelcast IMDG Enterprise Edition feature. However, its API
is available publicly here and, benefiting from it, you may write your own
replication logic.

25.1.1. Concepts

Let’s first define several important terms before we discuss WAN Replication:

• Active cluster: The user updates performed on the cluster are replicated to other clusters
connected through WAN Replication. In another words, this cluster can be seen as the "source"
cluster which generates WAN update events and replicates them actively to other clusters.

• Passive cluster: The user updates performed on this cluster are not replicated to other clusters.
In another words, this cluster can be seen as the "target" cluster which is capable of receiving,
applying and possibly forwarding WAN events from other ("active") clusters. It does not
generate any WAN update events because of user interaction.

• WAN publisher: A publisher is a sink for WAN events and an implementation of
WanReplicationPublisher. Most often, this is a single, entire target Hazelcast IMDG cluster but
you can also define custom publishers which may transmit WAN events to other systems such
as messaging queues, Kafka or even persist events on disk.

• WAN endpoint: when a publisher is replicating events to another Hazelcast cluster, an endpoint
is a single member in that target cluster. That means that a WAN publisher replicates to
multiple WAN endpoints.

707

https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/wan/package-summary.html

• WAN replication scheme: a named collection of WAN publishers. Hazelcast maps and caches are
configured to replicate to a WAN replication scheme, meaning that a single map/cache update
can be replicated to multiple target clusters or multiple external systems.

• WAN publisher ID: A unique identifier for a specific WAN replication publisher in a WAN
replication scheme. This identifier can then be used to control the behavior of a WAN
replication publisher while the source/active cluster is running. For instance, you can use this
identifier in combination with the WAN replication scheme name to pause, stop or resume WAN
replication for that specific publisher. Or, you can trigger synchronization with a specific target
cluster and so on.

25.2. WAN Replication Modes
In clusters connected with WAN Replication, a cluster can have one of two roles: Active or Passive,
conceptually explained in the previous section above.

With these roles, there are two modes of WAN Replication:

• Active-Passive: This mode can be used for failover scenarios where you want to replicate an
active cluster to one or more passive clusters, for the purpose of maintaining a backup. If the
active cluster becomes unavailable, you may redirect user traffic to the passive clusters. Once
the active cluster becomes available again, you may again redirect user traffic to the active
cluster. The active cluster may have however been started empty or might have simply missed
any updates that have happened on the passive clusters. Any updates made on the passive
clusters will not be replicated back to the active cluster and if the data is out-of-sync, it will not
be synchronized. If you require that these updates be copied back to the active cluster, you may
consider using active-active mode instead.

• Active-Active: Every cluster is equal, each cluster replicates to all other clusters. This is
normally used to connect different clients to different clusters for the sake of the shortest path
between client and server, hence gaining increased performance. An example use case would
be geographically distributed applications.

25.3. Quick Start
This section provides information on how you can start using WAN Replication with a minimal
setup for both Active-Passive and Active-Active modes.

25.3.1. Setting Up an Active-Passive Mode

This mode usually requires configuration only on one of the clusters. Let’s say you have two
clusters, one in London and the other in Tokyo. You want to replicate the updates between each
other and use the one in Tokyo as the active cluster.

1 - Add the following configuration example on your cluster in Tokyo:

708

XML

<hazelcast>
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <target-endpoints>10.3.5.1:5701</target-endpoints>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 </map>

</hazelcast>

Java

Config config = new Config();
WanBatchPublisherConfig batchPublisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setTargetEndpoints("10.3.5.1:5701");

WanReplicationConfig wrConfig = new WanReplicationConfig()
 .setName("london-wan-rep")
 .addBatchReplicationPublisherConfig(batchPublisherConfig);

config.addWanReplicationConfig(wrConfig);

config.getMapConfig("replicatedMap").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));

2 - Start your clusters to start using Active-Passive WAN Replication.

Basically, what we did here is defining a WAN Replication configuration (wan-replication) and
configuring our map to use it (wan-replication-ref). As mentioned, this is the minimal
configuration example, which is fine for most use cases. There are more configuration options for
tuning the WAN Replication; see the Tuning WAN Replication section.

In the above example, we have configured the map named replicatedMap to replicate to the target
cluster named london on a single endpoint, as specified with the target-endpoints element. Notice
that the name of wan-replication configuration (london-wan-rep) is referenced in the map

configuration using the wan-replication-ref element; this is how you make your map to use the
WAN Replication feature. For now, only Hazelcast maps and caches support this feature.

The london cluster might have more members than the one specified in this example, but only that
endpoint will receive the WAN events. In that case and if you want the events to be forwarded to
the other cluster members, see the republishing-enabled element description in the Configuring for
IMap and ICache section.

709

This example configuration defines a static endpoint to specify the target cluster member, using the
target-endpoints element or setTargetEndpoints() method, respectively. You can also use
Hazelcast’s Discovery SPI for WAN Replication to specify endpoints on various cloud
infrastructures. See the Using Discovery SPI section.

25.3.2. Setting Up an Active-Active Mode

Using the above scenario, this mode requires configuration on both clusters.

1 - Add the following configuration example on your cluster in Tokyo:

XML

<hazelcast>
 <cluster-name>tokyo</cluster-name>
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <target-endpoints>10.3.5.1:5701</target-endpoints>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 </map>

</hazelcast>

Java

Config config = new Config();
config.setClusterName("tokyo");
WanBatchPublisherConfig batchPublisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setTargetEndpoints("10.3.5.1:5701");

WanReplicationConfig wrConfig = new WanReplicationConfig()
 .setName("london-wan-rep")
 .addBatchReplicationPublisherConfig(batchPublisherConfig);

config.addWanReplicationConfig(wrConfig);

config.getMapConfig("replicatedMap").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));

2 - Add the following configuration example on your cluster in London:

710

XML

<hazelcast>
 <cluster-name>london</cluster-name>
 <wan-replication name="tokyo-wan-rep">
 <batch-publisher>
 <cluster-name>tokyo</cluster-name>
 <target-endpoints>32.1.1.1:5701</target-endpoints>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="tokyo-wan-rep"/>
 </map>

</hazelcast>

Java

Config config = new Config();
config.setClusterName("london");
WanBatchPublisherConfig batchPublisherConfig = new WanBatchPublisherConfig()
 .setClusterName("tokyo")
 .setTargetEndpoints("32.1.1.1:5701");

WanReplicationConfig wrConfig = new WanReplicationConfig()
 .setName("tokyo-wan-rep")
 .addBatchReplicationPublisherConfig(batchPublisherConfig);

config.addWanReplicationConfig(wrConfig);

config.getMapConfig("replicatedMap").setWanReplicationRef(new WanReplicationRef()
.setName("tokyo-wan-rep"));

3 - Start your clusters to start using Active-Active WAN Replication.

Notice the cluster-name configuration element (not the one under the batch-publisher element, but
the one under the hazelcast element). These are the names specifying the IMDG members' clusters
on their locals. So, the name of the cluster in one location should be mentioned on the cluster in the
other location, as shown above.

As in the Active-Passive example shown in the previous section, this example configuration also
uses a static endpoint to specify the target cluster member. See the Using Discovery SPI section for
information on using the Discovery SPI to specify target members.

As mentioned previously, the above configurations are the minimal ones to get you started. In case
you need to configure some additional aspects of your maps or caches that use WAN Replication,
see the Configuring for IMap and ICache section.

711

25.4. Configuring WAN Replication
WAN Replication is defined and configured using the wan-replication configuration element as can
be seen in the above examples.

In this section you learn how to establish the connection between WAN replicated clusters and
configure the behavior of WAN replication mechanism.

For establishing the connection, you have the following options:

• using static endpoints (when you want to provide the IP addresses of target IMDG members)

• using Discovery SPI (when you want to target IMDG members on various cloud infrastructures)

You can use only one of these (not both) when defining a single WAN publisher.

The examples in this section uses Hazelcast’s built-in WAN replication implementation. This
implementation meets most of your WAN replication needs and is configured using the batch-
publisher element, which you will see in the below examples. Hazelcast also allows you to build
your own implementation; see the Advanced Features section for details in case you need more
custom configurations.

The default settings for WAN Replication configuration suit most use cases. If, however, you have
specific needs or if you would like to fine-tune the behavior of WAN Replication for your
application, see the Fine-Tuning WAN Replication section.

Let’s see how we configure a simple WAN replication using the static endpoints and Discovery SPI,
and then let’s see the configuration details of Hazelcast’s built-in WAN replication implementation.

25.4.1. Using the Static Endpoints

This is most suitable when the endpoints have static IP addresses which will not change for the
duration of the lifecycle of the source cluster. You will then list these addresses in the WAN
publisher configuration and WAN Replication will try to keep a stable connection to each of those.

Below is an example of declarative configuration of WAN Replication between two Hazelcast
clusters. Here, we show the configuration that is needed on the source ("active") cluster. In most
cases, the target ("passive") cluster does not need any kind of configuration and configuring the
source cluster is enough for WAN Replication to function normally.

Here, we show the simplest working configurations to replicate to a target cluster with the cluster-
name london.

712

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <target-endpoints>10.3.5.1:5701, 10.3.5.2:5701</target-endpoints>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 target-endpoints: 10.3.5.1:5701, 10.3.5.2:5701
 map:
 replicatedMap:
 wan-replication-ref:
 london-wan-rep:
 ...
 cache:
 replicatedCache:
 wan-replication-ref:
 london-wan-rep:
 ...

713

JAVA

Config config = new Config();
WanBatchPublisherConfig batchPublisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setTargetEndpoints("10.3.5.1:5701,10.3.5.2:5701");

WanConsumerConfig consumerConfig = new WanConsumerConfig()
 .setPersistWanReplicatedData(false);

WanReplicationConfig wrConfig = new WanReplicationConfig()
 .setName("london-wan-rep")
 .addBatchReplicationPublisherConfig(batchPublisherConfig)
 .setConsumerConfig(consumerConfig);

config.addWanReplicationConfig(wrConfig);

config.getMapConfig("replicatedMap").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));
config.getCacheConfig("replicatedCache").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));

We can see that we have configured the map named replicatedMap and cache named
replicatedCache to replicate to the cluster named london on two endpoints - 10.3.5.1:5701,
10.3.5.2:5701. The london cluster might have more members than these two but only these two will
receive WAN events and forward them to other members in the london cluster or to other clusters if
WAN event forwarding is enabled. Please notice that the WAN Replication configuration is
referenced in map and cache configuration by name, here london-wan-rep.

The default settings for WAN Replication will suit most use cases. If, however, you have specific
needs or if you would like to fine-tune the behavior of WAN Replication for your application, please
refer to the Fine-Tuning WAN Replication section for more information.

25.4.2. Using the Discovery SPI

In addition to defining target cluster endpoints with static IP addresses, you can configure WAN to
work with the Discovery SPI and determine the endpoint IP addresses at runtime. It may be
suitable when you don’t know the list of static IP addresses of the target cluster at startup time or in
cases when the list of available target endpoints is subject to change during the lifecycle of the
source cluster.

In relation to the above, using the Discovery SPI allows you to use WAN with endpoints on various
cloud infrastructures (such as Amazon EC2 or GCP Compute) where the IP address is not known in
advance. Typically you use a readily available Discovery SPI plugin such as Hazelcast AWS
discovery plugin, Hazelcast Azure discovery plugin, Hazelcast GCP discovery plugin, or similar. You
can store the list of IP addresses in those infrastructures and use these plugins to read from that
list.

For more advanced cases, you can provide your own Discovery SPI implementation with custom

714

https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-azure
https://github.com/hazelcast/hazelcast-gcp

logic for determining the WAN target endpoints such as looking up the endpoints in some service
registry or even reading the endpoint addresses from a file.

When using the Discovery SPI, WAN always connects to the public address of the
members returned by the Discovery SPI implementation. This is opposite to the
cluster membership mechanism using the Discovery SPI where a member
connects to a different member in the same cluster through its private address.
Should you prefer for WAN to use the private address of the discovered member as
well, please use the use-endpoint-private-address publisher element, described in
the following paragraphs.

The following is an example of setting up the WAN replication with the AWS discovery plugin. Note
that you must have hazelcast-all (or hazelcast-aws) JAR on the classpath.

715

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <discovery-strategies>
 <discovery-strategy enabled="true" class=
"com.hazelcast.aws.AwsDiscoveryStrategy">
 <properties>
 <property name="access-key">test-access-key</property>
 <property name="secret-key">test-secret-key</property>
 <property name="region">test-region</property>
 <property name="iam-role">test-iam-role</property>
 <property name="host-header">ec2.test-host-header</property>
 <property name="security-group-name">test-security-group-
name</property>
 <property name="tag-key">test-tag-key</property>
 <property name="tag-value">test-tag-value</property>
 <property name="connection-timeout-seconds">10</property>
 <property name="hz-port">5701</property>
 </properties>
 </discovery-strategy>
 </discovery-strategies>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </cache>
 ...
</hazelcast>

716

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 discovery-strategies:
 discovery-strategy:
 - enabled: true
 class: com.hazelcast.aws.AwsDiscoveryStrategy
 properties:
 access-key: test-access-key
 secret-key: test-secret-key
 region: test-region
 iam-role: test-iam-role
 host-header: ec2.test-host-header
 security-group-name: test-security-group-name
 tag-key: test-tag-key
 tag-value: test-tag-value
 connection-timeout-seconds: 10
 hz-port: 5701

717

JAVA

Config config = new Config();

WanBatchPublisherConfig batchPublisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london");

DiscoveryStrategyConfig discoveryStrategyConfig = new DiscoveryStrategyConfig(
"com.hazelcast.aws.AwsDiscoveryStrategy");
discoveryStrategyConfig.addProperty("access-key","test-access-key");
discoveryStrategyConfig.addProperty("secret-key","test-secret-key");
discoveryStrategyConfig.addProperty("region","test-region");
discoveryStrategyConfig.addProperty("iam-role","test-iam-role");
discoveryStrategyConfig.addProperty("host-header","ec2.test-host-header");
discoveryStrategyConfig.addProperty("security-group-name","test-security-group-name");
discoveryStrategyConfig.addProperty("tag-key","test-tag-key");
discoveryStrategyConfig.addProperty("tag-value","test-tag-value");
discoveryStrategyConfig.addProperty("hz-port",5702);

DiscoveryConfig discoveryConfig = new DiscoveryConfig()
 .addDiscoveryStrategyConfig(discoveryStrategyConfig);
batchPublisherConfig.setDiscoveryConfig(discoveryConfig);

WanReplicationConfig wrConfig = new WanReplicationConfig()
 .setName("london-wan-rep")
 .addBatchReplicationPublisherConfig(batchPublisherConfig);
config.addWanReplicationConfig(wrConfig);

config.getMapConfig("replicatedMap").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));
config.getCacheConfig("replicatedCache").setWanReplicationRef(new WanReplicationRef()
.setName("london-wan-rep"));

The hz-port property defines the port or the port range on which the target endpoint is running.
The default port range 5701-5708 is used if this property is not defined. This is needed because the
Amazon API which the AWS plugin uses does not provide the port on which Hazelcast is running,
only the IP address. For some other Discovery SPI implementations, this might not be necessary and
it might discover the port as well, e.g., by looking up in a service registry.

The other properties are the same as when using the aws element. In case of AWS discovery you can
configure the WAN replication using the aws element. You may use either the discovery-strategies
or aws element, but not both at the same time.

718

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <use-endpoint-private-address>false</use-endpoint-private-address>
 <aws enabled="true">
 <access-key>my-access-key</access-key>
 <secret-key>my-secret-key</secret-key>
 <region>us-west-1</region>
 <security-group-name>hazelcast-sg</security-group-name>
 <tag-key>type</tag-key>
 <tag-value>hz-members</tag-value>
 <hz-port>5701</hz-port>
 </aws>
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </cache>
 ...
</hazelcast>

719

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 use-endpoint-private-address: false
 aws:
 enabled: true
 access-key: my-access-key
 secret-key: my-secret-key
 region: us-west-1
 security-group-name: hazelcast-sg
 tag-key: type
 tag-value: hz-members
 hz-port: 5701
 map:
 replicatedMap:
 wan-replication-ref:
 london-wan-rep:
 ...
 cache:
 replicatedCache:
 wan-replication-ref:
 london-wan-rep:
 ...

See the following for the configurations of WAN replications in other cloud infrastructures that are
supported by Discovery SPI:

• Microsoft Azure

• Google Cloud Platform (GCP)

• Kubernetes

• OpenShift

• Eureka

• jclouds®

• etcd

• Consul

• Zookeeper

• Heroku

25.4.3. Using the Built-In WAN Batch Publisher

Hazelcast IMDG offers the built-in WAN batch publisher implementation for WAN replication.

720

https://github.com/hazelcast/hazelcast-azure/blob/master/README.md#configuration-for-wan-replication-target-cluster-discovery
https://github.com/hazelcast/hazelcast-gcp/blob/master/README.md#configuration
https://github.com/hazelcast/hazelcast-kubernetes#configuration
https://github.com/hazelcast/hazelcast-openshift#wan-replication
https://github.com/hazelcast/hazelcast-eureka#hazelcast-configuration
https://github.com/hazelcast/hazelcast-jclouds/blob/master/README.md#discovering-members-with-jclouds
https://github.com/bitsofinfo/hazelcast-etcd-discovery-spi/blob/master/README.md#usage
https://github.com/bitsofinfo/hazelcast-consul-discovery-spi#usage
https://github.com/hazelcast/hazelcast-zookeeper/blob/master/README.md#configuration
https://github.com/jkutner/hazelcast-heroku-discovery/blob/master/README.md#configuration

As you see in the above configuration examples, this implementation is specified simply by using
the batch-publisher element (in the declarative configuration) or the WanBatchPublisherConfig class
(in the programmatic configuration) when defining a WAN replication publisher.

The WAN batch publisher transmits WAN events (map and cache updates) between clusters in
batches. It waits until:

• a pre-defined number of replication events are generated, (see the Batch Size section)

• or a pre-defined amount of time is passed (see the Batch Maximum Delay section).

Here is a declarative example on using and configuring batch-publisher:

XML

<hazelcast>
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 ...
 </batch-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 </cache>
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 ...
 map:
 replicatedMap:
 wan-replication-ref:
 london-wan-rep:
 ...
 cache:
 replicatedCache:
 wan-replication-ref:
 london-wan-rep:
 ...

721

Above, you notice that we have configured the instance to replicate a map and a cache to a target
cluster with the cluster name london. WAN Replication will check that this cluster name matches
during connection establishment to each endpoint. This does not serve as a security measure
though. This serves only to prevent misconfiguration where the source cluster would mistakenly
replicate to the wrong cluster and as an attempt to detect and prevent loops where the same WAN
event would be infinitely forwarded between the same clusters.

The wan-replication configuration element defines a single WAN replication scheme. Hazelcast
maps and caches are configured to replicate to a single WAN replication scheme and different maps
and different caches can be configured to replicate to different WAN replication schemes. Simply
put, a WAN replication scheme may be viewed as several target clusters and different Hazelcast
structures can replicate to different target clusters simultaneously. As such, a single WAN
replication scheme can contain multiple WAN replication publishers. It has the following essential
sub-elements and attributes:

• name: Name of your WAN replication scheme. This name is referenced in IMap or ICache
configuration when you want to enable WAN Replication for these data structures (using the
element wan-replication-ref in the configuration of IMap or ICache).

• batch-publisher: Enables use of a WAN publisher which uses the built-in WAN replication
implementation. It defines how to connect to the target cluster and how WAN events are sent to
a specific target endpoint. As mentioned above, just before the configuration example, the
target endpoints can be a different cluster defined by static IPs or discovered using a cloud
discovery mechanism.

The batch-publisher has the following sub-elements:

• cluster-name: Sets the cluster name used as an endpoint cluster name for authentication on the
target endpoint. If there is no separate publisher ID element defined, this cluster name is also
used as a WAN publisher ID. This ID is then used for identifying the publisher in a WAN
replication scheme. It is mandatory to set this attribute.

• publisher-id: Sets the publisher ID used to identify the publisher in a WAN replication scheme.
Setting this ID may be useful when the wan-replication element contains multiple WAN
publishers and the cluster names are not unique for all of the WAN replication publishers in a
single WAN replication scheme. It is optional to set this attribute. If this ID is not specified, the
cluster-name is used as a publisher ID.

• target-endpoints: IP addresses and ports of the cluster members for which the WAN replication
is implemented. It is enough to specify some of the member IP/ports available in the target
cluster, i.e., you don’t need to provide the IP/ports of all members in there. WAN does not
perform the discovery of other members in the target cluster; it only expects that the IP
addresses you provide are available.

• sync: Configuration for the WAN sync mechanism. See the Synchronizing WAN Clusters section.

• discovery-strategies: Set its enabled attribute to true for discovery in various cloud
infrastructures. You can define multiple discovery strategies using the discovery-strategy sub-
element and its elements. See the Using the Discovery SPI section for this and the below
elements.

• aws: Configuration for discovery strategy for Amazon EC2 discovery plugin.

722

• gcp: Configuration for discovery strategy for Google cloud platform discovery plugin.

• azure: Configuration for discovery strategy for Microsoft Azure discovery plugin.

• kubernetes: Configuration for discovery strategy for Kubernetes discovery plugin.

• eureka: Configuration for discovery strategy for Eureka discovery plugin.

Using this configuration, the cluster replicates to a cluster with the name london. The london cluster
should have a similar configuration if you want to run in Active-Active mode.

You can achieve various WAN topologies using different configurations on different clusters. For
instance, if the New York and London cluster configurations contain the wan-replication element
and the Tokyo cluster does not, it might mean that the New York and London clusters are active
endpoints and Tokyo is a passive endpoint.

25.5. Configuring for IMap and ICache
As mentioned before, for now Hazelcast’s map (IMap) and cache (ICache) data structures support
WAN Replication. After you define and configure the WAN Replication as explained in previous
sections above, you need to bind it to your maps and/or caches.

To enable WAN replication for an IMap or ICache instance, you can use the wan-replication-ref
configuration element. Each instance can have a different WAN replication configuration.

Enabling WAN Replication for IMap:

Imagine you have different distributed maps, however only one of those maps should be replicated
to a target cluster. To achieve this, configure the map that you want to be replicated by adding the
wan-replication-ref element in the map configuration as shown below.

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 ...
 </wan-replication>
 <map name="my-shared-map">
 <wan-replication-ref name="london-wan-rep">
 <merge-policy>com.hazelcast.spi.merge.PassThroughMergePolicy</merge-
policy>
 <republishing-enabled>false</republishing-enabled>
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

723

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 ...
 map:
 my-shared-map:
 wan-replication-ref:
 london-wan-rep:
 merge-policy: com.hazelcast.spi.merge.PassThroughMergePolicy
 republishing-enabled: false

The following is the equivalent programmatic configuration:

Config config = new Config();

WanReplicationConfig wrConfig = new WanReplicationConfig();
wrConfig.setName("my-wan-cluster");

config.addWanReplicationConfig(wrConfig);

WanReplicationRef wanRef = new WanReplicationRef();
wanRef.setName("my-wan-cluster");
wanRef.setMergePolicyClassName(PassThroughMergePolicy.class.getName());
wanRef.setRepublishingEnabled(false);
config.getMapConfig("my-shared-map").setWanReplicationRef(wanRef);

You see that we have my-shared-map configured to replicate itself to the cluster targets defined in the
earlier wan-replication element.

wan-replication-ref has the following elements;

• name: Name of the wan-replication configuration. IMap or ICache instance uses this wan-
replication configuration.

• merge-policy: Policy to resolve conflicts that occur when the target cluster already has the
replicated entry key. This configuration element is optional. If it is not specified,
com.hazelcast.spi.merge.PassThroughMergePolicy will be used as the merge policy.

• republishing-enabled: When enabled, an incoming event to a member is forwarded to target
cluster of that member. Enabling the event republishing is useful in a scenario where cluster A
replicates to cluster B and cluster B replicates to cluster C. You do not need to enable
republishing when all your clusters replicate to each other.

When using Active-Active Replication, multiple clusters can simultaneously update the same entry
in a distributed data structure. You can configure a merge policy to resolve these potential conflicts,
as shown in the above example configuration (using the merge-policy sub-element under the wan-
replication-ref element).

724

Hazelcast provides the following merge policies for IMap:

• com.hazelcast.spi.merge.PutIfAbsentMergePolicy: Incoming entry merges from the source map
to the target map if it does not exist in the target map.

• com.hazelcast.spi.merge.HigherHitsMergePolicy: Incoming entry merges from the source map to
the target map if the source entry has more hits than the target one.

• com.hazelcast.spi.merge.PassThroughMergePolicy: Incoming entry merges from the source map
to the target map unless the incoming entry is not null.

• com.hazelcast.spi.merge.ExpirationTimeMergePolicy: Incoming entry merges from the source
map to the target map if the source entry will expire later than the destination entry. Please
note that this merge policy can only be used when the clusters' clocks are in sync.

• com.hazelcast.spi.merge.LatestAccessMergePolicy: Incoming entry merges from the source map
to the target map if the source entry has been accessed more recently than the destination
entry. Please note that this merge policy can only be used when the clusters' clocks are in sync.

• com.hazelcast.spi.merge.LatestUpdateMergePolicy: Incoming entry merges from the source map
to the target map if the source entry has been updated more recently than the target entry.
Please note that this merge policy can only be used when the clusters' clocks are in sync.

When using WAN replication, please note that the key based operations are
replicated to the target cluster, except evict(). Also the results of entry processors
are also replicated.

Note that WAN replication does not replicate configurations, but only the events,
i.e., data inserts, updates and removals. When a map or cache is replicated and the
target cluster does not have a configuration for that map or cache, the default
configuration will apply on the target cluster.

Enabling WAN Replication for ICache:

The following is a declarative configuration example for enabling WAN Replication for ICache:

725

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 ...
 </wan-replication>
 <cache name="my-shared-cache">
 <wan-replication-ref name="london-wan-rep">
 <merge-policy>com.hazelcast.spi.merge.PassThroughMergePolicy</merge-
policy>
 <republishing-enabled>true</republishing-enabled>
 </wan-replication-ref>
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 ...
 cache:
 my-shared-cache:
 wan-replication-ref:
 london-wan-rep:
 merge-policy: com.hazelcast.spi.merge.PassThroughMergePolicy
 republishing-enabled: true

The following is the equivalent programmatic configuration:

Config config = new Config();

WanReplicationConfig wrConfig = new WanReplicationConfig();
wrConfig.setName("my-wan-cluster");

config.addWanReplicationConfig(wrConfig);

WanReplicationRef cacheWanRef = new WanReplicationRef();
cacheWanRef.setName("my-wan-cluster");
cacheWanRef.setMergePolicyClassName("com.hazelcast.spi.merge.PassThroughMergePolicy");
cacheWanRef.setRepublishingEnabled(true);
config.getCacheConfig("my-shared-cache").setWanReplicationRef(cacheWanRef);

Caches that are created dynamically do not support WAN replication functionality.
Cache configurations should be defined either declaratively (by XML) or
programmatically on both source and target clusters.

726

Hazelcast provides the following merge policies for ICache:

• com.hazelcast.spi.merge.PutIfAbsentMergePolicy: Incoming entry merges from the source cache
to the target cache if it does not exist in the target cache.

• com.hazelcast.spi.merge.HigherHitsMergePolicy: Incoming entry merges from the source cache
to the target cache if the source entry has more hits than the target one.

• com.hazelcast.spi.merge.PassThroughMergePolicy: Incoming entry merges from the source cache
to the target cache unless the incoming entry is not null.

• com.hazelcast.spi.merge.ExpirationTimeMergePolicy: Incoming entry merges from the source
cache to the target cache if the source entry will expire later than the destination entry. Please
note that this merge policy can only be used when the clusters' clocks are in sync.

• com.hazelcast.spi.merge.LatestAccessMergePolicy: Incoming entry merges from the source
cache to the target cache if the source entry has been accessed more recently than the
destination entry. Please note that this merge policy can only be used when the clusters' clocks
are in sync.

• com.hazelcast.spi.merge.LatestUpdateMergePolicy: Incoming entry merges from the source
cache to the target cache if the source entry has been updated more recently than the target
entry. Please note that this merge policy can only be used when the clusters' clocks are in sync.

25.6. Advanced Features
This section describes how you can synchronize your WAN replicated clusters, change their
configurations dynamically and intercept WAN replication events using the event filtering API.

25.6.1. Synchronizing WAN Clusters

WAN Replication replicates mutation events that happen on the source cluster as they happen. The
events are queued up, collected in a batch and sent to the target cluster to be applied, without any
user interaction.

However, Hazelcast clusters connected over WAN may become out-of-sync because of various
reasons including but not limited to the following:

• Member failures

• Concurrent updates

• Target cluster freshly starts with no data

• Target cluster experiences problems and some operations fail

• Two sides disconnect and the in-memory buffer of the source cluster gets full (the behavior in
this case is configurable)

• The WAN link can’t keep up with the burst that the source cluster experiences and its in-
memory buffer gets full (the behavior in this case is configurable)

To overcome this out-of-sync issue, you have the following options to synchronize your WAN
replicated clusters:

727

• Full synchronization

• Delta synchronization

The following sections describe each.

Full WAN Synchronization

Full WAN synchronization sends all the data of an IMap to a target cluster to align the state of target
IMap with source IMap. It is useful if two remote clusters lost their synchronizations due to
overflow in the WAN queue or in restart scenarios. This is the default synchronization option.

Full WAN Synchronization can be initiated through Management Center and Hazelcast’s REST API.

Below is the URL for the REST call;

http://{member IP address:port}/hazelcast/rest/wan/sync/map

You need to add URL-encoded parameters to the request in the following order separated by "&";

• Cluster name

• Cluster password

• Name of the WAN replication configuration

• WAN replication publisher ID/target cluster name

• Map name to be synchronized

Assume that you have configured an IMap with a WAN replication configuration as follows:

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>istanbul</cluster-name>
 </batch-publisher>
 </wan-replication>
 <map name="my-map">
 <wan-replication-ref name="london-wan-rep">
 <merge-policy>com.hazelcast.spi.merge.PassThroughMergePolicy</merge-
policy>
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

728

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#wan-sync

YAML

hazelcast:
 wan-replication name: london-wan-rep
 batch-publisher:
 cluster-name: istanbul
 map:
 my-map:
 wan-replication-ref:
 london-wan-rep:
 merge-policy: com.hazelcast.spi.merge.PassThroughMergePolicy

Then, an example curl command to initiate the synchronization for "my-map" would be as follows:

curl -X POST -d "{clusterName}&{clusterPassword}&london-wan-rep&istanbul&my-map" --URL
http://127.0.0.1:5701/hazelcast/rest/wan/sync/map

You can also synchronize all maps in the source and target clusters. In that case the curl command
using the above parameters becomes as follows:

curl -X POST -d "{clusterName}&{clusterPassword}&london-wan-rep&istanbul" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/sync/allMaps

Synchronization for a target cluster operates only with the data residing in the
memory. Therefore, evicted entries are not synchronized, not even if MapLoader is
configured.

Delta WAN Synchronization

As explained in the previous section, the default Full WAN Synchronization feature synchronizes
the maps in different clusters by transferring all the entries from the source to the target cluster.
This may be not efficient since some of the entries have remained unchanged on both clusters and
do not require to be transferred. Also, for the entries to be transferred, they need to be copied to on-
heap on the source cluster. This may cause spikes in the heap usage, especially if using large off-
heap stores.

In addition to the default Full WAN Synchronization, Hazelcast provides Delta WAN
Synchronization which uses Merkle tree for the same purpose. It is a data structure used for
efficient comparison of the difference in the contents of large data structures. The precision of this
comparison is defined by Merkle tree’s depth. Merkle tree hash exchanges can detect
inconsistencies in the map data and synchronize only the different entries when using WAN
synchronization, instead of sending all the map entries.

Currently, Delta WAN Synchronization is implemented only for Hazelcast IMap. It
will be implemented also for ICache in the future releases.

729

https://en.wikipedia.org/wiki/Merkle_tree

Requirements

To be able to use Delta WAN synchronization, the following must be met:

• Source and target cluster versions must be at least Hazelcast 3.11.

• Both clusters must have the same number of partitions.

• Both clusters must use the same partitioning strategy.

• Both clusters must have the Merkle tree structure enabled.

Using Delta WAN Synchronization

To be able to use Delta WAN synchronization for a Hazelcast data structure:

1 - Configure the WAN synchronization mechanism for your WAN publisher so that it uses the
Merkle tree: If configuring declaratively, you can use the consistency-check-strategy sub-element of
the sync element. If configuring programmatically, you can use the setter of the WanSyncConfig
object. Here is a declarative example:

XML

<hazelcast>
 ...
 <wan-replication name="wanReplicationScheme">
 <batch-publisher>
 <cluster-name>clusterName</cluster-name>
 <sync>
 <consistency-check-strategy>MERKLE_TREES</consistency-check-strategy>
 </sync>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 wanReplicationScheme:
 batch-publisher:
 cluster-name: clusterName
 sync:
 consistency-check-strategy: MERKLE_TREES

2 - Bind that WAN synchronization configuration to the data structure (currently IMap): Simply set
the WAN replication reference of your map to the name of the WAN replication configuration
which uses the Merkle tree. Here is a declarative example:

730

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/WanSyncConfig.html

XML

<hazelcast>
 ...
 <map name="myMap">
 <wan-replication-ref name="wanReplicationScheme">
 ...
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 myMap:
 wan-replication-ref:
 wanReplicationScheme:
 ...

3 - Finally, configure the Merkle tree using the merkle-tree element which is contained in the map
configuration:

XML

<hazelcast>
 ...
 <map name="myMap">
 <merkle-tree enabled="true">
 <depth>5</depth>
 </merkle-tree>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 myMap:
 merkle-tree:
 enabled: true
 depth: 5

You can programmatically configure it, too, using the MerkleTreeConfig object.

Here is the full declarative configuration example showing how to enable Delta WAN
Synchronization, bind it to a Hazelcast data structure (an IMap in this case) and specify its depth:

731

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/MerkleTreeConfig.html

XML

<hazelcast>
 ...
 <map name="myMap">
 <wan-replication-ref name="wanReplicationScheme">
 ...
 </wan-replication-ref>
 <merkle-tree enabled="true">
 <depth>10</depth>
 </merkle-tree>
 </map>

 <wan-replication name="wanReplicationScheme">
 <batch-publisher>
 <cluster-name>clusterName</cluster-name>
 <sync>
 <consistency-check-strategy>MERKLE_TREES</consistency-check-strategy>
 </sync>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 myMap:
 wan-replication-ref:
 wanReplicationScheme:
 ...
 merkle-tree:
 enabled: true
 depth: 10
 wan-replication:
 wanReplicationScheme:
 batch-publisher:
 cluster-name: clusterName
 sync:
 consistency-check-strategy: MERKLE_TREES

Here, the element consistency-check-strategy sets the strategy for checking the consistency of data
between the source and target clusters. You must initiate the WAN synchronization (via
Management Center or REST API as explained in Synchronizing WAN clusters) to let this strategy
reconcile the inconsistencies. The element consistency-check-strategy has currently two values:

• NONE: Means that there are no consistency checks. This is the default value.

• MERKLE_TREES: Means that WAN synchronization uses Merkle tree structure.

732

The Merkle tree structure is enabled using its enabled attribute (default is true). Its depth element
specifies the depth of Merkle tree. Valid values are between 2 and 27 (exclusive). Its default value is
10.

• A larger depth means that a data synchronization mechanism is able to pinpoint a smaller
subset of the data structure (e.g., IMap) contents in which a change has occurred. This causes
the synchronization mechanism to be more efficient. However, keep in mind that a large depth
means that the Merkle tree will consume more memory. As the comparison mechanism is
iterative, a larger depth also prolongs the comparison duration. Therefore, it is recommended
not to have large tree depths if the latency of the comparison operation is high.

• A smaller depth means that the Merkle tree is shallower and the data synchronization
mechanism transfers larger chunks of the data structure (e.g., IMap) in which a possible change
has happened. As you can imagine, a shallower Merkle tree will consume less memory.

Also see the Defining the Depth section for more insights.

If you do not specifically configure the merkle-tree in your Hazelcast
configuration, Hazelcast uses the default Merkle tree structure values (i.e., it is
enabled by default and its default depth is 10) when there is a WAN publisher
using the Merkle tree (i.e., consistency-check-strategy for a WAN replication
configuration is set as MERKLE_TREES and there is a data structure using that WAN
replication configuration).

Merkle trees are created for each partition holding IMap data. Therefore,
increasing the partition count also increases the efficiency of the Delta WAN
Synchronization.

The Process

Synchronizing the maps based on Merkle trees consists of two phases:

1. Consistency check: Process of exchanging and comparing the hashes stored in the Merkle tree
structures in the source and target clusters. The check starts with the root node and continues
recursively with the children with different hash codes. Both sides send the children of the
nodes that the other side sent, hence the comparison is done by depth/2 steps. After this check,
the tree leaves holding different entries are identified.

2. Synchronization: Process of transferring the entries belong to the leaves identified by the
consistency check from the source to target cluster. On the target cluster the configured merge
policy is applied for each entry that is in both the source and target clusters.

If you only need the differences between the clusters, you can trigger the
consistency check without performing synchronization.

The two phases of the Merkle tree based synchronization can be triggered by the REST calls, as it
can be done with the full synchronization.

The URL for the consistency check REST call:

733

http://{member IP address:port}/hazelcast/rest/wan/consistencyCheck/map

The URL for the synchronization REST call - the same as it is for the default synchronization:

http://{member IP address:port}/hazelcast/rest/wan/sync/map

See the REST call details here.

Memory Consumption

Since Merkle trees are built for each partition and each map, the memory overhead of the trees
with high entry count and deep trees can be significant. The trees are maintained on-heap,
therefore - besides the memory consumption - garbage collection could be another concern.

The table below shows a few examples for what the memory overhead could be.

Table 21. Merkle trees memory overhead for a member, for one map

Partitions Owned Depth Memory Overhead

271 8 0.27 MB

271 10 1 MB

271 13 8 MB

271 16 68 MB

5009 8 5 MB

5009 10 20 MB

5009 13 157 MB

5009 16 1252 MB

Defining the Depth

The efficiency of the Delta WAN Synchronization (WAN synchronization based on Merkle trees) is
determined by the average number of entries per the tree leaves that is proportionate to the
number of entries in the map. The bigger this average the more entries are getting synchronized for
the same difference. Raising the depth decreases this average at the cost of increasing the memory
overhead.

This average can be calculated for a map as avgEntriesPerLeaf = mapEntryCount / totalLeafCount,
where totalLeafCount = partitionCount * 2depth-1. The ideal value is 1, however this may come at
significant memory overhead as shown in the table above.

In order to specify the tree depth, a trade-off between memory consumption and effectiveness
might be needed.

Even if the map is huge and the Merkle trees are configured to be relatively shallow, the Merkle
tree based synchronization may be leveraged if only a small subset of the whole map is expected to
be synchronized. The table below illustrates the efficiency of the Merkle tree based synchronization

734

compared to the default synchronization mechanism.

Table 22. Efficiency examples

Map entry
count

Depth Memory
consumptio
n

Avg entries /
leaf

Difference
count

Entries
synced

Efficiency

10M 11 39 MB 2 5M 10M 0%

10M 12 78 MB 1 5M 5M 100%

10M 10 20 MB 4 1M 4M 150%

10M 8 5 MB 16 10K 160K 6150%

10M 12 78 MB 1 10K 10K 99900%

The Difference count column shows the number of the entries different in the source and the target
clusters. This is the minimum number of the entries that need to be synchronized to make the
clusters consistent. The Entries synced column shows how many entries are synchronized in the
given case, calculated as Entries synced = Difference count * Avg entries / leaf.

As shown in the last two rows, the Merkle tree based synchronization transfers significantly less
entries than what the default mechanism does even with 8 deep trees. The efficiency with depth 12
is even better but consumes much more memory.

 The averages in the table are calculated with 5009 partitions.

The average entries per leaf number above assumes perfect distribution of the
entries amongst the leaves. Since this is typically not true in real-life scenarios the
efficiency can be slightly worse. The statistics section below describes how to get
the actual average for the leaves involved in the synchronization.

WAN Synchronization Statistics

Both Full and Delta WAN Synchronization processes write statistics into the diagnostics subsystem
and send them to Hazelcast Management Center. Using these statistics you can measure the
efficiency of your configuration.

Full WAN Synchronization reports the following:

• Duration of the synchronization

• Count of the synchronized entries

• Total count of the synchronized partitions

Here is an example output:

735

Synchronization statistics:
 Synchronization UUID: 8af2f9e7-3f9f-4c31-b594-47c421bfb33c
 Duration: 0 secs
 Total records synchronized: 448
 Total partitions synchronized: 5

Delta WAN Synchronization reports the following:

• Duration of the synchronization

• Count of the synchronized entries

• Total count of the synchronized partitions

• Merkle tree nodes checked

• Merkle tree nodes found to be different

• Count of the entries needed to be synchronized to make the clusters consistent

• Average count of entries per tree leaves in the synchronized leaves

Here is an example output:

Merkle synchronization statistics:
 Synchronization UUID: f49a25ba-dc57-4547-817b-bea67ff7f0fe
 Duration: 0 secs
 Total records synchronized: 528
 Total partitions synchronized: 6
 Total Merkle tree nodes synchronized: 178
 Average records per Merkle tree node: 2.97
 StdDev of records per Merkle tree node: 1.55
 Minimum records per Merkle tree node: 1
 Maximum records per Merkle tree node: 7

See the Diagnostics section to learn how to enable diagnostics and locate its log file to see the above
statistics.

25.6.2. Dynamically Adding WAN Publishers

When running clusters for an extensive period, you might need to dynamically change the
configuration while the cluster is running. This includes dynamically adding new WAN replication
publishers (new target clusters) and replicating the subsequent map and cache updates to the new
publishers without any manual intervention.

You can add new WAN publishers to an existing WAN replication using almost all of the
configuration options that are available when configuring the WAN publishers in the static
configuration (including using Discovery SPI). The new configuration is not persisted but it is
replicated to all existing and new members. Once the cluster is completely restarted, the
dynamically added publisher configuration is lost and the updates are not replicated to the target
cluster anymore until added again.

736

If you wish to preserve the new configuration over cluster restarts, you must add the exact same
configuration to the static configuration file after dynamically adding the publisher configuration
to a running cluster.

You cannot remove the existing configurations but can put the publishers into a STOPPED state
which prevents the WAN events from being enqueued in the WAN queues and prevents the
replication, rendering the publisher idle. The configurations also cannot be changed.

You can dynamically add a WAN publisher configuration using the following REST call URL:

http://{member IP address:port}/hazelcast/rest/wan/addWanConfig

You need to add the following URL-encoded parameters to the request in the following order
separated by "&";

• Cluster name

• Cluster password

• WAN replication configuration, serialized as JSON

You can, at any point, even when maps and caches are concurrently mutated, add a new WAN
publisher to an existing WAN replication configuration. The limitation is that there must be an
existing WAN replication configuration but it can be empty, without any publishers (target clusters).
For instance, this is an example of an XML configuration to which you can dynamically add new
publishers:

XML

<hazelcast>
 ...
 <wan-replication name="myWanReplication"></wan-replication>
 <map name="my-map">
 <wan-replication-ref name="myWanReplication">
 <merge-policy>com.hazelcast.spi.merge.PassThroughMergePolicy</merge-
policy>
 <republishing-enabled>false</republishing-enabled>
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

737

YAML

hazelcast:
 wan-replication:
 myWanReplication:
 map:
 myMap:
 wan-replication-ref:
 myWanReplication:
 merge-policy: com.hazelcast.spi.merge.PassThroughMergePolicy
 republishing-enabled: false

Note that the map has defined WAN replication but there is no target cluster yet. You can then add
the new WAN replication publishers (target clusters) by performing an HTTP POST as shown below:

curl -X POST -d "clusterName&clusterPassword&{...}" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/addWanConfig

You can provide the full configuration as JSON as a parameter. Any WAN configuration supported
in the XML and programmatic configurations is also supported in this JSON format. Below are some
examples of JSON configuration for a WAN publisher using the Discovery SPI and static IP
configuration. Here are the integer values for initialPublisherState, queueFullBehavior and
consistencyCheckStrategy:

• initialPublisherState:

◦ 0: REPLICATING

◦ 1: PAUSED

◦ 2: STOPPED

• queueFullBehavior:

◦ 0: DISCARD_AFTER_MUTATION

◦ 1: THROW_EXCEPTION

◦ 2: THROW_EXCEPTION_ONLY_IF_REPLICATION_ACTIVE

• consistencyCheckStrategy:

◦ 0: NONE

◦ 1: MERKLE_TREES

Below is an example using Discovery SPI (AWS configuration):

738

{
 "name":"wanReplication",
 "publishers":[
 {
 "clusterName":"tokyo",
 "queueCapacity":10000,
 "queueFullBehavior":0,
 "initialPublisherState":0,
 "discovery":{
 "nodeFilterClass":null,
 "discoveryStrategy":[
 {
 "className":"com.hazelcast.aws.AwsDiscoveryStrategy",
 "properties":{
 "security-group-name":"hazelcast",
 "tag-value":"cluster1",
 "host-header":"ec2.amazonaws.com",
 "tag-key":"aws-test-cluster",
 "secret-key":"my-secret-key",
 "iam-role":"s3access",
 "access-key":"my-access-key",
 "hz-port":"5701-5708",
 "region":"us-west-1"
 }
 }
]
 }
 }
]
}

Below is an example with Discovery SPI (the new AWS configuration)

739

{
 "name":"wanReplication",
 "publishers":[
 {
 "clusterName":"tokyo",
 "queueCapacity":1000,
 "queueFullBehavior":0,
 "initialPublisherState":0,
 "aws":{
 "enabled":true,
 "usePublicIp":false,
 "properties":{
 "security-group-name":"hazelcast-sg",
 "tag-value":"hz-nodes",
 "host-header":"ec2.amazonaws.com",
 "tag-key":"type",
 "secret-key":"my-secret-key",
 "iam-role":"dummy",
 "access-key":"my-access-key",
 "region":"us-west-1"
 }
 },
 "sync":{
 "consistencyCheckStrategy":0
 }
 }
]
}

Below is an example with static IP configuration (with some optional attributes):

740

{
 "name":"wanReplication",
 "publishers":[
 {
 "clusterName":"tokyo",
 "queueCapacity":1000,
 "queueFullBehavior":0,
 "initialPublisherState":0,
 "responseTimeoutMillis":5000,
 "targetEndpoints":"10.3.5.1:5701, 10.3.5.2:5701",
 "batchMaxDelayMillis":3000,
 "batchSize":50,
 "snapshotEnabled":false,
 "acknowledgeType":1,
 "sync":{
 "consistencyCheckStrategy":0
 }
 }
]
}

Below is an XML configuration with two publishers and several (disabled) discovery strategy
configurations:

{
 "name":"wanReplication",
 "publishers":[
 {
 "clusterName":"tokyo",
 "queueCapacity":1000,
 "queueFullBehavior":0,
 "initialPublisherState":0,
 "aws":{
 "enabled":true,
 "usePublicIp":false,
 "properties":{
 "security-group-name":"hazelcast-sg",
 "tag-value":"hz-nodes",
 "host-header":"ec2.amazonaws.com",
 "tag-key":"type",
 "secret-key":"my-secret-key",
 "iam-role":"dummy",
 "access-key":"my-access-key",
 "region":"us-west-1"
 }
 },
 "gcp":{
 "enabled":false,
 "usePublicIp":true,

741

 "properties":{
 "gcp-prop":"gcp-val"
 }
 },
 "azure":{
 "enabled":false,
 "usePublicIp":true,
 "properties":{
 "azure-prop":"azure-val"
 }
 },
 "kubernetes":{
 "enabled":false,
 "usePublicIp":true,
 "properties":{
 "k8s-prop":"k8s-val"
 }
 },
 "eureka":{
 "enabled":false,
 "usePublicIp":true,
 "properties":{
 "eureka-prop":"eureka-val"
 }
 },
 "discovery":{
 "nodeFilterClass":null,
 "discoveryStrategy":[

]
 },
 "sync":{
 "consistencyCheckStrategy":0
 }
 },
 {
 "clusterName":"london",
 "queueCapacity":1000,
 "queueFullBehavior":0,
 "initialPublisherState":0,
 "responseTimeoutMillis":5000,
 "targetEndpoints":"10.3.5.1:5701, 10.3.5.2:5701",
 "batchMaxDelayMillis":3000,
 "batchSize":50,
 "snapshotEnabled":false,
 "acknowledgeType":1,
 "aws":{
 "enabled":false,
 "usePublicIp":false
 },
 "gcp":{

742

 "enabled":false,
 "usePublicIp":false
 },
 "azure":{
 "enabled":false,
 "usePublicIp":false
 },
 "kubernetes":{
 "enabled":false,
 "usePublicIp":false
 },
 "eureka":{
 "enabled":false,
 "usePublicIp":false
 },
 "discovery":{
 "nodeFilterClass":null,
 "discoveryStrategy":[

]
 },
 "sync":{
 "consistencyCheckStrategy":1
 }
 }
]
}

25.6.3. Event Filtering API

WAN replication allows you to intercept WAN replication events before they are placed to WAN
event replication queues by providing a filtering API. Using this API, you can monitor WAN
replication events of each data structure separately.

You can attach filters to your data structures using the filter element of wan-replication-ref
configuration inside hazelcast.xml as shown below. You can also configure it using the
programmatic configuration.

743

XML

<hazelcast>
 ...
 <map name="testMap">
 <wan-replication-ref name="test">
 <filters>
 <filter-impl>com.example.MyFilter</filter-impl>
 <filter-impl>com.example.MyFilter2</filter-impl>
 </filters>
 </wan-replication-ref>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 map:
 testMap:
 wan-replication-ref:
 test:
 filters:
 - com.example.MyFilter
 - com.example.MyFilter2

As shown in the above configuration, you can define more than one filter. Filters are called in the
order that they are introduced. A WAN replication event is only eligible to publish if it passes all the
filters.

Map and Cache have different filter interfaces: MapWanEventFilter and CacheWanEventFilter. Both of
these interfaces have the method filter which takes the following parameters:

• mapName/cacheName: Name of the related data structure.

• entryView: EntryView or CacheEntryView depending on the data structure.

• eventType: Enum type - UPDATED(1), REMOVED(2) or LOADED(3) - depending on the event.

 LOADED events are filtered out and not replicated to target cluster.

25.6.4. Implementing a Custom WAN Publisher

In addition to using the Hazelcast’s built-in WAN Replication implementation, you can implement
your own replication mechanism using the WAN publisher SPI.

Following is the configuration snippet where replicatedMap and replicatedCache use the custom
implementation com.my.WanPublisher to replicate map and cache updates.

744

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/EntryView.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/cache/CacheEntryView.html

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <custom-publisher>
 <publisher-id>myCustomPublisher</publisher-id>
 <class-name>com.my.WanPublisher</class-name>
 <properties>
 <property name="prop1">val1</property>
 <property name="prop2">val2</property>
 </properties>
 </custom-publisher>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 custom-publisher:
 publisher-id: myCustomPublisher
 class-name: com.my.WanPublisher
 properties:
 prop1: val1
 prop2: val2
 map:
 replicatedMap:
 wan-replication-ref:
 london-wan-rep:
 ...
 cache:
 replicatedCache:
 wan-replication-ref:
 london-wan-rep:
 ...

The custom-publisher is used to configure a custom implementation of a WAN replication

745

implementing com.hazelcast.wan.WanPublisher. For example, you might implement replication to
Kafka or some JMS queue or even write out map and cache event changes to a log on disk. It has the
following sub-elements:

• class-name: Mandatory configuration value defining the fully qualified class name of the WAN
publisher implementation. The class must implement com.hazelcast.wan.WanPublisher.

• publisher-id: Mandatory configuration value for the publisher ID used for identifying the
publisher in a WanReplicationConfig. This ID will be used to refer to this specific WAN publisher
in a certain WAN replication scheme.

In some cases, specifying the configuration on the source/active cluster is enough to fully
implement your use case. This is the case when you don’t have any target/passive Hazelcast cluster
which consumes these events. In cases when you do have a target Hazelcast cluster and you wish to
use a custom WAN Replication implementation, you will need to configure the target cluster as
well. For example, you might want to implement WAN Replication by transmitting WAN events
through some JMS queue like ActiveMQ. In this case, you need to implement both your custom
WAN publisher and WAN consumer.

Below is a configuration example for specifying a custom WAN replication consumer on the
target/passive cluster:

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <consumer>
 <class-name>com.my.WanConsumer</class-name>
 <properties>
 <property name="prop1">val1</property>
 <property name="prop2">val2</property>
 </properties>
 </consumer>
 </wan-replication>
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 consumer:
 class-name: com.my.WanConsumer
 properties:
 prop1: val1
 prop2: val2

The consumer is used to configure the implementation of the com.hazelcast.wan.WanConsumer

interface which will be used to retrieve and process WAN events. A custom WAN consumer allows

746

you to define custom processing logic and is used in combination with a custom WAN publisher.

The consumer configuration element has the following sub-elements:

• class-name: Name of the class implementing a custom WAN consumer
(com.hazelcast.wan.WanConsumer).

• properties: Properties for the custom WAN consumer. These properties are accessible when
initializing the WAN consumer. You can define the host, username and password for the host,
name of the queue to be polled by the consumer, etc.

25.6.5. Customizing WAN Event Processing on Passive/Target Cluster

In addition to customizing behavior of the source cluster and how WAN events are sent and
retained, you can also configure some aspects of how WAN events are processed on the receiving
(target/passive) cluster. In addition, you can also define a custom implementation of a WAN event
consumer. A custom WAN consumer allows you to define custom processing logic and is usually
used in combination with a custom WAN publisher. A custom consumer is optional and you may
simply omit defining it which causes the default processing logic to be used. See the Using the WAN
Custom Publisher section for more information.

Below you can see an example configuration of the target/passive cluster where we configure how
incoming WAN events are processed.

XML

<hazelcast>
 ...

 <wan-replication name="london-wan-rep">
 <consumer>
 <persist-wan-replicated-data>false</persist-wan-replicated-data>
 </consumer>
 </wan-replication>

 <map name="replicatedMap">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </map>

 <cache name="replicatedCache">
 <wan-replication-ref name="london-wan-rep"/>
 ...
 </cache>
 ...
</hazelcast>

747

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 consumer:
 persist-wan-replicated-data: false
 map:
 replicatedMap:
 wan-replication-ref:
 london-wan-rep:
 ...
 cache:
 replicatedCache:
 wan-replication-ref:
 london-wan-rep:
 ...

In the configuration above you can see that the WAN Replication configuration is again matched by
WAN replication scheme name to the exact map and cache configuration. This means that different
structures can process WAN events differently.

The processing behavior is configured using the consumer element. It has the following sub-
elements:

• persist-wan-replicated-data: When set to true, an incoming event over WAN replication can be
persisted to a database for example, otherwise it is not persisted. Default value is true.

25.7. Fine-Tuning WAN Replication
WAN Replication will work fine for most use cases with the default settings. However, there are
some specific use cases where you might want to change the behavior of WAN Replication to suit
your needs. You might also be interested in the details how WAN Replication works. If that is the
case, this section is for you.

25.7.1. Batch Size

The maximum size of events that are sent in a single batch can be changed depending on your
needs. The batch of events is not sent until this size is reached or enough time has elapsed. The
default value for batch size is 500. The batch size can be set for each WAN publisher separately by
modifying the related WanBatchPublisherConfig.

Below is the configuration for changing the value of the element:

748

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <batch-size>1000</batch-size>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 batch-size: 1000

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setBatchSize(1000);
wanConfig.addWanPublisherConfig(publisherConfig);

25.7.2. Batch Maximum Delay

When using the built-in WAN batch replication, if the number of WAN replication events generated
does not reach Batch Size, they are sent to the target cluster after a certain amount of time is
passed. You can set this duration in milliseconds using this batch maximum delay configuration.
Default value of for this duration is 1 second (1000 milliseconds).

Maximum delay can be set for each target cluster by modifying related WanBatchPublisherConfig.

You can change this element using the configuration as shown below.

749

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <batch-max-delay-millis>2000</batch-max-delay-millis>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 batch-max-delay-millis: 2000

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setBatchMaxDelayMillis(2000);
wanConfig.addWanPublisherConfig(publisherConfig);

25.7.3. Response Timeout

After a replication event is sent to the target cluster, the source member waits for an
acknowledgement of the delivery of the event to the target. If the confirmation is not received
inside a timeout duration window, the event is resent to the target cluster. Default value of this
duration is 60000 milliseconds.

You can change this duration depending on your network latency for each target cluster by
modifying related WanBatchPublisherConfig.

Below is an example configuration:

750

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <response-timeout-millis>5000</response-timeout-millis>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 response-timeout-millis: 5000

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setResponseTimeoutMillis(5000);
wanConfig.addWanPublisherConfig(publisherConfig);

25.7.4. Queue Capacity

For clusters with high data mutation rates or with long expected periods of disrupted connectivity
between clusters, you might need to increase the replication queue size. The default queue size for
replication queues is 10000. This means, if you have heavy put/update/remove rates or if the
target/passive cluster is unavailable for too long, you might exceed the queue size so that the oldest,
not yet replicated, updates might get lost. Note that a separate queue is used for each WAN
Replication configured for IMap and ICache.

Queue capacity can be set for each target cluster by modifying the related WanBatchPublisherConfig.

You can change this element using the configuration as shown below.

751

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <queue-capacity>15000</queue-capacity>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 queue-capacity: 15000

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setQueueCapacity(15000);
wanConfig.addWanPublisherConfig(publisherConfig);

Note that you can clear a member’s WAN replication event queue. It can be initiated through
Management Center’s Clear Queues action or Hazelcast’s REST API. Below is the URL for its REST
call:

http://member_ip:port/hazelcast/rest/wan/clearWanQueues

You need to add the following URL-encoded parameters to the request in the following order
separated by "&";

• Cluster name

• Cluster password

• Name of the WAN replication configuration

• WAN replication publisher ID/target cluster name

This may be useful, for instance, to release the consumed heap if you know that the target cluster is
being shut down, decommissioned, put out of use and it will never come back. Or, when a failure

752

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-wan-replication

happens and queues are not replicated anymore, you could clear the queues using this clearing
action.

25.7.5. Queue Full Behavior

You can also configure the policy to be applied when the WAN Replication event queues are full.
The following policies are supported:

• DISCARD_AFTER_MUTATION: If you select this option, the new WAN events generated by the member
are dropped and not replicated to the target cluster when the WAN event queues are full.

• THROW_EXCEPTION: If you select this option, the WAN queue size is checked before each supported
mutating operation (like IMap.put(), ICache.put()). If one the queues of target cluster is full,
WanReplicationQueueFullException is thrown and the operation is not allowed.

• THROW_EXCEPTION_ONLY_IF_REPLICATION_ACTIVE: Its effect is similar to that of THROW_EXCEPTION. But,
it throws exception only when WAN replication is active. It discards the new events if WAN
replication is stopped.

The following is an example configuration:

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <queue-full-behavior>DISCARD_AFTER_MUTATION</queue-full-behavior>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 queue-full-behavior: DISCARD_AFTER_MUTATION

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setQueueFullBehavior("DISCARD_AFTER_MUTATION");
wanConfig.addWanPublisherConfig(publisherConfig);

753

queue-full-behavior configuration is optional. Its default value is
DISCARD_AFTER_MUTATION.

25.7.6. Acknowledgment Types

WAN replication supports different acknowledgment (ACK) types for each target cluster. You can
choose from two different acknowledgement types depending on your consistency and
performance requirements. The following ACK types are supported:

• ACK_ON_RECEIPT: A batch of replication events is considered successfully replicated as soon as it is
received by the target cluster. This option does not guarantee that the received update is
actually applied but it is faster.

• ACK_ON_OPERATION_COMPLETE: This option guarantees that the event is received by the target
cluster and it is applied. It is more time consuming but it ensures that the updates have been
successfully applied by the target cluster before sending the next batch of events.

The following is an example configuration:

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <acknowledge-type>ACK_ON_OPERATION_COMPLETE</acknowledge-type>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 acknowledge-type: ACK_ON_OPERATION_COMPLETE

JAVA

WanReplicationConfig wanConfig = config.getWanReplicationConfig("london-wan-rep");
WanBatchPublisherConfig publisherConfig = new WanBatchPublisherConfig()
 .setClusterName("london")
 .setAcknowledgeType("ACK_ON_OPERATION_COMPLETE");
wanConfig.addWanPublisherConfig(publisherConfig);

754

acknowledge-type configuration is optional. Its default value is
ACK_ON_OPERATION_COMPLETE.

25.7.7. Key-based Coalescing

By default, WAN Replication will replicate all of the updates on map and cache entries. If you are
updating a single "hot" entry multiple times, WAN Replication will send an update event for every
entry update. If you don’t need to have all updates replicated and would like to simply replicate the
latest update for a certain entry, you can turn on key-based coalescing, thus saving on amounts of
data replicated between clusters.

The following is an example configuration:

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <snapshot-enabled>true</snapshot-enabled>
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 snapshot-enabled: true

 snapshot-enabled is optional. Its default value is false.

25.7.8. Achieving Lower Latencies and Higher Throughput

The WAN replication mechanism allows tuning for lower latencies of replication and higher
throughput. In most cases, WAN replication is sufficient with out-of-the-box settings which cause
WAN replication to replicate the map and cache events with little overhead. However, there might
be some use cases where the latency between a map/cache mutation on one cluster and its visibility
on the other cluster must be kept within some bounds. To achieve such demands, you can first try
tuning the WAN replication mechanism using the following publisher elements:

• batch-size

• batch-max-delay-millis

755

• idle-min-park-ns

• idle-max-park-ns

To understand the implications of these elements, let’s first dive into how WAN replication works.

WAN replication runs in a separate thread and tries to send map and cache mutation events in
batches to the target endpoints for higher throughput. The target endpoints are usually members in
a target Hazelcast cluster but different WAN implementations may have different target endpoints.
The event batch is collected by iterating over the WAN queues for different partitions and, different
maps and caches. WAN replication tries and collects a batch of a size which can be configured using
the batch-size element.

If enough time has passed and the WAN replication thread hasn’t collected enough events to fill a
batch, it sends what it has collected nevertheless. This is controlled by the batch-max-delay-millis
element. The "enough time" precisely means that more than the configured amount of milliseconds
has passed since the time the last batch was sent to any target endpoint.

If there are no events in any of the WAN queues, the WAN replication thread goes into the idle state
by parking the WAN replication thread. The minimum park time can be defined using the idle-min-
park-ns element and the maximum park time can be controlled using the idle-max-park-ns element.
If a WAN event is enqueued while the WAN replication thread is in the idle state, the latency for
replication of that WAN event increases.

An example WAN replication configuration using the default values of the above elements is shown
below.

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep-batch">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <batch-size>500</batch-size>
 <batch-max-delay-millis>1000</batch-max-delay-millis>
 <idle-min-park-ns>10000000</idle-min-park-ns> <!-- 10 ms -->
 <idle-max-park-ns>250000000</idle-max-park-ns> <!-- 250 ms -->
 ...
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

756

YAML

hazelcast:
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 batch-size: 500
 batch-max-delay-millis: 1000
 idle-min-park-ns: 10000000
 idle-max-park-ns: 250000000

We will now discuss tuning these elements. Unfortunately, the exact tuning parameters heavily
depend on the load, mutation rate, latency between the source and target clusters and even use
cases. We will thus discuss some general approaches and pointers.

When tuning for low latency, the first thing you might want to do is lower the idle-min-park-ns and
idle-max-park-ns element values. This will affect the latencies that you see when having a low
number of operations per second, since this is when the WAN replication thread will be mostly in
idle state. Try lowering both elements but keep in mind that the lower the element value, the more
time the WAN replication thread will spend consuming CPU in a quiescent state - when there is no
mutation on the maps or caches.

The next element you might lower is the batch-max-delay-millis. If you have a strict upper bound
on the latency for WAN replication, this element must be below that limit. Setting this value too low
might adversely affect the performance: in that case the WAN replication thread might send
smaller batches than what it would if the element was higher and it had waited for some more
time. You can even try setting this element to zero which instructs the WAN replication thread to
send batches as soon as it is able to collect any events; but keep in mind this will result in many
smaller batches instead of less bigger event batches.

When tuning for lower latencies, configuring the batch-size usually has little effect, especially at
lower mutation rates. At a low number of operations per second, the event batches will usually be
very small since the WAN replication thread will not be able to collect the full batch and respect the
required latencies for replication. The batch-size element might have more effect at higher
mutation rates. Here, you will probably want to use bigger batches to avoid paying for the latencies
when sending lots of smaller batches, so try increasing the batch size and benchmarking at high
load.

There are a couple of other configuration values that you might try changing but it depends on
your use case. The first one is adding a separate configuration for a WAN replication executor.
Collecting of WAN event batches and processing the responses from the target endpoints are done
on a shared executor. This executor is shared between the other parts of the Hazelcast system and
all of the WAN replication publishers will use the same executor. In some cases, you might want to
create a dedicated executor for all WAN replication publishers. The name of this executor is hz:wan.
Below is an example of a concrete, dedicated executor for WAN replication. See the Configuring
Executor Service section for more information on the configuration options of the executor.

757

XML

<hazelcast>
 ...
 <executor-service name="hz:wan">
 <pool-size>16</pool-size>
 </executor-service>
 ...
</hazelcast>

YAML

hazelcast:
 executor-service:
 hz-wan:
 pool-size: 16

The last two elements that you might want to change are acknowledge-type and max-concurrent-
invocations. Changing these elements allow you to get a greater throughput at the expense of event
ordering. This means that these elements may only be changed if your application can tolerate
WAN events to be received out-of-order. For instance, if you are updating or removing the existing
map or cache entries, an out-of-order WAN event delivery would mean that the event for the entry
removal or update might be processed by the target cluster before the event is received to create
that entry. This does not causes exceptions but it causes the clusters to fall out-of-sync. In these
cases, you most probably will not be able to use these elements. On the other hand, if you are only
creating new, immutable entries (which are then removed by the expiration mechanism), you can
use these elements to achieve a greater throughput.

The acknowledge-type element controls at which time the target cluster will send a response for the
received WAN event batch. The default value is ACK_ON_OPERATION_COMPLETE which will ensure that
all events are processed before the response is sent to the source cluster. The value ACK_ON_RECEIPT
instructs the target cluster to send a response as soon as it has received the WAN event batch but
before it has been processed. This has two implications. One is that events can now be processed
out-of-order (see the previous paragraph) and the other is that the exceptions thrown on processing
the WAN event batch will not be received by the source cluster and the WAN event batch will not be
retried. As such, some events might get lost in case of errors and the clusters may fall out-of-sync.
WAN sync can help bring those clusters in-sync. The benefit of the ACK_ON_RECEIPT value is that now
the source cluster can send a new batch sooner, without waiting for the previous batch to be
processed fully.

WAN synchronization strategies (neither the default nor the Delta WAN
Synchronization) don’t synchronize the deletions since they are not yet tracked
under WAN.

The max-concurrent-invocations element controls the maximum number of WAN event batches
being sent to the target cluster concurrently. Setting this element to anything less than 2 will only
allow a single batch of events to be sent to each target endpoint and will maintain causality of
events for a single partition (events are not received out-of-order). Setting this element to 2 or

758

higher will allow multiple batches of WAN events to be sent to each target endpoint. Since this
allows reordering of batches due to the network conditions, causality and ordering of events for a
single partition is lost and batches for a single partition are now sent randomly to any available
target endpoint. This, however, does present a faster WAN replication for certain scenarios such as
replicating immutable, independent map entries which are only added once and where ordering,
when these entries are added, is not necessary. Keep in mind that if you set this element to a value
which is less than the target endpoint count, you will lose performance as not all target endpoints
will be used at any point in time to process the WAN event batches. So, for instance, if you have a
target cluster with 3 members (target endpoints) and you want to use this element, it only makes
sense to set it to a value higher than 3. Otherwise, you can simply disable it by setting it to less than
2 in which case WAN will use the default replication strategy and adapt to the target endpoint count
while maintaining causality.

An example WAN replication configuration using the default values of the aforementioned
elements is shown below.

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep-batch">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <acknowledge-type>ACK_ON_OPERATION_COMPLETE</acknowledge-type>
 <max-concurrent-invocations>-1</max-concurrent-invocations>
 ...
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep-batch:
 cluster-name: london
 acknowledge-type: ACK_ON_OPERATION_COMPLETE
 max-concurrent-invocations: -1

Finally, as we’ve mentioned, the exact values which will give you the optimal performance depend
on your environment and use case. Please benchmark and try out different values to find out the
right values for you.

25.7.9. Discovery Period

When using WAN Replication with Discovery SPI, you can set the period in seconds in which WAN
tries to discover new target endpoints and reestablish connections to failed endpoints using the
discovery-period-seconds property. The default value is 10 seconds.

759

<hazelcast>
 ...
 <wan-replication name="london-wan-rep-batch">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <discovery-period-seconds>20</discovery-period-seconds>
 ...
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

25.7.10. Maximum Number of Target Endpoints

When using WAN Replication with Discovery SPI, you can set the maximum number of endpoints
that WAN connects to at any point using the max-target-endpoints property. This element has no
effect when static endpoint addresses are defined using target-endpoints. Default is
Integer.MAX_VALUE.

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep-batch">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <max-target-endpoints>5</max-target-endpoints>
 ...
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep-batch:
 batch-publisher:
 cluster-name: london
 max-target-endpoints: 5

25.7.11. Use Endpoint Private Address

When using WAN Replication with Discovery SPI, you can set whether the WAN connection
manager should connect to the endpoint on the private address returned by the Discovery SPI using
the use-endpoint-private-address property. By default this element is false which means the WAN
connection manager always uses the public address.

760

XML

<hazelcast>
 ...
 <wan-replication name="london-wan-rep-batch">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <use-endpoint-private-address>true</use-endpoint-private-address>
 ...
 </batch-publisher>
 </wan-replication>
 ...
</hazelcast>

YAML

hazelcast:
 wan-replication:
 london-wan-rep-batch:
 batch-publisher:
 cluster-name: london
 use-endpoint-private-address: true

25.8. Failure Detection and Recovery
The failure detection and recovery mechanisms in WAN handle failures during WAN replication
and they closely interact with the list of endpoints that WAN is replicating to. There might be some
small differences when using static endpoints or the Discovery SPI but here we will outline the
general mechanism of failure detection and recovery.

25.8.1. WAN Target Endpoint List

The WAN connection manager maintains a list of public addresses that it can replicate to at any
moment. This list may change over time as failures are detected or as new addresses are discovered
when using the Discovery SPI. The connection manager does not eagerly create connections to
these addresses as they are added to the list to avoid overloading the endpoint with connections
from all members using the same configuration. It tries to connect to the endpoint just before WAN
events are about to be transmitted. This means that if there are no updates on the map or cache
using WAN replication, there are no WAN events and the connection will not be established to the
endpoint.

When more than one endpoint is configured, traffic is load balanced between them using the
partition, so that the same partitions are always sent to the same target member, ensuring ordering
by partition.

25.8.2. WAN Failure Detection

If using the Hazelcast IMDG Enterprise edition class WanBatchReplication (see the Defining WAN

761

replication section), the WAN replication catches any exceptions when sending the WAN events to
the endpoint. In the case of an exception, the endpoint is removed from the endpoint list to which
WAN replicates and the WAN events are resent to a different address. The replication is retried
until it is successful.

25.8.3. WAN Endpoint Recovery

The WAN connection manager tries to "rediscover" new endpoints periodically. The period is 10
seconds by default but can be configured using the discovery-period-seconds element (see the
Defining WAN replication section).

The discovered endpoints depend on the configuration used to define WAN replication. If using
static WAN endpoints (by using the target-endpoints element), the discovered endpoints are always
the same and are equal to the values defined in the configuration. If using Discovery SPI with WAN,
the discovered endpoints may be different each time.

When the discovery returns a list of endpoints (addresses), the WAN target endpoint list is updated.
Newly discovered endpoints are added and endpoints which are no longer in the discovered list are
removed. Newly discovered endpoints may include addresses to which WAN replication has
previously failed. This means that once a new WAN event is about to be sent, a connection is
reestablished to the previously failed endpoint and WAN replication is retried. The endpoint can
later be again removed from the target endpoint list if the replication again encounters failure.

25.8.4. Backing Up Event Queues

WAN replication backs up its event queues to other members to prevent event loss in case of
member failures.

WAN replication’s backup mechanism depends on the related data structures' backup operations.
Note that, WAN replication is supported for IMap and ICache. That means, as far as you set a
backup count for your IMap or ICache instances, WAN replication events generated by these
instances are also replicated.

25.9. REST API Wrap-Up

To be able to use the REST calls related to WAN Replication mentioned in this
section, you need to enable the WAN REST endpoint group. See the Using the REST
Endpoint Groups section on how to enable it.

25.9.1. Parameters

Here is the list of parameters used in the WAN Replication REST calls, which are shown as
placeholders in the REST calls:

• member IP address and port: IP address and port number of the member on which you run the
REST calls.

• clusterOnSource: Name of your local (source) cluster.

762

• clusterPassword: Password, if set, of your source cluster. Note that you need to enable the
security when you need a cluster password. If not set, the parameter is empty.

• wanRepName: Name of the WAN Replication configuration.

• publisherId: WAN replication publisher ID. If not set, cluster-name under the batch-publisher
element is used.

• mapName: Name of the map to be synchronized.

• wanConfig: WAN publisher configuration file, as a JSON string, to be added dynamically.

The parameters in the below curl commands need to be provided in the given order, separated by &.

Let’s use the following declarative configuration as the example to be used in the curl commands
described in the sections below, and let’s assume that our source cluster does not have a password:

XML

<hazelcast>
 <cluster-name>tokyo</cluster-name>
 <wan-replication name="london-wan-rep">
 <batch-publisher>
 <cluster-name>london</cluster-name>
 <target-endpoints>10.3.5.1:5701, 10.3.5.2:5701</target-endpoints>
 </batch-publisher>
 </wan-replication>

 <map name="myMap">
 <wan-replication-ref name="london-wan-rep"/>
 </map>
</hazelcast>

YAML

hazelcast:
 cluster-name: tokyo
 wan-replication:
 london-wan-rep:
 batch-publisher:
 cluster-name: london
 target-endpoints: 10.3.5.1:5701, 10.3.5.2:5701
 map:
 myMap:
 wan-replication-ref:
 london-wan-rep:
 ...

25.9.2. Clearing the Queues

The URL for cleaning the WAN event queues is as follows:

763

http://{member IP address:port}/hazelcast/rest/wan/clearWanQueues

The following is the curl command:

curl -X POST -d "{clusteronSourceName}&{clusterPassword}&{wanRepName}&{publisherId}"
--URL http://{member IP address:port}/hazelcast/rest/wan/clearWanQueues

The command according to the above example configuration is as follows:

curl -X POST -d "tokyo&&london-wan-rep&london" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/clearWanQueues

25.9.3. Pausing the Publisher

The URL for pausing the WAN publisher is as follows:

http://{member IP address:port}/hazelcast/rest/wan/pausePublisher

The following is the curl command:

curl -X POST -d "{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}" --URL
http://{member IP address:port}/hazelcast/rest/wan/pausePublisher

The command according to the above example configuration is as follows:

curl -X POST -d "tokyo&&london-wan-rep&london" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/pausePublisher

25.9.4. Resuming the Publisher

The URL for resuming the WAN publisher is as follows:

http://{member IP address:port}/hazelcast/rest/wan/resumePublisher

The following is the curl command:

curl -X POST -d "{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}" --URL
http://{member IP address:port}/hazelcast/rest/wan/resumePublisher

The command according to the above example configuration is as follows:

764

curl -X POST -d "tokyo&&london-wan-rep&london" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/resumePublisher

25.9.5. Stopping the Publisher

The URL for stopping the WAN publisher is as follows:

http://{member IP address:port}/hazelcast/rest/wan/stopPublisher

The following is the curl command:

curl -X POST -d "{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}" --URL
http://{member IP address:port}/hazelcast/rest/wan/stopPublisher

The command according to the above example configuration is as follows:

curl -X POST -d "tokyo&&london-wan-rep&london" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/stopPublisher

25.9.6. Synchronizing the Clusters

For the full synchronization, the URLs for synchronizing a single map and all maps are as follows:

http://{member IP address:port}/hazelcast/rest/wan/sync/map
http://{member IP address:port}/hazelcast/rest/wan/sync/allMaps

The following are the respective curl commands:

curl -X POST -d
"{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}&{mapName}" --URL http
://{member IP address:port}/hazelcast/rest/wan/sync/map

curl -X POST -d "{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}" --URL
http://{member IP address:port}/hazelcast/rest/wan/sync/allMaps

The command according to the above example configuration is as follows (for that single map):

curl -X POST -d "tokyo&&london-wan-rep&london&myMap" --URL http://{member IP
address:port}/hazelcast/rest/wan/sync/map

For the delta synchronization, you need to first perform a consistency check, using the the
following REST call URL:

765

http://{member IP address:port}/hazelcast/rest/wan/consistencyCheck/map

Here is the respective curl command:

curl -X POST -d
"{clusterOnSource}&{clusterPassword}&{wanRepName}&{publisherId}&{mapName}" --URL http
://{member IP address:port}/hazelcast/rest/wan/consistencyCheck/map

After the consistency check, you can use the same REST calls used in full synchronization in the
same way to synchronize a single map or all the maps.

 Consistency check can be triggered only for one map.

25.9.7. Dynamically Adding WAN Publishers

The URL for dynamically adding a WAN publisher configuration is as follows:

http://{member IP address:port}/hazelcast/rest/wan/addWanConfig

The following is the curl command:

curl -X POST -d "{clusterOnSource}&{clusterPassword}&{wanConfig}" --URL http
://127.0.0.1:5701/hazelcast/rest/wan/addWanConfig

The wanConfig parameter should be the full configuration as a JSON string. See here for
configuration examples.

26. OSGI
This chapter explains how Hazelcast is supported on OSGI (Open Service Gateway Initiatives)
environments.

26.1. OSGI Support
Hazelcast bundles provide OSGI services so that Hazelcast users can manage (create, access,
shutdown) Hazelcast instances through these services on OSGI environments. When you enable the
property hazelcast.osgi.start (default is disabled), when an Hazelcast OSGI service is activated, a
default Hazelcast instance is created automatically.

Created Hazelcast instances can be served as an OSGI service that the other Hazelcast bundles can
access. Registering created Hazelcast instances behavior is enabled by default; you can disable it
using the property hazelcast.osgi.register.disabled.

Each Hazelcast bundle provides a different OSGI service. Their instances can be grouped (clustered)

766

together to prevent possible compatibility issues between different Hazelcast versions/bundles.
This grouping behavior is enabled by default and you disable it using the property
hazelcast.osgi.grouping.disabled.

Hazelcast OSGI service’s lifecycle (and the owned/created instances’s lifecycles) is the same with the
owner Hazelcast bundles. When the bundle is stopped (deactivated), the owned service and
Hazelcast instances are also deactivated/shutdown and deregistered automatically. When the
bundle is re-activated, its service is registered again.

The Hazelcast IMDG Enterprise JAR package is also an OSGI bundle like the Hazelcast Open Source
JAR package.

26.2. API
HazelcastOSGiService: Contract point for Hazelcast services on top of OSGI. Registered to
org.osgi.framework.BundleContext as the OSGI service so the other bundles can access and use
Hazelcast on the OSGI environment through this service.

HazelcastOSGiInstance: Contract point for HazelcastInstance implementations based on OSGI
service. HazelcastOSGiService provides proxy Hazelcast instances typed HazelcastOSGiInstance
which is a subtype of HazelcastInstance and these instances delegate all calls to the underlying
HazelcastInstance.

26.3. Configuring Hazelcast OSGI Support
HazelcastOSGiService uses the following configurations:

• hazelcast.osgi.start: If this property is enabled (it is disabled by default), when an
HazelcastOSGiService is activated, a default Hazelcast instance is created automatically.

• hazelcast.osgi.register.disabled: If this property is disabled (it is disabled by default), when a
Hazelcast instance is created by HazelcastOSGiService, the created HazelcastOSGiInstance is
registered automatically as OSGI service with type of HazelcastOSGiInstance and it is
deregistered automatically when the created HazelcastOSGiInstance is shutdown.

• hazelcast.osgi.grouping.disabled: If this property is disabled (it is disabled by default), every
created HazelcastOSGiInstance is grouped as their owner HazelcastOSGiService and do not join
each other unless no cluster name is specified in the Config.

26.4. Design
HazelcastOSGiService is specific to each Hazelcast bundle. This means that every Hazelcast bundle
has its own HazelcastOSGiService instance.

Every Hazelcast bundle registers its HazelcastOSGiService instances via Hazelcast Bundle Activator
(com.hazelcast.osgi.impl.Activator) while they are being started, and it deregisters its
HazelcastOSGiService instances while they are being stopped.

Each HazelcastOSGiService instance has a different service ID as the combination of Hazelcast

767

version and artifact type (OSS or EE). Examples are 3.6#OSS, 3.6#EE, 3.7#OSS, 3.7#EE, etc.

HazelcastOSGiService instance lifecycle is the same with the owner Hazelcast bundle. This means
that when the owner bundle is deactivated, the owned HazelcastOSGiService instance is deactivated,
and all active Hazelcast instances that are created and served by that HazelcastOSGiService instance
are also shutdown and deregistered. When the Hazelcast bundle is re-activated, its
HazelcastOSGiService instance is registered again as the OSGI service.

26.5. Using Hazelcast OSGI Service

26.5.1. Getting Hazelcast OSGI Service Instances

You can access all HazelcastOSGiService instances through org.osgi.framework.BundleContext for
each Hazelcast bundle as follows:

for (ServiceReference serviceRef : context.getServiceReferences(HazelcastOSGiService
.class.getName(), null)) {
 HazelcastOSGiService service = (HazelcastOSGiService) context.getService
(serviceRef);
 String serviceId = service.getId();
 ...
}

26.5.2. Managing and Using Hazelcast instances

You can use HazelcastOSGiService instance to create and shutdown Hazelcast instances on OSGI
environments. The created Hazelcast instances are HazelcastOSGiInstance typed (which is sub-type
of HazelcastInstance) and are just proxies to the underlying Hazelcast instance. There are several
methods in HazelcastOSGiService to use Hazelcast instances on OSGI environments as shown below.

768

// Get the default Hazelcast instance owned by `hazelcastOsgiService`
// Returns null if `HAZELCAST_OSGI_START` is not enabled
HazelcastOSGiInstance defaultInstance = hazelcastOsgiService
.getDefaultHazelcastInstance();

// Creates a new Hazelcast instance with default configurations as owned by
`hazelcastOsgiService`
HazelcastOSGiInstance newInstance1 = hazelcastOsgiService.newHazelcastInstance();

// Creates a new Hazelcast instance with specified configuration as owned by
`hazelcastOsgiService`
Config config = new Config();
config.setInstanceName("OSGI-Instance");
...
HazelcastOSGiInstance newInstance2 = hazelcastOsgiService.newHazelcastInstance(config
);

// Gets the Hazelcast instance with the name `OSGI-Instance`, which is `newInstance2`
created above
HazelcastOSGiInstance instance = hazelcastOsgiService.getHazelcastInstanceByName(
"OSGI-Instance");

// Shuts down the Hazelcast instance with name `OSGI-Instance`, which is
`newInstance2`
hazelcastOsgiService.shutdownHazelcastInstance(instance);

// Print all active Hazelcast instances owned by `hazelcastOsgiService`
for (HazelcastOSGiInstance instance : hazelcastOsgiService.getAllHazelcastInstances())
{
 System.out.println(instance);
}

// Shuts down all Hazelcast instances owned by `hazelcastOsgiService`
hazelcastOsgiService.shutdownAll();

27. Extending Hazelcast
This chapter describes the different possibilities to extend Hazelcast with additional services or
features.

27.1. OperationParker
OperationParker is an interface offered by SPI for the objects, such as Lock and Semaphore, to be
used when a thread needs to wait for a lock to be released.

OperationParker keeps a list of waiters. For each notify operation:

769

• it looks for a waiter

• it asks the waiter whether it wants to keep waiting

• if the waiter responds no, the service executes its registered operation (operation itself knows
where to send a response)

• it rinses and repeats until a waiter wants to keep waiting.

Each waiter can sit on a wait-notify queue for, at most, its operation’s call timeout. For example, by
default, each waiter can wait here for at most 1 minute. A continuous task scans expired/timed-out
waiters and invalidates them with CallTimeoutException. Each waiter on the remote side should
retry and keep waiting if it still wants to wait. This is a liveness check for remote waiters.

This way, it is possible to distinguish an unresponsive member and a long (~infinite) wait. On the
caller side, if the waiting thread does not get a response for either a call timeout or for more than 2
times the call-timeout, it will exit with OperationTimeoutException.

Note that this behavior breaks the fairness. Hazelcast does not support fairness for any of the data
structures with blocking operations, such as Lock and Semaphore.

27.2. Discovery SPI
By default, Hazelcast is bundled with multiple ways to define and find other members in the same
network. Commonly used, especially with development, is the Multicast discovery. This sends out a
multicast request to a network segment and awaits other members to answer with their IP
addresses. In addition, Hazelcast supports a number of built-in discovery strategies described in the
Discovery Mechanisms section.

Since there is an ever growing number of public and private cloud environments, as well as
numerous Service Discovery systems in the wild, Hazelcast provides cloud or service discovery
vendors with the option to implement their own discovery strategy.

Over the course of this section, we will build a simple discovery strategy based on the /etc/hosts
file.

27.2.1. Discovery SPI Interfaces and Classes

The Hazelcast Discovery SPI (Member Discovery Extensions) consists of multiple interfaces and
abstract classes. In the following subsections, we will have a quick look at all of them and shortly
introduce the idea and usage behind them. The example will follow in the next section, Discovery
Strategy.

DiscoveryStrategy: Implement

The com.hazelcast.spi.discovery.DiscoveryStrategy interface is the main entry point for vendors to
implement their corresponding member discovery strategies. Its main purpose is to return
discovered members on request. The com.hazelcast.spi.discovery.DiscoveryStrategy interface also
offers light lifecycle capabilities for setup and teardown logic (for example, opening or closing
sockets or REST API clients).

770

DiscoveryStrategys can also do automatic registration / de-registration on service discovery systems
if necessary. You can use the provided DiscoveryNode that is passed to the factory method to retrieve
local addresses and ports, as well as metadata.

AbstractDiscoveryStrategy: Abstract Class

The com.hazelcast.spi.discovery.AbstractDiscoveryStrategy is a convenience abstract class meant
to ease the implementation of strategies. It basically provides additional support for reading /
resolving configuration properties and empty implementations of lifecycle methods if unnecessary.

DiscoveryStrategyFactory: Factory Contract

The com.hazelcast.spi.discovery.DiscoveryStrategyFactory interface describes the factory contract
that creates a certain DiscoveryStrategy. DiscoveryStrategyFactory s are registered automatically at
startup of a Hazelcast member or client whenever they are found in the classpath. For automatic
discovery, factories need to announce themselves as SPI services using a resource file according to
the Java Service Provider Interface. The service registration file must be part of the JAR file, located
under META-INF/services/com.hazelcast.spi.discovery.DiscoveryStrategyFactory, and consist of a
line with the full canonical class name of the DiscoveryStrategy per provided strategy
implementation.

DiscoveryNode: Describe a Member

The com.hazelcast.spi.discovery.DiscoveryNode abstract class describes a member in the Discovery
SPI. It is used for multiple purposes, since it will be returned from strategies for discovered
members. It is also passed to DiscoveryStrategyFactorys factory method to define the local member
itself if created on a Hazelcast member; on Hazelcast clients, null is passed.

SimpleDiscoveryNode: Default DiscoveryNode

com.hazelcast.spi.discovery.SimpleDiscoveryNode is a default implementation of the DiscoveryNode.
It is meant for convenience use of the Discovery SPI and can be returned from vendor
implementations if no special needs are required.

NodeFilter: Filter Members

You can configure com.hazelcast.spi.discovery.NodeFilter before startup and you can implement
logic to do additional filtering of members. This might be necessary if query languages for
discovery strategies are not expressive enough to describe members or to overcome inefficiencies
of strategy implementations.

The DiscoveryStrategy vendor does not need to take possibly configured filters into
account as their use is transparent to the strategies.

DiscoveryService: Support In Integrator Systems

A com.hazelcast.spi.discovery.integration.DiscoveryService is part of the integration domain.
DiscoveryStrategy vendors do not need to implement DiscoveryService because it is meant to
support the Discovery SPI in situations where vendors integrate Hazelcast into their own systems

771

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

or frameworks. Certain needs might be necessary as part of the classloading or Java Service
Provider Interface lookup.

DiscoveryServiceProvider: Provide a DiscoveryService

Use the com.hazelcast.spi.discovery.integration.DiscoveryServiceProvider to provide a
DiscoveryService to the Hazelcast discovery subsystem. Configure the provider with the Hazelcast
configuration API.

DiscoveryServiceSettings: Configure DiscoveryService

A com.hazelcast.spi.discovery.integration.DiscoveryServiceSettings instance is passed to the
DiscoveryServiceProvider at creation time to configure the DiscoveryService.

DiscoveryMode: Member or Client

The com.hazelcast.spi.discovery.integration.DiscoveryMode enum tells if a created
DiscoveryService is running on a Hazelcast member or client to change the behavior accordingly.

27.2.2. Discovery Strategy

This subsection walks through the implementation of a simple DiscoveryStrategy and its necessary
setup.

Discovery Strategy Example

The example strategy uses the local /etc/hosts (and on Windows it uses the equivalent to the *nix
hosts file named %SystemRoot%\system32\drivers\etc\hosts) to lookup IP addresses of different hosts.
The strategy implementation expects hosts to be configured with hostname sub-groups under the
same domain. So far to theory, let’s get into it.

The full example’s source code can be found here.

Configuring Site Domain

As a first step we do some basic configuration setup. We want the user to be able to configure the
site domain for the discovery inside the hosts file, therefore we define a configuration property
called site-domain. The configuration is not optional: you need to configure it before the creation of
the HazelcastInstance, either via Hazelcast’s declarative or programmatic configuration.

It is recommended that you keep all defined properties in a separate configuration class as public
constants (public static final) with sufficient documentation. This allows users to easily look up
possible configuration values.

772

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://github.com/hazelcast/hazelcast-code-samples

public final class HostsDiscoveryConfiguration {

 public static final PropertyDefinition DOMAIN = new SimplePropertyDefinition(
"site-domain", PropertyTypeConverter.STRING);

 private HostsDiscoveryConfiguration() {
 }
}

An additional ValueValidator could be passed to the definition to make sure the configured value
looks like a domain or has a special format.

Creating Discovery

As the second step we create the very simple DiscoveryStrategyFactory implementation class. To
keep things clear we are going to name the discovery strategy after its purpose: looking into the
hosts file.

public class HostsDiscoveryStrategyFactory implements DiscoveryStrategyFactory {

 private static final Collection<PropertyDefinition> PROPERTIES = singletonList
(HostsDiscoveryConfiguration.DOMAIN);

 @Override
 public Class<? extends DiscoveryStrategy> getDiscoveryStrategyType() {
 return HostsDiscoveryStrategy.class;
 }

 @Override
 public DiscoveryStrategy newDiscoveryStrategy(DiscoveryNode discoveryNode, ILogger
logger, Map<String, Comparable> properties) {
 return new HostsDiscoveryStrategy(logger, properties);
 }

 @Override
 public Collection<PropertyDefinition> getConfigurationProperties() {
 return PROPERTIES;
 }
}

This factory now defines properties known to the discovery strategy implementation and provides
a clean way to instantiate it. While creating the HostsDiscoveryStrategy we ignore the passed
DiscoveryNode since this strategy does not support automatic registration of new members. In cases
where the strategy does not support registration, the environment has to handle this in some
provided way.

773

Remember that, when created on a Hazelcast client, the provided DiscoveryNode is
null, as there is no local member in existence.

Next, we register the DiscoveryStrategyFactory to make Hazelcast pick it up automatically at
startup. As described earlier, this is done according to the Java Service Provider Interface
specification. The filename is the name of the interface itself. Therefore we create a new resource
file called com.hazelcast.spi.discovery.DiscoveryStrategyFactory and place it under META-

INF/services. The content is the full canonical class name of our factory implementation.

com.hazelcast.examples.spi.discovery.HostsDiscoveryStrategyFactory

If our JAR file contains multiple factories, each consecutive line can define another full canonical
DiscoveryStrategyFactory implementation class name.

Implementing Discovery Strategy

Now comes the interesting part. We are going to implement the discovery itself. The previous parts
we did are normally pretty similar for all strategies aside from the configuration properties itself.
However, implementing the discovery heavily depends on the way the strategy has to come up with
IP addresses of other Hazelcast members.

Extending The AbstractDiscoveryStrategy

For ease of implementation, we back our implementation by extending the
AbstractDiscoveryStrategy and only implementing the absolute minimum ourselves.

public class HostsDiscoveryStrategy extends AbstractDiscoveryStrategy {

 private static final String HOSTS_NIX = "/etc/hosts";
 private static final String HOSTS_WINDOWS = "%SystemRoot%\\system32\\drivers\\
etc\\hosts";

 private final String siteDomain;

 HostsDiscoveryStrategy(ILogger logger, Map<String, Comparable> properties) {
 super(logger, properties);

 this.siteDomain = getOrNull("discovery.hosts", HostsDiscoveryConfiguration
.DOMAIN);
 }

 @Override
 public Iterable<DiscoveryNode> discoverNodes() {
 List<String> assignments = filterHosts();
 return mapToDiscoveryNodes(assignments);
 }

 private List<String> filterHosts() {

774

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

 String os = System.getProperty("os.name");

 String hostsPath;
 if (os.contains("Windows")) {
 hostsPath = HOSTS_WINDOWS;
 } else {
 hostsPath = HOSTS_NIX;
 }

 File hosts = new File(hostsPath);

 List<String> lines = readLines(hosts);

 List<String> assignments = new ArrayList<String>();
 for (String line : lines) {

 if (matchesDomain(line)) {
 assignments.add(line);
 }
 }
 return assignments;
 }

 private Iterable<DiscoveryNode> mapToDiscoveryNodes(List<String> assignments) {
 Collection<DiscoveryNode> discoveredNodes = new ArrayList<DiscoveryNode>();

 for (String assignment : assignments) {
 String address = sliceAddress(assignment);
 String hostname = sliceHostname(assignment);

 Map<String, String> attributes = Collections.singletonMap("hostname",
hostname);

 InetAddress inetAddress = mapToInetAddress(address);
 Address addr = new Address(inetAddress, NetworkConfig.DEFAULT_PORT);

 discoveredNodes.add(new SimpleDiscoveryNode(addr, attributes));
 }
 return discoveredNodes;
 }

 private List<String> readLines(File hosts) {
 try {
 List<String> lines = new ArrayList<String>();
 BufferedReader reader = new BufferedReader(new FileReader(hosts));

 String line;
 while ((line = reader.readLine()) != null) {
 line = line.trim();
 if (!line.startsWith("#")) {

775

 lines.add(line.trim());
 }
 }

 return lines;
 } catch (IOException e) {
 throw new RuntimeException("Could not read hosts file", e);
 }
 }

 private boolean matchesDomain(String line) {
 if (line.isEmpty()) {
 return false;
 }
 String hostname = sliceHostname(line);
 return hostname.endsWith("." + siteDomain);
 }

 private String sliceAddress(String assignment) {
 String[] tokens = assignment.split("\\p{javaSpaceChar}+");
 if (tokens.length < 1) {
 throw new RuntimeException("Could not find ip address in " + assignment);
 }
 return tokens[0];
 }

 private static String sliceHostname(String assignment) {
 String[] tokens = assignment.split("(\\p{javaSpaceChar}+|\t+)+");
 if (tokens.length < 2) {
 throw new RuntimeException("Could not find hostname in " + assignment);
 }
 return tokens[1];
 }

 private InetAddress mapToInetAddress(String address) {
 try {
 return InetAddress.getByName(address);
 } catch (UnknownHostException e) {
 throw new RuntimeException("Could not resolve ip address", e);
 }
 }
}

Overriding Discovery Configuration

So far our implementation retrieves the configuration property for the site-domain. Our
implementation offers the option to override the value from the configuration (declarative or
programmatic) right from the system environment or JVM properties. That can be useful when the
hazelcast.xml defines a setup for an developer system (like cluster.local) and operations wants to
override it for the real deployment. By providing a prefix (in this case discovery.hosts) we created

776

an external property named discovery.hosts.site-domain which can be set as an environment
variable or passed as a JVM property from the startup script.

The lookup priority is explained in the following list, priority is from top to bottom:

• JVM properties (or under the properties element in hazelcast.xml)

• System environment

• Configuration properties

Implementing Lookup

Since we have the value for our property now, we can implement the actual lookup and mapping as
already prepared in the discoverNodes method. The following part is very specific to this special
discovery strategy; for completeness we are showing it anyways.

private static final String HOSTS_NIX = "/etc/hosts";
private static final String HOSTS_WINDOWS =
 "%SystemRoot%\\system32\\drivers\\etc\\hosts";

private List<String> filterHosts() {
 String os = System.getProperty("os.name");

 String hostsPath;
 if (os.contains("Windows")) {
 hostsPath = HOSTS_WINDOWS;
 } else {
 hostsPath = HOSTS_NIX;
 }

 File hosts = new File(hostsPath);

 // Read all lines
 List<String> lines = readLines(hosts);

 List<String> assignments = new ArrayList<String>();
 for (String line : lines) {
 // Example:
 // 192.168.0.1 host1.cluster.local
 if (matchesDomain(line)) {
 assignments.add(line);
 }
 }
 return assignments;
}

Mapping to DiscoveryNode

After we have collected the address assignments configured in the hosts file, we can go to the final
step and map those to the DiscoveryNodes to return them from our strategy.

777

private Iterable<DiscoveryNode> mapToDiscoveryNodes(List<String> assignments) {
 Collection<DiscoveryNode> discoveredNodes = new ArrayList<DiscoveryNode>();

 for (String assignment : assignments) {
 String address = sliceAddress(assignment);
 String hostname = sliceHostname(assignment);

 Map<String, Object> attributes =
 Collections.singletonMap("hostname", hostname);

 InetAddress inetAddress = mapToInetAddress(address);
 Address addr = new Address(inetAddress, NetworkConfig.DEFAULT_PORT);

 discoveredNodes.add(new SimpleDiscoveryNode(addr, attributes));
 }
 return discoveredNodes;
}

With that mapping, we now have a full discovery, executed whenever Hazelcast asks for IPs. So
why don’t we read them in once and cache them? The answer is simple: it might happen that
members go down or come up over time. Since we expect the hosts file to be injected into the
running container, it also might change over time. We want to get the latest available members,
therefore we read the file on request.

Configuring DiscoveryStrategy

To actually use the new DiscoveryStrategy implementation we need to configure it like in the
following example:

778

XML

<hazelcast>
 ...
 <!-- activate Discovery SPI -->
 <properties>
 <property name="hazelcast.discovery.enabled">true</property>
 </properties>
 <network>
 <join>
 <!-- activate our discovery strategy -->
 <discovery-strategies>

 <!-- class equals to the DiscoveryStrategy not the factory! -->
 <discovery-strategy enabled="true"
 class="
com.hazelcast.examples.spi.discovery.HostsDiscoveryStrategy">
 <properties>
 <property name="site-domain">cluster.local</property>
 </properties>
 </discovery-strategy>
 </discovery-strategies>
 </join>
 </network>
 ...
</hazelcast>

YAML

hazelcast:
 properties:
 hazelcast.discovery.enabled: true
 network:
 join:
 discovery-strategies:
 discovery-strategy:
 - class: com.hazelcast.examples.spi.discovery.HostsDiscoveryStrategy
 enabled: true
 properties:
 site-domain: cluster.local

To find out further details, please have a look at the Discovery SPI Javadoc.

27.2.3. DiscoveryService (Framework integration)

Since the DiscoveryStrategy is meant for cloud vendors or implementors of service discovery
systems, the DiscoveryService is meant for integrators. In this case, integrators mean people
integrating Hazelcast into their own systems or frameworks. In those situations, there may be
special requirements on how to lookup framework services like the discovery strategies or similar

779

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/spi/discovery/package-summary.html

services. Integrators can extend or implement their own DiscoveryService and
DiscoveryServiceProvider and inject them using the com.hazelcast.config.DiscoveryConfig

configuration API prior to instantiating the HazelcastInstance. In any case, integrators might have
to remember that a DiscoveryService might have to change behavior based on the runtime
environment (Hazelcast member or client) and then the DiscoveryServiceSettings should provide
information about the started HazelcastInstance.

Since the implementation heavily depends on one’s needs, there is no reason to provide an example
of how to implement your own DiscoveryService. However, Hazelcast provides a default
implementation which can be a good example to get started. This default implementation is
com.hazelcast.spi.discovery.impl.DefaultDiscoveryService.

27.3. Config Properties SPI
The Config Properties SPI is an easy way that you can configure SPI plugins using a prebuilt system
of automatic conversion and validation.

27.3.1. Config Properties SPI Classes

The Config Properties SPI consists of a small set of classes and provided implementations.

PropertyDefinition: Define a Single Property

The com.hazelcast.config.properties.PropertyDefinition interface defines a single property inside
a given configuration. It consists of a key string and type (in form of a
com.hazelcast.core.TypeConverter).

You can mark properties as optional and you can have an additional validation step to make sure
the provided value matches certain rules (like port numbers must be between 0-65535 or similar).

SimplePropertyDefinition: Basic PropertyDefinition

For convenience, the com.hazelcast.config.properties.SimplePropertyDefinition class is provided.
This class is a basic implementation of the PropertyDefinition interface and should be enough for
most situations. In case of additional needs, you are free to provide your own implementation of
the PropertyDefinition interface.

PropertyTypeConverter: Set of TypeConverters

The com.hazelcast.config.properties.PropertyTypeConverter enum provides a preset of
TypeConverters as listed below:

• String

• Short

• Integer

• Long

• Float

780

• Double

• Boolean

ValueValidator and ValidationException

The com.hazelcast.config.properties.ValueValidator interface implements additional value
validation. The configured value will be validated before it is returned to the requester. If
validation fails, a com.hazelcast.config.properties.ValidationException is thrown and the requester
has to handle it or throw the exception further.

27.3.2. Config Properties SPI Example

This sub-section shows a quick example of how to setup, configure and use the Config Properties
SPI.

Defining a Config PropertyDefinition

Defining a property is as easy as giving it a name and a type.

PropertyDefinition property = new SimplePropertyDefinition(
 "my-key", PropertyTypeConverter.STRING
);

We defined a property named my-key with a type of a string. If none of the predefined
TypeConverters matches the need, users are free to provide their own implementation.

Providing a value in XML

The above property is now configurable in two ways:

<!-- option 1 -->
<my-key>value</my-key>

<!-- option 2 -->
<property name="my-key">value</property>

In any case, both options are useable interchangeably, however the later version is
recommended by Hazelcast for schema applicability.

Retrieving a PropertyDefinition Value

To eventually retrieve a value, use the PropertyDefinition to get and convert the value
automatically.

781

public <T> T getConfig(PropertyDefinition property,
 Map<String, Comparable> properties) {

 Map<String, Comparable> properties = ...;
 TypeConverter typeConverter = property.typeConverter();

 Comparable value = properties.get(property.key());
 return typeConverter.convert(value);
}

28. Hazelcast Plugins
This chapter describes the plugins using which you can extend Hazelcast IMDG’s functionalities.

28.1. Cloud Discovery Plugins
Hazelcast provides the following plugins that allow Hazelcast cluster members to discover each
other on the cloud platforms. They are mainly used for the following reasons:

• provide dynamic member discovery when you do not want to or you cannot provide a list of
static IP addresses (for member-member discovery, client-member discovery, or WAN
replication)

• enable resilience to availability zone failures (ZONE_AWARE feature)

28.1.1. Hazelcast AWS

Hazelcast provides support for Amazon Web Services, covering the following environments:

• Amazon EC2 discovery with Hazelcast AWS Discovery plugin

• Amazon ECS/EC2 discovery with Hazelcast AWS Discovery plugin

• Amazon ECS/Fargate with Hazelcast AWS Discovery plugin

• Amazon EKS/Fargate with Hazelcast Kubernetes Discovery plugin

• Amazon EKS/EC2 with Hazelcast Kubernetes Discovery plugin

In all scenarios you can use the ZONE_AWARE feature to create partition backups in other Availability
Zones (AZ) and therefore prevent any data loss in case of AZ failures.

You can easily configure your Hazelcast member/client to use EC2/ECS discovery by having the
hazelcast-all (or hazelcast-aws) JAR on your classpath and enabling AWS in your Hazelcast
configuration.

See the Hazelcast AWS Plugin documentation for more details.

782

https://aws.amazon.com/
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-aws
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-aws

28.1.2. Hazelcast Azure

Hazelcast provides support for Microsoft Azure, covering the following environments:

• Azure Virtual Machines with Hazelcast Azure Discovery plugin

• Azure Kubernetes Service (AKS) with Hazelcast Kubernetes Discovery plugin

In both scenarios you can use the ZONE_AWARE feature to create partition backups in other
Availability Zones (AZ) and therefore prevent any data loss in case of AZ failures.

You can easily configure your Hazelcast member/client to use Azure discovery by having the
hazelcast-all (or hazelcast-azure) JAR on your classpath and enabling Azure in your Hazelcast
configuration.

See the Hazelcast Azure Plugin documentation for more details.

28.1.3. Hazelcast GCP

Hazelcast provides support for Google Compute Engine, covering the following environments:

• Compute Engine VM Instances with Hazelcast GCP Discovery plugin

• Google Kubernetes Engine (GKE) with Hazelcast Kubernetes Discovery plugin

In both scenarios you can use the ZONE_AWARE feature to create partition backups in other
Availability Zones (AZ) and therefore prevent any data loss in case of AZ failures.

You can easily configure your Hazelcast member/client to use GCP discovery by having the
hazelcast-all (or hazelcast-gcp) JAR on your classpath and enabling GCP in your Hazelcast
configuration.

See the Hazelcast GCP Plugin documentation for more details.

28.1.4. Hazelcast Kubernetes

Hazelcast provides support for all Kubernetes environments with the use of Hazelcast Kubernetes
Discovery plugin.

We tested Hazelcast in the following environments: GKE, EKS, AKS, OpenShift, IBM Cloud,
Minikube.

The plugin supports the ZONE_AWARE feature to create partition backups in other Availability Zones
(AZ) and therefore prevent any data loss in case of AZ failures.

You can easily configure your Hazelcast member/client to use Kubernetes discovery by having the
hazelcast-all (or hazelcast-kubernetes) JAR on your classpath and enabling Kubernetes in your
Hazelcast configuration.

See the Hazelcast Kubernetes Plugin documentation for more details.

783

https://azure.microsoft.com/en-us/
https://github.com/hazelcast/hazelcast-azure
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-azure
https://cloud.google.com/compute/
https://github.com/hazelcast/hazelcast-gcp
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-gcp
https://kubernetes.io/
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes

28.1.5. Hazelcast Eureka

Hazelcast supports using Eureka server as the discovery mechanism with the use of Hazelcast
Eureka Discovery plugin.

You can easily configure your Hazelcast member/client to use Eureka discovery by having the
hazelcast-eureka-one JAR on your classpath and enabling Eureka in your Hazelcast configuration.

See the Hazelcast Eureka Plugin documentation for more details.

28.1.6. Hazelcast Zookeeper

Hazelcast supports using Zookeeper as the discovery mechanism with the use of Hazelcast
Zookeeper Discovery plugin.

You can easily configure your Hazelcast member/client to use Zookeeper discovery by having the
hazelcast-zookeeper JAR on your classpath and enabling Zookeeper in your Hazelcast configuration.

See the Hazelcast Zookeeper Plugin documentation for more details.

28.1.7. Other Discovery Plugins

Apart from the officially maintained plugins listed above, there are a number of community
plugins implementing Hazelcast Discovery SPI:

• Hazelcast Docker Swarm Discovery Plugin

• Hazelcast Consul Discovery Plugin

• Hazelcast Etcd Discovery Plugin

• Hazelcast Heroku Discovery Plugin

28.2. Web Session Replication Plugins
You can use Hazelcast to replicate your web session in a number of environments.

28.2.1. Filter Based Web Session Replication

This plugin (a.k.a. Generic Web Session Replication) provides HTTP session replication capabilities
across a Hazelcast cluster in order to handle failover cases. Assuming you have multiple web
servers with load balancers; if one server goes down, your users on that server are directed to one
of the other live servers, but their sessions are not lost. Using this plugin backs up these HTTP
sessions; it clusters them automatically.

See the Filter Based Web Session Replication documentation for more details.

28.2.2. Tomcat Based Web Session Replication

Tomcat based web session replication is offered through Hazelcast Tomcat Session Manager. It is a
container specific module that enables session replication for JEE Web Applications without

784

https://github.com/Netflix/eureka
https://github.com/hazelcast/hazelcast-eureka
https://github.com/hazelcast/hazelcast-eureka
https://github.com/hazelcast/hazelcast-eureka
https://zookeeper.apache.org/
https://github.com/hazelcast/hazelcast-zookeeper
https://github.com/hazelcast/hazelcast-zookeeper
https://github.com/hazelcast/hazelcast-zookeeper
https://github.com/bitsofinfo/hazelcast-docker-swarm-discovery-spi
https://github.com/bitsofinfo/hazelcast-consul-discovery-spi
https://github.com/bitsofinfo/hazelcast-etcd-discovery-spi
https://github.com/jkutner/hazelcast-heroku-discovery
https://github.com/hazelcast/hazelcast-wm

requiring changes to the application.

See the following for more details:

• Tomcat Based Web Session Replication documentation

• Hazelcast Guides: Tomcat Session Replication with Spring Boot and Hazelcast

28.2.3. Jetty Based Web Session Replication

Jetty based web session replication is offered through Hazelcast Jetty Session Manager. It is a
container specific module that enables session replication for JEE Web Applications without
requiring changes to the application.

See the Jetty: Persistent Sessions with Hazelcast for more details.

28.3. Framework Integration Plugins
Hazelcast provides the following integration plugins that allow Hazelcast to integrate with other
frameworks and applications.

28.3.1. Hazelcast Hibernate 2LC

Hibernate is an object-relational mapping tool for the Java programming language. It provides a
framework for mapping an object-oriented domain model to a relational database and enables
developers to more easily write applications whose data outlives the application process.

Hazelcast Hibernate plugin provides Hazelcast’s own distributed second level cache
implementation for your Hibernate entities, collections and queries.

To use this plugin, add the hazelcast-all (or hazelcast-hibernate*) dependency into your classpath.

See the following for more details:

• Hazelcast Hibernate Plugin documentation.

• Hazelcast Guides: Hibernate Second-Level Cache

28.3.2. Spring Boot

Hazelcast is very well integrated with the whole Spring Boot ecosystem. See the following resources
for the details:

• Spring Boot: Hazelcast

• Spring Boot: Caching with Hazelcast

• Hazelcast Guides: Hazelcast with Spring Boot

• Hazelcast Guides: Caching in SpringBoot Microservices

• Hazelcast Guides: Session Replication with Spring Boot

785

https://github.com/hazelcast/hazelcast-tomcat-sessionmanager
https://guides.hazelcast.org/springboot-tomcat-session-replication
https://www.eclipse.org/jetty/documentation/current/configuring-sessions-hazelcast.html
http://hibernate.org/
https://github.com/hazelcast/hazelcast-hibernate
https://github.com/hazelcast/hazelcast-hibernate
https://guides.hazelcast.org/springboot-hibernate/
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-hazelcast
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-caching-provider-hazelcast
https://guides.hazelcast.org/hazelcast-embedded-springboot/
https://guides.hazelcast.org/caching-springboot/
https://guides.hazelcast.org/springboot-webfilter-session-replication/

28.3.3. Spring Integration

Spring Integration provides an extension for Hazelcast. It includes, but is not limited to, the
following features:

• Event-driven inbound channel adapter: Listens related Hazelcast data structure events and
sends event messages to the defined channel.

• Continuous query inbound channel adapter: Listens the modifications performed on specific
map entries.

• Cluster monitor inbound channel adapter: Listens the modifications performed on the cluster.

• Distributed SQL inbound channel adapter: Runs the defined distributed SQL and returns the
results in the light of iteration type.

• Outbound channel adapter: Listens the defined channel and writes the incoming messages to
the related distributed data structure.

• Leader election: Elects a cluster member, for example, for highly available message consumer
where only one member should receive messages.

See the Spring Integration Extension documentation for more details.

28.3.4. Spring Data Hazelcast

Spring Data provides a consistent, Spring-based programming model for data access while
preserving the features of the underlying data store.

Spring Data Hazelcast plugin provides an implementation of the Spring Data Key Value abstraction,
which lets you use Hazelcast as the data store or a layer in between your application and the
database.

See the Spring Data Hazelcast documentation for more details.

28.3.5. Quarkus

Hazelcast integrates well with the Quarkus framework. What’s more is that, if you use the
client/server topology, then Hazelcast client works in the GraalVM native executable mode. That
means that you can use Hazelcast in your super-fast native Docker images.

See the following resources for more details:

• Hazelcast Client for Quarkus documentation

• Hazelcast Guides: Hazelcast Client with Quarkus

28.3.6. Micronaut

Hazelcast can be used as a caching provider in the Micronaut framework. See the following
resources for more details:

• Micronaut: Hazelcast Support

786

https://github.com/spring-projects/spring-integration
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-hazelcast
https://spring.io/projects/spring-data
https://github.com/hazelcast/spring-data-hazelcast
https://github.com/spring-projects/spring-data-keyvalue
https://github.com/hazelcast/spring-data-hazelcast
https://quarkus.io/
https://github.com/hazelcast/quarkus-hazelcast-client
https://guides.hazelcast.org/hazelcast-client-quarkus/
https://micronaut.io/
https://micronaut-projects.github.io/micronaut-cache/snapshot/guide/#hazelcast

• Hazelcast Guides: Caching in Micronaut Microservices

28.3.7. Hazelcast JCA Resource Adapter

Hazelcast JCA Resource Adapter is a system-level software driver which can be used by a Java
application to connect to the Hazelcast cluster. Using this adapter, you can integrate Hazelcast into
Java EE containers. After a proper configuration, Hazelcast can participate in the standard Java EE
transactions.

See the Hazelcast JCA Resource Adapter documentation for more details.

28.3.8. Hazelcast DynaCache

DynaCache by IBM is used to store objects, and later, based on some data matching rules, to retrieve
those objects and serve them from its cache. This plugin is for Liberty Profile which is a lightweight
profile of IBM WebSphere Application Server.

In the Liberty Profile, you can use a dynamic cache engine in order to cache your data. With this
plugin, you can use Hazelcast as a cache provider.

See the Hazelcast DynaCache documentation for more details.

28.3.9. MuleSoft

Hazelcast is embedded within a MuleSoft container as an out-of-the-box offering. For a proper
integration you should edit the mule-deploy.properties file to have the following entry:

loader.override=com.hazelcast

28.4. Other Integrations
Apart from the officially maintained integrations listed above, there are a number of Hazelcast
community plugins:

• Hazelcast Connector for Kafka

• Hazelcast Connector for Apache Spark

• Hazelcast Mesos

• Hazelcast Openfire integration

• Hazelcast Grails plugin

• Hazelcast SubZero serialization

29. Consistency and Replication Model

787

https://guides.hazelcast.org/caching-micronaut/
https://github.com/hazelcast/hazelcast-ra
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/cache/pubwasdynacachoverview.htm
https://github.com/hazelcast/hazelcast-dynacache
https://lenses.stream/connectors/sink/hazelcast.html
https://github.com/hazelcast/hazelcast-spark
https://github.com/hazelcast/hazelcast-mesos
https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.html
https://github.com/hazelcast/hazelcast-grails
https://github.com/jerrinot/subzero

29.1. A Brief Overview of Consistency and Replication
in Distributed Systems
Partitioning and replication are the two common techniques used together in distributed databases
to achieve scalable, available and transparent data distribution. The data space is divided into
partitions, each of which contains a distinct portion of the overall data set. For these partitions,
multiple copies called replicas are created. Partition replicas are distributed among the cluster
members. Each member is assigned to at most a single replica for a partition. In this setting,
different replication techniques can be used to access the data and keep the replicas in sync on
updates. The technique being used directly affects the guarantees and properties a distributed data
store provides, due to the CAP (Consistency, Availability and Partition Tolerance) principle.

One aspect of replication techniques is about where a replicated data set is accessed and updated.
For instance, primary-copy systems first elect a replica, which can be called as primary, master, etc.,
and use that replica to access the data. Changes in the data on the primary replica are propagated
to other replicas. This approach has different namings, such as primary-copy, single-master, passive
replication. The primary-copy technique is a powerful model as it prevents conflicts, deadlocks
among the replicas. However, primary replicas can become bottlenecks. On the other hand, we can
have a different technique by eliminating the primary-copy and treating each replica as equal.
These systems can achieve a higher level of availability as a data entry can be accessed and updated
using any replica. However, it can become more difficult to keep the replicas in sync with each
other.

Replication techniques also differ in how updates are propagated among replicas. One option is to
update each replica as part of a single atomic transaction, called as eager replication or synchronous
replication. Consensus algorithms apply this approach to achieve strong consistency on a replicated
data set. The main drawback is the amount of coordination and communication required while
running the replication algorithm. CP systems implement consensus algorithms under the hood.
Another option is the lazy replication technique, which is also called as asynchronous replication.
Lazy replication algorithms execute updates on replicas with separate transactions. They generally
work with best-effort. By this way, the amount of coordination among the replicas are degraded
and data can be accessed in a more performant manner. Yet, it can happen that a particular update
is executed on some replicas but not on others, which causes replicas to diverge. Such problems can
be resolved with different approaches, such as read-repair, write-repair, anti-entropy. Lazy
replication techniques are popular among AP systems.

29.2. Hazelcast’s Replication Algorithm
The discussion here generally applies to any system that maintains multiple copies of a data set. It
applies to Hazelcast as well. In the context of CAP principle, Hazelcast offers AP and CP
functionality with different data structure implementations. Data structures exposed under
HazelcastInstance API are all AP data structures. Hazelcast also contains a CP subsystem, built on
the Raft consensus algorithm and accessed via HazelcastInstance.getCPSubsytem() which provides
CP data structures and APIs.

788

The replication algorithm and consistency model explained below apply to AP data
structures only. For CP subsystem and CP data structures, see the CP Subsystem
section.

For AP data structures, Hazelcast employs the combination of primary-copy and configurable lazy
replication techniques. As briefly described in the Data Partitioning section, each data entry is
mapped to a single Hazelcast partition and put into replicas of that partition. One of the replicas is
elected as the primary replica, which is responsible for performing operations on that partition.
When you read or write a map entry, you transparently talk to the Hazelcast member to which
primary replica of the corresponding partition is assigned. By this way, each request hits the most
up-to-date version of a particular data entry in a stable cluster. Backup replicas stay in standby
mode until the primary replica fails. Upon failure of the primary replica, one of the backup replicas
is promoted to the primary role.

With lazy replication, when the primary replica receives an update operation for a key, it executes
the update locally and propagates it to backup replicas. It marks each update with a logical
timestamp so that backups apply them in the correct order and converge to the same state with the
primary. Backup replicas can be used to scale reads (see the Enabling Backup Reads section) with
no strong consistency but monotonic reads guarantee.

Hazelcast offers features such as SplitBrainProtection, ILock and AtomicLong. In the journey of
being a highly elastic, dynamic and easy to use product, Hazelcast tries to provide best-effort
consistency guarantees without being a complete CP solution. Therefore, we recommend these
features to be used for efficiency purposes in general, instead of correctness. For instance, they can
be used to prevent to run a resource-extensive computation multiple times, which would not create
any correctness problem if runs more than once. See the Best-Effort Consistency and Network
Partitioning sections for more information.

29.2.1. Best-Effort Consistency

Hazelcast’s replication technique enables Hazelcast clusters to offer high throughput. However, due
to temporary situations in the system, such as network interruption, backup replicas can miss some
updates and diverge from the primary. Backup replicas can also hit VM or long GC pauses, and fall
behind the primary, which is a situation called as replication lag. If a Hazelcast partition primary
replica member crashes while there is a replication lag between itself and the backups, strong
consistency of the data can be lost.

Please note that CP systems can have similar problems as well. However, in a CP system, once a
replica performs an update locally (i.e., commits the update), the underlying consensus algorithm
guarantees durability of the update for the rest of the execution.

On the other hand, in AP systems like Hazelcast, a replica can perform an update locally, even if the
update is not to be performed on other replicas. This is a fair trade-off to reduce amount of
coordination among replicas and maintain high throughput & high availability of the system. These
systems employ additional measurements to maintain consistency in a best-effort manner. In this
regard, Hazelcast tries to minimize the effect of such scenarios using an active anti-entropy solution
as follows:

• Each Hazelcast member runs a periodic task in the background.

789

• For each primary replica it is assigned, it creates a summary information and sends it to the
backups.

• Then, each backup member compares the summary information with its own data to see if it is
up-to-date with the primary.

• If a backup member detects a missing update, it triggers the synchronization process with the
primary.

29.3. Invocation Lifecycle
When a write is requested with the methods, such as map.put() or queue.offer(), a write operation
is submitted to the Hazelcast member that owns the primary replica of the specific partition.
Partition of an operation is determined based on a parameter (key of an entry or name of the data
structure, etc.) related to that operation depending on the data structure. Target Hazelcast member
is figured out by looking up a local partition assignment/ownership table, which is updated on each
partition migration and broadcasted to all cluster eventually.

When a Hazelcast member receives a partition specific operation, it executes the operation and
propagates it to backup replica(s) with a logical timestamp. Number of backups for each operation
depends on the data structure and its configuration. See Threading Model - Operation Threading for
threading details.

Two types of backup replication are available: sync and async. Despite what their names imply,
both types are still implementations of the lazy (async) replication model. The only difference
between sync and async is that, the former makes the caller block until backup updates are applied
by backup replicas and acknowledgments are sent back to the caller, but the latter is just fire &
forget. Number of sync and async backups are defined in the data structure configurations, and you
can use a combination of sync and async backups.

When backup updates are propagated, response of the execution including number of sync backup
updates is sent to the caller and after receiving the response, caller waits to receive the specified
number of sync backup acknowledgements for a predefined timeout. This timeout is 5 seconds by
default and defined by the system property hazelcast.operation.backup.timeout.millis (see System
Properties appendix).

A backup update can be missed because of a few reasons, such as a stale partition table information
on a backup replica member, network interruption, or a member crash. That’s why sync backup
acks require a timeout to give up. Regardless of being a sync or async backup, if a backup update is
missed, the periodically running anti-entropy mechanism detects the inconsistency and
synchronizes backup replicas with the primary. Also the graceful shutdown procedure ensures that
all backup replicas for partitions whose primary replicas are assigned to the shutting down
member will be consistent.

In some cases, although the target member of an invocation is assumed to be alive by the failure
detector, the target may not execute the operation or send the response back in time. Network
splits, long pauses caused by high load, GC or I/O (disk, network) can be listed as a few possible
reasons. When an invocation doesn’t receive any response from the member that owns primary
replica, then invocation fails with an OperationTimeoutException. This timeout is 2 minutes by
default and defined by the system property hazelcast.operation.call.timeout.millis (see System

790

Properties appendix). When timeout is passed, result of the invocation will be indeterminate.

29.4. Exactly-once, At-least-once or At-most-once
Execution
Hazelcast, as an AP product, does not provide the exactly-once guarantee. In general, Hazelcast
tends to be an at-least-once solution.

In the following failure case, exactly-once guarantee can be broken: When the target member of a
pending invocation leaves the cluster while the invocation is waiting for a response, that invocation
is re-submitted to its new target due to the new partition table. It can be that, it has already been
executed on the leaving member and backup updates are propagated to the backup replicas, but
the response is not received by the caller. If that happens, the operation will be executed twice.

In the following failure case, invocation state becomes indeterminate: As explained above, when an
invocation does not receive a response in time, invocation fails with an OperationTimeoutException.
This exception does not say anything about outcome of the operation, that means operation may
not be executed at all, it may be executed once or twice (due to member left case explained above).

29.5. IndeterminateOperationStateException
As described in Invocation Lifecycle section, for partition-based mutating invocations, such as
map.put(), a caller waits with a timeout for the operation that is executed on corresponding
partition’s primary replica and backup replicas, based on the sync backup configuration of the
distributed data structure. Hazelcast 3.9 introduces a new mechanism to detect indeterminate
situations while making such invocations. If hazelcast.operation.fail.on.indeterminate.state

system property is enabled, a mutating invocation throws IndeterminateOperationStateException
when it encounters the following cases:

• The operation fails on partition primary replica member with MemberLeftException. In this case,
the caller may not determine the status of the operation. It could happen that the primary
replica executes the operation, but fails before replicating it to all the required backup replicas.
Even if the caller receives backup acks from some backup replicas, it cannot decide if it has
received all required ack responses, since it does not know how many acks it should wait for.

• There is at least one missing ack from the backup replicas for the given timeout duration. In this
case, the caller knows that the operation is executed on the primary replica, but some backup
may have missed it. It could be also a false-positive, if the backup timeout duration is configured
with a very small value. However, Hazelcast’s active anti-entropy mechanism eventually kicks
in and resolves durability of the write on all available backup replicas as long as the primary
replica member is alive.

When an invocation fails with IndeterminateOperationStateException, the system does not try to
rollback the changes which are executed on healthy replicas. Effect of a failed invocation may be
even observed by another caller, if the invocation has succeeded on the primary replica. Hence, this
new behavior does not guarantee linearizability. However, if an invocation completes without
IndeterminateOperationStateException when the configuration is enabled, it is guaranteed that the
operation has been executed exactly-once on the primary replica and specified number of backup

791

replicas of the partition.

Please note that IndeterminateOperationStateException does not apply to read-only operations, such
as map.get(). If a partition primary replica member crashes before replying to a read-only
operation, the operation is retried on the new owner of the primary replica.

30. Network Partitioning

30.1. Split-Brain Syndrome
In general, network partitioning is a network failure that causes the members to split into multiple
groups such that a member in a group cannot communicate with members in other groups. In a
partition scenario, all sides of the original cluster operate independently assuming members in
other sides are failed. Network partitioning is also called as Split-Brain Syndrome.

Even though this communication failure is called as network partitioning, in practice a process or
an entire OS that’s suspending/pausing very long can cause communication interruptions. If these
interruptions take long enough time to assume that the other side is crashed, the cluster splits into
multiple partitions and they start operating independently. That’s why any communication
failure/interruption long enough can be classified as network partitioning.

Moreover, communication failures don’t have to be symmetrical. A network failure can interrupt
only one side of the channel or a suspended process/member may not even observe the rest as
crashed. That kind of network partitioning can be called as partial network partitioning. See Partial
Network Partitions section for more info.

30.2. Dealing with Network Partitions
Hazelcast handles network partitions using the following solutions:

• Split-brain protection: Split-brain protection could be used when consistency is the major
concern on a network partitioning. It requires a minimum cluster size to keep a particular data
structure available. When cluster size is below the defined split-brain protection size, then
subsequent operations are rejected with a SplitBrainProtectionException. See the Split-Brain
Protection section.

• Split-brain recovery (merge policies): Split-brain recovery is to make data structures available
and operational on both sides of a network partition, and merge their data once the network
partitioning problem is resolved. See the Split-Brain Recovery section.

Split-brain recovery is also supported for the data structures whose in-memory
format is NATIVE.

30.3. Split-Brain Protection
Split-brain protection mechanism provided in Hazelcast protects your cluster in case the number of
cluster members drops below the specified one. How to respond to a split-brain scenario depends

792

on whether consistency of data or availability of your application is of primary concern. In either
case, because a split-brain scenario is caused by a network failure, you must initiate an effort to
identify and correct the network failure. Your cluster cannot be brought back to steady state
operation until the underlying network failure is fixed. If consistency is your primary concern, you
can use Hazelcast’s split-brain protection feature.

This feature enables you to specify the minimum cluster size required for operations to occur. This
is achieved by defining and configuring a minimum-cluster-size for the cluster. If the cluster size is
below this minimum value, the operations are rejected and the rejected operations return a
SplitBrainProtectionException to their callers. Additionally, it is possible to configure this size with
a user-defined SplitBrainProtectionFunction which is consulted to determine there is no split-brain
on each cluster membership change.

Your application continues its operations on the remaining operating cluster. Any application
instances connected to the cluster with sizes below the minimum threshold defined by the split-
brain protection configuration receive exceptions which, depending on the programming and
monitoring setup, should generate alerts. The key point is that rather than applications continuing
in error with stale data, they are prevented from doing so.

Split-brain protection is supported for the following Hazelcast data structures:

• IMap (for Hazelcast 3.5 and higher versions)

• Transactional Map (for Hazelcast 3.5 and higher versions)

• ICache (for Hazelcast 3.5 and higher versions)

• ILock (for Hazelcast 3.8 and higher versions)

• IQueue (for Hazelcast 3.8 and higher versions)

• IExecutorService, DurableExecutorService, IScheduledExecutorService, MultiMap, ISet, IList,
Ringbuffer, Replicated Map, Cardinality Estimator, IAtomicLong, IAtomicReference,
ISemaphore, ICountdownLatch (for Hazelcast 3.10 and higher versions)

Each data structure to be protected should have the configuration added to it as explained in the
Configuring Split-Brain Protection section.

30.3.1. Time Window for Split-Brain Protection

Cluster membership is established and maintained by heartbeats. A network partitioning presents
some members as being unreachable. While configurable, it is normally seconds or tens of seconds
before the cluster is adjusted to exclude unreachable members. The cluster size is based on the
currently understood number of members.

For this reason, there will be a time window between the network partitioning and the application
of split-brain protection. Length of this window depends on the failure detector. Given guarantee is,
every member eventually detects the failed members and rejects the operation on the data
structure which requires the split-brain protection.

Split-brain protection can be configured with out-of-the-box SplitBrainProtectionFunctions which
determine whether there is a split-brain situation independent of the cluster membership manager.
These functions take advantage of the heartbeat and other failure-detector information configured

793

on the Hazelcast members.

For more information, see the Consistency and Replication Model chapter.

30.3.2. Configuring Split-Brain Protection

You can set up the split-brain protection configuration using either declarative or programmatic
mechanism.

Assume that you have a 7-member Hazelcast Cluster and you want to set the minimum number of
four members for the cluster to continue operating. In this case, if a split-brain happens, the sub-
clusters of sizes 1, 2 and 3 are prevented from being used. Only the sub-cluster of four members is
allowed to be used.

It is preferable to have an odd-sized initial cluster size to prevent a single network
partitioning (split-brain) from creating two equal sized clusters.

Member Count Split-Brain Protection

This type of split-brain protection function determines the presence of split-brain protection based
on the count of members in the cluster, as observed by the local member’s cluster membership
manager and is available since Hazelcast 3.5. The following are map configurations for the example
7-member cluster scenario described above:

XML

<hazelcast>
 ...
 <split-brain-protection name="splitBrainProtectionRuleWithFourMembers" enabled=
"true">
 <minimum-cluster-size>4</minimum-cluster-size>
 </split-brain-protection>
 <map name="default">
 <split-brain-protection-ref>splitBrainProtectionRuleWithFourMembers</split-
brain-protection-ref>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 split-brain-protection:
 splitBrainProtectionRuleWithFourMembers:
 enabled: true
 minimum-cluster-size: 4
 map:
 default:
 split-brain-protection-ref: splitBrainProtectionRuleWithFourMembers

794

JAVA

SplitBrainProtectionConfig splitBrainProtectionConfig = new
SplitBrainProtectionConfig();
splitBrainProtectionConfig.setName("splitBrainProtectionRuleWithFourMembers")
 .setEnabled(true)
 .setMinimumClusterSize(4);

MapConfig mapConfig = new MapConfig();
mapConfig.setSplitBrainProtectionName("splitBrainProtectionRuleWithFourMembers");

Config config = new Config();
config.addSplitBrainProtectionConfig(splitBrainProtectionConfig);
config.addMapConfig(mapConfig);

Probabilistic Split-Brain Protection Function

The probabilistic split-brain protection function uses a private instance of Phi Accrual Cluster
Failure Detector which is updated with member heartbeats and its parameters can be fine-tuned to
determine the count of live members in the cluster, independently of the cluster’s membership
manager.

This function has the following configuration elements:

• acceptable-heartbeat-pause-millis: Duration in milliseconds corresponding to the number of
potentially lost/delayed heartbeats that are accepted before considering it to be an anomaly.
This margin is important to be able to survive sudden, occasional, pauses in heartbeat arrivals,
due to for example garbage collection or network drops. The value must be in the [heartbeat
interval , maximum no heartbeat interval] range, otherwise Hazelcast does not start. Its default
value is 60000 milliseconds.

• suspicion-threshold: Threshold for suspicion (φ) level. A low threshold is prone to generate
many wrong suspicions but ensures a quick detection in the event of a real crash. Conversely, a
high threshold generates fewer mistakes but needs more time to detect actual crashes. Its
default value is 10.

• max-sample-size: Number of samples to use for calculation of mean and standard deviation of
inter-arrival times. Its default value is 200.

• heartbeat-interval-millis: Bootstrap the stats with heartbeats that corresponds to this duration
in milliseconds, with a rather high standard deviation (since environment is unknown in the
beginning). Its default value is 5000 milliseconds.

• min-std-deviation-millis: Minimum standard deviation (in milliseconds) to use for the normal
distribution used when calculating phi. Too low standard deviation might result in too much
sensitivity for sudden, but normal, deviations in heartbeat inter arrival times. Its default value
is 100 milliseconds.

795

XML

<hazelcast>
 ...
 <split-brain-protection enabled="true" name="probabilistic-split-brain-protection
">
 <minimum-cluster-size>3</minimum-cluster-size>
 <protect-on>READ_WRITE</protect-on>
 <probabilistic-split-brain-protection acceptable-heartbeat-pause-millis="5000"
 max-sample-size="500" suspicion-threshold="10" />
 </split-brain-protection>
 <set name="split-brain-protected-set">
 <split-brain-protection-ref>probabilistic-split-brain-protection</split-brain-
protection-ref>
 </set>
 ...
</hazelcast>

YAML

hazelcast:
 split-brain-protection:
 probabilistic-split-brain-protection:
 enabled: true
 minimum-cluster-size: 3
 protect-on: READ_WRITE
 probabilistic-split-brain-protection:
 acceptable-heartbeat-pause-millis: 5000
 max-sample-size: 500
 suspicion-threshold: 10
 set:
 split-brain-protected-set:
 split-brain-protection-ref: probabilistic-split-brain-protection

JAVA

SplitBrainProtectionConfig splitBrainProtectionConfig =
 SplitBrainProtectionConfig.newProbabilisticSplitBrainProtectionConfigBuilder(
"probabilist-splitBrainProtection", 3)
 .withAcceptableHeartbeatPauseMillis(5000)
 .withMaxSampleSize(500)
 .withSuspicionThreshold(10)
 .build();
splitBrainProtectionConfig.setProtectOn(SplitBrainProtectionOn.READ_WRITE);
SetConfig setConfig = new SetConfig("split-brain-protected-set");
setConfig.setSplitBrainProtectionName("probabilist-splitBrainProtection");
Config config = new Config();
config.addSplitBrainProtectionConfig(splitBrainProtectionConfig);
config.addSetConfig(setConfig);

796

Recently-Active Split-Brain Protection Function

This function can be used to implement a more conservative split-brain protection by requiring
that a heartbeat has been received from each member within a configurable time window since
now.

XML

<hazelcast>
 ...
 <split-brain-protection enabled="true" name="recently-active-split-brain-
protection">
 <minimum-cluster-size>4</minimum-cluster-size>
 <protect-on>READ_WRITE</protect-on>
 <recently-active-split-brain-protection heartbeat-tolerance-millis="60000" />
 </split-brain-protection>
 <set name="split-brain-protected-set">
 <split-brain-protection-ref>recently-active-split-brain-protection</split-
brain-protection-ref>
 </set>
 ...
</hazelcast>

YAML

hazelcast:
 split-brain-protection:
 recently-active-split-brain-protection:
 enabled: true
 minimum-cluster-size: 4
 protect-on: READ_WRITE
 recently-active-split-brain-protection:
 heartbeat-tolerance-millis: 60000
 set:
 split-brain-protected-set:
 split-brain-protection-ref: recently-active-split-brain-protection

JAVA

SplitBrainProtectionConfig splitBrainProtectionConfig =
 SplitBrainProtectionConfig.newRecentlyActiveSplitBrainProtectionConfigBuilder
("recently-active-splitBrainProtection", 4, 60000)
 .build();
splitBrainProtectionConfig.setProtectOn(SplitBrainProtectionOn.READ_WRITE);
SetConfig setConfig = new SetConfig("split-brain-protected-set");
setConfig.setSplitBrainProtectionName("recently-active-splitBrainProtection");
Config config = new Config();
config.addSplitBrainProtectionConfig(splitBrainProtectionConfig);
config.addSetConfig(setConfig);

797

Split-Brain Protection Configuration Reference

The split-brain protection configuration has the following elements:

• minimum-cluster-size: Minimum number of members required in a cluster for the cluster to
remain in an operational state. If the number of members is below the defined minimum at any
time, the operations are rejected and the rejected operations return a
SplitBrainProtectionException to their callers.

• protect-on: Type of the cluster split-brain protection. Available values are READ, WRITE and
READ_WRITE.

• split-brain-protection-function-class-name: Class name of a SplitBrainProtectionFunction

implementation, allows to configure split-brain protection with a custom split-brain protection
function. It cannot be used in conjunction with probabilistic-split-brain-protection or
recently-active-split-brain-protection.

• split-brain-protection-listeners: Declaration of split-brain protection listeners which are
notified on split-brain protection status changes.

• probabilistic-split-brain-protection: Configures the split-brain protection with a probabilistic
protection function. It cannot be used in conjunction with split-brain-protection-function-
class-name or recently-active-split-brain-protection.

• recently-active-split-brain-protection: Configures the split-brain protection with a recently-
active protection function. It cannot be used in conjunction with split-brain-protection-
function-class-name or probabilistic-split-brain-protection.

Example configuration with custom SplitBrainProtectionFunction implementation

package my.domain;

public class CustomSplitBrainProtectionFunction implements
SplitBrainProtectionFunction {
 @Override
 public boolean apply(Collection<Member> members) {
 // implement split-brain detection logic here
 }
 }

798

XML

<hazelcast>
 ...
 <split-brain-protection enabled="true" name="member-count-split-brain-protection">
 <protect-on>READ_WRITE</protect-on>
 <minimum-cluster-size>3</minimum-cluster-size>
 <split-brain-protection-function-class-
name>my.domain.CustomSplitBrainProtectionFunction</split-brain-protection-function-
class-name>
 </split-brain-protection>
 ...
</hazelcast>

YAML

hazelcast:
 split-brain-protection:
 member-count-split-brain-protection:
 enabled: true
 protect-on: READ_WRITE
 minimum-cluster-size: 3
 split-brain-protection-function-class-name:
my.domain.CustomSplitBrainProtectionFunction

30.3.3. Configuring Split-Brain Protection Listeners

You can register listeners to be notified about the split-brain protection results. Split-brain
protection listeners are local to the member where they are registered, so they receive only events
that occurred on that local member.

These listeners can be configured via declarative or programmatic configuration. The following
examples are such configurations.

799

XML

<hazelcast>
 ...
 <split-brain-protection name="splitBrainProtectionRuleWithFourMembers" enabled=
"true">
 <minimum-cluster-size>4</minimum-cluster-size>
 <split-brain-protection-listeners>
 <split-brain-protection-listener>
 com.company.splitbrainprotection.FourMemberSplitBrainProtectionListener
 </split-brain-protection-listener>
 </split-brain-protection-listeners>
 </split-brain-protection>
 <map name="default">
 <split-brain-protection-ref>splitBrainProtectionRuleWithFourMembers</split-
brain-protection-ref>
 </map>
 ...
</hazelcast>

YAML

hazelcast:
 split-brain-protection:
 splitBrainProtectionRuleWithFourMembers:
 enabled: true
 minimum-cluster-size: 4
 split-brain-protection-listener:
com.company.splitbrainprotection.FourMemberSplitBrainProtectionListener
 map:
 default:
 split-brain-protection-ref: splitBrainProtectionRuleWithFourMembers

800

JAVA

SplitBrainProtectionListenerConfig listenerConfig = new
SplitBrainProtectionListenerConfig();
// You can either directly set SplitBrainProtection listener implementation of your
own
listenerConfig.setImplementation(new SplitBrainProtectionListener() {
 @Override
 public void onChange(SplitBrainProtectionEvent splitBrainProtectionEvent) {
 if (splitBrainProtectionEvent.isPresent()) {
 // handle SplitBrainProtection presence
 } else {
 // handle SplitBrainProtection absence
 }
 }
});
// Or you can give the name of the class that implements SplitBrainProtectionListener
interface.
listenerConfig.setClassName("com.company.splitBrainProtection.ThreeMemberSplitBrainPro
tectionListener");

SplitBrainProtectionConfig splitBrainProtectionConfig = new
SplitBrainProtectionConfig();
splitBrainProtectionConfig.setName("splitBrainProtectionRuleWithFourMembers")
 .setEnabled(true)
 .setMinimumClusterSize(4)
 .addListenerConfig(listenerConfig);

MapConfig mapConfig = new MapConfig();
mapConfig.setSplitBrainProtectionName("splitBrainProtectionRuleWithFourMembers");

Config config = new Config();
config.addSplitBrainProtectionConfig(splitBrainProtectionConfig);
config.addMapConfig(mapConfig);

30.3.4. Querying Split-Brain Protection Results

Split-brain protection service gives you the ability to query split-brain protection results over the
SplitBrainProtection instances. These instances let you query the result of a particular split-brain
protection.

The following is a SplitBrainProtection interface that you can interact with.

801

/**
 * {@link SplitBrainProtection} provides access to the current status of a split-brain
protection.
 */
public interface SplitBrainProtection {
 /**
 * Returns true if the minimum cluster size is satisfied, otherwise false.
 *
 * @return boolean whether the minimum cluster size property is satisfied
 */
 boolean hasMinimumSize();
}

You can retrieve the SplitBrainProtection instance as in the following example.

String splitBrainProtectionName = "at-least-one-storage-member";
SplitBrainProtectionConfig splitBrainProtectionConfig = new
SplitBrainProtectionConfig();
splitBrainProtectionConfig.setName(splitBrainProtectionName);
splitBrainProtectionConfig.setEnabled(true);

MapConfig mapConfig = new MapConfig();
mapConfig.setSplitBrainProtectionName(splitBrainProtectionName);

Config config = new Config();
config.addSplitBrainProtectionConfig(splitBrainProtectionConfig);
config.addMapConfig(mapConfig);

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);
SplitBrainProtectionService splitBrainProtectionService = hazelcastInstance
.getSplitBrainProtectionService();
SplitBrainProtection splitBrainProtection = splitBrainProtectionService
.getSplitBrainProtection(splitBrainProtectionName);

boolean splitBrainProtectionPresence = splitBrainProtection.hasMinimumSize();

30.4. Split-Brain Recovery
Hazelcast deploys a background task that periodically searches for split clusters. When a split is
detected, the side that will initiate the merge process is decided. This decision is based on the
cluster size; the smaller cluster, by member count, merges into the bigger one. If they have an equal
number of members, then a hashing algorithm determines the merging cluster. When deciding the
merging side, both sides ensure that there’s no intersection in their member lists.

After the merging side is decided, the oldest cluster member of the merging side initiates the cluster
merge process by sending merge instructions to the members in its cluster.

While recovering from partitioning, Hazelcast uses merge policies for supported data structures to

802

resolve data conflicts between split clusters. A merge policy is a callback function to resolve
conflicts between the existing and merging data. Hazelcast provides an interface to be implemented
and also a selection of out-of-the-box policies. Data structures without split-brain recovery support
discarding the data from merging side.

Each member of the merging cluster:

• closes all of its network connections (detach from its cluster)

• takes a snapshot of local data structures which support split-brain recovery

• discards all data structure data

• joins to the new cluster as lite member

• sends merge operations to the new cluster from local snapshots.

For more information, see the Consistency and Replication Model chapter.

30.4.1. Merge Policies

Since Hazelcast 3.10 all merge policies implement the unified interface
com.hazelcast.spi.SplitBrainMergePolicy. We provide the following out-of-the-box
implementations:

• DiscardMergePolicy: The entry from the smaller cluster is discarded.

• ExpirationTimeMergePolicy: The entry with the higher expiration time wins.

• HigherHitsMergePolicy: The entry with the higher number of hits wins.

• HyperLogLogMergePolicy: Specialized merge policy for the CardinalityEstimator, which uses the
default merge algorithm from HyperLogLog research, keeping the maximum register value of
the two given instances.

• LatestAccessMergePolicy: The entry with the latest access wins.

• LatestUpdateMergePolicy: The entry with the latest update wins.

• PassThroughMergePolicy: the entry from the smaller cluster wins.

• PutIfAbsentMergePolicy: The entry from the smaller cluster wins if it doesn’t exist in the cluster.

Additionally you can develop a custom merge policy by implementing the SplitBrainMergePolicy
interface, as explained in the Custom Merge Policies section

30.4.2. Supported Data Structures

The following data structures support split-brain recovery:

• IMap (including High-Density Memory Store backed IMap)

• ICache (including High-Density Memory Store backed IMap)

• ReplicatedMap

• MultiMap

• IAtomicLong

803

• IAtomicReference

• IQueue

• IList

• ISet

• RingBuffer

• CardinalityEstimator

• ScheduledExecutorService

The statistic based out-of-the-box merge policies are only supported by IMap, ICache, ReplicatedMap
and MultiMap. The HyperLogLogMergePolicy is supported by the CardinalityEstimator.

Except the CardinalityEstimator data structure, the default merge policy for all the
Hazelcast data structures that support split-brain recovery (listed above) is
PutIfAbsentMergePolicy. For the CardinalityEstimator data structure, the default
merge policy is HyperLogLogMergePolicy.

See also the Merge Types section for a complete overview of supported merge types of each data
structure. There is a config validation which checks these constraints to provide fail-fast behavior
for invalid configurations.

For the other data structures, e.g., ISemaphore, ICountdownLatch and ILock, the
instance from the smaller cluster is discarded during the split-brain recovery.

30.4.3. Configuring Merge Policies

The merge policies are configured via a MergePolicyConfig, which can be set for all supported data
structures. The only exception is ICache, which just accepts the merge policy classname (due to
compatibility reasons with older Hazelcast clients). For ICache, all other configurable merge
parameters are the default values from MergePolicyConfig.

For custom merge policies you should set the full class name of your implementation as the merge-
policy configuration. For the out-of-the-box merge policies the simple classname is enough.

Declarative Configuration

Here are examples how merge policies can be specified for various data structures:

804

XML

<hazelcast>
 ...
 <map name="default">
 <merge-policy batch-size="100">LatestUpdateMergePolicy</merge-policy>
 </map>

 <replicatedmap name="default">
 <merge-policy batch-size="100">org.example.merge.MyMergePolicy</merge-policy>
 </replicatedmap>

 <multimap name="default">
 <merge-policy batch-size="50">HigherHitsMergePolicy</merge-policy>
 </multimap>

 <list name="default">
 <merge-policy batch-size="500">org.example.merge.MyMergePolicy</merge-policy>
 </list>

 <atomic-long name="default">
 <merge-policy>PutIfAbsentMergePolicy</merge-policy>
 </atomic-long>
 ...
</hazelcast>

805

YAML

hazelcast:
 map:
 default:
 merge-policy:
 batch-size: 100
 class-name: LatestUpdateMergePolicy
 replicatedmap:
 default:
 merge-policy:
 batch-size: 100
 class-name: org.example.merge.MyMergePolicy
 multimap:
 default:
 merge-policy:
 batch-size: 50
 class-name: HigherHitsMergePolicy
 list:
 default:
 merge-policy:
 batch-size: 500
 class-name: org.example.merge.MyMergePolicy
 atomic-long:
 default:
 merge-policy:
 class-name: PutIfAbsentMergePolicy

Here is how merge policies are specified for ICache (it is the same configuration tag, but lacks the
support for additional attributes like batch-size):

XML

<hazelcast>
 ...
 <cache name="default">
 <merge-policy>org.example.merge.MyMergePolicy</merge-policy>
 </cache>
 ...
</hazelcast>

YAML

hazelcast:
 cache:
 default:
 merge-policy:
 class-name: org.example.merge.MyMergePolicy

806

Programmatic Configuration

Here are examples how merge policies can be specified for various data structures:

MergePolicyConfig mergePolicyConfig = new MergePolicyConfig()
 .setPolicy("org.example.merge.MyMergePolicy")
 .setBatchSize(100);

MapConfig mapConfig = new MapConfig("default")
 .setMergePolicyConfig(mergePolicyConfig);

ListConfig listConfig = new ListConfig("default")
 .setMergePolicyConfig(mergePolicyConfig);

Config config = new Config()
 .addMapConfig(mapConfig)
 .addListConfig(listConfig);

Here is how merge policies are specified for ICache (you can only set the merge policy classname):

CacheConfig mapConfig = new CacheConfig()
 .setName("default")
 .setMergePolicy("org.example.merge.MyMergePolicy");

Config config = new Config()
 .addMapConfig(mapConfig);

30.4.4. Custom Merge Policies

To implement a custom merge policy you have to implement
com.hazelcast.spi.SplitBrainMergePolicy:

public interface SplitBrainMergePolicy<V, T extends MergingValue<V>, R>
 extends DataSerializable {

 R merge(T mergingValue, T existingValue);
}

MergingValue is an interface which describes a merge type.

Please have in mind that existingValue can be null. This happens when a data
structure or key-based entry was just created in the smaller cluster.

Merge Types

A merge type defines an attribute which is required by a merge policy and provided by a data
structure.

807

MergingValue is the main merge type, which is required by all merge policies and provided by all
data structures. It contains the value of the merged data in raw (in-memory storage) and
deserialized format:

public interface MergingValue<V> extends MergingView {

 V getValue();

 Object getRawValue();
}

MergingValue extends MergingView, which is a marker interface extended by all provided merge
types.

The most common extension of MergingValue is MergingEntry, which additionally provides the key in
raw (in-memory storage) and deserialized format (used by all key-based data structures like IMap or
ICache):

public interface MergingEntry<K, V> extends MergingValue<V> {

 K getKey();

 Object getRawKey();
}

In addition we have a bunch of specialized merge types, e.g., for provided statistics. An example is
MergingHits, which provides the hit counter of the merge data:

public interface MergingHits extends MergingView {

 long getHits();
}

The class com.hazelcast.spi.merge.SplitBrainMergeTypes contains composed interfaces, which show
the provided merge types and required merge policy return type for each data structure:

public interface ReplicatedMapMergeTypes<K, V> extends MergingEntry<K, V>,
 MergingCreationTime, MergingHits, MergingLastAccessTime, MergingLastUpdateTime,
 MergingTTL {
}

public interface QueueMergeTypes<V> extends MergingValue<Collection<V>> {
}

The ReplicatedMap provides key/value merge data, with the creation time, access hits, last access
time, last update time and TTL. The return type of the merge policy is Object.

808

The IQueue just provides a collection of values. The return type is also a Collection<Object>.

The following is the full list of merge types:

• MergingValue: Represents the value of the merged data.

• MergingEntry: Represents the key and value of the merged data.

• MergingCreationTime: Represents the creation time of the merging process.

• MergingHits: Represents the access hits of the merged data.

• MergingLastAccessTime: Represents the last time when the merged data is accessed.

• MergingLastUpdateTime: Represents the last time when the merged data is updated.

• MergingTTL: Represents the time-to-live value of the merged data.

• MergingMaxIdle: Represents the maximum idle timeout value of the merged data.

• MergingCost: Represents the memory costs for the merging process after a split-brain.

• MergingVersion: Represents the version of the merged data.

• MergingExpirationTime: Represents the expiration time of the merged data.

• MergingLastStoredTime: Represents the last stored time of the merged data.

And the following table shows the merge types provided by each data structure:

Table 23. Merge Types

Data Structure Merge Type

IMap • MergingEntry

• MergingCreationTime

• MergingHits

• MergingLastAccessTime

• MergingLastUpdateTime

• MergingTTL

• MergingMaxIdle

• MergingCosts

• MergingVersion

• MergingExpirationTime

• MergingLastStoredTime

ICache • MergingEntry

• MergingCreationTime

• MergingHits

• MergingLastAccessTime

• MergingLastUpdateTime

• MergingTTL

809

Data Structure Merge Type

ReplicatedMap • MergingEntry

• MergingCreationTime

• MergingHits

• MergingLastAccessTime

• MergingLastUpdateTime

• MergingTTL

MultiMap • MergingEntry

• MergingCreationTime

• MergingHits

• MergingLastAccessTime

• MergingLastUpdateTime

IQueue, ISet, IList,
Ringbuffer

• MergingValue

IAtomicLong,
IAtomicReference

• MergingValue

CardinalityEstimator • MergingEntry

ScheduledExecutorServi
ce

• MergingEntry

The following sections show various examples on how to implement merge type interfaces for all
data structures, specific merge types or a specific data structure.

Accessing Deserialized Values

MergingValue.getRawValue() and MergingEntry.getRawKey() always return the data in the in-memory
format of the data structure. For some data structure like IMap this depends on your configuration.
Other data structure like ISet or IList always use the BINARY in-memory format.

If you need the deserialized key or value, you have to call MergingValue.getValue() or
MergingEntry.getKey(). The deserialization is done lazily on that method call, since it’s quite
expensive and should be avoided if the result is not needed. This also requires the deserialized
classes to be on the classpath of the server. Otherwise a ClassNotFoundException is thrown.

This is an example which checks if the (deserialized) value of the mergingValue or existingValue is
an Integer. If so it is merged, otherwise null is returned (which removes the entry):

810

public class MergeIntegerValuesMergePolicy<V> implements SplitBrainMergePolicy<V,
MergingValue<V>, Object> {

 @Override
 public Object merge(MergingValue<V> mergingValue, MergingValue<V> existingValue) {
 Object mergingUserValue = mergingValue.getValue();
 Object existingUserValue = existingValue == null ? null : existingValue
.getValue();
 System.out.println("========================== Merging..."
 + "\n mergingValue: " + mergingUserValue
 + "\n existingValue: " + existingUserValue
 + "\n mergingValue class: " + mergingUserValue.getClass().getName()
 + "\n existingValue class: " + (existingUserValue == null ? "null"
: existingUserValue.getClass().getName())
);
 if (mergingUserValue instanceof Integer) {
 return mergingValue.getRawValue();
 }
 return null;
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

For data structures like ISet or ICollection you need a merge policy, which supports collections:

811

public class MergeCollectionOfIntegerValuesMergePolicy
 implements SplitBrainMergePolicy<Collection<Object>, MergingValue<Collection
<Object>>, Collection<Object>> {

 @Override
 public Collection<Object> merge(MergingValue<Collection<Object>> mergingValue,
 MergingValue<Collection<Object>> existingValue) {
 Collection<Object> result = new ArrayList<>();
 for (Object value : mergingValue.getValue()) {
 if (value instanceof Integer) {
 result.add(value);
 }
 }
 if (existingValue != null) {
 for (Object value : existingValue.getValue()) {
 if (value instanceof Integer) {
 result.add(value);
 }
 }
 }
 return result;
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

You can also combine both merge policies to support single values and collections. This merge
policy is a bit more complex and less type safe, but can be configured on all data structures:

812

public class MergeIntegerValuesMergePolicy2<V, T extends MergingValue<V>> implements
SplitBrainMergePolicy<V, T, Object> {

 @Override
 public Object merge(T mergingValue, T existingValue) {
 if (mergingValue.getValue() instanceof Integer) {
 return mergingValue.getRawValue();
 }
 if (existingValue != null && existingValue.getValue() instanceof Integer) {
 return existingValue.getRawValue();
 }
 if (mergingValue.getRawValue() instanceof Collection) {
 Collection<Object> result = new ArrayList<>();
 addIntegersToCollection(mergingValue, result);
 if (result.isEmpty() && existingValue != null) {
 addIntegersToCollection(existingValue, result);
 }
 return result;
 }
 return null;
 }

 private void addIntegersToCollection(T mergingValue, Collection<Object> result) {
 for (Object value : (Collection<Object>) mergingValue.getValue()) {
 if (value instanceof Integer) {
 result.add(value);
 }
 }
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

Please have in mind that existingValue can be null, so a null check is mandatory
before calling existingValue.getValue() or existingValue.getRawValue().

If you return null on a collection based data structure, the whole data structure
will be removed. An empty collection works in the same way, so you don’t have to
check Collection.isEmpty() in your merge policy.

813

Accessing Hazelcast UserContext

If you need access to external references in your merge policy, you can use the Hazelcast
UserContext to get them injected. An example would be a database connection to check which value
is stored in your database. To achieve this your merge policy needs to implement
HazelcastInstanceAware and call HazelcastInstance.getUserContext():

814

public class UserContextMergePolicy<V> implements SplitBrainMergePolicy<V,
MergingValue<V>, Object>, HazelcastInstanceAware {

 public static final String TRUTH_PROVIDER_ID = "truthProvider";

 private transient TruthProvider truthProvider;

 @Override
 public Object merge(MergingValue<V> mergingValue, MergingValue<V> existingValue) {
 Object mergingUserValue = mergingValue.getValue();
 Object existingUserValue = existingValue == null ? null : existingValue
.getValue();
 boolean isMergeable = truthProvider.isMergeable(mergingUserValue,
existingUserValue);
 System.out.println("========================== Merging..."
 + "\n mergingValue: " + mergingUserValue
 + "\n existingValue: " + existingUserValue
 + "\n isMergeable(): " + isMergeable
);
 if (isMergeable) {
 return mergingValue.getRawValue();
 }
 return null;
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }

 @Override
 public void setHazelcastInstance(HazelcastInstance hazelcastInstance) {
 ConcurrentMap<String, Object> userContext = hazelcastInstance.getUserContext(
);
 truthProvider = (TruthProvider) userContext.get(TRUTH_PROVIDER_ID);
 }

 public interface TruthProvider {

 boolean isMergeable(Object mergingValue, Object existingValue);
 }
}

The UserContext can be setup like this:

815

MergePolicyConfig mergePolicyConfig = new MergePolicyConfig()
 .setPolicy(UserContextMergePolicy.class.getName());

MapConfig mapConfig = new MapConfig("default")
 .setMergePolicyConfig(mergePolicyConfig);

ConcurrentMap<String, Object> userContext = new ConcurrentHashMap<String, Object>();
userContext.put(TruthProvider.TRUTH_PROVIDER_ID, new ExampleTruthProvider());

Config config = new Config()
 .addMapConfig(mapConfig)
 .setUserContext(userContext);

Hazelcast.newHazelcastInstance(config);

The merge operations are executed on the partition threads. Database accesses are
slow compared to in-memory operations. The SplitBrainMergePolicy.merge()

method is called for every key-value pair or every collection from your smaller
cluster, which has a merge policy defined. So there can be millions of database
accesses due to a merge policy, which implements this. Be aware that this can
block your cluster for a long time or overload your database due to the high
amount of queries.

Also the com.hazelcast.core.LifeCycleEvent.MERGED is thrown after a timeout (we
don’t wait forever for merge operations to continue). At the moment this timeout is
500 milliseconds per merged item or entry, but at least 5 seconds. If your database
is slow, you might get the LifeCycleEvent while there are still merge operations in
progress.

Merge Policies With Multiple Merge Types

You can also write a merge policy, which requires multiple merge types. This merge policy is
supported by all data structures, which provide MergingHits and MergingCreationTime:

816

public class ComposedHitsAndCreationTimeMergePolicy<V, T extends MergingValue<V> &
MergingHits & MergingCreationTime>
 implements SplitBrainMergePolicy<V, T, Object> {

 @Override
 public Object merge(T mergingValue, T existingValue) {
 if (existingValue == null) {
 return mergingValue.getValue();
 }
 System.out.println("========================== Merging value " + mergingValue
.getValue() + "..."
 + "\n mergingValue creation time: " + mergingValue.getCreationTime
()
 + "\n existingValue creation time: " + existingValue
.getCreationTime()
 + "\n mergingValue hits: " + mergingValue.getHits()
 + "\n existingValue hits: " + existingValue.getHits()
);

 if (mergingValue.getCreationTime() < existingValue.getCreationTime()
 && mergingValue.getHits() > existingValue.getHits()) {
 return mergingValue.getRawValue();
 }
 return existingValue.getRawValue();
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

If you configure this merge policy on a data structures, which does not provide these merge types,
you get an InvalidConfigurationException with a message like:

The merge policy org.example.merge.ComposedHitsAndCreationTimeMergePolicy
can just be configured on data structures which provide the merging type
com.hazelcast.spi.merge.MergingHits.
See SplitBrainMergingTypes for supported merging types.

Merge Policies For Specific Data Structures

It’s also possible to restrict a merge policy to a specific data structure. This merge policy, for
example, only works on IMap:

817

public class MapEntryCostsMergePolicy implements SplitBrainMergePolicy<Object,
MapMergeTypes<Object, Object>, Object> {

 @Override
 public Object merge(MapMergeTypes mergingValue, MapMergeTypes existingValue) {
 if (existingValue == null) {
 return mergingValue.getValue();
 }
 System.out.println("========================== Merging key " + mergingValue
.getKey() + "..."
 + "\n mergingValue costs: " + mergingValue.getCost()
 + "\n existingValue costs: " + existingValue.getCost()
);

 if (mergingValue.getCost() > existingValue.getCost()) {
 return mergingValue.getRawValue();
 }
 return existingValue.getRawValue();
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

If you configure it on other data structures, you get an InvalidConfigurationException with a
message like:

The merge policy org.example.merge.MapEntryCostsMergePolicy
can just be configured on data structures which provide the merging type
com.hazelcast.spi.merge.SplitBrainMergeTypes$MapMergeTypes.
See SplitBrainMergingTypes for supported merging types.

This is another example for a merge policy, which only works on the IAtomicReference:

818

public class AtomicReferenceMergeIntegerValuesMergePolicy
 implements SplitBrainMergePolicy<Object, AtomicReferenceMergeTypes, Object> {

 @Override
 public Object merge(AtomicReferenceMergeTypes mergingValue,
AtomicReferenceMergeTypes existingValue) {
 Object mergingUserValue = mergingValue.getValue();
 Object existingUserValue = existingValue == null ? null : existingValue
.getValue();
 System.out.println("========================== Merging..."
 + "\n mergingValue: " + mergingUserValue
 + "\n existingValue: " + existingUserValue
 + "\n mergingValue class: " + mergingUserValue.getClass().getName()
 + "\n existingValue class: " + (existingUserValue == null ? "null"
: existingUserValue.getClass().getName())
);
 if (mergingUserValue instanceof Integer) {
 return mergingValue.getRawValue();
 }
 return null;
 }

 @Override
 public void writeData(ObjectDataOutput out) {
 }

 @Override
 public void readData(ObjectDataInput in) {
 }
}

Although every data structure supports MergingValue, which is the only merge type of
AtomicReferenceMergeTypes, this merge policy is restricted to IAtomicReference data structures:

The merge policy org.example.merge.AtomicReferenceMergeIntegerValuesMergePolicy
can just be configured on data structures which provide the merging type
com.hazelcast.spi.merge.SplitBrainMergeTypes$AtomicReferenceMergeTypes.
See SplitBrainMergingTypes for supported merging types.

Best Practices

Here are some best practices when implementing your own merge policy

• Only call MergingValue.getValue() and MergingEntry.getKey() when you really need the
deserialized value to save costs (CPU and memory) and avoid ClassNotFoundException.

• If you want to return one of the given values (merging or existing), it’s best to return
mergingValue.getRawValue() or existingValue.getRawValue(), since they are already in the correct
in-memory format of the data structure. If you return a deserialized value, it might need to be

819

serialized again, which are avoidable costs.

• Be careful with slow operations in the merge policy (like database accesses), since they block
your partition threads. Also the LifeCycleEvent.MERGED or LifeCycleEvent.MERGE_FAILED may be
thrown too early, if the merge operations take too long to finish.

30.5. Partial Network Partitions
In some cases, detecting and handling network partitions are not very straightforward. Because
these kind of network partitions don’t cause a clearly separated, distinct groups. But they create
overlapping partitioned groups or worse, asymmetric communication failures between members.
This can be called as partial network partitioning.

Assume [N1, N2, N3, N4] is a cluster with four members. This is how a healthy cluster looks, each
member has a connection to other members:

Assuming that N2 becomes partitioned away from rest of the cluster when it disconnects from the
other members, two separate groups are formed: [N1, N3, N4] and [N2]. This is called a full
network partition:

But when N2 cannot communicate only one or two of the rest, then there won’t be a clear separation
of partitioned groups. For instance when N2 becomes disconnected from both N3 and N4, two
overlapping healthy groups are formed: [N1, N2] and [N1, N3, N4].

820

Or, when N2 is disconnected only from N1, again two overlapping healthy groups are formed, but
this time with equal size: [N1, N3, N4] and [N2, N3, N4].

Last two figures above are samples of the partial network partitioning. Our solution to this problem
is to figure out the largest set of fully-connected members and artificially separate these members
from the rest. This way we will have a completely separated set of members without any
intersection. This is the same problem with the maximum clique problem in graph theory. Hence
we are using an implementation of the Bron–Kerbosch algorithm to find the maximum clique.

Normally each Hazelcast member tracks the liveliness of other members using local failure
detectors. But they don’t share their failure detection knowledge with other cluster members. In
order to execute the Bron–Kerbosch algorithm and figure out the largest set of fully-connected
members, we need to gather those local failure detection data from all members. When partial
network partitioning resolution mechanism is enabled, all members send their local failure
detections (suspicions about other members) inside the usual heartbeat message. (See the Failure
Detector Configuration section for more info about failure detectors.) The master (oldest) member
in the cluster gathers all this information and executes the maximum clique algorithm and then
decides the smallest set of Hazelcast members, if any, to kick from the cluster so that the remaining
members are fully-connected to each other again. In a healthy cluster this set is empty.

This process has two properties to configure:

• hazelcast.partial.member.disconnection.resolution.heartbeat.count: When the master receives
a heartbeat problem report from another member, it first waits for a number of heartbeat
rounds to allow other members to report their problems if there is any. After that, it takes all
reports received so far and checks if it can update the cluster member in a way that the
minimum number of members will be kicked from the cluster and there won’t be any heartbeat
problem between the remaining members.

If this configuration option is set to 0, this functionality is disabled. It is recommended to be set
to at least 3 or 5 so that the master will wait long enough to collect heartbeat problem reports.

821

https://en.wikipedia.org/wiki/Clique_problem
https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm

Otherwise, the master member can make sub-optimal decisions. Default value is 0.

• hazelcast.partial.member.disconnection.resolution.algorithm.timeout.seconds: The partial
member disconnection resolution mechanism uses a graph algorithm that finds a maximum
clique in non-polynomial time. Since it could take a lot of time to find a maximum clique in a
large graph, i.e, in a large cluster with lots of random network disconnections, we use a timeout
mechanism to stop execution of the algorithm. Default value is 5 seconds.

 Partial network partition resolution mechanism is not enabled by default.

Appendix A: System Properties
The table below lists the system properties with their descriptions in alphabetical order.

When you want to reconfigure a system property, you need to restart the members
for which the property is modified.

Table 24. System Properties

Property Name Default
Value

Type Description

hazelcast.aggregat
ion.accumulation.p
arallel.evaluation

true bool Specifies whether to run the aggregation accumulation for
multiple entries in parallel. Each Hazelcast IMDG member
executes the accumulation stage of an aggregation using a
single thread by default. In most cases it is useful to do it
in parallel.

hazelcast.backpres
sure.backoff.timeo
ut.millis

60000 int Controls the maximum timeout in milliseconds to wait for
an invocation space to be available. The value needs to be
equal to or larger than 0.

hazelcast.backpres
sure.enabled

false bool Enable back pressure.

hazelcast.backpres
sure.max.concurren
t.invocations.per.
partition

100 int The maximum number of concurrent invocations per
partition.

hazelcast.backpres
sure.syncwindow

1000 string Used when back pressure is enabled. The larger the sync
window value, the less frequent an asynchronous backup
is converted to a sync backup.

hazelcast.cache.in
validation.batch.e
nabled

true bool Specifies whether the cache invalidation event batch
sending is enabled or not.

822

hazelcast.cache.in
validation.batch.s
ize

100 int Defines the maximum number of cache invalidation
events to be drained and sent to the event listeners in a
batch.

hazelcast.cache.in
validation.batchfr
equency.seconds

5 int Defines cache invalidation event batch sending frequency
in seconds.

hazelcast.client.c
leanup.period.mill
is

10000 int Period, in milliseconds, to check if a client is still part of
the cluster.

hazelcast.client.c
leanup.timeout.mil
lis

120000 int Timeout duration to decide if a client is still part of the
cluster. If a member cannot find any connection to a client
in the cluster, it cleans up the local resources that are
owned by that client.

hazelcast.client.m
ax.no.heartbeat.se
conds

300 int Time after which the member assumes the client is dead
and closes its connections to the client.

hazelcast.client.p
rotocol.max.messag
e.bytes

1024 int Client protocol message size limit (in bytes) for unverified
connections. I.e. maximal length of the client
authentication message.

hazelcast.clienten
gine.blocking.thre
ad.count

-1 int Number of threads that the client engine has available for
processing requests that are blocking, e.g., transactions.
When not set, it is set as the value of core size * 20.

hazelcast.clienten
gine.query.thread.
count

int Number of threads to process query requests coming from
the clients. Default count is the number of cores
multiplied by 1.

hazelcast.clienten
gine.thread.count

int Maximum number of threads to process non-partition-
aware client requests, like map.size(), executor tasks, etc.
Default count is the number of cores multiplied by 20.

hazelcast.connect.
all.wait.seconds

120 int Timeout to connect all other cluster members when a
member is joining to a cluster.

hazelcast.connecti
on.monitor.interva
l

100 int Minimum interval in milliseconds to consider a
connection error as critical.

hazelcast.connecti
on.monitor.max.fau
lts

3 int Maximum I/O error count before disconnecting from a
member.

hazelcast.cluster.
version.auto.upgra
de.enabled

false bool Specifies whether the automatic cluster version upgrading
is enabled.

823

hazelcast.cluster.
version.auto.upgra
de.min.cluster.siz
e

1 int When set to a value greater than 1, automatic upgrading
waits to reach that cluster size to proceed.

hazelcast.diagnost
ics.directory

user.dir string Output directory of the diagnostic log files.

For detailed information on the
diagnostic tool, along with this and the
following diagnostic related system
properties, see the Diagnostics section.

hazelcast.concurre
nt.window.ms

100 int Property needed for concurrency detection so that write
through can be done correctly. This property sets the time
window, in milliseconds, between the concurrency
detection and its notification. Normally in a concurrent
system, the window keeps sliding forward so it always
remains concurrent. Setting it too high effectively disables
the optimization because once a concurrency is detected it
will keep that way. Setting it too low could lead to
suboptimal performance because the system will try write
through and other optimizations even though the system
is concurrent.

hazelcast.diagnost
ics.enabled

false bool Specifies whether diagnostics tool is enabled or not for the
cluster.

hazelcast.diagnost
ics.filename.prefi
x

string Optional prefix for the diagnostics log file.

hazelcast.diagnost
ics.invocation.sam
ple.period.seconds

0 long Frequency of scanning all the pending invocations in
seconds. 0 means the Invocations plugin for diagnostics
tool is disabled.

hazelcast.diagnost
ics.invocation.slo
w.threshold.second
s

5 long Threshold period, in seconds, that makes an invocation to
be considered as slow.

hazelcast.diagnost
ics.max.rolled.fil
e.count

10 int Allowed count of diagnostic files within each roll.

hazelcast.diagnost
ics.max.rolled.fil
e.size.mb

50 int Size of each diagnostic file to be rolled.

hazelcast.diagnost
ics.member-
heartbeat.max-
deviation-
percentage

100 int Maximum allowed deviation for a member-to-member
heartbeats.

824

hazelcast.diagnost
ics.member-
heartbeat.seconds

10 long Period for which the MemberHeartbeats plugin of the
diagnostics tool runs. 0 means this plugin is disabled.

hazelcast.diagnost
ics.memberinfo.per
iod.second

60 long Frequency, in seconds, at which the cluster information is
dumped to the diagnostics log file.

hazelcast.diagnost
ics.metrics.period
.seconds

60 long Frequency, in seconds, at which the Metrics plugin dumps
information to the diagnostics log file.

hazelcast.diagnost
ics.operation-
heartbeat.max-
deviation-
percentage

33 int Maximum allowed deviation for a member-to-member
operation heartbeats.

hazelcast.diagnost
ics.operation-
heartbeat.seconds

10 long Period, in seconds, for which the OperationHeartbeats
plugin of the diagnostics tool runs. 0 means this plugin is
disabled.

hazelcast.diagnost
ics.pending.invoca
tions.period.secon
ds

0 long Period, in seconds, for which the PendingInvocations
plugin of the diagnostics tool runs. 0 means this plugin is
disabled.

hazelcast.diagnost
ics.slowoperations
.period.seconds

60 long Period, in seconds, for which the SlowOperations plugin of
the diagnostics tool runs. 0 means this plugin is disabled.

hazelcast.diagnost
ics.storeLatency.p
eriod.seconds

0 long Period, in seconds, for which the StoreLatency plugin of
the diagnostics tool runs. 0 means this plugin is disabled.

hazelcast.diagnost
ics.storeLatency.r
eset.period.second
s

0 long Period, in seconds, for resetting the statistics for the
StoreLatency plugin of the diagnostics tool.

hazelcast.diagnost
ics.systemlog.enab
led

true bool Specifies whether the SystemLog plugin of the diagnostics
tool is enabled or not.

hazelcast.diagnost
ics.systemlog.part
itions

false bool Specifies whether the SystemLog plugin collects
information about partition migrations.

hazelcast.discover
y.enabled

false bool Enables/disables the Discovery SPI lookup over the old
native implementations. See Discovery SPI for more
information.

825

hazelcast.discover
y.public.ip.enable
d

false bool Enable use of public IP address in member discovery with
Discovery SPI. If you set this property to true in your
source cluster, please make sure you have set the public
addresses for your target members since they will be
discovered using their public addresses. Otherwise, they
cannot be discovered. See the Public Address section.

hazelcast.dynamicc
onfig.ignore.confl
icts

bool Specifies whether you want IMDG to ignore the
configuration conflicts while registering a new dynamic
configuration. Set to true and restart your cluster with this
property to ignore these conflicts.

hazelcast.enterpri
se.license.key

null string Hazelcast IMDG Enterprise license key.

hazelcast.event.qu
eue.capacity

1000000 int Capacity of internal event queue.

hazelcast.event.qu
eue.timeout.millis

250 int Timeout to enqueue events to event queue.

hazelcast.event.sy
nc.timeout.millis

5000 int To prevent overloading of the outbound connections, once
in a while an event is made synchronous by wrapping it in
a dummy operation and waiting for a dummy response.
This causes the outbound write queue of the connection to
get drained. This timeout configures the maximum
amount of waiting time for this response. Setting it to a too
low value can lead to an uncontrolled growth of the
outbound write queue of the connection.

hazelcast.event.th
read.count

5 int Number of event handler threads.

hazelcast.graceful
.shutdown.max.wait

600 int Maximum wait in seconds during graceful shutdown.

hazelcast.hd.globa
l.index.enabled

true bool Specifies whether the global concurrent High-Density
Memory Store indexes are enabled or not.

hazelcast.health.m
onitoring.delay.se
conds

30 int Health monitoring logging interval in seconds. NOTE: For
detailed information on the health monitoring tool, along
with this and the following health monitoring related
system properties, see the Health Check and Monitoring
section.

hazelcast.health.m
onitoring.level

SILENT string Health monitoring log level. When SILENT, logs are
printed only when values exceed some predefined
threshold. When NOISY, logs are always printed
periodically. Set OFF to turn off completely.

826

https://hazelcast.com/products/

hazelcast.health.m
onitoring.threshol
d.cpu.percentage

70 int When the health monitoring level is SILENT, logs are
printed only when the CPU usage exceeds this threshold.

hazelcast.health.m
onitoring.threshol
d.memory.percentag
e

70 int When the health monitoring level is SILENT, logs are
printed only when the memory usage exceeds this
threshold.

hazelcast.heartbea
t.failuredetector.
type

deadline string Type of the heartbeat failure detector. See the Failure
Detector Configuration section.

hazelcast.heartbea
t.interval.seconds

5 int Heartbeat send interval in seconds.

hazelcast.hidensit
y.check.freememory

true bool If enabled and is able to fetch memory statistics via Java’s
OperatingSystemMXBean, it checks whether there is enough
free physical memory for the requested number of bytes.
If the free memory checker is disabled (false), acts as if the
check is succeeded.

hazelcast.hotresta
rt.free.native.mem
ory.percentage

15 long Percentage of the free memory space that is required by a
hot restart.

hazelcast.index.co
py.behavior

COPY_O
N_READ

string Defines the behavior for index copying on index
read/write. See the Copying Indexes section.

hazelcast.ignoreXx
eProtectionFailure
s

false bool If enabled and when a problem occurs during enabling
the XML External Entity (XXE) protection, then the
problem is ignored and only a warning message is logged.

This property should only be used as a last resort.
Hazelcast uses the XXE protection by setting respective
XML processor properties. These properties are supported
in modern XML processors, e.g., the default one available
in Java. An old processor, such as Xerces or Xalan, on the
classpath may miss the support and throw an exception
during enabling the XXE protection. Setting this system
property to true allows ignoring such exceptions.

hazelcast.init.clu
ster.version

long Used to override the cluster version to use while an IMDG
instance is not member of a cluster yet. The cluster
version assumed before joining a cluster may affect the
serialization format of the cluster discovery. The default is
to use the member’s codebase version. You may need to
override it for your member to join a cluster running on a
previous cluster version.

827

hazelcast.initial.
min.cluster.size

0 int Initial expected cluster size to wait before member to start
completely.

hazelcast.initial.
wait.seconds

0 int Initial time in seconds to wait before member to start
completely.

hazelcast.internal
.map.expiration.cl
eanup.operation.co
unt

N/A int Count of scannable partitions in each run of the
background expiration task. No default value exists. It is
dynamically calculated against the partition count or
partition thread count.

hazelcast.internal
.map.expiration.cl
eanup.percentage

10 int Scannable percentage of the entries in the maps'
partitions in each run of the background expiration task.

hazelcast.internal
.map.expiration.ta
sk.period.seconds

5 int Interval, in seconds, at which the background expiration
task is going to run.

hazelcast.invalida
tion.max.tolerated
.miss.count

10 int If missed invalidation count is bigger than this value,
relevant cached data is made unreachable.

hazelcast.invalida
tion.reconciliatio
n.interval.seconds

60 int Period for which the cluster members are scanned to
compare generated invalidation events with the received
ones from Near Cache.

hazelcast.invocati
on.max.retry.count

int Maximum number of retries for an invocation. After
threshold is reached, the invocation is assumed as failed.

hazelcast.invocati
on.retry.pause.mil
lis

int Pause time between each retry cycle of an invocation in
milliseconds.

hazelcast.io.balan
cer.interval.secon
ds

20 int Interval in seconds between IOBalancer executions.

hazelcast.io.input
.thread.count

3 int Number of socket input threads.

hazelcast.io.outpu
t.thread.count

3 int Number of socket output threads.

hazelcast.io.threa
d.count

3 int Number of threads performing socket input and socket
output. If, for example, the default value (3) is used, it
means there are 3 threads performing input and 3 threads
performing output (6 threads in total).

828

hazelcast.io.write
.through

true bool Optimization that allows sending of packets over the
network to be done on the calling thread if the conditions
are right. This can reduce the latency and increase the
performance for low threaded environments.

hazelcast.jcache.p
rovider.type

string Type of the JCache provider. Values can be client or
server.

hazelcast.jmx false bool Enable JMX agent.

hazelcast.local.lo
calAddress

string It is an overrider property for the default server socket
listener’s IP address. If this property is set, then this is the
address where the server socket is bound to.

hazelcast.local.pu
blicAddress

string It is an overrider property for the default public address
to be advertised to other cluster members and clients.

hazelcast.lock.max
.lease.time.second
s

Long.M
AX_VAL
UE

long All locks which are acquired without an explicit lease time
use this value (in seconds) as the lease time. When you
want to set an explicit lease time for your locks, you
cannot set it to a longer time than this value.

hazelcast.logging.
details.enabled

true bool Specifies whether the cluster name, IP and version should
be included in all log messages.

hazelcast.logging.
type

jdk enum Name of logging framework type to send logging events.

hazelcast.map.entr
y.filtering.natura
l.event.types

false bool Notify entry listeners with predicates on map entry
updates with events that match entry, update or exit from
predicate value space.

hazelcast.map.expi
ry.delay.seconds

10 int Delays expiration of backup map entries by the defined
amount. This may be useful to prevent some cases where
an entry might be observed on the primary replica
(partition owner) but not on the backup replica. For
instance, when running an entry processor on both
primary and backup replicas.

hazelcast.map.evic
tion.batch.size

1 int Maximum number of IMap entries Hazelcast will evict
during a single eviction cycle. Eviction cycle is triggered
by a map mutation. Typically it is fine to evict at most a
single entry. However, when you insert values in a loop,
each iteration doubles the entry size. In this situation
more than just a single entry should be evicted.

829

hazelcast.map.evic
tion.sample.count

15 int Count of the IMap entries in the entry set formed by
random samplings from which Hazelcast chooses to
remove the optimal entry during an IMap eviction.

hazelcast.map.inva
lidation.batchfreq
uency.seconds

10 int If the collected invalidations do not reach the configured
batch size, a background process sends them at this
interval.

hazelcast.map.inva
lidation.batch.ena
bled

true bool Enable or disable batching. When it is set to false, all
invalidations are sent immediately.

hazelcast.map.inva
lidation.batch.siz
e

100 int Maximum number of invalidations in a batch.

hazelcast.map.load
.chunk.size

1000 int Maximum size of the key batch sent to the partition
owners for value loading and the maximum size of a key
batch for which values are loaded in a single partition.

hazelcast.map.repl
ica.scheduled.task
.delay.seconds

10 int Scheduler delay for map tasks those are executed on
backup members.

hazelcast.map.writ
e.behind.queue.cap
acity

50000 string Maximum write-behind queue capacity per member. It is
the total of all write-behind queue sizes in a member
including backups. Its maximum value is
Integer.MAX_VALUE. The value of this property is taken into
account only if the write-coalescing element of the Map
Store configuration is false. See here for the description of
the write-coalescing element.

hazelcast.max.join
.merge.target.seco
nds

20 int Split-brain merge timeout for a specific target.

hazelcast.max.join
.seconds

300 int Join timeout, maximum time to try to join before giving.

hazelcast.max.no.h
eartbeat.seconds

60 int Maximum timeout of heartbeat in seconds for a member
to assume it is dead.

Setting this value too low may cause
members to be evicted from the cluster
when they are under heavy load: they
will be unable to send heartbeat
operations in time, so other members will
assume that it is dead.

830

hazelcast.max.wait
.seconds.before.jo
in

20 int Maximum wait time before join operation. This is an
upper limit on the cluster’s pre-join phase duration. The
pre-join phase starts when the master receives the first
join request, and ends after no new members have tried to
join for hazelcast.wait.seconds.before.join seconds, or
after this upper limit elapsed (whichever comes first).
Once the pre-join phase ends, the master moves into the
join phase, during which it will only admit members that
have already tried joining during the pre-join phase and
are still trying to. Once the join phase is complete, the
master will again start admitting new members.

hazelcast.mc.execu
tor.thread.count

int 2 Number of threads that the Management Center service
has available for processing the operations sent from the
connected Management Center instance.

hazelcast.mc.max.v
isible.slow.operat
ions.count

10 int Management Center maximum visible slow operations
count.

hazelcast.member.l
ist.publish.interv
al.seconds

60 int Interval at which master member publishes a member
list.

hazelcast.member.n
aming.moby.enabled

true bool Defines whether the Moby naming should be used for
generating instance names when they are not provided by
user. Moby name is a short human-readable name
consisting of a randomly chosen adjective and the
surname of a famous person. If set to true, a Moby name is
generated. Otherwise, a name that is concatenation of a
static prefix, number and cluster name is provided.

hazelcast.merge.fi
rst.run.delay.seco
nds

300 int Initial run delay of split-brain/merge process in seconds.

hazelcast.merge.ne
xt.run.delay.secon
ds

120 int Run interval of split-brain/merge process in seconds.

hazelcast.metrics.
collection.frequen
cy

5 int Frequency, in seconds, of the metrics collection cycle. Note
that the preferred way for controlling this setting is
Metrics Configuration.

hazelcast.metrics.
datastructures.ena
bled

true bool Specifies whether collecting metrics from the distributed
data structures is enabled.

831

hazelcast.metrics.
debug.enabled

false bool Enables collecting debug metrics if set to true, disables it
otherwise. Note that this is meant to be enabled only if
diagnostics feature is enabled, since currently only this
feature consumes the debug metrics.

hazelcast.metrics.
enabled

true bool Enables the metrics collection if set to true, disables it
otherwise. Note that the preferred way for controlling this
setting is Metrics Configuration.

hazelcast.metrics.
mc.enabled

true bool Enables buffering the collected metrics for Management
Center if set to true, disables it otherwise. Note that the
preferred way for controlling this setting is Metrics
Configuration.

hazelcast.metrics.
mc.retention

5 int Duration, in seconds, that the metrics are retained for
Management Center. Note that the preferred way for
controlling this setting is Metrics Configuration.

hazelcast.metrics.
jmx.enabled

true bool Enables exposing the collected metrics over JMX if set to
true, disables it otherwise. Note that the preferred way for
controlling this setting is Metrics Configuration.

hazelcast.network.
stats.refresh.inte
rval.seconds

3 int Interval, in seconds, at which the network statistics (bytes
sent and received) are re-calculated and published. It is
valid only when advanced networking is used.

hazelcast.nio.tcp.
spoofing.checks

false bool Controls whether more strict checks upon BIND requests
towards a cluster member are applied. The checks mainly
validate the remote BIND request against the remote
address as found in the socket. By default they are
disabled, to avoid connectivity issues when deployed
under NAT’ed infrastructure.

hazelcast.operatio
n.backup.timeout.m
illis

5000 int Maximum time a caller to wait for backup responses of an
operation. After this timeout, operation response is
returned to the caller even no backup response is
received.

hazelcast.operatio
n.call.timeout.mil
lis

60000 int Timeout to wait for a response when a remote call is sent,
in milliseconds.

832

hazelcast.operatio
n.fail.on.indeterm
inate.state

false bool When enabled, an operation fails with
IndeterminateOperationStateException, if it does not
receive backup acks in time with respect to backup
configuration of its data structure, or the member which
owns primary replica of the target partition leaves the
cluster.

hazelcast.operatio
n.generic.thread.c
ount

2 int Number of generic operation handler threads for each
Hazelcast member. Its default value is the maximum of 2
and processor count / 2.

hazelcast.operatio
n.priority.generic
.thread.count

1 int Number of priority generic operation handler threads per
member. Having at least 1 priority generic operation
thread helps to improve cluster stability since a lot of
cluster operations are generic priority operations and they
should get executed as soon as possible. If there is a
dedicated generic operation thread then these operations
don’t get delayed because the generic threads are busy
executing regular user operations. So unless memory
consumption is an issue, make sure there is at least 1
thread.

hazelcast.operatio
n.response.thread.
count

2 int Number of threads the process responses. The default
value gives stable and good performance. If set to 0, the
response threads are bypassed and the response handling
is done on the IO threads. Under certain conditions this
can give a higher throughput.

hazelcast.operatio
n.responsequeue.id
lestrategy

block string Specifies whether the response thread for internal
operations on the member side are blocked or not. If you
use block (the default value) the thread is blocked and
need to be notified which can cause a reduction in the
performance. If you use backoff there is no blocking. By
enabling the backoff mode and depending on your use
case, you can get a 5-10% performance improvement.
However, keep in mind that this increases the CPU
utilization. We recommend you to use backoff with care
and if you have a tool for measuring your cluster’s
performance.

hazelcast.operatio
n.thread.count

2 int Number of partition based operation handler threads for
each Hazelcast member. Its default value is the maximum
of 2 and count of available processors.

833

hazelcast.partial.
member.disconnecti
on.resolution.algo
rithm.timeout.seco
nds

5 int Timeout, in seconds, to stop the execution of resolution
algorithm when needed, in the case of lots of possible
random network disconnections especially in the large
clusters.

hazelcast.partial.
member.disconnecti
on.resolution.hear
tbeat.count

0 int When the master (oldest member in the cluster) receives a
heartbeat problem report from another member, it first
waits for a number of heartbeat rounds to allow other
members to report their problems, if there is any. This
property sets the number of these rounds.

hazelcast.partitio
n.backup.sync.inte
rval

30 int Interval for syncing backup replicas in seconds.

hazelcast.partitio
n.count

271 int Total partition count.

hazelcast.partitio
n.max.parallel.mig
rations

10 int Maximum number of partition migrations to be executed
concurrently on a member. Member can be either source
or target of the migration. Having too much
parallelization can increase the heap memory usage and
overload the network during a partition rebalance.
Having less parallelization can increase the total
migration completion time. The default value, 10, is fine
for most of the setups.

hazelcast.partitio
n.max.parallel.rep
lications

10 int Maximum number of parallel partition backup replication
operations per member. When a partition backup
ownership changes or a backup inconsistency is detected,
the members start to sync their backup partitions. This
parameter limits the maximum running replication
operations in parallel. The default value, which is the
value of hazelcast.partition.max.parallel.migrations, is
fine for most of the setups.

hazelcast.partitio
n.migration.fragme
nts.enabled

true bool When enabled, which is the default behavior, partitions
are migrated/replicated in small fragments instead of one
big chunk. Migrating partitions in fragments reduces
pressure on the memory and network since smaller
packets are created in the memory and sent through the
network. Note that it can increase the migration time to
complete.

hazelcast.partitio
n.migration.interv
al

0 int Interval to run partition migration tasks in seconds.

834

hazelcast.partitio
n.migration.stale.
read.disabled

false bool Hazelcast allows read operations to be performed while a
partition is being migrated. This can lead to stale reads for
some scenarios. You can disable stale read operations by
setting this system property’s value to "true". Its default
value is "false", meaning that stale reads are allowed.

hazelcast.partitio
n.migration.timeou
t

300 int Timeout for partition migration tasks in seconds.

hazelcast.partitio
n.table.send.inter
val

15 int Interval for publishing partition table periodically to all
cluster members in seconds.

hazelcast.partitio
ning.strategy.clas
s

null string Class name implementing
com.hazelcast.core.PartitioningStrategy, which defines
key to partition mapping.

hazelcast.phone.ho
me.enabled

true bool Enable or disable the sending of phone home data to
Hazelcast’s phone home server.

hazelcast.prefer.i
pv4.stack

true bool Prefer IPv4 network interface when picking a local
address.

hazelcast.query.ma
x.local.partition.
limit.for.precheck

3 int Maximum value of local partitions to trigger local pre-
check for Predicates#alwaysTrue() query operations on
maps.

hazelcast.query.op
timizer.type

RULES String Type of the query optimizer. For optimizations based on
static rules, set the value to RULES. To disable the
optimization, set the value to NONE.

hazelcast.query.pr
edicate.parallel.e
valuation

false bool Each Hazelcast member evaluates query predicates using
a single thread by default. In most cases, the overhead of
inter-thread communications overweight can benefit from
parallel execution. When you have a large dataset and/or
slow predicate, you may benefit from parallel predicate
evaluations. Set to true if you are using slow predicates or
have > 100,000s entries per member.

hazelcast.query.re
sult.size.limit

-1 int Result size limit for query operations on maps. This value
defines the maximum number of returned elements for a
single query result. If a query exceeds this number of
elements, a QueryResultSizeExceededException is thrown.
Its default value is -1, meaning it is disabled.

hazelcast.serializ
ation.version

long Version of the Hazelcast serialization. Accepted values are
between 1 and the highest supported serialization version.

835

hazelcast.shutdown
hook.enabled

true bool Enable Hazelcast shutdownhook thread. When this is
enabled, this thread terminates the Hazelcast instance
without waiting to shutdown gracefully.

hazelcast.shutdown
hook.policy

TERMIN
ATE

string Specifies the behavior when JVM is exiting while the
Hazelcast instance is still running. It has two values:
TERMINATE and GRACEFUL. The former one terminates
the Hazelcast instance immediately. The latter, GRACEFUL,
initiates the graceful shutdown which can significantly
slow down the JVM exit process, but it tries to retain data
safety. Note that you should always shutdown Hazelcast
explicitly via using the method
HazelcastInstance.shutdown(). It’s not recommended to
rely on the shutdown hook, this is a last-effort measure.

hazelcast.slow.ope
ration.detector.en
abled

true bool Enables/disables the SlowOperationDetector.

hazelcast.slow.ope
ration.detector.lo
g.purge.interval.s
econds

300 int Purge interval for slow operation logs.

hazelcast.slow.ope
ration.detector.lo
g.retention.second
s

3600 int Defines the retention time of invocations in slow
operation logs. If an invocation is older than this value, it
is purged from the log to prevent unlimited memory
usage. When all invocations are purged from a log, the log
itself is deleted.

hazelcast.slow.ope
ration.detector.st
acktrace.logging.e
nabled

false bool Defines if the stacktraces of slow operations are logged in
the log file. Stack traces are always reported to the
Management Center, but by default, they are not printed
to keep the log size small.

hazelcast.slow.ope
ration.detector.th
reshold.millis

10000 int Defines a threshold above which a running operation in
OperationService is considered to be slow. These
operations log a warning and are shown in the
Management Center with detailed information, e.g.,
stacktrace.

hazelcast.socket.b
ind.any

true bool Bind both server-socket and client-sockets to any local
interface.

836

hazelcast.socket.b
uffer.direct

false bool Specifies whether the byte buffers used in the socket
should be a direct byte buffer (true) or a regular one
(false). When it is set to true, Hazelcast internally uses the
method ByteBuffer.allocateDirect (instead of
ByteBuffer.allocate) which makes use of the off-heap and
may skip the memory copying when performing socket I/O
operations. See here for more information.

hazelcast.socket.c
lient.bind

true bool Bind client socket to an interface when connecting to a
remote server socket. When set to false, client socket is
not bound to any interface.

hazelcast.socket.c
lient.bind.any

true bool Bind client-sockets to any local interface. If not set,
hazelcast.socket.bind.any is used as the default.

hazelcast.socket.c
lient.receive.buff
er.size

-1 int Hazelcast creates all connections with receive buffer size
set according to the hazelcast.socket.receive.buffer.size.
When it detects a connection opened by a client, then it
adjusts the receive buffer size according to this property.
It is in kilobytes and its default value is -1.

hazelcast.socket.c
lient.send.buffer.
size

-1 int Hazelcast creates all connections with send buffer size set
according to the hazelcast.socket.send.buffer.size. When
it detects a connection opened by a client, then it adjusts
the send buffer size according to this property. It is in
kilobytes and its default value is -1.

hazelcast.socket.c
onnect.timeout.sec
onds

0 int Socket connection timeout in seconds. Socket.connect() is
blocked until either connection is established or
connection is refused or this timeout passes. Default is 0,
means infinite.

hazelcast.socket.k
eep.alive

true bool Socket set keep alive (SO_KEEPALIVE).

hazelcast.socket.l
inger.seconds

0 int Set socket SO_LINGER option.

hazelcast.socket.n
o.delay

true bool Socket set TCP no delay.

hazelcast.socket.r
eceive.buffer.size

128 int Socket receive buffer (SO_RCVBUF) size in KB. If you have a
very fast network, e.g., 10gbit) and/or you have large
entries, then you may benefit from increasing
sender/receiver buffer sizes. Use this property and the
next one below tune the size.

hazelcast.socket.s
end.buffer.size

128 int Socket send buffer (SO_SNDBUF) size in KB.

837

https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html

hazelcast.socket.s
erver.bind.any

true bool Bind server-socket to any local interface. If not set,
hazelcast.socket.bind.any is used as the default.

hazelcast.tcp.join
.port.try.count

3 int The number of incremental ports, starting with the port
number defined in the network configuration, that is used
to connect to a host (which is defined without a port in
TCP/IP member list while a member is searching for a
cluster).

hazelcast.wait.sec
onds.before.join

5 int Wait time before join operation. This time establishes a
pre-join phase time window for newcomer members to
make their first join requests. Once
hazelcast.wait.seconds.before.join elapses since the last
first-timer join request (i.e., where the member hasn’t
made any previous join request), or the pre-join phase has
lasted for hazelcast.max.wait.seconds.before.join

seconds, the phase ends and the master starts forming the
cluster.

Appendix B: Migration Guides
This appendix provides guidelines when upgrading to a new Hazelcast IMDG version. See also the
release notes document for the changes for each Hazelcast IMDG release.

B.1. Upgrading to Hazelcast IMDG 4.0
This section provides the guidelines for you when migrating to Hazelcast IMDG 4.0

B.1.1. Upgrading to 4.0 from Prior Versions (3.x)

IMDG 4.0 is a major version release. The last major version release was over five years ago. Major
releases allow us to break compatibility in the wire protocols and API, as well as removing the
previously deprecated API.

As breaking changes have been made to the client and cluster member protocols, it is not possible
to perform any in-place or rolling upgrade from a running IMDG 3.x cluster to IMDG 4.x. The only
way to upgrade to IMDG 4.x is to completely shutdown the cluster.

B.1.2. Removal of Hazelcast Client Module

• The hazelcast-client module has been merged into the core module: All the classes in the
hazelcast-client module have been moved to hazelcast. hazelcast-client.jar will not be
created anymore.

• Also the com.hazelcast.client Java module is not used anymore. All classes are now available
within the com.hazelcast.core module.

838

https://docs.hazelcast.org/docs/rn/index.html

B.1.3. JCache default Caching Provider

The default CachingProvider is the client-side CachingProvider. In order to select the member-side
CachingProvider, you can specify the member-side CachingProvider by defining the Hazelcast
property hazelcast.jcache.provider.type. See the Configuring JCache Provider section for more
details.

B.1.4. Removal of User Defined Services

Hazelcast IMDG’s public SPI (Service Provider Interface) which was known as User Defined Service
has been removed. It was not simple enough and backwards compatibility was broken. A new and
clearly defined SPI may be developed in the future if there is enough interest. The removed SPI’s
classes will be kept to be used internally.

B.1.5. Changes in Client Connection Retry Mechanism

• The connection-attempt-period and connection-attempt-limit configuration have been removed.
Instead, the elements of connection-retry are now used. See the Configuring Client Connection
Retry for the usage of those new elements.

B.1.6. Increasing the Member/Client Thread Counts

If there are 20 or more processors detected, the Hazelcast member by default starts 4+4 (4 input
and 4 output) I/O threads. This is to increase out of the box performance on faster machines
because often (especially the cache with caching situations) the performance is I/O bound and
having some extra cores available for I/O can make a significant difference. If less than 20 cores are
detected, 3+3 IO threads are used and the behavior remains the same as Hazelcast IMDG 3.x series.

A smart client, by default, gets 3+3 (3 input and 3 output) I/O threads to speed up the performance.
Before Hazelcast IMDG 4.0, this was 1+1. However, the client I/O can become a bottleneck with too
few threads. If TLS/SSL is enabled, then by default a smart client makes use of 3+3 I/O threads
which was already the case with previous versions.

There is a new performance feature in Hazelcast IMDG 4.0 called thread overcommit. By default,
Hazelcast creates more threads than it has cores, e.g., on a 20 cores machine it creates 28 threads;
20 threads for the partition operations and 4+4 threads for I/O. In case of a typical caching usage
(get/put/set, etc.) having too many threads can cause a performance degradation due to increased
context switching. So there is a new option called hazelcast.operation.thread.overcommit. If this
property is set to true, i.e., -Dhazelcast.operation.thread.overcommit=true, which is the default,
Hazelcast uses the old style thread configuration where there are more threads than cores. If set to
false, the number of partition threads plus the I/O threads will be equal to the core count. It
depends on the environment if this gives a performance boost or not. In some environments it can
give a significant boost and in some it will give a significant loss; it is best to benchmark for your
specific situation. If you are doing lots of queries or other tasks which are CPU-bound, e.g
aggregations, you probably want to have as many cores available to partition operations as
possible.

See the Threading Model section for more information on Hazelcast IMDG’s threading model.

839

B.1.7. Optimizing for Single Threaded Usages

A write-through optimization has been performed. This helps to reduce the latency in case of single
threaded usages.

Normally, when a request is made, the request is handed over the I/O system where an I/O thread
takes care of sending it over the wire. This is great for throughput, but in case of single threaded
setups, it adds to the latency and therefore it reduces the throughput because threads need to be
notified.

With this release, Hazelcast IMDG detects the single threaded usage and tries to write through to
the socket directly instead of handing it over to the I/O thread; this optimization is called "write-
through".

This technique is being applied on the client, but also on the member. We have something similar
when responses are received: normally a response is processed by the response thread, but in case
of a single threaded usage, the response is processed on the I/O thread so we can remove a thread
notification and therefore get higher throughput.

Both the write-through and response-through are enabled by default. If Hazelcast IMDG detects that
there are many active threads, response- and write-through are disabled so it won’t cause a
performance degradation.

B.1.8. Removing Deprecated Client Configurations

The following methods of ClientConfig have been refactored:

• addNearCacheConfig(String, NearCacheConfig) → addNearCacheConfig(NearCacheConfig)

• setSmartRouting(boolean) → getNetworkConfig().setSmartRouting(boolean);

• getSocketInterceptorConfig() → getNetworkConfig().getSocketInterceptorConfig();

• setSocketInterceptorConfig(SocketInterceptorConfig) →
getNetworkConfig().setSocketInterceptorConfig(SocketInterceptorConfig);

• getConnectionTimeout() → getNetworkConfig().getConnectionTimeout();

• setConnectionTimeout(int) → getNetworkConfig().setConnectionTimeout(int);

• addAddress(String) → getNetworkConfig().addAddress(String);

• getAddresses() → getNetworkConfig().getAddresses();

• setAddresses(List) → getNetworkConfig().setAddresses(List);

• isRedoOperation() → getNetworkConfig().isRedoOperation();

• setRedoOperation(boolean) → getNetworkConfig().setRedoOperation(boolean);

• getSocketOptions() → getNetworkConfig().getSocketOptions();

• setSocketOptions() → getNetworkConfig().setSocketOptions(SocketOptions);

• setSocketOptions() → getNetworkConfig().setSocketOptions(SocketOptions);

• getNetworkConfig().setAwsConfig(new ClientAwsConfig()); →
getNetworkConfig().setAwsConfig(new AwsConfig());

840

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/client/config/ClientConfig.html

Also the ClientAwsConfig class has been renamed as AwsConfig.

The naming for the declarative configuration elements have not been changed. See the Release
Notes for new/removed configuration features.

See the following table for the before/after configuration samples.

Before IMDG 4.0 After IMDG 4.0

Adding Near Cache

ClientConfig clientConfig = new
ClientConfig();
clientConfig.addNearCacheConfig("myCache
", new NearCacheConfig());

ClientConfig clientConfig = new
ClientConfig();
NearCacheConfig nearCacheConfig = new
NearCacheConfig("myCache");
clientConfig.addNearCacheConfig(nearCach
eConfig);

Programmatic Configuration

841

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/AwsConfig.html
https://docs.hazelcast.org/docs/rn/#4-0-beta-1
https://docs.hazelcast.org/docs/rn/#4-0-beta-1

ClientConfig clientConfig = new
ClientConfig();
 clientConfig.
setSmartRouting(true);
 clientConfig.isSmartRouting
();
 clientConfig
.getSocketInterceptorConfig();
 clientConfig
.setSocketInterceptorConfig(new
SocketInterceptorConfig());
 clientConfig
.getConnectionTimeout();
 clientConfig
.setConnectionTimeout(1000);
 clientConfig.addAddress(
"127.0.0.1:5701");
 clientConfig.getAddresses();
 clientConfig.setAddresses
(Collections.singletonList("127.0.0.1:57
01"));
 clientConfig.
isRedoOperation();
 clientConfig
.setRedoOperation(true);
 clientConfig
.getSocketOptions();
 clientConfig
.setSocketOptions(new SocketOptions());
 clientConfig
.getNetworkConfig().setAwsConfig(new
ClientAwsConfig());
 ClientAwsConfig awsConfig =
clientConfig.getNetworkConfig().getAwsCo
nfig();
 }

ClientConfig clientConfig = new
ClientConfig();
 clientConfig
.getNetworkConfig().setSmartRouting(true
);
 clientConfig
.getNetworkConfig().isSmartRouting();
 clientConfig
.getNetworkConfig().getSocketInterceptor
Config();
 clientConfig
.getNetworkConfig().setSocketInterceptor
Config(new SocketInterceptorConfig());
 clientConfig
.getNetworkConfig().getConnectionTimeout
();
 clientConfig
.getNetworkConfig().setConnectionTimeout
(1000);
 clientConfig
.getNetworkConfig().addAddress("127.0.0.
1:5701");
 clientConfig
.getNetworkConfig().getAddresses();
 clientConfig
.getNetworkConfig().setAddresses(Collect
ions.singletonList("127.0.0.1:5701"));
 clientConfig
.getNetworkConfig().isRedoOperation();
 clientConfig
.getNetworkConfig().setRedoOperation(tru
e);
 clientConfig
.getNetworkConfig().getSocketOptions();
 clientConfig
.getNetworkConfig().setSocketOptions(new
SocketOptions());
 clientConfig
.getNetworkConfig().setAwsConfig(new
AwsConfig());
 AwsConfig awsConfig =
clientConfig.getNetworkConfig().getAwsCo
nfig();
 }

842

B.1.9. Changes in Index Configuration

In order to support further extensibility of Hazelcast, index configuration has been refactored.

Index type is now defined through the IndexType enumeration instead of the boolean flag: ordered
index is now referred to as IndexType.SORTED, unordered as IndexType.HASH.

In composite indexes, index parts are now defined as a list of strings instead of a single string with
comma-separated values.

With these changes, the following configuration parameters have been renamed:

Programmatic configuration objects and methods:

• MapIndexConfig → IndexConfig

• MapConfig.getMapIndexConfig → MapConfig.getIndexConfig

• MapConfig.setMapIndexConfig → MapConfig.setIndexConfig

• MapConfig.addMapIndexConfig → MapConfig.addIndexConfig

• IMap.addIndex(String, boolean) → IMap.addIndex(IndexConfig)

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

Programmatic Configuration

MapIndexConfig indexConfig = new
MapIndexConfig();
indexConfig.setOrdered(false);
indexConfig.setAttribute("name, age");

MapConfig mapConfig = new MapConfig();
mapConfig.addMapIndexConfig(indexConfig)
;

IndexConfig indexConfig = new
IndexConfig();
indexConfig.setType(IndexType.HASH);
indexConfig.addAttribute("name");
indexConfig.addAttribute("age");

MapConfig mapConfig = new MapConfig();
mapConfig.addIndexConfig(indexConfig);

Declarative Configuration

843

<hazelcast>
 ...
 <map name="person">
 <indexes>
 <index ordered="false">name,
age</index>
 </indexes>
 </map>
 ...
</hazelcast>

<hazelcast>
 ...
 <map name="person">
 <indexes>
 <index type="HASH">
 <attributes>
 <attribute>
name</attribute>
 <attribute>
age</attribute>
 </attributes>
 </index>
 </indexes>
 </map>
 ...
</hazelcast>

Dynamic Index Create

IMap map;

map.addIndex("name, age", false);

IMap map;

map.addIndex(new IndexConfig(IndexType
.HASH, "name", "age"));

B.1.10. Changes in Custom Attributes

Custom attributes are referenced in predicates, queries and indexes. Some improvements have
been performed in Hazelcast’s query engine and one of the results is the change in custom attribute
configurations.

With this change, the following configuration parameters have been renamed:

Declarative configuration elements:

• extractor → extractor-class-name

Programmatic configuration objects and methods:

• MapAttributeConfig → AttributeConfig

• setExtractor() → setExtractorClassName()

• addMapAttributeConfig() → addAttributeConfig()

See the following table for the before/after samples.

844

Before IMDG 4.0 After IMDG 4.0

Programmatic Configuration

MapAttributeConfig attributeConfig = new
MapAttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractor("com.bank.C
urrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addMapAttributeConfig(attribut
eConfig);

AttributeConfig attributeConfig = new
AttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractorClassName("c
om.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addAttributeConfig(attributeCo
nfig);

Declarative Configuration

<hazelcast>
 ...
 <map name="trades">
 <attributes>
 <attribute extractor=
"com.bank.CurrencyExtractor">currency</a
ttribute>
 </attributes>
 </map>
 ...
</hazelcast>

<hazelcast>
 ...
 <map name="trades">
 <attributes>
 <attribute extractor-class-
name="com.bank.CurrencyExtractor">curren
cy</attribute>
 </attributes>
 </map>
 ...
</hazelcast>

Also, some custom query attribute classes were previously abstract classes with one abstract
method. They have been converted into functional interfaces:

• ValueCallback

• ValueExtractor

Before IMDG 4.0 After IMDG 4.0

Implementing ValueExtractor

845

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/extractor/ValueCallback.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/query/extractor/ValueExtractor.html

public static class
PortableNameExtractor extends
ValueExtractor<ValueReader, Object> {
 @Override
 public void extract(ValueReader
target, Object argument, ValueCollector
collector) {
 target.read("name", new
ValueCallback<Object>() {
 @Override
 public void onResult(Object
value) {
 collector.addObject
(value);
 }
 });
 }
}

public static class
PortableNameExtractor implements
ValueExtractor<ValueReader, Object> {
 @Override
 public void extract(ValueReader
target, Object argument, ValueCollector
collector) {
 target.read("name",
(ValueCallback) value -> collector
.addObject(value));
 }
}

B.1.11. Removal of MapReduce

MapReduce API has been removed, which was deprecated since Hazelcast IMDG 3.8. Instead, you
can use the Aggregations on top of Query infrastructure and the Hazelcast Jet distributed
computing platform as its successors and replacements.

See the following table for the before(MapReduce)/after(Hazelcast Jet) word count sample.

Before IMDG 4.0 (MapReduce) After IMDG 4.0 (Hazelcast Jet)

Word Count Sample

846

https://docs.hazelcast.org/docs/jet/latest/manual/

JobTracker tracker = hazelcastInstance
.getJobTracker("default");

IMap<String, String> map =
hazelcastInstance.getMap(MAP_NAME);
KeyValueSource<String, String> source =
KeyValueSource.fromMap(map);

Job<String, String> job = tracker.
newJob(source);
ICompletableFuture<Map<String, Integer>>
future = job
 .mapper(new TokenizerMapper(
))
 .combiner(new
WordcountCombinerFactory())
 .reducer(new
WordcountReducerFactory())
 .submit();

 System.out.println
(ToStringPrettyfier.toString(future.get(
)));

JobTracker t = hz.getJobTracker("word-
count");
IMap<Long, String> documents = hz.
getMap("documents");
LongSumAggregation<String, String> aggr
= new LongSumAggregation<>();
Map<String, Long> counts =
 t.newJob(KeyValueSource.fromMap
(documents))
 .mapper((Long x, String
document, Context<String, Long> ctx) ->
 Stream.of(document
.toLowerCase().split("\\W+"))
 .filter(w -> !w
.isEmpty())
 .forEach(w ->
ctx.emit(w, 1L)))
 .combiner(aggr
.getCombinerFactory())
 .reducer(aggr.
getReducerFactory())
 .submit()
 .get();

See the Jet Code Samples for a full insight.

B.1.12. Refactoring of Migration Listener

The MigrationListener API has been refactored. With this change, an event is published when a new
migration process starts and another event when migration is completed. These events include
statistics about the migration process including the start time, planned migration count, completed
migration count, etc.

Additionally, a migration event is published on each replica migration, both for primary and
backup replica migrations. This event includes the partition ID, replica index and migration
progress statistics.

Before IMDG 4.0, the following were the events listened by MigrationListener:

• migrationStarted

• migrationCompleted

• migrationFailed

After IMDG 4.0, we have the following events instead:

• migrationStarted

847

https://github.com/hazelcast/hazelcast-jet/tree/master/examples/wordcount

• migrationFinished

• replicaMigrationCompleted

• replicaMigrationFailed

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

Implementing a Migration Listener

848

import
com.hazelcast.core.MigrationEvent;
import
com.hazelcast.core.MigrationListener;

public class ClusterMigrationListener
implements MigrationListener {
 @Override
 public void migrationStarted
(MigrationEvent migrationEvent) {
 System.err.println("Started: " +
migrationEvent);
 }
 @Override
 public void migrationCompleted
(MigrationEvent migrationEvent) {
 System.err.println("Completed: "
+ migrationEvent);
 }
 @Override
 public void migrationFailed
(MigrationEvent migrationEvent) {
 System.err.println("Failed: " +
migrationEvent);
 }
}

import
com.hazelcast.partition.MigrationListene
r;
import
com.hazelcast.partition.MigrationState;
import
com.hazelcast.partition.ReplicaMigration
Event;

public class ClusterMigrationListener
implements MigrationListener {

 @Override
 public void migrationStarted
(MigrationState state) {
 System.out.println("Migration
Started: " + state);
 }

 @Override
 public void migrationFinished
(MigrationState state) {
 System.out.println("Migration
Finished: " + state);
 }

 @Override
 public void
replicaMigrationCompleted(ReplicaMigrati
onEvent event) {
 System.out.println("Replica
Migration Completed: " + event);
 }

 @Override
 public void replicaMigrationFailed
(ReplicaMigrationEvent event) {
 System.out.println("Replica
Migration Failed: " + event);
 }
}

See the MigrationListener Javadoc for a full insight.

849

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/partition/MigrationListener.html

B.1.13. Defaulting to OpenSSL

Hazelcast IMDG defaults to use OpenSSL when:

• when you use TLS/SSL and Hazelcast IMDG detects some OpenSSL capabilities

• the Java version is less than 11

• no explicit SSLEngineFactory is configured.

B.1.14. Changes in Security Configurations

Replacing group by Simple Cluster Name Configuration

The GroupConfig class has been removed. Both the client and member configurations have the
GroupConfig (or <group> in XML) replaced by a simple cluster name configuration. The password
part from the GroupConfig which was already deprecated is removed now.

See the following table for the before/after sample configurations.

Before IMDG 4.0 After IMDG 4.0

Declarative Configuration

<hazelcast>
 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>
</hazelcast>

<hazelcast>
 <cluster-name>dev</cluster-name>
</hazelcast>

Programmatic Configuration

Config configProd = new Config();
configProd.getGroupConfig().setName(
"production");

Config configDev = new Config();
configDev.getGroupConfig().setName(
"development");

Config configProd = new Config();
configProd.setClusterName("production"
);

Config configDev = new Config();
configDev.setClusterName("development"
);

Member Authentication and Identity Configuration

Hazelcast IMDG 4.0 replaces the <member-credentials-factory>, <member-login-modules> and <client-
login-modules> configuration by references to security realms. The security realms is a new
abstraction in the security configuration of Hazelcast members. It defines the security
configuration independently on the configuration part where the security is used. The component

850

requesting security just references the security realm name.

See the following table for the before/after sample configurations.

Before IMDG 4.0 After IMDG 4.0

<security enabled="true">
 <member-credentials-factory class-
name="com.hazelcast.examples.MyCredentia
lsFactory">
 <properties>
 <property name="property"
>value</property>
 </properties>
 </member-credentials-factory>
 <member-login-modules>
 <login-module class-name=
"com.hazelcast.examples.MyRequiredLoginM
odule" usage="REQUIRED">
 <properties>
 <property name="
property">value</property>
 </properties>
 </login-module>
 </member-login-modules>
 <client-login-modules>
 <login-module class-name=
"com.hazelcast.examples.MyRequiredLoginM
odule" usage="REQUIRED">
 <properties>
 <property name="
property">value</property>
 </properties>
 </login-module>
 </client-login-modules>
</security>

<security enabled="true">
 <realms>
 <realm name="realm1">
 <authentication>
 <jaas>
 <login-module class-
name="com.hazelcast.examples.MyRequiredL
oginModule" usage="REQUIRED">
 <properties>
 <property
name="property">value</property>
 </properties>
 </login-module>
 </jaas>
 </authentication>
 <identity>
 <credentials-factory
class-name=
"com.hazelcast.examples.MyCredentialsFac
tory">
 <properties>
 <property name=
"property">value</property>
 </properties>
 </credentials-factory>
 </identity>
 </realm>
 </realms>
 <member-authentication realm="
realm1"/>
 <client-authentication realm="
realm1"/>
</security>

Client Identity Configuration

The <credentials> configuration is not supported anymore in the client security configuration.
Existing <credentials-factory> configuration allows to fully replace the credentials as it is more
flexible. There are also new <username-password> and <token> configuration elements which simplify
the migration.

See the following table for the before/after sample configurations.

851

Before IMDG 4.0 After IMDG 4.0

<security>

<credentials>com.acme.security.JohnDoeCr
edentials</credentials>
</security>

<security>
 <username-password username="
johndoe" password="s3crEt"/>
</security>

B.1.15. JAAS Authentication Cleanups

Introducing New Principal Types

The ClusterPrincipal class representing an authenticated user within the JAAS Subject has been
replaced by three different principal types:

• ClusterIdentityPrincipal

• ClusterRolePrincipal

• ClusterEndpointPrincipal

All these new principal types share the HazelcastPrincipal interface so it is simple to get or remove
them all from the subject.

With this change, the Credentials object is not referenced from the principals anymore.

Also, DefaultPermissionPolicy which was consuming ClusterPrincipal and also reading the
endpoint address from it works with the new ClusterRolePrincipals and ClusterEndpointPrincipals
principal types.

See the following table for the before/after sample IPermissionPolicy implementations.

Before IMDG 4.0 After IMDG 4.0

852

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/security/IPermissionPolicy.html

public PermissionCollection
getPermissions(Subject subject, Class<?
extends Permission> type) {
 PermissionCollection collection = .
..;
 for (ClusterPrincipal principal :
subject.getPrincipals(ClusterPrincipal.c
lass)) {
 String endpoint = principal
.getEndpoint();
 String principalName = principal
.getPrincipal();
 addPermissionsToPrincipal
(collection, principalName, endpoint);
 }
 return collection;
}

public PermissionCollection
getPermissions(Subject subject, Class<?
extends Permission> type) {
 PermissionCollection collection = .
..;
 Set<ClusterEndpointPrincipal>
endpointPrincipals = subject
.getPrincipals(ClusterEndpointPrincipal.
class);
 String endpoint = endpointIterator
.hasNext() ? endpointIterator.next()
.getName() : null;
 for (ClusterRolePrincipal
rolePrincipal : subject.getPrincipals
(ClusterRolePrincipal.class)) {
 String role = rolePrincipal
.getName();
 addPermissionsToPrincipal
(collection, role, endpoint);
 }
 return collection;
}

Changes in ClusterLoginModule

ClusterLoginModule in Hazelcast IMDG 3.x contained four abstract methods to alter the behavior of
LoginModule:

• onLogin

• onCommit

• onAbort

• onLogout

The login module was retrieving Credentials and using it to create the ClusterPrincipal back then.

In Hazelcast IMDG 4.0, only onLogin is abstract. Others now have empty implementations. The login
module creates ClusterEndpointPrincipal automatically and adds it to the Subject.

The getName() abstract method has been added. It is used for constructing ClusterIdentityPrincipal.
The addRole(String) method can be called by the child implementations to add
ClusterRolePrincipals with the given name.

Also, ClusterLoginModule introduces three login module options (boolean), which allows skipping
principals of a given type to the JAAS Subject. It allows, for instance, to have just one
ClusterIdentityPrincipal in the Subject even if there are more login modules in the chain. These

853

options are:

• skipIdentity

• skipRole

• skipEndpoint.

See the following table for the before/after sample implementations.

Before IMDG 4.0 After IMDG 4.0

854

public class TestLoginModule extends
ClusterLoginModule {

 @Override
 public boolean onLogin() throws
LoginException {
 UsernamePasswordCredentials
usernamePasswordCredentials =
(UsernamePasswordCredentials)
credentials;
 if ("foo".equals
(usernamePasswordCredentials.getUsername
())
 && "bar".equals
(usernamePasswordCredentials.getPassword
())) {
 // the "foo" principal is
added
 return true;
 }
 throw new FailedLoginException(
"Username or password doesn't match
expected value.");
 }

 @Override
 public boolean onCommit() {
 return loginSucceeded;
 }

 @Override
 protected boolean onAbort() {
 return true;
 }

 @Override
 protected boolean onLogout() {
 return true;
 }
}

public class TestLoginModule extends
ClusterLoginModule {

 private String name;

 @Override
 public boolean onLogin() throws
LoginException {
 NameCallback ncb = new
NameCallback("");
 PasswordCallback pcb = new
PasswordCallback("", false);
 try {
 callbackHandler.handle(new
Callback[] { ncb, pcb });
 } catch (IOException |
UnsupportedCallbackException e) {
 throw new LoginException(
"Unable to handle credentials");
 }
 name = credentials.getName();
 if ("foo".equals(name)
 && Arrays.equals("bar"
.toCharArray(), pcb.getPassword())) {
 addRole("admin");
 return true;
 }
 throw new FailedLoginException(
"Username or password doesn't match
expected value.");
 }

 @Override
 protected String getName() {
 return name;
 }
}

Changes in Credentials for Client Protocol

In Hazelcast IMDG 3.x, the custom credentials coming through the client protocol was always
automatically deserialized. To avoid this, the Credentials interface has been redesigned in
Hazelcast IMDG 4.0 to contain only the getName() (renamed from getPrincipal()) method. The
endpoint handling has been moved out of the interface.

855

Now, Credentials has two new subinterfaces:

• PasswordCredentials: The existing UsernamePasswordCredentials class is the default
implementation.

• TokenCredentials: The new SimpleTokenCredentials class has been introduced to implement it.

TokenCredentials is just a holder for byte array, and the authentication implementations
themselves, i.e., custom LoginModules, are responsible for the data deserialization when needed.

The data from client authentication message is not deserialized by Hazelcast members anymore.
For standard authentication, UsernamePasswordCredentials is constructed. For custom
authentication, SimpleTokenCredentials is constructed. If the original Credentials object is not a
PasswordCredentials or TokenCredentials instance, then it can be deserialized manually. However,
the deserialization during authentication remains a dangerous operation and should be avoided.

See the following table for the before/after sample implementations.

Before IMDG 4.0 After IMDG 4.0

public boolean onLogin() throws
LoginException {
 if (credentials == null || !
(credentials instanceof
CustomCredentials)) {
 throw new FailedLoginException(
"No valid CustomCredentials found");
 }
 CustomCredentials custom =
(CustomCredentials) credentials;
 if (!verify(custom.getJsonToken()))
{
 throw new FailedLoginException(
"JSON token is not valid.");
 }
 return true;
}

public boolean onLogin() throws
LoginException {
 CredentialsCallback cc = new
CredentialsCallback();
 try {
 callbackHandler.handle(new
Callback[] { cc });
 } catch (IOException

Credentials serialization and deserialization in the member protocol has not been
changed.

Changes in JAAS Callbacks

In Hazelcast IMDG 3.x, the CallbackHandler implementation ClusterCallbackHandler was only able to
work with Hazelcast’s CredentialsCallback. In Hazelcast IMDG 4.0, it also works with the standard
Java Callback implementations NameCallback and PasswordCallback.

856

DefaultLoginModule was using the login module options to retrieve the member’s Config object. Now,
custom Callback types have been implemented which can be used to retrieve additional data
required for the authentication.

List of the supported Callbacks in Hazelcast IMDG 4.0:

• javax.security.auth.callback.NameCallback

• javax.security.auth.callback.PasswordCallback

• com.hazelcast.security.CredentialsCallback (provides access to the incoming Credentials

instance)

• com.hazelcast.security.EndpointCallback (allows retrieving the remote host address, it’s a
replacement for Credentials.getEndpoint() in Hazelcast IMDG 3.x)

• com.hazelcast.security.ConfigCallback (allows retrieving member’s Config object)

• com.hazelcast.security.SerializationServiceCallback (provides access to Hazelcast
SerializationService)

• com.hazelcast.security.ClusterNameCallback (provides access to Hazelcast cluster name sent by
the connecting party)

B.1.16. Renaming Quorum as Split Brain Protection

Both in the API/code samples and documentation, the term "quorum" has been replaced by "split-
brain protection".

With this change, the following configuration parameters have been renamed:

Declarative configuration elements:

• quorum → split-brain-protection

• quorum-size → minimum-cluster-size

• quorum-ref → split-brain-protection-ref

• quorum-type → protect-on

• probabilistic-quorum → probabilistic-split-brain-protection

• recently-active-quorum → recently-active-split-brain-protection

• quorum-function-class-name → split-brain-protection-function-class-name

• quorum-listeners → split-brain-protection-listeners

Programmatic configuration objects and methods:

• QuorumConfig → SplitBrainProtectionConfig

• QuorumConfig.setSize() → SplitBrainProtectionConfig.setMinimumClusterSize()

• QuorumConfig.setType() → SplitBrainProtectionConfig.setProtectOn()

• QuorumListenerConfig → SplitBrainProtectionListenerConfig

• QuorumEvent → SplitBrainProtectionEvent

857

• QuorumService → SplitBrainProtectionService

• QuorumService.getQuorum() → SplitBrainProtectionService.getSplitBrainProtection()

• isPresent() → hasMinimumSize()

• setQuorumName() → setSplitBrainProtectionName()

• addQuorumConfig() → addSplitBrainProtectionConfig()

• newProbabilisticQuorumConfigBuilder() → newProbabilisticSplitBrainProtectionConfigBuilder()

• newRecentlyActiveQuorumConfigBuilder() →
newRecentlyActiveSplitBrainProtectionConfigBuilder()

See the following table for a before/after sample.

Before IMDG 4.0 After IMDG 4.0

<hazelcast>
 ...
 <quorum name=
"quorumRuleWithFourMembers" enabled=
"true">
 <quorum-size>4</quorum-size>
 </quorum>
 <map name="default">
 <quorum-
ref>quorumRuleWithFourMembers</quorum-
ref>
 </map>
 ...
</hazelcast>

<hazelcast>
 ...
 <split-brain-protection name=
"splitBrainProtectionRuleWithFourMembers
" enabled="true">
 <minimum-cluster-size>
4</minimum-cluster-size>
 </split-brain-protection>
 <map name="default">
 <split-brain-protection-
ref>splitBrainProtectionRuleWithFourMemb
ers</split-brain-protection-ref>
 </map>
 ...
</hazelcast>

See the Split-Brain Protection section for more information on network partitioning.

B.1.17. Renaming getID to getClassId in IdentifiedDataSerializable

The getId() method of the IdentifiedDataSerializable interface is a method with a common name,
meaning a naming conflict would happen frequently. For example, database entities also have a
getId() method. Therefore, it has been renamed as getClassId().

See the following table showing the interface code before and after IMDG 4.0.

Before IMDG 4.0 After IMDG 4.0

858

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/nio/serialization/IdentifiedDataSerializable.html

package com.hazelcast.nio.serialization;

public interface
IdentifiedDataSerializable extends
DataSerializable {

 int getFactoryId();

 int getId();
}

package com.hazelcast.nio.serialization;

public interface
IdentifiedDataSerializable extends
DataSerializable {

 int getFactoryId();

 int getClassId();
}

See here for more information on IdentifiedDataSerializable.

B.1.18. Introducing Lambda Friendly Interfaces

Entry Processor

The EntryBackupProcessor interface has been removed in favor of EntryProcessor which now
defines how the entries will be processed both on the primary and the backup replicas.

Because of this, the AbstractEntryProcessor interface has been removed. This should make writing
entry processors more lambda friendly.

Before IMDG 4.0 After IMDG 4.0

map.executeOnKey(key, new
AbstractEntryProcessor<Integer,
Employee>() {

 @Override
 public Object process(Map.Entry
<Integer, Employee> entry) {
 Employee employee = entry
.getValue();
 if (employee == null) {
 employee = new Employee();
 }
 employee.setSalary(value);
 entry.setValue(employee);
 return null;
 }
});

map.executeOnKey(key,
 entry -> {
 Employee employee = entry
.getValue();
 if (employee == null) {
 employee = new Employee
();
 }
 employee.setSalary(value);
 entry.setValue(employee);
 return null;
 });

This should cover most cases. If you need to define a custom backup entry processor, you can

859

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/map/EntryProcessor.html

override the EntryProcessor#getBackupProcessor method.

map.executeOnKey(key, new EntryProcessor<Object, Object, Object>() {
 @Override
 public Object process(Entry<Object, Object> entry) {
 // process primary entry
 }

 private Object processBackupEntry(Entry<Object, Object> backupEntry) {
 // process backup entry
 }

 @Nullable
 @Override
 public EntryProcessor<Object, Object, Object> getBackupProcessor() {
 return this::processBackupEntry;
 }
});

Functional and Serializable Interfaces

Introduces interfaces with single abstract method which declares a checked exception. The
interfaces are also Serializable and can be readily used when providing a lambda which is then
serialized.

The Projection class was an abstract interface for historical reasons. It has been turned into a
functional interface so it’s more lambda-friendly.

See the following table for the before/after sample implementations.

Before IMDG 4.0 After IMDG 4.0

Collection<String> keys = map.project
(new Projection<Entry<String, Double>,
String>() {
 @Override
 public String transform(Entry<
String, Double> input) {
 return input.getKey();
 }
});

Collection<String> keys = map.project
(Entry::getKey);

B.1.19. Expanding Nullable/Nonnull Annotations

The APIs of the distributed data structures have been made cleaner by adding Nullable and Nonnull
annotations, and their API documentation have been improved:

860

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/projection/Projection.html

• Now, it is obvious when looking at the API where null is allowed and where it is not.

• Some methods were throwing NullPointerException while others were throwing
IllegalArgumentException. Now the behavior is aligned and an unexpected null argument
results in a NullPointerException being thrown.

• Some methods actually allowed null but there was no indication that they did.

• A method when used on the member would accept null and have some behavior accordingly
while, on the client, the method would throw a NullPointerException. Now, the behavior of the
member and client have been aligned.

The data structures and interfaces enhanced in this sense are listed below:

• IQueue, ISet, IList

• IMap, MultiMap, ReplicatedMap

• Cluster

• ITopic

• Ringbuffer

• ScheduledExecutor

B.1.20. Removal of ICompletableFuture

In Hazelcast IMDG 3.x series, com.hazelcast.core.ICompletableFuture was introduced to enable
reactive programming style. ICompletableFuture was intended as a temporary, JDK 6 compatible
replacement for java.util.concurrent.CompletableFuture that was introduced in Java 8. Since
Hazelcast 4.0 requires Java 8, the user-facing asynchronous Hazelcast API methods now have their
return type changed from ICompletableFuture to Java 8’s java.util.concurrent.CompletionStage.

Dependent computation stages registered using default async methods which do not accept an
explicit Executor argument (such as thenAcceptAsync, whenCompleteAsync etc) are executed by the
java.util.concurrent.ForkJoinPool#commonPool() (unless it does not support a parallelism level of at
least two, in which case, a new Thread is created to run each task).

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

861

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

import
com.hazelcast.core.ExecutionCallback;
import com.hazelcast.core.Hazelcast;
import
com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IMap;

public class Main {

 public static void main(String[]
args) {
 HazelcastInstance
hazelcastInstance = Hazelcast
.newHazelcastInstance();
 IMap<Integer, String> map =
hazelcastInstance.getMap("map");

 map.putAsync(1, "one").andThen
(new ExecutionCallback<String>() {
 @Override
 public void onResponse
(String response) {
 map.getAsync(1).andThen
(new ExecutionCallback<String>() {
 @Override
 public void
onResponse(String response) {
 System.out
.println("Value of 1 is " + response);
 }

 @Override
 public void
onFailure(Throwable t) {
 t
.printStackTrace();
 }
 });
 }

 @Override
 public void onFailure
(Throwable t) {
 t.printStackTrace();
 }
 });
 }
}

import com.hazelcast.core.Hazelcast;
import
com.hazelcast.core.HazelcastInstance;
import com.hazelcast.map.IMap;

public class Main {

 public static void main(String[]
args) {
 HazelcastInstance
hazelcastInstance = Hazelcast
.newHazelcastInstance();
 IMap<Integer, String> map =
hazelcastInstance.getMap("map");

 map.putAsync(1, "one")
.whenCompleteAsync((response, throwable)
-> {
 if (throwable == null) {
 map.getAsync(1)
.thenAcceptAsync(v -> {
 System.out.println(
"Value of 1 is " + v);
 });
 } else {
 throwable
.printStackTrace();
 }
 });
 }
}

862

B.1.21. WAN Replication Configuration Changes

Previously, Configuring WAN replication was problematic:

• You needed to specify the fully qualified class name of the WAN implementation that should be
used. In most cases, this was the built-in Hazelcast IMDG Enterprise Edition (EE)
implementation.

• There were various configuration options, some of which were present as Java class instance
fields or XML child nodes and attributes while others were present in a properties list. The issue
with the property list is that there was no checking for typos, no documentation and no IDE
help.

• If you wanted to use a custom WAN publisher SPI implementation, some configuration options
did not make sense as they were tied to our implementation, e.g., WAN queue size.

• It was verbose.

The tag which was supposed to cover both cases, using the built-in Hazelcast EE implementation
and a custom WAN replication implementation (wan-publisher or WanPublisherConfig), has been
separated into two configuration elements/classes to be used for built-in and custom WAN
publishers:

• batch-publisher (declarative configuration) or WanBatchPublisherConfig (programmatic
configuration)

• custom-publisher (declarative configuration) or WanCustomPublisherConfig (programmatic
configuration)

This means, if you’re using the Hazelcast built-in WAN replication, the new configuration element is
batch-publisher or WanBatchPublisherConfig. If you’re using a custom WAN replication
implementation, the new configuration element is custom-publisher or WanCustomPublisherConfig.

Additionally, the group password has been removed from the configuration and now only the
cluster name is checked when connecting to the target cluster. This has been done to align the
behavior with members forming a single cluster, where members with different passwords but
with the same cluster name (previously group name) could form a cluster.

See the following table for the before/after built-in WAN publisher examples:

Before IMDG 4.0 After IMDG 4.0

Declarative Configuration

863

<wan-publisher group-name=
"builtInPublisher" publisher-id=
"builtInPublisherId">
 <class-
name>com.hazelcast.enterprise.wan.impl.r
eplication.WanBatchReplication</class-
name>
 <queue-capacity>15000</queue-
capacity>
 <queue-full-
behavior>DISCARD_AFTER_MUTATION</queue-
full-behavior>
 <initial-publisher-state>
REPLICATING</initial-publisher-state>
 <wan-sync>
 <consistency-check-strategy>
NONE</consistency-check-strategy>
 </wan-sync>
 <properties>
 <property name="endpoints"
>10.3.5.1:5701,10.3.5.2:5701</property>
 <property name="batch.size">
1000</property>
 <property name=
"batch.max.delay.millis">2000</property>
 <property name=
"response.timeout.millis">60000</propert
y>
 <property name="ack.type"
>ACK_ON_OPERATION_COMPLETE</property>
 <property name="
snapshot.enabled">false</property>
 <property name="group.password"
>nyc-pass</property>
 </properties>
</wan-publisher>

<batch-publisher>
 <cluster-name>
builtInPublisher</cluster-name>
 <publisher-id>
builtInPublisherId</publisher-id>
 <batch-size>1000</batch-size>
 <batch-max-delay-millis>2000</batch-
max-delay-millis>
 <response-timeout-millis>
60000</response-timeout-millis>
 <acknowledge-
type>ACK_ON_OPERATION_COMPLETE</acknowle
dge-type>
 <initial-publisher-state>
REPLICATING</initial-publisher-state>
 <snapshot-enabled>false</snapshot-
enabled>
 <queue-full-
behavior>DISCARD_AFTER_MUTATION</queue-
full-behavior>
 <queue-capacity>10000</queue-
capacity>
 <target-
endpoints>10.3.5.1:5701,10.3.5.2:5701</t
arget-endpoints>
 <sync>
 <consistency-check-strategy>
NONE</consistency-check-strategy>
 </sync>
</batch-publisher>

Programmatic Configuration

864

WanPublisherConfig publisherConfig = new
WanPublisherConfig()
 .setGroupName("builtInPublisher
")
 .setPublisherId(
"builtInPublisherId")
 .setClassName(
"com.hazelcast.enterprise.wan.impl.repli
cation.WanBatchReplication")
 .setQueueCapacity(15000)
 .setQueueFullBehavior
(WANQueueFullBehavior.DISCARD_AFTER_MUTA
TION)
 .setInitialPublisherState
(WanPublisherState.REPLICATING);
publisherConfig.getWanSyncConfig().setCo
nsistencyCheckStrategy(ConsistencyCheckS
trategy.NONE);
Map<String, Comparable> properties =
publisherConfig.getProperties();
properties.put("endpoints",
"10.3.5.1:5701,10.3.5.2:5701");
properties.put("batch.size", 1000);
properties.put("batch.max.delay.millis",
2000);
properties.put("response.timeout.millis"
, 60000);
properties.put("ack.type",
WanAcknowledgeType.ACK_ON_OPERATION_COMP
LETE.toString());
properties.put("snapshot.enabled",
false);
properties.put("group.password", "nyc-
pass");

WanBatchPublisherConfig publisherConfig
= new WanBatchPublisherConfig()
 .setClusterName(
"builtInPublisher")
 .setPublisherId(
"builtInPublisherId")
 .setClassName(
"com.hazelcast.enterprise.wan.impl.repli
cation.WanBatchReplication")
 .setQueueCapacity(15000)
 .setQueueFullBehavior
(WanQueueFullBehavior.DISCARD_AFTER_MUTA
TION)
 .setInitialPublisherState
(WanPublisherState.REPLICATING)
 .setTargetEndpoints(
"10.3.5.1:5701,10.3.5.2:5701")
 .setBatchSize(1000)
 .setBatchMaxDelayMillis(2000)
 .setResponseTimeoutMillis(60000)
 .setAcknowledgeType
(WanAcknowledgeType.ACK_ON_OPERATION_COM
PLETE)
 .setSnapshotEnabled(false);
publisherConfig.getWanSyncConfig().setCo
nsistencyCheckStrategy(ConsistencyCheckS
trategy.NONE);

See the following table for the before/after custom WAN publisher examples:

Before IMDG 4.0 After IMDG 4.0

Declarative Configuration

865

<wan-publisher group-name=
"customWanPublisherId">
 <class-
name>com.myCompany.MyImplementation</cla
ss-name>
 <properties>
 <property name="some.property"
>some-value</property>
 <property name=
"some.other.property">some-other-
value</property>
 </properties>
</wan-publisher>

<custom-publisher>
 <publisher-id>
customPublisherId</publisher-id>
 <class-
name>com.myCompany.MyImplementation</cla
ss-name>
 <properties>
 <property name="some.property"
>some-value</property>
 <property name=
"some.other.property">some-other-
value</property>
 </properties>
</custom-publisher>

Programmatic Configuration

WanPublisherConfig publisherConfig = new
WanPublisherConfig()
 .setGroupName(
"customWanPublisherId")
 .setClassName(
"com.myCompany.MyImplementation");
Map<String, Comparable> properties =
publisherConfig.getProperties();
properties.put("some.property", "some-
value");
properties.put("some.other.property",
"some-other-value");

WanCustomPublisherConfig publisherConfig
= new WanCustomPublisherConfig()
 .setPublisherId(
"customWanPublisherId")
 .setClassName(
"com.myCompany.MyImplementation");
Map<String, Comparable> properties =
publisherConfig.getProperties();
properties.put("some.property", "some-
value");
properties.put("some.other.property",
"some-other-value");

See the here for more information on WAN Replication.

B.1.22. WAN Replication SPI Changes

In IMDG 3.x series, the WAN publisher SPI allowed you to plug into the lifecycle of a map/cache
entry and replicate the updates to another system. For example, you might implement replication
to Kafka or some JMS queue or even write out map and cache event changes to a log on disk. The
SPI was not very intuitive though:

• It was not clear which interface needed to be implemented (WanPublisher vs.
WanReplicationEndpoint).

• You had to implement different interfaces, depending on whether you were using Hazelcast
IMDG Open Source or Enterprise edition.

866

• There were cases of leaking internals which don’t make sense for some custom
implementations.

• There were unused methods in the public SPI.

In Hazelcast IMDG 4.0, we have provided a new and cleaner WAN publisher SPI. You only need to
implement a single interface: com.hazelcast.wan.WanPublisher. This implementation can then be set
in the WAN replication configuration and be used with both Hazelcast Open Source and Enterprise
editions.

B.1.23. Predicate API Cleanups

The following refactors and cleanups have been performed on the public Predicate related API:

• Moved the following classes from the com.hazelcast.query package to
com.hazelcast.query.impl.predicates:

◦ IndexAwarePredicate

◦ VisitablePredicate

◦ SqlPredicate/Parser

◦ TruePredicate

• Moved the FalsePredicate and SkipIndexPredicate classes to the
com.hazelcast.query.impl.predicates package.

• Converted PagingPredicate and PartitionPredicate to interfaces and added PagingPredicateImpl
and PartitionPredicateImpl to the com.hazelcast.query.impl.predicate package.

• Converted PredicateBuilder and EntryObject to interfaces (and made EntryObject a nested
interface in PredicateBuilder) and added PredicateBuilderImpl to the
com.hazelcast.query.impl.predicates package.

• The public API classes/interfaces no longer extend IndexAwarePredicate/ VisitablePredicate; this
dependency has been moved to the impl classes.

• Introduced the new factory methods in Predicates:

◦ newPredicateBuilder()

◦ sql()

◦ pagingPredicate()

◦ partitionPredicate()

Consequently, the public Predicate API now provides only interfaces (Predicate, PagingPredicate
and PartitionPredicate) with no dependencies on any internal APIs.

See the Distributed Query chapter for more information on predicates.

B.1.24. Changing the UUID String Type to UUID

Some public APIs that return UUID strings have been changed to return UUID. These changes
include getUuid() method of the Endpoint interface, getTxnId() method of the TransactionContext
interface, return values of the listener registrations and registrationId parameters for the methods
that de-register the listeners.

867

See the following table for the before/after sample implementations.

Before IMDG 4.0 After IMDG 4.0

HazelcastInstance hazelcastInstance =
Hazelcast.newHazelcastInstance();
String registrationId =
hazelcastInstance.getClientService().add
ClientListener(new ClientListener() {
 @Override
 public void clientConnected(Client
client) {
 String clientUuid = client
.getUuid();
 System.out.println("Client
connected >>> " + clientUuid);
 }

 @Override
 public void clientDisconnected
(Client client) {
 String clientUuid = client
.getUuid();
 System.out.println("Client
disconnected >>> " + clientUuid);
 }
});
hazelcastInstance.getClientService().rem
oveClientListener(registrationId);

HazelcastInstance hazelcastInstance =
Hazelcast.newHazelcastInstance();
UUID registrationId = hazelcastInstance
.getClientService().addClientListener(ne
w ClientListener() {
 @Override
 public void clientConnected(Client
client) {
 UUID clientUuid = client.
getUuid();
 System.out.println("Client
connected >>> " + clientUuid);
 }

 @Override
 public void clientDisconnected
(Client client) {
 UUID clientUuid = client.
getUuid();
 System.out.println("Client
disconnected >>> " + clientUuid);
 }
});
hazelcastInstance.getClientService().rem
oveClientListener(registrationId);

B.1.25. Removal of Deprecated Concurrency API Implementations

After introduction of CP Subsystem in Hazelcast IMDG 3.12, legacy implementations of the
distributed concurrency APIs, e.g., ILock and IAtomicLong, had been deprecated. In IMDG 4.0, these
deprecated implementations and additionally ILock and ICondition interfaces are completely
removed.

Differently from Hazelcast IMDG 3.12, CP Subsystem received an unsafe operation mode in IMDG
4.0 which provides weaker consistency guarantees similar to former implementations in Hazelcast
IMDG 3.x series.

For more information, see the CP Subsystem section.

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

868

import com.hazelcast.core.Hazelcast;
import
com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.IAtomicLong;
import
com.hazelcast.core.IAtomicReference;
import
com.hazelcast.core.ICountDownLatch;
import com.hazelcast.core.ILock;
import com.hazelcast.core.ISemaphore;

public class Main {

 public static void main(String[]
args) {
 HazelcastInstance
hazelcastInstance = Hazelcast
.newHazelcastInstance();

 IAtomicLong atomiclong =
hazelcastInstance.getAtomicLong("atomicl
ong");
 atomiclong.incrementAndGet();

 IAtomicReference<String>
atomicref = hazelcastInstance
.getAtomicReference("atomicref");
 atomicref.set("value");

 ILock lock = hazelcastInstance
.getLock("lock");
 lock.tryLock();

 ISemaphore semaphore =
hazelcastInstance.getSemaphore("semaphor
e");
 semaphore.tryAcquire();

 ICountDownLatch latch =
hazelcastInstance.getCountDownLatch("lat
ch");
 latch.countDown();
 }
}

import com.hazelcast.core.Hazelcast;
import
com.hazelcast.core.HazelcastInstance;
import com.hazelcast.cp.CPSubsystem;
import com.hazelcast.cp.IAtomicLong;
import
com.hazelcast.cp.IAtomicReference;
import com.hazelcast.cp.ICountDownLatch;
import com.hazelcast.cp.ISemaphore;
import com.hazelcast.cp.lock.FencedLock;

public class Main {

 public static void main(String[]
args) {
 HazelcastInstance
hazelcastInstance = Hazelcast
.newHazelcastInstance();
 CPSubsystem cpSubsystem =
hazelcastInstance.getCPSubsystem();

 IAtomicLong atomiclong =
cpSubsystem.getAtomicLong("atomiclong");
 atomiclong.incrementAndGet();

 IAtomicReference<String>
atomicref = cpSubsystem
.getAtomicReference("atomicref");
 atomicref.set("value");

 FencedLock lock = cpSubsystem
.getLock("lock");
 lock.tryLock();

 ISemaphore semaphore =
cpSubsystem.getSemaphore("semaphore");
 semaphore.tryAcquire();

 ICountDownLatch latch =
cpSubsystem.getCountDownLatch("latch");
 latch.countDown();
 }
}

869

B.1.26. Removal of Legacy Merge Policies

All legacy merge policies have been removed. Replacements of legacies are under the
com.hazelcast.spi.merge package.

These are the replacements for IMap and ICache:

Removed IMap Merge Policies and Their Replacements

• com.hazelcast.map.merge.HigherHitsMapMergePolicy →
com.hazelcast.spi.merge.HigherHitsMergePolicy

• com.hazelcast.map.merge.LatestUpdateMapMergePolicy →
com.hazelcast.spi.merge.LatestUpdateMergePolicy

• com.hazelcast.map.merge.PassThroughMergePolicy →
com.hazelcast.spi.merge.PassThroughMergePolicy

• com.hazelcast.map.merge.PutIfAbsentMapMergePolicy →
com.hazelcast.spi.merge.PutIfAbsentMergePolicy

Removed ICache Merge Policies and Their Replacements

• com.hazelcast.cache.merge.HigherHitsCacheMergePolicy →
com.hazelcast.spi.merge.HigherHitsMergePolicy

• com.hazelcast.cache.merge.LatestAccessCacheMergePolicy →
com.hazelcast.spi.merge.LatestAccessMergePolicy

• com.hazelcast.cache.merge.PassThroughCacheMergePolicy →
com.hazelcast.spi.merge.PassThroughMergePolicy

• com.hazelcast.cache.merge.PutIfAbsentCacheMergePolicy →
com.hazelcast.spi.merge.PutIfAbsentMergePolicy

Moreover, the setMergePolicy/getMergePolicy methods have been removed from MapConfig,
ReplicatedMapConfig and CacheConfig. They have been replaced by the
setMergePolicyConfig/getMergePolicyConfig methods.

The merge-policy declarative configuration element that has been used in the older IMDG versions
still can be used:

<merge-policy batch-size="100">LatestAccessMergePolicy</merge-policy>

See here for more information on configuring merge policies.

B.1.27. Changes in AWS Configuration

AWS programmatic configuration has been merged with a more universal configuration
infrastructure common to all cloud providers. The declarative configuration remains unchanged.
See here for more information on configuring Hazelcast IMDG on AWS.

See the following table for the before/after samples.

870

https://github.com/hazelcast/hazelcast-aws/blob/master/README.md#configuration

Before IMDG 4.0 After IMDG 4.0

AwsConfig config = new AwsConfig();
config.setSecretKey("my-secret-key") ;
config.setRegion("my-region");
config.setSecurityGroupName("my-
security-group");
config.setTagKey("my-tag-key");
config.setTagValue("my-tag-value");
...
config.setEnabled(true);

AwsConfig config = new AwsConfig();
config.setProperty("secret-key", "my-
secret-key") ;
config.setProperty("region", "my-region
");
config.setProperty("security-group-name
", "my-security-group-name");
config.setProperty("tag-key", "my-tag-
key");
config.setProperty("tag-value", "my-tag-
value");
...
config.setEnabled(true);

B.1.28. Removal of Deprecated System Properties

The following deprecated cluster properties were removed:

• hazelcast.rest.enabled

• hazelcast.memcache.enabled

• hazelcast.http.healthcheck.enabled

Please see the Using the REST Endpoint Groups section on how to configure Hazelcast instance to
expose REST endpoints. Please see the the Health Check and Monitoring section on how to enable
the health check. Please see the Memcache Client section on how to enable memcache client
request listener service.

B.1.29. Removal of Deprecations in LoginModuleConfig

The following deprecated methods have been removed:

• getImplementation(), replaced by getClassName().

• setImplementation(Object), replaced by setClassName(String).

In declarative configuration class-name property should be used instead.

B.1.30. Removal of Deprecations in MultiMapConfig

The following deprecated methods have been removed:

• getSyncBackupCount(), replaced by getBackupCount().

• setSyncBackupCount(int), replaced by setBackupCount(int).

In declarative configuration backup-count property should be used instead.

871

See here for more information on configuring MultiMap.

B.1.31. Removal of Deprecations in PartitioningStrategyConfig

Misspelled setPartitionStrategy(PartitioningStrategy) has been removed,
setPartitioningStrategy(PartitioningStrategy) should be used instead.

See here for more information on configuring MultiMap.

B.1.32. Removal of Deprecations in ServiceConfig

The following deprecated methods have been removed:

• getServiceImpl(), replaced by getImplementation().

• setServiceImpl(Object), replaced by setImplementation(Object).

See the here for ServiceConfigs Javadoc.

B.1.33. Removal of Deprecations in TransactionContext

Deprecated getXaResource() method has been removed. HazelcastInstance.getXAResource() should
be used instead.

See the here for HazelcastInstances Javadoc.

B.1.34. Removal of Deprecations in DistributedObjectEvent

Deprecated getObjectId() method has been removed, getObjectName() should be used instead.

See the here for DistributedObjectEventss Javadoc.

B.1.35. Removal of Deprecated EntryListener-based Listener API in IMap

The following set of deprecated EntryListener-based listener API methods has been removed:

• addLocalEntryListener(EntryListener<K, V>)

• addLocalEntryListener(EntryListener<K, V>, Predicate<K, V>, boolean)

• addLocalEntryListener(EntryListener<K, V>, Predicate<K, V>, K, boolean)

• addEntryListener(EntryListener<K, V>, boolean)

• addEntryListener(EntryListener<K, V>, K, boolean)

The following MapListener-based methods should be used as replacements:

• addLocalEntryListener(MapListener)

• addLocalEntryListener(MapListener, Predicate<K,V>, boolean)

• addLocalEntryListener(MapListener, Predicate<K,V>, K, boolean)

• addEntryListener(MapListener, boolean)

• addEntryListener(MapListener, K, boolean)

872

https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/config/ServiceConfig.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/HazelcastInstance.html
https://docs.hazelcast.org/docs/4.1.1/javadoc/com/hazelcast/core/DistributedObjectEvent.html

EntryListener-based listeners are still supported by the newer MapListener-based API and
declarative configuration.

B.1.36. Changes in IMap Eviction Configuration

There has been a simplification and improvement in the way of configuring the eviction for a map.

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

<hazelcast>
 ...
 <map name="default">
 <eviction-policy>LRU</eviction-
policy>
 <max-size policy="PER_NODE">
20</max-size>
 </map>
 ...
</hazelcast>

<hazelcast>
 ...
 <map name="default">
 <eviction eviction-policy="LRU"
max-size-policy="PER_NODE" size="20"/>
 </map>
 ...
</hazelcast>

B.1.37. Changes in IMap Custom Eviction Policy Configuration

There has been a simplification and improvement in the way of configuring the custom eviction
policy for a map.

See the following table for the before/after samples.

Before IMDG 4.0 After IMDG 4.0

<hazelcast>
 ...
 <map name="default">
 <map-eviction-policy-class-name>

com.mycompany.MyMapEvictionPolicyCompara
tor
 </map-eviction-policy-class-
name>
 </map>
 ...
</hazelcast>

<hazelcast>
 ...
 <map name="default">
 <eviction comparator-class-name
="com.mycompany.MyMapEvictionPolicyCompa
rator"/>
 </map>
 ...
</hazelcast>

873

B.1.38. Changes in EntryListenerConfig

Return type of the EntryListenerConfig.getImplementation() method has been changed from
EntryListener to MapListener.

See the following table for the before/after snippets.

Before IMDG 4.0 After IMDG 4.0

EntryListenerConfig config = new
EntryListenerConfig();
EntryListener listenerImpl = config
.getImplementation();

EntryListenerConfig config = new
EntryListenerConfig();
MapListener listenerImpl = config
.getImplementation();

B.1.39. Changes in REST Endpoints

The following REST endpoints have been changed:

• /hazelcast/rest/mancenter/changeurl is removed

• All /hazelcast/rest/mancenter/wan/* endpoints are renamed to /hazelcast/rest/wan/

The following REST endpoints now require cluster name and password as the first two URL-
encoded parameters:

• /hazelcast/rest/wan/sync/map

• /hazelcast/rest/wan/sync/allmaps

• /hazelcast/rest/wan/clearWanQueues

• /hazelcast/rest/wan/addWanConfig

• /hazelcast/rest/wan/pausePublisher

• /hazelcast/rest/wan/stopPublisher

• /hazelcast/rest/wan/resumePublisher

• /hazelcast/rest/wan/consistencyCheck/map

The output of the following endpoints has been changed to JSON:

• /hazelcast/health/node-state

• /hazelcast/health/cluster-state

• /hazelcast/health/cluster-safe

• /hazelcast/health/migration-queue-size

• /hazelcast/health/cluster-size

• /hazelcast/health/ready

• /hazelcast/rest/cluster

874

B.1.40. Changes in the Diagnostics Configuration

By introducing the metrics system in Hazelcast IMDG 4.0, the metrics collected by Diagnostics and
the metrics system is shared. This has come with the following changes of the system properties
that configure diagnostics:

• hazelcast.diagnostics.metric.level is not available anymore. Collecting debug metrics can be
enabled by setting the hazelcast.metrics.debug.enabled or
hazelcast.client.metrics.debug.enabled system properties to true for the members and clients
respectively.

• hazelcast.diagnostics.metric.distributed.datastructures is not anymore available since the
data structure metrics are required for the other Metric Consumers. Therefore, they are
collected by default and no need for enabling it for the diagnostics.

B.1.41. Changes in the Management Center Configuration

As Management Center now uses Hazelcast Java client for communication with the cluster, all
attributes and nested elements have been removed from programmatic, XML and YAML
configurations for Management Center, i.e., from ManagementCenterConfig class and management-
center configuration element, except for the scripting-enabled attribute.

The default value of scripting-enabled attribute is false, whereas in Hazelcast 3.x it was enabled by
default for Hazelcast Open Source.

A full example of settings available in the Management Center configuration now looks like the
following:

<management-center scripting-enabled="true" />

This has come with the following changes of the system properties that configure Management
Center:

• hazelcast.mc.url.change.enabled is not available anymore.

B.1.42. Changes in the Event Journal Configuration

Event journal configuration had been put as a top-level configuration element. With IMDG 4.0, this
restriction has been removed; this means event journal configuration now can be part of both map
and cache configurations. This eliminates additionally specifying the map /cache names on the
event journal configuration to connect it to the map/cache configurations.

See the following table for the before/after snippets.

Before IMDG 4.0 After IMDG 4.0

875

<hazelcast>
 ...
 <event-journal enabled="false">
 <mapName>default</mapName>
 <capacity>10000</capacity>
 <time-to-live-seconds>0</time-
to-live-seconds>
 </event-journal>
 ...
 <event-journal enabled="false">
 <cacheName>default</cacheName>
 <capacity>10000</capacity>
 <time-to-live-seconds>0</time-
to-live-seconds>
 </event-journal>
 ...
</hazelcast>

<hazelcast>
 ...
 <map name="default">
 <event-journal enabled="false">
 <capacity>10000</capacity>
 <time-to-live-seconds>
0</time-to-live-seconds>
 </event-journal>
 </map>
 ...
 <cache name="default">
 <event-journal enabled="false">
 <capacity>10000</capacity>
 <time-to-live-seconds>
0</time-to-live-seconds>
 </event-journal>
 </cache>
 ...
</hazelcast>

B.2. Upgrading to Hazelcast IMDG 3.12.x
• REST endpoint authentication: The authentication to REST endpoints has been changed in

Hazelcast IMDG 3.12. Hazelcast IMDG 3.11.x checks group name and password, while 3.12
checks just the group name when security is disabled, and it uses the client login modules when
the security is enabled.

• Upgrading Cluster Version From IMDG 3.11 to 3.12: For the IMDG versions before 3.12, REST
API could be enabled by using the hazelcast.rest.enabled system property, which is deprecated
now. IMDG 3.12 and newer versions introduce the rest-api configuration element along with
REST endpoint groups. Therefore, a configuration change is needed specifically when
performing a rolling member upgrade from IMDG 3.11 to 3.12.

So, the steps listed in the above Rolling Upgrade Procedure section should be as follows:

1. Shutdown the 3.11 member

2. Wait until all partition migrations are completed

3. Update the member with 3.12 binaries

4. Update the configuration (see below)

5. Start the member

For the 4th step ("Update the configuration"), the configuration should be updated as
follows:

876

<hazelcast>
 ...
 <rest-api enabled="true">
 <endpoint-group name="CLUSTER_WRITE" enabled="true"/>
 </rest-api>
 ...
</hazelcast>

See the Using the REST Endpoint Groups section for more information.

B.3. Upgrading from Hazelcast IMDG 3.10.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.9.x to
3.10.x and newer.

• Starting with Hazelcast 3.10, split-brain recovery is supported for the data structures whose in-
memory format is NATIVE.

B.4. Upgrading from Hazelcast IMDG 3.9.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.9.x to
3.10.x and newer.

• The system property based configuration for Ping Failure Detector is deprecated. Instead, use
the elements to configure it, an example of which is shown below:

<hazelcast>
 <network>
 ...
 <failure-detector>
 <icmp enabled="true">
 <timeout-milliseconds>1000</timeout-milliseconds>
 <fail-fast-on-startup>true</fail-fast-on-startup>
 <interval-milliseconds>1000</interval-milliseconds>
 <max-attempts>2</max-attempts>
 <parallel-mode>true</parallel-mode>
 <ttl>255</ttl>
 </icmp>
 </failure-detector>
 </network>
 ...
</hazelcast>

Until Hazelcast IMDG 3.10, the configuration has been like the following:

877

https://docs.hazelcast.org/docs/3.10/manual/html-single/#requirements-and-linuxunix-configuration

<hazelcast>
 ...
 <properties>
 <property name="hazelcast.icmp.enabled">true</property>
 <property name="hazelcast.icmp.parallel.mode">true</property>
 <property name="hazelcast.icmp.timeout">1000</property>
 <property name="hazelcast.icmp.max.attempts">3</property>
 <property name="hazelcast.icmp.interval">1000</property>
 <property name="hazelcast.icmp.ttl">0</property>
 </properties>
 ...
</hazelcast>

B.5. Upgrading to Hazelcast IMDG 3.8.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.7.x to
3.8.x and newer.

• Introducing <wan-publisher> element: The configuration element <target-cluster> has been
replaced with the element <wan-publisher> in WAN replication configuration.

• WaitNotifyService interface has been renamed as OperationParker.

• Synchronizing WAN Target Cluster: The URL for the related REST call has been changed from
http://member_ip:port/hazelcast/rest/wan/sync/map to
http://member_ip:port/hazelcast/rest/mancenter/wan/sync/map.

• JCache usage: Due to a compatibility problem, CacheConfig serialization may not work if your
member is 3.8.x where x < 5. You need to use the 3.8.5 or higher versions where the problem is
fixed.

B.6. Upgrading to Hazelcast IMDG 3.7.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.6.x to
3.7.x and newer.

• Important note about Hazelcast System Properties: Even Hazelcast has not been
recommending the usage of GroupProperties.java class while benefiting from system properties,
there has been a change to inform to the users who have been using this class: the class
GroupProperties.java has been replaced by GroupProperty.java. In this new class, system
properties are instances of the newly introduced HazelcastProperty object. You can access the
names of these properties by calling the getName() method of HazelcastProperty.

• Removal of WanNoDelayReplication: WanNoDelayReplication implementation of Hazelcast’s
WAN Replication has been removed. You can still achieve this behavior by setting the batch size
to 1 while configuring the WanBatchReplication. See the Defining WAN Replication section for
more information.

• JCache usage: Changes in JCache implementation which broke compatibility of 3.6.x clients to
3.7, 3.7.1, 3.7.2 cluster members and vice versa. 3.7, 3.7.1, 3.7.2 clients are also incompatible with

878

3.6.x cluster members. This issue only affects Java clients which use JCache functionality.

You can use a compatibility option which can be used to ensure backwards compatibility with
3.6.x clients.

In order to upgrade a 3.6.x cluster and clients to 3.7.3 (or later), you need to use this
compatibility option on either the member or the client side, depending on which one is
upgraded first:

◦ first upgrade your cluster members to 3.7.3, adding property
hazelcast.compatibility.3.6.client=true to your configuration; when started with this
property, cluster members are compatible with 3.6.x and 3.7.3+ clients but not with 3.7, 3.7.1,
3.7.2 clients. Once your cluster is upgraded, you may upgrade your applications to use client
version 3.7.3+.

◦ upgrade your clients from 3.6.x to 3.7.3, adding property
hazelcast.compatibility.3.6.server=true to your Hazelcast client configuration. A 3.7.3
client started with this compatibility option is compatible with 3.6.x and 3.7.3+ cluster
members but incompatible with 3.7, 3.7.1, 3.7.2 cluster members. Once your clients are
upgraded, you may then proceed to upgrade your cluster members to version 3.7.3 or later.

You may use any of the supported ways as described in the System Properties section to
configure the compatibility option. When done upgrading your cluster and clients, you may
remove the compatibility property from your Hazelcast member configuration.

• The eviction-percentage and min-eviction-check-millis elements are deprecated. They are
ignored if configured, since the map eviction is based on the sampling of entries. See the
Eviction Algorithm section for details.

B.7. Upgrading to Hazelcast IMDG 3.6.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.5.x to
3.6.x and newer.

• Introducing new configuration options for WAN replication: WAN replication related system
properties, which are configured on a per member basis, can now be configured per target
cluster. The following system properties are no longer valid.

◦ hazelcast.enterprise.wanrep.batch.size, see the Batch Size section.

◦ hazelcast.enterprise.wanrep.batchfrequency.seconds, see the Batch Maximum Delay section.

◦ hazelcast.enterprise.wanrep.optimeout.millis, see the Response Timeout section.

◦ hazelcast.enterprise.wanrep.queue.capacity, see the Queue Capacity section.

• Removal of deprecated getId() method: The method getId() in the interface
DistributedObject has been removed. Please use the getName() method instead.

• Change in the Custom Serialization in the C++ Client Distribution: Before, the method
getTypeId() was used to retrieve the ID of the object to be serialized. With this release, the
method getHazelcastTypeId() is used and you give your object as a parameter to this new
method. Also, getTypeId() was used in your custom serializer class; it has been renamed to

879

getHazelcastTypeId(), too.

• The LOCAL transaction type has been deprecated. Use ONE_PHASE for the Hazelcast IMDG releases
3.6 and higher.

B.8. Upgrading to Hazelcast IMDG 3.5.x
This section provides information to be considered when upgrading from Hazelcast IMDG 3.4.x to
3.5.x and newer.

• Introducing the spring-aware element: Hazelcast used SpringManagedContext to scan
SpringAware annotations by default. This was causing some performance overhead for the users
who do not use SpringAware. With this release, SpringAware annotations are disabled by default.
By introducing the spring-aware element, it is possible to enable it by adding the <hz:spring-
aware /> tag to the configuration. See the Spring Integration section.

B.9. Upgrading to Hazelcast IMDG 3.x
This section provides information to be considered when upgrading from Hazelcast IMDG 2.x to 3.x.

• Removal of deprecated static methods: The static methods of Hazelcast class reaching
Hazelcast data components have been removed. The functionality of these methods can be
reached from the HazelcastInstance interface. You should replace the following:

Map<Integer, String> customers = Hazelcast.getMap("customers");

with

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
// or if you already started an instance named "instance1"
// HazelcastInstance hazelcastInstance = Hazelcast.getHazelcastInstanceByName(
"instance1");
Map<Integer, String> customers = hazelcastInstance.getMap("customers");

• Renaming "instance" to "distributed object": There were confusions about the term
"instance"; it was used for both the cluster members and distributed objects (map, queue, topic,
etc. instances). Starting with this release, the term "instance" is used for Hazelcast instances. The
term "distributed object" is used for map, queue, etc. instances. You should replace the related
methods with the new renamed ones. 3.0.x clients are smart clients in that they know in which
cluster member the data is located, so you can replace your lite members with native clients.

880

public static void main(String[] args) throws InterruptedException {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IMap map = hazelcastInstance.getMap("test");
 Collection<Instance> instances = hazelcastInstance.getInstances();
 for (Instance instance : instances) {
 if (instance.getInstanceType() == Instance.InstanceType.MAP) {
 System.out.println("There is a map with name: " + instance.getId());
 }
 }
}

with

public static void main(String[] args) throws InterruptedException {
 HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
 IMap map = hz.getMap("test");
 Collection<DistributedObject> objects = hazelcastInstance.getDistributedObjects(
);
 for (DistributedObject distributedObject : objects) {
 if (distributedObject instanceof IMap) {
 System.out.println("There is a map with name: " + distributedObject.getName
());
 }
 }
}

• Package structure change: PartitionService has been moved to the com.hazelcast.core

package from com.hazelcast.partition.

• Listener API change: The removeListener methods were taking the listener object as a
parameter. But this caused confusion since the same listener object may be used as a parameter
for different listener registrations. So we have changed the listener API. The addListener
methods returns a unique ID and you can remove a listener by using this ID. So you should do
the following replacement if needed:

IMap map = hazelcastInstance.getMap("map");
map.addEntryListener(listener, true);
map.removeEntryListener(listener);

with

IMap map = hazelcastInstance.getMap("map");
String listenerId = map.addEntryListener(listener, true);
map.removeEntryListener(listenerId);

• IMap changes:

881

◦ tryRemove(K key, long timeout, TimeUnit timeunit) returns boolean indicating whether
operation is successful.

◦ tryLockAndGet(K key, long time, TimeUnit timeunit) is removed.

◦ putAndUnlock(K key, V value) is removed.

◦ lockMap(long time, TimeUnit timeunit) and unlockMap() are removed.

◦ getMapEntry(K key) is renamed as getEntryView(K key). The returned object’s type (MapEntry
class) is renamed as EntryView.

◦ There is no predefined names for merge policies. You just give the full class name of the
merge policy implementation:

<merge-policy>com.hazelcast.map.merge.PassThroughMergePolicy</merge-policy>

Also the MergePolicy interface has been renamed as MapMergePolicy and returning null from
the implemented merge() method causes the existing entry to be removed.

• IQueue changes: There is no change on IQueue API but there are changes on how IQueue is
configured: there is no backing map configuration for queue. Settings like backup count are
directly configured on the queue configuration. See the Queue section.

• Transaction API change: Transaction API has been changed. See the Transactions chapter.

• ExecutorService API change: The MultiTask and DistributedTask classes have been removed.
All the functionality is supported by the newly presented interface IExecutorService. See the
Executor Service section.

• LifeCycleService API: The lifecycle has been simplified. The pause(), resume(), restart()
methods have been removed.

• AtomicNumber: AtomicNumber class has been renamed as IAtomicLong.

• ICountDownLatch: The await() operation has been removed. We expect users to use await()
method with timeout parameters.

• ISemaphore API: The ISemaphore has been substantially changed. The attach(), detach()
methods have been removed.

• Before, the default value for max-size eviction policy was cluster_wide_map_size. Starting with
this release, the default is PER_NODE. After upgrading, the max-size should be set according to
this new default, if it is not changed. Otherwise, it is likely that OutOfMemoryException may be
thrown.

Appendix C: Common Exception Types
You may see the following exceptions in any Hazelcast operation when the described situations
occur:

• HazelcastInstanceNotActiveException: Thrown when HazelcastInstance is not active (already
shutdown or being shutdown) during an invocation.

• HazelcastOverloadException: Thrown when the system cannot handle any more load due to an

882

overload. This exception is thrown when back pressure is enabled.

• DistributedObjectDestroyedException: Thrown when a distributed data structure is destroyed
using the destroy() method while there is a blocking operation on it, e.g., waiting a response for
the Lock.lock() method.

• MemberLeftException: Thrown when a member leaves during an invocation or execution.

Hazelcast also throws the following exceptions in the cases of overall system problems such as
networking issues and long pauses:

• PartitionMigratingException: Thrown when an operation is executed on a partition, but that
partition is currently being moved.

• TargetNotMemberException: Thrown when an operation is sent to a machine that is not a member
of the cluster.

• CallerNotMemberException: Thrown when an operation was sent by a machine which is not a
member in the cluster when the operation is executed.

• WrongTargetException: Thrown when an operation is executed on the wrong machine, usually
because the partition that operation belongs to has been moved to some other member.

Appendix D: License Questions
Hazelcast is distributed using the Apache License 2, therefore permissions are granted to use,
reproduce and distribute it along with any kind of open source and closed source applications.

Hazelcast IMDG Pro and Enterprise are commercial products of Hazelcast, Inc. and distributed
under a commercial license that must be acquired before using it in any type of released software.
Feel free to contact Hazelcast sales department for more information on commercial offers.

Depending on the used feature-set, Hazelcast has certain runtime dependencies which might have
different licenses. Following are dependencies and their respective licenses.

D.1. Embedded Dependencies
Embedded dependencies are merged (shaded) with the Hazelcast codebase at compile-time. These
dependencies become an integral part of the Hazelcast distribution.

For license files of embedded dependencies, see the license directory of the Hazelcast distribution,
available at our download page.

minimal-json:

minimal-json is a JSON parsing and generation library which is a part of the Hazelcast distribution.
It is used for communication between the Hazelcast cluster and the Management Center.

minimal-json is distributed under the MIT license and offers the same rights to add, use, modify
and distribute the source code as the Apache License 2.0 that Hazelcast uses. However, some other
restrictions might apply.

883

http://www.apache.org/licenses/LICENSE-2.0
http://hazelcast.com/contact/
https://hazelcast.org/download/
http://opensource.org/licenses/MIT

D.2. Runtime Dependencies
Depending on the used features, additional dependencies might be added to the dependency set.
Those runtime dependencies might have other licenses. See the following list of additional runtime
dependencies.

Spring Framework:

Hazelcast offers a tight integration into the Spring Framework. Hazelcast can be configured and
controlled using Spring.

The Spring Framework is distributed under the terms of the Apache License 2 and therefore it is
fully compatible with Hazelcast.

Hibernate:

Hazelcast integrates itself into Hibernate as a second-level cache provider.

Hibernate is distributed under the terms of the Lesser General Public License 2.1, also known as
LGPL. Please read carefully the terms of the LGPL since restrictions might apply.

Apache Tomcat:

Hazelcast IMDG Enterprise offers native integration into Apache Tomcat for web session clustering.

Apache Tomcat is distributed under the terms of the Apache License 2 and therefore fully
compatible with Hazelcast.

Eclipse Jetty:

Hazelcast IMDG Enterprise offers native integration into Jetty for web session clustering.

Jetty is distributed with a dual licensing strategy. It is licensed under the terms of the Apache
License 2 and under the Eclipse Public License v1.0, also known as EPL. Due to the Apache License,
it is fully compatible with Hazelcast.

JCache API (JSR 107):

Hazelcast offers a native implementation for JCache (JSR 107), which has a runtime dependency to
the JCache API.

The JCache API is distributed under the terms of the so called Specification License. Please read
carefully the terms of this license since restrictions might apply.

Boost C++ Libraries:

Hazelcast IMDG offers a native C++ client, which has a link-time dependency to the Boost C++
Libraries.

The Boost Libraries are distributed under the terms of the Boost Software License), which is very
similar to the MIT or BSD license. Please read carefully the terms of this license since restrictions
might apply.

884

http://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/lgpl-2.1.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.eclipse.org/legal/epl-v10.html
https://jcp.org/aboutJava/communityprocess/licenses/jsr107/Spec-License-JSR-107-10_22_12.pdf
http://www.boost.org/LICENSE_1_0.txt

Appendix E: Phone Homes
Hazelcast uses phone home data to learn about the usage of Hazelcast IMDG.

Hazelcast IMDG member instances call our phone home server initially when they are started and
then every 24 hours. This applies to all the instances joined to the cluster.

What is sent in?

The following information is sent in a phone home:

• Hazelcast IMDG version

• Local Hazelcast IMDG member UUID

• Download ID

• A hash value of the cluster ID

• Cluster size bands for 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600

• Number of connected clients bands of 5, 10, 20, 40, 60, 100, 150, 300, 600 and > 600

• Number of clients by language (Java, C++, C#)

• Cluster uptime

• Member uptime

• Environment Information:

◦ Name of operating system

◦ Kernel architecture (32-bit or 64-bit)

◦ Version of operating system

◦ Version of installed Java

◦ Name of Java Virtual Machine

• Hazelcast IMDG Enterprise specific:

◦ Flag for Hazelcast Enterprise

◦ Hash value of license key

◦ Native memory usage

Disabling Phone Homes

Set the hazelcast.phone.home.enabled system property to false either in the config or on the Java
command line. See the System Properties appendix for information on how to set a property.

You can also disable the phone home using the environment variable HZ_PHONE_HOME_ENABLED.

Simply add the following line to your .bash_profile:

export HZ_PHONE_HOME_ENABLED=false

885

Phone Home URLs

For versions 1.x and 2.x: http://www.hazelcast.com/version.jsp.

For versions 3.x up to 3.6: http://versioncheck.hazelcast.com/version.jsp.

For versions after 3.6: http://phonehome.hazelcast.com/ping.

Appendix F: Frequently Asked Questions

What Guarantees does Hazelcast IMDG offer?

Hazelcast IMDG is distributed and highly available by nature. It is achieved by keeping the data
partition backup always on another Hazelcast member.

Hazelcast IMDG offers AP and CP functionality with different data structure implementations (see
CAP theorem). Data structures exposed under HazelcastInstance API are all AP data structures.
Hazelcast IMDG also contains a CP subsystem, built on the Raft consensus algorithm and accessed
via HazelcastInstance.getCPSubsytem() which provides CP data structures and APIs.

• AP Hazelcast IMDG guarantees:

◦ With lazy replication, when the primary replica receives an update operation for a key, it
executes the update locally and propagates it to backup replicas. It marks each update with
a logical timestamp so that backups apply them in the correct order and converge to the
same state with the primary. Backup replicas can be used to scale reads (see the Enabling
Backup Reads section) with no strong consistency but monotonic reads guarantee.

◦ It employs additional measurements to maintain consistency in a best-effort manner.

◦ Hazelcast, as an AP product, does not provide the exactly-once guarantee. In general,
Hazelcast tends to be an at-least-once solution.

◦ See the Consistency and Replication Model chapter for more information.

• CP Hazelcast IMDG Guarantees:

◦ It builds a strongly consistent layer for a set of distributed data structures. You can enable
CP Subsystem and use it with the strong consistency guarantee.

◦ Its data structures are CP with respect to the CAP principle, i.e., they always
maintain linearizability and prefer consistency over availability during network partitions.

◦ Besides network partitions, CP Subsystem withstands server and client failures.

◦ It provides a good degree of fault tolerance at run-time, and CP Subsystem Persistence
enables more robustness.

◦ See the CP Subsystem chapter for more information.

Why 271 as the default partition count?

886

http://www.hazelcast.com/version.jsp
http://versioncheck.hazelcast.com/version.jsp
http://phonehome.hazelcast.com/ping
https://en.wikipedia.org/wiki/CAP_theorem

The partition count of 271, being a prime number, is a good choice because it is distributed to the
members almost evenly. For a small to medium sized cluster, the count of 271 gives an almost even
partition distribution and optimal-sized partitions. As your cluster becomes bigger, you should
make this count bigger to have evenly distributed partitions.

Is Hazelcast thread-safe?

Yes. All Hazelcast data structures are thread-safe.

How do members discover each other?

When a member is started in a cluster, it is dynamically and automatically discovered. The
following are the types of discovery:

• Discovery by TCP/IP: The first member created in the cluster (leader) forms a list of IP addresses
of other joining members and sends this list to these members so the members will know each
other.

• Discovery on clouds: Hazelcast supports discovery on cloud platforms such as jclouds based
environments, Azure, Consul and PCF.

• Multicast discovery: The members in a cluster discover each other by multicast, by default. It is
not recommended for production since UDP is often blocked in production environments and
other discovery mechanisms are more definite.

Once members are discovered, all the communication between them is via TCP/IP.

 See the Discovery Mechanisms section for detailed information.

What happens when a member goes down?

Once a member is gone (crashes), the following happens:

• First, the backups in other members are restored.

• Then, data from these restored backups are recovered.

• And finally, new backups for these recovered data are formed.

So eventually, availability of the data is maintained.

How do I test the connectivity?

If you notice that there is a problem with a member joining a cluster, you may want to perform a
connectivity test between the member to be joined and a member from the cluster. You can use the
iperf tool for this purpose. For example, you can execute the below command on one member (i.e.
listening on port 5701).

887

iperf -s -p 5701

And you can execute the below command on the other member.

iperf -c <IP address> -d -p 5701

The output should include connection information, such as the IP addresses, transfer speed and
bandwidth. Otherwise, if the output says No route to host, it means a network connection problem
exists.

How do I choose keys properly?

When you store a key and value in a distributed Map, Hazelcast serializes the key and value and
stores the byte array version of them in local ConcurrentHashMaps. These ConcurrentHashMaps
use equals and hashCode methods of byte array version of your key. It does not take into account the
actual equals and hashCode implementations of your objects. So it is important that you choose your
keys in a proper way.

Implementing equals and hashCode is not enough, it is also important that the object is always
serialized into the same byte array. All primitive types like String, Long, Integer, etc. are good
candidates for keys to be used in Hazelcast. An unsorted Set is an example of a very bad candidate
because Java Serialization may serialize the same unsorted set in two different byte arrays.

How do I reflect value modifications?

Hazelcast always return a clone copy of a value. Modifying the returned value does not change the
actual value in the map (or multimap, list, set). You should put the modified value back to make
changes visible to all members.

V value = map.get(key);
value.updateSomeProperty();
map.put(key, value);

Collections which return values of methods (such as IMap.keySet, IMap.values, IMap.entrySet,
MultiMap.get, MultiMap.remove, IMap.keySet, IMap.values) contain cloned values. These collections are
NOT backed up by related Hazelcast objects. Therefore, changes to them are NOT reflected in the
originals and vice-versa.

How do I test my Hazelcast cluster?

Hazelcast allows you to create more than one instance on the same JVM. Each member is called
HazelcastInstance and each has its own configuration, socket and threads, so you can treat them as
totally separate instances.

This enables you to write and to run cluster unit tests on a single JVM. Because you can use this

888

feature for creating separate members different applications running on the same JVM (imagine
running multiple web applications on the same JVM), you can also use this feature for testing your
Hazelcast cluster.

Let’s say you want to test if two members have the same size of a map.

@Test
public void testTwoMemberMapSizes() {
 // start the first member
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance();
 // get the map and put 1000 entries
 Map map1 = h1.getMap("testmap");
 for (int i = 0; i < 1000; i++) {
 map1.put(i, "value" + i);
 }
 // check the map size
 assertEquals(1000, map1.size());
 // start the second member
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance();
 // get the same map from the second member
 Map map2 = h2.getMap("testmap");
 // check the size of map2
 assertEquals(1000, map2.size());
 // check the size of map1 again
 assertEquals(1000, map1.size());
}

In the test above, everything happens in the same thread. When developing a multi-threaded test,
you need to carefully handle coordination of the thread executions. It is highly recommended that
you use CountDownLatch for thread coordination (you can certainly use other ways). Here is an
example where we need to listen for messages and make sure that we got these messages.

889

@Test
public void testTopic() {
 // start two member cluster
 HazelcastInstance h1 = Hazelcast.newHazelcastInstance();
 HazelcastInstance h2 = Hazelcast.newHazelcastInstance();
 String topicName = "TestMessages";
 // get a topic from the first member and add a messageListener
 ITopic<String> topic1 = h1.getTopic(topicName);
 final CountDownLatch latch1 = new CountDownLatch(1);
 topic1.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch1.countDown();
 }
 });
 // get a topic from the second member and add a messageListener
 ITopic<String> topic2 = h2.getTopic(topicName);
 final CountDownLatch latch2 = new CountDownLatch(2);
 topic2.addMessageListener(new MessageListener() {
 public void onMessage(Object msg) {
 assertEquals("Test1", msg);
 latch2.countDown();
 }
 });
 // publish the first message, both should receive this
 topic1.publish("Test1");
 // shutdown the first member
 h1.shutdown();
 // publish the second message, second member's topic should receive this
 topic2.publish("Test1");
 try {
 // assert that the first member's topic got the message
 assertTrue(latch1.await(5, TimeUnit.SECONDS));
 // assert that the second members' topic got two messages
 assertTrue(latch2.await(5, TimeUnit.SECONDS));
 } catch (InterruptedException ignored) {
 }
}

You can start Hazelcast members with different configurations. Remember to call
Hazelcast.shutdownAll() after each test case to make sure that there is no other running member
left from the previous tests.

@After
public void cleanup() throws Exception {
 Hazelcast.shutdownAll();
}

890

For more information please check our existing tests.

Does Hazelcast support hundreds of members?

Yes. Hazelcast performed a successful test on Amazon EC2 with 200 members.

Does Hazelcast support thousands of clients?

Yes. However, there are some points you should consider. The environment should be LAN with a
high stability and the network speed should be 10 Gbps or higher. If the number of members is
high, the client type should be selected as Unisocket, not Smart Client. In the case of Smart Clients,
since each client opens a connection to the members, these members should be powerful enough
(for example, more cores) to handle hundreds or thousands of connections and client requests.
Also, you should consider using Near Caches in clients to lower the network traffic. And you should
use the Hazelcast releases with the NIO implementation (which starts with Hazelcast 3.2).

Also, you should configure the clients attentively. See the Clients section for configuration notes.

Difference between Lite Member and Smart Client?

Lite member supports task execution (distributed executor service), smart client does not. Also, Lite
Member is highly coupled with cluster, smart client is not. Starting with Hazelcast 3.9, you can also
promote lite members to data members. See the Lite Members section for more information.

How do you give support?

We have two support services: community and commercial support. Community support is
provided through our Mail Group and StackOverflow web site. For information on support
subscriptions, link:see Hazelcast.com.

Does Hazelcast persist?

No. However, Hazelcast provides MapStore and MapLoader interfaces. For example, when you
implement the MapStore interface, Hazelcast calls your store and load methods whenever needed.

Can I use Hazelcast in a single server?

Yes. But please note that Hazelcast’s main design focus is multi-member clusters to be used as a
distribution platform.

891

https://github.com/hazelcast/hazelcast/tree/master/hazelcast/src/test/java/com/hazelcast/cluster
https://groups.google.com/forum/#!forum/hazelcast
http://stackoverflow.com/
https://hazelcast.com/pricing/

How can I monitor Hazelcast?

Hazelcast Management Center is what you use to monitor and manage the members running
Hazelcast. In addition to monitoring the overall state of a cluster, you can analyze and browse data
structures in detail, you can update map configurations and you can take thread dumps from
members.

You can also use Hazelcast’s HTTP based health check implementation and health monitoring
utility. See the Health Check and Monitoring section. There is also a diagnostocs tool where you can
see detailed logs enhanced with diagnostic plugins.

Moreover, JMX monitoring is also provided. See the Monitoring with JMX section for details.

How can I see debug level logs?

By changing the log level to "Debug". Below are example lines for log4j logging framework. See the
Logging Configuration section to learn how to set logging types.

First, set the logging type as follows.

String location = "log4j.configuration";
String logging = "hazelcast.logging.type";
System.setProperty(logging, "log4j");
/**if you want to give a new location. **/
System.setProperty(location, "file:/path/mylog4j.properties");

Then set the log level to "Debug" in the properties file. Below is example content.

direct log messages to stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p [%c{1}] - %m%n

log4j.logger.com.hazelcast=debug

#log4j.logger.com.hazelcast.cluster=debug

#log4j.logger.com.hazelcast.partition=debug

#log4j.logger.com.hazelcast.partition.InternalPartitionService=debug

#log4j.logger.com.hazelcast.nio=debug

#log4j.logger.com.hazelcast.hibernate=debug

The line log4j.logger.com.hazelcast=debug is used to see debug logs for all Hazelcast operations.
Below this line, you can select to see specific logs (cluster, partition, hibernate, etc.).

892

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html

Client-server vs. embedded topologies?

In the embedded topology, members include both the data and application. This type of topology is
the most useful if your application focuses on high performance computing and many task
executions. Since application is close to data, this topology supports data locality.

In the client-server topology, you create a cluster of members and scale the cluster independently.
Your applications are hosted on the clients and the clients communicate with the members in the
cluster to reach data.

Client-server topology fits better if there are multiple applications sharing the same data or if
application deployment is significantly greater than the cluster size (for example, 500 application
servers vs. 10 member cluster).

How can I shutdown a Hazelcast member?

The following are the ways of shutting down a Hazelcast member:

• You can call kill -9 <PID> in the terminal (which sends a SIGKILL signal). This results in the
immediate shutdown which is not recommended for production systems. If you set the property
hazelcast.shutdownhook.enabled to false and then kill the process using kill -15 <PID>, its result
is the same (immediate shutdown).

• You can call kill -15 <PID> in the terminal (which sends a SIGTERM signal), or you can call the
method HazelcastInstance.getLifecycleService().terminate() programmatically, or you can use
the script stop.sh located in your Hazelcast’s /bin directory. All three of them terminate your
member ungracefully. They do not wait for migration operations, they force the shutdown. But
this is much better than kill -9 <PID> since it releases most of the used resources.

• In order to gracefully shutdown a Hazelcast member (so that it waits the migration operations
to be completed), you have four options:

◦ You can call the method HazelcastInstance.shutdown() programatically.

◦ You can use JMX API’s shutdown method. You can do this by implementing a JMX client
application or using a JMX monitoring tool (like JConsole).

◦ You can set the property hazelcast.shutdownhook.policy to GRACEFUL and then shutdown by
using kill -15 <PID>. Your member will be gracefully shutdown.

◦ You can use the "Shutdown Member" button in the member view of Hazelcast Management
Center.

If you use systemd’s systemctl utility, i.e., systemctl stop service_name, a SIGTERM signal is sent.
After 90 seconds of waiting it is followed by a SIGKILL signal by default. Thus, it calls terminate at
first and kill the member directly after 90 seconds. We do not recommend to use it with its defaults.
But systemd is very customizable and well-documented, you can see its details using the command
man systemd.kill. If you can customize it to shutdown your Hazelcast member gracefully (by using
the methods above), then you can use it.

893

https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-members
https://docs.hazelcast.org/docs/management-center/latest/manual/html/index.html#monitoring-members
https://www.linux.com/learn/understanding-and-using-systemd

How do I know it is safe to kill the second member?

Starting with Hazelcast 3.7, graceful shutdown of a Hazelcast member can be initiated any time as
follows:

hazelcastInstance.shutdown();

Once a Hazelcast member initiates a graceful shutdown, data of the shutting down member is
migrated to the other members automatically.

However, there is no such guarantee for termination.

Below code snippet terminates a member if the cluster is safe, which means that there are no
partitions being migrated and all backups are in sync when this method is called.

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isClusterSafe()) {
 hazelcastInstance.getLifecycleService().terminate();
}

Below code snippet terminates the local member if the member is safe to terminate, which means
that all backups of partitions currently owned by local member are in sync when this method is
called.

PartitionService partitionService = hazelcastInstance.getPartitionService();
if (partitionService.isLocalMemberSafe()) {
 hazelcastInstance.getLifecycleService().terminate();
}

Please keep in mind that two code snippets shown above are inherently racy. If member failures
occur in the cluster after the safety condition check passes, termination of the local member can
lead to data loss. For safety of the data, graceful shutdown API is highly recommended.

 See the Safety Checking Cluster Members section for more information.

When do I need Native Memory solutions?

Native Memory solutions can be preferred when:

• the amount of data per member is large enough to create significant garbage collection pauses

• your application requires predictable latency.

Is there any disadvantage of using near-cache?

894

The only disadvantage when using Near Cache is that it may cause stale reads.

Is Hazelcast secure?

Hazelcast supports symmetric encryption, transport layer security/secure sockets layer (TLS/SSL)
and Java Authentication and Authorization Service (JAAS). See the Security chapter for more
information.

How can I set socket options?

Hazelcast allows you to set some socket options such as SO_KEEPALIVE, SO_SNDBUF and SO_RCVBUF using
Hazelcast configuration properties. See the hazelcast.socket.* properties explained in the System
Properties appendix.

Client disconnections during idle time?

In Hazelcast, socket connections are created with the SO_KEEPALIVE option enabled by default. In
most operating systems, default keep-alive time is 2 hours. If you have a firewall between clients
and servers which is configured to reset idle connections/sessions, make sure that the firewall’s idle
timeout is greater than the TCP keep-alive defined in the OS.

See Using TCP keepalive under Linux and Microsoft TechNet for additional information.

OOME: Unable to create new native thread?

If you encounter an error of java.lang.OutOfMemoryError: unable to create new native thread, it
may be caused by exceeding the available file descriptors on your operating system, especially if it
is Linux. This exception is usually thrown on a running member, after a period of time when the
thread count exhausts the file descriptor availability.

The JVM on Linux consumes a file descriptor for each thread created. The default number of file
descriptors available in Linux is usually 1024. If you have many JVMs running on a single machine,
it is possible to exceed this default number.

You can view the limit using the following command.

ulimit -a

At the operating system level, Linux users can control the amount of resources (and in particular,
file descriptors) used via one of the following options.

1 - Editing the limits.conf file:

vi /etc/security/limits.conf

895

http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html
http://technet.microsoft.com/en-us/library/cc957549.aspx

testuser soft nofile 4096

testuser hard nofile 10240

2 - Or using the ulimit command:

ulimit -Hn

10240

The default number of process per users is 1024. Adding the following to your $HOME/.profile could
solve the issue:

ulimit -u 4096

Does repartitioning wait for Entry Processor?

Repartitioning is the process of redistributing the partition ownerships. Hazelcast performs the
repartitioning in the cases where a member leaves the cluster or joins the cluster. If a
repartitioning happens while an entry processor is active in a member processing on an entry
object, the repartitioning waits for the entry processor to complete its job.

Instances on different machines cannot see each other?

Assume you have two instances on two different machines and you develop a configuration as
shown below.

Config config = new Config();
NetworkConfig network = config.getNetworkConfig();

JoinConfig join = network.getJoin();
join.getTcpIpConfig().addMember("IP1")
 .addMember("IP2").setEnabled(true);
network.getInterfaces().setEnabled(true)
 .addInterface("IP1").addInterface("IP2");

When you create the Hazelcast instance, you have to pass the configuration to the instance. If you
create the instances without passing the configuration, each instance starts but cannot see each
other. Therefore, a correct way to create the instance is the following:

HazelcastInstance instance = Hazelcast.newHazelcastInstance(config);

The following is an incorrect way:

896

HazelcastInstance instance = Hazelcast.newHazelcastInstance();

What Does "Replica: 1 has no owner" Mean?

When you start more members after the first one is started, you will see replica: 1 has no owner
entry in the newly started member’s log. There is no need to worry about it since it refers to a
transitory state. It only means the replica partition is not ready/assigned yet and eventually it will
be.

Appendix G: Document Revision History
This chapter lists the changes made to this document from the previous release.

See the Release Notes for the new features, enhancements and fixes performed for
each Hazelcast release.

Table 25. Revision History

Chapter Description

Overview The whole chapter content has been reviewed and enhanced along
with outline improvements.

Understanding
Configuration

Added Overriding Configuration as a new section.

Setting Up Clusters Added Accessing Domain Objects without Domain Classes as a new
section.

Added Auto Detection as a new section.

Added NODE_AWARE as a new section.

Distributed Data Structures Added Managing the Lifecycle of a MapLoader as a new section.

Added Priority Queue as a new section.

Distributed Query Added Global and Partitioned Indexes as a new section.

SQL Added as a new chapter explaining the SQL service provided by
Hazelcast.

Hazelcast Jet The whole chapter content has been reviewed and enhanced along
with outline improvements.

897

https://docs.hazelcast.org/docs/rn/

CP Subsystem Added CP Subsystem Listeners as a new section.

Hazelcast Clients Added a note related to non-stop clients (with Near Cache) to the Java
Client Connection Strategy section.

Management Added Limiting Source Addresses as a new section to explain how to
restrict the source IP addresses for Management Center.

Added Hazelcast Command Line Tool as a new section.

Added Instance Tracking as a new section.

Security Added Kerberos Authentication Type and Security Realms on the
Client Side as new sections.

Added Default authentication as a new section.

Added Logging Auditable Events as a new section.

Performance Added CPU Thread Affinity as a new section.

WAN Replication The whole chapter content has been reviewed and enhanced along
with outline improvements.

Network Partitioning Added Partial Network Partitions as a new section.

System Properties Added the descriptions for the following new system properties:

• hazelcast.ignoreXxeProtectionFailures

Glossary
2-phase Commit

2-phase commit protocol is an atomic commitment protocol for distributed systems. It consists of
two phases: commit-request and commit. In commit-request phase, transaction manager
coordinates all of the transaction resources to commit or abort. In commit-phase, transaction
manager decides to finalize operation by committing or aborting according to the votes of the
each transaction resource.

ACID

A set of properties (Atomicity, Consistency, Isolation, Durability) guaranteeing that transactions
are processed reliably. Atomicity requires that each transaction be all or nothing, i.e., if one part
of the transaction fails, the entire transaction fails). Consistency ensures that only valid data
following all rules and constraints is written. Isolation ensures that transactions are securely
and independently processed at the same time without interference (and without transaction

898

ordering). Durability means that once a transaction has been committed, it will remain so, no
matter if there is a power loss, crash, or error.

Cache

A high-speed access area that can be either a reserved section of main memory or storage
device.

Client Server Topology

Hazelcast topology where members run outside the user application and are connected to
clients using client libraries. The client library is installed in the user application.

Embedded Topology

|Hazelcast topology where the members are in-process with the user application and act as both
client and server.

Garbage Collection

Garbage collection is the recovery of storage that is being used by an application when that
application no longer needs the storage. This frees the storage for use by other applications (or
processes within an application). It also ensures that an application using increasing amounts of
storage does not reach its quota. Programming languages that use garbage collection are often
interpreted within virtual machines like the JVM. The environment that runs the code is also
responsible for garbage collection.

Hazelcast Cluster

A virtual environment formed by Hazelcast members communicating with each other in the
cluster.

Hazelcast Partitions

Memory segments containing the data. Hazelcast is built-on the partition concept, it uses
partitions to store and process data. Each partition can have hundreds or thousands of data
entries depending on your memory capacity. You can think of a partition as a block of data. In
general and optimally, a partition should have a maximum size of 50-100 Megabytes.

IMDG

An in-memory data grid (IMDG) is a data structure that resides entirely in memory and is
distributed among many members in a single location or across multiple locations. IMDGs can
support thousands of in-memory data updates per second and they can be clustered and scaled
in ways that support large quantities of data.

Invalidation

The process of marking an object as being invalid across the distributed cache.

Java heap

Java heap is the space that Java can reserve and use in memory for dynamic memory allocation.
All runtime objects created by a Java application are stored in heap. By default, the heap size is
128 MB, but this limit is reached easily for business applications. Once the heap is full, new
objects cannot be created and the Java application shows errors.

899

LRU, LFU

LRU and LFU are two of eviction algorithms. LRU is the abbreviation for Least Recently Used. It
refers to entries eligible for eviction due to lack of interest by applications. LFU is the
abbreviation for Least Frequently Used. It refers to the entries eligible for eviction due to having
the lowest usage frequency.

Member

A Hazelcast instance. Depending on your Hazelcast usage, it can refer to a server or a Java
virtual machine (JVM). Members belong to a Hazelcast cluster. Members are also referred as
member nodes, cluster members, or Hazelcast members.

Multicast

A type of communication where data is addressed to a group of destination members
simultaneously.

Near Cache

A caching model. When Near Cache is enabled, an object retrieved from a remote member is put
into the local cache and the future requests made to this object will be handled by this local
member. For example, if you have a map with data that is mostly read, then using Near Cache is
a good idea.

NoSQL

"Not Only SQL". A database model that provides a mechanism for storage and retrieval of data
that is tailored in means other than the tabular relations used in relational databases. It is a type
of database which does not adhering to the traditional relational database management system
(RDMS) structure. It is not built on tables and does not employ SQL to manipulate data. It also
may not provide full ACID guarantees, but still has a distributed and fault tolerant architecture.

OSGI

Formerly known as the Open Services Gateway initiative, it describes a modular system and a
service platform for the Java programming language that implements a complete and dynamic
component model.

Partition Table

Table containing all members in the cluster, mappings of partitions to members and further
metadata.

Race Condition

This condition occurs when two or more threads can access shared data and they try to change it
at the same time.

RSA

An algorithm developed by Rivest, Shamir and Adleman to generate, encrypt and decrypt keys
for secure data transmissions.

Serialization

Process of converting an object into a stream of bytes in order to store the object or transmit it to
memory, a database, or a file. Its main purpose is to save the state of an object in order to be able

900

to recreate it when needed. The reverse process is called deserialization.

Split-brain

Split-brain syndrome, in a clustering context, is a state in which a cluster of members gets
divided (or partitioned) into smaller clusters of members, each of which believes it is the only
active cluster.

Transaction

Means a sequence of information exchange and related work (such as data store updating) that
is treated as a unit for the purposes of satisfying a request and for ensuring data store integrity.

901

	Hazelcast IMDG Reference Manual
	Hazelcast IMDG 4.1.1 Reference Manual
	Hazelcast IMDG Reference Manual
	Preface
	Editions
	Licensing
	Trademarks
	Customer Support
	Release Notes
	Contributing
	Partners

	1. Quick Start
	1.1. Installing
	1.2. Creating a Cluster
	1.3. Your First Client Application
	1.4. Connecting Management Center to the Cluster
	1.5. What’s Next?

	2. Overview
	2.1. What is Hazelcast IMDG?
	2.2. Architecture
	2.3. Topology
	2.4. Data Partitioning
	2.4.1. How the Data is Partitioned
	2.4.2. Partition Table
	2.4.3. Repartitioning

	2.5. Use Cases
	2.6. Resources

	3. Installing and Upgrading
	3.1. CLI
	3.2. Maven
	3.3. Docker
	3.4. Download Archives
	3.5. Hazelcast Cloud
	3.6. Kubernetes/OpenShift Deployment
	3.6.1. Quick Start
	3.6.2. Helm Chart
	3.6.3. Kubernetes/OpenShift Operator

	3.7. Deploying in VMware Tanzu
	3.8. Deploying in Cloud Providers
	3.8.1. Amazon Web Services
	3.8.2. Microsoft Azure
	3.8.3. Google Cloud Platform

	3.9. Using Pro and Enterprise editions
	3.9.1. Setting Up License Key
	3.9.2. License Key Format

	3.10. Rolling Member Upgrades
	3.10.1. Terminology
	3.10.2. Hazelcast Members Compatibility Guarantees
	3.10.3. Rolling Upgrade Procedure
	3.10.4. Upgrading Cluster Version
	3.10.5. Enabling Auto-Upgrading
	3.10.6. Network Partitions and Rolling Upgrades
	3.10.7. Rolling Upgrade FAQ

	3.11. Running in Modular Java
	3.12. Supported Java Virtual Machines

	4. Starting the Members and Clients
	4.1. Example Application

	5. Understanding Configuration
	5.1. Configuring Declaratively
	5.1.1. Composing Declarative Configuration
	5.1.2. Configuring Declaratively with YAML

	5.2. Configuring Programmatically
	5.3. Configuring with System Properties
	5.4. Configuring within Spring Context
	5.5. Overriding Configuration
	5.5.1. Conversion Rules

	5.6. Dynamically Adding Data Structure Configuration on a Cluster
	5.6.1. Handling Configuration Conflicts
	5.6.2. Dynamic Data Structure Configuration and User Customizations

	5.7. Checking Configuration
	5.8. Configuration Pattern Matcher
	5.9. Using Wildcards
	5.10. Using Variables
	5.11. Variable Replacers
	5.11.1. EncryptionReplacer
	5.11.2. PropertyReplacer
	5.11.3. Implementing Custom Replacers

	6. Setting Up Clusters
	6.1. Discovery Mechanisms
	6.1.1. Auto Detection
	6.1.2. TCP
	6.1.3. Multicast
	6.1.4. AWS Cloud Discovery
	6.1.5. Azure Cloud Discovery
	6.1.6. GCP Cloud Discovery
	6.1.7. Kubernetes Cloud Discovery
	6.1.8. Eureka Cloud Discovery
	6.1.9. Zookeeper Cloud Discovery
	6.1.10. Hazelcast for Tanzu VMware

	6.2. Discovering Members by Auto Detection
	6.3. Discovering Members by TCP
	6.4. Discovering Members by Multicast
	6.5. Discovering Native Clients
	6.6. Creating Clusters
	6.7. Deploying User Code on the Member
	6.7.1. Configuring User Code Deployment
	6.7.2. Example for Filtering of Members

	6.8. Deploying User Code from Clients
	6.8.1. Configuring Client User Code Deployment
	Important to Know
	Performance Considerations
	Two Versions of a Class

	6.8.2. Adding User Library to CLASSPATH

	6.9. Accessing Domain Objects without Domain Classes - BETA
	6.10. Partition Group Configuration
	6.10.1. Grouping Types
	HOST_AWARE
	CUSTOM
	PER_MEMBER
	ZONE_AWARE
	NODE_AWARE
	SPI

	6.11. Logging Configuration
	6.11.1. Example Log4j2 Configuration
	6.11.2. Example Log4j Configuration

	6.12. Other Network Configurations
	6.12.1. Public Address
	6.12.2. Port
	6.12.3. Outbound Ports
	6.12.4. Reuse Address
	6.12.5. Join
	auto-detection element
	multicast element
	tcp-ip element
	aws element
	azure element
	gcp element
	kubernetes element
	discovery-strategies element

	6.12.6. Interfaces
	6.12.7. IPv6 Support
	6.12.8. Member Address Provider SPI

	6.13. Failure Detector Configuration
	6.13.1. Deadline Failure Detector
	6.13.2. Phi Accrual Failure Detector
	6.13.3. Ping Failure Detector
	Requirements and Linux/Unix Configuration

	6.14. Advanced Network Configuration
	6.14.1. Setting Up Cluster Members for Advanced Network Configuration
	6.14.2. Server Socket Endpoint Configuration
	6.14.3. Setting Up REST Server Socket Endpoint Configuration
	6.14.4. Setting Up WAN Endpoints Configuration
	Configuring the WAN Active Side
	Configuring the WAN Passive Side

	6.14.5. Advanced Network Configuration FAQ

	7. Distributed Data Structures
	7.1. Overview of Hazelcast Distributed Objects
	7.1.1. Loading and Destroying a Distributed Object
	7.1.2. Controlling Partitions
	7.1.3. Common Features of all Hazelcast Data Structures
	7.1.4. Example Distributed Object Code

	7.2. Map
	7.2.1. Getting a Map and Putting an Entry
	7.2.2. Creating A Member for Map Backup
	7.2.3. Backing Up Maps
	Creating Sync Backups
	Creating Async Backups
	Enabling Backup Reads

	7.2.4. Map Eviction
	Understanding Map Eviction
	Configuring Map Eviction
	Example Eviction Configurations
	Evicting Specific Entries
	Evicting All Entries
	Forced Eviction
	Custom Eviction Policy

	7.2.5. Setting In-Memory Format
	7.2.6. Using High-Density Memory Store with Map
	Required Configuration Changes When Using NATIVE

	7.2.7. Metadata Policy
	7.2.8. Loading and Storing Persistent Data
	Using Read-Through Persistence
	Setting Write-Through Persistence
	Setting Write-Behind Persistence
	Managing the Lifecycle of a MapLoader
	Storing Entries to Multiple Maps
	Initializing Map on Startup
	Loading Keys Incrementally
	Forcing All Keys To Be Loaded
	Post-Processing Objects in Map Store
	Accessing a Database Using Properties
	MapStore and MapLoader Methods Triggered by IMap Operations

	7.2.9. Creating Near Cache for Map
	7.2.10. Locking Maps
	Pessimistic Locking
	Optimistic Locking
	Pessimistic vs. Optimistic Locking
	Solving the ABA Problem
	Lock Split-Brain Protection with Pessimistic Locking

	7.2.11. Accessing Map and Entry Statistics
	7.2.12. Listening to Map Entries with Predicates
	7.2.13. Removing Map Entries in Bulk with Predicates
	7.2.14. Adding Interceptors
	7.2.15. Preventing Out of Memory Exceptions
	Setting Query Result Size Limit
	Local Pre-check
	Scope of Result Size Limit
	Configuring Query Result Size

	7.3. Queue
	7.3.1. Getting a Queue and Putting Items
	7.3.2. Creating an Example Queue
	Putting Items on the Queue
	Taking Items off the Queue
	Balancing the Queue Operations
	ItemIDs When Offering Items

	7.3.3. Setting a Bounded Queue
	7.3.4. Queueing with Persistent Datastore
	7.3.5. Split-Brain Protection for Queue
	7.3.6. Configuring Queue

	7.4. Priority Queue
	7.5. MultiMap
	7.5.1. Getting a MultiMap and Putting an Entry
	7.5.2. Configuring MultiMap
	7.5.3. Split-Brain Protection for MultiMap and TransactionalMultiMap

	7.6. Set
	7.6.1. Getting a Set and Putting Items
	7.6.2. Configuring Set
	7.6.3. Split-Brain Protection for ISet and TransactionalSet

	7.7. List
	7.7.1. Getting a List and Putting Items
	7.7.2. Configuring List
	7.7.3. Split-Brain Protection for IList and TransactionalList

	7.8. Ringbuffer
	7.8.1. Getting a Ringbuffer and Reading Items
	7.8.2. Adding Items to a Ringbuffer
	7.8.3. IQueue vs. Ringbuffer
	7.8.4. Configuring Ringbuffer Capacity
	7.8.5. Backing Up Ringbuffer
	7.8.6. Configuring Ringbuffer Time-To-Live
	7.8.7. Setting Ringbuffer Overflow Policy
	7.8.8. Ringbuffer with Persistent Datastore
	7.8.9. Configuring Ringbuffer In-Memory Format
	7.8.10. Configuring Split-Brain Protection for Ringbuffer
	7.8.11. Adding Batched Items
	7.8.12. Reading Batched Items
	7.8.13. Using Async Methods
	7.8.14. Ringbuffer Configuration Examples

	7.9. Topic
	7.9.1. Getting a Topic and Publishing Messages
	7.9.2. Getting Topic Statistics
	7.9.3. Understanding Topic Behavior
	Ordering Messages as Published
	Ordering Messages for Members
	Keeping Generated and Published Order the Same

	7.9.4. Configuring Topic

	7.10. Reliable Topic
	7.10.1. Slow Consumers
	7.10.2. Configuring Reliable Topic

	7.11. FencedLock
	7.11.1. Using Try-Catch Blocks with Locks
	7.11.2. Releasing Locks with tryLock Timeout
	7.11.3. Understanding Lock Behavior

	7.12. IAtomicLong
	7.12.1. Sending Functions to IAtomicLong
	7.12.2. Executing Functions on IAtomicLong
	7.12.3. Reasons to Use Functions with IAtomicLong

	7.13. ISemaphore
	7.13.1. Controlling Thread Counts with Permits
	7.13.2. Example Semaphore Code

	7.14. IAtomicReference
	7.14.1. Sending Functions to IAtomicReference
	7.14.2. Using IAtomicReference

	7.15. ICountDownLatch
	7.15.1. Gate-Keeping Concurrent Activities

	7.16. PN Counter
	7.16.1. Configuring PN Counter
	7.16.2. Configuring the CRDT Replication Mechanism

	7.17. Flake ID Generator
	7.17.1. Generating Cluster-Wide IDs
	7.17.2. Performance
	7.17.3. Example
	7.17.4. Node ID Assignment
	Node ID Overflow

	7.17.5. Configuring Flake ID Generator

	7.18. Replicated Map
	7.18.1. Replicating Instead of Partitioning
	7.18.2. Example Replicated Map Code
	7.18.3. Considerations for Replicated Map
	7.18.4. Configuration Design for Replicated Map
	7.18.5. Configuring Replicated Map
	In-Memory Format on Replicated Map

	7.18.6. Using EntryListener on Replicated Map
	Difference in EntryListener on Replicated Map
	Example of Replicated Map EntryListener

	7.18.7. Split-Brain Protection for Replicated Map

	7.19. Cardinality Estimator Service
	7.19.1. Split-Brain Protection for Cardinality Estimator

	7.20. Event Journal
	7.20.1. Interaction with Evictions and Expiration for IMap
	7.20.2. Configuring Event Journal Capacity
	7.20.3. Event Journal Partitioning
	7.20.4. Configuring Event Journal time-to-live

	8. Distributed Events
	8.1. Cluster Events
	8.1.1. Listening for Member Events
	Registering Membership Listeners

	8.1.2. Listening for Distributed Object Events
	Registering Distributed Object Listeners

	8.1.3. Listening for Migration Events
	Registering Migration Listeners

	8.1.4. Listening for Partition Lost Events
	Writing a Partition Lost Listener Class
	Registering Partition Lost Listeners

	8.1.5. Listening for Lifecycle Events
	Registering Lifecycle Listeners

	8.1.6. Listening for Clients

	8.2. Distributed Object Events
	8.2.1. Listening for Map Events
	Catching a Map Event

	8.2.2. Listening for Lost Map Partitions
	Registering Map Listeners
	Map Listener Attributes

	8.2.3. Listening for MultiMap Events
	Registering MultiMap Listeners
	MultiMap Listener Attributes

	8.2.4. Listening for Item Events
	Registering Item Listeners
	Item Listener Attributes

	8.2.5. Listening for Topic Messages
	Registering Message Listeners

	8.3. Event Listeners for Hazelcast Clients
	8.4. Global Event Configuration

	9. Hazelcast Jet
	9.1. Overview

	10. Distributed Computing
	10.1. Executor Service
	10.1.1. Implementing a Callable Task
	Executing a Callable Task

	10.1.2. Implementing a Runnable Task
	Executing a Runnable Task

	10.1.3. Scaling The Executor Service
	10.1.4. Executing Code in the Cluster
	10.1.5. Canceling an Executing Task
	Example Task to Cancel
	Example Method to Execute and Cancel the Task

	10.1.6. Callback When Task Completes
	Example Task to Callback
	Example Method to Callback the Task

	10.1.7. Selecting Members for Task Execution
	10.1.8. Configuring Executor Service
	10.1.9. Split-Brain Protection for IExecutorService

	10.2. Durable Executor Service
	10.2.1. Configuring Durable Executor Service
	10.2.2. Split-Brain Protection for Durable Executor Service

	10.3. Scheduled Executor Service
	10.3.1. Configuring Scheduled Executor Service
	10.3.2. Examples
	10.3.3. Split-Brain Protection for IScheduled Executor Service

	10.4. Entry Processor
	10.4.1. Performing Fast In-Memory Map Operations
	Using Indexes
	Using OBJECT In-Memory Format
	Processing Entries
	Respecting Locks on Single Keys
	Processing Backup Entries

	10.4.2. Creating an Entry Processor
	10.4.3. Entry Processor Performance Optimizations
	Offloadable Entry Processor
	ReadOnly Entry Processor
	ReadOnly and Offloadable Entry Processor

	11. SQL
	11.1. Example: How to Query an IMap using SQL
	11.2. Querying IMap
	11.2.1. Names
	11.2.2. Fields
	Key and Value Objects
	Key and Value Fields
	"SELECT *" Queries

	11.2.3. Indexes
	11.2.4. High-Density Memory Store

	11.3. Data Types
	11.4. SELECT
	11.4.1. Synopsis
	11.4.2. Description

	11.5. Expressions
	11.6. Lite Members
	11.7. How Distributed SQL Works
	11.8. SQL on Data Structures Backed by High-Density Memory Store

	12. Distributed Query
	12.1. How Distributed Query Works
	12.1.1. Employee Map Query Example
	12.1.2. Querying with Criteria API
	Predicates Class Operators
	Combining Predicates with AND, OR, NOT
	Simplifying with PredicateBuilder

	12.1.3. Querying with SQL
	Supported SQL Syntax
	Querying Entry Keys with Predicates

	12.1.4. Querying JSON Strings
	Metadata Creation for JSON Querying

	12.1.5. Filtering with Paging Predicates
	12.1.6. Filtering with Partition Predicate
	12.1.7. Indexing Queries
	Indexing Ranged Queries
	Configuring IMap Indexes
	Global and Partitioned Indexes
	Composite Indexes
	Bitmap Indexes
	Copying Indexes
	Indexing Attributes with ValueExtractor
	Using "this" as an Attribute

	12.1.8. Configuring Query Thread Pool
	Query Requests from Clients

	12.2. Querying in Collections and Arrays
	12.2.1. Indexing in Collections and Arrays
	12.2.2. Corner cases

	12.3. Custom Attributes
	12.3.1. Implementing a ValueExtractor
	ValueExtractor with Portable Serialization
	Returning Multiple Values from a Single Extraction

	12.3.2. Extraction Arguments
	12.3.3. Configuring a Custom Attribute Programmatically
	12.3.4. Configuring a Custom Attribute Declaratively
	12.3.5. Indexing Custom Attributes

	12.4. Aggregations
	12.4.1. Aggregator API
	12.4.2. Aggregations and Map Interfaces
	12.4.3. Example Implementation
	12.4.4. Built-In Aggregations
	12.4.5. Configuration Options

	12.5. Projections
	12.5.1. Projection API
	Projections and Map Interfaces

	12.5.2. Example implementation
	12.5.3. Built-In Projections

	12.6. Continuous Query Cache
	12.6.1. Keeping Query Results Local and Ready
	12.6.2. Accessing Continuous Query Cache from Member
	12.6.3. Accessing Continuous Query Cache from Client Side
	12.6.4. Features of Continuous Query Cache
	12.6.5. Configuring Continuous Query Cache

	12.7. MapReduce Deprecation and Removal
	12.7.1. Motivation
	12.7.2. Built-In Aggregations
	12.7.3. Jet Compared with New Aggregations

	13. CP Subsystem
	13.1. CP Discovery Process
	13.2. CP Subsystem Persistence
	13.2.1. CP Subsystem Persistence Overview
	13.2.2. CP Subsystem Persistence Behavior During CP Subsystem Reset
	13.2.3. Interaction with Hot Restart Persistence

	13.3. CP Member Shutdown
	13.4. CP Subsystem’s Fault Tolerance Capabilities
	13.5. CP Subsystem Listeners
	13.5.1. CP Membership Listener
	Registering CP Membership Listeners

	13.5.2. CP Group Availability Listener
	Registering CP Group Availability Listeners

	13.6. CP Sessions
	13.7. FencedLock
	13.8. Configuration
	13.8.1. CP Subsystem Configuration
	13.8.2. FencedLock Configuration
	13.8.3. Semaphore Configuration
	13.8.4. Raft Algorithm Configuration

	13.9. CP Subsystem Unsafe Mode
	13.10. CP Subsystem Management
	13.10.1. CP Subsystem Management APIs
	13.10.2. Session Management API

	14. Transactions
	14.1. Creating a Transaction Interface
	14.1.1. Queue/Set/List vs. Map/Multimap
	14.1.2. ONE_PHASE vs. TWO_PHASE

	14.2. Providing XA Transactions

	15. Hazelcast JCache
	15.1. JCache Overview
	15.1.1. Supported JCache Versions
	15.1.2. Upgrading from JCache 1.1.0 to 1.1.1
	15.1.3. Upgrading from JCache 1.0.0 to 1.1.0

	15.2. JCache Setup and Configuration
	15.2.1. Setting up Your Application
	Activating Hazelcast as JCache Provider
	Connecting Clients to Remote Member

	15.2.2. Example JCache Application
	Getting the Hazelcast JCache Implementation
	Setting up the JCache Entry Point
	Configuring the Cache Before Creating It
	Creating the Cache
	get, put and getAndPut

	15.2.3. Configuring for JCache
	Declarative Configuration
	Programmatic Configuration

	15.3. JCache Providers
	15.3.1. Configuring JCache Provider

	15.4. JCache API
	15.4.1. JCache API Application Example
	Creating User Class Example
	Creating DAO Interface Example
	Configuring JCache Example

	15.4.2. JCache Base Classes
	15.4.3. Implementing Factory and FactoryBuilder
	15.4.4. Implementing CacheLoader
	Cache read-through
	CacheLoader Example

	15.4.5. CacheWriter
	15.4.6. Implementing EntryProcessor
	15.4.7. CacheEntryListener
	15.4.8. ExpiryPolicy

	15.5. JCache - Hazelcast Instance Integration
	15.5.1. JCache and Hazelcast Instance Awareness

	15.6. Hazelcast JCache Extension - ICache
	15.6.1. Scoping to Join Clusters
	Examples
	Applying Configuration Scope
	Binding to a Named Instance
	Binding to an Existing Hazelcast Instance Object

	15.6.2. Namespacing
	15.6.3. Retrieving an ICache Instance
	15.6.4. ICache Configuration
	15.6.5. ICache Async Methods
	15.6.6. Defining a Custom ExpiryPolicy
	15.6.7. JCache Eviction
	Eviction and Runtime
	Cache Types
	Configuring Eviction Policies
	Eviction Strategy
	Eviction Algorithm

	15.6.8. JCache Near Cache
	15.6.9. ICache Convenience Methods
	15.6.10. Implementing BackupAwareEntryProcessor
	15.6.11. ICache Partition Lost Listener

	15.7. Testing for JCache Specification Compliance

	16. Integrated Clustering
	16.1. Integration with Hibernate Second Level Cache
	16.2. Web Session Replications
	16.3. Integration with Java EE
	16.4. Integration with Spring
	16.4.1. Configuring Spring
	Enabling Spring Integration
	Troubleshooting
	Declaring Beans by Spring beans Namespace
	Declaring Beans by hazelcast Namespace
	Supported Configurations with hazelcast Namespace

	16.4.2. Enabling SpringAware Objects
	SpringAware Examples

	16.4.3. Adding Caching to Spring
	Declarative Spring Cache Configuration
	Defining Timeouts for Cache Read Operation
	Declarative Hazelcast JCache Based Caching Configuration
	Annotation-Based Spring Cache Configuration

	16.4.4. Configuring Hibernate Second Level Cache
	16.4.5. Configuring Hazelcast Transaction Manager
	Example Configuration for Hazelcast Transaction Manager
	Example Transactional Method

	16.4.6. Best Practices

	17. Storage
	17.1. High-Density Memory Store
	17.1.1. Configuring High-Density Memory Store
	17.1.2. Using Persistent Memory
	Allocation Strategies
	Allocation Overflowing
	On the Performance of Persistent Memory

	17.2. Sizing Practices
	17.3. Hot Restart Persistence
	17.3.1. Hot Restart Persistence Overview
	17.3.2. Hot Restart Types
	17.3.3. Restart Process
	Restart of a Member in Running Cluster

	17.3.4. Force Start
	17.3.5. Partial Start
	17.3.6. Configuring Hot Restart
	Global Hot Restart Configuration
	Per Data Structure Hot Restart Configuration
	Hot Restart Configuration Examples
	Configuring Hot Restart Store on Intel® Optane™ DC Persistent Memory

	17.3.7. Moving/Copying Hot Restart Data
	17.3.8. Hot Restart Persistence Design Details
	17.3.9. Concurrent, Incremental, Generational GC
	I/O Minimization Scheme
	Cost-Benefit Factor

	17.3.10. Hot Restart Performance Considerations
	Performance on a Physical Server
	Performance on AWS R3

	17.3.11. Hot Backup
	Configuring Hot Backup
	Using Hot Backup
	Starting the Cluster From a Hot Backup
	Achieving High Consistency of Backup Data
	Achieving High Performance of Backup Process
	Backup Process Progress and Completion
	Backup Task Interruption and Cancellation

	17.3.12. Encryption at Rest
	Configuring Encryption at Rest
	Configuring a Secure Store

	18. Database CDC Integration using Striim Hot Cache
	18.1. Introduction
	18.2. Supported Versions
	18.3. Logging
	18.4. Full Worked Example Application
	18.5. Further Resources

	19. Hazelcast Clients
	19.1. Java Client
	19.1.1. Getting Started with Java Client
	Client API
	Java Client Operation Modes
	Handling Failures
	Using Supported Distributed Data Structures
	Using Client Services
	Defining Client Labels
	Client Listeners
	Client Transactions
	Async Start and Reconnect Modes

	19.1.2. Configuring Java Client
	Client Network
	Configuring Client Load Balancer
	Configuring Client Listeners
	Configuring Client Near Cache
	Configuring Client Cluster
	Configuring Client Security
	Client Serialization Configuration
	Configuring ClassLoader
	Configuring Reliable Topic on the Client Side

	19.1.3. Java Client Connection Strategy
	Configuring Client Connection Retry

	19.1.4. Blue-Green Deployment and Disaster Recovery
	Blue-Green Mechanism
	Disaster Recovery Mechanism
	Ordering of Clusters When Clients Try to Connect
	Configuring Using CNAME
	Configuring Without CNAME

	19.1.5. Java Client Failure Detectors
	Client Deadline Failure Detector
	Client Ping Failure Detector

	19.1.6. Client System Properties
	19.1.7. Using High-Density Memory Store with Java Client

	19.2. C++ Client
	19.3. .NET Client
	19.4. REST Client
	19.4.1. REST Client GET/POST/DELETE Examples
	Creating/Updating Entries in a Map for REST Client
	Retrieving Entries from a Map for REST Client
	Removing Entries from a Map for REST Client
	Offering Items on a Queue for REST Client
	Retrieving Items from a Queue for REST Client
	Getting the size of the queue for REST Client

	19.4.2. Checking the Status of the Cluster for REST Client
	19.4.3. Checking the Name of the Instance for REST Client

	19.5. Memcache Client
	19.5.1. Memcache Client Code Examples
	19.5.2. Unsupported Operations for Memcache

	19.6. Python Client
	19.7. Node.js Client
	19.8. Go Client

	20. Serialization
	20.1. Serialization Interface Types
	20.2. Comparing Serialization Interfaces
	20.3. Implementing Java Serializable and Externalizable
	20.3.1. Implementing Java Externalizable

	20.4. Implementing DataSerializable
	20.4.1. Reading and Writing and DataSerializable
	20.4.2. IdentifiedDataSerializable
	getClassId and getFactoryId Methods
	Implementing IdentifiedDataSerializable
	Registering EmployeeDataSerializableFactory

	20.5. Implementing Portable Serialization
	20.5.1. Portable Serialization Example Code
	20.5.2. Registering the Portable Factory
	20.5.3. Versioning for Portable Serialization
	Example Portable Versioning Scenarios

	20.5.4. Ordering Consistency for writePortable
	20.5.5. Null Portable Serialization
	20.5.6. DistributedObject Serialization

	20.6. Custom Serialization
	20.6.1. Implementing StreamSerializer
	StreamSerializer Example Code 1
	StreamSerializer Example Code 2
	Configuring StreamSerializer

	20.6.2. Implementing ByteArraySerializer
	Configuring ByteArraySerializer

	20.7. Global Serializer
	20.7.1. Example Global Serializer

	20.8. Implementing HazelcastInstanceAware
	20.9. Untrusted Deserialization Protection
	20.10. Serialization Configuration Wrap-Up

	21. Management
	21.1. Getting Member Statistics
	21.1.1. Map Statistics
	21.1.2. Map Index Statistics
	21.1.3. Near Cache Statistics
	21.1.4. Multimap Statistics
	21.1.5. Queue Statistics
	21.1.6. Topic Statistics
	21.1.7. Executor Statistics

	21.2. JMX API per Member
	21.3. Monitoring with JMX
	21.3.1. MBean Naming for Hazelcast Data Structures
	21.3.2. Connecting to JMX Agent

	21.4. Using the REST Endpoint Groups
	21.5. Cluster Utilities
	21.5.1. Hazelcast Command Line Tool
	21.5.2. Using the cluster.sh Script
	Example Usages for cluster.sh

	21.5.3. Using REST API for Cluster Management
	21.5.4. Enabling Lite Members
	Configuring Lite Members
	Promoting Lite Members to Data Member

	21.5.5. Getting Member Events and Member Sets
	21.5.6. Managing Cluster and Member States
	Cluster States
	Cluster Member States

	21.5.7. Defining Member Attributes
	21.5.8. Safety Checking Cluster Members
	Ensuring Safe State with PartitionService

	21.6. Metrics
	21.6.1. Configuring Metrics
	21.6.2. Metric Consumers
	Management Center
	JMX
	Diagnostics
	Version Compatibility

	21.6.3. Notes on the Performance

	21.7. Diagnostics
	21.7.1. Enabling Diagnostics Logging
	21.7.2. Diagnostics Log File
	21.7.3. Diagnostics Plugins
	BuildInfo
	SystemProperties
	ConfigProperties
	Metrics
	SlowOperations
	Invocations
	HazelcastInstance
	EventQueue
	SystemLog
	StoreLatency
	OperationHeartbeats
	MemberHeartbeats
	OperationThreadSamples
	WanDiagnostics

	21.8. Health Check and Monitoring
	21.8.1. Health Check
	21.8.2. Using the healthcheck.sh Script
	21.8.3. Health Monitor
	21.8.4. Using Health Check on F5 BIG-IP LTM
	Monitor Types
	Configuration

	21.9. Management Center
	21.9.1. Toggle Scripting Support
	21.9.2. Limiting Source Addresses
	21.9.3. Clustered JMX and REST via Management Center

	21.10. License Information
	21.10.1. JMX
	21.10.2. REST
	21.10.3. Logs

	21.11. Instance Tracking
	21.11.1. Configuring Instance Tracking

	22. Security
	22.1. Enabling JAAS Security
	22.2. Socket Interceptor
	22.3. Security Interceptor
	22.4. Encryption
	22.5. TLS/SSL
	22.5.1. TLS/SSL for Hazelcast Members
	22.5.2. TLS/SSL for Hazelcast Clients
	22.5.3. Mutual Authentication
	22.5.4. TLS/SSL Performance Improvements for Java

	22.6. Integrating OpenSSL / BoringSSL
	22.6.1. Netty Libraries
	22.6.2. Using BoringSSL
	22.6.3. Using OpenSSL
	22.6.4. Configuring Hazelcast for OpenSSL

	22.7. Other TLS related configuration
	22.7.1. TLS/SSL for Hazelcast Management Center
	22.7.2. Updating Certificates in the Running Cluster
	22.7.3. Configuring Cipher Suites
	22.7.4. Other Ways of Configuring Properties

	22.8. Validating Secrets Using Strength Policy
	22.8.1. Using a Custom Secret Strength Policy
	22.8.2. Enforcing the Secret Strength Policy

	22.9. Security Realms
	22.9.1. Authentication Configuration
	JAAS Authentication Type
	LDAP Authentication Type
	Kerberos Authentication Type
	Kerberos and LDAP integration
	Simplified Kerberos Configuration
	TLS Authentication Type

	22.9.2. Identity Configuration
	Credentials
	Password Credentials
	Token Credentials
	Kerberos Identity
	Credentials Factory

	22.9.3. Security Realms on the Client Side

	22.10. JAAS authentication
	22.10.1. JAAS Principals used in Hazelcast
	22.10.2. Callbacks Supported in Login Modules
	22.10.3. ClusterLoginModule
	22.10.4. Enterprise Integration

	22.11. Cluster Member Security
	22.12. Default authentication
	22.13. Native Client Security
	22.13.1. Authentication
	22.13.2. Authorization
	22.13.3. Permissions
	Handling Permissions When a New Member Joins

	22.14. Logging Auditable Events
	22.14.1. Auditlog SPI

	22.15. Security Debugging
	22.15.1. Java Security Debugging
	22.15.2. TLS debugging

	22.16. FIPS 140-2
	22.16.1. Example FIPS 140-2 environment

	23. Performance
	23.1. Pipelining
	23.2. Data Affinity
	23.2.1. PartitionAware
	23.2.2. PartitioningStrategy

	23.3. CPU Thread Affinity
	23.4. Running on EC2
	23.5. Back Pressure
	23.5.1. Member Side
	23.5.2. Client Side

	23.6. Threading Model
	23.6.1. I/O Threading
	23.6.2. Event Threading
	23.6.3. IExecutor Threading
	23.6.4. Operation Threading
	Partition-aware Operations
	Non-Partition-aware Operations
	Priority Operations
	Operation-response and Invocation-future
	Local Calls

	23.7. SlowOperationDetector
	23.7.1. Logging of Slow Operations
	23.7.2. Purging of Slow Operation Logs

	23.8. Near Cache
	23.8.1. Hazelcast Data Structures with Near Cache Support
	23.8.2. Configuring Near Cache
	23.8.3. Near Cache Configuration Examples
	Near Cache Example for IMap
	Near Cache Example for JCache Clients
	Example for Near Cache with High-Density Memory Store

	23.8.4. Near Cache Eviction
	23.8.5. Near Cache Expiration
	23.8.6. Near Cache Invalidation
	23.8.7. Near Cache Consistency
	Eventual Consistency
	Locally Initiated Changes

	23.8.8. Near Cache Preloader

	23.9. Caching Deserialized Values
	23.9.1. Performance Anti Patterns
	Using Single Member per Machine
	Using Operation Threads Efficiently
	Avoiding Random Changes
	Creating the Right Benchmark Environment

	24. Hazelcast Simulator
	25. WAN Replication
	25.1. Introduction
	25.1.1. Concepts

	25.2. WAN Replication Modes
	25.3. Quick Start
	25.3.1. Setting Up an Active-Passive Mode
	25.3.2. Setting Up an Active-Active Mode

	25.4. Configuring WAN Replication
	25.4.1. Using the Static Endpoints
	25.4.2. Using the Discovery SPI
	25.4.3. Using the Built-In WAN Batch Publisher

	25.5. Configuring for IMap and ICache
	25.6. Advanced Features
	25.6.1. Synchronizing WAN Clusters
	Full WAN Synchronization
	Delta WAN Synchronization
	WAN Synchronization Statistics

	25.6.2. Dynamically Adding WAN Publishers
	25.6.3. Event Filtering API
	25.6.4. Implementing a Custom WAN Publisher
	25.6.5. Customizing WAN Event Processing on Passive/Target Cluster

	25.7. Fine-Tuning WAN Replication
	25.7.1. Batch Size
	25.7.2. Batch Maximum Delay
	25.7.3. Response Timeout
	25.7.4. Queue Capacity
	25.7.5. Queue Full Behavior
	25.7.6. Acknowledgment Types
	25.7.7. Key-based Coalescing
	25.7.8. Achieving Lower Latencies and Higher Throughput
	25.7.9. Discovery Period
	25.7.10. Maximum Number of Target Endpoints
	25.7.11. Use Endpoint Private Address

	25.8. Failure Detection and Recovery
	25.8.1. WAN Target Endpoint List
	25.8.2. WAN Failure Detection
	25.8.3. WAN Endpoint Recovery
	25.8.4. Backing Up Event Queues

	25.9. REST API Wrap-Up
	25.9.1. Parameters
	25.9.2. Clearing the Queues
	25.9.3. Pausing the Publisher
	25.9.4. Resuming the Publisher
	25.9.5. Stopping the Publisher
	25.9.6. Synchronizing the Clusters
	25.9.7. Dynamically Adding WAN Publishers

	26. OSGI
	26.1. OSGI Support
	26.2. API
	26.3. Configuring Hazelcast OSGI Support
	26.4. Design
	26.5. Using Hazelcast OSGI Service
	26.5.1. Getting Hazelcast OSGI Service Instances
	26.5.2. Managing and Using Hazelcast instances

	27. Extending Hazelcast
	27.1. OperationParker
	27.2. Discovery SPI
	27.2.1. Discovery SPI Interfaces and Classes
	DiscoveryStrategy: Implement
	AbstractDiscoveryStrategy: Abstract Class
	DiscoveryStrategyFactory: Factory Contract
	DiscoveryNode: Describe a Member
	SimpleDiscoveryNode: Default DiscoveryNode
	NodeFilter: Filter Members
	DiscoveryService: Support In Integrator Systems
	DiscoveryServiceProvider: Provide a DiscoveryService
	DiscoveryServiceSettings: Configure DiscoveryService
	DiscoveryMode: Member or Client

	27.2.2. Discovery Strategy
	Discovery Strategy Example
	Configuring Site Domain
	Creating Discovery
	Implementing Discovery Strategy
	Extending The AbstractDiscoveryStrategy
	Overriding Discovery Configuration
	Implementing Lookup
	Mapping to DiscoveryNode
	Configuring DiscoveryStrategy

	27.2.3. DiscoveryService (Framework integration)

	27.3. Config Properties SPI
	27.3.1. Config Properties SPI Classes
	PropertyDefinition: Define a Single Property
	SimplePropertyDefinition: Basic PropertyDefinition
	PropertyTypeConverter: Set of TypeConverters
	ValueValidator and ValidationException

	27.3.2. Config Properties SPI Example
	Defining a Config PropertyDefinition
	Providing a value in XML
	Retrieving a PropertyDefinition Value

	28. Hazelcast Plugins
	28.1. Cloud Discovery Plugins
	28.1.1. Hazelcast AWS
	28.1.2. Hazelcast Azure
	28.1.3. Hazelcast GCP
	28.1.4. Hazelcast Kubernetes
	28.1.5. Hazelcast Eureka
	28.1.6. Hazelcast Zookeeper
	28.1.7. Other Discovery Plugins

	28.2. Web Session Replication Plugins
	28.2.1. Filter Based Web Session Replication
	28.2.2. Tomcat Based Web Session Replication
	28.2.3. Jetty Based Web Session Replication

	28.3. Framework Integration Plugins
	28.3.1. Hazelcast Hibernate 2LC
	28.3.2. Spring Boot
	28.3.3. Spring Integration
	28.3.4. Spring Data Hazelcast
	28.3.5. Quarkus
	28.3.6. Micronaut
	28.3.7. Hazelcast JCA Resource Adapter
	28.3.8. Hazelcast DynaCache
	28.3.9. MuleSoft

	28.4. Other Integrations

	29. Consistency and Replication Model
	29.1. A Brief Overview of Consistency and Replication in Distributed Systems
	29.2. Hazelcast’s Replication Algorithm
	29.2.1. Best-Effort Consistency

	29.3. Invocation Lifecycle
	29.4. Exactly-once, At-least-once or At-most-once Execution
	29.5. IndeterminateOperationStateException

	30. Network Partitioning
	30.1. Split-Brain Syndrome
	30.2. Dealing with Network Partitions
	30.3. Split-Brain Protection
	30.3.1. Time Window for Split-Brain Protection
	30.3.2. Configuring Split-Brain Protection
	Member Count Split-Brain Protection
	Probabilistic Split-Brain Protection Function
	Recently-Active Split-Brain Protection Function
	Split-Brain Protection Configuration Reference

	30.3.3. Configuring Split-Brain Protection Listeners
	30.3.4. Querying Split-Brain Protection Results

	30.4. Split-Brain Recovery
	30.4.1. Merge Policies
	30.4.2. Supported Data Structures
	30.4.3. Configuring Merge Policies
	Declarative Configuration
	Programmatic Configuration

	30.4.4. Custom Merge Policies
	Merge Types
	Accessing Deserialized Values
	Accessing Hazelcast UserContext
	Merge Policies With Multiple Merge Types
	Merge Policies For Specific Data Structures
	Best Practices

	30.5. Partial Network Partitions

	Appendix A: System Properties
	Appendix B: Migration Guides
	B.1. Upgrading to Hazelcast IMDG 4.0
	B.1.1. Upgrading to 4.0 from Prior Versions (3.x)
	B.1.2. Removal of Hazelcast Client Module
	B.1.3. JCache default Caching Provider
	B.1.4. Removal of User Defined Services
	B.1.5. Changes in Client Connection Retry Mechanism
	B.1.6. Increasing the Member/Client Thread Counts
	B.1.7. Optimizing for Single Threaded Usages
	B.1.8. Removing Deprecated Client Configurations
	B.1.9. Changes in Index Configuration
	B.1.10. Changes in Custom Attributes
	B.1.11. Removal of MapReduce
	B.1.12. Refactoring of Migration Listener
	B.1.13. Defaulting to OpenSSL
	B.1.14. Changes in Security Configurations
	Replacing group by Simple Cluster Name Configuration
	Member Authentication and Identity Configuration
	Client Identity Configuration

	B.1.15. JAAS Authentication Cleanups
	Introducing New Principal Types
	Changes in ClusterLoginModule
	Changes in Credentials for Client Protocol
	Changes in JAAS Callbacks

	B.1.16. Renaming Quorum as Split Brain Protection
	B.1.17. Renaming getID to getClassId in IdentifiedDataSerializable
	B.1.18. Introducing Lambda Friendly Interfaces
	Entry Processor
	Functional and Serializable Interfaces

	B.1.19. Expanding Nullable/Nonnull Annotations
	B.1.20. Removal of ICompletableFuture
	B.1.21. WAN Replication Configuration Changes
	B.1.22. WAN Replication SPI Changes
	B.1.23. Predicate API Cleanups
	B.1.24. Changing the UUID String Type to UUID
	B.1.25. Removal of Deprecated Concurrency API Implementations
	B.1.26. Removal of Legacy Merge Policies
	B.1.27. Changes in AWS Configuration
	B.1.28. Removal of Deprecated System Properties
	B.1.29. Removal of Deprecations in LoginModuleConfig
	B.1.30. Removal of Deprecations in MultiMapConfig
	B.1.31. Removal of Deprecations in PartitioningStrategyConfig
	B.1.32. Removal of Deprecations in ServiceConfig
	B.1.33. Removal of Deprecations in TransactionContext
	B.1.34. Removal of Deprecations in DistributedObjectEvent
	B.1.35. Removal of Deprecated EntryListener-based Listener API in IMap
	B.1.36. Changes in IMap Eviction Configuration
	B.1.37. Changes in IMap Custom Eviction Policy Configuration
	B.1.38. Changes in EntryListenerConfig
	B.1.39. Changes in REST Endpoints
	B.1.40. Changes in the Diagnostics Configuration
	B.1.41. Changes in the Management Center Configuration
	B.1.42. Changes in the Event Journal Configuration

	B.2. Upgrading to Hazelcast IMDG 3.12.x
	B.3. Upgrading from Hazelcast IMDG 3.10.x
	B.4. Upgrading from Hazelcast IMDG 3.9.x
	B.5. Upgrading to Hazelcast IMDG 3.8.x
	B.6. Upgrading to Hazelcast IMDG 3.7.x
	B.7. Upgrading to Hazelcast IMDG 3.6.x
	B.8. Upgrading to Hazelcast IMDG 3.5.x
	B.9. Upgrading to Hazelcast IMDG 3.x

	Appendix C: Common Exception Types
	Appendix D: License Questions
	D.1. Embedded Dependencies
	D.2. Runtime Dependencies

	Appendix E: Phone Homes
	Appendix F: Frequently Asked Questions
	Appendix G: Document Revision History
	Glossary

