public final class PythonTransforms extends Object
| Modifier and Type | Method and Description | 
|---|---|
| static <K> FunctionEx<StreamStage<String>,StreamStage<String>> | mapUsingPython(FunctionEx<? super String,? extends K> keyFn,
              PythonServiceConfig cfg)Deprecated. 
 Jet now has first-class support for data rebalancing, see
  GeneralStage.rebalance()andGeneralStage.rebalance(FunctionEx). | 
| static FunctionEx<StreamStage<String>,StreamStage<String>> | mapUsingPython(PythonServiceConfig cfg)A stage-transforming method that adds a "map using Python" pipeline stage. | 
| static <K> FunctionEx<BatchStage<String>,BatchStage<String>> | mapUsingPythonBatch(FunctionEx<? super String,? extends K> keyFn,
                   PythonServiceConfig cfg)A stage-transforming method that adds a partitioned "map using Python"
 pipeline stage. | 
| static FunctionEx<BatchStage<String>,BatchStage<String>> | mapUsingPythonBatch(PythonServiceConfig cfg)A stage-transforming method that adds a "map using Python" pipeline stage. | 
@Nonnull public static FunctionEx<StreamStage<String>,StreamStage<String>> mapUsingPython(@Nonnull PythonServiceConfig cfg)
stage.apply(PythonService.mapUsingPython(pyConfig)).
 See PythonServiceConfig for more details.@Deprecated @Nonnull public static <K> FunctionEx<StreamStage<String>,StreamStage<String>> mapUsingPython(@Nonnull FunctionEx<? super String,? extends K> keyFn, @Nonnull PythonServiceConfig cfg)
GeneralStage.rebalance() and GeneralStage.rebalance(FunctionEx).keyFn.
 You need partitioning if your input stream comes from a non-distributed
 data source (all data coming in on a single cluster member), in order to
 distribute the Python work across the whole cluster.
 
 Use it like this: stage.apply(PythonService.mapUsingPython(keyFn,
 pyConfig)). See PythonServiceConfig
 for more details.
@Nonnull public static FunctionEx<BatchStage<String>,BatchStage<String>> mapUsingPythonBatch(@Nonnull PythonServiceConfig cfg)
stage.apply(PythonService.mapUsingPythonBatch(pyConfig)).
 See PythonServiceConfig for more details.@Nonnull public static <K> FunctionEx<BatchStage<String>,BatchStage<String>> mapUsingPythonBatch(@Nonnull FunctionEx<? super String,? extends K> keyFn, @Nonnull PythonServiceConfig cfg)
keyFn.
 You need partitioning if your input stream comes from a non-distributed
 data source (all data coming in on a single cluster member), in order to
 distribute the Python work across the whole cluster.
 
 Use it like this: stage.apply(PythonService.mapUsingPythonBatch(keyFn,
 pyConfig)). See PythonServiceConfig
 for more details.
Copyright © 2022 Hazelcast, Inc.. All rights reserved.