public final class PythonTransforms extends Object
Modifier and Type | Method and Description |
---|---|
static <K> FunctionEx<StreamStage<String>,StreamStage<String>> |
mapUsingPython(FunctionEx<? super String,? extends K> keyFn,
PythonServiceConfig cfg)
Deprecated.
Jet now has first-class support for data rebalancing, see
GeneralStage.rebalance() and GeneralStage.rebalance(FunctionEx) . |
static FunctionEx<StreamStage<String>,StreamStage<String>> |
mapUsingPython(PythonServiceConfig cfg)
A stage-transforming method that adds a "map using Python" pipeline stage.
|
static <K> FunctionEx<BatchStage<String>,BatchStage<String>> |
mapUsingPythonBatch(FunctionEx<? super String,? extends K> keyFn,
PythonServiceConfig cfg)
A stage-transforming method that adds a partitioned "map using Python"
pipeline stage.
|
static FunctionEx<BatchStage<String>,BatchStage<String>> |
mapUsingPythonBatch(PythonServiceConfig cfg)
A stage-transforming method that adds a "map using Python" pipeline stage.
|
@Nonnull public static FunctionEx<StreamStage<String>,StreamStage<String>> mapUsingPython(@Nonnull PythonServiceConfig cfg)
stage.apply(PythonService.mapUsingPython(pyConfig))
.
See PythonServiceConfig
for more details.@Deprecated @Nonnull public static <K> FunctionEx<StreamStage<String>,StreamStage<String>> mapUsingPython(@Nonnull FunctionEx<? super String,? extends K> keyFn, @Nonnull PythonServiceConfig cfg)
GeneralStage.rebalance()
and GeneralStage.rebalance(FunctionEx)
.keyFn
.
You need partitioning if your input stream comes from a non-distributed
data source (all data coming in on a single cluster member), in order to
distribute the Python work across the whole cluster.
Use it like this: stage.apply(PythonService.mapUsingPython(keyFn,
pyConfig))
. See PythonServiceConfig
for more details.
@Nonnull public static FunctionEx<BatchStage<String>,BatchStage<String>> mapUsingPythonBatch(@Nonnull PythonServiceConfig cfg)
stage.apply(PythonService.mapUsingPythonBatch(pyConfig))
.
See PythonServiceConfig
for more details.@Nonnull public static <K> FunctionEx<BatchStage<String>,BatchStage<String>> mapUsingPythonBatch(@Nonnull FunctionEx<? super String,? extends K> keyFn, @Nonnull PythonServiceConfig cfg)
keyFn
.
You need partitioning if your input stream comes from a non-distributed
data source (all data coming in on a single cluster member), in order to
distribute the Python work across the whole cluster.
Use it like this: stage.apply(PythonService.mapUsingPythonBatch(keyFn,
pyConfig))
. See PythonServiceConfig
for more details.
Copyright © 2023 Hazelcast, Inc.. All rights reserved.