Map Persistence

Hazelcast allows you to load and store the distributed map entries from/to a persistent data store such as a relational database. To do this, you can use Hazelcast's MapStore and MapLoader interfaces.

When you provide a MapLoader implementation and request an entry (IMap.get()) that does not exist in memory, MapLoader's load or loadAll methods will load that entry from the data store. This loaded entry is placed into the map and will stay there until it is removed or evicted.

When a MapStore implementation is provided, an entry is also put into a user defined data store.

image NOTE: Data store needs to be a centralized system that is accessible from all Hazelcast Nodes. Persistence to local file system is not supported.

Following is a MapStore example.

public class PersonMapStore implements MapStore<Long, Person> {
    private final Connection con;

    public PersonMapStore() {
        try {
            con = DriverManager.getConnection("jdbc:hsqldb:mydatabase", "SA", "");
            con.createStatement().executeUpdate(
                    "create table if not exists person (id bigint, name varchar(45))");
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }
    }

    public synchronized void delete(Long key) {
        System.out.println("Delete:" + key);
        try {
            con.createStatement().executeUpdate(
                    format("delete from person where id = %s", key));
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }
    }

    public synchronized void store(Long key, Person value) {
        try {
            con.createStatement().executeUpdate(
                    format("insert into person values(%s,'%s')", key, value.name));
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }
    }

    public synchronized void storeAll(Map<Long, Person> map) {
        for (Map.Entry<Long, Person> entry : map.entrySet())
            store(entry.getKey(), entry.getValue());
    }

    public synchronized void deleteAll(Collection<Long> keys) {
        for (Long key : keys) delete(key);
    }

    public synchronized Person load(Long key) {
        try {
            ResultSet resultSet = con.createStatement().executeQuery(
                    format("select name from person where id =%s", key));
            try {
                if (!resultSet.next()) return null;
                String name = resultSet.getString(1);
                return new Person(name);
            } finally {
                resultSet.close();
            }
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }
    }

    public synchronized Map<Long, Person> loadAll(Collection<Long> keys) {
        Map<Long, Person> result = new HashMap<Long, Person>();
        for (Long key : keys) result.put(key, load(key));
        return result;
    }

    public Iterable<Long> loadAllKeys() {
        return null;
    }
}

image NOTE: Loading process is performed on a thread different than the partition threads using ExecutorService.



RELATED INFORMATION

For more MapStore/MapLoader code samples please see here.

Hazelcast supports read-through, write-through, and write-behind persistence modes which are explained in below subsections.

Read-Through

If an entry does not exist in the memory when an application asks for it, Hazelcast asks your loader implementation to load that entry from the data store. If the entry exists there, the loader implementation gets it, hands it to Hazelcast, and Hazelcast puts it into the memory. This is read-through persistence mode.

Write-Through

MapStore can be configured to be write-through by setting the write-delay-seconds property to 0. This means the entries will be put to the data store synchronously.

In this mode, when the map.put(key,value) call returns:

  • MapStore.store(key,value) is successfully called so the entry is persisted.

  • In-Memory entry is updated.

  • In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

The same behavior goes for a map.remove(key) call. The only difference is that MapStore.delete(key) is called when the entry will be deleted.

If MapStore throws an exception, then the exception will be propagated back to the original put or remove call in the form of RuntimeException.

Write-Behind

You can configure MapStore as write-behind by setting the write-delay-seconds property to a value bigger than 0. This means the modified entries will be put to the data store asynchronously after a configured delay.

image NOTE: In write-behind mode, by default Hazelcast coalesces updates on a specific key, i.e. applies only the last update on it. But, you can set MapStoreConfig#setWriteCoalescing to FALSE and you can store all updates performed on a key to the data store.

image NOTE: When you set MapStoreConfig#setWriteCoalescing to FALSE, after you reached per-node maximum write-behind-queue capacity, subsequent put operations will fail with ReachedMaxSizeException. This exception will be thrown to prevent uncontrolled grow of write-behind queues. You can set per node maximum capacity with GroupProperty#MAP_WRITE_BEHIND_QUEUE_CAPACITY.

In this mode, when the map.put(key,value) call returns:

  • In-Memory entry is updated.

  • In-Memory backup copies are successfully created on other JVMs (if backup-count is greater than 0).

  • The entry is marked as dirty so that after write-delay-seconds, it can be persisted with MapStore.store(key,value) call.

  • For fault tolerance dirty entries are stored in a queue on the primary member and also on a back-up member.

The same behavior goes for the map.remove(key), the only difference is that MapStore.delete(key) is called when the entry will be deleted.

If MapStore throws an exception, then Hazelcast tries to store the entry again. If the entry still cannot be stored, a log message is printed and the entry is re-queued.

For batch write operations, which are only allowed in write-behind mode, Hazelcast will call MapStore.storeAll(map) and MapStore.deleteAll(collection) to do all writes in a single call.

image NOTE: If a map entry is marked as dirty, i.e. it is waiting to be persisted to the MapStore in a write-behind scenario, the eviction process forces the entry to be stored. By this way, you will have control on the number of entries waiting to be stored, and thus you can prevent a possible OutOfMemory exception.

image NOTE: MapStore or MapLoader implementations should not use Hazelcast Map/Queue/MultiMap/List/Set operations. Your implementation should only work with your data store. Otherwise, you may get into deadlock situations.

Here is a sample configuration:

<hazelcast>
  ...
  <map name="default">
    ...
    <map-store enabled="true">
      <class-name>com.hazelcast.examples.DummyStore</class-name>
      <write-delay-seconds>60</write-delay-seconds>
      <write-batch-size>1000</write-batch-size>
      <write-coalescing>true</write-coalescing>
    </map-store>
  </map>
</hazelcast>



RELATED INFORMATION

Please refer to the Map Store section for the full Map Store configuration description.



MapStoreFactory And MapLoaderLifecycleSupport Interfaces

A configuration can be applied to more than one map using wildcards (see Using Wildcard), meaning that the configuration is shared among the maps. But MapStore does not know which entries to store when there is one configuration applied to multiple maps. To overcome this, Hazelcast provides the MapStoreFactory interface.

Using the MapStoreFactory interface, MapStores for each map can be created when a wildcard configuration is used. Sample code is shown below.

Config config = new Config();
MapConfig mapConfig = config.getMapConfig( "*" );
MapStoreConfig mapStoreConfig = mapConfig.getMapStoreConfig();
mapStoreConfig.setFactoryImplementation( new MapStoreFactory<Object, Object>() {
  @Override
  public MapLoader<Object, Object> newMapStore( String mapName, Properties properties ) {
    return null;
  }
});

If the configuration implements the MapLoaderLifecycleSupport interface, then the user can initialize the MapLoader implementation with the given map name, configuration properties, and the Hazelcast instance. See the following example code.

public interface MapLoaderLifecycleSupport {

  /**
   * Initializes this MapLoader implementation. Hazelcast will call
   * this method when the map is first used on the
   * HazelcastInstance. Implementation can
   * initialize required resources for the implementing
   * mapLoader such as reading a config file and/or creating
   * database connection.
   */
  void init( HazelcastInstance hazelcastInstance, Properties properties, String mapName );

  /**
   * Hazelcast will call this method before shutting down.
   * This method can be overridden to cleanup the resources
   * held by this map loader implementation, such as closing the
   * database connections etc.
   */
  void destroy();
}

Initialization On Startup

You can use the MapLoader.loadAllKeys API to pre-populate the in-memory map when the map is first touched/used. If MapLoader.loadAllKeys returns NULL then nothing will be loaded. Your MapLoader.loadAllKeys implementation can return all or some of the keys. For example, you may select and return only the hot keys. MapLoader.loadAllKeys is the fastest way of pre-populating the map since Hazelcast will optimize the loading process by having each node loading its owned portion of the entries.

The InitialLoadMode configuration parameter in the class MapStoreConfig has two values: LAZY and EAGER. If InitialLoadMode is set to LAZY, data is not loaded during the map creation. If it is set to EAGER, the whole data is loaded while the map is created and everything becomes ready to use. Also, if you add indices to your map with the MapIndexConfig class or the addIndex method, then InitialLoadMode is overridden and MapStoreConfig behaves as if EAGER mode is on.

Here is the MapLoader initialization flow:

  1. When getMap() is first called from any node, initialization will start depending on the value of InitialLoadMode. If it is set to EAGER, initialization starts. If it is set to LAZY, initialization does not start but data is loaded each time a partition loading completes.
  2. Hazelcast will call MapLoader.loadAllKeys() to get all your keys on one of the nodes.
  3. That node will distribute keys to all other nodes in batches.
  4. Each node will load values of all its owned keys by calling MapLoader.loadAll(keys).
  5. Each node puts its owned entries into the map by calling IMap.putTransient(key,value).

image NOTE: If the load mode is LAZY and when the clear() method is called (which triggers MapStore.deleteAll()), Hazelcast will remove ONLY the loaded entries from your map and datastore. Since the whole data is not loaded for this case (LAZY mode), please note that there may be still entries in your datastore.

Incremental Key Loading

If the number of keys to load is large, it is more efficient to load them incrementally than loading them all at once. To support incremental loading, MapLoader.loadAllKeys() returns an Iterable which can be lazily populated with results of a database query. Hazelcast iterates over the iterable and, while doing so, sends out the keys to their respective owner nodes. The Iterator obtained from MapLoader.loadAllKeys() may also implement the Closeable interface in which case it is closed once the iteration is over. This is intended for releasing resources such as closing a JDBC result set.

Forcing All Keys To Be Loaded

The method loadAll loads some or all keys into a data store in order to optimize the multiple load operations. The method has two signatures (i.e. the same method can take two different parameter lists). One signature loads the given keys and the other loads all keys. Please see the sample code below.

public class LoadAll {

    public static void main(String[] args) {
        final int numberOfEntriesToAdd = 1000;
        final String mapName = LoadAll.class.getCanonicalName();
        final Config config = createNewConfig(mapName);
        final HazelcastInstance node = Hazelcast.newHazelcastInstance(config);
        final IMap<Integer, Integer> map = node.getMap(mapName);

        populateMap(map, numberOfEntriesToAdd);
        System.out.printf("# Map store has %d elements\n", numberOfEntriesToAdd);

        map.evictAll();
        System.out.printf("# After evictAll map size\t: %d\n", map.size());

        map.loadAll(true);
        System.out.printf("# After loadAll map size\t: %d\n", map.size());
    }
}

Post Processing Map Store

In some scenarios, you may need to modify the object after storing it into the map store. For example, you can get an ID or version auto generated by your database and then you need to modify your object stored in the distributed map but not to break the sync between database and data grid. You can do that by implementing the PostProcessingMapStore interface to put the modified object into the distributed map. That will cause an extra step of Serialization, so use it only when needed. (This explanation is only valid when using the write-through map store configuration.)

Here is an example of post processing map store:

class ProcessingStore extends MapStore<Integer, Employee> implements PostProcessingMapStore {
  @Override
  public void store( Integer key, Employee employee ) {
    EmployeeId id = saveEmployee();
    employee.setId( id.getId() );
  }
}