ILock is the distributed implementation of java.util.concurrent.locks.Lock
. Meaning if you lock using an ILock, the critical
section that it guards is guaranteed to be executed by only one thread in the entire cluster. Even though locks are great for synchronization, they can lead to problems if not used properly. Also note that Hazelcast Lock does not support fairness.
A few warnings when using locks:
import com.hazelcast.core.Hazelcast;
import java.util.concurrent.locks.Lock;
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Lock lock = hazelcastInstance.getLock( "myLock" );
lock.lock();
try {
// do something here
} finally {
lock.unlock();
}
tryLock
with a timeout value. You can
set a high value (normally it should not take that long) for tryLock
. You can check the return value of tryLock
as follows:if ( lock.tryLock ( 10, TimeUnit.SECONDS ) ) {
try {
// do some stuff here..
} finally {
lock.unlock();
}
} else {
// warning
}
You can also avoid indefinitely waiting threads by using lock with lease time: the lock will be released in the given lease time. Lock can be safely unlocked before the lease time expires. Note that the unlock operation can
throw an IllegalMonitorStateException
if lock is released because the lease time expires. If that is the case, critical section guarantee is broken.
Please see the below example.
lock.lock( 5, TimeUnit.SECONDS )
try {
// do some stuff here..
} finally {
try {
lock.unlock();
} catch ( IllegalMonitorStateException ex ){
// WARNING Critical section guarantee can be broken
}
}
Locks are re-entrant: the same thread can lock multiple times on the same lock. Note that for other threads to be
able to require this lock, the owner of the lock must call unlock
as many times as the owner called lock
.
In the split-brain scenario, the cluster behaves as if it were two different clusters. Since two separate clusters are not aware of each other, two nodes from different clusters can acquire the same lock. For more information on places where split brain syndrome can be handled, please see split brain syndrome.
Locks are not automatically removed. If a lock is not used anymore, Hazelcast will not automatically garbage collect the lock.
This can lead to an OutOfMemoryError
. If you create locks on the fly, make sure they are destroyed.
Hazelcast IMap also provides locking support on the entry level with the method IMap.lock(key)
. Although the same infrastructure
is used, IMap.lock(key)
is not an ILock and it is not possible to expose it directly.