Finally, we make sure that the data of counter is available on another node when a member goes down. We need to have the IncOperation
class implement the BackupAwareOperation
interface contained in the SPI package. See the following code.
class IncOperation extends AbstractOperation
implements PartitionAwareOperation, BackupAwareOperation {
...
@Override
public int getAsyncBackupCount() {
return 0;
}
@Override
public int getSyncBackupCount() {
return 1;
}
@Override
public boolean shouldBackup() {
return true;
}
@Override
public Operation getBackupOperation() {
return new IncBackupOperation(objectId, amount);
}
}
The methods getAsyncBackupCount
and getSyncBackupCount
specify the count for asynchronous and synchronous backups. Our sample has one synchronous backup and no asynchronous backups. In the above code, counts of the backups are hard-coded, but they can also be passed to IncOperation
as parameters.
The method shouldBackup
specifies whether our Operation needs a backup or not. For our sample, it returns true
, meaning the Operation will always have a backup even if there are no changes. Of course, in real systems, we want to have backups if there is a change. For IncOperation
for example, having a backup when amount
is null would be a good practice.
The method getBackupOperation
returns the operation (IncBackupOperation
) that actually performs the backup creation; the backup itself is an operation and will run on the same infrastructure.
If a backup should be made and getSyncBackupCount
returns 3, then three IncBackupOperation
instances are created and sent to the three machines containing the backup partition. If fewer machines are available, then backups need to be created. Hazelcast will just send a smaller number of operations.
Now, let's have a look at the IncBackupOperation
.
public class IncBackupOperation
extends AbstractOperation implements BackupOperation {
private String objectId;
private int amount;
public IncBackupOperation() {
}
public IncBackupOperation(String objectId, int amount) {
this.amount = amount;
this.objectId = objectId;
}
@Override
protected void writeInternal(ObjectDataOutput out) throws IOException {
super.writeInternal(out);
out.writeUTF(objectId);
out.writeInt(amount);
}
@Override
protected void readInternal(ObjectDataInput in) throws IOException {
super.readInternal(in);
objectId = in.readUTF();
amount = in.readInt();
}
@Override
public void run() throws Exception {
CounterService service = getService();
System.out.println("Executing backup " + objectId + ".inc() on: "
+ getNodeEngine().getThisAddress());
Container c = service.containers[getPartitionId()];
c.inc(objectId, amount);
}
}
NOTE: Hazelcast will also make sure that a new IncOperation for that particular key will not be executed before the (synchronous) backup operation has completed.
Let's see the backup functionality in action with the following code.
public class Member {
public static void main(String[] args) throws Exception {
HazelcastInstance[] instances = new HazelcastInstance[2];
for (int k = 0; k < instances.length; k++)
instances[k] = Hazelcast.newHazelcastInstance();
Counter counter = instances[0].getDistributedObject(CounterService.NAME, "counter");
counter.inc(1);
System.out.println("Finished");
System.exit(0);
}
}
Once it is run, the following output will be seen.
Executing counter0.inc() on: Address[192.168.1.103]:5702
Executing backup counter0.inc() on: Address[192.168.1.103]:5701
Finished
As it can be seen, both IncOperation
and IncBackupOperation
are executed. Notice that these operations have been executed on different cluster members to guarantee high availability.