Introduction to Aggregations API

We now look into the possible options of what can be achieved using the Aggregations API. To work on some deeper examples, let's quickly have a look at the available classes and interfaces and discuss their usage.


The com.hazelcast.mapreduce.aggregation.Supplier provides filtering and data extraction to the aggregation operation. This class already provides a few different static methods to achieve the most common cases. Supplier.all() accepts all incoming values and does not apply any data extraction or transformation upon them before supplying them to the aggregation function itself.

For filtering data sets, you have two different options by default. You can either supply a com.hazelcast.query.Predicate if you want to filter on values and / or keys, or you can supply a com.hazelcast.mapreduce.KeyPredicate if you can decide directly on the data key without the need to deserialize the value.

Basic Filtering

As mentioned above, all APIs are fully Java 8 and Lambda compatible. Let's have a look on how we can do basic filtering using those two options.

First, we have a look at a KeyPredicate and only accept people whose last name is "Jones".

Supplier<...> supplier = Supplier.fromKeyPredicate(
    lastName -> "Jones".equalsIgnoreCase( lastName )
class JonesKeyPredicate implements KeyPredicate<String> {
  public boolean evaluate( String key ) {
    return "Jones".equalsIgnoreCase( key );

Using the standard Hazelcast Predicate interface, you can also filter based on the value of a data entry. In the following example, you can only select values which are divisible by 4 without a remainder.

Supplier<...> supplier = Supplier.fromPredicate(
    entry -> entry.getValue() % 4 == 0
class DivisiblePredicate implements Predicate<String, Integer> {
  public boolean apply( Map.Entry<String, Integer> entry ) {
    return entry.getValue() % 4 == 0;
Extracting and Transforming Data

As well as filtering, Supplier can also extract or transform data before providing it to the aggregation operation itself. The following example shows how to transform an input value to a string.

Supplier<String, Integer, String> supplier = Supplier.all(
    value -> Integer.toString(value)

You can see a Java 6 / 7 example in the Aggregations Examples section.

Apart from the fact we transformed the input value of type int (or Integer) to a string, we can see that the generic information of the resulting Supplier has changed as well. This indicates that we now have an aggregation working on string values.

Chaining Multiple Filtering Rules

Another feature of Supplier is its ability to chain multiple filtering rules. Let's combine all of the above examples into one rule set:

Supplier<String, Integer, String> supplier =
        lastName -> "Jones".equalsIgnoreCase( lastName ),
            entry -> entry.getValue() % 4 == 0,  
            Supplier.all( value -> Integer.toString(value) )
Implementing Based on Special Requirements

Last but not least, you might prefer to (or need to) implement your Supplier based on special requirements. This is a very basic task. The Supplier abstract class has just one method.

image NOTE: Due to a limitation of the Java Lambda API, you cannot implement abstract classes using Lambdas. Instead it is recommended that you create a standard named class.

class MyCustomSupplier extends Supplier<String, Integer, String> {
  public String apply( Map.Entry<String, Integer> entry ) {
    Integer value = entry.getValue();
    if (value == null) {
      return null;
    return value % 4 == 0 ? String.valueOf( value ) : null;

Suppliers are expected to return null from the apply method whenever the input value should not be mapped to the aggregation process. This can be used, as in the example above, to implement filter rules directly. Implementing filters using the KeyPredicate and Predicate interfaces might be more convenient.

To use your own Supplier, just pass it to the aggregate method or use it in combination with other Suppliers.

int sum = personAgeMapping.aggregate( new MyCustomSupplier(), Aggregations.count() );
Supplier<String, Integer, String> supplier =
        lastName -> "Jones".equalsIgnoreCase( lastName ),
        new MyCustomSupplier()
int sum = personAgeMapping.aggregate( supplier, Aggregations.count() );

Aggregation and Aggregations

The com.hazelcast.mapreduce.aggregation.Aggregation interface defines the aggregation operation itself. It contains a set of MapReduce API implementations like Mapper, Combiner, Reducer, and Collator. These implementations are normally unique to the chosen Aggregation. This interface can also be implemented with your aggregation operations based on MapReduce calls. For more information, refer to Implementing Aggregations section.

The com.hazelcast.mapreduce.aggregation.Aggregations class provides a common predefined set of aggregations. This class contains type safe aggregations of the following types:

  • Average (Integer, Long, Double, BigInteger, BigDecimal)
  • Sum (Integer, Long, Double, BigInteger, BigDecimal)
  • Min (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
  • Max (Integer, Long, Double, BigInteger, BigDecimal, Comparable)
  • DistinctValues
  • Count

Those aggregations are similar to their counterparts on relational databases and can be equated to SQL statements as set out below.


Calculates an average value based on all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
               Aggregations.integerAvg() );
SELECT AVG(person.age) FROM person;

Calculates a sum based on all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
               Aggregations.integerSum() );
SELECT SUM(person.age) FROM person;
Minimum (Min)

Finds the minimal value over all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
               Aggregations.integerMin() );
SELECT MIN(person.age) FROM person;
Maximum (Max)

Finds the maximal value over all selected values.

map.aggregate( Supplier.all( person -> person.getAge() ),
               Aggregations.integerMax() );
SELECT MAX(person.age) FROM person;
Distinct Values

Returns a collection of distinct values over the selected values

map.aggregate( Supplier.all( person -> person.getAge() ),
               Aggregations.distinctValues() );
SELECT DISTINCT person.age FROM person;

Returns the element count over all selected values

map.aggregate( Supplier.all(), Aggregations.count() );


We used the com.hazelcast.mapreduce.aggregation.PropertyExtractor interface before when we had a look at the example on how to use a Supplier to transform a value to another type. It can also be used to extract attributes from values.

class Person {
  private String firstName;
  private String lastName;
  private int age;

  // getters and setters

PropertyExtractor<Person, Integer> propertyExtractor = (person) -> person.getAge();
class AgeExtractor implements PropertyExtractor<Person, Integer> {
  public Integer extract( Person value ) {
    return value.getAge();

In this example, we extract the value from the person's age attribute. The value type changes from Person to Integer which is reflected in the generics information to stay type safe.

PropertyExtractors are meant to be used for any kind of transformation of data. You might even want to have multiple transformation steps chained one after another.

Aggregation Configuration

As stated before, the easiest way to configure the resources used by the underlying MapReduce framework is to supply a JobTracker to the aggregation call itself by passing it to either IMap::aggregate or MultiMap::aggregate.

There is another way to implicitly configure the underlying used JobTracker. If no specific JobTracker was passed for the aggregation call, internally one will be created using the following naming specifications:

For IMap aggregation calls the naming specification is created as:

  • hz::aggregation-map- and the concatenated name of the map.

For MultiMap it is very similar:

  • hz::aggregation-multimap- and the concatenated name of the MultiMap.

Knowing that (the specification of the name), we can configure the JobTracker as expected (as described in the Jobtracker section) using the naming spec we just learned. For more information on configuration of the JobTracker, please see the JobTracker Configuration section.

To finish this section, let's have a quick example for the above naming specs:

IMap<String, Integer> map = hazelcastInstance.getMap( "mymap" );

// The internal JobTracker name resolves to 'hz::aggregation-map-mymap' 
map.aggregate( ... );
MultiMap<String, Integer> multimap = hazelcastInstance.getMultiMap( "mymultimap" );

// The internal JobTracker name resolves to 'hz::aggregation-multimap-mymultimap' 
multimap.aggregate( ... );