Introduction to MapReduce API

This section explains the basics of the Hazelcast MapReduce framework. While walking through the different API classes, we will build the word count example that was discussed earlier and create it step by step.

The Hazelcast API for MapReduce operations consists of a fluent DSL-like configuration syntax to build and submit jobs. JobTracker is the basic entry point to all MapReduce operations and is retrieved from com.hazelcast.core.HazelcastInstance by calling getJobTracker and supplying the name of the required JobTracker configuration. The configuration for JobTrackers will be discussed later, for now we focus on the API itself. In addition, the complete submission part of the API is built to support a fully reactive way of programming.

To give an easy introduction to people used to Hadoop, we created the class names to be as familiar as possible to their counterparts on Hadoop. That means while most users will recognize a lot of similar sounding classes, the way to configure the jobs is more fluent due to the DSL-like styled API.

While building the example, we will go through as many options as possible, e.g. we create a specialized JobTracker configuration (at the end). Special JobTracker configuration is not required, because for all other Hazelcast features you can use "default" as the configuration name. However, special configurations offer better options to predict behavior of the framework execution.

The full example is available here as a ready to run Maven project.


JobTracker creates Job instances, whereas every instance of com.hazelcast.mapreduce.Job defines a single MapReduce configuration. The same Job can be submitted multiple times, no matter if it is executed in parallel or after the previous execution is finished.

image NOTE: After retrieving the JobTracker, be aware that it should only be used with data structures derived from the same HazelcastInstance. Otherwise, you can get unexpected behavior.

To retrieve a JobTracker from Hazelcast, we will start by using the "default" configuration for convenience reasons to show the basic way.

import com.hazelcast.mapreduce.*;

JobTracker jobTracker = hazelcastInstance.getJobTracker( "default" );

JobTracker is retrieved using the same kind of entry point as most other Hazelcast features. After building the cluster connection, you use the created HazelcastInstance to request the configured (or default) JobTracker from Hazelcast.

The next step will be to create a new Job and configure it to execute our first MapReduce request against cluster data.


As mentioned in the JobTracker section, a Job is created using the retrieved JobTracker instance. A Job defines exactly one configuration of a MapReduce task. Mapper, combiner and reducers will be defined per job but since the Job instance is only a configuration, it is possible to be submitted multiple times, no matter if executions happening in parallel or one after the other.

A submitted job is always identified using a unique combination of the JobTracker's name and a jobId generated on submit-time. The way for retrieving the jobId will be shown in one of the later sections.

To create a Job, a second class com.hazelcast.mapreduce.KeyValueSource is necessary. We will have a deeper look at the KeyValueSource class in the next section, for now it is enough to know that it is used to wrap any kind of data or data structure into a well defined set of key-value pairs.

Below example code is a direct follow up of the example of the JobTracker section and reuses the already created HazelcastInstance and JobTracker instances.

We start by retrieving an instance of our data map and create the Job instance afterwards. Implementations used to configure the Job will be discussed while walking further through the API documentation, they are not yet discussed.

image NOTE: Since the Job class is highly dependent upon generics to support type safety, the generics change over time and may not be assignment compatible to old variable types. To make use of the full potential of the fluent API, we recommend you use fluent method chaining as shown in this example to prevent the need for too many variables.

IMap<String, String> map = hazelcastInstance.getMap( "articles" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );
Job<String, String> job = jobTracker.newJob( source );

ICompletableFuture<Map<String, Long>> future = job
    .mapper( new TokenizerMapper() )
    .combiner( new WordCountCombinerFactory() )
    .reducer( new WordCountReducerFactory() )

// Attach a callback listener
future.andThen( buildCallback() );

// Wait and retrieve the result
Map<String, Long> result = future.get();

As seen above, we create the Job instance and define a mapper, combiner, reducer and eventually submit the request to the cluster. The submit method returns an ICompletableFuture that can be used to attach our callbacks or just to wait for the result to be processed in a blocking fashion.

There are more options available for job configurations such as defining a general chunk size or on what keys the operation will operate. For more information, please refer to the Javadoc matching your Hazelcast version.


KeyValueSource is able to either wrap Hazelcast data structures (like IMap, MultiMap, IList, ISet) into key-value pair input sources, or build your own custom key-value input source. The latter option makes it possible to feed Hazelcast MapReduce with all kinds of data, such as just-in-time downloaded web page contents or data files. People familiar with Hadoop will recognize similarities with the Input class.

You can imagine a KeyValueSource as a bigger java.util.Iterator implementation. Whereas most methods are required to be implemented, the getAllKeys method is optional to implement. If implementation is able to gather all keys upfront, it should be implemented and isAllKeysSupported must return true. That way, Job configured KeyPredicates are able to evaluate keys upfront before sending them to the cluster. Otherwise, they are serialized and transferred as well, to be evaluated at execution time.

As shown in the example above, the abstract KeyValueSource class provides a number of static methods to easily wrap Hazelcast data structures into KeyValueSource implementations already provided by Hazelcast. The data structures' generics are inherited into the resulting KeyValueSource instance. For data structures like IList or ISet, the key type is always String. While mapping, the key is the data structure's name whereas the value type and value itself are inherited from the IList or ISet itself.

// KeyValueSource from com.hazelcast.core.IMap
IMap<String, String> map = hazelcastInstance.getMap( "my-map" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );
// KeyValueSource from com.hazelcast.core.MultiMap
MultiMap<String, String> multiMap = hazelcastInstance.getMultiMap( "my-multimap" );
KeyValueSource<String, String> source = KeyValueSource.fromMultiMap( multiMap );
// KeyValueSource from com.hazelcast.core.IList
IList<String> list = hazelcastInstance.getList( "my-list" );
KeyValueSource<String, String> source = KeyValueSource.fromList( list );
// KeyValueSource from com.hazelcast.core.ISet
ISet<String> set = hazelcastInstance.getSet( "my-set" );
KeyValueSource<String, String> source = KeyValueSource.fromSet( set );


The com.hazelcast.mapreduce.PartitionIdAware interface can be implemented by the KeyValueSource implementation if the underlying data set is aware of the Hazelcast partitioning schema (as it is for all internal data structures). If this interface is implemented, the same KeyValueSource instance is reused multiple times for all partitions on the cluster node. As a consequence, the close and open methods are also executed multiple times but once per partitionId.


Using the Mapper interface, you will implement the mapping logic. Mappers can transform, split, calculate, aggregate data from data sources. In Hazelcast, it is also possible to integrate data from more than the KeyValueSource data source by implementing com.hazelcast.core.HazelcastInstanceAware and requesting additional maps, multimaps, list, sets.

The mappers map function is called once per available entry in the data structure. If you work on distributed data structures that operate in a partition based fashion, then multiple mappers work in parallel on the different cluster nodes, on the nodes' assigned partitions. Mappers then prepare and maybe transform the input key-value pair and emit zero or more key-value pairs for reducing phase.

For our word count example, we retrieve an input document (a text document) and we transform it by splitting the text into the available words. After that, as discussed in the pseudo code, we emit every single word with a key-value pair with the word as the key and 1 as the value.

A common implementation of that Mapper might look like the following example:

public class TokenizerMapper implements Mapper<String, String, String, Long> {
  private static final Long ONE = Long.valueOf( 1L );

  public void map(String key, String document, Context<String, Long> context) {
    StringTokenizer tokenizer = new StringTokenizer( document.toLowerCase() );
    while ( tokenizer.hasMoreTokens() ) {
      context.emit( tokenizer.nextToken(), ONE );

The code splits the mapped texts into their tokens, iterates over the tokenizer as long as there are more tokens, and emits a pair per word. Note that we're not yet collecting multiple occurrences of the same word, we just fire every word on its own.

LifecycleMapper / LifecycleMapperAdapter

The LifecycleMapper interface or its adapter class LifecycleMapperAdapter can be used to make the Mapper implementation lifecycle aware. That means it will be notified when mapping of a partition or set of data begins and when the last entry was mapped.

Only special algorithms might need those additional lifecycle events to prepare, clean up, or emit additional values.

Combiner / CombinerFactory

As stated in the introduction, a Combiner is used to minimize traffic between the different cluster nodes when transmitting mapped values from mappers to the reducers. It does this by aggregating multiple values for the same emitted key. This is a fully optional operation, but using it is highly recommended.

Combiners can be seen as an intermediate reducer. The calculated value is always assigned back to the key for which the combiner initially was created. Since combiners are created per emitted key, the Combiner implementation itself is not defined in the jobs configuration; instead, a CombinerFactory is created that is able to create the expected Combiner instance.

Because Hazelcast MapReduce is executing mapping and reducing phase in parallel, the Combiner implementation must be able to deal with chunked data. Therefore, you must reset its internal state whenever you call finalizeChunk. Calling that method creates a chunk of intermediate data to be grouped (shuffled) and sent to the reducers.

Combiners can override beginCombine and finalizeCombine to perform preparation or cleanup work.

For our word count example, we are going to have a simple CombinerFactory and Combiner implementation similar to the following example.

public class WordCountCombinerFactory
    implements CombinerFactory<String, Long, Long> {

  public Combiner<Long, Long> newCombiner( String key ) {
    return new WordCountCombiner();

  private class WordCountCombiner extends Combiner<Long, Long> {
    private long sum = 0;

    public void combine( Long value ) {

    public Long finalizeChunk() {
      return sum;

    public void reset() {
      sum = 0;

The Combiner must be able to return its current value as a chunk and reset the internal state by setting sum back to 0. Since combiners are always called from a single thread, no synchronization or volatility of the variables is necessary.

Reducer / ReducerFactory

Reducers do the last bit of algorithm work. This can be aggregating values, calculating averages, or any other work that is expected from the algorithm.

Since values arrive in chunks, the reduce method is called multiple times for every emitted value of the creation key. This also can happen multiple times per chunk if no Combiner implementation was configured for a job configuration.

In difference of the combiners, a reducers finalizeReduce method is only called once per reducer (which means once per key). Therefore, a reducer does not need to reset its internal state at any time.

Reducers can override beginReduce to perform preparation work.

For our word count example, the implementation will look similar to the following code example.

public class WordCountReducerFactory implements ReducerFactory<String, Long, Long> {

  public Reducer<Long, Long> newReducer( String key ) {
    return new WordCountReducer();

  private class WordCountReducer extends Reducer<Long, Long> {
    private volatile long sum = 0;

    public void reduce( Long value ) {
      sum += value.longValue();

    public Long finalizeReduce() {
      return sum;

Different from combiners, reducers tend to switch threads if running out of data to prevent blocking threads from the JobTracker configuration. They are rescheduled at a later point when new data to be processed arrives but unlikely to be executed on the same thread as before. As of Hazelcast version 3.3.3 the guarantee for memory visibility on the new thread is ensured by the framework. This means the previous requirement for making fields volatile is dropped.


A Collator is an optional operation that is executed on the job emitting node and is able to modify the finally reduced result before returned to the user's codebase. Only special use cases are likely to use collators.

For an imaginary use case, we might want to know how many words were all over in the documents we analyzed. For this case, a Collator implementation can be given to the submit method of the Job instance.

A collator would look like the following snippet:

public class WordCountCollator implements Collator<Map.Entry<String, Long>, Long> {

  public Long collate( Iterable<Map.Entry<String, Long>> values ) {
    long sum = 0;

    for ( Map.Entry<String, Long> entry : values ) {
      sum += entry.getValue().longValue();
    return sum;

The definition of the input type is a bit strange, but because Combiner and Reducer implementations are optional, the input type heavily depends on the state of the data. As stated above, collators are non-typical use cases and the generics of the framework always help in finding the correct signature.


A KeyPredicate can be used to pre-select whether or not a key should be selected for mapping in the mapping phase. If the KeyValueSource implementation is able to know all keys prior to execution, the keys are filtered before the operations are divided among the different cluster nodes.

A KeyPredicate can also be used to select only a special range of data (e.g. a time-frame) or similar use cases.

A basic KeyPredicate implementation that only maps keys containing the word "hazelcast" might look like the following code example:

public class WordCountKeyPredicate implements KeyPredicate<String> {

  public boolean evaluate( String s ) {
    return s != null && s.toLowerCase().contains( "hazelcast" );

TrackableJob and Job Monitoring

You can retrieve a TrackableJob instance after submitting a job. It is requested from the JobTracker using the unique jobId (per JobTracker). It can be used to get runtime statistics of the job. The information available is limited to the number of processed (mapped) records and the processing state of the different partitions or nodes (if KeyValueSource is not PartitionIdAware).

To retrieve the jobId after submission of the job, use com.hazelcast.mapreduce.JobCompletableFuture instead of the com.hazelcast.core.ICompletableFuture as the variable type for the returned future.

The example code below gives a quick introduction on how to retrieve the instance and the runtime data. For more information, please have a look at the Javadoc corresponding your running Hazelcast version.

IMap<String, String> map = hazelcastInstance.getMap( "articles" );
KeyValueSource<String, String> source = KeyValueSource.fromMap( map );
Job<String, String> job = jobTracker.newJob( source );

JobCompletableFuture<Map<String, Long>> future = job
    .mapper( new TokenizerMapper() )
    .combiner( new WordCountCombinerFactory() )
    .reducer( new WordCountReducerFactory() )

String jobId = future.getJobId();
TrackableJob trackableJob = jobTracker.getTrackableJob(jobId);

JobProcessInformation stats = trackableJob.getJobProcessInformation();
int processedRecords = stats.getProcessedRecords();
log( "ProcessedRecords: " + processedRecords );

JobPartitionState[] partitionStates = stats.getPartitionStates();
for ( JobPartitionState partitionState : partitionStates ) {
  log( "PartitionOwner: " + partitionState.getOwner()
          + ", Processing state: " + partitionState.getState().name() );

image NOTE: Caching of the JobProcessInformation does not work on Java native clients since current values are retrieved while retrieving the instance to minimize traffic between executing node and client.

JobTracker Configuration

The JobTracker configuration is used to setup behavior of the Hazelcast MapReduce framework.

Every JobTracker is capable of running multiple MapReduce jobs at once; one configuration is meant as a shared resource for all jobs created by the same JobTracker. The configuration gives full control over the expected load behavior and thread counts to be used.

The following snippet shows a typical JobTracker configuration. We will discuss the configuration properties one by one:

<jobtracker name="default">
  <!-- Queue size 0 means number of partitions * 2 -->
  • max-thread-size: Configures the maximum thread pool size of the JobTracker.
  • queue-size: Defines the maximum number of tasks that are able to wait to be processed. A value of 0 means an unbounded queue. Very low numbers can prevent successful execution since job might not be correctly scheduled or intermediate chunks might be lost.
  • retry-count: Currently not used. Reserved for later use where the framework will automatically try to restart / retry operations from an available save point.
  • chunk-size: Defines the number of emitted values before a chunk is sent to the reducers. If your emitted values are big or you want to better balance your work, you might want to change this to a lower or higher value. A value of 0 means immediate transmission, but remember that low values mean higher traffic costs. A very high value might cause an OutOfMemoryError to occur if the emitted values do not fit into heap memory before being sent to the reducers. To prevent this, you might want to use a combiner to pre-reduce values on mapping nodes.
  • communicate-stats: Defines if statistics (for example, statistics about processed entries) are transmitted to the job emitter. This can show progress to a user inside of an UI system, but it produces additional traffic. If not needed, you might want to deactivate this.
  • topology-changed-strategy: Defines how the MapReduce framework will react on topology changes while executing a job. Currently, only CANCEL_RUNNING_OPERATION is fully supported, which throws an exception to the job emitter (will throw a com.hazelcast.mapreduce.TopologyChangedException).


Please refer to the MapReduce Jobtracker Configuration section for a full description of Hazelcast MapReduce JobTracker configuration (includes an example programmatic configuration).